/usr/share/gap/lib/addgphom.gd is in gap-libs 4r8p8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #############################################################################
##
#W addgphom.gd GAP library Scott Murray
#W Alexander Hulpke
##
##
#Y (C) 2000 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains declarations for mappings between groups and additive
## groups.
##
#############################################################################
##
#F GroupToAdditiveGroupHomomorphismByFunction( <S>, <R>, <fun> )
#F GroupToAdditiveGroupHomomorphismByFunction( <S>, <R>, <fun>, <invfun> )
##
## `GroupToAdditiveGroupHomomorphismByFunction' returns a
## group-to-additive-group homomorphism <hom> with
## source <S> and range <R>, such that each element <s> of <S> is mapped to
## the element `<fun>( <s> )', where <fun> is a {\GAP} function.
##
## If the argument <invfun> is bound then <hom> is a bijection between <S>
## and <R>, and the preimage of each element <r> of <R> is given by
## `<invfun>( <r> )', where <invfun> is a {\GAP} function.
##
## No test is performed on whether the functions actually give an
## homomorphism between both groups because this would require testing the
## full multiplication table.
##
## `GroupToAdditiveGroupHomomorphismByFunction' creates a mapping which
## `IsSPGeneralMapping'.
##
DeclareGlobalFunction("GroupToAdditiveGroupHomomorphismByFunction");
#############################################################################
##
#E
|