/usr/include/plugins/skeleton.h is in cimg-dev 1.7.9+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | /*
#
# File : skeleton.h
# ( C++ header file - CImg plug-in )
#
# Description : CImg plugin that implements the computation of the Hamilton-Jacobi skeletons
# using Siddiqi algorithm with the correction proposed by Torsello,
# as described in :
#
# [SBTZ02] K. Siddiqi, S. Bouix, A. Tannenbaum and S.W. Zucker. Hamilton-Jacobi Skeletons
# International Journal of Computer Vision, 48(3):215-231, 2002
#
# [TH03] A. Torsello and E. R. Hancock. Curvature Correction of the Hamilton-Jacobi Skeleton
# IEEE Computer Vision and Pattern Recognition, 2003
#
# [BST05] S. Bouix, K. Siddiqi and A. Tannenbaum. Flux driven automatic centerline
# extraction. Medical Image Analysis, 9:209-221, 2005
#
# IMPORTANT WARNING : You must include STL's <queue> before plugin inclusion to make it working !
#
# Copyright : Francois-Xavier Dupe
# ( http://www.greyc.ensicaen.fr/~fdupe/ )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#ifndef cimg_plugin_skeleton
#define cimg_plugin_skeleton
/**
* Compute the flux of the gradient
* @param grad the gradient of the distance function
* @param sY the sampling size in Y
* @param sZ the sampling size in Z
* @return the flux
*/
CImg<floatT> get_flux(const CImgList<floatT> & grad,
const float sY=1.0f, const float sZ=1.0f) const {
int stop = 0; // Stop flag
float f = 0; // The current flux
int count = 0; // Counter
CImg<floatT> flux(width(),height(),depth(),1,0);
cimg_forXYZ((*this),x,y,z) {
if (!(*this)(x,y,z)) continue; // If the point is the background
// Look at the neigthboorhound and compute the flux
stop = 0;
f = 0;
count = 0;
for (int k = -1; k<=1; ++k)
for (int l = -1; l<= 1; ++l)
for (int m = -1; m<= 1; ++m) {
if (stop==1) continue;
// Protection
if ((x + k<0) || (x + k>=width()) || (y + l<0) || (y + l>=height()) ||
(z + m<0) || (z + m>=depth()) || (k==0 && l==0 && m==0)) continue;
++count;
// Test if the point is in the interior
if ((*this)(x + k,y + l,z + m)==0) { stop = 1; continue; }
// Compute the flux
f+=(grad(0,x + k,y + l,z + m)*k + grad(1,x + k,y + l,z + m)*l/sY + grad(2,x + k,y + l,z + m)*m/sZ)/
std::sqrt((float)(k*k + l*l + m*m));
}
// Update
if (stop==1 || count==0) flux(x,y,z) = 0;
else flux(x,y,z) = f/count;
}
return flux;
}
/**
* Definition of a point with his flux value
*/
struct _PointFlux {
int pos [3];
float flux;
float dist;
};
/**
* Class for the priority queue
*/
class _compare_point {
/**
* Create medial curves
*/
bool curve;
public:
_compare_point(const bool curve=false) { this->curve = curve; }
bool operator()(const _PointFlux & p1, const _PointFlux & p2) const {
if (curve) {
if (p1.dist>p2.dist) return true;
else if (p1.dist==p2.dist && p1.flux<p2.flux) return true;
} else {
if (p1.flux<p2.flux) return true;
else if (p1.flux==p2.flux && p1.dist>p2.dist) return true;
}
return false;
}
};
/**
* Compute the log-density using the algorithm from Torsello
* @param dist the distance map
* @param grad the gradient of the distance map, e.g. the flux
* @param flux the divergence map
* @param delta the threshold for the division
* @return the logdensity \rho
*/
CImg<floatT> get_logdensity(const CImg<floatT> & dist,
const CImgList<floatT> & grad,
const CImg<floatT> & flux, float delta = 0.1) const {
std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(true);
CImg<floatT> logdensity(width(),height(),depth(),1,0);
// 1 - Put all the pixel inside the priority queue
cimg_forXYZ(dist,x,y,z) if (dist(x,y,z)!=0) {
_PointFlux p;
p.pos[0] = x;
p.pos[1] = y;
p.pos[2] = z;
p.flux = 0;
p.dist = dist(x,y,z);
pqueue.push(p);
}
// 2 - Compute the logdensity
while (!pqueue.empty()) {
_PointFlux p = pqueue.top();
pqueue.pop();
const float
Fx = grad(0,p.pos[0],p.pos[1],p.pos[2]),
Fy = grad(1,p.pos[0],p.pos[1],p.pos[2]),
Fz = grad(2,p.pos[0],p.pos[1],p.pos[2]);
logdensity(p.pos[0],p.pos[1],p.pos[2]) = logdensity.linear_atXYZ(p.pos[0] - Fx,p.pos[1] - Fy,p.pos[2] - Fz)
- 0.5f * (flux(p.pos[0],p.pos[1],p.pos[2]) + flux.linear_atXYZ(p.pos[0] - Fx,p.pos[1] - Fy,p.pos[2] - Fz));
const float tmp = 1.0f - (1.0f - std::fabs(Fx)) * (1.0f - std::fabs(Fy)) * (1.0f - std::fabs(Fz));
if (tmp>delta) logdensity(p.pos[0],p.pos[1],p.pos[2])/=tmp;
else if (delta<1) logdensity(p.pos[0],p.pos[1],p.pos[2]) = 0;
}
return logdensity;
}
/**
* Computed the corrected divergence map using Torsello formula and idea
* @param logdensity the log density map
* @param grad the gradient of the distance map
* @param flux the flux using siddiqi formula
* @param delta the discrete step
* @return the corrected divergence map
*/
CImg<floatT> get_corrected_flux(const CImg<floatT> & logdensity,
const CImgList<floatT> & grad,
const CImg<floatT> & flux,
float delta = 1.0) const {
CImg<floatT> corr_map(width(),height(),depth(),1,0);
cimg_forXYZ(corr_map,x,y,z) {
const float
Fx = grad(0,x,y,z),
Fy = grad(1,x,y,z),
Fz = grad(2,x,y,z);
corr_map(x,y,z) =
(logdensity(x,y,z) -
logdensity.linear_atXYZ(x - Fx,y - Fy,z - Fz)) * expf(logdensity(x,y,z) - 0.5f * delta) +
0.5f * ( flux.linear_atXYZ(x - Fx,y - Fy,z - Fz)*expf(logdensity.linear_atXYZ(x - Fx,y - Fy,z - Fz)) +
flux(x,y,z)*expf(logdensity(x,y,z)));
}
return corr_map;
}
/**
* Test if a point is simple using Euler number for 2D case
* or using Malandain criterion for 3D case
* @param img the image
* @param x the x coordinate
* @param y the y coordinate
* @param z the z coordinate
* @return true if simple
*/
bool _isSimple (const CImg<T> & img, int x, int y, int z ) const {
if (img.depth()==1) { // 2D case
int V = 0, E = 0; // Number of vertices and edges
for (int k = -1; k<=1; ++k)
for (int l = -1; l<=1; ++l) {
// Protection
if (x+k<0 || x+k>=img.width() || y+l<0 || y+l>=img.height()) continue;
// Count the number of vertices
if (img(x + k,y + l)!=0 && !(k==0 && l==0)) {
++V;
// Count the number of edges
for (int k1 = -1; k1<=1; ++k1)
for (int l1 = -1; l1<=1; ++l1) {
// Protection
if (x + k + k1<0 || x + k + k1>=img.width() || y + l + l1<0 || y + l + l1>=img.height()) continue;
if (!(k1==0 && l1==0) && img(x + k + k1,y + l + l1)!=0 && k + k1>-2 && l + l1>-2 &&
k + k1<2 && l + l1<2 && !(k + k1==0 && l + l1==0))
++E;
}
}
}
// Remove the corner if exists
if (x - 1>=0 && y - 1>=0 && img(x - 1,y - 1)!=0 && img(x,y - 1)!=0 && img(x - 1,y)!=0) E-=2;
if (x - 1>=0 && y + 1<img.height() && img(x - 1,y + 1)!=0 && img(x,y + 1)!=0 && img(x - 1,y)!=0) E-=2;
if (x + 1<img.width() && y - 1>=0 && img(x + 1,y - 1)!=0 && img(x,y - 1)!=0 && img(x + 1,y)!=0) E-=2;
if (x + 1<img.width() && y + 1<img.height() && img(x + 1,y + 1)!=0 && img(x,y + 1)!=0 && img(x + 1,y)!=0) E-=2;
// Final return true if it is a tree (eg euler number equal to 1)
if ((V - E/2)==1) return true;
} else { // 3D case
CImg<intT> visit(3,3,3,1,0); // Visitor table
int C_asterix = 0, C_bar = 0, count = 0;
visit(1,1,1) = -1;
// Compute C^*
// Seeking for a component
for (int k = -1; k<=1; ++k)
for (int l = -1; l<=1; ++l)
for (int m = -1; m<=1; ++m) {
int label = 0;
// Protection
if (x + k<0 || x + k>=img.width() ||
y + l<0 || y + l>=img.height() ||
z + m<0 || z + m>=img.depth() ||
(k==0 && l==0 && m==0)) continue;
if (visit(1 + k,1 + l,1 + m)==0 && img(x + k,y + l,z + m)!=0) {
// Look after the neightbor
for (int k1 = -1; k1<=1; ++k1)
for (int l1 = -1; l1<=1; ++l1)
for (int m1 = -1; m1<=1; ++m1) {
// Protection
if (x + k + k1<0 || x + k + k1>=img.width() ||
y + l + l1<0 || y + l + l1>=img.height() ||
z + m + m1<0 || z + m + m1>=img.depth() ||
k + k1>1 || k + k1<-1 ||
l + l1>1 || l + l1<-1 ||
m + m1>1 || m + m1<-1 ) continue;
// Search for a already knew component
if (visit(1 + k + k1,1 + l + l1,1 + m + m1)>0 &&
img(x + k + k1,y + l + l1,z + m + m1)!=0) {
if (label==0) label = visit(1 + k + k1,1 + l + l1,1 + m + m1);
else if (label!=visit(1 + k + k1,1 + l + l1,1 + m + m1)) {
// Meld component
--C_asterix;
int C = visit(1 + k + k1,1 + l + l1,1 + m + m1);
cimg_forXYZ(visit,a,b,c) if (visit(a,b,c)==C) visit(a,b,c) = label;
}
}
}
// Label the point
if (label==0) {
// Find a new component
++C_asterix;
++count;
visit(1 + k ,1 + l,1 + m) = count;
} else visit(1 + k,1 + l,1 + m) = label;
}
}
if (C_asterix!=1) return false;
// Compute \bar{C}
// Reinit visit
visit.fill(0);
visit(1,1,1) = -1;
// Seeking for a component
// Look at X-axis
for (int k = -1; k<=1; ++k) {
if (x + k<0 || x + k>=img.width()) continue;
if (img(x + k,y,z)==0 && visit(1 + k,1,1)==0) {
++C_bar;
++count;
visit(1 + k,1,1) = count;
// Follow component
for (int l = -1; l<=1; ++l) {
if (y + l<img.height() && y + l>=0 && img(x + k,y + l,z)==0 && visit(1 + k,1 + l,1)==0)
visit(1 + k,1 + l,1) = count;
if (z + l<img.depth() && z + l>=0 && img(x + k,y,z + l)==0 && visit(1 + k,1,1 + l)==0)
visit(1 + k,1,1 + l) = count;
}
}
}
// Look at Y-axis
for (int k = -1; k<=1; ++k) {
if (y + k<0 || y + k>=img.height()) continue;
if (img(x,y + k,z)==0 && visit(1,1 + k,1)==0) {
int label = 0;
++C_bar;
++count;
visit(1,1 + k,1) = count;
label = count;
// Follow component
for (int l = -1; l<=1; ++l) {
if (l==0) continue;
if (x + l<img.width() && x + l>=0 && img(x + l,y + k,z)==0) {
if (visit(1 + l,1 + k,1)!=0) {
if (label!=visit(1 + l,1 + k,1)) {
// Meld component
--C_bar;
int C = visit(1 + l,1 + k,1);
cimg_forXYZ(visit,a,b,c)
if (visit(a,b,c)==C) visit(a,b,c) = label;
}
} else visit(1 + l,1 + k,1) = label;
}
if (z + l<img.depth() && z + l>=0 && img(x,y + k,z + l)==0) {
if (visit(1,1 + k,1 + l)!=0) {
if (label!=visit(1,1 + k,1 + l)) {
// Meld component
--C_bar;
int C = visit(1,1 + k,1 + l);
cimg_forXYZ(visit,a,b,c)
if (visit(a,b,c)==C) visit(a,b,c) = label;
}
} else visit(1,1 + k,1 + l) = label;
}
}
}
}
// Look at Z-axis
for (int k = -1; k<=1; ++k) {
if (z + k<0 || z + k>=img.depth()) continue;
if (img(x,y,z + k)==0 && visit(1,1,1 + k)==0) {
int label = 0;
++C_bar;
++count;
visit(1,1,1 + k) = count;
label = count;
// Follow component
for (int l = -1; l<=1; ++l) {
if (l==0) continue;
if (x + l<img.width() && x + l>=0 && img(x + l,y,z + k)==0) {
if (visit(1 + l,1,1 + k)!=0) {
if (label!=visit(1 + l,1,1 + k)) {
// Meld component
--C_bar;
int C = visit(1 + l,1,1 + k);
cimg_forXYZ(visit,a,b,c)
if (visit(a,b,c)==C) visit(a,b,c) = label;
}
} else visit(1 + l,1,1 + k) = label;
}
if (y + l<img.height() && y + l>=0 && img(x,y + l,z + k)==0) {
if (visit(1,1 + l,1 + k)!=0) {
if (label!=visit(1,1 + l,1 + k)) {
// Meld component
--C_bar;
int C = visit(1,1 + l,1 + k);
cimg_forXYZ(visit,a,b,c)
if (visit(a,b,c)==C) visit(a,b,c) = label;
}
} else visit(1,1 + l,1 + k) = label;
}
}
}
}
if (C_bar==1) return true;
}
return false;
}
/**
* Test if a point is a end point
* @param img the image
* @param label the table of labels
* @param curve set it to true for having medial curve
* @param x the x coordinate
* @param y the y coordinate
* @param z the z coordinate
* @return true if simple
*/
bool _isEndPoint(const CImg<T> & img, const CImg<T> & label,
const bool curve, const int x, const int y, const int z) const {
if (label(x,y,z)==1) return true;
if ((!curve) && (img.depth()!=1)) { // 3D case with medial surface
// Use Pudney specification with the 9 plans
const int plan9 [9][8][3] =
{ { {-1,0,-1}, {0,0,-1}, {1,0,-1}, {-1,0,0}, {1,0,0}, {-1,0,1}, {0,0,1}, {1,0,1} }, // Plan 1
{ {-1,1,0}, {0,1,0}, {1,1,0}, {-1,0,0}, {1,0,0}, {-1,-1,0}, {0,-1,0}, {1,-1,0} }, // Plan 2
{ {0,-1,-1}, {0,0,-1}, {0,1,-1}, {0,-1,0}, {0,1,0}, {0,-1,1}, {0,0,1}, {0,1,1} }, // Plan 3
{ {1,1,1}, {0,1,0}, {-1,1,-1}, {1,0,1}, {-1,0,-1}, {-1,-1,-1}, {0,-1,0}, {1,-1,1} }, // Plan 4
{ {-1,1,1}, {0,1,0}, {1,1,-1}, {-1,0,1}, {1,0,-1}, {-1,-1,1}, {0,-1,0}, {1,-1,-1} }, // Plan 5
{ {-1,1,1}, {0,1,1}, {1,1,1}, {-1,0,0}, {1,0,0}, {-1,-1,-1}, {0,-1,-1}, {1,-1,-1} }, // Plan 6
{ {-1,1,-1}, {0,1,-1}, {1,1,-1}, {-1,0,0}, {1,0,0}, {-1,-1,1}, {0,-1,1}, {1,-1,1} }, // Plan 7
{ {-1,1,-1}, {-1,1,0}, {-1,1,1}, {0,0,-1}, {0,0,1}, {1,-1,-1}, {1,-1,0}, {1,-1,1} }, // Plan 8
{ {1,1,-1}, {1,1,0}, {1,1,1}, {0,0,-1}, {0,0,1}, {-1,-1,-1}, {-1,-1,0}, {-1,-1,1} } // Plan 9
};
// Count the number of neighbors on each plan
for (int k = 0; k<9; ++k) {
int count = 0;
for (int l = 0; l<8; ++l) {
if (x + plan9[k][l][0]<0 || x + plan9[k][l][0]>=img.width() ||
y + plan9[k][l][1]<0 || y + plan9[k][l][1]>=img.height() ||
z + plan9[k][l][2]<0 || z + plan9[k][l][2]>=img.depth()) continue;
if (img(x + plan9[k][l][0],y + plan9[k][l][1],z + plan9[k][l][2])!=0) ++count;
}
if (count<2) return true;
}
} else { // 2D or 3D case with medial curve
int isb = 0;
for (int k = -1; k<=1; ++k)
for (int l = -1; l<=1; ++l)
for (int m = -1; m<=1; ++m) {
// Protection
if (x + k<0 || x + k>=img.width() ||
y + l<0 || y + l>=img.height() ||
z + m<0 || z + m>=img.depth()) continue;
if (img(x + k,y + l,z + m)!=0) ++isb;
}
if (isb==2) return true; // The pixel with one neighbor
}
// Else it's not...
return false;
}
/**
* Compute the skeleton of the shape using Hamilton-Jacobi scheme
* @param flux the flux of the distance gradient
* @param dist the euclidean distance of the object
* @param curve create or not medial curve
* @param thres the threshold on the flux
* @return the skeleton
*/
CImg<T> get_skeleton (const CImg<floatT> & flux,
const CImg<floatT> & dist, const bool curve, const float thres) const {
CImg<T>
skeleton(*this), // The skeleton
label(width(),height(),depth(),1,0), // Save label
count(width(),height(),depth(),1,0); // A counter for the queue
std::priority_queue< _PointFlux, std::vector<_PointFlux>, _compare_point > pqueue(curve);
int isb = 0;
// 1 - Init get the bound points
cimg_forXYZ(*this,x,y,z) {
if (skeleton(x,y,z)==0) continue;
// Test bound condition
isb = 0;
for (int k = -1; k<=1; ++k)
for (int l = -1; l<=1; ++l)
for (int m = -1; m<=1; ++m) {
// Protection
if (x + k<0 || x + k>=width() ||
y + l<0 || y + l>=height() ||
z + m<0 || z + m>=depth()) continue;
if (skeleton(x + k,y + l,z + m)==0) isb = 1;
}
if (isb==1 && _isSimple(skeleton,x,y,z)) {
_PointFlux p;
p.pos[0] = x;
p.pos[1] = y;
p.pos[2] = z;
p.flux = flux(x,y,z);
p.dist = dist(x,y,z);
pqueue.push(p);
count(x,y,z) = 1;
}
}
// 2 - Compute the skeleton
while (!pqueue.empty()) {
_PointFlux p = pqueue.top(); // Get the point with the max flux
pqueue.pop(); // Remove the point from the queue
count(p.pos[0],p.pos[1],p.pos[2]) = 0; // Reinit counter
// Test if the point is simple
if (_isSimple(skeleton,p.pos[0],p.pos[1],p.pos[2])) {
if ((! _isEndPoint(skeleton,label,curve,p.pos[0],p.pos[1],p.pos[2])) || p.flux>thres) {
skeleton(p.pos[0],p.pos[1],p.pos[2]) = 0; // Remove the point
for (int k = -1; k<=1; ++k)
for (int l = -1; l<=1; ++l)
for (int m = -1; m<=1; ++m) {
// Protection
if (p.pos[0] + k<0 || p.pos[0] + k>= width() ||
p.pos[1] + l<0 || p.pos[1] + l>= height() ||
p.pos[2] + m<0 || p.pos[2] + m>= depth()) continue;
if (skeleton(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)!=0 &&
count(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)<1 &&
_isSimple(skeleton,p.pos[0] + k,p.pos[1] + l,p.pos[2] + m)) {
_PointFlux p1;
p1.pos[0] = p.pos[0] + k;
p1.pos[1] = p.pos[1] + l;
p1.pos[2] = p.pos[2] + m;
p1.flux = flux(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m);
p1.dist = dist(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m);
pqueue.push(p1);
count(p.pos[0] + k,p.pos[1] + l,p.pos[2] + m) = 1;
}
}
} else label(p.pos[0],p.pos[1],p.pos[2]) = 1; // Mark the point as skeletal
}
}
return skeleton;
}
/**
* In place version of get_skeleton
*/
CImg<T> skeleton(const CImg<floatT> & flux,
const CImg<floatT> & dist, bool curve ,float thres) {
return get_skeleton(flux,dist,curve,thres).move_to(*this);
}
#endif /* cimg_plugin_skeleton */
|