This file is indexed.

/usr/share/gap/lib/addgphom.gd is in gap-libs 4r8p8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#############################################################################
##
#W  addgphom.gd                 GAP library                      Scott Murray
#W                                                           Alexander Hulpke
##
##
#Y  (C) 2000 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains declarations for mappings between groups and additive
##  groups.
##


#############################################################################
##
#F  GroupToAdditiveGroupHomomorphismByFunction( <S>, <R>, <fun> )
#F  GroupToAdditiveGroupHomomorphismByFunction( <S>, <R>, <fun>, <invfun> )
##
##  `GroupToAdditiveGroupHomomorphismByFunction' returns a
##  group-to-additive-group homomorphism <hom> with
##  source <S> and range <R>, such that each element <s> of <S> is mapped to
##  the element `<fun>( <s> )', where <fun> is a {\GAP} function.
##
##  If the argument <invfun> is bound then <hom> is a bijection between <S>
##  and <R>, and the preimage of each element <r> of <R> is given by
##  `<invfun>( <r> )', where <invfun> is a {\GAP}  function.
##
##  No test is performed on whether the functions actually give an
##  homomorphism between both groups because this would require testing the
##  full multiplication table.
##
##  `GroupToAdditiveGroupHomomorphismByFunction' creates a mapping which
##  `IsSPGeneralMapping'.
##
DeclareGlobalFunction("GroupToAdditiveGroupHomomorphismByFunction");

#############################################################################
##
#E