/usr/share/doc/clang-4.0-doc/html/DataFlowSanitizerDesign.html is in clang-4.0-doc 1:4.0.1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>DataFlowSanitizer Design Document — Clang 4 documentation</title>
<link rel="stylesheet" href="_static/haiku.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '4',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="LeakSanitizer" href="LeakSanitizer.html" />
<link rel="prev" title="DataFlowSanitizer" href="DataFlowSanitizer.html" />
</head>
<body>
<div class="header" role="banner"><h1 class="heading"><a href="index.html">
<span>Clang 4 documentation</span></a></h1>
<h2 class="heading"><span>DataFlowSanitizer Design Document</span></h2>
</div>
<div class="topnav" role="navigation" aria-label="top navigation">
<p>
«  <a href="DataFlowSanitizer.html">DataFlowSanitizer</a>
  ::  
<a class="uplink" href="index.html">Contents</a>
  ::  
<a href="LeakSanitizer.html">LeakSanitizer</a>  »
</p>
</div>
<div class="content">
<div class="section" id="dataflowsanitizer-design-document">
<h1>DataFlowSanitizer Design Document<a class="headerlink" href="#dataflowsanitizer-design-document" title="Permalink to this headline">¶</a></h1>
<p>This document sets out the design for DataFlowSanitizer, a general
dynamic data flow analysis. Unlike other Sanitizer tools, this tool is
not designed to detect a specific class of bugs on its own. Instead,
it provides a generic dynamic data flow analysis framework to be used
by clients to help detect application-specific issues within their
own code.</p>
<p>DataFlowSanitizer is a program instrumentation which can associate
a number of taint labels with any data stored in any memory region
accessible by the program. The analysis is dynamic, which means that
it operates on a running program, and tracks how the labels propagate
through that program. The tool shall support a large (>100) number
of labels, such that programs which operate on large numbers of data
items may be analysed with each data item being tracked separately.</p>
<div class="section" id="use-cases">
<h2>Use Cases<a class="headerlink" href="#use-cases" title="Permalink to this headline">¶</a></h2>
<p>This instrumentation can be used as a tool to help monitor how data
flows from a program’s inputs (sources) to its outputs (sinks).
This has applications from a privacy/security perspective in that
one can audit how a sensitive data item is used within a program and
ensure it isn’t exiting the program anywhere it shouldn’t be.</p>
</div>
<div class="section" id="interface">
<h2>Interface<a class="headerlink" href="#interface" title="Permalink to this headline">¶</a></h2>
<p>A number of functions are provided which will create taint labels,
attach labels to memory regions and extract the set of labels
associated with a specific memory region. These functions are declared
in the header file <code class="docutils literal"><span class="pre">sanitizer/dfsan_interface.h</span></code>.</p>
<div class="highlight-c"><div class="highlight"><pre><span></span><span class="c1">/// Creates and returns a base label with the given description and user data.</span>
<span class="n">dfsan_label</span> <span class="nf">dfsan_create_label</span><span class="p">(</span><span class="k">const</span> <span class="kt">char</span> <span class="o">*</span><span class="n">desc</span><span class="p">,</span> <span class="kt">void</span> <span class="o">*</span><span class="n">userdata</span><span class="p">);</span>
<span class="c1">/// Sets the label for each address in [addr,addr+size) to \c label.</span>
<span class="kt">void</span> <span class="nf">dfsan_set_label</span><span class="p">(</span><span class="n">dfsan_label</span> <span class="n">label</span><span class="p">,</span> <span class="kt">void</span> <span class="o">*</span><span class="n">addr</span><span class="p">,</span> <span class="kt">size_t</span> <span class="n">size</span><span class="p">);</span>
<span class="c1">/// Sets the label for each address in [addr,addr+size) to the union of the</span>
<span class="c1">/// current label for that address and \c label.</span>
<span class="kt">void</span> <span class="nf">dfsan_add_label</span><span class="p">(</span><span class="n">dfsan_label</span> <span class="n">label</span><span class="p">,</span> <span class="kt">void</span> <span class="o">*</span><span class="n">addr</span><span class="p">,</span> <span class="kt">size_t</span> <span class="n">size</span><span class="p">);</span>
<span class="c1">/// Retrieves the label associated with the given data.</span>
<span class="c1">///</span>
<span class="c1">/// The type of 'data' is arbitrary. The function accepts a value of any type,</span>
<span class="c1">/// which can be truncated or extended (implicitly or explicitly) as necessary.</span>
<span class="c1">/// The truncation/extension operations will preserve the label of the original</span>
<span class="c1">/// value.</span>
<span class="n">dfsan_label</span> <span class="nf">dfsan_get_label</span><span class="p">(</span><span class="kt">long</span> <span class="n">data</span><span class="p">);</span>
<span class="c1">/// Retrieves a pointer to the dfsan_label_info struct for the given label.</span>
<span class="k">const</span> <span class="k">struct</span> <span class="n">dfsan_label_info</span> <span class="o">*</span><span class="nf">dfsan_get_label_info</span><span class="p">(</span><span class="n">dfsan_label</span> <span class="n">label</span><span class="p">);</span>
<span class="c1">/// Returns whether the given label label contains the label elem.</span>
<span class="kt">int</span> <span class="nf">dfsan_has_label</span><span class="p">(</span><span class="n">dfsan_label</span> <span class="n">label</span><span class="p">,</span> <span class="n">dfsan_label</span> <span class="n">elem</span><span class="p">);</span>
<span class="c1">/// If the given label label contains a label with the description desc, returns</span>
<span class="c1">/// that label, else returns 0.</span>
<span class="n">dfsan_label</span> <span class="nf">dfsan_has_label_with_desc</span><span class="p">(</span><span class="n">dfsan_label</span> <span class="n">label</span><span class="p">,</span> <span class="k">const</span> <span class="kt">char</span> <span class="o">*</span><span class="n">desc</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="taint-label-representation">
<h2>Taint label representation<a class="headerlink" href="#taint-label-representation" title="Permalink to this headline">¶</a></h2>
<p>As stated above, the tool must track a large number of taint
labels. This poses an implementation challenge, as most multiple-label
tainting systems assign one label per bit to shadow storage, and
union taint labels using a bitwise or operation. This will not scale
to clients which use hundreds or thousands of taint labels, as the
label union operation becomes O(n) in the number of supported labels,
and data associated with it will quickly dominate the live variable
set, causing register spills and hampering performance.</p>
<p>Instead, a low overhead approach is proposed which is best-case O(log<sub>2</sub> n) during execution. The underlying assumption is that
the required space of label unions is sparse, which is a reasonable
assumption to make given that we are optimizing for the case where
applications mostly copy data from one place to another, without often
invoking the need for an actual union operation. The representation
of a taint label is a 16-bit integer, and new labels are allocated
sequentially from a pool. The label identifier 0 is special, and means
that the data item is unlabelled.</p>
<p>When a label union operation is requested at a join point (any
arithmetic or logical operation with two or more operands, such as
addition), the code checks whether a union is required, whether the
same union has been requested before, and whether one union label
subsumes the other. If so, it returns the previously allocated union
label. If not, it allocates a new union label from the same pool used
for new labels.</p>
<p>Specifically, the instrumentation pass will insert code like this
to decide the union label <code class="docutils literal"><span class="pre">lu</span></code> for a pair of labels <code class="docutils literal"><span class="pre">l1</span></code>
and <code class="docutils literal"><span class="pre">l2</span></code>:</p>
<div class="highlight-c"><div class="highlight"><pre><span></span><span class="k">if</span> <span class="p">(</span><span class="n">l1</span> <span class="o">==</span> <span class="n">l2</span><span class="p">)</span>
<span class="n">lu</span> <span class="o">=</span> <span class="n">l1</span><span class="p">;</span>
<span class="k">else</span>
<span class="n">lu</span> <span class="o">=</span> <span class="n">__dfsan_union</span><span class="p">(</span><span class="n">l1</span><span class="p">,</span> <span class="n">l2</span><span class="p">);</span>
</pre></div>
</div>
<p>The equality comparison is outlined, to provide an early exit in
the common cases where the program is processing unlabelled data, or
where the two data items have the same label. <code class="docutils literal"><span class="pre">__dfsan_union</span></code> is
a runtime library function which performs all other union computation.</p>
<p>Further optimizations are possible, for example if <code class="docutils literal"><span class="pre">l1</span></code> is known
at compile time to be zero (e.g. it is derived from a constant),
<code class="docutils literal"><span class="pre">l2</span></code> can be used for <code class="docutils literal"><span class="pre">lu</span></code>, and vice versa.</p>
</div>
<div class="section" id="memory-layout-and-label-management">
<h2>Memory layout and label management<a class="headerlink" href="#memory-layout-and-label-management" title="Permalink to this headline">¶</a></h2>
<p>The following is the current memory layout for Linux/x86_64:</p>
<table border="1" class="docutils">
<colgroup>
<col width="30%" />
<col width="30%" />
<col width="40%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Start</th>
<th class="head">End</th>
<th class="head">Use</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>0x700000008000</td>
<td>0x800000000000</td>
<td>application memory</td>
</tr>
<tr class="row-odd"><td>0x200200000000</td>
<td>0x700000008000</td>
<td>unused</td>
</tr>
<tr class="row-even"><td>0x200000000000</td>
<td>0x200200000000</td>
<td>union table</td>
</tr>
<tr class="row-odd"><td>0x000000010000</td>
<td>0x200000000000</td>
<td>shadow memory</td>
</tr>
<tr class="row-even"><td>0x000000000000</td>
<td>0x000000010000</td>
<td>reserved by kernel</td>
</tr>
</tbody>
</table>
<p>Each byte of application memory corresponds to two bytes of shadow
memory, which are used to store its taint label. As for LLVM SSA
registers, we have not found it necessary to associate a label with
each byte or bit of data, as some other tools do. Instead, labels are
associated directly with registers. Loads will result in a union of
all shadow labels corresponding to bytes loaded (which most of the
time will be short circuited by the initial comparison) and stores will
result in a copy of the label to the shadow of all bytes stored to.</p>
</div>
<div class="section" id="propagating-labels-through-arguments">
<h2>Propagating labels through arguments<a class="headerlink" href="#propagating-labels-through-arguments" title="Permalink to this headline">¶</a></h2>
<p>In order to propagate labels through function arguments and return values,
DataFlowSanitizer changes the ABI of each function in the translation unit.
There are currently two supported ABIs:</p>
<ul class="simple">
<li>Args – Argument and return value labels are passed through additional
arguments and by modifying the return type.</li>
<li>TLS – Argument and return value labels are passed through TLS variables
<code class="docutils literal"><span class="pre">__dfsan_arg_tls</span></code> and <code class="docutils literal"><span class="pre">__dfsan_retval_tls</span></code>.</li>
</ul>
<p>The main advantage of the TLS ABI is that it is more tolerant of ABI mismatches
(TLS storage is not shared with any other form of storage, whereas extra
arguments may be stored in registers which under the native ABI are not used
for parameter passing and thus could contain arbitrary values). On the other
hand the args ABI is more efficient and allows ABI mismatches to be more easily
identified by checking for nonzero labels in nominally unlabelled programs.</p>
</div>
<div class="section" id="implementing-the-abi-list">
<h2>Implementing the ABI list<a class="headerlink" href="#implementing-the-abi-list" title="Permalink to this headline">¶</a></h2>
<p>The <a class="reference external" href="DataFlowSanitizer.html#abi-list">ABI list</a> provides a list of functions
which conform to the native ABI, each of which is callable from an instrumented
program. This is implemented by replacing each reference to a native ABI
function with a reference to a function which uses the instrumented ABI.
Such functions are automatically-generated wrappers for the native functions.
For example, given the ABI list example provided in the user manual, the
following wrappers will be generated under the args ABI:</p>
<div class="highlight-llvm"><div class="highlight"><pre><span></span><span class="k">define</span> <span class="k">linkonce_odr</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="vg">@"dfsw$malloc"</span><span class="p">(</span><span class="k">i64</span> <span class="nv nv-Anonymous">%0</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%1</span><span class="p">)</span> <span class="p">{</span>
<span class="nl">entry:</span>
<span class="nv nv-Anonymous">%2</span> <span class="p">=</span> <span class="k">call</span> <span class="k">i8</span><span class="p">*</span> <span class="vg">@malloc</span><span class="p">(</span><span class="k">i64</span> <span class="nv nv-Anonymous">%0</span><span class="p">)</span>
<span class="nv nv-Anonymous">%3</span> <span class="p">=</span> <span class="k">insertvalue</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="k">undef</span><span class="p">,</span> <span class="k">i8</span><span class="p">*</span> <span class="nv nv-Anonymous">%2</span><span class="p">,</span> <span class="m">0</span>
<span class="nv nv-Anonymous">%4</span> <span class="p">=</span> <span class="k">insertvalue</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="nv nv-Anonymous">%3</span><span class="p">,</span> <span class="k">i16</span> <span class="m">0</span><span class="p">,</span> <span class="m">1</span>
<span class="k">ret</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="nv nv-Anonymous">%4</span>
<span class="p">}</span>
<span class="k">define</span> <span class="k">linkonce_odr</span> <span class="p">{</span> <span class="k">i32</span><span class="p">,</span> <span class="k">i16</span> <span class="p">}</span> <span class="vg">@"dfsw$tolower"</span><span class="p">(</span><span class="k">i32</span> <span class="nv nv-Anonymous">%0</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%1</span><span class="p">)</span> <span class="p">{</span>
<span class="nl">entry:</span>
<span class="nv nv-Anonymous">%2</span> <span class="p">=</span> <span class="k">call</span> <span class="k">i32</span> <span class="vg">@tolower</span><span class="p">(</span><span class="k">i32</span> <span class="nv nv-Anonymous">%0</span><span class="p">)</span>
<span class="nv nv-Anonymous">%3</span> <span class="p">=</span> <span class="k">insertvalue</span> <span class="p">{</span> <span class="k">i32</span><span class="p">,</span> <span class="k">i16</span> <span class="p">}</span> <span class="k">undef</span><span class="p">,</span> <span class="k">i32</span> <span class="nv nv-Anonymous">%2</span><span class="p">,</span> <span class="m">0</span>
<span class="nv nv-Anonymous">%4</span> <span class="p">=</span> <span class="k">insertvalue</span> <span class="p">{</span> <span class="k">i32</span><span class="p">,</span> <span class="k">i16</span> <span class="p">}</span> <span class="nv nv-Anonymous">%3</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%1</span><span class="p">,</span> <span class="m">1</span>
<span class="k">ret</span> <span class="p">{</span> <span class="k">i32</span><span class="p">,</span> <span class="k">i16</span> <span class="p">}</span> <span class="nv nv-Anonymous">%4</span>
<span class="p">}</span>
<span class="k">define</span> <span class="k">linkonce_odr</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="vg">@"dfsw$memcpy"</span><span class="p">(</span><span class="k">i8</span><span class="p">*</span> <span class="nv nv-Anonymous">%0</span><span class="p">,</span> <span class="k">i8</span><span class="p">*</span> <span class="nv nv-Anonymous">%1</span><span class="p">,</span> <span class="k">i64</span> <span class="nv nv-Anonymous">%2</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%3</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%4</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%5</span><span class="p">)</span> <span class="p">{</span>
<span class="nl">entry:</span>
<span class="nv">%labelreturn</span> <span class="p">=</span> <span class="k">alloca</span> <span class="k">i16</span>
<span class="nv nv-Anonymous">%6</span> <span class="p">=</span> <span class="k">call</span> <span class="k">i8</span><span class="p">*</span> <span class="vg">@__dfsw_memcpy</span><span class="p">(</span><span class="k">i8</span><span class="p">*</span> <span class="nv nv-Anonymous">%0</span><span class="p">,</span> <span class="k">i8</span><span class="p">*</span> <span class="nv nv-Anonymous">%1</span><span class="p">,</span> <span class="k">i64</span> <span class="nv nv-Anonymous">%2</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%3</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%4</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%5</span><span class="p">,</span> <span class="k">i16</span><span class="p">*</span> <span class="nv">%labelreturn</span><span class="p">)</span>
<span class="nv nv-Anonymous">%7</span> <span class="p">=</span> <span class="k">load</span> <span class="k">i16</span><span class="p">*</span> <span class="nv">%labelreturn</span>
<span class="nv nv-Anonymous">%8</span> <span class="p">=</span> <span class="k">insertvalue</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="k">undef</span><span class="p">,</span> <span class="k">i8</span><span class="p">*</span> <span class="nv nv-Anonymous">%6</span><span class="p">,</span> <span class="m">0</span>
<span class="nv nv-Anonymous">%9</span> <span class="p">=</span> <span class="k">insertvalue</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="nv nv-Anonymous">%8</span><span class="p">,</span> <span class="k">i16</span> <span class="nv nv-Anonymous">%7</span><span class="p">,</span> <span class="m">1</span>
<span class="k">ret</span> <span class="p">{</span> <span class="k">i8</span><span class="p">*,</span> <span class="k">i16</span> <span class="p">}</span> <span class="nv nv-Anonymous">%9</span>
<span class="p">}</span>
</pre></div>
</div>
<p>As an optimization, direct calls to native ABI functions will call the
native ABI function directly and the pass will compute the appropriate label
internally. This has the advantage of reducing the number of union operations
required when the return value label is known to be zero (i.e. <code class="docutils literal"><span class="pre">discard</span></code>
functions, or <code class="docutils literal"><span class="pre">functional</span></code> functions with known unlabelled arguments).</p>
</div>
<div class="section" id="checking-abi-consistency">
<h2>Checking ABI Consistency<a class="headerlink" href="#checking-abi-consistency" title="Permalink to this headline">¶</a></h2>
<p>DFSan changes the ABI of each function in the module. This makes it possible
for a function with the native ABI to be called with the instrumented ABI,
or vice versa, thus possibly invoking undefined behavior. A simple way
of statically detecting instances of this problem is to prepend the prefix
“dfs$” to the name of each instrumented-ABI function.</p>
<p>This will not catch every such problem; in particular function pointers passed
across the instrumented-native barrier cannot be used on the other side.
These problems could potentially be caught dynamically.</p>
</div>
</div>
</div>
<div class="bottomnav" role="navigation" aria-label="bottom navigation">
<p>
«  <a href="DataFlowSanitizer.html">DataFlowSanitizer</a>
  ::  
<a class="uplink" href="index.html">Contents</a>
  ::  
<a href="LeakSanitizer.html">LeakSanitizer</a>  »
</p>
</div>
<div class="footer" role="contentinfo">
© Copyright 2007-2018, The Clang Team.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.6.7.
</div>
</body>
</html>
|