This file is indexed.

/usr/include/fflas-ffpack/fflas/fflas_simd/simd256_double.inl is in fflas-ffpack-common 2.2.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/* -*- mode: C++; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
// vim:sts=4:sw=4:ts=4:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
/*
 * Copyright (C) 2014 the FFLAS-FFPACK group
 *
 * Written by   Bastien Vialla<bastien.vialla@lirmm.fr>
 * Brice Boyer (briceboyer) <boyer.brice@gmail.com>
 *
 *
 * ========LICENCE========
 * This file is part of the library FFLAS-FFPACK.
 *
 * FFLAS-FFPACK is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *.
 */

#ifndef __FFLASFFPACK_fflas_ffpack_utils_simd256_double_INL
#define __FFLASFFPACK_fflas_ffpack_utils_simd256_double_INL

#if not (defined(__FFLASFFPACK_HAVE_AVX_INSTRUCTIONS) or defined(__FFLASFFPACK_HAVE_AVX2_INSTRUCTIONS))
#error "You need AVX instructions to perform 256bits operations on double"
#endif

/*
 * Simd256 specialized for double
 */
template <> struct Simd256_impl<true, false, true, 8> : public Simd256fp_base {
	/*
	 * alias to 256 bit simd register
	 */
	using vect_t = __m256d;

	/*
	 * define the scalar type corresponding to the specialization
	 */
	using scalar_t = double;

	/*
	 *	number of scalar_t in a simd register
	 */
	static const constexpr size_t vect_size = 4;

	/*
	 *	alignement required by scalar_t pointer to be loaded in a vect_t
	 */
	static const constexpr size_t alignment = 32;

	/*
	 * Check if the pointer p is a multiple of alignemnt
	 */
	template <class T> static constexpr bool valid(T *p) { return (int64_t)p % alignment == 0; }

	/*
	 * Check if the number n is a multiple of vect_size
	 */
	template <class T> static constexpr bool compliant(T n) { return n % vect_size == 0; }

	/*
	 *	Return vector of type vect_t with all elements set to zero
	 *  Return [0,0,0,0]
	 */
	static INLINE CONST vect_t zero() { return _mm256_setzero_pd(); }

	/*
	 *	Broadcast double-precision (64-bit) floating-point value x to all elements of vect_t.
	 *  Return [x,x,x,x]
	 */
	static INLINE CONST vect_t set1(const scalar_t x) { return _mm256_set1_pd(x); }

	/*
	 *	Set packed double-precision (64-bit) floating-point elements in vect_t with the supplied values.
	 *  Return [x1,x2,x3,x4]
	 */
	static INLINE CONST vect_t set(const scalar_t x1, const scalar_t x2, const scalar_t x3, const scalar_t x4) {
		return _mm256_set_pd(x4, x3, x2, x1);
	}

	/*
	 *	Gather double-precision (64-bit) floating-point elements with indexes idx[0], ..., idx[3] from the address p in
	 *vect_t.
	 *  Return [p[idx[0]], p[idx[1]], p[idx[2]], p[idx[3]]]
	 */
	template <class T> static INLINE PURE vect_t gather(const scalar_t *const p, const T *const idx) {
		// TODO AVX2 Gather
		return _mm256_set_pd(p[idx[3]], p[idx[2]], p[idx[1]], p[idx[0]]);
	}

	/*
	 * Load 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from memory into vect_t.
	 * p must be aligned on a 32-byte boundary or a general-protection exception will be generated.
	 * Return [p[0], p[1], p[2], p[3]]
	 */
	static INLINE PURE vect_t load(const scalar_t *const p) { return _mm256_load_pd(p); }

	/*
	 * Load 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from memory into vect_t.
	 * p does not need to be aligned on any particular boundary.
	 * Return [p[0], p[1], p[2], p[3]]
	 */
	static INLINE PURE vect_t loadu(const scalar_t *const p) { return _mm256_loadu_pd(p); }

	/*
	 * Store 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from p into memory.
	 * p must be aligned on a 32-byte boundary or a general-protection exception will be generated.
	 */
	static INLINE void store(const scalar_t *p, const vect_t v) { _mm256_store_pd(const_cast<scalar_t *>(p), v); }

	/*
	 * Store 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from p into memory.
	 * p does not need to be aligned on any particular boundary.
	 */
	static INLINE void storeu(const scalar_t *p, const vect_t v) { _mm256_storeu_pd(const_cast<scalar_t *>(p), v); }

	/*
	 * Store 256-bits (composed of 4 packed double-precision (64-bit) floating-point elements) from a into memory using
	 * a non-temporal memory hint.
	 * p must be aligned on a 32-byte boundary or a general-protection exception may be generated.
	 */
	static INLINE void stream(const scalar_t *p, const vect_t v) { _mm256_stream_pd(const_cast<scalar_t *>(p), v); }

	/*
	* Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8,
	* and store the results in dst.
	* Args   : [a0, a1, a2, a3] double
			   [b0, b1, b2, b3] double
	* Return : [a[s[0..1]], ..., a[s[6..7]]] double
	*/
#if defined(__FFLASFFPACK_HAVE_AVX2_INSTRUCTIONS)
	template<uint8_t s>
	static INLINE CONST vect_t shuffle(const vect_t a) {
		return _mm256_permute4x64_pd(a, s);
	}
#endif

	/*
	* Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b,
	* and store the results in dst.
	* Args   : [a0, a1, a2, a3] double
			   [b0, b1, b2, b3] double
	* Return : [a0, b0, a2, b2] double
	*/
	static INLINE CONST vect_t unpacklo_twice(const vect_t a, const vect_t b) { return _mm256_unpacklo_pd(a, b); }

	/*
	* Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b,
	* and store the results in dst.
	* Args   : [a0, a1, a2, a3] double
			   [b0, b1, b2, b3] double
	* Return : [a1, b1, a3, b3] double
	*/
	static INLINE CONST vect_t unpackhi_twice(const vect_t a, const vect_t b) { return _mm256_unpackhi_pd(a, b); }

	/*
	* Blend packed double-precision (64-bit) floating-point elements from a and b using control mask s,
	* and store the results in dst.
	* Args   : [a0, a1, a2, a3] double
			   [b0, b1, b2, b3] double
	* Return : [s[0]?a0:b0, ..., s[3]?a3:b3] double
	*/
	template<uint8_t s>
	static INLINE CONST vect_t blend(const vect_t a, const vect_t b) {
		return _mm256_blend_pd(a, b, s);
	}

	/*
	* Blend packed double-precision (64-bit) floating-point elements from a and b using mask,
	* and store the results in dst.
	* Args   : [a0, a1, a2, a3] double
			   [b0, b1, b2, b3] double
	* Return : [mask[31]?a0:b0, ..., mask[255]?a3:b3] double
	*/
	static INLINE CONST vect_t blendv(const vect_t a, const vect_t b, const vect_t mask) {
		return _mm256_blendv_pd(a, b, mask);
	}

	/*
	 * Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0+b0, a1+b1, a2+b2, a3+b3]
	 */
	static INLINE CONST vect_t add(const vect_t a, const vect_t b) { return _mm256_add_pd(a, b); }

	static INLINE vect_t addin(vect_t &a, const vect_t b) { return a = add(a, b); }

	/*
	 * Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit)
	 * floating-point elements in a, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0-b0, a1-b1, a2-b2, a3-b3]
	 */
	static INLINE CONST vect_t sub(const vect_t a, const vect_t b) { return _mm256_sub_pd(a, b); }

	static INLINE CONST vect_t subin(vect_t &a, const vect_t b) { return a = sub(a, b); }

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0*b0, a1*b1, a2*b2, a3*b3]
	 */
	static INLINE CONST vect_t mul(const vect_t a, const vect_t b) { return _mm256_mul_pd(a, b); }

	static INLINE CONST vect_t mulin(vect_t &a, const vect_t b) { return a = mul(a, b); }

	/*
	 * Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b,
	 * and store the results in dst.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0/b0, a1/b1, a2/b2, a3/b3]
	 */
	static INLINE CONST vect_t div(const vect_t a, const vect_t b) { return _mm256_div_pd(a, b); }

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
	 * packed elements in c, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3], [c0, c1, c2, c3]
	 * Return : [a0*b0+c0, a1*b1+c1, a2*b2+c2, a3*b3+c3]
	 */
	static INLINE CONST vect_t fmadd(const vect_t c, const vect_t a, const vect_t b) {
#ifdef __FMA__
		return _mm256_fmadd_pd(a, b, c);
#else
		return add(c, mul(a, b));
#endif
	}

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
	 * packed elements in c, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3], [c0, c1, c2, c3]
	 * Return : [a0*b0+c0, a1*b1+c1, a2*b2+c2, a3*b3+c3]
	 */
	static INLINE CONST vect_t madd(const vect_t c, const vect_t a, const vect_t b) { return fmadd(c, a, b); }

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to
	 * packed elements in c, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3], [c0, c1, c2, c3]
	 * Return : [a0*b0+c0, a1*b1+c1, a2*b2+c2, a3*b3+c3]
	 */
	static INLINE CONST vect_t maddx(const vect_t c, const vect_t a, const vect_t b) { return fmadd(c, a, b); }

	static INLINE CONST vect_t fmaddin(vect_t &c, const vect_t a, const vect_t b) { return c = fmadd(c, a, b); }

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result
	 * to packed elements in c, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3], [c0, c1, c2, c3]
	 * Return : [-(a0*b0)+c0, -(a1*b1)+c1, -(a2*b2)+c2, -(a3*b3)+c3]
	 */
	static INLINE CONST vect_t fnmadd(const vect_t c, const vect_t a, const vect_t b) {
#ifdef __FMA__
		return _mm256_fnmadd_pd(a, b, c);
#else
		return sub(c, mul(a, b));
#endif
	}

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result
	 * to packed elements in c, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3], [c0, c1, c2, c3]
	 * Return : [-(a0*b0)+c0, -(a1*b1)+c1, -(a2*b2)+c2, -(a3*b3)+c3]
	 */
	static INLINE CONST vect_t nmadd(const vect_t c, const vect_t a, const vect_t b) { return fnmadd(c, a, b); }

	static INLINE CONST vect_t fnmaddin(vect_t &c, const vect_t a, const vect_t b) { return c = fnmadd(c, a, b); }

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from
	 * the intermediate result, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3], [c0, c1, c2, c3]
	 * Return : [a0*b0-c0, a1*b1-c1, a2*b2-c2, a3*b3-c3]
	 */
	static INLINE CONST vect_t fmsub(const vect_t c, const vect_t a, const vect_t b) {
#ifdef __FMA__
		return _mm256_fmsub_pd(a, b, c);
#else
		return sub(mul(a, b), c);
#endif
	}

	/*
	 * Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from
	 * the intermediate result, and store the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3], [c0, c1, c2, c3]
	 * Return : [a0*b0-c0, a1*b1-c1, a2*b2-c2, a3*b3-c3]
	 */
	static INLINE CONST vect_t msub(const vect_t c, const vect_t a, const vect_t b) { return fmsub(c, a, b); }

	static INLINE CONST vect_t fmsubin(vect_t &c, const vect_t a, const vect_t b) { return c = fmsub(c, a, b); }

	/*
	 * Compare packed double-precision (64-bit) floating-point elements in a and b for equality, and store the results
	 in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [(a0==b0) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a1==b1) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a2==b2) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a3==b3) ? 0xFFFFFFFFFFFFFFFF : 0]
	 */
	static INLINE CONST vect_t eq(const vect_t a, const vect_t b) { return _mm256_cmp_pd(a, b, _CMP_EQ_OQ); }

	/*
	 * Compare packed double-precision (64-bit) floating-point elements in a and b for lesser-than, and store the
	 results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [(a0<b0) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a1<b1) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a2<b2) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a3<b3) ? 0xFFFFFFFFFFFFFFFF : 0]
	 */
	static INLINE CONST vect_t lesser(const vect_t a, const vect_t b) { return _mm256_cmp_pd(a, b, _CMP_LT_OS); }

	/*
	 * Compare packed double-precision (64-bit) floating-point elements in a and b for lesser or equal than, and store
	 the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [(a0<=b0) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a1<=b1) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a2<=b2) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a3<=b3) ? 0xFFFFFFFFFFFFFFFF : 0]
	 */
	static INLINE CONST vect_t lesser_eq(const vect_t a, const vect_t b) { return _mm256_cmp_pd(a, b, _CMP_LE_OS); }

	/*
	 * Compare packed double-precision (64-bit) floating-point elements in a and b for greater-than, and store the
	 results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [(a0>b0) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a1>b1) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a2>b2) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a3>b3) ? 0xFFFFFFFFFFFFFFFF : 0]
	 */
	static INLINE CONST vect_t greater(const vect_t a, const vect_t b) { return _mm256_cmp_pd(a, b, _CMP_GT_OS); }

	/*
	 * Compare packed double-precision (64-bit) floating-point elements in a and b for greater or equal than, and store
	 the results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [(a0>=b0) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a1>=b1) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a2>=b2) ? 0xFFFFFFFFFFFFFFFF : 0,
	 (a3>=b3) ? 0xFFFFFFFFFFFFFFFF : 0]
	 */
	static INLINE CONST vect_t greater_eq(const vect_t a, const vect_t b) { return _mm256_cmp_pd(a, b, _CMP_GE_OS); }

	/*
	 * Compute the bitwise AND of packed double-precision (64-bit) floating-point elements in a and b, and store the
	 * results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0 AND b0, a1 AND b1, a2 AND b2, a3 AND b3]
	 */
	static INLINE CONST vect_t vand(const vect_t a, const vect_t b) { return _mm256_and_pd(a, b); }

	/*
	 * Compute the bitwise OR of packed double-precision (64-bit) floating-point elements in a and b, and store the
	 * results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0 OR b0, a1 OR b1, a2 OR b2, a3 OR b3]
	 */
	static INLINE CONST vect_t vor(const vect_t a, const vect_t b) { return _mm256_or_pd(a, b); }

	/*
	 * Compute the bitwise XOR of packed double-precision (64-bit) floating-point elements in a and b, and store the
	 * results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0 XOR b0, a1 XOR b1, a2 XOR b2, a3 XOR b3]
	 */
	static INLINE CONST vect_t vxor(const vect_t a, const vect_t b) { return _mm256_xor_pd(a, b); }

	/*
	 * Compute the bitwise AND NOT of packed double-precision (64-bit) floating-point elements in a and b, and store the
	 * results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0 AND NOT b0, a1 AND NOT b1, a2 AND NOT b2, a3 AND NOT b3]
	 */
	static INLINE CONST vect_t vandnot(const vect_t a, const vect_t b) { return _mm256_andnot_pd(a, b); }

	/*
	 * Round the packed double-precision (64-bit) floating-point elements in a down to an integer value, and store the
	 * results as packed double-precision floating-point elements in vect_t.
	 * Args   : [a0, a1, a2, a3]
	 * Return : [floor(a0), floor(a1), floor(a2), floor(a3)]
	 */
	static INLINE CONST vect_t floor(const vect_t a) { return _mm256_floor_pd(a); }

	/*
	 * Round the packed double-precision (64-bit) floating-point elements in a up to an integer value, and store the
	 * results as packed double-precision floating-point elements in vect_t.
	 * Args   : [a0, a1, a2, a3]
	 * Return : [ceil(a0), ceil(a1), ceil(a2), ceil(a3)]
	 */
	static INLINE CONST vect_t ceil(const vect_t a) { return _mm256_ceil_pd(a); }

	/*
	 * Round the packed double-precision (64-bit) floating-point elements in a, and store the results as packed
	 * double-precision floating-point elements in vect_t.
	 * Args   : [a0, a1, a2, a3]
	 * Return : [round(a0), round(a1), round(a2), round(a3)]
	 */
	static INLINE CONST vect_t round(const vect_t a) {
		return _mm256_round_pd(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
	}

	/*
	 * Horizontally add adjacent pairs of double-precision (64-bit) floating-point elements in a and b, and pack the
	 * results in vect_t.
	 * Args   : [a0, a1, a2, a3], [b0, b1, b2, b3]
	 * Return : [a0+a1, b0+b1, a2+a3, b2+b3]
	 */
	static INLINE CONST vect_t hadd(const vect_t a, const vect_t b) { return _mm256_hadd_pd(a, b); }

	/*
	 * Horizontally add double-precision (64-bit) floating-point elements in a.
	 * Args   : [a0, a1, a2, a3]
	 * Return : a0+a1+a2+a3
	 */
	static INLINE CONST scalar_t hadd_to_scal(const vect_t a) {
		return ((const scalar_t *)&a)[0] + ((const scalar_t *)&a)[1] + ((const scalar_t *)&a)[2] +
				((const scalar_t *)&a)[3];
	}

	static INLINE vect_t mod(vect_t &C, const vect_t &P, const vect_t &INVP, const vect_t &NEGP, const vect_t &MIN,
							 const vect_t &MAX, vect_t &Q, vect_t &T) {
		FLOAT_MOD(C, P, INVP, Q);
		NORML_MOD(C, P, NEGP, MIN, MAX, Q, T);

		return C;
	}

};

#endif // __FFLASFFPACK_fflas_ffpack_utils_simd256_double_INL