This file is indexed.

/usr/include/fflas-ffpack/fflas/fflas_simd/simd128_int32.inl is in fflas-ffpack-common 2.2.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/* -*- mode: C++; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
// vim:sts=4:sw=4:ts=4:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
/*
 * Copyright (C) 2014 the FFLAS-FFPACK group
 *
 * Written by   Bastien Vialla<bastien.vialla@lirmm.fr>
 * Brice Boyer (briceboyer) <boyer.brice@gmail.com>
 * Romain Lebreton <romain.lebreton@lirmm.fr>
 *
 *
 * ========LICENCE========
 * This file is part of the library FFLAS-FFPACK.
 *
 * FFLAS-FFPACK is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *.
 */

#ifndef __FFLASFFPACK_fflas_ffpack_utils_simd128_int32_INL
#define __FFLASFFPACK_fflas_ffpack_utils_simd128_int32_INL

#ifndef __FFLASFFPACK_HAVE_SSE4_1_INSTRUCTIONS
#error "You need SSE instructions to perform 128 bits operations on int32"
#endif

#include "fflas-ffpack/fflas/fflas_simd/simd128_int64.inl"

/*
 * Simd128 specialized for int32_t
 */
template <> struct Simd128_impl<true, true, true, 4> : public Simd128i_base {

	/*
	* alias to 128 bit simd register
	*/
	using vect_t = __m128i;

	/*
	* define the scalar type corresponding to the specialization
	*/
	using scalar_t = int32_t;

	/*
	*  number of scalar_t in a simd register
	*/
	static const constexpr size_t vect_size = 4;

	/*
	*  alignement required by scalar_t pointer to be loaded in a vect_t
	*/
	static const constexpr size_t alignment = 16;

	/*
	* Check if the pointer p is a multiple of alignemnt
	*/
	template <class T> static constexpr bool valid(T *p) { return (int64_t)p % alignment == 0; }

	/*
	* Check if the number n is a multiple of vect_size
	*/
	template <class T> static constexpr bool compliant(T n) { return n % vect_size == 0; }

	/*
	* Converter from vect_t to a tab.
	* exple:
	*	Converter conv;
	*	conv.v = a;
	*	scalart_t x = conv.t[1]
	*/
	union Converter {
		vect_t v;
		scalar_t t[vect_size];
	};

	/*
	*  Broadcast 32-bit integer a to all elements of dst. This intrinsic may generate vpbroadcastd.
	*  Return [x,x,x,x] int32_t
	*/
	static INLINE CONST vect_t set1(const scalar_t x) { return _mm_set1_epi32(x); }

	/*
	*  Set packed 32-bit integers in dst with the supplied values.
	*  Return [x0,x1,x2,x3] int32_t
	*/
	static INLINE CONST vect_t set(const scalar_t x0, const scalar_t x1, const scalar_t x2, const scalar_t x3) {
		return _mm_set_epi32(x3, x2, x1, x0);
	}

	/*
	*  Gather 32-bit integer elements with indexes idx[0], ..., idx[3] from the address p in vect_t.
	*  Return [p[idx[0]], p[idx[1]], p[idx[2]], p[idx[3]]] int32_t
	*/
	template <class T> static INLINE PURE vect_t gather(const scalar_t *const p, const T *const idx) {
		return set(p[idx[0]], p[idx[1]], p[idx[2]], p[idx[3]]);
	}

	/*
	* Load 128-bits of integer data from memory into dst.
	* p must be aligned on a 32-byte boundary or a general-protection exception will be generated.
	* Return [p[0],p[1],p[2],p[3]] int32_t
	*/
	static INLINE PURE vect_t load(const scalar_t *const p) {
		return _mm_load_si128(reinterpret_cast<const vect_t *>(p));
	}

	/*
	* Load 128-bits of integer data from memory into dst.
	* p does not need to be aligned on any particular boundary.
	* Return [p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7]] int32_t
	*/
	static INLINE PURE vect_t loadu(const scalar_t *const p) {
		return _mm_loadu_si128(reinterpret_cast<const vect_t *>(p));
	}

	/*
	* Store 128-bits of integer data from a into memory.
	* p must be aligned on a 32-byte boundary or a general-protection exception will be generated.
	*/
	static INLINE void store(scalar_t *p, vect_t v) {
		_mm_store_si128(reinterpret_cast<vect_t *>(p), v);
	}

	/*
	* Store 128-bits of integer data from a into memory.
	* p does not need to be aligned on any particular boundary.
	*/
	static INLINE void storeu(scalar_t *p, vect_t v) {
		_mm_storeu_si128(reinterpret_cast<vect_t *>(p), v);
	}

	/*
	* Store 128-bits of integer data from a into memory using a non-temporal memory hint.
	* p must be aligned on a 16-byte boundary or a general-protection exception may be generated.
	*/
	static INLINE void stream(scalar_t *p, const vect_t v) {
		_mm_stream_si128(reinterpret_cast<vect_t *>(p), v);
	}

	/*
	* Shift packed 64-bit integers in a left by s while shifting in zeros, and store the results in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
	* Return : [a0 << s, a1 << s, a2 << s, a3 << s] int32_t
	*/
	static INLINE CONST vect_t sll(const vect_t a, const int s) { return _mm_slli_epi32(a, s); }

	/*
	* Shift packed 64-bit integers in a right by s while shifting in zeros, and store the results in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
	* Return : [a0 >> s, a1 >> s, a2 >> s, a3 >> s] int32_t
	*/
	static INLINE CONST vect_t srl(const vect_t a, const int s) { return _mm_srli_epi32(a, s); }

	/*
	* Shift packed 32-bit integers in a right by s while shifting in sign bits, and store the results in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
	* Return : [a0 >> s, a1 >> s, a2 >> s, a3 >> s] int32_t
	*/
	static INLINE CONST vect_t sra(const vect_t a, const int s) { return _mm_srai_epi32(a, s); }

	/*
	* Shuffle 32-bit integers in a using the control in imm8, and store the results in dst.
	* Args   : [a0, a1, a2, a3] int32_t
	* Return : [a[s[0..1]], ..., a[s[6..7]] int32_t
	*/
	template<uint8_t s>
	static INLINE CONST vect_t shuffle(const vect_t a) {
		return _mm_shuffle_epi32(a, s);
	}

	/*
	* Unpack and interleave 32-bit integers from the low half of a and b, and store the results in dst.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [a0, b0, a1, b1] int32_t
	*/
	static INLINE CONST vect_t unpacklo(const vect_t a, const vect_t b) { return _mm_unpacklo_epi32(a, b); }

	/*
	* Unpack and interleave 32-bit integers from the high half of a and b, and store the results in dst.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [a2, b2, a3, b3] int32_t
	*/
	static INLINE CONST vect_t unpackhi(const vect_t a, const vect_t b) { return _mm_unpackhi_epi32(a, b); }

	/*
	* Blend packed 32-bit integers from a and b using control mask imm8, and store the results in dst.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [s[0]?a0:b0,   , s[3]?a3:b3] int32_t
	*/
	template<uint8_t s>
	static INLINE CONST vect_t blend(const vect_t a, const vect_t b) {
		// _mm_blend_epi16 is faster than _mm_blend_epi32 and require SSE4.1 instead of AVX2
		// We have to transform s = [d3 d2 d1 d0]_base2 to s1 = [d3 d3 d2 d2 d1 d1 d0 d0]_base2
		constexpr uint8_t s1 = (s & 0x1) * 3 + (((s & 0x2) << 1)*3)  + (((s & 0x4) << 2)*3) + (((s & 0x8) << 3)*3);
		return _mm_blend_epi16(a, b, s1);
	}

	/*
	* Add packed 32-bits integer in a and b, and store the results in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [a0+b0, a1+b1, a2+b2, a3+b3]   int32_t
	*/
	static INLINE CONST vect_t add(const vect_t a, const vect_t b) { return _mm_add_epi32(a, b); }

	static INLINE vect_t addin(vect_t &a, const vect_t b) { return a = add(a, b); }

	/*
	* Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [a0-b0, a1-b1, a2-b2, a3-b3]  int32_t
	*/
	static INLINE CONST vect_t sub(const vect_t a, const vect_t b) { return _mm_sub_epi32(a, b); }

	static INLINE vect_t subin(vect_t &a, const vect_t b) { return a = sub(a, b); }

	/*
	* Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits
	of the intermediate integers in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [a0*b0 smod 2^32, ..., a3*b3 smod 2^32]	int32_t
	*	   where (a smod p) is the signed representant of a modulo p, that is -p/2 <= (a smod p) < p/2
	*/
	static INLINE CONST vect_t mullo(const vect_t a, const vect_t b) { return _mm_mullo_epi32(a, b); }

	static INLINE CONST vect_t mul(const vect_t a, const vect_t b) { return mullo(a, b); }

	/*
	* Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the high 32
	bits of the intermediate integers in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [Floor(a0*b0/2^32), ..., Floor(a3*b3/2^32)] int32_t
	*/

	static INLINE CONST vect_t mulhi(const vect_t a, const vect_t b) {
		// _mm_mulhi_epi32 emul
		//#pragma warning "The simd mulhi function is emulated, it may impact the performances."
#if 0
		vect_t a1, a2, b1, b2;
		a1 = set(_mm_extract_epi32(a, 0), 0, _mm_extract_epi32(a, 2), 0);
		a2 = set(_mm_extract_epi32(a, 1), 0, _mm_extract_epi32(a, 3), 0);
		b1 = set(_mm_extract_epi32(b, 0), 0, _mm_extract_epi32(b, 2), 0);
		b2 = set(_mm_extract_epi32(b, 1), 0, _mm_extract_epi32(b, 3), 0);
		a1 = _mm_mul_epi32(a1, b1);
		a2 = _mm_mul_epi32(a2, b2);
		return set(_mm_extract_epi32(a1, 1), _mm_extract_epi32(a2, 1), _mm_extract_epi32(a1, 3),
				   _mm_extract_epi32(a2, 3));
#else
		typedef Simd128_impl<true, true, true, 8> Simd128_64;
		vect_t C,A1,B1;
		C  = Simd128_64::mulx(a,b);
		A1 = Simd128_64::srl(a,32);
		B1 = Simd128_64::srl(b,32);
		A1 = Simd128_64::mulx(A1,B1);
		C  = Simd128_64::srl(C,32);
		A1 = Simd128_64::srl(A1,32);
		A1 = Simd128_64::sll(A1,32);
		return Simd128_64::vor(C,A1);
#endif
	}

	/*
	* Multiply the low 16-bit integers from each packed 32-bit element in a and b, and store the signed 32-bit results
	in vect_t.
	* Args   : [a0, a1, a2, a3] int32_t
			   [b0, b1, b2, b3] int32_t
	* Return : [(a0 smod 2^16)*(b0 smod 2^16), (a1 smod 2^16)*(b1 smod 2^16),
	*	    (a2 smod 2^16)*(b2 smod 2^16), (a3 smod 2^16)*(b3 smod 2^16)]	int32_t
	*	   where (a smod p) is the signed representant of a modulo p, that is -p/2 <= (a smod p) < p/2
	*/
	static INLINE CONST vect_t mulx(const vect_t a, const vect_t b) {
		//#pragma warning "The simd mulx function is emulated, it may impact the performances."
		vect_t a1, b1, mask1, mask2;
		mask1 = set1(0x0000FFFF);
		mask2 = set1(0x00008000);
		a1 = add(a,mask2);
		a1 = vand(a1,mask1);
		a1 = sub(a1,mask2);
		b1 = add(b,mask2);
		b1 = vand(b1,mask1);
		b1 = sub(b1,mask2);
		return mul(a1,b1);
	}

	/*
	* Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers,
	* keep the low 32 bits of the intermediate and add the low 32-bits of c.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
				[c0, c1, c2, c3]		int32_t
	* Return :	[(a0*b0+c0) smod 2^32, ..., (a3*b3+c3) smod 2^32]	int32_t
	*/
	static INLINE CONST vect_t fmadd(const vect_t c, const vect_t a, const vect_t b) { return add(c, mul(a, b)); }

	static INLINE vect_t fmaddin(vect_t &c, const vect_t a, const vect_t b) { return c = fmadd(c, a, b); }

	/*
	* Multiply the low 16-bit integers from each packed 32-bit element in a and b,
	* keep the signed 32-bit results and add the low 32-bits of c.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
				[c0, c1, c2, c3]		int32_t
	* Return :	[((a0 smod 2^16)*(b0 smod 2^16)+c0) smod 2^32, ...,
	*		 ((a3 smod 2^16)*(b3 smod 2^16)+c3) smod 2^32]	int32_t
	*/
	static INLINE CONST vect_t fmaddx(const vect_t c, const vect_t a, const vect_t b) { return add(c, mulx(a, b)); }

	static INLINE vect_t fmaddxin(vect_t &c, const vect_t a, const vect_t b) { return c = fmaddx(c, a, b); }

	/*
	* Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers,
	* and substract the low 32 bits of the intermediate from elements of c.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
				[c0, c1, c2, c3]		int32_t
	* Return :	[(-a0*b0+c0) smod 2^32, ..., (-a3*b3+c3) smod 2^32]	int32_t
	*/
	static INLINE CONST vect_t fnmadd(const vect_t c, const vect_t a, const vect_t b) { return sub(c, mul(a, b)); }

	static INLINE vect_t fnmaddin(vect_t &c, const vect_t a, const vect_t b) { return c = fnmadd(c, a, b); }

	/*
	* Multiply the low 16-bit integers from each packed 32-bit element in a and b,
	* keep the signed 32-bit results and add the low 32-bits of c and substract them from elements of c.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
				[c0, c1, c2, c3]		int32_t
	* Return :	[(-(a0 smod 2^16)*(b0 smod 2^16)+c0) smod 2^32, ...,
	*		 (-(a3 smod 2^16)*(b3 smod 2^16)+c3) smod 2^32]	int32_t
	*/
	static INLINE CONST vect_t fnmaddx(const vect_t c, const vect_t a, const vect_t b) { return sub(c, mulx(a, b)); }

	static INLINE vect_t fnmaddxin(vect_t &c, const vect_t a, const vect_t b) { return c = fnmaddx(c, a, b); }

	/*
	* Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers,
	* and substract elements of c to the low 32-bits of the intermediate.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
				[c0, c1, c2, c3]		int32_t
	* Return : [(a0*b0-c0) smod 2^32, ..., (a3*b3-c3) smod 2^32]	int32_t
	*/
	static INLINE CONST vect_t fmsub(const vect_t c, const vect_t a, const vect_t b) { return sub(mul(a, b), c); }

	static INLINE vect_t fmsubin(vect_t &c, const vect_t a, const vect_t b) { return c = fmsub(c, a, b); }

	/*
	* Multiply the low 16-bit integers from each packed 32-bit element in a and b,
	* keep the signed 32-bit results and substract elements of c from them.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
				[c0, c1, c2, c3]		int32_t
	* Return :	[((a0 smod 2^16)*(b0 smod 2^16)-c0) smod 2^32, ...,
	*		 ((a3 smod 2^16)*(b3 smod 2^16)-c3) smod 2^32]	int32_t
	*/
	static INLINE CONST vect_t fmsubx(const vect_t c, const vect_t a, const vect_t b) { return sub(mulx(a, b), c); }

	static INLINE vect_t fmsubxin(vect_t &c, const vect_t a, const vect_t b) { return c = fmsubx(c, a, b); }

	/*
	* Compare packed 32-bits in a and b for equality, and store the results in vect_t.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
	* Return : [(a0==b0) ? 0xFFFFFFFF : 0, (a1==b1) ? 0xFFFFFFFF : 0,
	(a2==b2) ? 0xFFFFFFFF : 0, (a3==b3) ? 0xFFFFFFFF : 0]			int32_t
	*/
	static INLINE CONST vect_t eq(const vect_t a, const vect_t b) { return _mm_cmpeq_epi32(a, b); }

	/*
	* Compare packed 32-bits in a and b for greater-than, and store the results in vect_t.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
	* Return : [(a0>b0) ? 0xFFFFFFFF : 0, (a1>b1) ? 0xFFFFFFFF : 0,
	(a2>b2) ? 0xFFFFFFFF : 0, (a3>b3) ? 0xFFFFFFFF : 0]			int32_t
	*/
	static INLINE CONST vect_t greater(const vect_t a, const vect_t b) { return _mm_cmpgt_epi32(a, b); }

	/*
	* Compare packed 32-bits in a and b for lesser-than, and store the results in vect_t.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
	* Return : [(a0<b0) ? 0xFFFFFFFF : 0, (a1<b1) ? 0xFFFFFFFF : 0,
	(a2<b2) ? 0xFFFFFFFF : 0, (a3<b3) ? 0xFFFFFFFF : 0]			int32_t
	*/
	static INLINE CONST vect_t lesser(const vect_t a, const vect_t b) { return _mm_cmplt_epi32(a, b); }

	/*
	* Compare packed 32-bits in a and b for greater or equal than, and store the results in vect_t.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
	* Return : [(a0>=b0) ? 0xFFFFFFFF : 0, (a1>=b1) ? 0xFFFFFFFF : 0,
	(a2>=b2) ? 0xFFFFFFFF : 0, (a3>=b3) ? 0xFFFFFFFF : 0]			int32_t
	*/
	static INLINE CONST vect_t greater_eq(const vect_t a, const vect_t b) { return vor(greater(a, b), eq(a, b)); }

	/*
	* Compare packed 32-bits in a and b for lesser or equal than, and store the results in vect_t.
	* Args   :	[a0, a1, a2, a3]		int32_t
				[b0, b1, b2, b3]		int32_t
	* Return : [(a0<=b0) ? 0xFFFFFFFF : 0, (a1<=b1) ? 0xFFFFFFFF : 0,
	(a2<=b2) ? 0xFFFFFFFF : 0, (a3<=b3) ? 0xFFFFFFFF : 0]			int32_t
	*/
	static INLINE CONST vect_t lesser_eq(const vect_t a, const vect_t b) { return vor(lesser(a, b), eq(a, b)); }

	/*
	* Horizontally add 32-bits elements of a.
	* Args   : [a0, a1, a2, a3]
	* Return : a0+a1+a2+a3
	*/
	static INLINE CONST scalar_t hadd_to_scal(const vect_t a) {
		Converter conv;
		conv.v = a;
		return scalar_t(conv.t[0] + conv.t[1] + conv.t[2] + conv.t[3]);
	}

	static INLINE CONST vect_t round(const vect_t a) { return a; }

	static INLINE CONST vect_t signbits(const vect_t x) {
		vect_t signBits = sub(zero(), srl(x, 4*sizeof(scalar_t)-1));
		return signBits;
	}

	static INLINE vect_t mod(vect_t &C, const vect_t &P, const vect_t &INVP, const vect_t &NEGP, const vect_t &MIN,
							 const vect_t &MAX, vect_t &Q, vect_t &T) {
#ifdef __INTEL_COMPILER
		C = _mm_rem_epi32(C, P);
#else
		FFLASFFPACK_abort("pas implementé");
		// C = fnmadd(C,_mm_castps_si128(_mm_floor_ps(_mm_mul_ps(INVP,_mm_castsi128_ps(C)))),P);
#endif
		NORML_MOD(C, P, NEGP, MIN, MAX, Q, T);
		return C;
	}

};

/*
 * Simd128 specialized for uint32_t
 */
template <> struct Simd128_impl<true, true, false, 4> : public Simd128_impl<true, true, true, 4> {

	/*
	* define the scalar type corresponding to the specialization
	*/
	using scalar_t = uint32_t;

	/*
	* Converter from vect_t to a tab.
	* exple:
	*	Converter conv;
	*	conv.v = a;
	*	scalart_t x = conv.t[1]
	*/
	union Converter {
		vect_t v;
		scalar_t t[vect_size];
	};

	/*
	*  Broadcast 32-bit unsigned integer a to all elements of dst. This intrinsic may generate the vpbroadcastw.
	*  Return [x,x,x,x] uint32_t
	*/
	static INLINE CONST vect_t set1(const scalar_t x) { return _mm_set1_epi32(x); }

	/*
	*  Set packed 32-bit unsigned integers in dst with the supplied values.
	*  Return [x0,x1,x2,x3] uint32_t
	*/
	static INLINE CONST vect_t set(const scalar_t x0, const scalar_t x1, const scalar_t x2, const scalar_t x3) {
		return _mm_set_epi32(x3, x2, x1, x0);
	}

	/*
	*  Gather 32-bit unsigned integer elements with indexes idx[0], ..., idx[3] from the address p in vect_t.
	*  Return [p[idx[0]], p[idx[1]], p[idx[2]], p[idx[3]]] uint32_t
	*/
	template <class T> static INLINE PURE vect_t gather(const scalar_t *const p, const T *const idx) {
		return set(p[idx[0]], p[idx[1]], p[idx[2]], p[idx[3]]);
	}

	/*
	* Load 128-bits of unsigned integer data from memory into dst.
	* p must be aligned on a 32-byte boundary or a general-protection exception will be generated.
	* Return [p[0],p[1],p[2],p[3]] uint32_t
	*/
	static INLINE PURE vect_t load(const scalar_t *const p) {
		return _mm_load_si128(reinterpret_cast<const vect_t *>(p));
	}

	/*
	* Load 128-bits of unsigned integer data from memory into dst.
	* p does not need to be aligned on any particular boundary.
	* Return [p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7]] uint32_t
	*/
	static INLINE PURE vect_t loadu(const scalar_t *const p) {
		return _mm_loadu_si128(reinterpret_cast<const vect_t *>(p));
	}

	/*
	* Store 128-bits of unsigned integer data from a into memory.
	* p must be aligned on a 32-byte boundary or a general-protection exception will be generated.
	*/
	static INLINE void store(scalar_t *p, vect_t v) {
		_mm_store_si128(reinterpret_cast<vect_t *>(p), v);
	}

	/*
	* Store 128-bits of unsigned integer data from a into memory.
	* p does not need to be aligned on any particular boundary.
	*/
	static INLINE void storeu(scalar_t *p, vect_t v) {
		_mm_storeu_si128(reinterpret_cast<vect_t *>(p), v);
	}

	/*
	* Store 128-bits of unsigned integer data from a into memory using a non-temporal memory hint.
	* p must be aligned on a 16-byte boundary or a general-protection exception may be generated.
	*/
	static INLINE void stream(scalar_t *p, const vect_t v) {
		_mm_stream_si128(reinterpret_cast<vect_t *>(p), v);
	}

	/*
	* Shift packed 32-bit unsigned integers in a right by s while shifting in sign bits, and store the results in vect_t.
	 * Args   : [a0, ..., a3]			int32_t
	 * Return : [Floor(a0/2^s), ..., Floor(a3/2^s)]	int32_t
	*/
	static INLINE CONST vect_t sra(const vect_t a, const int s) { return _mm_srli_epi32(a, s); }

	static INLINE CONST vect_t greater(vect_t a, vect_t b) {
		vect_t x;
		x = set1((static_cast<scalar_t>(1) << (sizeof(scalar_t) * 8 - 1)));
		a = sub(a,x);
		b = sub(b,x);
		return _mm_cmpgt_epi32(a, b);
	}

	static INLINE CONST vect_t lesser(vect_t a, vect_t b) {
		vect_t x;
		x = set1((static_cast<scalar_t>(1) << (sizeof(scalar_t) * 8 - 1)));
		a = sub(a,x);
		b = sub(b,x);
		return _mm_cmplt_epi32(a, b);
	}

	static INLINE CONST vect_t greater_eq(const vect_t a, const vect_t b) { return vor(greater(a, b), eq(a, b)); }

	static INLINE CONST vect_t lesser_eq(const vect_t a, const vect_t b) { return vor(lesser(a, b), eq(a, b)); }

	/*
	* Multiply the packed unsigned 32-bit integers in a and b, producing intermediate 64-bit integers,
	* and store the high 32	bits of the intermediate integers in vect_t.
	* Args   : [a0, a1, a2, a3]		 uint32_t
	*		   [b0, b1, b2, b3]		 uint32_t
	* Return : [Floor(a0*b0/2^32), ..., Floor(a3*b3/2^32)] uint32_t
	*/
	static INLINE CONST vect_t mulhi(const vect_t a, const vect_t b) {
		// _mm_mulhi_epi32 emul
		//#pragma warning "The simd mulhi function is emulated, it may impact the performances."
		typedef Simd128_impl<true, true, false, 8> Simd128_64;
		vect_t C,A1,B1;
		C  = Simd128_64::mulx(a,b);
		A1 = Simd128_64::srl(a,32);
		B1 = Simd128_64::srl(b,32);
		A1 = Simd128_64::mulx(A1,B1);
		C  = Simd128_64::srl(C,32);
		A1 = Simd128_64::srl(A1,32);
		A1 = Simd128_64::sll(A1,32);
		return Simd128_64::vor(C,A1);
	}

	/*
	* Multiply the low unsigned 16-bit integers from each packed 32-bit element in a and b,
	* and store the signed 32-bit results in vect_t.
	* Args   : [a0, a1, a2, a3]		 uint32_t
	*		   [b0, b1, b2, b3]		 uint32_t
	* Return : [(a0 mod 2^16)*(b0 mod 2^16), (a1 mod 2^16)*(b1 mod 2^16),
	*	    (a2 mod 2^16)*(b2 mod 2^16), (a3 mod 2^16)*(b3 mod 2^16)]	uint32_t
	*/
	static INLINE CONST vect_t mulx(const vect_t a, const vect_t b) {
		//#pragma warning "The simd mulx function is emulated, it may impact the performances."
		vect_t a1, b1, mask1;
		mask1 = set1(0x0000FFFF);
		a1 = vand(a,mask1);
		b1 = vand(b,mask1);
		return mul(a1,b1);
	}

	static INLINE CONST vect_t fmaddx(const vect_t c, const vect_t a, const vect_t b) { return add(c, mulx(a, b)); }

	static INLINE vect_t fmaddxin(vect_t &c, const vect_t a, const vect_t b) { return c = fmaddx(c, a, b); }

	static INLINE CONST vect_t fnmaddx(const vect_t c, const vect_t a, const vect_t b) { return sub(c, mulx(a, b)); }

	static INLINE vect_t fnmaddxin(vect_t &c, const vect_t a, const vect_t b) { return c = fnmaddx(c, a, b); }

	static INLINE CONST vect_t fmsubx(const vect_t c, const vect_t a, const vect_t b) { return sub(mulx(a, b), c); }

	static INLINE vect_t fmsubxin(vect_t &c, const vect_t a, const vect_t b) { return c = fmsubx(c, a, b); }

	/*
	* Horizontally add 32-bits elements of a.
	* Args   : [a0, a1, a2, a3]
	* Return : a0+a1+a2+a3
	*/
	static INLINE CONST scalar_t hadd_to_scal(const vect_t a) {
		Converter conv;
		conv.v = a;
		return conv.t[0] + conv.t[1] + conv.t[2] + conv.t[3];
	}
}; //Simd128_impl<true,true,false,4>

#endif // __FFLASFFPACK_fflas_ffpack_utils_simd128_int32_INL