This file is indexed.

/usr/share/perl5/Circos/LCH.pm is in circos 0.69.6+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
package Circos::LCH;

=pod

=head1 NAME

Circos::LCH - LCH (ab) to RGB conversion

=head1 SYNOPSIS

This module is not meant to be used directly.

=head1 DESCRIPTION

Circos is an application for the generation of publication-quality,
circularly composited renditions of genomic data and related
annotations.

Circos is particularly suited for visualizing alignments, conservation
and intra and inter-chromosomal relationships. However, Circos can be
used to plot any kind of 2D data in a circular layout - its use is not
limited to genomics. Circos' use of lines to relate position pairs
(ribbons add a thickness parameter to each end) is effective to
display relationships between objects or positions on one or more
scales.

All documentation is in the form of tutorials at L<http://www.circos.ca>.

=cut

# -------------------------------------------------------------------

use strict;
use warnings;

use base 'Exporter';
our @EXPORT = qw(
									deltae
									rgb_to_lch
									lch_to_rgb
							 );

use Carp qw( carp confess croak );
use Digest::MD5 qw(md5_hex);
use Math::Round;
use Math::VecStat qw(sum min max);
use Math::Trig;

use lib "$FindBin::RealBin";
use lib "$FindBin::RealBin/../lib";
use lib "$FindBin::RealBin/lib";

use POSIX qw(pow);

use Circos::Constants;
use Circos::Debug;
use Circos::Error;
use Circos::Utils;
use Circos::RGB;

my $white = { 'D65' => [ 0.312713, 0.329016 ] }; # Daylight 6504K
my $srgb  = {
						 white_point => 'D65',
						 gamma => 'sRGB', # 2.4,
						 m     => [ [  0.4124237575757575,  0.2126560000000000,  0.0193323636363636 ], [  0.3575789999999999,  0.7151579999999998,  0.1191930000000000 ], [  0.1804650000000000,  0.0721860000000000,  0.9504490000000001 ] ],
						 mstar => [ [  3.2407109439941704, -0.9692581090654827,  0.0556349466243886 ], [ -1.5372603195869781,  1.8759955135292130, -0.2039948042894247 ], [ -0.4985709144606416,  0.0415556779089489,  1.0570639858633826 ] ],
					 };

sub deltae {
	my ($rgb1,$rgb2) = @_;
	my $lab1 = RGB_to_Lab([ map { $_/255 } @$rgb1 ]);
	my $lab2 = RGB_to_Lab([ map { $_/255 } @$rgb2 ]);
	return sqrt( sum ( map { ($lab1->[$_]-$lab2->[$_])**2 } (0..2) ) );
}

################################################################
# LCH to RGB
sub rgb_to_lch {
	my ($r,$g,$b,$alpha) = @_;
	my $lab = RGB_to_Lab([$r/255,$g/255,$b/255]);
	my $lch = Lab_to_LCHab($lab);
	push @$lch,$alpha if defined $alpha;
	return @$lch;
}

sub lch_to_rgb {
	my ($L,$C,$H,$alpha) = @_;
	my $lab = LCHab_to_Lab([$L,$C,$H]);
	my $rgb = Lab_to_RGB($lab);
	push @$rgb, $alpha if defined $alpha;
	return rgb_to_rgb255($rgb);
}

sub xyY_to_XYZ {
	my ($xyy) = @_;
	my ($x, $y, $Y) = @{$xyy};
	my ($X, $Z);
	if (! ($y == 0)) {
		$X = $x * $Y / $y;
		$Z = (1 - $x - $y) * $Y / $y;
	} else {
		$X = 0; $Y = 0; $Z = 0;
	}
	return [ $X, $Y, $Z ];
}

################################################################
# LCH to Lab
sub LCHab_to_Lab {
	my $lch = shift;
	my ($L, $C, $H) = @{$lch};
	my ($a, $b);

	$H *= $TWOPI/360;
	my $th = tan($H);
	$a = $C / sqrt( $th * $th + 1 );
	$b = sqrt($C*$C - $a*$a);

	#$H = $H - 2*pi*int($H / 2*pi); # convert H to 0..2*pi - this seems to be wrong
	if ($H < 0) { $H = $H + 2*$PI; }
	if ($H > $PI_HALF && $H < 3*$PI_HALF) { $a = - $a; }
	if ($H > $PI) { $b = - $b; }

	return [ $L, $a, $b ];
}

################################################################
# Lab to RGB
sub Lab_to_RGB {
	my $lab = shift;
	my $xyz_white = &RGB_to_XYZ([ 1.0, 1.0, 1.0 ], "sRGB");
	my $xyz = &Lab_to_XYZ($lab, $xyz_white);
	return &XYZ_to_RGB($xyz, "sRGB");
}

sub RGB_to_XYZ {
	my $rgb = shift;
	my $rgb_lin = &RGB_to_linear_RGB($rgb,$srgb);
	my $xyz = &_mult_v3_m33($rgb_lin, $srgb->{m});
	return ($xyz);
}

sub XYZ_to_RGB {
	my ($xyz, $space) = @_;
	my $rgb_lin = &_mult_v3_m33($xyz, $srgb->{mstar});
	my $rgb = &linear_RGB_to_RGB($rgb_lin, $space);
	return ($rgb);
}

sub linear_RGB_to_RGB {
	my $rgb = shift;
	my ($R, $G, $B) = @{$rgb};

	my $s = $srgb;
	if ($s->{gamma} eq 'sRGB') {
		# handle special sRGB gamma curve
		if ( abs($R) <= 0.0031308 ) { $R = 12.92 * $R; }
		else { $R = 1.055 * &_apow($R, 1/2.4) - 0.055; };
		
		if ( abs($G) <= 0.0031308 ) { $G = 12.92 * $G; }
		else { $G = 1.055 * &_apow($G, 1/2.4) - 0.055; }
		
		if ( abs($B) <= 0.0031308 ) { $B = 12.92 * $B; }
		else { $B = 1.055 * &_apow($B, 1/2.4) - 0.055; }
	} else {
		$R = &_apow($R, 1/$s->{gamma});
		$G = &_apow($G, 1/$s->{gamma});
		$B = &_apow($B, 1/$s->{gamma});
	}
	return [ $R, $G, $B ];
}

sub RGB_to_linear_RGB {
	my $rgb = shift;
	my ($R, $G, $B) = @{$rgb};

	my $s = $srgb;
	if ($s->{gamma} eq 'sRGB') # handle special sRGB gamma curve
	{
		if ( abs($R) <= 0.04045 ) { $R = $R / 12.92; }
		else { $R = &_apow( ( $R + 0.055 ) / 1.055 , 2.4 ); }

		if ( abs($G) <= 0.04045 ) { $G = $G / 12.92; }
		else { $G = &_apow( ( $G + 0.055 ) / 1.055 , 2.4 ); }

		if ( abs($B) <= 0.04045 ) { $B = $B / 12.92; }
		else { $B = &_apow( ( $B + 0.055 ) / 1.055 , 2.4 ); }
	} else {
		$R = &_apow($R, $s->{gamma});
		$G = &_apow($G, $s->{gamma});
		$B = &_apow($B, $s->{gamma});
	}
	return [ $R, $G, $B ];
}

sub RGB_to_Lab
{
	my $rgb = shift;
	my $xyz_white = &RGB_to_XYZ([ 1.0, 1.0, 1.0 ], $srgb);
	my $xyz = &RGB_to_XYZ($rgb, $srgb);
	return &XYZ_to_Lab($xyz, $xyz_white);
}

sub Lab_to_LCHab
{
	my $lab = shift;
	my ($L, $a, $b) = @{$lab};
	my ($C, $H);
	$C = sqrt( $a*$a + $b*$b );
	$H = atan2( $b, $a );
	$H = rad2deg($H);
	return [ $L, $C, $H ];
}

sub XYZ_to_Lab
{
	my ($xyz, $xyz_white) = @_;
	my ($X, $Y, $Z) = @{$xyz};
	my ($Xw, $Yw, $Zw) = @{$xyz_white};
	my ($L, $a, $b);

	my $epsilon =  0.008856;
	my $kappa = 903.3;

	my ($fx, $fy, $fz);
	my ($xr, $yr, $zr) = ( $X /  $Xw, 
						   $Y /  $Yw, 
						   $Z /  $Zw );

	if ($xr > $epsilon) { $fx = pow($xr, 1/3); } else { $fx = ($kappa*$xr + 16)/116; }
	if ($yr > $epsilon) { $fy = pow($yr, 1/3); } else { $fy = ($kappa*$yr + 16)/116; }
	if ($zr > $epsilon) { $fz = pow($zr, 1/3); } else { $fz = ($kappa*$zr + 16)/116; }

	$L = 116 * $fy - 16;
	$a = 500 * ($fx - $fy);
	$b = 200 * ($fy - $fz);

	return [ $L, $a, $b ];
}


sub Lab_to_XYZ
{
	my ($lab, $xyz_white) = @_;
	my ($L, $a, $b)    = @{$lab};
	my ($Xw, $Yw, $Zw) = @{$xyz_white};
	my ($X, $Y, $Z);

	my $epsilon =  0.008856;
	my $kappa   = 903.3;

	my ($fx, $fy, $fz);
	my ($xr, $yr, $zr);

	if ($L > $kappa*$epsilon) { $yr = pow( ($L + 16)/116, 3 ); } else { $yr = $L / $kappa; }
	if ( $yr > $epsilon )     { $fy =  ($L + 16)/116; } else { $fy  =  ($kappa*$yr + 16)/116; }

	$fx = ($a / 500) + $fy;
	$fz = $fy - ($b / 200);

	if (pow($fx, 3) > $epsilon) { $xr = pow($fx, 3); } else { $xr = (116 * $fx - 16)/$kappa; }
	if (pow($fz, 3) > $epsilon) { $zr = pow($fz, 3); } else { $zr = (116 * $fz - 16)/$kappa; }
	if ($L > $kappa*$epsilon) { $yr = pow(($L + 16)/116, 3);  } else { $yr = $L/$kappa; }

	$X = $xr * $Xw;
	$Y = $yr * $Yw;
	$Z = $zr * $Zw;
				
	return [ $X, $Y, $Z ];
}

sub _mult_v3_m33
{
	my ($v, $m) = @_;
	my $vout = [
				 ( $v->[0] * $m->[0]->[0] + $v->[1] * $m->[1]->[0] + $v->[2] * $m->[2]->[0] ), 
				 ( $v->[0] * $m->[0]->[1] + $v->[1] * $m->[1]->[1] + $v->[2] * $m->[2]->[1] ), 
				 ( $v->[0] * $m->[0]->[2] + $v->[1] * $m->[1]->[2] + $v->[2] * $m->[2]->[2] )
				 ];
	return $vout;
}

sub _apow {
	my ($v, $p) = @_;
	return ($v >= 0 ?
					pow($v, $p) : 
					-pow(-$v, $p));
}


1;