/usr/include/plugins/loop_macros.h is in cimg-dev 1.7.9+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 | /*
#
# File : loop_macros.h
# ( C++ header file - CImg plug-in )
#
# Description : CImg plug-in adding useful loop macros in CImg, in order to
# deal with NxN neighborhoods (where N=10..32)
# and NxNxN neighborhoods (where N=4..8)
# This file has been automatically generated using the loop
# macro generator available in 'examples/generate_loop_macros.cpp'
# This file is a part of the CImg Library project.
# ( http://cimg.eu )
#
# Copyright : David Tschumperle
# ( http://tschumperle.users.greyc.fr/ )
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#ifndef cimg_plugin_loop_macros
#define cimg_plugin_loop_macros
// Define 10x10 loop macros
//-------------------------
#define cimg_for10(bound,i) for (int i = 0, \
_p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5; \
_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
#define cimg_for10X(img,x) cimg_for10((img)._width,x)
#define cimg_for10Y(img,y) cimg_for10((img)._height,y)
#define cimg_for10Z(img,z) cimg_for10((img)._depth,z)
#define cimg_for10C(img,c) cimg_for10((img)._spectrum,c)
#define cimg_for10XY(img,x,y) cimg_for10Y(img,y) cimg_for10X(img,x)
#define cimg_for10XZ(img,x,z) cimg_for10Z(img,z) cimg_for10X(img,x)
#define cimg_for10XC(img,x,c) cimg_for10C(img,c) cimg_for10X(img,x)
#define cimg_for10YZ(img,y,z) cimg_for10Z(img,z) cimg_for10Y(img,y)
#define cimg_for10YC(img,y,c) cimg_for10C(img,c) cimg_for10Y(img,y)
#define cimg_for10ZC(img,z,c) cimg_for10C(img,c) cimg_for10Z(img,z)
#define cimg_for10XYZ(img,x,y,z) cimg_for10Z(img,z) cimg_for10XY(img,x,y)
#define cimg_for10XZC(img,x,z,c) cimg_for10C(img,c) cimg_for10XZ(img,x,z)
#define cimg_for10YZC(img,y,z,c) cimg_for10C(img,c) cimg_for10YZ(img,y,z)
#define cimg_for10XYZC(img,x,y,z,c) cimg_for10C(img,c) cimg_for10XYZ(img,x,y,z)
#define cimg_for_in10(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5; \
i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
#define cimg_for_in10X(img,x0,x1,x) cimg_for_in10((img)._width,x0,x1,x)
#define cimg_for_in10Y(img,y0,y1,y) cimg_for_in10((img)._height,y0,y1,y)
#define cimg_for_in10Z(img,z0,z1,z) cimg_for_in10((img)._depth,z0,z1,z)
#define cimg_for_in10C(img,c0,c1,c) cimg_for_in10((img)._spectrum,c0,c1,c)
#define cimg_for_in10XY(img,x0,y0,x1,y1,x,y) cimg_for_in10Y(img,y0,y1,y) cimg_for_in10X(img,x0,x1,x)
#define cimg_for_in10XZ(img,x0,z0,x1,z1,x,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10X(img,x0,x1,x)
#define cimg_for_in10XC(img,x0,c0,x1,c1,x,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10X(img,x0,x1,x)
#define cimg_for_in10YZ(img,y0,z0,y1,z1,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10Y(img,y0,y1,y)
#define cimg_for_in10YC(img,y0,c0,y1,c1,y,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10Y(img,y0,y1,y)
#define cimg_for_in10ZC(img,z0,c0,z1,c1,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10Z(img,z0,z1,z)
#define cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in10Z(img,z0,z1,z) cimg_for_in10XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in10XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in10YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in10XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in10C(img,c0,c1,c) cimg_for_in10XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for10x10(img,x,y,z,c,I,T) \
cimg_for10((img)._height,y) for (int x = 0, \
_p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = (T)(img)(0,_p4##y,z,c)), \
(I[10] = I[11] = I[12] = I[13] = I[14] = (T)(img)(0,_p3##y,z,c)), \
(I[20] = I[21] = I[22] = I[23] = I[24] = (T)(img)(0,_p2##y,z,c)), \
(I[30] = I[31] = I[32] = I[33] = I[34] = (T)(img)(0,_p1##y,z,c)), \
(I[40] = I[41] = I[42] = I[43] = I[44] = (T)(img)(0,y,z,c)), \
(I[50] = I[51] = I[52] = I[53] = I[54] = (T)(img)(0,_n1##y,z,c)), \
(I[60] = I[61] = I[62] = I[63] = I[64] = (T)(img)(0,_n2##y,z,c)), \
(I[70] = I[71] = I[72] = I[73] = I[74] = (T)(img)(0,_n3##y,z,c)), \
(I[80] = I[81] = I[82] = I[83] = I[84] = (T)(img)(0,_n4##y,z,c)), \
(I[90] = I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_n5##y,z,c)), \
(I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[15] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[25] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[35] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[45] = (T)(img)(_n1##x,y,z,c)), \
(I[55] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[65] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[75] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[85] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[95] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[16] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[26] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[36] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[46] = (T)(img)(_n2##x,y,z,c)), \
(I[56] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[66] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[76] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[86] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[96] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[17] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[27] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[37] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[47] = (T)(img)(_n3##x,y,z,c)), \
(I[57] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[67] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[77] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[87] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[97] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[18] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[28] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[38] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[48] = (T)(img)(_n4##x,y,z,c)), \
(I[58] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[68] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[78] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[88] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[98] = (T)(img)(_n4##x,_n5##y,z,c)), \
5>=((img)._width)?(img).width() - 1:5); \
(_n5##x<(img).width() && ( \
(I[9] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[19] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[29] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[39] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[49] = (T)(img)(_n5##x,y,z,c)), \
(I[59] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[69] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[79] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[89] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[99] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
_p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
#define cimg_for_in10x10(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in10((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = (int)( \
(I[0] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[10] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[20] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[30] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[40] = (T)(img)(_p4##x,y,z,c)), \
(I[50] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[60] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[70] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[80] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[90] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[1] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[11] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[21] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[31] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[41] = (T)(img)(_p3##x,y,z,c)), \
(I[51] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[61] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[71] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[81] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[91] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[2] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[12] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[22] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[32] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[42] = (T)(img)(_p2##x,y,z,c)), \
(I[52] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[62] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[72] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[82] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[92] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[3] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[13] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[23] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[33] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[43] = (T)(img)(_p1##x,y,z,c)), \
(I[53] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[63] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[73] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[83] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[93] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[4] = (T)(img)(x,_p4##y,z,c)), \
(I[14] = (T)(img)(x,_p3##y,z,c)), \
(I[24] = (T)(img)(x,_p2##y,z,c)), \
(I[34] = (T)(img)(x,_p1##y,z,c)), \
(I[44] = (T)(img)(x,y,z,c)), \
(I[54] = (T)(img)(x,_n1##y,z,c)), \
(I[64] = (T)(img)(x,_n2##y,z,c)), \
(I[74] = (T)(img)(x,_n3##y,z,c)), \
(I[84] = (T)(img)(x,_n4##y,z,c)), \
(I[94] = (T)(img)(x,_n5##y,z,c)), \
(I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[15] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[25] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[35] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[45] = (T)(img)(_n1##x,y,z,c)), \
(I[55] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[65] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[75] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[85] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[95] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[16] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[26] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[36] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[46] = (T)(img)(_n2##x,y,z,c)), \
(I[56] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[66] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[76] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[86] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[96] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[17] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[27] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[37] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[47] = (T)(img)(_n3##x,y,z,c)), \
(I[57] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[67] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[77] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[87] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[97] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[18] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[28] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[38] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[48] = (T)(img)(_n4##x,y,z,c)), \
(I[58] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[68] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[78] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[88] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[98] = (T)(img)(_n4##x,_n5##y,z,c)), \
x + 5>=(img).width()?(img).width() - 1:x + 5); \
x<=(int)(x1) && ((_n5##x<(img).width() && ( \
(I[9] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[19] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[29] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[39] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[49] = (T)(img)(_n5##x,y,z,c)), \
(I[59] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[69] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[79] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[89] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[99] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
_p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
#define cimg_get10x10(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p4##x,_p4##y,z,c), I[1] = (T)(img)(_p3##x,_p4##y,z,c), I[2] = (T)(img)(_p2##x,_p4##y,z,c), I[3] = (T)(img)(_p1##x,_p4##y,z,c), I[4] = (T)(img)(x,_p4##y,z,c), I[5] = (T)(img)(_n1##x,_p4##y,z,c), I[6] = (T)(img)(_n2##x,_p4##y,z,c), I[7] = (T)(img)(_n3##x,_p4##y,z,c), I[8] = (T)(img)(_n4##x,_p4##y,z,c), I[9] = (T)(img)(_n5##x,_p4##y,z,c), \
I[10] = (T)(img)(_p4##x,_p3##y,z,c), I[11] = (T)(img)(_p3##x,_p3##y,z,c), I[12] = (T)(img)(_p2##x,_p3##y,z,c), I[13] = (T)(img)(_p1##x,_p3##y,z,c), I[14] = (T)(img)(x,_p3##y,z,c), I[15] = (T)(img)(_n1##x,_p3##y,z,c), I[16] = (T)(img)(_n2##x,_p3##y,z,c), I[17] = (T)(img)(_n3##x,_p3##y,z,c), I[18] = (T)(img)(_n4##x,_p3##y,z,c), I[19] = (T)(img)(_n5##x,_p3##y,z,c), \
I[20] = (T)(img)(_p4##x,_p2##y,z,c), I[21] = (T)(img)(_p3##x,_p2##y,z,c), I[22] = (T)(img)(_p2##x,_p2##y,z,c), I[23] = (T)(img)(_p1##x,_p2##y,z,c), I[24] = (T)(img)(x,_p2##y,z,c), I[25] = (T)(img)(_n1##x,_p2##y,z,c), I[26] = (T)(img)(_n2##x,_p2##y,z,c), I[27] = (T)(img)(_n3##x,_p2##y,z,c), I[28] = (T)(img)(_n4##x,_p2##y,z,c), I[29] = (T)(img)(_n5##x,_p2##y,z,c), \
I[30] = (T)(img)(_p4##x,_p1##y,z,c), I[31] = (T)(img)(_p3##x,_p1##y,z,c), I[32] = (T)(img)(_p2##x,_p1##y,z,c), I[33] = (T)(img)(_p1##x,_p1##y,z,c), I[34] = (T)(img)(x,_p1##y,z,c), I[35] = (T)(img)(_n1##x,_p1##y,z,c), I[36] = (T)(img)(_n2##x,_p1##y,z,c), I[37] = (T)(img)(_n3##x,_p1##y,z,c), I[38] = (T)(img)(_n4##x,_p1##y,z,c), I[39] = (T)(img)(_n5##x,_p1##y,z,c), \
I[40] = (T)(img)(_p4##x,y,z,c), I[41] = (T)(img)(_p3##x,y,z,c), I[42] = (T)(img)(_p2##x,y,z,c), I[43] = (T)(img)(_p1##x,y,z,c), I[44] = (T)(img)(x,y,z,c), I[45] = (T)(img)(_n1##x,y,z,c), I[46] = (T)(img)(_n2##x,y,z,c), I[47] = (T)(img)(_n3##x,y,z,c), I[48] = (T)(img)(_n4##x,y,z,c), I[49] = (T)(img)(_n5##x,y,z,c), \
I[50] = (T)(img)(_p4##x,_n1##y,z,c), I[51] = (T)(img)(_p3##x,_n1##y,z,c), I[52] = (T)(img)(_p2##x,_n1##y,z,c), I[53] = (T)(img)(_p1##x,_n1##y,z,c), I[54] = (T)(img)(x,_n1##y,z,c), I[55] = (T)(img)(_n1##x,_n1##y,z,c), I[56] = (T)(img)(_n2##x,_n1##y,z,c), I[57] = (T)(img)(_n3##x,_n1##y,z,c), I[58] = (T)(img)(_n4##x,_n1##y,z,c), I[59] = (T)(img)(_n5##x,_n1##y,z,c), \
I[60] = (T)(img)(_p4##x,_n2##y,z,c), I[61] = (T)(img)(_p3##x,_n2##y,z,c), I[62] = (T)(img)(_p2##x,_n2##y,z,c), I[63] = (T)(img)(_p1##x,_n2##y,z,c), I[64] = (T)(img)(x,_n2##y,z,c), I[65] = (T)(img)(_n1##x,_n2##y,z,c), I[66] = (T)(img)(_n2##x,_n2##y,z,c), I[67] = (T)(img)(_n3##x,_n2##y,z,c), I[68] = (T)(img)(_n4##x,_n2##y,z,c), I[69] = (T)(img)(_n5##x,_n2##y,z,c), \
I[70] = (T)(img)(_p4##x,_n3##y,z,c), I[71] = (T)(img)(_p3##x,_n3##y,z,c), I[72] = (T)(img)(_p2##x,_n3##y,z,c), I[73] = (T)(img)(_p1##x,_n3##y,z,c), I[74] = (T)(img)(x,_n3##y,z,c), I[75] = (T)(img)(_n1##x,_n3##y,z,c), I[76] = (T)(img)(_n2##x,_n3##y,z,c), I[77] = (T)(img)(_n3##x,_n3##y,z,c), I[78] = (T)(img)(_n4##x,_n3##y,z,c), I[79] = (T)(img)(_n5##x,_n3##y,z,c), \
I[80] = (T)(img)(_p4##x,_n4##y,z,c), I[81] = (T)(img)(_p3##x,_n4##y,z,c), I[82] = (T)(img)(_p2##x,_n4##y,z,c), I[83] = (T)(img)(_p1##x,_n4##y,z,c), I[84] = (T)(img)(x,_n4##y,z,c), I[85] = (T)(img)(_n1##x,_n4##y,z,c), I[86] = (T)(img)(_n2##x,_n4##y,z,c), I[87] = (T)(img)(_n3##x,_n4##y,z,c), I[88] = (T)(img)(_n4##x,_n4##y,z,c), I[89] = (T)(img)(_n5##x,_n4##y,z,c), \
I[90] = (T)(img)(_p4##x,_n5##y,z,c), I[91] = (T)(img)(_p3##x,_n5##y,z,c), I[92] = (T)(img)(_p2##x,_n5##y,z,c), I[93] = (T)(img)(_p1##x,_n5##y,z,c), I[94] = (T)(img)(x,_n5##y,z,c), I[95] = (T)(img)(_n1##x,_n5##y,z,c), I[96] = (T)(img)(_n2##x,_n5##y,z,c), I[97] = (T)(img)(_n3##x,_n5##y,z,c), I[98] = (T)(img)(_n4##x,_n5##y,z,c), I[99] = (T)(img)(_n5##x,_n5##y,z,c);
// Define 11x11 loop macros
//-------------------------
#define cimg_for11(bound,i) for (int i = 0, \
_p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5; \
_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
#define cimg_for11X(img,x) cimg_for11((img)._width,x)
#define cimg_for11Y(img,y) cimg_for11((img)._height,y)
#define cimg_for11Z(img,z) cimg_for11((img)._depth,z)
#define cimg_for11C(img,c) cimg_for11((img)._spectrum,c)
#define cimg_for11XY(img,x,y) cimg_for11Y(img,y) cimg_for11X(img,x)
#define cimg_for11XZ(img,x,z) cimg_for11Z(img,z) cimg_for11X(img,x)
#define cimg_for11XC(img,x,c) cimg_for11C(img,c) cimg_for11X(img,x)
#define cimg_for11YZ(img,y,z) cimg_for11Z(img,z) cimg_for11Y(img,y)
#define cimg_for11YC(img,y,c) cimg_for11C(img,c) cimg_for11Y(img,y)
#define cimg_for11ZC(img,z,c) cimg_for11C(img,c) cimg_for11Z(img,z)
#define cimg_for11XYZ(img,x,y,z) cimg_for11Z(img,z) cimg_for11XY(img,x,y)
#define cimg_for11XZC(img,x,z,c) cimg_for11C(img,c) cimg_for11XZ(img,x,z)
#define cimg_for11YZC(img,y,z,c) cimg_for11C(img,c) cimg_for11YZ(img,y,z)
#define cimg_for11XYZC(img,x,y,z,c) cimg_for11C(img,c) cimg_for11XYZ(img,x,y,z)
#define cimg_for_in11(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5; \
i<=(int)(i1) && (_n5##i<(int)(bound) || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i)
#define cimg_for_in11X(img,x0,x1,x) cimg_for_in11((img)._width,x0,x1,x)
#define cimg_for_in11Y(img,y0,y1,y) cimg_for_in11((img)._height,y0,y1,y)
#define cimg_for_in11Z(img,z0,z1,z) cimg_for_in11((img)._depth,z0,z1,z)
#define cimg_for_in11C(img,c0,c1,c) cimg_for_in11((img)._spectrum,c0,c1,c)
#define cimg_for_in11XY(img,x0,y0,x1,y1,x,y) cimg_for_in11Y(img,y0,y1,y) cimg_for_in11X(img,x0,x1,x)
#define cimg_for_in11XZ(img,x0,z0,x1,z1,x,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11X(img,x0,x1,x)
#define cimg_for_in11XC(img,x0,c0,x1,c1,x,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11X(img,x0,x1,x)
#define cimg_for_in11YZ(img,y0,z0,y1,z1,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11Y(img,y0,y1,y)
#define cimg_for_in11YC(img,y0,c0,y1,c1,y,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11Y(img,y0,y1,y)
#define cimg_for_in11ZC(img,z0,c0,z1,c1,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11Z(img,z0,z1,z)
#define cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in11Z(img,z0,z1,z) cimg_for_in11XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in11XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in11YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in11XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in11C(img,c0,c1,c) cimg_for_in11XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for11x11(img,x,y,z,c,I,T) \
cimg_for11((img)._height,y) for (int x = 0, \
_p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (T)(img)(0,_p5##y,z,c)), \
(I[11] = I[12] = I[13] = I[14] = I[15] = I[16] = (T)(img)(0,_p4##y,z,c)), \
(I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = (T)(img)(0,_p3##y,z,c)), \
(I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_p2##y,z,c)), \
(I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (T)(img)(0,_p1##y,z,c)), \
(I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = (T)(img)(0,y,z,c)), \
(I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (T)(img)(0,_n1##y,z,c)), \
(I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (T)(img)(0,_n2##y,z,c)), \
(I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (T)(img)(0,_n3##y,z,c)), \
(I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_n4##y,z,c)), \
(I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_n5##y,z,c)), \
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[17] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[28] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[39] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[50] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[61] = (T)(img)(_n1##x,y,z,c)), \
(I[72] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[83] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[94] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[116] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[18] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[29] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[40] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[51] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[62] = (T)(img)(_n2##x,y,z,c)), \
(I[73] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[84] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[95] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[117] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[19] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[30] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[41] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[52] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[63] = (T)(img)(_n3##x,y,z,c)), \
(I[74] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[85] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[96] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[118] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[20] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[31] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[42] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[53] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[64] = (T)(img)(_n4##x,y,z,c)), \
(I[75] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[86] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[97] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[108] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[119] = (T)(img)(_n4##x,_n5##y,z,c)), \
5>=((img)._width)?(img).width() - 1:5); \
(_n5##x<(img).width() && ( \
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[21] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[32] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[43] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[54] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[65] = (T)(img)(_n5##x,y,z,c)), \
(I[76] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[87] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[98] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[109] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[120] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \
I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \
I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
#define cimg_for_in11x11(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in11((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = (int)( \
(I[0] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[11] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[22] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[33] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[44] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[55] = (T)(img)(_p5##x,y,z,c)), \
(I[66] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[77] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[88] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[99] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[110] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[1] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[12] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[23] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[34] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[45] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[56] = (T)(img)(_p4##x,y,z,c)), \
(I[67] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[78] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[89] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[100] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[111] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[2] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[13] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[24] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[35] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[46] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[57] = (T)(img)(_p3##x,y,z,c)), \
(I[68] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[79] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[90] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[101] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[112] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[3] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[14] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[25] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[36] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[47] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[58] = (T)(img)(_p2##x,y,z,c)), \
(I[69] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[80] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[91] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[102] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[113] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[4] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[15] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[26] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[37] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[48] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[59] = (T)(img)(_p1##x,y,z,c)), \
(I[70] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[81] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[92] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[103] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[114] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[5] = (T)(img)(x,_p5##y,z,c)), \
(I[16] = (T)(img)(x,_p4##y,z,c)), \
(I[27] = (T)(img)(x,_p3##y,z,c)), \
(I[38] = (T)(img)(x,_p2##y,z,c)), \
(I[49] = (T)(img)(x,_p1##y,z,c)), \
(I[60] = (T)(img)(x,y,z,c)), \
(I[71] = (T)(img)(x,_n1##y,z,c)), \
(I[82] = (T)(img)(x,_n2##y,z,c)), \
(I[93] = (T)(img)(x,_n3##y,z,c)), \
(I[104] = (T)(img)(x,_n4##y,z,c)), \
(I[115] = (T)(img)(x,_n5##y,z,c)), \
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[17] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[28] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[39] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[50] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[61] = (T)(img)(_n1##x,y,z,c)), \
(I[72] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[83] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[94] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[116] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[18] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[29] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[40] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[51] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[62] = (T)(img)(_n2##x,y,z,c)), \
(I[73] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[84] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[95] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[117] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[19] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[30] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[41] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[52] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[63] = (T)(img)(_n3##x,y,z,c)), \
(I[74] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[85] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[96] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[118] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[20] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[31] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[42] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[53] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[64] = (T)(img)(_n4##x,y,z,c)), \
(I[75] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[86] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[97] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[108] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[119] = (T)(img)(_n4##x,_n5##y,z,c)), \
x + 5>=(img).width()?(img).width() - 1:x + 5); \
x<=(int)(x1) && ((_n5##x<(img).width() && ( \
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[21] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[32] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[43] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[54] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[65] = (T)(img)(_n5##x,y,z,c)), \
(I[76] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[87] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[98] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[109] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[120] = (T)(img)(_n5##x,_n5##y,z,c)),1)) || \
_n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], \
I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \
I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], \
I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], \
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x)
#define cimg_get11x11(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p5##x,_p5##y,z,c), I[1] = (T)(img)(_p4##x,_p5##y,z,c), I[2] = (T)(img)(_p3##x,_p5##y,z,c), I[3] = (T)(img)(_p2##x,_p5##y,z,c), I[4] = (T)(img)(_p1##x,_p5##y,z,c), I[5] = (T)(img)(x,_p5##y,z,c), I[6] = (T)(img)(_n1##x,_p5##y,z,c), I[7] = (T)(img)(_n2##x,_p5##y,z,c), I[8] = (T)(img)(_n3##x,_p5##y,z,c), I[9] = (T)(img)(_n4##x,_p5##y,z,c), I[10] = (T)(img)(_n5##x,_p5##y,z,c), \
I[11] = (T)(img)(_p5##x,_p4##y,z,c), I[12] = (T)(img)(_p4##x,_p4##y,z,c), I[13] = (T)(img)(_p3##x,_p4##y,z,c), I[14] = (T)(img)(_p2##x,_p4##y,z,c), I[15] = (T)(img)(_p1##x,_p4##y,z,c), I[16] = (T)(img)(x,_p4##y,z,c), I[17] = (T)(img)(_n1##x,_p4##y,z,c), I[18] = (T)(img)(_n2##x,_p4##y,z,c), I[19] = (T)(img)(_n3##x,_p4##y,z,c), I[20] = (T)(img)(_n4##x,_p4##y,z,c), I[21] = (T)(img)(_n5##x,_p4##y,z,c), \
I[22] = (T)(img)(_p5##x,_p3##y,z,c), I[23] = (T)(img)(_p4##x,_p3##y,z,c), I[24] = (T)(img)(_p3##x,_p3##y,z,c), I[25] = (T)(img)(_p2##x,_p3##y,z,c), I[26] = (T)(img)(_p1##x,_p3##y,z,c), I[27] = (T)(img)(x,_p3##y,z,c), I[28] = (T)(img)(_n1##x,_p3##y,z,c), I[29] = (T)(img)(_n2##x,_p3##y,z,c), I[30] = (T)(img)(_n3##x,_p3##y,z,c), I[31] = (T)(img)(_n4##x,_p3##y,z,c), I[32] = (T)(img)(_n5##x,_p3##y,z,c), \
I[33] = (T)(img)(_p5##x,_p2##y,z,c), I[34] = (T)(img)(_p4##x,_p2##y,z,c), I[35] = (T)(img)(_p3##x,_p2##y,z,c), I[36] = (T)(img)(_p2##x,_p2##y,z,c), I[37] = (T)(img)(_p1##x,_p2##y,z,c), I[38] = (T)(img)(x,_p2##y,z,c), I[39] = (T)(img)(_n1##x,_p2##y,z,c), I[40] = (T)(img)(_n2##x,_p2##y,z,c), I[41] = (T)(img)(_n3##x,_p2##y,z,c), I[42] = (T)(img)(_n4##x,_p2##y,z,c), I[43] = (T)(img)(_n5##x,_p2##y,z,c), \
I[44] = (T)(img)(_p5##x,_p1##y,z,c), I[45] = (T)(img)(_p4##x,_p1##y,z,c), I[46] = (T)(img)(_p3##x,_p1##y,z,c), I[47] = (T)(img)(_p2##x,_p1##y,z,c), I[48] = (T)(img)(_p1##x,_p1##y,z,c), I[49] = (T)(img)(x,_p1##y,z,c), I[50] = (T)(img)(_n1##x,_p1##y,z,c), I[51] = (T)(img)(_n2##x,_p1##y,z,c), I[52] = (T)(img)(_n3##x,_p1##y,z,c), I[53] = (T)(img)(_n4##x,_p1##y,z,c), I[54] = (T)(img)(_n5##x,_p1##y,z,c), \
I[55] = (T)(img)(_p5##x,y,z,c), I[56] = (T)(img)(_p4##x,y,z,c), I[57] = (T)(img)(_p3##x,y,z,c), I[58] = (T)(img)(_p2##x,y,z,c), I[59] = (T)(img)(_p1##x,y,z,c), I[60] = (T)(img)(x,y,z,c), I[61] = (T)(img)(_n1##x,y,z,c), I[62] = (T)(img)(_n2##x,y,z,c), I[63] = (T)(img)(_n3##x,y,z,c), I[64] = (T)(img)(_n4##x,y,z,c), I[65] = (T)(img)(_n5##x,y,z,c), \
I[66] = (T)(img)(_p5##x,_n1##y,z,c), I[67] = (T)(img)(_p4##x,_n1##y,z,c), I[68] = (T)(img)(_p3##x,_n1##y,z,c), I[69] = (T)(img)(_p2##x,_n1##y,z,c), I[70] = (T)(img)(_p1##x,_n1##y,z,c), I[71] = (T)(img)(x,_n1##y,z,c), I[72] = (T)(img)(_n1##x,_n1##y,z,c), I[73] = (T)(img)(_n2##x,_n1##y,z,c), I[74] = (T)(img)(_n3##x,_n1##y,z,c), I[75] = (T)(img)(_n4##x,_n1##y,z,c), I[76] = (T)(img)(_n5##x,_n1##y,z,c), \
I[77] = (T)(img)(_p5##x,_n2##y,z,c), I[78] = (T)(img)(_p4##x,_n2##y,z,c), I[79] = (T)(img)(_p3##x,_n2##y,z,c), I[80] = (T)(img)(_p2##x,_n2##y,z,c), I[81] = (T)(img)(_p1##x,_n2##y,z,c), I[82] = (T)(img)(x,_n2##y,z,c), I[83] = (T)(img)(_n1##x,_n2##y,z,c), I[84] = (T)(img)(_n2##x,_n2##y,z,c), I[85] = (T)(img)(_n3##x,_n2##y,z,c), I[86] = (T)(img)(_n4##x,_n2##y,z,c), I[87] = (T)(img)(_n5##x,_n2##y,z,c), \
I[88] = (T)(img)(_p5##x,_n3##y,z,c), I[89] = (T)(img)(_p4##x,_n3##y,z,c), I[90] = (T)(img)(_p3##x,_n3##y,z,c), I[91] = (T)(img)(_p2##x,_n3##y,z,c), I[92] = (T)(img)(_p1##x,_n3##y,z,c), I[93] = (T)(img)(x,_n3##y,z,c), I[94] = (T)(img)(_n1##x,_n3##y,z,c), I[95] = (T)(img)(_n2##x,_n3##y,z,c), I[96] = (T)(img)(_n3##x,_n3##y,z,c), I[97] = (T)(img)(_n4##x,_n3##y,z,c), I[98] = (T)(img)(_n5##x,_n3##y,z,c), \
I[99] = (T)(img)(_p5##x,_n4##y,z,c), I[100] = (T)(img)(_p4##x,_n4##y,z,c), I[101] = (T)(img)(_p3##x,_n4##y,z,c), I[102] = (T)(img)(_p2##x,_n4##y,z,c), I[103] = (T)(img)(_p1##x,_n4##y,z,c), I[104] = (T)(img)(x,_n4##y,z,c), I[105] = (T)(img)(_n1##x,_n4##y,z,c), I[106] = (T)(img)(_n2##x,_n4##y,z,c), I[107] = (T)(img)(_n3##x,_n4##y,z,c), I[108] = (T)(img)(_n4##x,_n4##y,z,c), I[109] = (T)(img)(_n5##x,_n4##y,z,c), \
I[110] = (T)(img)(_p5##x,_n5##y,z,c), I[111] = (T)(img)(_p4##x,_n5##y,z,c), I[112] = (T)(img)(_p3##x,_n5##y,z,c), I[113] = (T)(img)(_p2##x,_n5##y,z,c), I[114] = (T)(img)(_p1##x,_n5##y,z,c), I[115] = (T)(img)(x,_n5##y,z,c), I[116] = (T)(img)(_n1##x,_n5##y,z,c), I[117] = (T)(img)(_n2##x,_n5##y,z,c), I[118] = (T)(img)(_n3##x,_n5##y,z,c), I[119] = (T)(img)(_n4##x,_n5##y,z,c), I[120] = (T)(img)(_n5##x,_n5##y,z,c);
// Define 12x12 loop macros
//-------------------------
#define cimg_for12(bound,i) for (int i = 0, \
_p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6; \
_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
#define cimg_for12X(img,x) cimg_for12((img)._width,x)
#define cimg_for12Y(img,y) cimg_for12((img)._height,y)
#define cimg_for12Z(img,z) cimg_for12((img)._depth,z)
#define cimg_for12C(img,c) cimg_for12((img)._spectrum,c)
#define cimg_for12XY(img,x,y) cimg_for12Y(img,y) cimg_for12X(img,x)
#define cimg_for12XZ(img,x,z) cimg_for12Z(img,z) cimg_for12X(img,x)
#define cimg_for12XC(img,x,c) cimg_for12C(img,c) cimg_for12X(img,x)
#define cimg_for12YZ(img,y,z) cimg_for12Z(img,z) cimg_for12Y(img,y)
#define cimg_for12YC(img,y,c) cimg_for12C(img,c) cimg_for12Y(img,y)
#define cimg_for12ZC(img,z,c) cimg_for12C(img,c) cimg_for12Z(img,z)
#define cimg_for12XYZ(img,x,y,z) cimg_for12Z(img,z) cimg_for12XY(img,x,y)
#define cimg_for12XZC(img,x,z,c) cimg_for12C(img,c) cimg_for12XZ(img,x,z)
#define cimg_for12YZC(img,y,z,c) cimg_for12C(img,c) cimg_for12YZ(img,y,z)
#define cimg_for12XYZC(img,x,y,z,c) cimg_for12C(img,c) cimg_for12XYZ(img,x,y,z)
#define cimg_for_in12(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6; \
i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
#define cimg_for_in12X(img,x0,x1,x) cimg_for_in12((img)._width,x0,x1,x)
#define cimg_for_in12Y(img,y0,y1,y) cimg_for_in12((img)._height,y0,y1,y)
#define cimg_for_in12Z(img,z0,z1,z) cimg_for_in12((img)._depth,z0,z1,z)
#define cimg_for_in12C(img,c0,c1,c) cimg_for_in12((img)._spectrum,c0,c1,c)
#define cimg_for_in12XY(img,x0,y0,x1,y1,x,y) cimg_for_in12Y(img,y0,y1,y) cimg_for_in12X(img,x0,x1,x)
#define cimg_for_in12XZ(img,x0,z0,x1,z1,x,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12X(img,x0,x1,x)
#define cimg_for_in12XC(img,x0,c0,x1,c1,x,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12X(img,x0,x1,x)
#define cimg_for_in12YZ(img,y0,z0,y1,z1,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12Y(img,y0,y1,y)
#define cimg_for_in12YC(img,y0,c0,y1,c1,y,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12Y(img,y0,y1,y)
#define cimg_for_in12ZC(img,z0,c0,z1,c1,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12Z(img,z0,z1,z)
#define cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in12Z(img,z0,z1,z) cimg_for_in12XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in12XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in12YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in12XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in12C(img,c0,c1,c) cimg_for_in12XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for12x12(img,x,y,z,c,I,T) \
cimg_for12((img)._height,y) for (int x = 0, \
_p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = (T)(img)(0,_p5##y,z,c)), \
(I[12] = I[13] = I[14] = I[15] = I[16] = I[17] = (T)(img)(0,_p4##y,z,c)), \
(I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (T)(img)(0,_p3##y,z,c)), \
(I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = (T)(img)(0,_p2##y,z,c)), \
(I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = (T)(img)(0,_p1##y,z,c)), \
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = (T)(img)(0,y,z,c)), \
(I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = (T)(img)(0,_n1##y,z,c)), \
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (T)(img)(0,_n2##y,z,c)), \
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = (T)(img)(0,_n3##y,z,c)), \
(I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = (T)(img)(0,_n4##y,z,c)), \
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = (T)(img)(0,_n5##y,z,c)), \
(I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = (T)(img)(0,_n6##y,z,c)), \
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[18] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[30] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[42] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[54] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[66] = (T)(img)(_n1##x,y,z,c)), \
(I[78] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[90] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[102] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[114] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[126] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[138] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[19] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[31] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[43] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[55] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[67] = (T)(img)(_n2##x,y,z,c)), \
(I[79] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[91] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[103] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[115] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[127] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[139] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[20] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[32] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[44] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[56] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[68] = (T)(img)(_n3##x,y,z,c)), \
(I[80] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[92] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[104] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[116] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[128] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[140] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[21] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[33] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[45] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[57] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[69] = (T)(img)(_n4##x,y,z,c)), \
(I[81] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[93] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[105] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[117] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[129] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[141] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[22] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[34] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[46] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[58] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[70] = (T)(img)(_n5##x,y,z,c)), \
(I[82] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[94] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[106] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[118] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[130] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[142] = (T)(img)(_n5##x,_n6##y,z,c)), \
6>=((img)._width)?(img).width() - 1:6); \
(_n6##x<(img).width() && ( \
(I[11] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[23] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[35] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[47] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[59] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[71] = (T)(img)(_n6##x,y,z,c)), \
(I[83] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[95] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[107] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[119] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[131] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[143] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
#define cimg_for_in12x12(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in12((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = (int)( \
(I[0] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[12] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[24] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[36] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[48] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[60] = (T)(img)(_p5##x,y,z,c)), \
(I[72] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[84] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[96] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[108] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[120] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[132] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[1] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[13] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[25] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[37] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[49] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[61] = (T)(img)(_p4##x,y,z,c)), \
(I[73] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[85] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[97] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[109] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[121] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[133] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[2] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[14] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[26] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[38] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[50] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[62] = (T)(img)(_p3##x,y,z,c)), \
(I[74] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[86] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[98] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[110] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[122] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[134] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[3] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[15] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[27] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[39] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[51] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[63] = (T)(img)(_p2##x,y,z,c)), \
(I[75] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[87] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[99] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[111] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[123] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[135] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[4] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[16] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[28] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[40] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[52] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[64] = (T)(img)(_p1##x,y,z,c)), \
(I[76] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[88] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[100] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[112] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[124] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[136] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[5] = (T)(img)(x,_p5##y,z,c)), \
(I[17] = (T)(img)(x,_p4##y,z,c)), \
(I[29] = (T)(img)(x,_p3##y,z,c)), \
(I[41] = (T)(img)(x,_p2##y,z,c)), \
(I[53] = (T)(img)(x,_p1##y,z,c)), \
(I[65] = (T)(img)(x,y,z,c)), \
(I[77] = (T)(img)(x,_n1##y,z,c)), \
(I[89] = (T)(img)(x,_n2##y,z,c)), \
(I[101] = (T)(img)(x,_n3##y,z,c)), \
(I[113] = (T)(img)(x,_n4##y,z,c)), \
(I[125] = (T)(img)(x,_n5##y,z,c)), \
(I[137] = (T)(img)(x,_n6##y,z,c)), \
(I[6] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[18] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[30] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[42] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[54] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[66] = (T)(img)(_n1##x,y,z,c)), \
(I[78] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[90] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[102] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[114] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[126] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[138] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[7] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[19] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[31] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[43] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[55] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[67] = (T)(img)(_n2##x,y,z,c)), \
(I[79] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[91] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[103] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[115] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[127] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[139] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[8] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[20] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[32] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[44] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[56] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[68] = (T)(img)(_n3##x,y,z,c)), \
(I[80] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[92] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[104] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[116] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[128] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[140] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[9] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[21] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[33] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[45] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[57] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[69] = (T)(img)(_n4##x,y,z,c)), \
(I[81] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[93] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[105] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[117] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[129] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[141] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[10] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[22] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[34] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[46] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[58] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[70] = (T)(img)(_n5##x,y,z,c)), \
(I[82] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[94] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[106] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[118] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[130] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[142] = (T)(img)(_n5##x,_n6##y,z,c)), \
x + 6>=(img).width()?(img).width() - 1:x + 6); \
x<=(int)(x1) && ((_n6##x<(img).width() && ( \
(I[11] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[23] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[35] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[47] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[59] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[71] = (T)(img)(_n6##x,y,z,c)), \
(I[83] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[95] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[107] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[119] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[131] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[143] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
_p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
#define cimg_get12x12(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p5##x,_p5##y,z,c), I[1] = (T)(img)(_p4##x,_p5##y,z,c), I[2] = (T)(img)(_p3##x,_p5##y,z,c), I[3] = (T)(img)(_p2##x,_p5##y,z,c), I[4] = (T)(img)(_p1##x,_p5##y,z,c), I[5] = (T)(img)(x,_p5##y,z,c), I[6] = (T)(img)(_n1##x,_p5##y,z,c), I[7] = (T)(img)(_n2##x,_p5##y,z,c), I[8] = (T)(img)(_n3##x,_p5##y,z,c), I[9] = (T)(img)(_n4##x,_p5##y,z,c), I[10] = (T)(img)(_n5##x,_p5##y,z,c), I[11] = (T)(img)(_n6##x,_p5##y,z,c), \
I[12] = (T)(img)(_p5##x,_p4##y,z,c), I[13] = (T)(img)(_p4##x,_p4##y,z,c), I[14] = (T)(img)(_p3##x,_p4##y,z,c), I[15] = (T)(img)(_p2##x,_p4##y,z,c), I[16] = (T)(img)(_p1##x,_p4##y,z,c), I[17] = (T)(img)(x,_p4##y,z,c), I[18] = (T)(img)(_n1##x,_p4##y,z,c), I[19] = (T)(img)(_n2##x,_p4##y,z,c), I[20] = (T)(img)(_n3##x,_p4##y,z,c), I[21] = (T)(img)(_n4##x,_p4##y,z,c), I[22] = (T)(img)(_n5##x,_p4##y,z,c), I[23] = (T)(img)(_n6##x,_p4##y,z,c), \
I[24] = (T)(img)(_p5##x,_p3##y,z,c), I[25] = (T)(img)(_p4##x,_p3##y,z,c), I[26] = (T)(img)(_p3##x,_p3##y,z,c), I[27] = (T)(img)(_p2##x,_p3##y,z,c), I[28] = (T)(img)(_p1##x,_p3##y,z,c), I[29] = (T)(img)(x,_p3##y,z,c), I[30] = (T)(img)(_n1##x,_p3##y,z,c), I[31] = (T)(img)(_n2##x,_p3##y,z,c), I[32] = (T)(img)(_n3##x,_p3##y,z,c), I[33] = (T)(img)(_n4##x,_p3##y,z,c), I[34] = (T)(img)(_n5##x,_p3##y,z,c), I[35] = (T)(img)(_n6##x,_p3##y,z,c), \
I[36] = (T)(img)(_p5##x,_p2##y,z,c), I[37] = (T)(img)(_p4##x,_p2##y,z,c), I[38] = (T)(img)(_p3##x,_p2##y,z,c), I[39] = (T)(img)(_p2##x,_p2##y,z,c), I[40] = (T)(img)(_p1##x,_p2##y,z,c), I[41] = (T)(img)(x,_p2##y,z,c), I[42] = (T)(img)(_n1##x,_p2##y,z,c), I[43] = (T)(img)(_n2##x,_p2##y,z,c), I[44] = (T)(img)(_n3##x,_p2##y,z,c), I[45] = (T)(img)(_n4##x,_p2##y,z,c), I[46] = (T)(img)(_n5##x,_p2##y,z,c), I[47] = (T)(img)(_n6##x,_p2##y,z,c), \
I[48] = (T)(img)(_p5##x,_p1##y,z,c), I[49] = (T)(img)(_p4##x,_p1##y,z,c), I[50] = (T)(img)(_p3##x,_p1##y,z,c), I[51] = (T)(img)(_p2##x,_p1##y,z,c), I[52] = (T)(img)(_p1##x,_p1##y,z,c), I[53] = (T)(img)(x,_p1##y,z,c), I[54] = (T)(img)(_n1##x,_p1##y,z,c), I[55] = (T)(img)(_n2##x,_p1##y,z,c), I[56] = (T)(img)(_n3##x,_p1##y,z,c), I[57] = (T)(img)(_n4##x,_p1##y,z,c), I[58] = (T)(img)(_n5##x,_p1##y,z,c), I[59] = (T)(img)(_n6##x,_p1##y,z,c), \
I[60] = (T)(img)(_p5##x,y,z,c), I[61] = (T)(img)(_p4##x,y,z,c), I[62] = (T)(img)(_p3##x,y,z,c), I[63] = (T)(img)(_p2##x,y,z,c), I[64] = (T)(img)(_p1##x,y,z,c), I[65] = (T)(img)(x,y,z,c), I[66] = (T)(img)(_n1##x,y,z,c), I[67] = (T)(img)(_n2##x,y,z,c), I[68] = (T)(img)(_n3##x,y,z,c), I[69] = (T)(img)(_n4##x,y,z,c), I[70] = (T)(img)(_n5##x,y,z,c), I[71] = (T)(img)(_n6##x,y,z,c), \
I[72] = (T)(img)(_p5##x,_n1##y,z,c), I[73] = (T)(img)(_p4##x,_n1##y,z,c), I[74] = (T)(img)(_p3##x,_n1##y,z,c), I[75] = (T)(img)(_p2##x,_n1##y,z,c), I[76] = (T)(img)(_p1##x,_n1##y,z,c), I[77] = (T)(img)(x,_n1##y,z,c), I[78] = (T)(img)(_n1##x,_n1##y,z,c), I[79] = (T)(img)(_n2##x,_n1##y,z,c), I[80] = (T)(img)(_n3##x,_n1##y,z,c), I[81] = (T)(img)(_n4##x,_n1##y,z,c), I[82] = (T)(img)(_n5##x,_n1##y,z,c), I[83] = (T)(img)(_n6##x,_n1##y,z,c), \
I[84] = (T)(img)(_p5##x,_n2##y,z,c), I[85] = (T)(img)(_p4##x,_n2##y,z,c), I[86] = (T)(img)(_p3##x,_n2##y,z,c), I[87] = (T)(img)(_p2##x,_n2##y,z,c), I[88] = (T)(img)(_p1##x,_n2##y,z,c), I[89] = (T)(img)(x,_n2##y,z,c), I[90] = (T)(img)(_n1##x,_n2##y,z,c), I[91] = (T)(img)(_n2##x,_n2##y,z,c), I[92] = (T)(img)(_n3##x,_n2##y,z,c), I[93] = (T)(img)(_n4##x,_n2##y,z,c), I[94] = (T)(img)(_n5##x,_n2##y,z,c), I[95] = (T)(img)(_n6##x,_n2##y,z,c), \
I[96] = (T)(img)(_p5##x,_n3##y,z,c), I[97] = (T)(img)(_p4##x,_n3##y,z,c), I[98] = (T)(img)(_p3##x,_n3##y,z,c), I[99] = (T)(img)(_p2##x,_n3##y,z,c), I[100] = (T)(img)(_p1##x,_n3##y,z,c), I[101] = (T)(img)(x,_n3##y,z,c), I[102] = (T)(img)(_n1##x,_n3##y,z,c), I[103] = (T)(img)(_n2##x,_n3##y,z,c), I[104] = (T)(img)(_n3##x,_n3##y,z,c), I[105] = (T)(img)(_n4##x,_n3##y,z,c), I[106] = (T)(img)(_n5##x,_n3##y,z,c), I[107] = (T)(img)(_n6##x,_n3##y,z,c), \
I[108] = (T)(img)(_p5##x,_n4##y,z,c), I[109] = (T)(img)(_p4##x,_n4##y,z,c), I[110] = (T)(img)(_p3##x,_n4##y,z,c), I[111] = (T)(img)(_p2##x,_n4##y,z,c), I[112] = (T)(img)(_p1##x,_n4##y,z,c), I[113] = (T)(img)(x,_n4##y,z,c), I[114] = (T)(img)(_n1##x,_n4##y,z,c), I[115] = (T)(img)(_n2##x,_n4##y,z,c), I[116] = (T)(img)(_n3##x,_n4##y,z,c), I[117] = (T)(img)(_n4##x,_n4##y,z,c), I[118] = (T)(img)(_n5##x,_n4##y,z,c), I[119] = (T)(img)(_n6##x,_n4##y,z,c), \
I[120] = (T)(img)(_p5##x,_n5##y,z,c), I[121] = (T)(img)(_p4##x,_n5##y,z,c), I[122] = (T)(img)(_p3##x,_n5##y,z,c), I[123] = (T)(img)(_p2##x,_n5##y,z,c), I[124] = (T)(img)(_p1##x,_n5##y,z,c), I[125] = (T)(img)(x,_n5##y,z,c), I[126] = (T)(img)(_n1##x,_n5##y,z,c), I[127] = (T)(img)(_n2##x,_n5##y,z,c), I[128] = (T)(img)(_n3##x,_n5##y,z,c), I[129] = (T)(img)(_n4##x,_n5##y,z,c), I[130] = (T)(img)(_n5##x,_n5##y,z,c), I[131] = (T)(img)(_n6##x,_n5##y,z,c), \
I[132] = (T)(img)(_p5##x,_n6##y,z,c), I[133] = (T)(img)(_p4##x,_n6##y,z,c), I[134] = (T)(img)(_p3##x,_n6##y,z,c), I[135] = (T)(img)(_p2##x,_n6##y,z,c), I[136] = (T)(img)(_p1##x,_n6##y,z,c), I[137] = (T)(img)(x,_n6##y,z,c), I[138] = (T)(img)(_n1##x,_n6##y,z,c), I[139] = (T)(img)(_n2##x,_n6##y,z,c), I[140] = (T)(img)(_n3##x,_n6##y,z,c), I[141] = (T)(img)(_n4##x,_n6##y,z,c), I[142] = (T)(img)(_n5##x,_n6##y,z,c), I[143] = (T)(img)(_n6##x,_n6##y,z,c);
// Define 13x13 loop macros
//-------------------------
#define cimg_for13(bound,i) for (int i = 0, \
_p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6; \
_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
#define cimg_for13X(img,x) cimg_for13((img)._width,x)
#define cimg_for13Y(img,y) cimg_for13((img)._height,y)
#define cimg_for13Z(img,z) cimg_for13((img)._depth,z)
#define cimg_for13C(img,c) cimg_for13((img)._spectrum,c)
#define cimg_for13XY(img,x,y) cimg_for13Y(img,y) cimg_for13X(img,x)
#define cimg_for13XZ(img,x,z) cimg_for13Z(img,z) cimg_for13X(img,x)
#define cimg_for13XC(img,x,c) cimg_for13C(img,c) cimg_for13X(img,x)
#define cimg_for13YZ(img,y,z) cimg_for13Z(img,z) cimg_for13Y(img,y)
#define cimg_for13YC(img,y,c) cimg_for13C(img,c) cimg_for13Y(img,y)
#define cimg_for13ZC(img,z,c) cimg_for13C(img,c) cimg_for13Z(img,z)
#define cimg_for13XYZ(img,x,y,z) cimg_for13Z(img,z) cimg_for13XY(img,x,y)
#define cimg_for13XZC(img,x,z,c) cimg_for13C(img,c) cimg_for13XZ(img,x,z)
#define cimg_for13YZC(img,y,z,c) cimg_for13C(img,c) cimg_for13YZ(img,y,z)
#define cimg_for13XYZC(img,x,y,z,c) cimg_for13C(img,c) cimg_for13XYZ(img,x,y,z)
#define cimg_for_in13(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6; \
i<=(int)(i1) && (_n6##i<(int)(bound) || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i)
#define cimg_for_in13X(img,x0,x1,x) cimg_for_in13((img)._width,x0,x1,x)
#define cimg_for_in13Y(img,y0,y1,y) cimg_for_in13((img)._height,y0,y1,y)
#define cimg_for_in13Z(img,z0,z1,z) cimg_for_in13((img)._depth,z0,z1,z)
#define cimg_for_in13C(img,c0,c1,c) cimg_for_in13((img)._spectrum,c0,c1,c)
#define cimg_for_in13XY(img,x0,y0,x1,y1,x,y) cimg_for_in13Y(img,y0,y1,y) cimg_for_in13X(img,x0,x1,x)
#define cimg_for_in13XZ(img,x0,z0,x1,z1,x,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13X(img,x0,x1,x)
#define cimg_for_in13XC(img,x0,c0,x1,c1,x,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13X(img,x0,x1,x)
#define cimg_for_in13YZ(img,y0,z0,y1,z1,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13Y(img,y0,y1,y)
#define cimg_for_in13YC(img,y0,c0,y1,c1,y,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13Y(img,y0,y1,y)
#define cimg_for_in13ZC(img,z0,c0,z1,c1,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13Z(img,z0,z1,z)
#define cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in13Z(img,z0,z1,z) cimg_for_in13XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in13XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in13YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in13XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in13C(img,c0,c1,c) cimg_for_in13XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for13x13(img,x,y,z,c,I,T) \
cimg_for13((img)._height,y) for (int x = 0, \
_p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (T)(img)(0,_p6##y,z,c)), \
(I[13] = I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = (T)(img)(0,_p5##y,z,c)), \
(I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (T)(img)(0,_p4##y,z,c)), \
(I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = (T)(img)(0,_p3##y,z,c)), \
(I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = (T)(img)(0,_p2##y,z,c)), \
(I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (T)(img)(0,_p1##y,z,c)), \
(I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = (T)(img)(0,y,z,c)), \
(I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (T)(img)(0,_n1##y,z,c)), \
(I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (T)(img)(0,_n2##y,z,c)), \
(I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (T)(img)(0,_n3##y,z,c)), \
(I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (T)(img)(0,_n4##y,z,c)), \
(I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (T)(img)(0,_n5##y,z,c)), \
(I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = (T)(img)(0,_n6##y,z,c)), \
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[20] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[33] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[46] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[59] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[72] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[85] = (T)(img)(_n1##x,y,z,c)), \
(I[98] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[111] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[124] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[137] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[150] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[163] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[21] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[34] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[47] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[60] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[73] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[86] = (T)(img)(_n2##x,y,z,c)), \
(I[99] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[112] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[125] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[138] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[151] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[164] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[22] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[35] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[48] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[61] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[74] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[87] = (T)(img)(_n3##x,y,z,c)), \
(I[100] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[113] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[126] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[139] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[152] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[165] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[23] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[36] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[49] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[62] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[75] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[88] = (T)(img)(_n4##x,y,z,c)), \
(I[101] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[114] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[127] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[140] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[153] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[166] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[24] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[37] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[50] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[63] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[76] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[89] = (T)(img)(_n5##x,y,z,c)), \
(I[102] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[115] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[128] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[141] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[154] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[167] = (T)(img)(_n5##x,_n6##y,z,c)), \
6>=((img)._width)?(img).width() - 1:6); \
(_n6##x<(img).width() && ( \
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[25] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[38] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[51] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[64] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[77] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[90] = (T)(img)(_n6##x,y,z,c)), \
(I[103] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[116] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[129] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[142] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[155] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[168] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \
I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \
I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \
I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \
I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
#define cimg_for_in13x13(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in13((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = (int)( \
(I[0] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[13] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[26] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[39] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[52] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[65] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[78] = (T)(img)(_p6##x,y,z,c)), \
(I[91] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[104] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[117] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[130] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[143] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[156] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[1] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[14] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[27] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[40] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[53] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[66] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[79] = (T)(img)(_p5##x,y,z,c)), \
(I[92] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[105] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[118] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[131] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[144] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[157] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[2] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[15] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[28] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[41] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[54] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[67] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[80] = (T)(img)(_p4##x,y,z,c)), \
(I[93] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[106] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[119] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[132] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[145] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[158] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[3] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[16] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[29] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[42] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[55] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[68] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[81] = (T)(img)(_p3##x,y,z,c)), \
(I[94] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[107] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[120] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[133] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[146] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[159] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[4] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[17] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[30] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[43] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[56] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[69] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[82] = (T)(img)(_p2##x,y,z,c)), \
(I[95] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[108] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[121] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[134] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[147] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[160] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[5] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[18] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[31] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[44] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[57] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[70] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[83] = (T)(img)(_p1##x,y,z,c)), \
(I[96] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[109] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[122] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[135] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[148] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[161] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[6] = (T)(img)(x,_p6##y,z,c)), \
(I[19] = (T)(img)(x,_p5##y,z,c)), \
(I[32] = (T)(img)(x,_p4##y,z,c)), \
(I[45] = (T)(img)(x,_p3##y,z,c)), \
(I[58] = (T)(img)(x,_p2##y,z,c)), \
(I[71] = (T)(img)(x,_p1##y,z,c)), \
(I[84] = (T)(img)(x,y,z,c)), \
(I[97] = (T)(img)(x,_n1##y,z,c)), \
(I[110] = (T)(img)(x,_n2##y,z,c)), \
(I[123] = (T)(img)(x,_n3##y,z,c)), \
(I[136] = (T)(img)(x,_n4##y,z,c)), \
(I[149] = (T)(img)(x,_n5##y,z,c)), \
(I[162] = (T)(img)(x,_n6##y,z,c)), \
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[20] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[33] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[46] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[59] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[72] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[85] = (T)(img)(_n1##x,y,z,c)), \
(I[98] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[111] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[124] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[137] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[150] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[163] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[21] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[34] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[47] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[60] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[73] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[86] = (T)(img)(_n2##x,y,z,c)), \
(I[99] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[112] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[125] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[138] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[151] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[164] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[22] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[35] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[48] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[61] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[74] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[87] = (T)(img)(_n3##x,y,z,c)), \
(I[100] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[113] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[126] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[139] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[152] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[165] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[23] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[36] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[49] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[62] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[75] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[88] = (T)(img)(_n4##x,y,z,c)), \
(I[101] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[114] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[127] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[140] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[153] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[166] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[24] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[37] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[50] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[63] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[76] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[89] = (T)(img)(_n5##x,y,z,c)), \
(I[102] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[115] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[128] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[141] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[154] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[167] = (T)(img)(_n5##x,_n6##y,z,c)), \
x + 6>=(img).width()?(img).width() - 1:x + 6); \
x<=(int)(x1) && ((_n6##x<(img).width() && ( \
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[25] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[38] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[51] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[64] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[77] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[90] = (T)(img)(_n6##x,y,z,c)), \
(I[103] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[116] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[129] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[142] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[155] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[168] = (T)(img)(_n6##x,_n6##y,z,c)),1)) || \
_n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], \
I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], \
I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], \
I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], \
I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], \
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x)
#define cimg_get13x13(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p6##x,_p6##y,z,c), I[1] = (T)(img)(_p5##x,_p6##y,z,c), I[2] = (T)(img)(_p4##x,_p6##y,z,c), I[3] = (T)(img)(_p3##x,_p6##y,z,c), I[4] = (T)(img)(_p2##x,_p6##y,z,c), I[5] = (T)(img)(_p1##x,_p6##y,z,c), I[6] = (T)(img)(x,_p6##y,z,c), I[7] = (T)(img)(_n1##x,_p6##y,z,c), I[8] = (T)(img)(_n2##x,_p6##y,z,c), I[9] = (T)(img)(_n3##x,_p6##y,z,c), I[10] = (T)(img)(_n4##x,_p6##y,z,c), I[11] = (T)(img)(_n5##x,_p6##y,z,c), I[12] = (T)(img)(_n6##x,_p6##y,z,c), \
I[13] = (T)(img)(_p6##x,_p5##y,z,c), I[14] = (T)(img)(_p5##x,_p5##y,z,c), I[15] = (T)(img)(_p4##x,_p5##y,z,c), I[16] = (T)(img)(_p3##x,_p5##y,z,c), I[17] = (T)(img)(_p2##x,_p5##y,z,c), I[18] = (T)(img)(_p1##x,_p5##y,z,c), I[19] = (T)(img)(x,_p5##y,z,c), I[20] = (T)(img)(_n1##x,_p5##y,z,c), I[21] = (T)(img)(_n2##x,_p5##y,z,c), I[22] = (T)(img)(_n3##x,_p5##y,z,c), I[23] = (T)(img)(_n4##x,_p5##y,z,c), I[24] = (T)(img)(_n5##x,_p5##y,z,c), I[25] = (T)(img)(_n6##x,_p5##y,z,c), \
I[26] = (T)(img)(_p6##x,_p4##y,z,c), I[27] = (T)(img)(_p5##x,_p4##y,z,c), I[28] = (T)(img)(_p4##x,_p4##y,z,c), I[29] = (T)(img)(_p3##x,_p4##y,z,c), I[30] = (T)(img)(_p2##x,_p4##y,z,c), I[31] = (T)(img)(_p1##x,_p4##y,z,c), I[32] = (T)(img)(x,_p4##y,z,c), I[33] = (T)(img)(_n1##x,_p4##y,z,c), I[34] = (T)(img)(_n2##x,_p4##y,z,c), I[35] = (T)(img)(_n3##x,_p4##y,z,c), I[36] = (T)(img)(_n4##x,_p4##y,z,c), I[37] = (T)(img)(_n5##x,_p4##y,z,c), I[38] = (T)(img)(_n6##x,_p4##y,z,c), \
I[39] = (T)(img)(_p6##x,_p3##y,z,c), I[40] = (T)(img)(_p5##x,_p3##y,z,c), I[41] = (T)(img)(_p4##x,_p3##y,z,c), I[42] = (T)(img)(_p3##x,_p3##y,z,c), I[43] = (T)(img)(_p2##x,_p3##y,z,c), I[44] = (T)(img)(_p1##x,_p3##y,z,c), I[45] = (T)(img)(x,_p3##y,z,c), I[46] = (T)(img)(_n1##x,_p3##y,z,c), I[47] = (T)(img)(_n2##x,_p3##y,z,c), I[48] = (T)(img)(_n3##x,_p3##y,z,c), I[49] = (T)(img)(_n4##x,_p3##y,z,c), I[50] = (T)(img)(_n5##x,_p3##y,z,c), I[51] = (T)(img)(_n6##x,_p3##y,z,c), \
I[52] = (T)(img)(_p6##x,_p2##y,z,c), I[53] = (T)(img)(_p5##x,_p2##y,z,c), I[54] = (T)(img)(_p4##x,_p2##y,z,c), I[55] = (T)(img)(_p3##x,_p2##y,z,c), I[56] = (T)(img)(_p2##x,_p2##y,z,c), I[57] = (T)(img)(_p1##x,_p2##y,z,c), I[58] = (T)(img)(x,_p2##y,z,c), I[59] = (T)(img)(_n1##x,_p2##y,z,c), I[60] = (T)(img)(_n2##x,_p2##y,z,c), I[61] = (T)(img)(_n3##x,_p2##y,z,c), I[62] = (T)(img)(_n4##x,_p2##y,z,c), I[63] = (T)(img)(_n5##x,_p2##y,z,c), I[64] = (T)(img)(_n6##x,_p2##y,z,c), \
I[65] = (T)(img)(_p6##x,_p1##y,z,c), I[66] = (T)(img)(_p5##x,_p1##y,z,c), I[67] = (T)(img)(_p4##x,_p1##y,z,c), I[68] = (T)(img)(_p3##x,_p1##y,z,c), I[69] = (T)(img)(_p2##x,_p1##y,z,c), I[70] = (T)(img)(_p1##x,_p1##y,z,c), I[71] = (T)(img)(x,_p1##y,z,c), I[72] = (T)(img)(_n1##x,_p1##y,z,c), I[73] = (T)(img)(_n2##x,_p1##y,z,c), I[74] = (T)(img)(_n3##x,_p1##y,z,c), I[75] = (T)(img)(_n4##x,_p1##y,z,c), I[76] = (T)(img)(_n5##x,_p1##y,z,c), I[77] = (T)(img)(_n6##x,_p1##y,z,c), \
I[78] = (T)(img)(_p6##x,y,z,c), I[79] = (T)(img)(_p5##x,y,z,c), I[80] = (T)(img)(_p4##x,y,z,c), I[81] = (T)(img)(_p3##x,y,z,c), I[82] = (T)(img)(_p2##x,y,z,c), I[83] = (T)(img)(_p1##x,y,z,c), I[84] = (T)(img)(x,y,z,c), I[85] = (T)(img)(_n1##x,y,z,c), I[86] = (T)(img)(_n2##x,y,z,c), I[87] = (T)(img)(_n3##x,y,z,c), I[88] = (T)(img)(_n4##x,y,z,c), I[89] = (T)(img)(_n5##x,y,z,c), I[90] = (T)(img)(_n6##x,y,z,c), \
I[91] = (T)(img)(_p6##x,_n1##y,z,c), I[92] = (T)(img)(_p5##x,_n1##y,z,c), I[93] = (T)(img)(_p4##x,_n1##y,z,c), I[94] = (T)(img)(_p3##x,_n1##y,z,c), I[95] = (T)(img)(_p2##x,_n1##y,z,c), I[96] = (T)(img)(_p1##x,_n1##y,z,c), I[97] = (T)(img)(x,_n1##y,z,c), I[98] = (T)(img)(_n1##x,_n1##y,z,c), I[99] = (T)(img)(_n2##x,_n1##y,z,c), I[100] = (T)(img)(_n3##x,_n1##y,z,c), I[101] = (T)(img)(_n4##x,_n1##y,z,c), I[102] = (T)(img)(_n5##x,_n1##y,z,c), I[103] = (T)(img)(_n6##x,_n1##y,z,c), \
I[104] = (T)(img)(_p6##x,_n2##y,z,c), I[105] = (T)(img)(_p5##x,_n2##y,z,c), I[106] = (T)(img)(_p4##x,_n2##y,z,c), I[107] = (T)(img)(_p3##x,_n2##y,z,c), I[108] = (T)(img)(_p2##x,_n2##y,z,c), I[109] = (T)(img)(_p1##x,_n2##y,z,c), I[110] = (T)(img)(x,_n2##y,z,c), I[111] = (T)(img)(_n1##x,_n2##y,z,c), I[112] = (T)(img)(_n2##x,_n2##y,z,c), I[113] = (T)(img)(_n3##x,_n2##y,z,c), I[114] = (T)(img)(_n4##x,_n2##y,z,c), I[115] = (T)(img)(_n5##x,_n2##y,z,c), I[116] = (T)(img)(_n6##x,_n2##y,z,c), \
I[117] = (T)(img)(_p6##x,_n3##y,z,c), I[118] = (T)(img)(_p5##x,_n3##y,z,c), I[119] = (T)(img)(_p4##x,_n3##y,z,c), I[120] = (T)(img)(_p3##x,_n3##y,z,c), I[121] = (T)(img)(_p2##x,_n3##y,z,c), I[122] = (T)(img)(_p1##x,_n3##y,z,c), I[123] = (T)(img)(x,_n3##y,z,c), I[124] = (T)(img)(_n1##x,_n3##y,z,c), I[125] = (T)(img)(_n2##x,_n3##y,z,c), I[126] = (T)(img)(_n3##x,_n3##y,z,c), I[127] = (T)(img)(_n4##x,_n3##y,z,c), I[128] = (T)(img)(_n5##x,_n3##y,z,c), I[129] = (T)(img)(_n6##x,_n3##y,z,c), \
I[130] = (T)(img)(_p6##x,_n4##y,z,c), I[131] = (T)(img)(_p5##x,_n4##y,z,c), I[132] = (T)(img)(_p4##x,_n4##y,z,c), I[133] = (T)(img)(_p3##x,_n4##y,z,c), I[134] = (T)(img)(_p2##x,_n4##y,z,c), I[135] = (T)(img)(_p1##x,_n4##y,z,c), I[136] = (T)(img)(x,_n4##y,z,c), I[137] = (T)(img)(_n1##x,_n4##y,z,c), I[138] = (T)(img)(_n2##x,_n4##y,z,c), I[139] = (T)(img)(_n3##x,_n4##y,z,c), I[140] = (T)(img)(_n4##x,_n4##y,z,c), I[141] = (T)(img)(_n5##x,_n4##y,z,c), I[142] = (T)(img)(_n6##x,_n4##y,z,c), \
I[143] = (T)(img)(_p6##x,_n5##y,z,c), I[144] = (T)(img)(_p5##x,_n5##y,z,c), I[145] = (T)(img)(_p4##x,_n5##y,z,c), I[146] = (T)(img)(_p3##x,_n5##y,z,c), I[147] = (T)(img)(_p2##x,_n5##y,z,c), I[148] = (T)(img)(_p1##x,_n5##y,z,c), I[149] = (T)(img)(x,_n5##y,z,c), I[150] = (T)(img)(_n1##x,_n5##y,z,c), I[151] = (T)(img)(_n2##x,_n5##y,z,c), I[152] = (T)(img)(_n3##x,_n5##y,z,c), I[153] = (T)(img)(_n4##x,_n5##y,z,c), I[154] = (T)(img)(_n5##x,_n5##y,z,c), I[155] = (T)(img)(_n6##x,_n5##y,z,c), \
I[156] = (T)(img)(_p6##x,_n6##y,z,c), I[157] = (T)(img)(_p5##x,_n6##y,z,c), I[158] = (T)(img)(_p4##x,_n6##y,z,c), I[159] = (T)(img)(_p3##x,_n6##y,z,c), I[160] = (T)(img)(_p2##x,_n6##y,z,c), I[161] = (T)(img)(_p1##x,_n6##y,z,c), I[162] = (T)(img)(x,_n6##y,z,c), I[163] = (T)(img)(_n1##x,_n6##y,z,c), I[164] = (T)(img)(_n2##x,_n6##y,z,c), I[165] = (T)(img)(_n3##x,_n6##y,z,c), I[166] = (T)(img)(_n4##x,_n6##y,z,c), I[167] = (T)(img)(_n5##x,_n6##y,z,c), I[168] = (T)(img)(_n6##x,_n6##y,z,c);
// Define 14x14 loop macros
//-------------------------
#define cimg_for14(bound,i) for (int i = 0, \
_p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7; \
_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
#define cimg_for14X(img,x) cimg_for14((img)._width,x)
#define cimg_for14Y(img,y) cimg_for14((img)._height,y)
#define cimg_for14Z(img,z) cimg_for14((img)._depth,z)
#define cimg_for14C(img,c) cimg_for14((img)._spectrum,c)
#define cimg_for14XY(img,x,y) cimg_for14Y(img,y) cimg_for14X(img,x)
#define cimg_for14XZ(img,x,z) cimg_for14Z(img,z) cimg_for14X(img,x)
#define cimg_for14XC(img,x,c) cimg_for14C(img,c) cimg_for14X(img,x)
#define cimg_for14YZ(img,y,z) cimg_for14Z(img,z) cimg_for14Y(img,y)
#define cimg_for14YC(img,y,c) cimg_for14C(img,c) cimg_for14Y(img,y)
#define cimg_for14ZC(img,z,c) cimg_for14C(img,c) cimg_for14Z(img,z)
#define cimg_for14XYZ(img,x,y,z) cimg_for14Z(img,z) cimg_for14XY(img,x,y)
#define cimg_for14XZC(img,x,z,c) cimg_for14C(img,c) cimg_for14XZ(img,x,z)
#define cimg_for14YZC(img,y,z,c) cimg_for14C(img,c) cimg_for14YZ(img,y,z)
#define cimg_for14XYZC(img,x,y,z,c) cimg_for14C(img,c) cimg_for14XYZ(img,x,y,z)
#define cimg_for_in14(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7; \
i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
#define cimg_for_in14X(img,x0,x1,x) cimg_for_in14((img)._width,x0,x1,x)
#define cimg_for_in14Y(img,y0,y1,y) cimg_for_in14((img)._height,y0,y1,y)
#define cimg_for_in14Z(img,z0,z1,z) cimg_for_in14((img)._depth,z0,z1,z)
#define cimg_for_in14C(img,c0,c1,c) cimg_for_in14((img)._spectrum,c0,c1,c)
#define cimg_for_in14XY(img,x0,y0,x1,y1,x,y) cimg_for_in14Y(img,y0,y1,y) cimg_for_in14X(img,x0,x1,x)
#define cimg_for_in14XZ(img,x0,z0,x1,z1,x,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14X(img,x0,x1,x)
#define cimg_for_in14XC(img,x0,c0,x1,c1,x,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14X(img,x0,x1,x)
#define cimg_for_in14YZ(img,y0,z0,y1,z1,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14Y(img,y0,y1,y)
#define cimg_for_in14YC(img,y0,c0,y1,c1,y,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14Y(img,y0,y1,y)
#define cimg_for_in14ZC(img,z0,c0,z1,c1,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14Z(img,z0,z1,z)
#define cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in14Z(img,z0,z1,z) cimg_for_in14XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in14XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in14YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in14XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in14C(img,c0,c1,c) cimg_for_in14XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for14x14(img,x,y,z,c,I,T) \
cimg_for14((img)._height,y) for (int x = 0, \
_p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = (T)(img)(0,_p6##y,z,c)), \
(I[14] = I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = (T)(img)(0,_p5##y,z,c)), \
(I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (T)(img)(0,_p4##y,z,c)), \
(I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = (T)(img)(0,_p3##y,z,c)), \
(I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (T)(img)(0,_p2##y,z,c)), \
(I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_p1##y,z,c)), \
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = (T)(img)(0,y,z,c)), \
(I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_n1##y,z,c)), \
(I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = (T)(img)(0,_n2##y,z,c)), \
(I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = (T)(img)(0,_n3##y,z,c)), \
(I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = (T)(img)(0,_n4##y,z,c)), \
(I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = (T)(img)(0,_n5##y,z,c)), \
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = (T)(img)(0,_n6##y,z,c)), \
(I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (T)(img)(0,_n7##y,z,c)), \
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[21] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[35] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[49] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[63] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[77] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[91] = (T)(img)(_n1##x,y,z,c)), \
(I[105] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[119] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[133] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[147] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[161] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[175] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[189] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[22] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[36] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[50] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[64] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[78] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[92] = (T)(img)(_n2##x,y,z,c)), \
(I[106] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[120] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[134] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[148] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[162] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[176] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[190] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[23] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[37] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[51] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[65] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[79] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[93] = (T)(img)(_n3##x,y,z,c)), \
(I[107] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[121] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[135] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[149] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[163] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[177] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[191] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[24] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[38] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[52] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[66] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[80] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[94] = (T)(img)(_n4##x,y,z,c)), \
(I[108] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[122] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[136] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[150] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[164] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[178] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[192] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[25] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[39] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[53] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[67] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[81] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[95] = (T)(img)(_n5##x,y,z,c)), \
(I[109] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[123] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[137] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[151] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[165] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[179] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[193] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[26] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[40] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[54] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[68] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[82] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[96] = (T)(img)(_n6##x,y,z,c)), \
(I[110] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[124] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[138] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[152] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[166] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[180] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[194] = (T)(img)(_n6##x,_n7##y,z,c)), \
7>=((img)._width)?(img).width() - 1:7); \
(_n7##x<(img).width() && ( \
(I[13] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[27] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[41] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[55] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[69] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[83] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[97] = (T)(img)(_n7##x,y,z,c)), \
(I[111] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[125] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[139] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[153] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[167] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[181] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[195] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
#define cimg_for_in14x14(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in14((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = (int)( \
(I[0] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[14] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[28] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[42] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[56] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[70] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[84] = (T)(img)(_p6##x,y,z,c)), \
(I[98] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[112] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[126] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[140] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[154] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[168] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[182] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[1] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[15] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[29] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[43] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[57] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[71] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[85] = (T)(img)(_p5##x,y,z,c)), \
(I[99] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[113] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[127] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[141] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[155] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[169] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[183] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[2] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[16] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[30] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[44] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[58] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[72] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[86] = (T)(img)(_p4##x,y,z,c)), \
(I[100] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[114] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[128] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[142] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[156] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[170] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[184] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[3] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[17] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[31] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[45] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[59] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[73] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[87] = (T)(img)(_p3##x,y,z,c)), \
(I[101] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[115] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[129] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[143] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[157] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[171] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[185] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[4] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[18] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[32] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[46] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[60] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[74] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[88] = (T)(img)(_p2##x,y,z,c)), \
(I[102] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[116] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[130] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[144] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[158] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[172] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[186] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[5] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[19] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[33] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[47] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[61] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[75] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[89] = (T)(img)(_p1##x,y,z,c)), \
(I[103] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[117] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[131] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[145] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[159] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[173] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[187] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[6] = (T)(img)(x,_p6##y,z,c)), \
(I[20] = (T)(img)(x,_p5##y,z,c)), \
(I[34] = (T)(img)(x,_p4##y,z,c)), \
(I[48] = (T)(img)(x,_p3##y,z,c)), \
(I[62] = (T)(img)(x,_p2##y,z,c)), \
(I[76] = (T)(img)(x,_p1##y,z,c)), \
(I[90] = (T)(img)(x,y,z,c)), \
(I[104] = (T)(img)(x,_n1##y,z,c)), \
(I[118] = (T)(img)(x,_n2##y,z,c)), \
(I[132] = (T)(img)(x,_n3##y,z,c)), \
(I[146] = (T)(img)(x,_n4##y,z,c)), \
(I[160] = (T)(img)(x,_n5##y,z,c)), \
(I[174] = (T)(img)(x,_n6##y,z,c)), \
(I[188] = (T)(img)(x,_n7##y,z,c)), \
(I[7] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[21] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[35] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[49] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[63] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[77] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[91] = (T)(img)(_n1##x,y,z,c)), \
(I[105] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[119] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[133] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[147] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[161] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[175] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[189] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[8] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[22] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[36] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[50] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[64] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[78] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[92] = (T)(img)(_n2##x,y,z,c)), \
(I[106] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[120] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[134] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[148] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[162] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[176] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[190] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[9] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[23] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[37] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[51] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[65] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[79] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[93] = (T)(img)(_n3##x,y,z,c)), \
(I[107] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[121] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[135] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[149] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[163] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[177] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[191] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[10] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[24] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[38] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[52] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[66] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[80] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[94] = (T)(img)(_n4##x,y,z,c)), \
(I[108] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[122] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[136] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[150] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[164] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[178] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[192] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[11] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[25] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[39] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[53] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[67] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[81] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[95] = (T)(img)(_n5##x,y,z,c)), \
(I[109] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[123] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[137] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[151] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[165] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[179] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[193] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[12] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[26] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[40] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[54] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[68] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[82] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[96] = (T)(img)(_n6##x,y,z,c)), \
(I[110] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[124] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[138] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[152] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[166] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[180] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[194] = (T)(img)(_n6##x,_n7##y,z,c)), \
x + 7>=(img).width()?(img).width() - 1:x + 7); \
x<=(int)(x1) && ((_n7##x<(img).width() && ( \
(I[13] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[27] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[41] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[55] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[69] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[83] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[97] = (T)(img)(_n7##x,y,z,c)), \
(I[111] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[125] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[139] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[153] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[167] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[181] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[195] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
_p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
#define cimg_get14x14(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p6##x,_p6##y,z,c), I[1] = (T)(img)(_p5##x,_p6##y,z,c), I[2] = (T)(img)(_p4##x,_p6##y,z,c), I[3] = (T)(img)(_p3##x,_p6##y,z,c), I[4] = (T)(img)(_p2##x,_p6##y,z,c), I[5] = (T)(img)(_p1##x,_p6##y,z,c), I[6] = (T)(img)(x,_p6##y,z,c), I[7] = (T)(img)(_n1##x,_p6##y,z,c), I[8] = (T)(img)(_n2##x,_p6##y,z,c), I[9] = (T)(img)(_n3##x,_p6##y,z,c), I[10] = (T)(img)(_n4##x,_p6##y,z,c), I[11] = (T)(img)(_n5##x,_p6##y,z,c), I[12] = (T)(img)(_n6##x,_p6##y,z,c), I[13] = (T)(img)(_n7##x,_p6##y,z,c), \
I[14] = (T)(img)(_p6##x,_p5##y,z,c), I[15] = (T)(img)(_p5##x,_p5##y,z,c), I[16] = (T)(img)(_p4##x,_p5##y,z,c), I[17] = (T)(img)(_p3##x,_p5##y,z,c), I[18] = (T)(img)(_p2##x,_p5##y,z,c), I[19] = (T)(img)(_p1##x,_p5##y,z,c), I[20] = (T)(img)(x,_p5##y,z,c), I[21] = (T)(img)(_n1##x,_p5##y,z,c), I[22] = (T)(img)(_n2##x,_p5##y,z,c), I[23] = (T)(img)(_n3##x,_p5##y,z,c), I[24] = (T)(img)(_n4##x,_p5##y,z,c), I[25] = (T)(img)(_n5##x,_p5##y,z,c), I[26] = (T)(img)(_n6##x,_p5##y,z,c), I[27] = (T)(img)(_n7##x,_p5##y,z,c), \
I[28] = (T)(img)(_p6##x,_p4##y,z,c), I[29] = (T)(img)(_p5##x,_p4##y,z,c), I[30] = (T)(img)(_p4##x,_p4##y,z,c), I[31] = (T)(img)(_p3##x,_p4##y,z,c), I[32] = (T)(img)(_p2##x,_p4##y,z,c), I[33] = (T)(img)(_p1##x,_p4##y,z,c), I[34] = (T)(img)(x,_p4##y,z,c), I[35] = (T)(img)(_n1##x,_p4##y,z,c), I[36] = (T)(img)(_n2##x,_p4##y,z,c), I[37] = (T)(img)(_n3##x,_p4##y,z,c), I[38] = (T)(img)(_n4##x,_p4##y,z,c), I[39] = (T)(img)(_n5##x,_p4##y,z,c), I[40] = (T)(img)(_n6##x,_p4##y,z,c), I[41] = (T)(img)(_n7##x,_p4##y,z,c), \
I[42] = (T)(img)(_p6##x,_p3##y,z,c), I[43] = (T)(img)(_p5##x,_p3##y,z,c), I[44] = (T)(img)(_p4##x,_p3##y,z,c), I[45] = (T)(img)(_p3##x,_p3##y,z,c), I[46] = (T)(img)(_p2##x,_p3##y,z,c), I[47] = (T)(img)(_p1##x,_p3##y,z,c), I[48] = (T)(img)(x,_p3##y,z,c), I[49] = (T)(img)(_n1##x,_p3##y,z,c), I[50] = (T)(img)(_n2##x,_p3##y,z,c), I[51] = (T)(img)(_n3##x,_p3##y,z,c), I[52] = (T)(img)(_n4##x,_p3##y,z,c), I[53] = (T)(img)(_n5##x,_p3##y,z,c), I[54] = (T)(img)(_n6##x,_p3##y,z,c), I[55] = (T)(img)(_n7##x,_p3##y,z,c), \
I[56] = (T)(img)(_p6##x,_p2##y,z,c), I[57] = (T)(img)(_p5##x,_p2##y,z,c), I[58] = (T)(img)(_p4##x,_p2##y,z,c), I[59] = (T)(img)(_p3##x,_p2##y,z,c), I[60] = (T)(img)(_p2##x,_p2##y,z,c), I[61] = (T)(img)(_p1##x,_p2##y,z,c), I[62] = (T)(img)(x,_p2##y,z,c), I[63] = (T)(img)(_n1##x,_p2##y,z,c), I[64] = (T)(img)(_n2##x,_p2##y,z,c), I[65] = (T)(img)(_n3##x,_p2##y,z,c), I[66] = (T)(img)(_n4##x,_p2##y,z,c), I[67] = (T)(img)(_n5##x,_p2##y,z,c), I[68] = (T)(img)(_n6##x,_p2##y,z,c), I[69] = (T)(img)(_n7##x,_p2##y,z,c), \
I[70] = (T)(img)(_p6##x,_p1##y,z,c), I[71] = (T)(img)(_p5##x,_p1##y,z,c), I[72] = (T)(img)(_p4##x,_p1##y,z,c), I[73] = (T)(img)(_p3##x,_p1##y,z,c), I[74] = (T)(img)(_p2##x,_p1##y,z,c), I[75] = (T)(img)(_p1##x,_p1##y,z,c), I[76] = (T)(img)(x,_p1##y,z,c), I[77] = (T)(img)(_n1##x,_p1##y,z,c), I[78] = (T)(img)(_n2##x,_p1##y,z,c), I[79] = (T)(img)(_n3##x,_p1##y,z,c), I[80] = (T)(img)(_n4##x,_p1##y,z,c), I[81] = (T)(img)(_n5##x,_p1##y,z,c), I[82] = (T)(img)(_n6##x,_p1##y,z,c), I[83] = (T)(img)(_n7##x,_p1##y,z,c), \
I[84] = (T)(img)(_p6##x,y,z,c), I[85] = (T)(img)(_p5##x,y,z,c), I[86] = (T)(img)(_p4##x,y,z,c), I[87] = (T)(img)(_p3##x,y,z,c), I[88] = (T)(img)(_p2##x,y,z,c), I[89] = (T)(img)(_p1##x,y,z,c), I[90] = (T)(img)(x,y,z,c), I[91] = (T)(img)(_n1##x,y,z,c), I[92] = (T)(img)(_n2##x,y,z,c), I[93] = (T)(img)(_n3##x,y,z,c), I[94] = (T)(img)(_n4##x,y,z,c), I[95] = (T)(img)(_n5##x,y,z,c), I[96] = (T)(img)(_n6##x,y,z,c), I[97] = (T)(img)(_n7##x,y,z,c), \
I[98] = (T)(img)(_p6##x,_n1##y,z,c), I[99] = (T)(img)(_p5##x,_n1##y,z,c), I[100] = (T)(img)(_p4##x,_n1##y,z,c), I[101] = (T)(img)(_p3##x,_n1##y,z,c), I[102] = (T)(img)(_p2##x,_n1##y,z,c), I[103] = (T)(img)(_p1##x,_n1##y,z,c), I[104] = (T)(img)(x,_n1##y,z,c), I[105] = (T)(img)(_n1##x,_n1##y,z,c), I[106] = (T)(img)(_n2##x,_n1##y,z,c), I[107] = (T)(img)(_n3##x,_n1##y,z,c), I[108] = (T)(img)(_n4##x,_n1##y,z,c), I[109] = (T)(img)(_n5##x,_n1##y,z,c), I[110] = (T)(img)(_n6##x,_n1##y,z,c), I[111] = (T)(img)(_n7##x,_n1##y,z,c), \
I[112] = (T)(img)(_p6##x,_n2##y,z,c), I[113] = (T)(img)(_p5##x,_n2##y,z,c), I[114] = (T)(img)(_p4##x,_n2##y,z,c), I[115] = (T)(img)(_p3##x,_n2##y,z,c), I[116] = (T)(img)(_p2##x,_n2##y,z,c), I[117] = (T)(img)(_p1##x,_n2##y,z,c), I[118] = (T)(img)(x,_n2##y,z,c), I[119] = (T)(img)(_n1##x,_n2##y,z,c), I[120] = (T)(img)(_n2##x,_n2##y,z,c), I[121] = (T)(img)(_n3##x,_n2##y,z,c), I[122] = (T)(img)(_n4##x,_n2##y,z,c), I[123] = (T)(img)(_n5##x,_n2##y,z,c), I[124] = (T)(img)(_n6##x,_n2##y,z,c), I[125] = (T)(img)(_n7##x,_n2##y,z,c), \
I[126] = (T)(img)(_p6##x,_n3##y,z,c), I[127] = (T)(img)(_p5##x,_n3##y,z,c), I[128] = (T)(img)(_p4##x,_n3##y,z,c), I[129] = (T)(img)(_p3##x,_n3##y,z,c), I[130] = (T)(img)(_p2##x,_n3##y,z,c), I[131] = (T)(img)(_p1##x,_n3##y,z,c), I[132] = (T)(img)(x,_n3##y,z,c), I[133] = (T)(img)(_n1##x,_n3##y,z,c), I[134] = (T)(img)(_n2##x,_n3##y,z,c), I[135] = (T)(img)(_n3##x,_n3##y,z,c), I[136] = (T)(img)(_n4##x,_n3##y,z,c), I[137] = (T)(img)(_n5##x,_n3##y,z,c), I[138] = (T)(img)(_n6##x,_n3##y,z,c), I[139] = (T)(img)(_n7##x,_n3##y,z,c), \
I[140] = (T)(img)(_p6##x,_n4##y,z,c), I[141] = (T)(img)(_p5##x,_n4##y,z,c), I[142] = (T)(img)(_p4##x,_n4##y,z,c), I[143] = (T)(img)(_p3##x,_n4##y,z,c), I[144] = (T)(img)(_p2##x,_n4##y,z,c), I[145] = (T)(img)(_p1##x,_n4##y,z,c), I[146] = (T)(img)(x,_n4##y,z,c), I[147] = (T)(img)(_n1##x,_n4##y,z,c), I[148] = (T)(img)(_n2##x,_n4##y,z,c), I[149] = (T)(img)(_n3##x,_n4##y,z,c), I[150] = (T)(img)(_n4##x,_n4##y,z,c), I[151] = (T)(img)(_n5##x,_n4##y,z,c), I[152] = (T)(img)(_n6##x,_n4##y,z,c), I[153] = (T)(img)(_n7##x,_n4##y,z,c), \
I[154] = (T)(img)(_p6##x,_n5##y,z,c), I[155] = (T)(img)(_p5##x,_n5##y,z,c), I[156] = (T)(img)(_p4##x,_n5##y,z,c), I[157] = (T)(img)(_p3##x,_n5##y,z,c), I[158] = (T)(img)(_p2##x,_n5##y,z,c), I[159] = (T)(img)(_p1##x,_n5##y,z,c), I[160] = (T)(img)(x,_n5##y,z,c), I[161] = (T)(img)(_n1##x,_n5##y,z,c), I[162] = (T)(img)(_n2##x,_n5##y,z,c), I[163] = (T)(img)(_n3##x,_n5##y,z,c), I[164] = (T)(img)(_n4##x,_n5##y,z,c), I[165] = (T)(img)(_n5##x,_n5##y,z,c), I[166] = (T)(img)(_n6##x,_n5##y,z,c), I[167] = (T)(img)(_n7##x,_n5##y,z,c), \
I[168] = (T)(img)(_p6##x,_n6##y,z,c), I[169] = (T)(img)(_p5##x,_n6##y,z,c), I[170] = (T)(img)(_p4##x,_n6##y,z,c), I[171] = (T)(img)(_p3##x,_n6##y,z,c), I[172] = (T)(img)(_p2##x,_n6##y,z,c), I[173] = (T)(img)(_p1##x,_n6##y,z,c), I[174] = (T)(img)(x,_n6##y,z,c), I[175] = (T)(img)(_n1##x,_n6##y,z,c), I[176] = (T)(img)(_n2##x,_n6##y,z,c), I[177] = (T)(img)(_n3##x,_n6##y,z,c), I[178] = (T)(img)(_n4##x,_n6##y,z,c), I[179] = (T)(img)(_n5##x,_n6##y,z,c), I[180] = (T)(img)(_n6##x,_n6##y,z,c), I[181] = (T)(img)(_n7##x,_n6##y,z,c), \
I[182] = (T)(img)(_p6##x,_n7##y,z,c), I[183] = (T)(img)(_p5##x,_n7##y,z,c), I[184] = (T)(img)(_p4##x,_n7##y,z,c), I[185] = (T)(img)(_p3##x,_n7##y,z,c), I[186] = (T)(img)(_p2##x,_n7##y,z,c), I[187] = (T)(img)(_p1##x,_n7##y,z,c), I[188] = (T)(img)(x,_n7##y,z,c), I[189] = (T)(img)(_n1##x,_n7##y,z,c), I[190] = (T)(img)(_n2##x,_n7##y,z,c), I[191] = (T)(img)(_n3##x,_n7##y,z,c), I[192] = (T)(img)(_n4##x,_n7##y,z,c), I[193] = (T)(img)(_n5##x,_n7##y,z,c), I[194] = (T)(img)(_n6##x,_n7##y,z,c), I[195] = (T)(img)(_n7##x,_n7##y,z,c);
// Define 15x15 loop macros
//-------------------------
#define cimg_for15(bound,i) for (int i = 0, \
_p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7; \
_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
#define cimg_for15X(img,x) cimg_for15((img)._width,x)
#define cimg_for15Y(img,y) cimg_for15((img)._height,y)
#define cimg_for15Z(img,z) cimg_for15((img)._depth,z)
#define cimg_for15C(img,c) cimg_for15((img)._spectrum,c)
#define cimg_for15XY(img,x,y) cimg_for15Y(img,y) cimg_for15X(img,x)
#define cimg_for15XZ(img,x,z) cimg_for15Z(img,z) cimg_for15X(img,x)
#define cimg_for15XC(img,x,c) cimg_for15C(img,c) cimg_for15X(img,x)
#define cimg_for15YZ(img,y,z) cimg_for15Z(img,z) cimg_for15Y(img,y)
#define cimg_for15YC(img,y,c) cimg_for15C(img,c) cimg_for15Y(img,y)
#define cimg_for15ZC(img,z,c) cimg_for15C(img,c) cimg_for15Z(img,z)
#define cimg_for15XYZ(img,x,y,z) cimg_for15Z(img,z) cimg_for15XY(img,x,y)
#define cimg_for15XZC(img,x,z,c) cimg_for15C(img,c) cimg_for15XZ(img,x,z)
#define cimg_for15YZC(img,y,z,c) cimg_for15C(img,c) cimg_for15YZ(img,y,z)
#define cimg_for15XYZC(img,x,y,z,c) cimg_for15C(img,c) cimg_for15XYZ(img,x,y,z)
#define cimg_for_in15(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7; \
i<=(int)(i1) && (_n7##i<(int)(bound) || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i)
#define cimg_for_in15X(img,x0,x1,x) cimg_for_in15((img)._width,x0,x1,x)
#define cimg_for_in15Y(img,y0,y1,y) cimg_for_in15((img)._height,y0,y1,y)
#define cimg_for_in15Z(img,z0,z1,z) cimg_for_in15((img)._depth,z0,z1,z)
#define cimg_for_in15C(img,c0,c1,c) cimg_for_in15((img)._spectrum,c0,c1,c)
#define cimg_for_in15XY(img,x0,y0,x1,y1,x,y) cimg_for_in15Y(img,y0,y1,y) cimg_for_in15X(img,x0,x1,x)
#define cimg_for_in15XZ(img,x0,z0,x1,z1,x,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15X(img,x0,x1,x)
#define cimg_for_in15XC(img,x0,c0,x1,c1,x,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15X(img,x0,x1,x)
#define cimg_for_in15YZ(img,y0,z0,y1,z1,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15Y(img,y0,y1,y)
#define cimg_for_in15YC(img,y0,c0,y1,c1,y,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15Y(img,y0,y1,y)
#define cimg_for_in15ZC(img,z0,c0,z1,c1,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15Z(img,z0,z1,z)
#define cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in15Z(img,z0,z1,z) cimg_for_in15XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in15XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in15YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in15XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in15C(img,c0,c1,c) cimg_for_in15XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for15x15(img,x,y,z,c,I,T) \
cimg_for15((img)._height,y) for (int x = 0, \
_p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (T)(img)(0,_p7##y,z,c)), \
(I[15] = I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = (T)(img)(0,_p6##y,z,c)), \
(I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = (T)(img)(0,_p5##y,z,c)), \
(I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (T)(img)(0,_p4##y,z,c)), \
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_p3##y,z,c)), \
(I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = (T)(img)(0,_p2##y,z,c)), \
(I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (T)(img)(0,_p1##y,z,c)), \
(I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = (T)(img)(0,y,z,c)), \
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (T)(img)(0,_n1##y,z,c)), \
(I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_n2##y,z,c)), \
(I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (T)(img)(0,_n3##y,z,c)), \
(I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (T)(img)(0,_n4##y,z,c)), \
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = (T)(img)(0,_n5##y,z,c)), \
(I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = (T)(img)(0,_n6##y,z,c)), \
(I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = (T)(img)(0,_n7##y,z,c)), \
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[23] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[38] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[53] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[68] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[83] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[98] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[113] = (T)(img)(_n1##x,y,z,c)), \
(I[128] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[158] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[173] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[188] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[203] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[218] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[24] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[39] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[54] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[69] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[84] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[99] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[114] = (T)(img)(_n2##x,y,z,c)), \
(I[129] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[159] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[174] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[189] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[204] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[219] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[25] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[40] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[55] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[70] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[85] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[100] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[115] = (T)(img)(_n3##x,y,z,c)), \
(I[130] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[160] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[175] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[190] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[205] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[220] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[26] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[41] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[56] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[71] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[86] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[101] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[116] = (T)(img)(_n4##x,y,z,c)), \
(I[131] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[161] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[176] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[191] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[206] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[221] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[27] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[42] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[57] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[72] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[87] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[102] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[117] = (T)(img)(_n5##x,y,z,c)), \
(I[132] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[162] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[177] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[192] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[207] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[222] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[28] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[43] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[58] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[73] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[88] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[103] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[118] = (T)(img)(_n6##x,y,z,c)), \
(I[133] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[163] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[178] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[193] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[208] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[223] = (T)(img)(_n6##x,_n7##y,z,c)), \
7>=((img)._width)?(img).width() - 1:7); \
(_n7##x<(img).width() && ( \
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[29] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[44] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[59] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[74] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[89] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[104] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[119] = (T)(img)(_n7##x,y,z,c)), \
(I[134] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[164] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[179] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[194] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[209] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[224] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \
I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \
I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
#define cimg_for_in15x15(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in15((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = (int)( \
(I[0] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[15] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[30] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[45] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[60] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[75] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[90] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[105] = (T)(img)(_p7##x,y,z,c)), \
(I[120] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[135] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[150] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[165] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[180] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[195] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[210] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[1] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[16] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[31] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[46] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[61] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[76] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[91] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[106] = (T)(img)(_p6##x,y,z,c)), \
(I[121] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[136] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[151] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[166] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[181] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[196] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[211] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[2] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[17] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[32] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[47] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[62] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[77] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[92] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[107] = (T)(img)(_p5##x,y,z,c)), \
(I[122] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[137] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[152] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[167] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[182] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[197] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[212] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[3] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[18] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[33] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[48] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[63] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[78] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[93] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[108] = (T)(img)(_p4##x,y,z,c)), \
(I[123] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[138] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[153] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[168] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[183] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[198] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[213] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[4] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[19] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[34] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[49] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[64] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[79] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[94] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[109] = (T)(img)(_p3##x,y,z,c)), \
(I[124] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[139] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[154] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[169] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[184] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[199] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[214] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[5] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[20] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[35] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[50] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[65] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[80] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[95] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[110] = (T)(img)(_p2##x,y,z,c)), \
(I[125] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[140] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[155] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[170] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[185] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[200] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[215] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[6] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[21] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[36] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[51] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[66] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[81] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[96] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[111] = (T)(img)(_p1##x,y,z,c)), \
(I[126] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[141] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[156] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[171] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[186] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[201] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[216] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[7] = (T)(img)(x,_p7##y,z,c)), \
(I[22] = (T)(img)(x,_p6##y,z,c)), \
(I[37] = (T)(img)(x,_p5##y,z,c)), \
(I[52] = (T)(img)(x,_p4##y,z,c)), \
(I[67] = (T)(img)(x,_p3##y,z,c)), \
(I[82] = (T)(img)(x,_p2##y,z,c)), \
(I[97] = (T)(img)(x,_p1##y,z,c)), \
(I[112] = (T)(img)(x,y,z,c)), \
(I[127] = (T)(img)(x,_n1##y,z,c)), \
(I[142] = (T)(img)(x,_n2##y,z,c)), \
(I[157] = (T)(img)(x,_n3##y,z,c)), \
(I[172] = (T)(img)(x,_n4##y,z,c)), \
(I[187] = (T)(img)(x,_n5##y,z,c)), \
(I[202] = (T)(img)(x,_n6##y,z,c)), \
(I[217] = (T)(img)(x,_n7##y,z,c)), \
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[23] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[38] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[53] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[68] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[83] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[98] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[113] = (T)(img)(_n1##x,y,z,c)), \
(I[128] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[158] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[173] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[188] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[203] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[218] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[24] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[39] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[54] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[69] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[84] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[99] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[114] = (T)(img)(_n2##x,y,z,c)), \
(I[129] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[159] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[174] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[189] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[204] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[219] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[25] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[40] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[55] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[70] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[85] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[100] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[115] = (T)(img)(_n3##x,y,z,c)), \
(I[130] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[160] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[175] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[190] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[205] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[220] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[26] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[41] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[56] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[71] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[86] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[101] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[116] = (T)(img)(_n4##x,y,z,c)), \
(I[131] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[161] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[176] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[191] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[206] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[221] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[27] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[42] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[57] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[72] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[87] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[102] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[117] = (T)(img)(_n5##x,y,z,c)), \
(I[132] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[162] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[177] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[192] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[207] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[222] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[28] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[43] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[58] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[73] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[88] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[103] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[118] = (T)(img)(_n6##x,y,z,c)), \
(I[133] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[163] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[178] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[193] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[208] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[223] = (T)(img)(_n6##x,_n7##y,z,c)), \
x + 7>=(img).width()?(img).width() - 1:x + 7); \
x<=(int)(x1) && ((_n7##x<(img).width() && ( \
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[29] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[44] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[59] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[74] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[89] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[104] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[119] = (T)(img)(_n7##x,y,z,c)), \
(I[134] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[164] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[179] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[194] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[209] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[224] = (T)(img)(_n7##x,_n7##y,z,c)),1)) || \
_n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], \
I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], \
I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x)
#define cimg_get15x15(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p7##x,_p7##y,z,c), I[1] = (T)(img)(_p6##x,_p7##y,z,c), I[2] = (T)(img)(_p5##x,_p7##y,z,c), I[3] = (T)(img)(_p4##x,_p7##y,z,c), I[4] = (T)(img)(_p3##x,_p7##y,z,c), I[5] = (T)(img)(_p2##x,_p7##y,z,c), I[6] = (T)(img)(_p1##x,_p7##y,z,c), I[7] = (T)(img)(x,_p7##y,z,c), I[8] = (T)(img)(_n1##x,_p7##y,z,c), I[9] = (T)(img)(_n2##x,_p7##y,z,c), I[10] = (T)(img)(_n3##x,_p7##y,z,c), I[11] = (T)(img)(_n4##x,_p7##y,z,c), I[12] = (T)(img)(_n5##x,_p7##y,z,c), I[13] = (T)(img)(_n6##x,_p7##y,z,c), I[14] = (T)(img)(_n7##x,_p7##y,z,c), \
I[15] = (T)(img)(_p7##x,_p6##y,z,c), I[16] = (T)(img)(_p6##x,_p6##y,z,c), I[17] = (T)(img)(_p5##x,_p6##y,z,c), I[18] = (T)(img)(_p4##x,_p6##y,z,c), I[19] = (T)(img)(_p3##x,_p6##y,z,c), I[20] = (T)(img)(_p2##x,_p6##y,z,c), I[21] = (T)(img)(_p1##x,_p6##y,z,c), I[22] = (T)(img)(x,_p6##y,z,c), I[23] = (T)(img)(_n1##x,_p6##y,z,c), I[24] = (T)(img)(_n2##x,_p6##y,z,c), I[25] = (T)(img)(_n3##x,_p6##y,z,c), I[26] = (T)(img)(_n4##x,_p6##y,z,c), I[27] = (T)(img)(_n5##x,_p6##y,z,c), I[28] = (T)(img)(_n6##x,_p6##y,z,c), I[29] = (T)(img)(_n7##x,_p6##y,z,c), \
I[30] = (T)(img)(_p7##x,_p5##y,z,c), I[31] = (T)(img)(_p6##x,_p5##y,z,c), I[32] = (T)(img)(_p5##x,_p5##y,z,c), I[33] = (T)(img)(_p4##x,_p5##y,z,c), I[34] = (T)(img)(_p3##x,_p5##y,z,c), I[35] = (T)(img)(_p2##x,_p5##y,z,c), I[36] = (T)(img)(_p1##x,_p5##y,z,c), I[37] = (T)(img)(x,_p5##y,z,c), I[38] = (T)(img)(_n1##x,_p5##y,z,c), I[39] = (T)(img)(_n2##x,_p5##y,z,c), I[40] = (T)(img)(_n3##x,_p5##y,z,c), I[41] = (T)(img)(_n4##x,_p5##y,z,c), I[42] = (T)(img)(_n5##x,_p5##y,z,c), I[43] = (T)(img)(_n6##x,_p5##y,z,c), I[44] = (T)(img)(_n7##x,_p5##y,z,c), \
I[45] = (T)(img)(_p7##x,_p4##y,z,c), I[46] = (T)(img)(_p6##x,_p4##y,z,c), I[47] = (T)(img)(_p5##x,_p4##y,z,c), I[48] = (T)(img)(_p4##x,_p4##y,z,c), I[49] = (T)(img)(_p3##x,_p4##y,z,c), I[50] = (T)(img)(_p2##x,_p4##y,z,c), I[51] = (T)(img)(_p1##x,_p4##y,z,c), I[52] = (T)(img)(x,_p4##y,z,c), I[53] = (T)(img)(_n1##x,_p4##y,z,c), I[54] = (T)(img)(_n2##x,_p4##y,z,c), I[55] = (T)(img)(_n3##x,_p4##y,z,c), I[56] = (T)(img)(_n4##x,_p4##y,z,c), I[57] = (T)(img)(_n5##x,_p4##y,z,c), I[58] = (T)(img)(_n6##x,_p4##y,z,c), I[59] = (T)(img)(_n7##x,_p4##y,z,c), \
I[60] = (T)(img)(_p7##x,_p3##y,z,c), I[61] = (T)(img)(_p6##x,_p3##y,z,c), I[62] = (T)(img)(_p5##x,_p3##y,z,c), I[63] = (T)(img)(_p4##x,_p3##y,z,c), I[64] = (T)(img)(_p3##x,_p3##y,z,c), I[65] = (T)(img)(_p2##x,_p3##y,z,c), I[66] = (T)(img)(_p1##x,_p3##y,z,c), I[67] = (T)(img)(x,_p3##y,z,c), I[68] = (T)(img)(_n1##x,_p3##y,z,c), I[69] = (T)(img)(_n2##x,_p3##y,z,c), I[70] = (T)(img)(_n3##x,_p3##y,z,c), I[71] = (T)(img)(_n4##x,_p3##y,z,c), I[72] = (T)(img)(_n5##x,_p3##y,z,c), I[73] = (T)(img)(_n6##x,_p3##y,z,c), I[74] = (T)(img)(_n7##x,_p3##y,z,c), \
I[75] = (T)(img)(_p7##x,_p2##y,z,c), I[76] = (T)(img)(_p6##x,_p2##y,z,c), I[77] = (T)(img)(_p5##x,_p2##y,z,c), I[78] = (T)(img)(_p4##x,_p2##y,z,c), I[79] = (T)(img)(_p3##x,_p2##y,z,c), I[80] = (T)(img)(_p2##x,_p2##y,z,c), I[81] = (T)(img)(_p1##x,_p2##y,z,c), I[82] = (T)(img)(x,_p2##y,z,c), I[83] = (T)(img)(_n1##x,_p2##y,z,c), I[84] = (T)(img)(_n2##x,_p2##y,z,c), I[85] = (T)(img)(_n3##x,_p2##y,z,c), I[86] = (T)(img)(_n4##x,_p2##y,z,c), I[87] = (T)(img)(_n5##x,_p2##y,z,c), I[88] = (T)(img)(_n6##x,_p2##y,z,c), I[89] = (T)(img)(_n7##x,_p2##y,z,c), \
I[90] = (T)(img)(_p7##x,_p1##y,z,c), I[91] = (T)(img)(_p6##x,_p1##y,z,c), I[92] = (T)(img)(_p5##x,_p1##y,z,c), I[93] = (T)(img)(_p4##x,_p1##y,z,c), I[94] = (T)(img)(_p3##x,_p1##y,z,c), I[95] = (T)(img)(_p2##x,_p1##y,z,c), I[96] = (T)(img)(_p1##x,_p1##y,z,c), I[97] = (T)(img)(x,_p1##y,z,c), I[98] = (T)(img)(_n1##x,_p1##y,z,c), I[99] = (T)(img)(_n2##x,_p1##y,z,c), I[100] = (T)(img)(_n3##x,_p1##y,z,c), I[101] = (T)(img)(_n4##x,_p1##y,z,c), I[102] = (T)(img)(_n5##x,_p1##y,z,c), I[103] = (T)(img)(_n6##x,_p1##y,z,c), I[104] = (T)(img)(_n7##x,_p1##y,z,c), \
I[105] = (T)(img)(_p7##x,y,z,c), I[106] = (T)(img)(_p6##x,y,z,c), I[107] = (T)(img)(_p5##x,y,z,c), I[108] = (T)(img)(_p4##x,y,z,c), I[109] = (T)(img)(_p3##x,y,z,c), I[110] = (T)(img)(_p2##x,y,z,c), I[111] = (T)(img)(_p1##x,y,z,c), I[112] = (T)(img)(x,y,z,c), I[113] = (T)(img)(_n1##x,y,z,c), I[114] = (T)(img)(_n2##x,y,z,c), I[115] = (T)(img)(_n3##x,y,z,c), I[116] = (T)(img)(_n4##x,y,z,c), I[117] = (T)(img)(_n5##x,y,z,c), I[118] = (T)(img)(_n6##x,y,z,c), I[119] = (T)(img)(_n7##x,y,z,c), \
I[120] = (T)(img)(_p7##x,_n1##y,z,c), I[121] = (T)(img)(_p6##x,_n1##y,z,c), I[122] = (T)(img)(_p5##x,_n1##y,z,c), I[123] = (T)(img)(_p4##x,_n1##y,z,c), I[124] = (T)(img)(_p3##x,_n1##y,z,c), I[125] = (T)(img)(_p2##x,_n1##y,z,c), I[126] = (T)(img)(_p1##x,_n1##y,z,c), I[127] = (T)(img)(x,_n1##y,z,c), I[128] = (T)(img)(_n1##x,_n1##y,z,c), I[129] = (T)(img)(_n2##x,_n1##y,z,c), I[130] = (T)(img)(_n3##x,_n1##y,z,c), I[131] = (T)(img)(_n4##x,_n1##y,z,c), I[132] = (T)(img)(_n5##x,_n1##y,z,c), I[133] = (T)(img)(_n6##x,_n1##y,z,c), I[134] = (T)(img)(_n7##x,_n1##y,z,c), \
I[135] = (T)(img)(_p7##x,_n2##y,z,c), I[136] = (T)(img)(_p6##x,_n2##y,z,c), I[137] = (T)(img)(_p5##x,_n2##y,z,c), I[138] = (T)(img)(_p4##x,_n2##y,z,c), I[139] = (T)(img)(_p3##x,_n2##y,z,c), I[140] = (T)(img)(_p2##x,_n2##y,z,c), I[141] = (T)(img)(_p1##x,_n2##y,z,c), I[142] = (T)(img)(x,_n2##y,z,c), I[143] = (T)(img)(_n1##x,_n2##y,z,c), I[144] = (T)(img)(_n2##x,_n2##y,z,c), I[145] = (T)(img)(_n3##x,_n2##y,z,c), I[146] = (T)(img)(_n4##x,_n2##y,z,c), I[147] = (T)(img)(_n5##x,_n2##y,z,c), I[148] = (T)(img)(_n6##x,_n2##y,z,c), I[149] = (T)(img)(_n7##x,_n2##y,z,c), \
I[150] = (T)(img)(_p7##x,_n3##y,z,c), I[151] = (T)(img)(_p6##x,_n3##y,z,c), I[152] = (T)(img)(_p5##x,_n3##y,z,c), I[153] = (T)(img)(_p4##x,_n3##y,z,c), I[154] = (T)(img)(_p3##x,_n3##y,z,c), I[155] = (T)(img)(_p2##x,_n3##y,z,c), I[156] = (T)(img)(_p1##x,_n3##y,z,c), I[157] = (T)(img)(x,_n3##y,z,c), I[158] = (T)(img)(_n1##x,_n3##y,z,c), I[159] = (T)(img)(_n2##x,_n3##y,z,c), I[160] = (T)(img)(_n3##x,_n3##y,z,c), I[161] = (T)(img)(_n4##x,_n3##y,z,c), I[162] = (T)(img)(_n5##x,_n3##y,z,c), I[163] = (T)(img)(_n6##x,_n3##y,z,c), I[164] = (T)(img)(_n7##x,_n3##y,z,c), \
I[165] = (T)(img)(_p7##x,_n4##y,z,c), I[166] = (T)(img)(_p6##x,_n4##y,z,c), I[167] = (T)(img)(_p5##x,_n4##y,z,c), I[168] = (T)(img)(_p4##x,_n4##y,z,c), I[169] = (T)(img)(_p3##x,_n4##y,z,c), I[170] = (T)(img)(_p2##x,_n4##y,z,c), I[171] = (T)(img)(_p1##x,_n4##y,z,c), I[172] = (T)(img)(x,_n4##y,z,c), I[173] = (T)(img)(_n1##x,_n4##y,z,c), I[174] = (T)(img)(_n2##x,_n4##y,z,c), I[175] = (T)(img)(_n3##x,_n4##y,z,c), I[176] = (T)(img)(_n4##x,_n4##y,z,c), I[177] = (T)(img)(_n5##x,_n4##y,z,c), I[178] = (T)(img)(_n6##x,_n4##y,z,c), I[179] = (T)(img)(_n7##x,_n4##y,z,c), \
I[180] = (T)(img)(_p7##x,_n5##y,z,c), I[181] = (T)(img)(_p6##x,_n5##y,z,c), I[182] = (T)(img)(_p5##x,_n5##y,z,c), I[183] = (T)(img)(_p4##x,_n5##y,z,c), I[184] = (T)(img)(_p3##x,_n5##y,z,c), I[185] = (T)(img)(_p2##x,_n5##y,z,c), I[186] = (T)(img)(_p1##x,_n5##y,z,c), I[187] = (T)(img)(x,_n5##y,z,c), I[188] = (T)(img)(_n1##x,_n5##y,z,c), I[189] = (T)(img)(_n2##x,_n5##y,z,c), I[190] = (T)(img)(_n3##x,_n5##y,z,c), I[191] = (T)(img)(_n4##x,_n5##y,z,c), I[192] = (T)(img)(_n5##x,_n5##y,z,c), I[193] = (T)(img)(_n6##x,_n5##y,z,c), I[194] = (T)(img)(_n7##x,_n5##y,z,c), \
I[195] = (T)(img)(_p7##x,_n6##y,z,c), I[196] = (T)(img)(_p6##x,_n6##y,z,c), I[197] = (T)(img)(_p5##x,_n6##y,z,c), I[198] = (T)(img)(_p4##x,_n6##y,z,c), I[199] = (T)(img)(_p3##x,_n6##y,z,c), I[200] = (T)(img)(_p2##x,_n6##y,z,c), I[201] = (T)(img)(_p1##x,_n6##y,z,c), I[202] = (T)(img)(x,_n6##y,z,c), I[203] = (T)(img)(_n1##x,_n6##y,z,c), I[204] = (T)(img)(_n2##x,_n6##y,z,c), I[205] = (T)(img)(_n3##x,_n6##y,z,c), I[206] = (T)(img)(_n4##x,_n6##y,z,c), I[207] = (T)(img)(_n5##x,_n6##y,z,c), I[208] = (T)(img)(_n6##x,_n6##y,z,c), I[209] = (T)(img)(_n7##x,_n6##y,z,c), \
I[210] = (T)(img)(_p7##x,_n7##y,z,c), I[211] = (T)(img)(_p6##x,_n7##y,z,c), I[212] = (T)(img)(_p5##x,_n7##y,z,c), I[213] = (T)(img)(_p4##x,_n7##y,z,c), I[214] = (T)(img)(_p3##x,_n7##y,z,c), I[215] = (T)(img)(_p2##x,_n7##y,z,c), I[216] = (T)(img)(_p1##x,_n7##y,z,c), I[217] = (T)(img)(x,_n7##y,z,c), I[218] = (T)(img)(_n1##x,_n7##y,z,c), I[219] = (T)(img)(_n2##x,_n7##y,z,c), I[220] = (T)(img)(_n3##x,_n7##y,z,c), I[221] = (T)(img)(_n4##x,_n7##y,z,c), I[222] = (T)(img)(_n5##x,_n7##y,z,c), I[223] = (T)(img)(_n6##x,_n7##y,z,c), I[224] = (T)(img)(_n7##x,_n7##y,z,c);
// Define 16x16 loop macros
//-------------------------
#define cimg_for16(bound,i) for (int i = 0, \
_p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8; \
_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
#define cimg_for16X(img,x) cimg_for16((img)._width,x)
#define cimg_for16Y(img,y) cimg_for16((img)._height,y)
#define cimg_for16Z(img,z) cimg_for16((img)._depth,z)
#define cimg_for16C(img,c) cimg_for16((img)._spectrum,c)
#define cimg_for16XY(img,x,y) cimg_for16Y(img,y) cimg_for16X(img,x)
#define cimg_for16XZ(img,x,z) cimg_for16Z(img,z) cimg_for16X(img,x)
#define cimg_for16XC(img,x,c) cimg_for16C(img,c) cimg_for16X(img,x)
#define cimg_for16YZ(img,y,z) cimg_for16Z(img,z) cimg_for16Y(img,y)
#define cimg_for16YC(img,y,c) cimg_for16C(img,c) cimg_for16Y(img,y)
#define cimg_for16ZC(img,z,c) cimg_for16C(img,c) cimg_for16Z(img,z)
#define cimg_for16XYZ(img,x,y,z) cimg_for16Z(img,z) cimg_for16XY(img,x,y)
#define cimg_for16XZC(img,x,z,c) cimg_for16C(img,c) cimg_for16XZ(img,x,z)
#define cimg_for16YZC(img,y,z,c) cimg_for16C(img,c) cimg_for16YZ(img,y,z)
#define cimg_for16XYZC(img,x,y,z,c) cimg_for16C(img,c) cimg_for16XYZ(img,x,y,z)
#define cimg_for_in16(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8; \
i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
#define cimg_for_in16X(img,x0,x1,x) cimg_for_in16((img)._width,x0,x1,x)
#define cimg_for_in16Y(img,y0,y1,y) cimg_for_in16((img)._height,y0,y1,y)
#define cimg_for_in16Z(img,z0,z1,z) cimg_for_in16((img)._depth,z0,z1,z)
#define cimg_for_in16C(img,c0,c1,c) cimg_for_in16((img)._spectrum,c0,c1,c)
#define cimg_for_in16XY(img,x0,y0,x1,y1,x,y) cimg_for_in16Y(img,y0,y1,y) cimg_for_in16X(img,x0,x1,x)
#define cimg_for_in16XZ(img,x0,z0,x1,z1,x,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16X(img,x0,x1,x)
#define cimg_for_in16XC(img,x0,c0,x1,c1,x,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16X(img,x0,x1,x)
#define cimg_for_in16YZ(img,y0,z0,y1,z1,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16Y(img,y0,y1,y)
#define cimg_for_in16YC(img,y0,c0,y1,c1,y,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16Y(img,y0,y1,y)
#define cimg_for_in16ZC(img,z0,c0,z1,c1,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16Z(img,z0,z1,z)
#define cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in16Z(img,z0,z1,z) cimg_for_in16XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in16XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in16YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in16XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in16C(img,c0,c1,c) cimg_for_in16XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for16x16(img,x,y,z,c,I,T) \
cimg_for16((img)._height,y) for (int x = 0, \
_p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = (T)(img)(0,_p7##y,z,c)), \
(I[16] = I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = (T)(img)(0,_p6##y,z,c)), \
(I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = (T)(img)(0,_p5##y,z,c)), \
(I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = (T)(img)(0,_p4##y,z,c)), \
(I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = (T)(img)(0,_p3##y,z,c)), \
(I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = (T)(img)(0,_p2##y,z,c)), \
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (T)(img)(0,_p1##y,z,c)), \
(I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = (T)(img)(0,y,z,c)), \
(I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = (T)(img)(0,_n1##y,z,c)), \
(I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = (T)(img)(0,_n2##y,z,c)), \
(I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = (T)(img)(0,_n3##y,z,c)), \
(I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = (T)(img)(0,_n4##y,z,c)), \
(I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_n5##y,z,c)), \
(I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = (T)(img)(0,_n6##y,z,c)), \
(I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = (T)(img)(0,_n7##y,z,c)), \
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = (T)(img)(0,_n8##y,z,c)), \
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[24] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[40] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[56] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[72] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[88] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[104] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[120] = (T)(img)(_n1##x,y,z,c)), \
(I[136] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[152] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[168] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[184] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[200] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[216] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[232] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[248] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[25] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[41] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[57] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[73] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[89] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[105] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[121] = (T)(img)(_n2##x,y,z,c)), \
(I[137] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[153] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[169] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[185] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[201] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[217] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[233] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[249] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[26] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[42] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[58] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[74] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[90] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[106] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[122] = (T)(img)(_n3##x,y,z,c)), \
(I[138] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[154] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[170] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[186] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[202] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[218] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[234] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[250] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[27] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[43] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[59] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[75] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[91] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[107] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[123] = (T)(img)(_n4##x,y,z,c)), \
(I[139] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[155] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[171] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[187] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[203] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[219] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[235] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[251] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[28] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[44] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[60] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[76] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[92] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[108] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[124] = (T)(img)(_n5##x,y,z,c)), \
(I[140] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[156] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[172] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[188] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[204] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[220] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[236] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[252] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[29] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[45] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[61] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[77] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[93] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[109] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[125] = (T)(img)(_n6##x,y,z,c)), \
(I[141] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[157] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[173] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[189] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[205] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[221] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[237] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[253] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[30] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[46] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[62] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[78] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[94] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[110] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[126] = (T)(img)(_n7##x,y,z,c)), \
(I[142] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[158] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[174] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[190] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[206] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[222] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[238] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[254] = (T)(img)(_n7##x,_n8##y,z,c)), \
8>=((img)._width)?(img).width() - 1:8); \
(_n8##x<(img).width() && ( \
(I[15] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[31] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[47] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[63] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[79] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[95] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[111] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[127] = (T)(img)(_n8##x,y,z,c)), \
(I[143] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[159] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[175] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[191] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[207] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[223] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[239] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[255] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
#define cimg_for_in16x16(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in16((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = (int)( \
(I[0] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[16] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[32] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[48] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[64] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[80] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[96] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[112] = (T)(img)(_p7##x,y,z,c)), \
(I[128] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[144] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[160] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[176] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[192] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[208] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[224] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[240] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[1] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[17] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[33] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[49] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[65] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[81] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[97] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[113] = (T)(img)(_p6##x,y,z,c)), \
(I[129] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[145] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[161] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[177] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[193] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[209] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[225] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[241] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[2] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[18] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[34] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[50] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[66] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[82] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[98] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[114] = (T)(img)(_p5##x,y,z,c)), \
(I[130] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[146] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[162] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[178] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[194] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[210] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[226] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[242] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[3] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[19] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[35] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[51] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[67] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[83] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[99] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[115] = (T)(img)(_p4##x,y,z,c)), \
(I[131] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[147] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[163] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[179] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[195] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[211] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[227] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[243] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[4] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[20] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[36] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[52] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[68] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[84] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[100] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[116] = (T)(img)(_p3##x,y,z,c)), \
(I[132] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[148] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[164] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[180] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[196] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[212] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[228] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[244] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[5] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[21] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[37] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[53] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[69] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[85] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[101] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[117] = (T)(img)(_p2##x,y,z,c)), \
(I[133] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[149] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[165] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[181] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[197] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[213] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[229] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[245] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[6] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[22] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[38] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[54] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[70] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[86] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[102] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[118] = (T)(img)(_p1##x,y,z,c)), \
(I[134] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[150] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[166] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[182] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[198] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[214] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[230] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[246] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[7] = (T)(img)(x,_p7##y,z,c)), \
(I[23] = (T)(img)(x,_p6##y,z,c)), \
(I[39] = (T)(img)(x,_p5##y,z,c)), \
(I[55] = (T)(img)(x,_p4##y,z,c)), \
(I[71] = (T)(img)(x,_p3##y,z,c)), \
(I[87] = (T)(img)(x,_p2##y,z,c)), \
(I[103] = (T)(img)(x,_p1##y,z,c)), \
(I[119] = (T)(img)(x,y,z,c)), \
(I[135] = (T)(img)(x,_n1##y,z,c)), \
(I[151] = (T)(img)(x,_n2##y,z,c)), \
(I[167] = (T)(img)(x,_n3##y,z,c)), \
(I[183] = (T)(img)(x,_n4##y,z,c)), \
(I[199] = (T)(img)(x,_n5##y,z,c)), \
(I[215] = (T)(img)(x,_n6##y,z,c)), \
(I[231] = (T)(img)(x,_n7##y,z,c)), \
(I[247] = (T)(img)(x,_n8##y,z,c)), \
(I[8] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[24] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[40] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[56] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[72] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[88] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[104] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[120] = (T)(img)(_n1##x,y,z,c)), \
(I[136] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[152] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[168] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[184] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[200] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[216] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[232] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[248] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[9] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[25] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[41] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[57] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[73] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[89] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[105] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[121] = (T)(img)(_n2##x,y,z,c)), \
(I[137] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[153] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[169] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[185] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[201] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[217] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[233] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[249] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[10] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[26] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[42] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[58] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[74] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[90] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[106] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[122] = (T)(img)(_n3##x,y,z,c)), \
(I[138] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[154] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[170] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[186] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[202] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[218] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[234] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[250] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[11] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[27] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[43] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[59] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[75] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[91] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[107] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[123] = (T)(img)(_n4##x,y,z,c)), \
(I[139] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[155] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[171] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[187] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[203] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[219] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[235] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[251] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[12] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[28] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[44] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[60] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[76] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[92] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[108] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[124] = (T)(img)(_n5##x,y,z,c)), \
(I[140] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[156] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[172] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[188] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[204] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[220] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[236] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[252] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[13] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[29] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[45] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[61] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[77] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[93] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[109] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[125] = (T)(img)(_n6##x,y,z,c)), \
(I[141] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[157] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[173] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[189] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[205] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[221] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[237] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[253] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[14] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[30] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[46] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[62] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[78] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[94] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[110] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[126] = (T)(img)(_n7##x,y,z,c)), \
(I[142] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[158] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[174] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[190] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[206] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[222] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[238] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[254] = (T)(img)(_n7##x,_n8##y,z,c)), \
x + 8>=(img).width()?(img).width() - 1:x + 8); \
x<=(int)(x1) && ((_n8##x<(img).width() && ( \
(I[15] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[31] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[47] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[63] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[79] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[95] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[111] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[127] = (T)(img)(_n8##x,y,z,c)), \
(I[143] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[159] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[175] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[191] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[207] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[223] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[239] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[255] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
_p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
#define cimg_get16x16(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p7##x,_p7##y,z,c), I[1] = (T)(img)(_p6##x,_p7##y,z,c), I[2] = (T)(img)(_p5##x,_p7##y,z,c), I[3] = (T)(img)(_p4##x,_p7##y,z,c), I[4] = (T)(img)(_p3##x,_p7##y,z,c), I[5] = (T)(img)(_p2##x,_p7##y,z,c), I[6] = (T)(img)(_p1##x,_p7##y,z,c), I[7] = (T)(img)(x,_p7##y,z,c), I[8] = (T)(img)(_n1##x,_p7##y,z,c), I[9] = (T)(img)(_n2##x,_p7##y,z,c), I[10] = (T)(img)(_n3##x,_p7##y,z,c), I[11] = (T)(img)(_n4##x,_p7##y,z,c), I[12] = (T)(img)(_n5##x,_p7##y,z,c), I[13] = (T)(img)(_n6##x,_p7##y,z,c), I[14] = (T)(img)(_n7##x,_p7##y,z,c), I[15] = (T)(img)(_n8##x,_p7##y,z,c), \
I[16] = (T)(img)(_p7##x,_p6##y,z,c), I[17] = (T)(img)(_p6##x,_p6##y,z,c), I[18] = (T)(img)(_p5##x,_p6##y,z,c), I[19] = (T)(img)(_p4##x,_p6##y,z,c), I[20] = (T)(img)(_p3##x,_p6##y,z,c), I[21] = (T)(img)(_p2##x,_p6##y,z,c), I[22] = (T)(img)(_p1##x,_p6##y,z,c), I[23] = (T)(img)(x,_p6##y,z,c), I[24] = (T)(img)(_n1##x,_p6##y,z,c), I[25] = (T)(img)(_n2##x,_p6##y,z,c), I[26] = (T)(img)(_n3##x,_p6##y,z,c), I[27] = (T)(img)(_n4##x,_p6##y,z,c), I[28] = (T)(img)(_n5##x,_p6##y,z,c), I[29] = (T)(img)(_n6##x,_p6##y,z,c), I[30] = (T)(img)(_n7##x,_p6##y,z,c), I[31] = (T)(img)(_n8##x,_p6##y,z,c), \
I[32] = (T)(img)(_p7##x,_p5##y,z,c), I[33] = (T)(img)(_p6##x,_p5##y,z,c), I[34] = (T)(img)(_p5##x,_p5##y,z,c), I[35] = (T)(img)(_p4##x,_p5##y,z,c), I[36] = (T)(img)(_p3##x,_p5##y,z,c), I[37] = (T)(img)(_p2##x,_p5##y,z,c), I[38] = (T)(img)(_p1##x,_p5##y,z,c), I[39] = (T)(img)(x,_p5##y,z,c), I[40] = (T)(img)(_n1##x,_p5##y,z,c), I[41] = (T)(img)(_n2##x,_p5##y,z,c), I[42] = (T)(img)(_n3##x,_p5##y,z,c), I[43] = (T)(img)(_n4##x,_p5##y,z,c), I[44] = (T)(img)(_n5##x,_p5##y,z,c), I[45] = (T)(img)(_n6##x,_p5##y,z,c), I[46] = (T)(img)(_n7##x,_p5##y,z,c), I[47] = (T)(img)(_n8##x,_p5##y,z,c), \
I[48] = (T)(img)(_p7##x,_p4##y,z,c), I[49] = (T)(img)(_p6##x,_p4##y,z,c), I[50] = (T)(img)(_p5##x,_p4##y,z,c), I[51] = (T)(img)(_p4##x,_p4##y,z,c), I[52] = (T)(img)(_p3##x,_p4##y,z,c), I[53] = (T)(img)(_p2##x,_p4##y,z,c), I[54] = (T)(img)(_p1##x,_p4##y,z,c), I[55] = (T)(img)(x,_p4##y,z,c), I[56] = (T)(img)(_n1##x,_p4##y,z,c), I[57] = (T)(img)(_n2##x,_p4##y,z,c), I[58] = (T)(img)(_n3##x,_p4##y,z,c), I[59] = (T)(img)(_n4##x,_p4##y,z,c), I[60] = (T)(img)(_n5##x,_p4##y,z,c), I[61] = (T)(img)(_n6##x,_p4##y,z,c), I[62] = (T)(img)(_n7##x,_p4##y,z,c), I[63] = (T)(img)(_n8##x,_p4##y,z,c), \
I[64] = (T)(img)(_p7##x,_p3##y,z,c), I[65] = (T)(img)(_p6##x,_p3##y,z,c), I[66] = (T)(img)(_p5##x,_p3##y,z,c), I[67] = (T)(img)(_p4##x,_p3##y,z,c), I[68] = (T)(img)(_p3##x,_p3##y,z,c), I[69] = (T)(img)(_p2##x,_p3##y,z,c), I[70] = (T)(img)(_p1##x,_p3##y,z,c), I[71] = (T)(img)(x,_p3##y,z,c), I[72] = (T)(img)(_n1##x,_p3##y,z,c), I[73] = (T)(img)(_n2##x,_p3##y,z,c), I[74] = (T)(img)(_n3##x,_p3##y,z,c), I[75] = (T)(img)(_n4##x,_p3##y,z,c), I[76] = (T)(img)(_n5##x,_p3##y,z,c), I[77] = (T)(img)(_n6##x,_p3##y,z,c), I[78] = (T)(img)(_n7##x,_p3##y,z,c), I[79] = (T)(img)(_n8##x,_p3##y,z,c), \
I[80] = (T)(img)(_p7##x,_p2##y,z,c), I[81] = (T)(img)(_p6##x,_p2##y,z,c), I[82] = (T)(img)(_p5##x,_p2##y,z,c), I[83] = (T)(img)(_p4##x,_p2##y,z,c), I[84] = (T)(img)(_p3##x,_p2##y,z,c), I[85] = (T)(img)(_p2##x,_p2##y,z,c), I[86] = (T)(img)(_p1##x,_p2##y,z,c), I[87] = (T)(img)(x,_p2##y,z,c), I[88] = (T)(img)(_n1##x,_p2##y,z,c), I[89] = (T)(img)(_n2##x,_p2##y,z,c), I[90] = (T)(img)(_n3##x,_p2##y,z,c), I[91] = (T)(img)(_n4##x,_p2##y,z,c), I[92] = (T)(img)(_n5##x,_p2##y,z,c), I[93] = (T)(img)(_n6##x,_p2##y,z,c), I[94] = (T)(img)(_n7##x,_p2##y,z,c), I[95] = (T)(img)(_n8##x,_p2##y,z,c), \
I[96] = (T)(img)(_p7##x,_p1##y,z,c), I[97] = (T)(img)(_p6##x,_p1##y,z,c), I[98] = (T)(img)(_p5##x,_p1##y,z,c), I[99] = (T)(img)(_p4##x,_p1##y,z,c), I[100] = (T)(img)(_p3##x,_p1##y,z,c), I[101] = (T)(img)(_p2##x,_p1##y,z,c), I[102] = (T)(img)(_p1##x,_p1##y,z,c), I[103] = (T)(img)(x,_p1##y,z,c), I[104] = (T)(img)(_n1##x,_p1##y,z,c), I[105] = (T)(img)(_n2##x,_p1##y,z,c), I[106] = (T)(img)(_n3##x,_p1##y,z,c), I[107] = (T)(img)(_n4##x,_p1##y,z,c), I[108] = (T)(img)(_n5##x,_p1##y,z,c), I[109] = (T)(img)(_n6##x,_p1##y,z,c), I[110] = (T)(img)(_n7##x,_p1##y,z,c), I[111] = (T)(img)(_n8##x,_p1##y,z,c), \
I[112] = (T)(img)(_p7##x,y,z,c), I[113] = (T)(img)(_p6##x,y,z,c), I[114] = (T)(img)(_p5##x,y,z,c), I[115] = (T)(img)(_p4##x,y,z,c), I[116] = (T)(img)(_p3##x,y,z,c), I[117] = (T)(img)(_p2##x,y,z,c), I[118] = (T)(img)(_p1##x,y,z,c), I[119] = (T)(img)(x,y,z,c), I[120] = (T)(img)(_n1##x,y,z,c), I[121] = (T)(img)(_n2##x,y,z,c), I[122] = (T)(img)(_n3##x,y,z,c), I[123] = (T)(img)(_n4##x,y,z,c), I[124] = (T)(img)(_n5##x,y,z,c), I[125] = (T)(img)(_n6##x,y,z,c), I[126] = (T)(img)(_n7##x,y,z,c), I[127] = (T)(img)(_n8##x,y,z,c), \
I[128] = (T)(img)(_p7##x,_n1##y,z,c), I[129] = (T)(img)(_p6##x,_n1##y,z,c), I[130] = (T)(img)(_p5##x,_n1##y,z,c), I[131] = (T)(img)(_p4##x,_n1##y,z,c), I[132] = (T)(img)(_p3##x,_n1##y,z,c), I[133] = (T)(img)(_p2##x,_n1##y,z,c), I[134] = (T)(img)(_p1##x,_n1##y,z,c), I[135] = (T)(img)(x,_n1##y,z,c), I[136] = (T)(img)(_n1##x,_n1##y,z,c), I[137] = (T)(img)(_n2##x,_n1##y,z,c), I[138] = (T)(img)(_n3##x,_n1##y,z,c), I[139] = (T)(img)(_n4##x,_n1##y,z,c), I[140] = (T)(img)(_n5##x,_n1##y,z,c), I[141] = (T)(img)(_n6##x,_n1##y,z,c), I[142] = (T)(img)(_n7##x,_n1##y,z,c), I[143] = (T)(img)(_n8##x,_n1##y,z,c), \
I[144] = (T)(img)(_p7##x,_n2##y,z,c), I[145] = (T)(img)(_p6##x,_n2##y,z,c), I[146] = (T)(img)(_p5##x,_n2##y,z,c), I[147] = (T)(img)(_p4##x,_n2##y,z,c), I[148] = (T)(img)(_p3##x,_n2##y,z,c), I[149] = (T)(img)(_p2##x,_n2##y,z,c), I[150] = (T)(img)(_p1##x,_n2##y,z,c), I[151] = (T)(img)(x,_n2##y,z,c), I[152] = (T)(img)(_n1##x,_n2##y,z,c), I[153] = (T)(img)(_n2##x,_n2##y,z,c), I[154] = (T)(img)(_n3##x,_n2##y,z,c), I[155] = (T)(img)(_n4##x,_n2##y,z,c), I[156] = (T)(img)(_n5##x,_n2##y,z,c), I[157] = (T)(img)(_n6##x,_n2##y,z,c), I[158] = (T)(img)(_n7##x,_n2##y,z,c), I[159] = (T)(img)(_n8##x,_n2##y,z,c), \
I[160] = (T)(img)(_p7##x,_n3##y,z,c), I[161] = (T)(img)(_p6##x,_n3##y,z,c), I[162] = (T)(img)(_p5##x,_n3##y,z,c), I[163] = (T)(img)(_p4##x,_n3##y,z,c), I[164] = (T)(img)(_p3##x,_n3##y,z,c), I[165] = (T)(img)(_p2##x,_n3##y,z,c), I[166] = (T)(img)(_p1##x,_n3##y,z,c), I[167] = (T)(img)(x,_n3##y,z,c), I[168] = (T)(img)(_n1##x,_n3##y,z,c), I[169] = (T)(img)(_n2##x,_n3##y,z,c), I[170] = (T)(img)(_n3##x,_n3##y,z,c), I[171] = (T)(img)(_n4##x,_n3##y,z,c), I[172] = (T)(img)(_n5##x,_n3##y,z,c), I[173] = (T)(img)(_n6##x,_n3##y,z,c), I[174] = (T)(img)(_n7##x,_n3##y,z,c), I[175] = (T)(img)(_n8##x,_n3##y,z,c), \
I[176] = (T)(img)(_p7##x,_n4##y,z,c), I[177] = (T)(img)(_p6##x,_n4##y,z,c), I[178] = (T)(img)(_p5##x,_n4##y,z,c), I[179] = (T)(img)(_p4##x,_n4##y,z,c), I[180] = (T)(img)(_p3##x,_n4##y,z,c), I[181] = (T)(img)(_p2##x,_n4##y,z,c), I[182] = (T)(img)(_p1##x,_n4##y,z,c), I[183] = (T)(img)(x,_n4##y,z,c), I[184] = (T)(img)(_n1##x,_n4##y,z,c), I[185] = (T)(img)(_n2##x,_n4##y,z,c), I[186] = (T)(img)(_n3##x,_n4##y,z,c), I[187] = (T)(img)(_n4##x,_n4##y,z,c), I[188] = (T)(img)(_n5##x,_n4##y,z,c), I[189] = (T)(img)(_n6##x,_n4##y,z,c), I[190] = (T)(img)(_n7##x,_n4##y,z,c), I[191] = (T)(img)(_n8##x,_n4##y,z,c), \
I[192] = (T)(img)(_p7##x,_n5##y,z,c), I[193] = (T)(img)(_p6##x,_n5##y,z,c), I[194] = (T)(img)(_p5##x,_n5##y,z,c), I[195] = (T)(img)(_p4##x,_n5##y,z,c), I[196] = (T)(img)(_p3##x,_n5##y,z,c), I[197] = (T)(img)(_p2##x,_n5##y,z,c), I[198] = (T)(img)(_p1##x,_n5##y,z,c), I[199] = (T)(img)(x,_n5##y,z,c), I[200] = (T)(img)(_n1##x,_n5##y,z,c), I[201] = (T)(img)(_n2##x,_n5##y,z,c), I[202] = (T)(img)(_n3##x,_n5##y,z,c), I[203] = (T)(img)(_n4##x,_n5##y,z,c), I[204] = (T)(img)(_n5##x,_n5##y,z,c), I[205] = (T)(img)(_n6##x,_n5##y,z,c), I[206] = (T)(img)(_n7##x,_n5##y,z,c), I[207] = (T)(img)(_n8##x,_n5##y,z,c), \
I[208] = (T)(img)(_p7##x,_n6##y,z,c), I[209] = (T)(img)(_p6##x,_n6##y,z,c), I[210] = (T)(img)(_p5##x,_n6##y,z,c), I[211] = (T)(img)(_p4##x,_n6##y,z,c), I[212] = (T)(img)(_p3##x,_n6##y,z,c), I[213] = (T)(img)(_p2##x,_n6##y,z,c), I[214] = (T)(img)(_p1##x,_n6##y,z,c), I[215] = (T)(img)(x,_n6##y,z,c), I[216] = (T)(img)(_n1##x,_n6##y,z,c), I[217] = (T)(img)(_n2##x,_n6##y,z,c), I[218] = (T)(img)(_n3##x,_n6##y,z,c), I[219] = (T)(img)(_n4##x,_n6##y,z,c), I[220] = (T)(img)(_n5##x,_n6##y,z,c), I[221] = (T)(img)(_n6##x,_n6##y,z,c), I[222] = (T)(img)(_n7##x,_n6##y,z,c), I[223] = (T)(img)(_n8##x,_n6##y,z,c), \
I[224] = (T)(img)(_p7##x,_n7##y,z,c), I[225] = (T)(img)(_p6##x,_n7##y,z,c), I[226] = (T)(img)(_p5##x,_n7##y,z,c), I[227] = (T)(img)(_p4##x,_n7##y,z,c), I[228] = (T)(img)(_p3##x,_n7##y,z,c), I[229] = (T)(img)(_p2##x,_n7##y,z,c), I[230] = (T)(img)(_p1##x,_n7##y,z,c), I[231] = (T)(img)(x,_n7##y,z,c), I[232] = (T)(img)(_n1##x,_n7##y,z,c), I[233] = (T)(img)(_n2##x,_n7##y,z,c), I[234] = (T)(img)(_n3##x,_n7##y,z,c), I[235] = (T)(img)(_n4##x,_n7##y,z,c), I[236] = (T)(img)(_n5##x,_n7##y,z,c), I[237] = (T)(img)(_n6##x,_n7##y,z,c), I[238] = (T)(img)(_n7##x,_n7##y,z,c), I[239] = (T)(img)(_n8##x,_n7##y,z,c), \
I[240] = (T)(img)(_p7##x,_n8##y,z,c), I[241] = (T)(img)(_p6##x,_n8##y,z,c), I[242] = (T)(img)(_p5##x,_n8##y,z,c), I[243] = (T)(img)(_p4##x,_n8##y,z,c), I[244] = (T)(img)(_p3##x,_n8##y,z,c), I[245] = (T)(img)(_p2##x,_n8##y,z,c), I[246] = (T)(img)(_p1##x,_n8##y,z,c), I[247] = (T)(img)(x,_n8##y,z,c), I[248] = (T)(img)(_n1##x,_n8##y,z,c), I[249] = (T)(img)(_n2##x,_n8##y,z,c), I[250] = (T)(img)(_n3##x,_n8##y,z,c), I[251] = (T)(img)(_n4##x,_n8##y,z,c), I[252] = (T)(img)(_n5##x,_n8##y,z,c), I[253] = (T)(img)(_n6##x,_n8##y,z,c), I[254] = (T)(img)(_n7##x,_n8##y,z,c), I[255] = (T)(img)(_n8##x,_n8##y,z,c);
// Define 17x17 loop macros
//-------------------------
#define cimg_for17(bound,i) for (int i = 0, \
_p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8; \
_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
#define cimg_for17X(img,x) cimg_for17((img)._width,x)
#define cimg_for17Y(img,y) cimg_for17((img)._height,y)
#define cimg_for17Z(img,z) cimg_for17((img)._depth,z)
#define cimg_for17C(img,c) cimg_for17((img)._spectrum,c)
#define cimg_for17XY(img,x,y) cimg_for17Y(img,y) cimg_for17X(img,x)
#define cimg_for17XZ(img,x,z) cimg_for17Z(img,z) cimg_for17X(img,x)
#define cimg_for17XC(img,x,c) cimg_for17C(img,c) cimg_for17X(img,x)
#define cimg_for17YZ(img,y,z) cimg_for17Z(img,z) cimg_for17Y(img,y)
#define cimg_for17YC(img,y,c) cimg_for17C(img,c) cimg_for17Y(img,y)
#define cimg_for17ZC(img,z,c) cimg_for17C(img,c) cimg_for17Z(img,z)
#define cimg_for17XYZ(img,x,y,z) cimg_for17Z(img,z) cimg_for17XY(img,x,y)
#define cimg_for17XZC(img,x,z,c) cimg_for17C(img,c) cimg_for17XZ(img,x,z)
#define cimg_for17YZC(img,y,z,c) cimg_for17C(img,c) cimg_for17YZ(img,y,z)
#define cimg_for17XYZC(img,x,y,z,c) cimg_for17C(img,c) cimg_for17XYZ(img,x,y,z)
#define cimg_for_in17(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8; \
i<=(int)(i1) && (_n8##i<(int)(bound) || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i)
#define cimg_for_in17X(img,x0,x1,x) cimg_for_in17((img)._width,x0,x1,x)
#define cimg_for_in17Y(img,y0,y1,y) cimg_for_in17((img)._height,y0,y1,y)
#define cimg_for_in17Z(img,z0,z1,z) cimg_for_in17((img)._depth,z0,z1,z)
#define cimg_for_in17C(img,c0,c1,c) cimg_for_in17((img)._spectrum,c0,c1,c)
#define cimg_for_in17XY(img,x0,y0,x1,y1,x,y) cimg_for_in17Y(img,y0,y1,y) cimg_for_in17X(img,x0,x1,x)
#define cimg_for_in17XZ(img,x0,z0,x1,z1,x,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17X(img,x0,x1,x)
#define cimg_for_in17XC(img,x0,c0,x1,c1,x,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17X(img,x0,x1,x)
#define cimg_for_in17YZ(img,y0,z0,y1,z1,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17Y(img,y0,y1,y)
#define cimg_for_in17YC(img,y0,c0,y1,c1,y,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17Y(img,y0,y1,y)
#define cimg_for_in17ZC(img,z0,c0,z1,c1,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17Z(img,z0,z1,z)
#define cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in17Z(img,z0,z1,z) cimg_for_in17XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in17XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in17YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in17XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in17C(img,c0,c1,c) cimg_for_in17XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for17x17(img,x,y,z,c,I,T) \
cimg_for17((img)._height,y) for (int x = 0, \
_p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (T)(img)(0,_p8##y,z,c)), \
(I[17] = I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = (T)(img)(0,_p7##y,z,c)), \
(I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = (T)(img)(0,_p6##y,z,c)), \
(I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_p5##y,z,c)), \
(I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_p4##y,z,c)), \
(I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = (T)(img)(0,_p3##y,z,c)), \
(I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = (T)(img)(0,_p2##y,z,c)), \
(I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = (T)(img)(0,_p1##y,z,c)), \
(I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = (T)(img)(0,y,z,c)), \
(I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (T)(img)(0,_n1##y,z,c)), \
(I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (T)(img)(0,_n2##y,z,c)), \
(I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (T)(img)(0,_n3##y,z,c)), \
(I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = (T)(img)(0,_n4##y,z,c)), \
(I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (T)(img)(0,_n5##y,z,c)), \
(I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (T)(img)(0,_n6##y,z,c)), \
(I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = (T)(img)(0,_n7##y,z,c)), \
(I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = (T)(img)(0,_n8##y,z,c)), \
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[26] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[43] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[60] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[77] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[94] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[111] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[128] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[145] = (T)(img)(_n1##x,y,z,c)), \
(I[162] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[179] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[196] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[213] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[230] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[247] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[264] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[281] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[27] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[44] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[61] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[78] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[95] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[112] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[129] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[146] = (T)(img)(_n2##x,y,z,c)), \
(I[163] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[180] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[197] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[214] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[231] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[248] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[265] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[282] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[28] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[45] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[62] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[79] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[96] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[113] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[130] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[147] = (T)(img)(_n3##x,y,z,c)), \
(I[164] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[181] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[198] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[215] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[232] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[249] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[266] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[283] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[29] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[46] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[63] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[80] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[97] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[114] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[131] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[148] = (T)(img)(_n4##x,y,z,c)), \
(I[165] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[182] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[199] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[216] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[233] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[250] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[267] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[284] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[30] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[47] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[64] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[81] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[98] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[115] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[132] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[149] = (T)(img)(_n5##x,y,z,c)), \
(I[166] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[183] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[200] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[217] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[234] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[251] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[268] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[285] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[31] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[48] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[65] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[82] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[99] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[116] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[133] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[150] = (T)(img)(_n6##x,y,z,c)), \
(I[167] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[184] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[201] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[218] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[235] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[252] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[269] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[286] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[32] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[49] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[66] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[83] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[100] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[117] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[134] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[151] = (T)(img)(_n7##x,y,z,c)), \
(I[168] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[185] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[202] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[219] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[236] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[253] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[270] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[287] = (T)(img)(_n7##x,_n8##y,z,c)), \
8>=((img)._width)?(img).width() - 1:8); \
(_n8##x<(img).width() && ( \
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[33] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[50] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[67] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[84] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[101] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[118] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[135] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[152] = (T)(img)(_n8##x,y,z,c)), \
(I[169] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[186] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[203] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[220] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[237] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[254] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[271] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[288] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \
I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \
I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \
I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \
I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \
I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \
I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \
I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \
I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
#define cimg_for_in17x17(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in17((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = (int)( \
(I[0] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[17] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[34] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[51] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[68] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[85] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[102] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[119] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[136] = (T)(img)(_p8##x,y,z,c)), \
(I[153] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[170] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[187] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[204] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[221] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[238] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[255] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[272] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[1] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[18] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[35] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[52] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[69] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[86] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[103] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[120] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[137] = (T)(img)(_p7##x,y,z,c)), \
(I[154] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[171] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[188] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[205] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[222] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[239] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[256] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[273] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[2] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[19] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[36] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[53] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[70] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[87] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[104] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[121] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[138] = (T)(img)(_p6##x,y,z,c)), \
(I[155] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[172] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[189] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[206] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[223] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[240] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[257] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[274] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[3] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[20] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[37] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[54] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[71] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[88] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[105] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[122] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[139] = (T)(img)(_p5##x,y,z,c)), \
(I[156] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[173] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[190] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[207] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[224] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[241] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[258] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[275] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[4] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[21] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[38] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[55] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[72] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[89] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[106] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[123] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[140] = (T)(img)(_p4##x,y,z,c)), \
(I[157] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[174] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[191] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[208] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[225] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[242] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[259] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[276] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[5] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[22] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[39] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[56] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[73] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[90] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[107] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[124] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[141] = (T)(img)(_p3##x,y,z,c)), \
(I[158] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[175] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[192] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[209] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[226] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[243] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[260] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[277] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[6] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[23] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[40] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[57] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[74] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[91] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[108] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[125] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[142] = (T)(img)(_p2##x,y,z,c)), \
(I[159] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[176] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[193] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[210] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[227] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[244] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[261] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[278] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[7] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[24] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[41] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[58] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[75] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[92] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[109] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[126] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[143] = (T)(img)(_p1##x,y,z,c)), \
(I[160] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[177] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[194] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[211] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[228] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[245] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[262] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[279] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[8] = (T)(img)(x,_p8##y,z,c)), \
(I[25] = (T)(img)(x,_p7##y,z,c)), \
(I[42] = (T)(img)(x,_p6##y,z,c)), \
(I[59] = (T)(img)(x,_p5##y,z,c)), \
(I[76] = (T)(img)(x,_p4##y,z,c)), \
(I[93] = (T)(img)(x,_p3##y,z,c)), \
(I[110] = (T)(img)(x,_p2##y,z,c)), \
(I[127] = (T)(img)(x,_p1##y,z,c)), \
(I[144] = (T)(img)(x,y,z,c)), \
(I[161] = (T)(img)(x,_n1##y,z,c)), \
(I[178] = (T)(img)(x,_n2##y,z,c)), \
(I[195] = (T)(img)(x,_n3##y,z,c)), \
(I[212] = (T)(img)(x,_n4##y,z,c)), \
(I[229] = (T)(img)(x,_n5##y,z,c)), \
(I[246] = (T)(img)(x,_n6##y,z,c)), \
(I[263] = (T)(img)(x,_n7##y,z,c)), \
(I[280] = (T)(img)(x,_n8##y,z,c)), \
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[26] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[43] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[60] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[77] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[94] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[111] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[128] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[145] = (T)(img)(_n1##x,y,z,c)), \
(I[162] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[179] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[196] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[213] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[230] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[247] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[264] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[281] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[27] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[44] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[61] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[78] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[95] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[112] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[129] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[146] = (T)(img)(_n2##x,y,z,c)), \
(I[163] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[180] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[197] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[214] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[231] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[248] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[265] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[282] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[28] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[45] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[62] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[79] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[96] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[113] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[130] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[147] = (T)(img)(_n3##x,y,z,c)), \
(I[164] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[181] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[198] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[215] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[232] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[249] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[266] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[283] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[29] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[46] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[63] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[80] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[97] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[114] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[131] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[148] = (T)(img)(_n4##x,y,z,c)), \
(I[165] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[182] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[199] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[216] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[233] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[250] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[267] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[284] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[30] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[47] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[64] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[81] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[98] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[115] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[132] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[149] = (T)(img)(_n5##x,y,z,c)), \
(I[166] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[183] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[200] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[217] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[234] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[251] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[268] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[285] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[31] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[48] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[65] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[82] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[99] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[116] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[133] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[150] = (T)(img)(_n6##x,y,z,c)), \
(I[167] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[184] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[201] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[218] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[235] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[252] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[269] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[286] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[32] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[49] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[66] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[83] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[100] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[117] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[134] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[151] = (T)(img)(_n7##x,y,z,c)), \
(I[168] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[185] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[202] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[219] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[236] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[253] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[270] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[287] = (T)(img)(_n7##x,_n8##y,z,c)), \
x + 8>=(img).width()?(img).width() - 1:x + 8); \
x<=(int)(x1) && ((_n8##x<(img).width() && ( \
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[33] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[50] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[67] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[84] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[101] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[118] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[135] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[152] = (T)(img)(_n8##x,y,z,c)), \
(I[169] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[186] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[203] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[220] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[237] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[254] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[271] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[288] = (T)(img)(_n8##x,_n8##y,z,c)),1)) || \
_n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \
I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], \
I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], \
I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], \
I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], \
I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], \
I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], \
I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], \
I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], \
I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], \
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x)
#define cimg_get17x17(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p8##x,_p8##y,z,c), I[1] = (T)(img)(_p7##x,_p8##y,z,c), I[2] = (T)(img)(_p6##x,_p8##y,z,c), I[3] = (T)(img)(_p5##x,_p8##y,z,c), I[4] = (T)(img)(_p4##x,_p8##y,z,c), I[5] = (T)(img)(_p3##x,_p8##y,z,c), I[6] = (T)(img)(_p2##x,_p8##y,z,c), I[7] = (T)(img)(_p1##x,_p8##y,z,c), I[8] = (T)(img)(x,_p8##y,z,c), I[9] = (T)(img)(_n1##x,_p8##y,z,c), I[10] = (T)(img)(_n2##x,_p8##y,z,c), I[11] = (T)(img)(_n3##x,_p8##y,z,c), I[12] = (T)(img)(_n4##x,_p8##y,z,c), I[13] = (T)(img)(_n5##x,_p8##y,z,c), I[14] = (T)(img)(_n6##x,_p8##y,z,c), I[15] = (T)(img)(_n7##x,_p8##y,z,c), I[16] = (T)(img)(_n8##x,_p8##y,z,c), \
I[17] = (T)(img)(_p8##x,_p7##y,z,c), I[18] = (T)(img)(_p7##x,_p7##y,z,c), I[19] = (T)(img)(_p6##x,_p7##y,z,c), I[20] = (T)(img)(_p5##x,_p7##y,z,c), I[21] = (T)(img)(_p4##x,_p7##y,z,c), I[22] = (T)(img)(_p3##x,_p7##y,z,c), I[23] = (T)(img)(_p2##x,_p7##y,z,c), I[24] = (T)(img)(_p1##x,_p7##y,z,c), I[25] = (T)(img)(x,_p7##y,z,c), I[26] = (T)(img)(_n1##x,_p7##y,z,c), I[27] = (T)(img)(_n2##x,_p7##y,z,c), I[28] = (T)(img)(_n3##x,_p7##y,z,c), I[29] = (T)(img)(_n4##x,_p7##y,z,c), I[30] = (T)(img)(_n5##x,_p7##y,z,c), I[31] = (T)(img)(_n6##x,_p7##y,z,c), I[32] = (T)(img)(_n7##x,_p7##y,z,c), I[33] = (T)(img)(_n8##x,_p7##y,z,c), \
I[34] = (T)(img)(_p8##x,_p6##y,z,c), I[35] = (T)(img)(_p7##x,_p6##y,z,c), I[36] = (T)(img)(_p6##x,_p6##y,z,c), I[37] = (T)(img)(_p5##x,_p6##y,z,c), I[38] = (T)(img)(_p4##x,_p6##y,z,c), I[39] = (T)(img)(_p3##x,_p6##y,z,c), I[40] = (T)(img)(_p2##x,_p6##y,z,c), I[41] = (T)(img)(_p1##x,_p6##y,z,c), I[42] = (T)(img)(x,_p6##y,z,c), I[43] = (T)(img)(_n1##x,_p6##y,z,c), I[44] = (T)(img)(_n2##x,_p6##y,z,c), I[45] = (T)(img)(_n3##x,_p6##y,z,c), I[46] = (T)(img)(_n4##x,_p6##y,z,c), I[47] = (T)(img)(_n5##x,_p6##y,z,c), I[48] = (T)(img)(_n6##x,_p6##y,z,c), I[49] = (T)(img)(_n7##x,_p6##y,z,c), I[50] = (T)(img)(_n8##x,_p6##y,z,c), \
I[51] = (T)(img)(_p8##x,_p5##y,z,c), I[52] = (T)(img)(_p7##x,_p5##y,z,c), I[53] = (T)(img)(_p6##x,_p5##y,z,c), I[54] = (T)(img)(_p5##x,_p5##y,z,c), I[55] = (T)(img)(_p4##x,_p5##y,z,c), I[56] = (T)(img)(_p3##x,_p5##y,z,c), I[57] = (T)(img)(_p2##x,_p5##y,z,c), I[58] = (T)(img)(_p1##x,_p5##y,z,c), I[59] = (T)(img)(x,_p5##y,z,c), I[60] = (T)(img)(_n1##x,_p5##y,z,c), I[61] = (T)(img)(_n2##x,_p5##y,z,c), I[62] = (T)(img)(_n3##x,_p5##y,z,c), I[63] = (T)(img)(_n4##x,_p5##y,z,c), I[64] = (T)(img)(_n5##x,_p5##y,z,c), I[65] = (T)(img)(_n6##x,_p5##y,z,c), I[66] = (T)(img)(_n7##x,_p5##y,z,c), I[67] = (T)(img)(_n8##x,_p5##y,z,c), \
I[68] = (T)(img)(_p8##x,_p4##y,z,c), I[69] = (T)(img)(_p7##x,_p4##y,z,c), I[70] = (T)(img)(_p6##x,_p4##y,z,c), I[71] = (T)(img)(_p5##x,_p4##y,z,c), I[72] = (T)(img)(_p4##x,_p4##y,z,c), I[73] = (T)(img)(_p3##x,_p4##y,z,c), I[74] = (T)(img)(_p2##x,_p4##y,z,c), I[75] = (T)(img)(_p1##x,_p4##y,z,c), I[76] = (T)(img)(x,_p4##y,z,c), I[77] = (T)(img)(_n1##x,_p4##y,z,c), I[78] = (T)(img)(_n2##x,_p4##y,z,c), I[79] = (T)(img)(_n3##x,_p4##y,z,c), I[80] = (T)(img)(_n4##x,_p4##y,z,c), I[81] = (T)(img)(_n5##x,_p4##y,z,c), I[82] = (T)(img)(_n6##x,_p4##y,z,c), I[83] = (T)(img)(_n7##x,_p4##y,z,c), I[84] = (T)(img)(_n8##x,_p4##y,z,c), \
I[85] = (T)(img)(_p8##x,_p3##y,z,c), I[86] = (T)(img)(_p7##x,_p3##y,z,c), I[87] = (T)(img)(_p6##x,_p3##y,z,c), I[88] = (T)(img)(_p5##x,_p3##y,z,c), I[89] = (T)(img)(_p4##x,_p3##y,z,c), I[90] = (T)(img)(_p3##x,_p3##y,z,c), I[91] = (T)(img)(_p2##x,_p3##y,z,c), I[92] = (T)(img)(_p1##x,_p3##y,z,c), I[93] = (T)(img)(x,_p3##y,z,c), I[94] = (T)(img)(_n1##x,_p3##y,z,c), I[95] = (T)(img)(_n2##x,_p3##y,z,c), I[96] = (T)(img)(_n3##x,_p3##y,z,c), I[97] = (T)(img)(_n4##x,_p3##y,z,c), I[98] = (T)(img)(_n5##x,_p3##y,z,c), I[99] = (T)(img)(_n6##x,_p3##y,z,c), I[100] = (T)(img)(_n7##x,_p3##y,z,c), I[101] = (T)(img)(_n8##x,_p3##y,z,c), \
I[102] = (T)(img)(_p8##x,_p2##y,z,c), I[103] = (T)(img)(_p7##x,_p2##y,z,c), I[104] = (T)(img)(_p6##x,_p2##y,z,c), I[105] = (T)(img)(_p5##x,_p2##y,z,c), I[106] = (T)(img)(_p4##x,_p2##y,z,c), I[107] = (T)(img)(_p3##x,_p2##y,z,c), I[108] = (T)(img)(_p2##x,_p2##y,z,c), I[109] = (T)(img)(_p1##x,_p2##y,z,c), I[110] = (T)(img)(x,_p2##y,z,c), I[111] = (T)(img)(_n1##x,_p2##y,z,c), I[112] = (T)(img)(_n2##x,_p2##y,z,c), I[113] = (T)(img)(_n3##x,_p2##y,z,c), I[114] = (T)(img)(_n4##x,_p2##y,z,c), I[115] = (T)(img)(_n5##x,_p2##y,z,c), I[116] = (T)(img)(_n6##x,_p2##y,z,c), I[117] = (T)(img)(_n7##x,_p2##y,z,c), I[118] = (T)(img)(_n8##x,_p2##y,z,c), \
I[119] = (T)(img)(_p8##x,_p1##y,z,c), I[120] = (T)(img)(_p7##x,_p1##y,z,c), I[121] = (T)(img)(_p6##x,_p1##y,z,c), I[122] = (T)(img)(_p5##x,_p1##y,z,c), I[123] = (T)(img)(_p4##x,_p1##y,z,c), I[124] = (T)(img)(_p3##x,_p1##y,z,c), I[125] = (T)(img)(_p2##x,_p1##y,z,c), I[126] = (T)(img)(_p1##x,_p1##y,z,c), I[127] = (T)(img)(x,_p1##y,z,c), I[128] = (T)(img)(_n1##x,_p1##y,z,c), I[129] = (T)(img)(_n2##x,_p1##y,z,c), I[130] = (T)(img)(_n3##x,_p1##y,z,c), I[131] = (T)(img)(_n4##x,_p1##y,z,c), I[132] = (T)(img)(_n5##x,_p1##y,z,c), I[133] = (T)(img)(_n6##x,_p1##y,z,c), I[134] = (T)(img)(_n7##x,_p1##y,z,c), I[135] = (T)(img)(_n8##x,_p1##y,z,c), \
I[136] = (T)(img)(_p8##x,y,z,c), I[137] = (T)(img)(_p7##x,y,z,c), I[138] = (T)(img)(_p6##x,y,z,c), I[139] = (T)(img)(_p5##x,y,z,c), I[140] = (T)(img)(_p4##x,y,z,c), I[141] = (T)(img)(_p3##x,y,z,c), I[142] = (T)(img)(_p2##x,y,z,c), I[143] = (T)(img)(_p1##x,y,z,c), I[144] = (T)(img)(x,y,z,c), I[145] = (T)(img)(_n1##x,y,z,c), I[146] = (T)(img)(_n2##x,y,z,c), I[147] = (T)(img)(_n3##x,y,z,c), I[148] = (T)(img)(_n4##x,y,z,c), I[149] = (T)(img)(_n5##x,y,z,c), I[150] = (T)(img)(_n6##x,y,z,c), I[151] = (T)(img)(_n7##x,y,z,c), I[152] = (T)(img)(_n8##x,y,z,c), \
I[153] = (T)(img)(_p8##x,_n1##y,z,c), I[154] = (T)(img)(_p7##x,_n1##y,z,c), I[155] = (T)(img)(_p6##x,_n1##y,z,c), I[156] = (T)(img)(_p5##x,_n1##y,z,c), I[157] = (T)(img)(_p4##x,_n1##y,z,c), I[158] = (T)(img)(_p3##x,_n1##y,z,c), I[159] = (T)(img)(_p2##x,_n1##y,z,c), I[160] = (T)(img)(_p1##x,_n1##y,z,c), I[161] = (T)(img)(x,_n1##y,z,c), I[162] = (T)(img)(_n1##x,_n1##y,z,c), I[163] = (T)(img)(_n2##x,_n1##y,z,c), I[164] = (T)(img)(_n3##x,_n1##y,z,c), I[165] = (T)(img)(_n4##x,_n1##y,z,c), I[166] = (T)(img)(_n5##x,_n1##y,z,c), I[167] = (T)(img)(_n6##x,_n1##y,z,c), I[168] = (T)(img)(_n7##x,_n1##y,z,c), I[169] = (T)(img)(_n8##x,_n1##y,z,c), \
I[170] = (T)(img)(_p8##x,_n2##y,z,c), I[171] = (T)(img)(_p7##x,_n2##y,z,c), I[172] = (T)(img)(_p6##x,_n2##y,z,c), I[173] = (T)(img)(_p5##x,_n2##y,z,c), I[174] = (T)(img)(_p4##x,_n2##y,z,c), I[175] = (T)(img)(_p3##x,_n2##y,z,c), I[176] = (T)(img)(_p2##x,_n2##y,z,c), I[177] = (T)(img)(_p1##x,_n2##y,z,c), I[178] = (T)(img)(x,_n2##y,z,c), I[179] = (T)(img)(_n1##x,_n2##y,z,c), I[180] = (T)(img)(_n2##x,_n2##y,z,c), I[181] = (T)(img)(_n3##x,_n2##y,z,c), I[182] = (T)(img)(_n4##x,_n2##y,z,c), I[183] = (T)(img)(_n5##x,_n2##y,z,c), I[184] = (T)(img)(_n6##x,_n2##y,z,c), I[185] = (T)(img)(_n7##x,_n2##y,z,c), I[186] = (T)(img)(_n8##x,_n2##y,z,c), \
I[187] = (T)(img)(_p8##x,_n3##y,z,c), I[188] = (T)(img)(_p7##x,_n3##y,z,c), I[189] = (T)(img)(_p6##x,_n3##y,z,c), I[190] = (T)(img)(_p5##x,_n3##y,z,c), I[191] = (T)(img)(_p4##x,_n3##y,z,c), I[192] = (T)(img)(_p3##x,_n3##y,z,c), I[193] = (T)(img)(_p2##x,_n3##y,z,c), I[194] = (T)(img)(_p1##x,_n3##y,z,c), I[195] = (T)(img)(x,_n3##y,z,c), I[196] = (T)(img)(_n1##x,_n3##y,z,c), I[197] = (T)(img)(_n2##x,_n3##y,z,c), I[198] = (T)(img)(_n3##x,_n3##y,z,c), I[199] = (T)(img)(_n4##x,_n3##y,z,c), I[200] = (T)(img)(_n5##x,_n3##y,z,c), I[201] = (T)(img)(_n6##x,_n3##y,z,c), I[202] = (T)(img)(_n7##x,_n3##y,z,c), I[203] = (T)(img)(_n8##x,_n3##y,z,c), \
I[204] = (T)(img)(_p8##x,_n4##y,z,c), I[205] = (T)(img)(_p7##x,_n4##y,z,c), I[206] = (T)(img)(_p6##x,_n4##y,z,c), I[207] = (T)(img)(_p5##x,_n4##y,z,c), I[208] = (T)(img)(_p4##x,_n4##y,z,c), I[209] = (T)(img)(_p3##x,_n4##y,z,c), I[210] = (T)(img)(_p2##x,_n4##y,z,c), I[211] = (T)(img)(_p1##x,_n4##y,z,c), I[212] = (T)(img)(x,_n4##y,z,c), I[213] = (T)(img)(_n1##x,_n4##y,z,c), I[214] = (T)(img)(_n2##x,_n4##y,z,c), I[215] = (T)(img)(_n3##x,_n4##y,z,c), I[216] = (T)(img)(_n4##x,_n4##y,z,c), I[217] = (T)(img)(_n5##x,_n4##y,z,c), I[218] = (T)(img)(_n6##x,_n4##y,z,c), I[219] = (T)(img)(_n7##x,_n4##y,z,c), I[220] = (T)(img)(_n8##x,_n4##y,z,c), \
I[221] = (T)(img)(_p8##x,_n5##y,z,c), I[222] = (T)(img)(_p7##x,_n5##y,z,c), I[223] = (T)(img)(_p6##x,_n5##y,z,c), I[224] = (T)(img)(_p5##x,_n5##y,z,c), I[225] = (T)(img)(_p4##x,_n5##y,z,c), I[226] = (T)(img)(_p3##x,_n5##y,z,c), I[227] = (T)(img)(_p2##x,_n5##y,z,c), I[228] = (T)(img)(_p1##x,_n5##y,z,c), I[229] = (T)(img)(x,_n5##y,z,c), I[230] = (T)(img)(_n1##x,_n5##y,z,c), I[231] = (T)(img)(_n2##x,_n5##y,z,c), I[232] = (T)(img)(_n3##x,_n5##y,z,c), I[233] = (T)(img)(_n4##x,_n5##y,z,c), I[234] = (T)(img)(_n5##x,_n5##y,z,c), I[235] = (T)(img)(_n6##x,_n5##y,z,c), I[236] = (T)(img)(_n7##x,_n5##y,z,c), I[237] = (T)(img)(_n8##x,_n5##y,z,c), \
I[238] = (T)(img)(_p8##x,_n6##y,z,c), I[239] = (T)(img)(_p7##x,_n6##y,z,c), I[240] = (T)(img)(_p6##x,_n6##y,z,c), I[241] = (T)(img)(_p5##x,_n6##y,z,c), I[242] = (T)(img)(_p4##x,_n6##y,z,c), I[243] = (T)(img)(_p3##x,_n6##y,z,c), I[244] = (T)(img)(_p2##x,_n6##y,z,c), I[245] = (T)(img)(_p1##x,_n6##y,z,c), I[246] = (T)(img)(x,_n6##y,z,c), I[247] = (T)(img)(_n1##x,_n6##y,z,c), I[248] = (T)(img)(_n2##x,_n6##y,z,c), I[249] = (T)(img)(_n3##x,_n6##y,z,c), I[250] = (T)(img)(_n4##x,_n6##y,z,c), I[251] = (T)(img)(_n5##x,_n6##y,z,c), I[252] = (T)(img)(_n6##x,_n6##y,z,c), I[253] = (T)(img)(_n7##x,_n6##y,z,c), I[254] = (T)(img)(_n8##x,_n6##y,z,c), \
I[255] = (T)(img)(_p8##x,_n7##y,z,c), I[256] = (T)(img)(_p7##x,_n7##y,z,c), I[257] = (T)(img)(_p6##x,_n7##y,z,c), I[258] = (T)(img)(_p5##x,_n7##y,z,c), I[259] = (T)(img)(_p4##x,_n7##y,z,c), I[260] = (T)(img)(_p3##x,_n7##y,z,c), I[261] = (T)(img)(_p2##x,_n7##y,z,c), I[262] = (T)(img)(_p1##x,_n7##y,z,c), I[263] = (T)(img)(x,_n7##y,z,c), I[264] = (T)(img)(_n1##x,_n7##y,z,c), I[265] = (T)(img)(_n2##x,_n7##y,z,c), I[266] = (T)(img)(_n3##x,_n7##y,z,c), I[267] = (T)(img)(_n4##x,_n7##y,z,c), I[268] = (T)(img)(_n5##x,_n7##y,z,c), I[269] = (T)(img)(_n6##x,_n7##y,z,c), I[270] = (T)(img)(_n7##x,_n7##y,z,c), I[271] = (T)(img)(_n8##x,_n7##y,z,c), \
I[272] = (T)(img)(_p8##x,_n8##y,z,c), I[273] = (T)(img)(_p7##x,_n8##y,z,c), I[274] = (T)(img)(_p6##x,_n8##y,z,c), I[275] = (T)(img)(_p5##x,_n8##y,z,c), I[276] = (T)(img)(_p4##x,_n8##y,z,c), I[277] = (T)(img)(_p3##x,_n8##y,z,c), I[278] = (T)(img)(_p2##x,_n8##y,z,c), I[279] = (T)(img)(_p1##x,_n8##y,z,c), I[280] = (T)(img)(x,_n8##y,z,c), I[281] = (T)(img)(_n1##x,_n8##y,z,c), I[282] = (T)(img)(_n2##x,_n8##y,z,c), I[283] = (T)(img)(_n3##x,_n8##y,z,c), I[284] = (T)(img)(_n4##x,_n8##y,z,c), I[285] = (T)(img)(_n5##x,_n8##y,z,c), I[286] = (T)(img)(_n6##x,_n8##y,z,c), I[287] = (T)(img)(_n7##x,_n8##y,z,c), I[288] = (T)(img)(_n8##x,_n8##y,z,c);
// Define 18x18 loop macros
//-------------------------
#define cimg_for18(bound,i) for (int i = 0, \
_p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9; \
_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
#define cimg_for18X(img,x) cimg_for18((img)._width,x)
#define cimg_for18Y(img,y) cimg_for18((img)._height,y)
#define cimg_for18Z(img,z) cimg_for18((img)._depth,z)
#define cimg_for18C(img,c) cimg_for18((img)._spectrum,c)
#define cimg_for18XY(img,x,y) cimg_for18Y(img,y) cimg_for18X(img,x)
#define cimg_for18XZ(img,x,z) cimg_for18Z(img,z) cimg_for18X(img,x)
#define cimg_for18XC(img,x,c) cimg_for18C(img,c) cimg_for18X(img,x)
#define cimg_for18YZ(img,y,z) cimg_for18Z(img,z) cimg_for18Y(img,y)
#define cimg_for18YC(img,y,c) cimg_for18C(img,c) cimg_for18Y(img,y)
#define cimg_for18ZC(img,z,c) cimg_for18C(img,c) cimg_for18Z(img,z)
#define cimg_for18XYZ(img,x,y,z) cimg_for18Z(img,z) cimg_for18XY(img,x,y)
#define cimg_for18XZC(img,x,z,c) cimg_for18C(img,c) cimg_for18XZ(img,x,z)
#define cimg_for18YZC(img,y,z,c) cimg_for18C(img,c) cimg_for18YZ(img,y,z)
#define cimg_for18XYZC(img,x,y,z,c) cimg_for18C(img,c) cimg_for18XYZ(img,x,y,z)
#define cimg_for_in18(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9; \
i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
#define cimg_for_in18X(img,x0,x1,x) cimg_for_in18((img)._width,x0,x1,x)
#define cimg_for_in18Y(img,y0,y1,y) cimg_for_in18((img)._height,y0,y1,y)
#define cimg_for_in18Z(img,z0,z1,z) cimg_for_in18((img)._depth,z0,z1,z)
#define cimg_for_in18C(img,c0,c1,c) cimg_for_in18((img)._spectrum,c0,c1,c)
#define cimg_for_in18XY(img,x0,y0,x1,y1,x,y) cimg_for_in18Y(img,y0,y1,y) cimg_for_in18X(img,x0,x1,x)
#define cimg_for_in18XZ(img,x0,z0,x1,z1,x,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18X(img,x0,x1,x)
#define cimg_for_in18XC(img,x0,c0,x1,c1,x,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18X(img,x0,x1,x)
#define cimg_for_in18YZ(img,y0,z0,y1,z1,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18Y(img,y0,y1,y)
#define cimg_for_in18YC(img,y0,c0,y1,c1,y,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18Y(img,y0,y1,y)
#define cimg_for_in18ZC(img,z0,c0,z1,c1,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18Z(img,z0,z1,z)
#define cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in18Z(img,z0,z1,z) cimg_for_in18XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in18XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in18YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in18XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in18C(img,c0,c1,c) cimg_for_in18XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for18x18(img,x,y,z,c,I,T) \
cimg_for18((img)._height,y) for (int x = 0, \
_p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = (T)(img)(0,_p8##y,z,c)), \
(I[18] = I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = (T)(img)(0,_p7##y,z,c)), \
(I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = (T)(img)(0,_p6##y,z,c)), \
(I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (T)(img)(0,_p5##y,z,c)), \
(I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (T)(img)(0,_p4##y,z,c)), \
(I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (T)(img)(0,_p3##y,z,c)), \
(I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = (T)(img)(0,_p2##y,z,c)), \
(I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = (T)(img)(0,_p1##y,z,c)), \
(I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = (T)(img)(0,y,z,c)), \
(I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = (T)(img)(0,_n1##y,z,c)), \
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (T)(img)(0,_n2##y,z,c)), \
(I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = (T)(img)(0,_n3##y,z,c)), \
(I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = (T)(img)(0,_n4##y,z,c)), \
(I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = (T)(img)(0,_n5##y,z,c)), \
(I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = (T)(img)(0,_n6##y,z,c)), \
(I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = (T)(img)(0,_n7##y,z,c)), \
(I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (T)(img)(0,_n8##y,z,c)), \
(I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = (T)(img)(0,_n9##y,z,c)), \
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[27] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[45] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[63] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[81] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[99] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[117] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[135] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[153] = (T)(img)(_n1##x,y,z,c)), \
(I[171] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[189] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[207] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[225] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[243] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[261] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[279] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[297] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[315] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[28] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[46] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[64] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[82] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[100] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[118] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[136] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[154] = (T)(img)(_n2##x,y,z,c)), \
(I[172] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[190] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[208] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[226] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[244] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[262] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[280] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[298] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[316] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[29] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[47] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[65] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[83] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[101] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[119] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[137] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[155] = (T)(img)(_n3##x,y,z,c)), \
(I[173] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[191] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[209] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[227] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[245] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[263] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[281] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[299] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[317] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[30] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[48] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[66] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[84] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[102] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[120] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[138] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[156] = (T)(img)(_n4##x,y,z,c)), \
(I[174] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[192] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[210] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[228] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[246] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[264] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[282] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[300] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[318] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[31] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[49] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[67] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[85] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[103] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[121] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[139] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[157] = (T)(img)(_n5##x,y,z,c)), \
(I[175] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[193] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[211] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[229] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[247] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[265] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[283] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[301] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[319] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[32] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[50] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[68] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[86] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[104] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[122] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[140] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[158] = (T)(img)(_n6##x,y,z,c)), \
(I[176] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[194] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[212] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[230] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[248] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[266] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[284] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[302] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[320] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[33] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[51] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[69] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[87] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[105] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[123] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[141] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[159] = (T)(img)(_n7##x,y,z,c)), \
(I[177] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[195] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[213] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[231] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[249] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[267] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[285] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[303] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[321] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[34] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[52] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[70] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[88] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[106] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[124] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[142] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[160] = (T)(img)(_n8##x,y,z,c)), \
(I[178] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[196] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[214] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[232] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[250] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[268] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[286] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[304] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[322] = (T)(img)(_n8##x,_n9##y,z,c)), \
9>=((img)._width)?(img).width() - 1:9); \
(_n9##x<(img).width() && ( \
(I[17] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[35] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[53] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[71] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[89] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[107] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[125] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[143] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[161] = (T)(img)(_n9##x,y,z,c)), \
(I[179] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[197] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[215] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[233] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[251] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[269] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[287] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[305] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[323] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \
I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
#define cimg_for_in18x18(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in18((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = (int)( \
(I[0] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[18] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[36] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[54] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[72] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[90] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[108] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[126] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[144] = (T)(img)(_p8##x,y,z,c)), \
(I[162] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[180] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[198] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[216] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[234] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[252] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[270] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[288] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[306] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[1] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[19] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[37] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[55] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[73] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[91] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[109] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[127] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[145] = (T)(img)(_p7##x,y,z,c)), \
(I[163] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[181] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[199] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[217] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[235] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[253] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[271] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[289] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[307] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[2] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[20] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[38] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[56] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[74] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[92] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[110] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[128] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[146] = (T)(img)(_p6##x,y,z,c)), \
(I[164] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[182] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[200] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[218] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[236] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[254] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[272] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[290] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[308] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[3] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[21] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[39] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[57] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[75] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[93] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[111] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[129] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[147] = (T)(img)(_p5##x,y,z,c)), \
(I[165] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[183] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[201] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[219] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[237] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[255] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[273] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[291] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[309] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[4] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[22] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[40] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[58] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[76] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[94] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[112] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[130] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[148] = (T)(img)(_p4##x,y,z,c)), \
(I[166] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[184] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[202] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[220] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[238] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[256] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[274] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[292] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[310] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[5] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[23] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[41] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[59] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[77] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[95] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[113] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[131] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[149] = (T)(img)(_p3##x,y,z,c)), \
(I[167] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[185] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[203] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[221] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[239] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[257] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[275] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[293] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[311] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[6] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[24] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[42] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[60] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[78] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[96] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[114] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[132] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[150] = (T)(img)(_p2##x,y,z,c)), \
(I[168] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[186] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[204] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[222] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[240] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[258] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[276] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[294] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[312] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[7] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[25] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[43] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[61] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[79] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[97] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[115] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[133] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[151] = (T)(img)(_p1##x,y,z,c)), \
(I[169] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[187] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[205] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[223] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[241] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[259] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[277] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[295] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[313] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[8] = (T)(img)(x,_p8##y,z,c)), \
(I[26] = (T)(img)(x,_p7##y,z,c)), \
(I[44] = (T)(img)(x,_p6##y,z,c)), \
(I[62] = (T)(img)(x,_p5##y,z,c)), \
(I[80] = (T)(img)(x,_p4##y,z,c)), \
(I[98] = (T)(img)(x,_p3##y,z,c)), \
(I[116] = (T)(img)(x,_p2##y,z,c)), \
(I[134] = (T)(img)(x,_p1##y,z,c)), \
(I[152] = (T)(img)(x,y,z,c)), \
(I[170] = (T)(img)(x,_n1##y,z,c)), \
(I[188] = (T)(img)(x,_n2##y,z,c)), \
(I[206] = (T)(img)(x,_n3##y,z,c)), \
(I[224] = (T)(img)(x,_n4##y,z,c)), \
(I[242] = (T)(img)(x,_n5##y,z,c)), \
(I[260] = (T)(img)(x,_n6##y,z,c)), \
(I[278] = (T)(img)(x,_n7##y,z,c)), \
(I[296] = (T)(img)(x,_n8##y,z,c)), \
(I[314] = (T)(img)(x,_n9##y,z,c)), \
(I[9] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[27] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[45] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[63] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[81] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[99] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[117] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[135] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[153] = (T)(img)(_n1##x,y,z,c)), \
(I[171] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[189] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[207] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[225] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[243] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[261] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[279] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[297] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[315] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[10] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[28] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[46] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[64] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[82] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[100] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[118] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[136] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[154] = (T)(img)(_n2##x,y,z,c)), \
(I[172] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[190] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[208] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[226] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[244] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[262] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[280] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[298] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[316] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[11] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[29] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[47] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[65] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[83] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[101] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[119] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[137] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[155] = (T)(img)(_n3##x,y,z,c)), \
(I[173] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[191] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[209] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[227] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[245] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[263] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[281] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[299] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[317] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[12] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[30] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[48] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[66] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[84] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[102] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[120] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[138] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[156] = (T)(img)(_n4##x,y,z,c)), \
(I[174] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[192] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[210] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[228] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[246] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[264] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[282] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[300] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[318] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[13] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[31] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[49] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[67] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[85] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[103] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[121] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[139] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[157] = (T)(img)(_n5##x,y,z,c)), \
(I[175] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[193] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[211] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[229] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[247] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[265] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[283] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[301] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[319] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[14] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[32] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[50] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[68] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[86] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[104] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[122] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[140] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[158] = (T)(img)(_n6##x,y,z,c)), \
(I[176] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[194] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[212] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[230] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[248] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[266] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[284] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[302] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[320] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[15] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[33] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[51] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[69] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[87] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[105] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[123] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[141] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[159] = (T)(img)(_n7##x,y,z,c)), \
(I[177] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[195] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[213] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[231] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[249] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[267] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[285] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[303] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[321] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[16] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[34] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[52] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[70] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[88] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[106] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[124] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[142] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[160] = (T)(img)(_n8##x,y,z,c)), \
(I[178] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[196] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[214] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[232] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[250] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[268] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[286] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[304] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[322] = (T)(img)(_n8##x,_n9##y,z,c)), \
x + 9>=(img).width()?(img).width() - 1:x + 9); \
x<=(int)(x1) && ((_n9##x<(img).width() && ( \
(I[17] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[35] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[53] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[71] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[89] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[107] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[125] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[143] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[161] = (T)(img)(_n9##x,y,z,c)), \
(I[179] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[197] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[215] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[233] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[251] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[269] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[287] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[305] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[323] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], \
I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
_p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
#define cimg_get18x18(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p8##x,_p8##y,z,c), I[1] = (T)(img)(_p7##x,_p8##y,z,c), I[2] = (T)(img)(_p6##x,_p8##y,z,c), I[3] = (T)(img)(_p5##x,_p8##y,z,c), I[4] = (T)(img)(_p4##x,_p8##y,z,c), I[5] = (T)(img)(_p3##x,_p8##y,z,c), I[6] = (T)(img)(_p2##x,_p8##y,z,c), I[7] = (T)(img)(_p1##x,_p8##y,z,c), I[8] = (T)(img)(x,_p8##y,z,c), I[9] = (T)(img)(_n1##x,_p8##y,z,c), I[10] = (T)(img)(_n2##x,_p8##y,z,c), I[11] = (T)(img)(_n3##x,_p8##y,z,c), I[12] = (T)(img)(_n4##x,_p8##y,z,c), I[13] = (T)(img)(_n5##x,_p8##y,z,c), I[14] = (T)(img)(_n6##x,_p8##y,z,c), I[15] = (T)(img)(_n7##x,_p8##y,z,c), I[16] = (T)(img)(_n8##x,_p8##y,z,c), I[17] = (T)(img)(_n9##x,_p8##y,z,c), \
I[18] = (T)(img)(_p8##x,_p7##y,z,c), I[19] = (T)(img)(_p7##x,_p7##y,z,c), I[20] = (T)(img)(_p6##x,_p7##y,z,c), I[21] = (T)(img)(_p5##x,_p7##y,z,c), I[22] = (T)(img)(_p4##x,_p7##y,z,c), I[23] = (T)(img)(_p3##x,_p7##y,z,c), I[24] = (T)(img)(_p2##x,_p7##y,z,c), I[25] = (T)(img)(_p1##x,_p7##y,z,c), I[26] = (T)(img)(x,_p7##y,z,c), I[27] = (T)(img)(_n1##x,_p7##y,z,c), I[28] = (T)(img)(_n2##x,_p7##y,z,c), I[29] = (T)(img)(_n3##x,_p7##y,z,c), I[30] = (T)(img)(_n4##x,_p7##y,z,c), I[31] = (T)(img)(_n5##x,_p7##y,z,c), I[32] = (T)(img)(_n6##x,_p7##y,z,c), I[33] = (T)(img)(_n7##x,_p7##y,z,c), I[34] = (T)(img)(_n8##x,_p7##y,z,c), I[35] = (T)(img)(_n9##x,_p7##y,z,c), \
I[36] = (T)(img)(_p8##x,_p6##y,z,c), I[37] = (T)(img)(_p7##x,_p6##y,z,c), I[38] = (T)(img)(_p6##x,_p6##y,z,c), I[39] = (T)(img)(_p5##x,_p6##y,z,c), I[40] = (T)(img)(_p4##x,_p6##y,z,c), I[41] = (T)(img)(_p3##x,_p6##y,z,c), I[42] = (T)(img)(_p2##x,_p6##y,z,c), I[43] = (T)(img)(_p1##x,_p6##y,z,c), I[44] = (T)(img)(x,_p6##y,z,c), I[45] = (T)(img)(_n1##x,_p6##y,z,c), I[46] = (T)(img)(_n2##x,_p6##y,z,c), I[47] = (T)(img)(_n3##x,_p6##y,z,c), I[48] = (T)(img)(_n4##x,_p6##y,z,c), I[49] = (T)(img)(_n5##x,_p6##y,z,c), I[50] = (T)(img)(_n6##x,_p6##y,z,c), I[51] = (T)(img)(_n7##x,_p6##y,z,c), I[52] = (T)(img)(_n8##x,_p6##y,z,c), I[53] = (T)(img)(_n9##x,_p6##y,z,c), \
I[54] = (T)(img)(_p8##x,_p5##y,z,c), I[55] = (T)(img)(_p7##x,_p5##y,z,c), I[56] = (T)(img)(_p6##x,_p5##y,z,c), I[57] = (T)(img)(_p5##x,_p5##y,z,c), I[58] = (T)(img)(_p4##x,_p5##y,z,c), I[59] = (T)(img)(_p3##x,_p5##y,z,c), I[60] = (T)(img)(_p2##x,_p5##y,z,c), I[61] = (T)(img)(_p1##x,_p5##y,z,c), I[62] = (T)(img)(x,_p5##y,z,c), I[63] = (T)(img)(_n1##x,_p5##y,z,c), I[64] = (T)(img)(_n2##x,_p5##y,z,c), I[65] = (T)(img)(_n3##x,_p5##y,z,c), I[66] = (T)(img)(_n4##x,_p5##y,z,c), I[67] = (T)(img)(_n5##x,_p5##y,z,c), I[68] = (T)(img)(_n6##x,_p5##y,z,c), I[69] = (T)(img)(_n7##x,_p5##y,z,c), I[70] = (T)(img)(_n8##x,_p5##y,z,c), I[71] = (T)(img)(_n9##x,_p5##y,z,c), \
I[72] = (T)(img)(_p8##x,_p4##y,z,c), I[73] = (T)(img)(_p7##x,_p4##y,z,c), I[74] = (T)(img)(_p6##x,_p4##y,z,c), I[75] = (T)(img)(_p5##x,_p4##y,z,c), I[76] = (T)(img)(_p4##x,_p4##y,z,c), I[77] = (T)(img)(_p3##x,_p4##y,z,c), I[78] = (T)(img)(_p2##x,_p4##y,z,c), I[79] = (T)(img)(_p1##x,_p4##y,z,c), I[80] = (T)(img)(x,_p4##y,z,c), I[81] = (T)(img)(_n1##x,_p4##y,z,c), I[82] = (T)(img)(_n2##x,_p4##y,z,c), I[83] = (T)(img)(_n3##x,_p4##y,z,c), I[84] = (T)(img)(_n4##x,_p4##y,z,c), I[85] = (T)(img)(_n5##x,_p4##y,z,c), I[86] = (T)(img)(_n6##x,_p4##y,z,c), I[87] = (T)(img)(_n7##x,_p4##y,z,c), I[88] = (T)(img)(_n8##x,_p4##y,z,c), I[89] = (T)(img)(_n9##x,_p4##y,z,c), \
I[90] = (T)(img)(_p8##x,_p3##y,z,c), I[91] = (T)(img)(_p7##x,_p3##y,z,c), I[92] = (T)(img)(_p6##x,_p3##y,z,c), I[93] = (T)(img)(_p5##x,_p3##y,z,c), I[94] = (T)(img)(_p4##x,_p3##y,z,c), I[95] = (T)(img)(_p3##x,_p3##y,z,c), I[96] = (T)(img)(_p2##x,_p3##y,z,c), I[97] = (T)(img)(_p1##x,_p3##y,z,c), I[98] = (T)(img)(x,_p3##y,z,c), I[99] = (T)(img)(_n1##x,_p3##y,z,c), I[100] = (T)(img)(_n2##x,_p3##y,z,c), I[101] = (T)(img)(_n3##x,_p3##y,z,c), I[102] = (T)(img)(_n4##x,_p3##y,z,c), I[103] = (T)(img)(_n5##x,_p3##y,z,c), I[104] = (T)(img)(_n6##x,_p3##y,z,c), I[105] = (T)(img)(_n7##x,_p3##y,z,c), I[106] = (T)(img)(_n8##x,_p3##y,z,c), I[107] = (T)(img)(_n9##x,_p3##y,z,c), \
I[108] = (T)(img)(_p8##x,_p2##y,z,c), I[109] = (T)(img)(_p7##x,_p2##y,z,c), I[110] = (T)(img)(_p6##x,_p2##y,z,c), I[111] = (T)(img)(_p5##x,_p2##y,z,c), I[112] = (T)(img)(_p4##x,_p2##y,z,c), I[113] = (T)(img)(_p3##x,_p2##y,z,c), I[114] = (T)(img)(_p2##x,_p2##y,z,c), I[115] = (T)(img)(_p1##x,_p2##y,z,c), I[116] = (T)(img)(x,_p2##y,z,c), I[117] = (T)(img)(_n1##x,_p2##y,z,c), I[118] = (T)(img)(_n2##x,_p2##y,z,c), I[119] = (T)(img)(_n3##x,_p2##y,z,c), I[120] = (T)(img)(_n4##x,_p2##y,z,c), I[121] = (T)(img)(_n5##x,_p2##y,z,c), I[122] = (T)(img)(_n6##x,_p2##y,z,c), I[123] = (T)(img)(_n7##x,_p2##y,z,c), I[124] = (T)(img)(_n8##x,_p2##y,z,c), I[125] = (T)(img)(_n9##x,_p2##y,z,c), \
I[126] = (T)(img)(_p8##x,_p1##y,z,c), I[127] = (T)(img)(_p7##x,_p1##y,z,c), I[128] = (T)(img)(_p6##x,_p1##y,z,c), I[129] = (T)(img)(_p5##x,_p1##y,z,c), I[130] = (T)(img)(_p4##x,_p1##y,z,c), I[131] = (T)(img)(_p3##x,_p1##y,z,c), I[132] = (T)(img)(_p2##x,_p1##y,z,c), I[133] = (T)(img)(_p1##x,_p1##y,z,c), I[134] = (T)(img)(x,_p1##y,z,c), I[135] = (T)(img)(_n1##x,_p1##y,z,c), I[136] = (T)(img)(_n2##x,_p1##y,z,c), I[137] = (T)(img)(_n3##x,_p1##y,z,c), I[138] = (T)(img)(_n4##x,_p1##y,z,c), I[139] = (T)(img)(_n5##x,_p1##y,z,c), I[140] = (T)(img)(_n6##x,_p1##y,z,c), I[141] = (T)(img)(_n7##x,_p1##y,z,c), I[142] = (T)(img)(_n8##x,_p1##y,z,c), I[143] = (T)(img)(_n9##x,_p1##y,z,c), \
I[144] = (T)(img)(_p8##x,y,z,c), I[145] = (T)(img)(_p7##x,y,z,c), I[146] = (T)(img)(_p6##x,y,z,c), I[147] = (T)(img)(_p5##x,y,z,c), I[148] = (T)(img)(_p4##x,y,z,c), I[149] = (T)(img)(_p3##x,y,z,c), I[150] = (T)(img)(_p2##x,y,z,c), I[151] = (T)(img)(_p1##x,y,z,c), I[152] = (T)(img)(x,y,z,c), I[153] = (T)(img)(_n1##x,y,z,c), I[154] = (T)(img)(_n2##x,y,z,c), I[155] = (T)(img)(_n3##x,y,z,c), I[156] = (T)(img)(_n4##x,y,z,c), I[157] = (T)(img)(_n5##x,y,z,c), I[158] = (T)(img)(_n6##x,y,z,c), I[159] = (T)(img)(_n7##x,y,z,c), I[160] = (T)(img)(_n8##x,y,z,c), I[161] = (T)(img)(_n9##x,y,z,c), \
I[162] = (T)(img)(_p8##x,_n1##y,z,c), I[163] = (T)(img)(_p7##x,_n1##y,z,c), I[164] = (T)(img)(_p6##x,_n1##y,z,c), I[165] = (T)(img)(_p5##x,_n1##y,z,c), I[166] = (T)(img)(_p4##x,_n1##y,z,c), I[167] = (T)(img)(_p3##x,_n1##y,z,c), I[168] = (T)(img)(_p2##x,_n1##y,z,c), I[169] = (T)(img)(_p1##x,_n1##y,z,c), I[170] = (T)(img)(x,_n1##y,z,c), I[171] = (T)(img)(_n1##x,_n1##y,z,c), I[172] = (T)(img)(_n2##x,_n1##y,z,c), I[173] = (T)(img)(_n3##x,_n1##y,z,c), I[174] = (T)(img)(_n4##x,_n1##y,z,c), I[175] = (T)(img)(_n5##x,_n1##y,z,c), I[176] = (T)(img)(_n6##x,_n1##y,z,c), I[177] = (T)(img)(_n7##x,_n1##y,z,c), I[178] = (T)(img)(_n8##x,_n1##y,z,c), I[179] = (T)(img)(_n9##x,_n1##y,z,c), \
I[180] = (T)(img)(_p8##x,_n2##y,z,c), I[181] = (T)(img)(_p7##x,_n2##y,z,c), I[182] = (T)(img)(_p6##x,_n2##y,z,c), I[183] = (T)(img)(_p5##x,_n2##y,z,c), I[184] = (T)(img)(_p4##x,_n2##y,z,c), I[185] = (T)(img)(_p3##x,_n2##y,z,c), I[186] = (T)(img)(_p2##x,_n2##y,z,c), I[187] = (T)(img)(_p1##x,_n2##y,z,c), I[188] = (T)(img)(x,_n2##y,z,c), I[189] = (T)(img)(_n1##x,_n2##y,z,c), I[190] = (T)(img)(_n2##x,_n2##y,z,c), I[191] = (T)(img)(_n3##x,_n2##y,z,c), I[192] = (T)(img)(_n4##x,_n2##y,z,c), I[193] = (T)(img)(_n5##x,_n2##y,z,c), I[194] = (T)(img)(_n6##x,_n2##y,z,c), I[195] = (T)(img)(_n7##x,_n2##y,z,c), I[196] = (T)(img)(_n8##x,_n2##y,z,c), I[197] = (T)(img)(_n9##x,_n2##y,z,c), \
I[198] = (T)(img)(_p8##x,_n3##y,z,c), I[199] = (T)(img)(_p7##x,_n3##y,z,c), I[200] = (T)(img)(_p6##x,_n3##y,z,c), I[201] = (T)(img)(_p5##x,_n3##y,z,c), I[202] = (T)(img)(_p4##x,_n3##y,z,c), I[203] = (T)(img)(_p3##x,_n3##y,z,c), I[204] = (T)(img)(_p2##x,_n3##y,z,c), I[205] = (T)(img)(_p1##x,_n3##y,z,c), I[206] = (T)(img)(x,_n3##y,z,c), I[207] = (T)(img)(_n1##x,_n3##y,z,c), I[208] = (T)(img)(_n2##x,_n3##y,z,c), I[209] = (T)(img)(_n3##x,_n3##y,z,c), I[210] = (T)(img)(_n4##x,_n3##y,z,c), I[211] = (T)(img)(_n5##x,_n3##y,z,c), I[212] = (T)(img)(_n6##x,_n3##y,z,c), I[213] = (T)(img)(_n7##x,_n3##y,z,c), I[214] = (T)(img)(_n8##x,_n3##y,z,c), I[215] = (T)(img)(_n9##x,_n3##y,z,c), \
I[216] = (T)(img)(_p8##x,_n4##y,z,c), I[217] = (T)(img)(_p7##x,_n4##y,z,c), I[218] = (T)(img)(_p6##x,_n4##y,z,c), I[219] = (T)(img)(_p5##x,_n4##y,z,c), I[220] = (T)(img)(_p4##x,_n4##y,z,c), I[221] = (T)(img)(_p3##x,_n4##y,z,c), I[222] = (T)(img)(_p2##x,_n4##y,z,c), I[223] = (T)(img)(_p1##x,_n4##y,z,c), I[224] = (T)(img)(x,_n4##y,z,c), I[225] = (T)(img)(_n1##x,_n4##y,z,c), I[226] = (T)(img)(_n2##x,_n4##y,z,c), I[227] = (T)(img)(_n3##x,_n4##y,z,c), I[228] = (T)(img)(_n4##x,_n4##y,z,c), I[229] = (T)(img)(_n5##x,_n4##y,z,c), I[230] = (T)(img)(_n6##x,_n4##y,z,c), I[231] = (T)(img)(_n7##x,_n4##y,z,c), I[232] = (T)(img)(_n8##x,_n4##y,z,c), I[233] = (T)(img)(_n9##x,_n4##y,z,c), \
I[234] = (T)(img)(_p8##x,_n5##y,z,c), I[235] = (T)(img)(_p7##x,_n5##y,z,c), I[236] = (T)(img)(_p6##x,_n5##y,z,c), I[237] = (T)(img)(_p5##x,_n5##y,z,c), I[238] = (T)(img)(_p4##x,_n5##y,z,c), I[239] = (T)(img)(_p3##x,_n5##y,z,c), I[240] = (T)(img)(_p2##x,_n5##y,z,c), I[241] = (T)(img)(_p1##x,_n5##y,z,c), I[242] = (T)(img)(x,_n5##y,z,c), I[243] = (T)(img)(_n1##x,_n5##y,z,c), I[244] = (T)(img)(_n2##x,_n5##y,z,c), I[245] = (T)(img)(_n3##x,_n5##y,z,c), I[246] = (T)(img)(_n4##x,_n5##y,z,c), I[247] = (T)(img)(_n5##x,_n5##y,z,c), I[248] = (T)(img)(_n6##x,_n5##y,z,c), I[249] = (T)(img)(_n7##x,_n5##y,z,c), I[250] = (T)(img)(_n8##x,_n5##y,z,c), I[251] = (T)(img)(_n9##x,_n5##y,z,c), \
I[252] = (T)(img)(_p8##x,_n6##y,z,c), I[253] = (T)(img)(_p7##x,_n6##y,z,c), I[254] = (T)(img)(_p6##x,_n6##y,z,c), I[255] = (T)(img)(_p5##x,_n6##y,z,c), I[256] = (T)(img)(_p4##x,_n6##y,z,c), I[257] = (T)(img)(_p3##x,_n6##y,z,c), I[258] = (T)(img)(_p2##x,_n6##y,z,c), I[259] = (T)(img)(_p1##x,_n6##y,z,c), I[260] = (T)(img)(x,_n6##y,z,c), I[261] = (T)(img)(_n1##x,_n6##y,z,c), I[262] = (T)(img)(_n2##x,_n6##y,z,c), I[263] = (T)(img)(_n3##x,_n6##y,z,c), I[264] = (T)(img)(_n4##x,_n6##y,z,c), I[265] = (T)(img)(_n5##x,_n6##y,z,c), I[266] = (T)(img)(_n6##x,_n6##y,z,c), I[267] = (T)(img)(_n7##x,_n6##y,z,c), I[268] = (T)(img)(_n8##x,_n6##y,z,c), I[269] = (T)(img)(_n9##x,_n6##y,z,c), \
I[270] = (T)(img)(_p8##x,_n7##y,z,c), I[271] = (T)(img)(_p7##x,_n7##y,z,c), I[272] = (T)(img)(_p6##x,_n7##y,z,c), I[273] = (T)(img)(_p5##x,_n7##y,z,c), I[274] = (T)(img)(_p4##x,_n7##y,z,c), I[275] = (T)(img)(_p3##x,_n7##y,z,c), I[276] = (T)(img)(_p2##x,_n7##y,z,c), I[277] = (T)(img)(_p1##x,_n7##y,z,c), I[278] = (T)(img)(x,_n7##y,z,c), I[279] = (T)(img)(_n1##x,_n7##y,z,c), I[280] = (T)(img)(_n2##x,_n7##y,z,c), I[281] = (T)(img)(_n3##x,_n7##y,z,c), I[282] = (T)(img)(_n4##x,_n7##y,z,c), I[283] = (T)(img)(_n5##x,_n7##y,z,c), I[284] = (T)(img)(_n6##x,_n7##y,z,c), I[285] = (T)(img)(_n7##x,_n7##y,z,c), I[286] = (T)(img)(_n8##x,_n7##y,z,c), I[287] = (T)(img)(_n9##x,_n7##y,z,c), \
I[288] = (T)(img)(_p8##x,_n8##y,z,c), I[289] = (T)(img)(_p7##x,_n8##y,z,c), I[290] = (T)(img)(_p6##x,_n8##y,z,c), I[291] = (T)(img)(_p5##x,_n8##y,z,c), I[292] = (T)(img)(_p4##x,_n8##y,z,c), I[293] = (T)(img)(_p3##x,_n8##y,z,c), I[294] = (T)(img)(_p2##x,_n8##y,z,c), I[295] = (T)(img)(_p1##x,_n8##y,z,c), I[296] = (T)(img)(x,_n8##y,z,c), I[297] = (T)(img)(_n1##x,_n8##y,z,c), I[298] = (T)(img)(_n2##x,_n8##y,z,c), I[299] = (T)(img)(_n3##x,_n8##y,z,c), I[300] = (T)(img)(_n4##x,_n8##y,z,c), I[301] = (T)(img)(_n5##x,_n8##y,z,c), I[302] = (T)(img)(_n6##x,_n8##y,z,c), I[303] = (T)(img)(_n7##x,_n8##y,z,c), I[304] = (T)(img)(_n8##x,_n8##y,z,c), I[305] = (T)(img)(_n9##x,_n8##y,z,c), \
I[306] = (T)(img)(_p8##x,_n9##y,z,c), I[307] = (T)(img)(_p7##x,_n9##y,z,c), I[308] = (T)(img)(_p6##x,_n9##y,z,c), I[309] = (T)(img)(_p5##x,_n9##y,z,c), I[310] = (T)(img)(_p4##x,_n9##y,z,c), I[311] = (T)(img)(_p3##x,_n9##y,z,c), I[312] = (T)(img)(_p2##x,_n9##y,z,c), I[313] = (T)(img)(_p1##x,_n9##y,z,c), I[314] = (T)(img)(x,_n9##y,z,c), I[315] = (T)(img)(_n1##x,_n9##y,z,c), I[316] = (T)(img)(_n2##x,_n9##y,z,c), I[317] = (T)(img)(_n3##x,_n9##y,z,c), I[318] = (T)(img)(_n4##x,_n9##y,z,c), I[319] = (T)(img)(_n5##x,_n9##y,z,c), I[320] = (T)(img)(_n6##x,_n9##y,z,c), I[321] = (T)(img)(_n7##x,_n9##y,z,c), I[322] = (T)(img)(_n8##x,_n9##y,z,c), I[323] = (T)(img)(_n9##x,_n9##y,z,c);
// Define 19x19 loop macros
//-------------------------
#define cimg_for19(bound,i) for (int i = 0, \
_p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9; \
_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
#define cimg_for19X(img,x) cimg_for19((img)._width,x)
#define cimg_for19Y(img,y) cimg_for19((img)._height,y)
#define cimg_for19Z(img,z) cimg_for19((img)._depth,z)
#define cimg_for19C(img,c) cimg_for19((img)._spectrum,c)
#define cimg_for19XY(img,x,y) cimg_for19Y(img,y) cimg_for19X(img,x)
#define cimg_for19XZ(img,x,z) cimg_for19Z(img,z) cimg_for19X(img,x)
#define cimg_for19XC(img,x,c) cimg_for19C(img,c) cimg_for19X(img,x)
#define cimg_for19YZ(img,y,z) cimg_for19Z(img,z) cimg_for19Y(img,y)
#define cimg_for19YC(img,y,c) cimg_for19C(img,c) cimg_for19Y(img,y)
#define cimg_for19ZC(img,z,c) cimg_for19C(img,c) cimg_for19Z(img,z)
#define cimg_for19XYZ(img,x,y,z) cimg_for19Z(img,z) cimg_for19XY(img,x,y)
#define cimg_for19XZC(img,x,z,c) cimg_for19C(img,c) cimg_for19XZ(img,x,z)
#define cimg_for19YZC(img,y,z,c) cimg_for19C(img,c) cimg_for19YZ(img,y,z)
#define cimg_for19XYZC(img,x,y,z,c) cimg_for19C(img,c) cimg_for19XYZ(img,x,y,z)
#define cimg_for_in19(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9; \
i<=(int)(i1) && (_n9##i<(int)(bound) || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i)
#define cimg_for_in19X(img,x0,x1,x) cimg_for_in19((img)._width,x0,x1,x)
#define cimg_for_in19Y(img,y0,y1,y) cimg_for_in19((img)._height,y0,y1,y)
#define cimg_for_in19Z(img,z0,z1,z) cimg_for_in19((img)._depth,z0,z1,z)
#define cimg_for_in19C(img,c0,c1,c) cimg_for_in19((img)._spectrum,c0,c1,c)
#define cimg_for_in19XY(img,x0,y0,x1,y1,x,y) cimg_for_in19Y(img,y0,y1,y) cimg_for_in19X(img,x0,x1,x)
#define cimg_for_in19XZ(img,x0,z0,x1,z1,x,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19X(img,x0,x1,x)
#define cimg_for_in19XC(img,x0,c0,x1,c1,x,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19X(img,x0,x1,x)
#define cimg_for_in19YZ(img,y0,z0,y1,z1,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19Y(img,y0,y1,y)
#define cimg_for_in19YC(img,y0,c0,y1,c1,y,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19Y(img,y0,y1,y)
#define cimg_for_in19ZC(img,z0,c0,z1,c1,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19Z(img,z0,z1,z)
#define cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in19Z(img,z0,z1,z) cimg_for_in19XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in19XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in19YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in19XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in19C(img,c0,c1,c) cimg_for_in19XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for19x19(img,x,y,z,c,I,T) \
cimg_for19((img)._height,y) for (int x = 0, \
_p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (T)(img)(0,_p9##y,z,c)), \
(I[19] = I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = (T)(img)(0,_p8##y,z,c)), \
(I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = (T)(img)(0,_p7##y,z,c)), \
(I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = (T)(img)(0,_p6##y,z,c)), \
(I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = (T)(img)(0,_p5##y,z,c)), \
(I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_p4##y,z,c)), \
(I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = (T)(img)(0,_p3##y,z,c)), \
(I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_p2##y,z,c)), \
(I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = (T)(img)(0,_p1##y,z,c)), \
(I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = (T)(img)(0,y,z,c)), \
(I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_n1##y,z,c)), \
(I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (T)(img)(0,_n2##y,z,c)), \
(I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (T)(img)(0,_n3##y,z,c)), \
(I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = (T)(img)(0,_n4##y,z,c)), \
(I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (T)(img)(0,_n5##y,z,c)), \
(I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = (T)(img)(0,_n6##y,z,c)), \
(I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = (T)(img)(0,_n7##y,z,c)), \
(I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = (T)(img)(0,_n8##y,z,c)), \
(I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = (T)(img)(0,_n9##y,z,c)), \
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[29] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[48] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[67] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[86] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[124] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[162] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[181] = (T)(img)(_n1##x,y,z,c)), \
(I[200] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[219] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[238] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[257] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[276] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[295] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[314] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[333] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[352] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[30] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[49] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[68] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[87] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[125] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[163] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[182] = (T)(img)(_n2##x,y,z,c)), \
(I[201] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[220] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[239] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[258] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[277] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[296] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[315] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[334] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[353] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[31] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[50] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[69] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[88] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[126] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[164] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[183] = (T)(img)(_n3##x,y,z,c)), \
(I[202] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[221] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[240] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[259] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[278] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[297] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[316] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[335] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[354] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[32] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[51] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[70] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[89] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[108] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[127] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[165] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[184] = (T)(img)(_n4##x,y,z,c)), \
(I[203] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[222] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[241] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[260] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[279] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[298] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[317] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[336] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[355] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[33] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[52] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[71] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[90] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[109] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[128] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[166] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[185] = (T)(img)(_n5##x,y,z,c)), \
(I[204] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[223] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[242] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[261] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[280] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[299] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[318] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[337] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[356] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[34] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[53] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[72] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[91] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[110] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[129] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[167] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[186] = (T)(img)(_n6##x,y,z,c)), \
(I[205] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[224] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[243] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[262] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[281] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[300] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[319] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[338] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[357] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[35] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[54] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[73] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[92] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[111] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[130] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[168] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[187] = (T)(img)(_n7##x,y,z,c)), \
(I[206] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[225] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[244] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[263] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[282] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[301] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[320] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[339] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[358] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[36] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[55] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[74] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[93] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[112] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[131] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[150] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[169] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[188] = (T)(img)(_n8##x,y,z,c)), \
(I[207] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[226] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[245] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[264] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[283] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[302] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[321] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[340] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[359] = (T)(img)(_n8##x,_n9##y,z,c)), \
9>=((img)._width)?(img).width() - 1:9); \
(_n9##x<(img).width() && ( \
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[37] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[56] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[75] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[94] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[113] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[132] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[151] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[170] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[189] = (T)(img)(_n9##x,y,z,c)), \
(I[208] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[227] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[246] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[265] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[284] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[303] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[322] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[341] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[360] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \
I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \
I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \
I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \
I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \
I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \
I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \
I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \
I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \
I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \
I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \
I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \
I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
#define cimg_for_in19x19(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in19((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = (int)( \
(I[0] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[19] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[38] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[57] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[76] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[95] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[114] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[133] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[152] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[171] = (T)(img)(_p9##x,y,z,c)), \
(I[190] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[209] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[228] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[247] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[266] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[285] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[304] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[323] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[342] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[1] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[20] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[39] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[58] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[77] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[96] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[115] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[134] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[153] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[172] = (T)(img)(_p8##x,y,z,c)), \
(I[191] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[210] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[229] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[248] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[267] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[286] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[305] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[324] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[343] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[2] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[21] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[40] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[59] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[78] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[97] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[116] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[135] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[154] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[173] = (T)(img)(_p7##x,y,z,c)), \
(I[192] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[211] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[230] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[249] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[268] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[287] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[306] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[325] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[344] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[3] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[22] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[41] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[60] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[79] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[98] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[117] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[136] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[155] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[174] = (T)(img)(_p6##x,y,z,c)), \
(I[193] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[212] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[231] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[250] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[269] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[288] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[307] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[326] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[345] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[4] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[23] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[42] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[61] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[80] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[99] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[118] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[137] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[156] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[175] = (T)(img)(_p5##x,y,z,c)), \
(I[194] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[213] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[232] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[251] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[270] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[289] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[308] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[327] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[346] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[5] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[24] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[43] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[62] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[81] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[100] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[119] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[138] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[157] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[176] = (T)(img)(_p4##x,y,z,c)), \
(I[195] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[214] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[233] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[252] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[271] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[290] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[309] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[328] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[347] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[6] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[25] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[44] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[63] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[82] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[101] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[120] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[139] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[158] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[177] = (T)(img)(_p3##x,y,z,c)), \
(I[196] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[215] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[234] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[253] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[272] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[291] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[310] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[329] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[348] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[7] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[26] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[45] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[64] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[83] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[102] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[121] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[140] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[159] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[178] = (T)(img)(_p2##x,y,z,c)), \
(I[197] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[216] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[235] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[254] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[273] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[292] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[311] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[330] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[349] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[8] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[27] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[46] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[65] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[84] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[103] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[122] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[141] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[160] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[179] = (T)(img)(_p1##x,y,z,c)), \
(I[198] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[217] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[236] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[255] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[274] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[293] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[312] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[331] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[350] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[9] = (T)(img)(x,_p9##y,z,c)), \
(I[28] = (T)(img)(x,_p8##y,z,c)), \
(I[47] = (T)(img)(x,_p7##y,z,c)), \
(I[66] = (T)(img)(x,_p6##y,z,c)), \
(I[85] = (T)(img)(x,_p5##y,z,c)), \
(I[104] = (T)(img)(x,_p4##y,z,c)), \
(I[123] = (T)(img)(x,_p3##y,z,c)), \
(I[142] = (T)(img)(x,_p2##y,z,c)), \
(I[161] = (T)(img)(x,_p1##y,z,c)), \
(I[180] = (T)(img)(x,y,z,c)), \
(I[199] = (T)(img)(x,_n1##y,z,c)), \
(I[218] = (T)(img)(x,_n2##y,z,c)), \
(I[237] = (T)(img)(x,_n3##y,z,c)), \
(I[256] = (T)(img)(x,_n4##y,z,c)), \
(I[275] = (T)(img)(x,_n5##y,z,c)), \
(I[294] = (T)(img)(x,_n6##y,z,c)), \
(I[313] = (T)(img)(x,_n7##y,z,c)), \
(I[332] = (T)(img)(x,_n8##y,z,c)), \
(I[351] = (T)(img)(x,_n9##y,z,c)), \
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[29] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[48] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[67] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[86] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[124] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[162] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[181] = (T)(img)(_n1##x,y,z,c)), \
(I[200] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[219] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[238] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[257] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[276] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[295] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[314] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[333] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[352] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[30] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[49] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[68] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[87] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[125] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[163] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[182] = (T)(img)(_n2##x,y,z,c)), \
(I[201] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[220] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[239] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[258] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[277] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[296] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[315] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[334] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[353] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[31] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[50] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[69] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[88] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[126] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[164] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[183] = (T)(img)(_n3##x,y,z,c)), \
(I[202] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[221] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[240] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[259] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[278] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[297] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[316] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[335] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[354] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[32] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[51] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[70] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[89] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[108] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[127] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[165] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[184] = (T)(img)(_n4##x,y,z,c)), \
(I[203] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[222] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[241] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[260] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[279] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[298] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[317] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[336] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[355] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[33] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[52] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[71] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[90] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[109] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[128] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[166] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[185] = (T)(img)(_n5##x,y,z,c)), \
(I[204] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[223] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[242] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[261] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[280] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[299] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[318] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[337] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[356] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[34] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[53] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[72] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[91] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[110] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[129] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[167] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[186] = (T)(img)(_n6##x,y,z,c)), \
(I[205] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[224] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[243] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[262] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[281] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[300] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[319] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[338] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[357] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[35] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[54] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[73] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[92] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[111] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[130] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[168] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[187] = (T)(img)(_n7##x,y,z,c)), \
(I[206] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[225] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[244] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[263] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[282] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[301] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[320] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[339] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[358] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[36] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[55] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[74] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[93] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[112] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[131] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[150] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[169] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[188] = (T)(img)(_n8##x,y,z,c)), \
(I[207] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[226] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[245] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[264] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[283] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[302] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[321] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[340] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[359] = (T)(img)(_n8##x,_n9##y,z,c)), \
x + 9>=(img).width()?(img).width() - 1:x + 9); \
x<=(int)(x1) && ((_n9##x<(img).width() && ( \
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[37] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[56] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[75] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[94] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[113] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[132] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[151] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[170] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[189] = (T)(img)(_n9##x,y,z,c)), \
(I[208] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[227] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[246] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[265] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[284] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[303] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[322] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[341] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[360] = (T)(img)(_n9##x,_n9##y,z,c)),1)) || \
_n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], \
I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], \
I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], \
I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], \
I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], \
I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], \
I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], \
I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], \
I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], \
I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], \
I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], \
I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], \
I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], \
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x)
#define cimg_get19x19(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p9##x,_p9##y,z,c), I[1] = (T)(img)(_p8##x,_p9##y,z,c), I[2] = (T)(img)(_p7##x,_p9##y,z,c), I[3] = (T)(img)(_p6##x,_p9##y,z,c), I[4] = (T)(img)(_p5##x,_p9##y,z,c), I[5] = (T)(img)(_p4##x,_p9##y,z,c), I[6] = (T)(img)(_p3##x,_p9##y,z,c), I[7] = (T)(img)(_p2##x,_p9##y,z,c), I[8] = (T)(img)(_p1##x,_p9##y,z,c), I[9] = (T)(img)(x,_p9##y,z,c), I[10] = (T)(img)(_n1##x,_p9##y,z,c), I[11] = (T)(img)(_n2##x,_p9##y,z,c), I[12] = (T)(img)(_n3##x,_p9##y,z,c), I[13] = (T)(img)(_n4##x,_p9##y,z,c), I[14] = (T)(img)(_n5##x,_p9##y,z,c), I[15] = (T)(img)(_n6##x,_p9##y,z,c), I[16] = (T)(img)(_n7##x,_p9##y,z,c), I[17] = (T)(img)(_n8##x,_p9##y,z,c), I[18] = (T)(img)(_n9##x,_p9##y,z,c), \
I[19] = (T)(img)(_p9##x,_p8##y,z,c), I[20] = (T)(img)(_p8##x,_p8##y,z,c), I[21] = (T)(img)(_p7##x,_p8##y,z,c), I[22] = (T)(img)(_p6##x,_p8##y,z,c), I[23] = (T)(img)(_p5##x,_p8##y,z,c), I[24] = (T)(img)(_p4##x,_p8##y,z,c), I[25] = (T)(img)(_p3##x,_p8##y,z,c), I[26] = (T)(img)(_p2##x,_p8##y,z,c), I[27] = (T)(img)(_p1##x,_p8##y,z,c), I[28] = (T)(img)(x,_p8##y,z,c), I[29] = (T)(img)(_n1##x,_p8##y,z,c), I[30] = (T)(img)(_n2##x,_p8##y,z,c), I[31] = (T)(img)(_n3##x,_p8##y,z,c), I[32] = (T)(img)(_n4##x,_p8##y,z,c), I[33] = (T)(img)(_n5##x,_p8##y,z,c), I[34] = (T)(img)(_n6##x,_p8##y,z,c), I[35] = (T)(img)(_n7##x,_p8##y,z,c), I[36] = (T)(img)(_n8##x,_p8##y,z,c), I[37] = (T)(img)(_n9##x,_p8##y,z,c), \
I[38] = (T)(img)(_p9##x,_p7##y,z,c), I[39] = (T)(img)(_p8##x,_p7##y,z,c), I[40] = (T)(img)(_p7##x,_p7##y,z,c), I[41] = (T)(img)(_p6##x,_p7##y,z,c), I[42] = (T)(img)(_p5##x,_p7##y,z,c), I[43] = (T)(img)(_p4##x,_p7##y,z,c), I[44] = (T)(img)(_p3##x,_p7##y,z,c), I[45] = (T)(img)(_p2##x,_p7##y,z,c), I[46] = (T)(img)(_p1##x,_p7##y,z,c), I[47] = (T)(img)(x,_p7##y,z,c), I[48] = (T)(img)(_n1##x,_p7##y,z,c), I[49] = (T)(img)(_n2##x,_p7##y,z,c), I[50] = (T)(img)(_n3##x,_p7##y,z,c), I[51] = (T)(img)(_n4##x,_p7##y,z,c), I[52] = (T)(img)(_n5##x,_p7##y,z,c), I[53] = (T)(img)(_n6##x,_p7##y,z,c), I[54] = (T)(img)(_n7##x,_p7##y,z,c), I[55] = (T)(img)(_n8##x,_p7##y,z,c), I[56] = (T)(img)(_n9##x,_p7##y,z,c), \
I[57] = (T)(img)(_p9##x,_p6##y,z,c), I[58] = (T)(img)(_p8##x,_p6##y,z,c), I[59] = (T)(img)(_p7##x,_p6##y,z,c), I[60] = (T)(img)(_p6##x,_p6##y,z,c), I[61] = (T)(img)(_p5##x,_p6##y,z,c), I[62] = (T)(img)(_p4##x,_p6##y,z,c), I[63] = (T)(img)(_p3##x,_p6##y,z,c), I[64] = (T)(img)(_p2##x,_p6##y,z,c), I[65] = (T)(img)(_p1##x,_p6##y,z,c), I[66] = (T)(img)(x,_p6##y,z,c), I[67] = (T)(img)(_n1##x,_p6##y,z,c), I[68] = (T)(img)(_n2##x,_p6##y,z,c), I[69] = (T)(img)(_n3##x,_p6##y,z,c), I[70] = (T)(img)(_n4##x,_p6##y,z,c), I[71] = (T)(img)(_n5##x,_p6##y,z,c), I[72] = (T)(img)(_n6##x,_p6##y,z,c), I[73] = (T)(img)(_n7##x,_p6##y,z,c), I[74] = (T)(img)(_n8##x,_p6##y,z,c), I[75] = (T)(img)(_n9##x,_p6##y,z,c), \
I[76] = (T)(img)(_p9##x,_p5##y,z,c), I[77] = (T)(img)(_p8##x,_p5##y,z,c), I[78] = (T)(img)(_p7##x,_p5##y,z,c), I[79] = (T)(img)(_p6##x,_p5##y,z,c), I[80] = (T)(img)(_p5##x,_p5##y,z,c), I[81] = (T)(img)(_p4##x,_p5##y,z,c), I[82] = (T)(img)(_p3##x,_p5##y,z,c), I[83] = (T)(img)(_p2##x,_p5##y,z,c), I[84] = (T)(img)(_p1##x,_p5##y,z,c), I[85] = (T)(img)(x,_p5##y,z,c), I[86] = (T)(img)(_n1##x,_p5##y,z,c), I[87] = (T)(img)(_n2##x,_p5##y,z,c), I[88] = (T)(img)(_n3##x,_p5##y,z,c), I[89] = (T)(img)(_n4##x,_p5##y,z,c), I[90] = (T)(img)(_n5##x,_p5##y,z,c), I[91] = (T)(img)(_n6##x,_p5##y,z,c), I[92] = (T)(img)(_n7##x,_p5##y,z,c), I[93] = (T)(img)(_n8##x,_p5##y,z,c), I[94] = (T)(img)(_n9##x,_p5##y,z,c), \
I[95] = (T)(img)(_p9##x,_p4##y,z,c), I[96] = (T)(img)(_p8##x,_p4##y,z,c), I[97] = (T)(img)(_p7##x,_p4##y,z,c), I[98] = (T)(img)(_p6##x,_p4##y,z,c), I[99] = (T)(img)(_p5##x,_p4##y,z,c), I[100] = (T)(img)(_p4##x,_p4##y,z,c), I[101] = (T)(img)(_p3##x,_p4##y,z,c), I[102] = (T)(img)(_p2##x,_p4##y,z,c), I[103] = (T)(img)(_p1##x,_p4##y,z,c), I[104] = (T)(img)(x,_p4##y,z,c), I[105] = (T)(img)(_n1##x,_p4##y,z,c), I[106] = (T)(img)(_n2##x,_p4##y,z,c), I[107] = (T)(img)(_n3##x,_p4##y,z,c), I[108] = (T)(img)(_n4##x,_p4##y,z,c), I[109] = (T)(img)(_n5##x,_p4##y,z,c), I[110] = (T)(img)(_n6##x,_p4##y,z,c), I[111] = (T)(img)(_n7##x,_p4##y,z,c), I[112] = (T)(img)(_n8##x,_p4##y,z,c), I[113] = (T)(img)(_n9##x,_p4##y,z,c), \
I[114] = (T)(img)(_p9##x,_p3##y,z,c), I[115] = (T)(img)(_p8##x,_p3##y,z,c), I[116] = (T)(img)(_p7##x,_p3##y,z,c), I[117] = (T)(img)(_p6##x,_p3##y,z,c), I[118] = (T)(img)(_p5##x,_p3##y,z,c), I[119] = (T)(img)(_p4##x,_p3##y,z,c), I[120] = (T)(img)(_p3##x,_p3##y,z,c), I[121] = (T)(img)(_p2##x,_p3##y,z,c), I[122] = (T)(img)(_p1##x,_p3##y,z,c), I[123] = (T)(img)(x,_p3##y,z,c), I[124] = (T)(img)(_n1##x,_p3##y,z,c), I[125] = (T)(img)(_n2##x,_p3##y,z,c), I[126] = (T)(img)(_n3##x,_p3##y,z,c), I[127] = (T)(img)(_n4##x,_p3##y,z,c), I[128] = (T)(img)(_n5##x,_p3##y,z,c), I[129] = (T)(img)(_n6##x,_p3##y,z,c), I[130] = (T)(img)(_n7##x,_p3##y,z,c), I[131] = (T)(img)(_n8##x,_p3##y,z,c), I[132] = (T)(img)(_n9##x,_p3##y,z,c), \
I[133] = (T)(img)(_p9##x,_p2##y,z,c), I[134] = (T)(img)(_p8##x,_p2##y,z,c), I[135] = (T)(img)(_p7##x,_p2##y,z,c), I[136] = (T)(img)(_p6##x,_p2##y,z,c), I[137] = (T)(img)(_p5##x,_p2##y,z,c), I[138] = (T)(img)(_p4##x,_p2##y,z,c), I[139] = (T)(img)(_p3##x,_p2##y,z,c), I[140] = (T)(img)(_p2##x,_p2##y,z,c), I[141] = (T)(img)(_p1##x,_p2##y,z,c), I[142] = (T)(img)(x,_p2##y,z,c), I[143] = (T)(img)(_n1##x,_p2##y,z,c), I[144] = (T)(img)(_n2##x,_p2##y,z,c), I[145] = (T)(img)(_n3##x,_p2##y,z,c), I[146] = (T)(img)(_n4##x,_p2##y,z,c), I[147] = (T)(img)(_n5##x,_p2##y,z,c), I[148] = (T)(img)(_n6##x,_p2##y,z,c), I[149] = (T)(img)(_n7##x,_p2##y,z,c), I[150] = (T)(img)(_n8##x,_p2##y,z,c), I[151] = (T)(img)(_n9##x,_p2##y,z,c), \
I[152] = (T)(img)(_p9##x,_p1##y,z,c), I[153] = (T)(img)(_p8##x,_p1##y,z,c), I[154] = (T)(img)(_p7##x,_p1##y,z,c), I[155] = (T)(img)(_p6##x,_p1##y,z,c), I[156] = (T)(img)(_p5##x,_p1##y,z,c), I[157] = (T)(img)(_p4##x,_p1##y,z,c), I[158] = (T)(img)(_p3##x,_p1##y,z,c), I[159] = (T)(img)(_p2##x,_p1##y,z,c), I[160] = (T)(img)(_p1##x,_p1##y,z,c), I[161] = (T)(img)(x,_p1##y,z,c), I[162] = (T)(img)(_n1##x,_p1##y,z,c), I[163] = (T)(img)(_n2##x,_p1##y,z,c), I[164] = (T)(img)(_n3##x,_p1##y,z,c), I[165] = (T)(img)(_n4##x,_p1##y,z,c), I[166] = (T)(img)(_n5##x,_p1##y,z,c), I[167] = (T)(img)(_n6##x,_p1##y,z,c), I[168] = (T)(img)(_n7##x,_p1##y,z,c), I[169] = (T)(img)(_n8##x,_p1##y,z,c), I[170] = (T)(img)(_n9##x,_p1##y,z,c), \
I[171] = (T)(img)(_p9##x,y,z,c), I[172] = (T)(img)(_p8##x,y,z,c), I[173] = (T)(img)(_p7##x,y,z,c), I[174] = (T)(img)(_p6##x,y,z,c), I[175] = (T)(img)(_p5##x,y,z,c), I[176] = (T)(img)(_p4##x,y,z,c), I[177] = (T)(img)(_p3##x,y,z,c), I[178] = (T)(img)(_p2##x,y,z,c), I[179] = (T)(img)(_p1##x,y,z,c), I[180] = (T)(img)(x,y,z,c), I[181] = (T)(img)(_n1##x,y,z,c), I[182] = (T)(img)(_n2##x,y,z,c), I[183] = (T)(img)(_n3##x,y,z,c), I[184] = (T)(img)(_n4##x,y,z,c), I[185] = (T)(img)(_n5##x,y,z,c), I[186] = (T)(img)(_n6##x,y,z,c), I[187] = (T)(img)(_n7##x,y,z,c), I[188] = (T)(img)(_n8##x,y,z,c), I[189] = (T)(img)(_n9##x,y,z,c), \
I[190] = (T)(img)(_p9##x,_n1##y,z,c), I[191] = (T)(img)(_p8##x,_n1##y,z,c), I[192] = (T)(img)(_p7##x,_n1##y,z,c), I[193] = (T)(img)(_p6##x,_n1##y,z,c), I[194] = (T)(img)(_p5##x,_n1##y,z,c), I[195] = (T)(img)(_p4##x,_n1##y,z,c), I[196] = (T)(img)(_p3##x,_n1##y,z,c), I[197] = (T)(img)(_p2##x,_n1##y,z,c), I[198] = (T)(img)(_p1##x,_n1##y,z,c), I[199] = (T)(img)(x,_n1##y,z,c), I[200] = (T)(img)(_n1##x,_n1##y,z,c), I[201] = (T)(img)(_n2##x,_n1##y,z,c), I[202] = (T)(img)(_n3##x,_n1##y,z,c), I[203] = (T)(img)(_n4##x,_n1##y,z,c), I[204] = (T)(img)(_n5##x,_n1##y,z,c), I[205] = (T)(img)(_n6##x,_n1##y,z,c), I[206] = (T)(img)(_n7##x,_n1##y,z,c), I[207] = (T)(img)(_n8##x,_n1##y,z,c), I[208] = (T)(img)(_n9##x,_n1##y,z,c), \
I[209] = (T)(img)(_p9##x,_n2##y,z,c), I[210] = (T)(img)(_p8##x,_n2##y,z,c), I[211] = (T)(img)(_p7##x,_n2##y,z,c), I[212] = (T)(img)(_p6##x,_n2##y,z,c), I[213] = (T)(img)(_p5##x,_n2##y,z,c), I[214] = (T)(img)(_p4##x,_n2##y,z,c), I[215] = (T)(img)(_p3##x,_n2##y,z,c), I[216] = (T)(img)(_p2##x,_n2##y,z,c), I[217] = (T)(img)(_p1##x,_n2##y,z,c), I[218] = (T)(img)(x,_n2##y,z,c), I[219] = (T)(img)(_n1##x,_n2##y,z,c), I[220] = (T)(img)(_n2##x,_n2##y,z,c), I[221] = (T)(img)(_n3##x,_n2##y,z,c), I[222] = (T)(img)(_n4##x,_n2##y,z,c), I[223] = (T)(img)(_n5##x,_n2##y,z,c), I[224] = (T)(img)(_n6##x,_n2##y,z,c), I[225] = (T)(img)(_n7##x,_n2##y,z,c), I[226] = (T)(img)(_n8##x,_n2##y,z,c), I[227] = (T)(img)(_n9##x,_n2##y,z,c), \
I[228] = (T)(img)(_p9##x,_n3##y,z,c), I[229] = (T)(img)(_p8##x,_n3##y,z,c), I[230] = (T)(img)(_p7##x,_n3##y,z,c), I[231] = (T)(img)(_p6##x,_n3##y,z,c), I[232] = (T)(img)(_p5##x,_n3##y,z,c), I[233] = (T)(img)(_p4##x,_n3##y,z,c), I[234] = (T)(img)(_p3##x,_n3##y,z,c), I[235] = (T)(img)(_p2##x,_n3##y,z,c), I[236] = (T)(img)(_p1##x,_n3##y,z,c), I[237] = (T)(img)(x,_n3##y,z,c), I[238] = (T)(img)(_n1##x,_n3##y,z,c), I[239] = (T)(img)(_n2##x,_n3##y,z,c), I[240] = (T)(img)(_n3##x,_n3##y,z,c), I[241] = (T)(img)(_n4##x,_n3##y,z,c), I[242] = (T)(img)(_n5##x,_n3##y,z,c), I[243] = (T)(img)(_n6##x,_n3##y,z,c), I[244] = (T)(img)(_n7##x,_n3##y,z,c), I[245] = (T)(img)(_n8##x,_n3##y,z,c), I[246] = (T)(img)(_n9##x,_n3##y,z,c), \
I[247] = (T)(img)(_p9##x,_n4##y,z,c), I[248] = (T)(img)(_p8##x,_n4##y,z,c), I[249] = (T)(img)(_p7##x,_n4##y,z,c), I[250] = (T)(img)(_p6##x,_n4##y,z,c), I[251] = (T)(img)(_p5##x,_n4##y,z,c), I[252] = (T)(img)(_p4##x,_n4##y,z,c), I[253] = (T)(img)(_p3##x,_n4##y,z,c), I[254] = (T)(img)(_p2##x,_n4##y,z,c), I[255] = (T)(img)(_p1##x,_n4##y,z,c), I[256] = (T)(img)(x,_n4##y,z,c), I[257] = (T)(img)(_n1##x,_n4##y,z,c), I[258] = (T)(img)(_n2##x,_n4##y,z,c), I[259] = (T)(img)(_n3##x,_n4##y,z,c), I[260] = (T)(img)(_n4##x,_n4##y,z,c), I[261] = (T)(img)(_n5##x,_n4##y,z,c), I[262] = (T)(img)(_n6##x,_n4##y,z,c), I[263] = (T)(img)(_n7##x,_n4##y,z,c), I[264] = (T)(img)(_n8##x,_n4##y,z,c), I[265] = (T)(img)(_n9##x,_n4##y,z,c), \
I[266] = (T)(img)(_p9##x,_n5##y,z,c), I[267] = (T)(img)(_p8##x,_n5##y,z,c), I[268] = (T)(img)(_p7##x,_n5##y,z,c), I[269] = (T)(img)(_p6##x,_n5##y,z,c), I[270] = (T)(img)(_p5##x,_n5##y,z,c), I[271] = (T)(img)(_p4##x,_n5##y,z,c), I[272] = (T)(img)(_p3##x,_n5##y,z,c), I[273] = (T)(img)(_p2##x,_n5##y,z,c), I[274] = (T)(img)(_p1##x,_n5##y,z,c), I[275] = (T)(img)(x,_n5##y,z,c), I[276] = (T)(img)(_n1##x,_n5##y,z,c), I[277] = (T)(img)(_n2##x,_n5##y,z,c), I[278] = (T)(img)(_n3##x,_n5##y,z,c), I[279] = (T)(img)(_n4##x,_n5##y,z,c), I[280] = (T)(img)(_n5##x,_n5##y,z,c), I[281] = (T)(img)(_n6##x,_n5##y,z,c), I[282] = (T)(img)(_n7##x,_n5##y,z,c), I[283] = (T)(img)(_n8##x,_n5##y,z,c), I[284] = (T)(img)(_n9##x,_n5##y,z,c), \
I[285] = (T)(img)(_p9##x,_n6##y,z,c), I[286] = (T)(img)(_p8##x,_n6##y,z,c), I[287] = (T)(img)(_p7##x,_n6##y,z,c), I[288] = (T)(img)(_p6##x,_n6##y,z,c), I[289] = (T)(img)(_p5##x,_n6##y,z,c), I[290] = (T)(img)(_p4##x,_n6##y,z,c), I[291] = (T)(img)(_p3##x,_n6##y,z,c), I[292] = (T)(img)(_p2##x,_n6##y,z,c), I[293] = (T)(img)(_p1##x,_n6##y,z,c), I[294] = (T)(img)(x,_n6##y,z,c), I[295] = (T)(img)(_n1##x,_n6##y,z,c), I[296] = (T)(img)(_n2##x,_n6##y,z,c), I[297] = (T)(img)(_n3##x,_n6##y,z,c), I[298] = (T)(img)(_n4##x,_n6##y,z,c), I[299] = (T)(img)(_n5##x,_n6##y,z,c), I[300] = (T)(img)(_n6##x,_n6##y,z,c), I[301] = (T)(img)(_n7##x,_n6##y,z,c), I[302] = (T)(img)(_n8##x,_n6##y,z,c), I[303] = (T)(img)(_n9##x,_n6##y,z,c), \
I[304] = (T)(img)(_p9##x,_n7##y,z,c), I[305] = (T)(img)(_p8##x,_n7##y,z,c), I[306] = (T)(img)(_p7##x,_n7##y,z,c), I[307] = (T)(img)(_p6##x,_n7##y,z,c), I[308] = (T)(img)(_p5##x,_n7##y,z,c), I[309] = (T)(img)(_p4##x,_n7##y,z,c), I[310] = (T)(img)(_p3##x,_n7##y,z,c), I[311] = (T)(img)(_p2##x,_n7##y,z,c), I[312] = (T)(img)(_p1##x,_n7##y,z,c), I[313] = (T)(img)(x,_n7##y,z,c), I[314] = (T)(img)(_n1##x,_n7##y,z,c), I[315] = (T)(img)(_n2##x,_n7##y,z,c), I[316] = (T)(img)(_n3##x,_n7##y,z,c), I[317] = (T)(img)(_n4##x,_n7##y,z,c), I[318] = (T)(img)(_n5##x,_n7##y,z,c), I[319] = (T)(img)(_n6##x,_n7##y,z,c), I[320] = (T)(img)(_n7##x,_n7##y,z,c), I[321] = (T)(img)(_n8##x,_n7##y,z,c), I[322] = (T)(img)(_n9##x,_n7##y,z,c), \
I[323] = (T)(img)(_p9##x,_n8##y,z,c), I[324] = (T)(img)(_p8##x,_n8##y,z,c), I[325] = (T)(img)(_p7##x,_n8##y,z,c), I[326] = (T)(img)(_p6##x,_n8##y,z,c), I[327] = (T)(img)(_p5##x,_n8##y,z,c), I[328] = (T)(img)(_p4##x,_n8##y,z,c), I[329] = (T)(img)(_p3##x,_n8##y,z,c), I[330] = (T)(img)(_p2##x,_n8##y,z,c), I[331] = (T)(img)(_p1##x,_n8##y,z,c), I[332] = (T)(img)(x,_n8##y,z,c), I[333] = (T)(img)(_n1##x,_n8##y,z,c), I[334] = (T)(img)(_n2##x,_n8##y,z,c), I[335] = (T)(img)(_n3##x,_n8##y,z,c), I[336] = (T)(img)(_n4##x,_n8##y,z,c), I[337] = (T)(img)(_n5##x,_n8##y,z,c), I[338] = (T)(img)(_n6##x,_n8##y,z,c), I[339] = (T)(img)(_n7##x,_n8##y,z,c), I[340] = (T)(img)(_n8##x,_n8##y,z,c), I[341] = (T)(img)(_n9##x,_n8##y,z,c), \
I[342] = (T)(img)(_p9##x,_n9##y,z,c), I[343] = (T)(img)(_p8##x,_n9##y,z,c), I[344] = (T)(img)(_p7##x,_n9##y,z,c), I[345] = (T)(img)(_p6##x,_n9##y,z,c), I[346] = (T)(img)(_p5##x,_n9##y,z,c), I[347] = (T)(img)(_p4##x,_n9##y,z,c), I[348] = (T)(img)(_p3##x,_n9##y,z,c), I[349] = (T)(img)(_p2##x,_n9##y,z,c), I[350] = (T)(img)(_p1##x,_n9##y,z,c), I[351] = (T)(img)(x,_n9##y,z,c), I[352] = (T)(img)(_n1##x,_n9##y,z,c), I[353] = (T)(img)(_n2##x,_n9##y,z,c), I[354] = (T)(img)(_n3##x,_n9##y,z,c), I[355] = (T)(img)(_n4##x,_n9##y,z,c), I[356] = (T)(img)(_n5##x,_n9##y,z,c), I[357] = (T)(img)(_n6##x,_n9##y,z,c), I[358] = (T)(img)(_n7##x,_n9##y,z,c), I[359] = (T)(img)(_n8##x,_n9##y,z,c), I[360] = (T)(img)(_n9##x,_n9##y,z,c);
// Define 20x20 loop macros
//-------------------------
#define cimg_for20(bound,i) for (int i = 0, \
_p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10; \
_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
#define cimg_for20X(img,x) cimg_for20((img)._width,x)
#define cimg_for20Y(img,y) cimg_for20((img)._height,y)
#define cimg_for20Z(img,z) cimg_for20((img)._depth,z)
#define cimg_for20C(img,c) cimg_for20((img)._spectrum,c)
#define cimg_for20XY(img,x,y) cimg_for20Y(img,y) cimg_for20X(img,x)
#define cimg_for20XZ(img,x,z) cimg_for20Z(img,z) cimg_for20X(img,x)
#define cimg_for20XC(img,x,c) cimg_for20C(img,c) cimg_for20X(img,x)
#define cimg_for20YZ(img,y,z) cimg_for20Z(img,z) cimg_for20Y(img,y)
#define cimg_for20YC(img,y,c) cimg_for20C(img,c) cimg_for20Y(img,y)
#define cimg_for20ZC(img,z,c) cimg_for20C(img,c) cimg_for20Z(img,z)
#define cimg_for20XYZ(img,x,y,z) cimg_for20Z(img,z) cimg_for20XY(img,x,y)
#define cimg_for20XZC(img,x,z,c) cimg_for20C(img,c) cimg_for20XZ(img,x,z)
#define cimg_for20YZC(img,y,z,c) cimg_for20C(img,c) cimg_for20YZ(img,y,z)
#define cimg_for20XYZC(img,x,y,z,c) cimg_for20C(img,c) cimg_for20XYZ(img,x,y,z)
#define cimg_for_in20(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10; \
i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
#define cimg_for_in20X(img,x0,x1,x) cimg_for_in20((img)._width,x0,x1,x)
#define cimg_for_in20Y(img,y0,y1,y) cimg_for_in20((img)._height,y0,y1,y)
#define cimg_for_in20Z(img,z0,z1,z) cimg_for_in20((img)._depth,z0,z1,z)
#define cimg_for_in20C(img,c0,c1,c) cimg_for_in20((img)._spectrum,c0,c1,c)
#define cimg_for_in20XY(img,x0,y0,x1,y1,x,y) cimg_for_in20Y(img,y0,y1,y) cimg_for_in20X(img,x0,x1,x)
#define cimg_for_in20XZ(img,x0,z0,x1,z1,x,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20X(img,x0,x1,x)
#define cimg_for_in20XC(img,x0,c0,x1,c1,x,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20X(img,x0,x1,x)
#define cimg_for_in20YZ(img,y0,z0,y1,z1,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20Y(img,y0,y1,y)
#define cimg_for_in20YC(img,y0,c0,y1,c1,y,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20Y(img,y0,y1,y)
#define cimg_for_in20ZC(img,z0,c0,z1,c1,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20Z(img,z0,z1,z)
#define cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in20Z(img,z0,z1,z) cimg_for_in20XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in20XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in20YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in20XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in20C(img,c0,c1,c) cimg_for_in20XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for20x20(img,x,y,z,c,I,T) \
cimg_for20((img)._height,y) for (int x = 0, \
_p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = (T)(img)(0,_p9##y,z,c)), \
(I[20] = I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = (T)(img)(0,_p8##y,z,c)), \
(I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = (T)(img)(0,_p7##y,z,c)), \
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = (T)(img)(0,_p6##y,z,c)), \
(I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = (T)(img)(0,_p5##y,z,c)), \
(I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = (T)(img)(0,_p4##y,z,c)), \
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = (T)(img)(0,_p3##y,z,c)), \
(I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (T)(img)(0,_p2##y,z,c)), \
(I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = (T)(img)(0,_p1##y,z,c)), \
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = (T)(img)(0,y,z,c)), \
(I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = (T)(img)(0,_n1##y,z,c)), \
(I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (T)(img)(0,_n2##y,z,c)), \
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = (T)(img)(0,_n3##y,z,c)), \
(I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = (T)(img)(0,_n4##y,z,c)), \
(I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = (T)(img)(0,_n5##y,z,c)), \
(I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = (T)(img)(0,_n6##y,z,c)), \
(I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = (T)(img)(0,_n7##y,z,c)), \
(I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = (T)(img)(0,_n8##y,z,c)), \
(I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = (T)(img)(0,_n9##y,z,c)), \
(I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = (T)(img)(0,_n10##y,z,c)), \
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[30] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[50] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[70] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[90] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[110] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[130] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[150] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[170] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[190] = (T)(img)(_n1##x,y,z,c)), \
(I[210] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[230] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[250] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[270] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[290] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[310] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[330] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[350] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[370] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[390] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[31] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[51] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[71] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[91] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[111] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[131] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[151] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[171] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[191] = (T)(img)(_n2##x,y,z,c)), \
(I[211] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[231] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[251] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[271] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[291] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[311] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[331] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[351] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[371] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[391] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[32] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[52] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[72] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[92] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[112] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[132] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[152] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[172] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[192] = (T)(img)(_n3##x,y,z,c)), \
(I[212] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[232] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[252] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[272] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[292] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[312] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[332] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[352] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[372] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[392] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[33] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[53] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[73] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[93] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[113] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[133] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[153] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[173] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[193] = (T)(img)(_n4##x,y,z,c)), \
(I[213] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[233] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[253] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[273] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[293] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[313] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[333] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[353] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[373] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[393] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[34] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[54] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[74] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[94] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[114] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[134] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[154] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[174] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[194] = (T)(img)(_n5##x,y,z,c)), \
(I[214] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[234] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[254] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[274] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[294] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[314] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[334] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[354] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[374] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[394] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[35] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[55] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[75] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[95] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[115] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[135] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[155] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[175] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[195] = (T)(img)(_n6##x,y,z,c)), \
(I[215] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[235] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[255] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[275] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[295] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[315] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[335] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[355] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[375] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[395] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[36] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[56] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[76] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[96] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[116] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[136] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[156] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[176] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[196] = (T)(img)(_n7##x,y,z,c)), \
(I[216] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[236] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[256] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[276] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[296] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[316] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[336] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[356] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[376] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[396] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[37] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[57] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[77] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[97] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[117] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[137] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[157] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[177] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[197] = (T)(img)(_n8##x,y,z,c)), \
(I[217] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[237] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[257] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[277] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[297] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[317] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[337] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[357] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[377] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[397] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[38] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[58] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[78] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[98] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[118] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[138] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[158] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[178] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[198] = (T)(img)(_n9##x,y,z,c)), \
(I[218] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[238] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[258] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[278] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[298] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[318] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[338] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[358] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[378] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[398] = (T)(img)(_n9##x,_n10##y,z,c)), \
10>=((img)._width)?(img).width() - 1:10); \
(_n10##x<(img).width() && ( \
(I[19] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[39] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[59] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[79] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[99] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[119] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[139] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[159] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[179] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[199] = (T)(img)(_n10##x,y,z,c)), \
(I[219] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[239] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[259] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[279] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[299] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[319] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[339] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[359] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[379] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[399] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \
I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \
I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
#define cimg_for_in20x20(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in20((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = (int)( \
(I[0] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[20] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[40] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[60] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[80] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[100] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[120] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[140] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[160] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[180] = (T)(img)(_p9##x,y,z,c)), \
(I[200] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[220] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[240] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[260] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[280] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[300] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[320] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[340] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[360] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[380] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[1] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[21] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[41] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[61] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[81] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[101] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[121] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[141] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[161] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[181] = (T)(img)(_p8##x,y,z,c)), \
(I[201] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[221] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[241] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[261] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[281] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[301] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[321] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[341] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[361] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[381] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[2] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[22] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[42] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[62] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[82] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[102] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[122] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[142] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[162] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[182] = (T)(img)(_p7##x,y,z,c)), \
(I[202] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[222] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[242] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[262] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[282] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[302] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[322] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[342] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[362] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[382] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[3] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[23] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[43] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[63] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[83] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[103] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[123] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[143] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[163] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[183] = (T)(img)(_p6##x,y,z,c)), \
(I[203] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[223] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[243] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[263] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[283] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[303] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[323] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[343] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[363] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[383] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[4] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[24] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[44] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[64] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[84] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[104] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[124] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[144] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[164] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[184] = (T)(img)(_p5##x,y,z,c)), \
(I[204] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[224] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[244] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[264] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[284] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[304] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[324] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[344] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[364] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[384] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[5] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[25] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[45] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[65] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[85] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[105] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[125] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[145] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[165] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[185] = (T)(img)(_p4##x,y,z,c)), \
(I[205] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[225] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[245] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[265] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[285] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[305] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[325] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[345] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[365] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[385] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[6] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[26] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[46] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[66] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[86] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[106] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[126] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[146] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[166] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[186] = (T)(img)(_p3##x,y,z,c)), \
(I[206] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[226] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[246] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[266] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[286] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[306] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[326] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[346] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[366] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[386] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[7] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[27] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[47] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[67] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[87] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[107] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[127] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[147] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[167] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[187] = (T)(img)(_p2##x,y,z,c)), \
(I[207] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[227] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[247] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[267] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[287] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[307] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[327] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[347] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[367] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[387] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[8] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[28] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[48] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[68] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[88] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[108] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[128] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[148] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[168] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[188] = (T)(img)(_p1##x,y,z,c)), \
(I[208] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[228] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[248] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[268] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[288] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[308] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[328] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[348] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[368] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[388] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[9] = (T)(img)(x,_p9##y,z,c)), \
(I[29] = (T)(img)(x,_p8##y,z,c)), \
(I[49] = (T)(img)(x,_p7##y,z,c)), \
(I[69] = (T)(img)(x,_p6##y,z,c)), \
(I[89] = (T)(img)(x,_p5##y,z,c)), \
(I[109] = (T)(img)(x,_p4##y,z,c)), \
(I[129] = (T)(img)(x,_p3##y,z,c)), \
(I[149] = (T)(img)(x,_p2##y,z,c)), \
(I[169] = (T)(img)(x,_p1##y,z,c)), \
(I[189] = (T)(img)(x,y,z,c)), \
(I[209] = (T)(img)(x,_n1##y,z,c)), \
(I[229] = (T)(img)(x,_n2##y,z,c)), \
(I[249] = (T)(img)(x,_n3##y,z,c)), \
(I[269] = (T)(img)(x,_n4##y,z,c)), \
(I[289] = (T)(img)(x,_n5##y,z,c)), \
(I[309] = (T)(img)(x,_n6##y,z,c)), \
(I[329] = (T)(img)(x,_n7##y,z,c)), \
(I[349] = (T)(img)(x,_n8##y,z,c)), \
(I[369] = (T)(img)(x,_n9##y,z,c)), \
(I[389] = (T)(img)(x,_n10##y,z,c)), \
(I[10] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[30] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[50] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[70] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[90] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[110] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[130] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[150] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[170] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[190] = (T)(img)(_n1##x,y,z,c)), \
(I[210] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[230] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[250] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[270] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[290] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[310] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[330] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[350] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[370] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[390] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[11] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[31] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[51] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[71] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[91] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[111] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[131] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[151] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[171] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[191] = (T)(img)(_n2##x,y,z,c)), \
(I[211] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[231] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[251] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[271] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[291] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[311] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[331] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[351] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[371] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[391] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[12] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[32] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[52] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[72] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[92] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[112] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[132] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[152] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[172] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[192] = (T)(img)(_n3##x,y,z,c)), \
(I[212] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[232] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[252] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[272] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[292] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[312] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[332] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[352] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[372] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[392] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[13] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[33] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[53] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[73] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[93] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[113] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[133] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[153] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[173] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[193] = (T)(img)(_n4##x,y,z,c)), \
(I[213] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[233] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[253] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[273] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[293] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[313] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[333] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[353] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[373] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[393] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[14] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[34] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[54] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[74] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[94] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[114] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[134] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[154] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[174] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[194] = (T)(img)(_n5##x,y,z,c)), \
(I[214] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[234] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[254] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[274] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[294] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[314] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[334] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[354] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[374] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[394] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[15] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[35] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[55] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[75] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[95] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[115] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[135] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[155] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[175] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[195] = (T)(img)(_n6##x,y,z,c)), \
(I[215] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[235] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[255] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[275] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[295] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[315] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[335] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[355] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[375] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[395] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[16] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[36] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[56] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[76] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[96] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[116] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[136] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[156] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[176] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[196] = (T)(img)(_n7##x,y,z,c)), \
(I[216] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[236] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[256] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[276] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[296] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[316] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[336] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[356] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[376] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[396] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[17] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[37] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[57] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[77] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[97] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[117] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[137] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[157] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[177] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[197] = (T)(img)(_n8##x,y,z,c)), \
(I[217] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[237] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[257] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[277] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[297] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[317] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[337] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[357] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[377] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[397] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[18] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[38] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[58] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[78] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[98] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[118] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[138] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[158] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[178] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[198] = (T)(img)(_n9##x,y,z,c)), \
(I[218] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[238] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[258] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[278] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[298] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[318] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[338] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[358] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[378] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[398] = (T)(img)(_n9##x,_n10##y,z,c)), \
x + 10>=(img).width()?(img).width() - 1:x + 10); \
x<=(int)(x1) && ((_n10##x<(img).width() && ( \
(I[19] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[39] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[59] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[79] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[99] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[119] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[139] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[159] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[179] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[199] = (T)(img)(_n10##x,y,z,c)), \
(I[219] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[239] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[259] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[279] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[299] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[319] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[339] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[359] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[379] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[399] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], \
I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], \
I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
_p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
#define cimg_get20x20(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p9##x,_p9##y,z,c), I[1] = (T)(img)(_p8##x,_p9##y,z,c), I[2] = (T)(img)(_p7##x,_p9##y,z,c), I[3] = (T)(img)(_p6##x,_p9##y,z,c), I[4] = (T)(img)(_p5##x,_p9##y,z,c), I[5] = (T)(img)(_p4##x,_p9##y,z,c), I[6] = (T)(img)(_p3##x,_p9##y,z,c), I[7] = (T)(img)(_p2##x,_p9##y,z,c), I[8] = (T)(img)(_p1##x,_p9##y,z,c), I[9] = (T)(img)(x,_p9##y,z,c), I[10] = (T)(img)(_n1##x,_p9##y,z,c), I[11] = (T)(img)(_n2##x,_p9##y,z,c), I[12] = (T)(img)(_n3##x,_p9##y,z,c), I[13] = (T)(img)(_n4##x,_p9##y,z,c), I[14] = (T)(img)(_n5##x,_p9##y,z,c), I[15] = (T)(img)(_n6##x,_p9##y,z,c), I[16] = (T)(img)(_n7##x,_p9##y,z,c), I[17] = (T)(img)(_n8##x,_p9##y,z,c), I[18] = (T)(img)(_n9##x,_p9##y,z,c), I[19] = (T)(img)(_n10##x,_p9##y,z,c), \
I[20] = (T)(img)(_p9##x,_p8##y,z,c), I[21] = (T)(img)(_p8##x,_p8##y,z,c), I[22] = (T)(img)(_p7##x,_p8##y,z,c), I[23] = (T)(img)(_p6##x,_p8##y,z,c), I[24] = (T)(img)(_p5##x,_p8##y,z,c), I[25] = (T)(img)(_p4##x,_p8##y,z,c), I[26] = (T)(img)(_p3##x,_p8##y,z,c), I[27] = (T)(img)(_p2##x,_p8##y,z,c), I[28] = (T)(img)(_p1##x,_p8##y,z,c), I[29] = (T)(img)(x,_p8##y,z,c), I[30] = (T)(img)(_n1##x,_p8##y,z,c), I[31] = (T)(img)(_n2##x,_p8##y,z,c), I[32] = (T)(img)(_n3##x,_p8##y,z,c), I[33] = (T)(img)(_n4##x,_p8##y,z,c), I[34] = (T)(img)(_n5##x,_p8##y,z,c), I[35] = (T)(img)(_n6##x,_p8##y,z,c), I[36] = (T)(img)(_n7##x,_p8##y,z,c), I[37] = (T)(img)(_n8##x,_p8##y,z,c), I[38] = (T)(img)(_n9##x,_p8##y,z,c), I[39] = (T)(img)(_n10##x,_p8##y,z,c), \
I[40] = (T)(img)(_p9##x,_p7##y,z,c), I[41] = (T)(img)(_p8##x,_p7##y,z,c), I[42] = (T)(img)(_p7##x,_p7##y,z,c), I[43] = (T)(img)(_p6##x,_p7##y,z,c), I[44] = (T)(img)(_p5##x,_p7##y,z,c), I[45] = (T)(img)(_p4##x,_p7##y,z,c), I[46] = (T)(img)(_p3##x,_p7##y,z,c), I[47] = (T)(img)(_p2##x,_p7##y,z,c), I[48] = (T)(img)(_p1##x,_p7##y,z,c), I[49] = (T)(img)(x,_p7##y,z,c), I[50] = (T)(img)(_n1##x,_p7##y,z,c), I[51] = (T)(img)(_n2##x,_p7##y,z,c), I[52] = (T)(img)(_n3##x,_p7##y,z,c), I[53] = (T)(img)(_n4##x,_p7##y,z,c), I[54] = (T)(img)(_n5##x,_p7##y,z,c), I[55] = (T)(img)(_n6##x,_p7##y,z,c), I[56] = (T)(img)(_n7##x,_p7##y,z,c), I[57] = (T)(img)(_n8##x,_p7##y,z,c), I[58] = (T)(img)(_n9##x,_p7##y,z,c), I[59] = (T)(img)(_n10##x,_p7##y,z,c), \
I[60] = (T)(img)(_p9##x,_p6##y,z,c), I[61] = (T)(img)(_p8##x,_p6##y,z,c), I[62] = (T)(img)(_p7##x,_p6##y,z,c), I[63] = (T)(img)(_p6##x,_p6##y,z,c), I[64] = (T)(img)(_p5##x,_p6##y,z,c), I[65] = (T)(img)(_p4##x,_p6##y,z,c), I[66] = (T)(img)(_p3##x,_p6##y,z,c), I[67] = (T)(img)(_p2##x,_p6##y,z,c), I[68] = (T)(img)(_p1##x,_p6##y,z,c), I[69] = (T)(img)(x,_p6##y,z,c), I[70] = (T)(img)(_n1##x,_p6##y,z,c), I[71] = (T)(img)(_n2##x,_p6##y,z,c), I[72] = (T)(img)(_n3##x,_p6##y,z,c), I[73] = (T)(img)(_n4##x,_p6##y,z,c), I[74] = (T)(img)(_n5##x,_p6##y,z,c), I[75] = (T)(img)(_n6##x,_p6##y,z,c), I[76] = (T)(img)(_n7##x,_p6##y,z,c), I[77] = (T)(img)(_n8##x,_p6##y,z,c), I[78] = (T)(img)(_n9##x,_p6##y,z,c), I[79] = (T)(img)(_n10##x,_p6##y,z,c), \
I[80] = (T)(img)(_p9##x,_p5##y,z,c), I[81] = (T)(img)(_p8##x,_p5##y,z,c), I[82] = (T)(img)(_p7##x,_p5##y,z,c), I[83] = (T)(img)(_p6##x,_p5##y,z,c), I[84] = (T)(img)(_p5##x,_p5##y,z,c), I[85] = (T)(img)(_p4##x,_p5##y,z,c), I[86] = (T)(img)(_p3##x,_p5##y,z,c), I[87] = (T)(img)(_p2##x,_p5##y,z,c), I[88] = (T)(img)(_p1##x,_p5##y,z,c), I[89] = (T)(img)(x,_p5##y,z,c), I[90] = (T)(img)(_n1##x,_p5##y,z,c), I[91] = (T)(img)(_n2##x,_p5##y,z,c), I[92] = (T)(img)(_n3##x,_p5##y,z,c), I[93] = (T)(img)(_n4##x,_p5##y,z,c), I[94] = (T)(img)(_n5##x,_p5##y,z,c), I[95] = (T)(img)(_n6##x,_p5##y,z,c), I[96] = (T)(img)(_n7##x,_p5##y,z,c), I[97] = (T)(img)(_n8##x,_p5##y,z,c), I[98] = (T)(img)(_n9##x,_p5##y,z,c), I[99] = (T)(img)(_n10##x,_p5##y,z,c), \
I[100] = (T)(img)(_p9##x,_p4##y,z,c), I[101] = (T)(img)(_p8##x,_p4##y,z,c), I[102] = (T)(img)(_p7##x,_p4##y,z,c), I[103] = (T)(img)(_p6##x,_p4##y,z,c), I[104] = (T)(img)(_p5##x,_p4##y,z,c), I[105] = (T)(img)(_p4##x,_p4##y,z,c), I[106] = (T)(img)(_p3##x,_p4##y,z,c), I[107] = (T)(img)(_p2##x,_p4##y,z,c), I[108] = (T)(img)(_p1##x,_p4##y,z,c), I[109] = (T)(img)(x,_p4##y,z,c), I[110] = (T)(img)(_n1##x,_p4##y,z,c), I[111] = (T)(img)(_n2##x,_p4##y,z,c), I[112] = (T)(img)(_n3##x,_p4##y,z,c), I[113] = (T)(img)(_n4##x,_p4##y,z,c), I[114] = (T)(img)(_n5##x,_p4##y,z,c), I[115] = (T)(img)(_n6##x,_p4##y,z,c), I[116] = (T)(img)(_n7##x,_p4##y,z,c), I[117] = (T)(img)(_n8##x,_p4##y,z,c), I[118] = (T)(img)(_n9##x,_p4##y,z,c), I[119] = (T)(img)(_n10##x,_p4##y,z,c), \
I[120] = (T)(img)(_p9##x,_p3##y,z,c), I[121] = (T)(img)(_p8##x,_p3##y,z,c), I[122] = (T)(img)(_p7##x,_p3##y,z,c), I[123] = (T)(img)(_p6##x,_p3##y,z,c), I[124] = (T)(img)(_p5##x,_p3##y,z,c), I[125] = (T)(img)(_p4##x,_p3##y,z,c), I[126] = (T)(img)(_p3##x,_p3##y,z,c), I[127] = (T)(img)(_p2##x,_p3##y,z,c), I[128] = (T)(img)(_p1##x,_p3##y,z,c), I[129] = (T)(img)(x,_p3##y,z,c), I[130] = (T)(img)(_n1##x,_p3##y,z,c), I[131] = (T)(img)(_n2##x,_p3##y,z,c), I[132] = (T)(img)(_n3##x,_p3##y,z,c), I[133] = (T)(img)(_n4##x,_p3##y,z,c), I[134] = (T)(img)(_n5##x,_p3##y,z,c), I[135] = (T)(img)(_n6##x,_p3##y,z,c), I[136] = (T)(img)(_n7##x,_p3##y,z,c), I[137] = (T)(img)(_n8##x,_p3##y,z,c), I[138] = (T)(img)(_n9##x,_p3##y,z,c), I[139] = (T)(img)(_n10##x,_p3##y,z,c), \
I[140] = (T)(img)(_p9##x,_p2##y,z,c), I[141] = (T)(img)(_p8##x,_p2##y,z,c), I[142] = (T)(img)(_p7##x,_p2##y,z,c), I[143] = (T)(img)(_p6##x,_p2##y,z,c), I[144] = (T)(img)(_p5##x,_p2##y,z,c), I[145] = (T)(img)(_p4##x,_p2##y,z,c), I[146] = (T)(img)(_p3##x,_p2##y,z,c), I[147] = (T)(img)(_p2##x,_p2##y,z,c), I[148] = (T)(img)(_p1##x,_p2##y,z,c), I[149] = (T)(img)(x,_p2##y,z,c), I[150] = (T)(img)(_n1##x,_p2##y,z,c), I[151] = (T)(img)(_n2##x,_p2##y,z,c), I[152] = (T)(img)(_n3##x,_p2##y,z,c), I[153] = (T)(img)(_n4##x,_p2##y,z,c), I[154] = (T)(img)(_n5##x,_p2##y,z,c), I[155] = (T)(img)(_n6##x,_p2##y,z,c), I[156] = (T)(img)(_n7##x,_p2##y,z,c), I[157] = (T)(img)(_n8##x,_p2##y,z,c), I[158] = (T)(img)(_n9##x,_p2##y,z,c), I[159] = (T)(img)(_n10##x,_p2##y,z,c), \
I[160] = (T)(img)(_p9##x,_p1##y,z,c), I[161] = (T)(img)(_p8##x,_p1##y,z,c), I[162] = (T)(img)(_p7##x,_p1##y,z,c), I[163] = (T)(img)(_p6##x,_p1##y,z,c), I[164] = (T)(img)(_p5##x,_p1##y,z,c), I[165] = (T)(img)(_p4##x,_p1##y,z,c), I[166] = (T)(img)(_p3##x,_p1##y,z,c), I[167] = (T)(img)(_p2##x,_p1##y,z,c), I[168] = (T)(img)(_p1##x,_p1##y,z,c), I[169] = (T)(img)(x,_p1##y,z,c), I[170] = (T)(img)(_n1##x,_p1##y,z,c), I[171] = (T)(img)(_n2##x,_p1##y,z,c), I[172] = (T)(img)(_n3##x,_p1##y,z,c), I[173] = (T)(img)(_n4##x,_p1##y,z,c), I[174] = (T)(img)(_n5##x,_p1##y,z,c), I[175] = (T)(img)(_n6##x,_p1##y,z,c), I[176] = (T)(img)(_n7##x,_p1##y,z,c), I[177] = (T)(img)(_n8##x,_p1##y,z,c), I[178] = (T)(img)(_n9##x,_p1##y,z,c), I[179] = (T)(img)(_n10##x,_p1##y,z,c), \
I[180] = (T)(img)(_p9##x,y,z,c), I[181] = (T)(img)(_p8##x,y,z,c), I[182] = (T)(img)(_p7##x,y,z,c), I[183] = (T)(img)(_p6##x,y,z,c), I[184] = (T)(img)(_p5##x,y,z,c), I[185] = (T)(img)(_p4##x,y,z,c), I[186] = (T)(img)(_p3##x,y,z,c), I[187] = (T)(img)(_p2##x,y,z,c), I[188] = (T)(img)(_p1##x,y,z,c), I[189] = (T)(img)(x,y,z,c), I[190] = (T)(img)(_n1##x,y,z,c), I[191] = (T)(img)(_n2##x,y,z,c), I[192] = (T)(img)(_n3##x,y,z,c), I[193] = (T)(img)(_n4##x,y,z,c), I[194] = (T)(img)(_n5##x,y,z,c), I[195] = (T)(img)(_n6##x,y,z,c), I[196] = (T)(img)(_n7##x,y,z,c), I[197] = (T)(img)(_n8##x,y,z,c), I[198] = (T)(img)(_n9##x,y,z,c), I[199] = (T)(img)(_n10##x,y,z,c), \
I[200] = (T)(img)(_p9##x,_n1##y,z,c), I[201] = (T)(img)(_p8##x,_n1##y,z,c), I[202] = (T)(img)(_p7##x,_n1##y,z,c), I[203] = (T)(img)(_p6##x,_n1##y,z,c), I[204] = (T)(img)(_p5##x,_n1##y,z,c), I[205] = (T)(img)(_p4##x,_n1##y,z,c), I[206] = (T)(img)(_p3##x,_n1##y,z,c), I[207] = (T)(img)(_p2##x,_n1##y,z,c), I[208] = (T)(img)(_p1##x,_n1##y,z,c), I[209] = (T)(img)(x,_n1##y,z,c), I[210] = (T)(img)(_n1##x,_n1##y,z,c), I[211] = (T)(img)(_n2##x,_n1##y,z,c), I[212] = (T)(img)(_n3##x,_n1##y,z,c), I[213] = (T)(img)(_n4##x,_n1##y,z,c), I[214] = (T)(img)(_n5##x,_n1##y,z,c), I[215] = (T)(img)(_n6##x,_n1##y,z,c), I[216] = (T)(img)(_n7##x,_n1##y,z,c), I[217] = (T)(img)(_n8##x,_n1##y,z,c), I[218] = (T)(img)(_n9##x,_n1##y,z,c), I[219] = (T)(img)(_n10##x,_n1##y,z,c), \
I[220] = (T)(img)(_p9##x,_n2##y,z,c), I[221] = (T)(img)(_p8##x,_n2##y,z,c), I[222] = (T)(img)(_p7##x,_n2##y,z,c), I[223] = (T)(img)(_p6##x,_n2##y,z,c), I[224] = (T)(img)(_p5##x,_n2##y,z,c), I[225] = (T)(img)(_p4##x,_n2##y,z,c), I[226] = (T)(img)(_p3##x,_n2##y,z,c), I[227] = (T)(img)(_p2##x,_n2##y,z,c), I[228] = (T)(img)(_p1##x,_n2##y,z,c), I[229] = (T)(img)(x,_n2##y,z,c), I[230] = (T)(img)(_n1##x,_n2##y,z,c), I[231] = (T)(img)(_n2##x,_n2##y,z,c), I[232] = (T)(img)(_n3##x,_n2##y,z,c), I[233] = (T)(img)(_n4##x,_n2##y,z,c), I[234] = (T)(img)(_n5##x,_n2##y,z,c), I[235] = (T)(img)(_n6##x,_n2##y,z,c), I[236] = (T)(img)(_n7##x,_n2##y,z,c), I[237] = (T)(img)(_n8##x,_n2##y,z,c), I[238] = (T)(img)(_n9##x,_n2##y,z,c), I[239] = (T)(img)(_n10##x,_n2##y,z,c), \
I[240] = (T)(img)(_p9##x,_n3##y,z,c), I[241] = (T)(img)(_p8##x,_n3##y,z,c), I[242] = (T)(img)(_p7##x,_n3##y,z,c), I[243] = (T)(img)(_p6##x,_n3##y,z,c), I[244] = (T)(img)(_p5##x,_n3##y,z,c), I[245] = (T)(img)(_p4##x,_n3##y,z,c), I[246] = (T)(img)(_p3##x,_n3##y,z,c), I[247] = (T)(img)(_p2##x,_n3##y,z,c), I[248] = (T)(img)(_p1##x,_n3##y,z,c), I[249] = (T)(img)(x,_n3##y,z,c), I[250] = (T)(img)(_n1##x,_n3##y,z,c), I[251] = (T)(img)(_n2##x,_n3##y,z,c), I[252] = (T)(img)(_n3##x,_n3##y,z,c), I[253] = (T)(img)(_n4##x,_n3##y,z,c), I[254] = (T)(img)(_n5##x,_n3##y,z,c), I[255] = (T)(img)(_n6##x,_n3##y,z,c), I[256] = (T)(img)(_n7##x,_n3##y,z,c), I[257] = (T)(img)(_n8##x,_n3##y,z,c), I[258] = (T)(img)(_n9##x,_n3##y,z,c), I[259] = (T)(img)(_n10##x,_n3##y,z,c), \
I[260] = (T)(img)(_p9##x,_n4##y,z,c), I[261] = (T)(img)(_p8##x,_n4##y,z,c), I[262] = (T)(img)(_p7##x,_n4##y,z,c), I[263] = (T)(img)(_p6##x,_n4##y,z,c), I[264] = (T)(img)(_p5##x,_n4##y,z,c), I[265] = (T)(img)(_p4##x,_n4##y,z,c), I[266] = (T)(img)(_p3##x,_n4##y,z,c), I[267] = (T)(img)(_p2##x,_n4##y,z,c), I[268] = (T)(img)(_p1##x,_n4##y,z,c), I[269] = (T)(img)(x,_n4##y,z,c), I[270] = (T)(img)(_n1##x,_n4##y,z,c), I[271] = (T)(img)(_n2##x,_n4##y,z,c), I[272] = (T)(img)(_n3##x,_n4##y,z,c), I[273] = (T)(img)(_n4##x,_n4##y,z,c), I[274] = (T)(img)(_n5##x,_n4##y,z,c), I[275] = (T)(img)(_n6##x,_n4##y,z,c), I[276] = (T)(img)(_n7##x,_n4##y,z,c), I[277] = (T)(img)(_n8##x,_n4##y,z,c), I[278] = (T)(img)(_n9##x,_n4##y,z,c), I[279] = (T)(img)(_n10##x,_n4##y,z,c), \
I[280] = (T)(img)(_p9##x,_n5##y,z,c), I[281] = (T)(img)(_p8##x,_n5##y,z,c), I[282] = (T)(img)(_p7##x,_n5##y,z,c), I[283] = (T)(img)(_p6##x,_n5##y,z,c), I[284] = (T)(img)(_p5##x,_n5##y,z,c), I[285] = (T)(img)(_p4##x,_n5##y,z,c), I[286] = (T)(img)(_p3##x,_n5##y,z,c), I[287] = (T)(img)(_p2##x,_n5##y,z,c), I[288] = (T)(img)(_p1##x,_n5##y,z,c), I[289] = (T)(img)(x,_n5##y,z,c), I[290] = (T)(img)(_n1##x,_n5##y,z,c), I[291] = (T)(img)(_n2##x,_n5##y,z,c), I[292] = (T)(img)(_n3##x,_n5##y,z,c), I[293] = (T)(img)(_n4##x,_n5##y,z,c), I[294] = (T)(img)(_n5##x,_n5##y,z,c), I[295] = (T)(img)(_n6##x,_n5##y,z,c), I[296] = (T)(img)(_n7##x,_n5##y,z,c), I[297] = (T)(img)(_n8##x,_n5##y,z,c), I[298] = (T)(img)(_n9##x,_n5##y,z,c), I[299] = (T)(img)(_n10##x,_n5##y,z,c), \
I[300] = (T)(img)(_p9##x,_n6##y,z,c), I[301] = (T)(img)(_p8##x,_n6##y,z,c), I[302] = (T)(img)(_p7##x,_n6##y,z,c), I[303] = (T)(img)(_p6##x,_n6##y,z,c), I[304] = (T)(img)(_p5##x,_n6##y,z,c), I[305] = (T)(img)(_p4##x,_n6##y,z,c), I[306] = (T)(img)(_p3##x,_n6##y,z,c), I[307] = (T)(img)(_p2##x,_n6##y,z,c), I[308] = (T)(img)(_p1##x,_n6##y,z,c), I[309] = (T)(img)(x,_n6##y,z,c), I[310] = (T)(img)(_n1##x,_n6##y,z,c), I[311] = (T)(img)(_n2##x,_n6##y,z,c), I[312] = (T)(img)(_n3##x,_n6##y,z,c), I[313] = (T)(img)(_n4##x,_n6##y,z,c), I[314] = (T)(img)(_n5##x,_n6##y,z,c), I[315] = (T)(img)(_n6##x,_n6##y,z,c), I[316] = (T)(img)(_n7##x,_n6##y,z,c), I[317] = (T)(img)(_n8##x,_n6##y,z,c), I[318] = (T)(img)(_n9##x,_n6##y,z,c), I[319] = (T)(img)(_n10##x,_n6##y,z,c), \
I[320] = (T)(img)(_p9##x,_n7##y,z,c), I[321] = (T)(img)(_p8##x,_n7##y,z,c), I[322] = (T)(img)(_p7##x,_n7##y,z,c), I[323] = (T)(img)(_p6##x,_n7##y,z,c), I[324] = (T)(img)(_p5##x,_n7##y,z,c), I[325] = (T)(img)(_p4##x,_n7##y,z,c), I[326] = (T)(img)(_p3##x,_n7##y,z,c), I[327] = (T)(img)(_p2##x,_n7##y,z,c), I[328] = (T)(img)(_p1##x,_n7##y,z,c), I[329] = (T)(img)(x,_n7##y,z,c), I[330] = (T)(img)(_n1##x,_n7##y,z,c), I[331] = (T)(img)(_n2##x,_n7##y,z,c), I[332] = (T)(img)(_n3##x,_n7##y,z,c), I[333] = (T)(img)(_n4##x,_n7##y,z,c), I[334] = (T)(img)(_n5##x,_n7##y,z,c), I[335] = (T)(img)(_n6##x,_n7##y,z,c), I[336] = (T)(img)(_n7##x,_n7##y,z,c), I[337] = (T)(img)(_n8##x,_n7##y,z,c), I[338] = (T)(img)(_n9##x,_n7##y,z,c), I[339] = (T)(img)(_n10##x,_n7##y,z,c), \
I[340] = (T)(img)(_p9##x,_n8##y,z,c), I[341] = (T)(img)(_p8##x,_n8##y,z,c), I[342] = (T)(img)(_p7##x,_n8##y,z,c), I[343] = (T)(img)(_p6##x,_n8##y,z,c), I[344] = (T)(img)(_p5##x,_n8##y,z,c), I[345] = (T)(img)(_p4##x,_n8##y,z,c), I[346] = (T)(img)(_p3##x,_n8##y,z,c), I[347] = (T)(img)(_p2##x,_n8##y,z,c), I[348] = (T)(img)(_p1##x,_n8##y,z,c), I[349] = (T)(img)(x,_n8##y,z,c), I[350] = (T)(img)(_n1##x,_n8##y,z,c), I[351] = (T)(img)(_n2##x,_n8##y,z,c), I[352] = (T)(img)(_n3##x,_n8##y,z,c), I[353] = (T)(img)(_n4##x,_n8##y,z,c), I[354] = (T)(img)(_n5##x,_n8##y,z,c), I[355] = (T)(img)(_n6##x,_n8##y,z,c), I[356] = (T)(img)(_n7##x,_n8##y,z,c), I[357] = (T)(img)(_n8##x,_n8##y,z,c), I[358] = (T)(img)(_n9##x,_n8##y,z,c), I[359] = (T)(img)(_n10##x,_n8##y,z,c), \
I[360] = (T)(img)(_p9##x,_n9##y,z,c), I[361] = (T)(img)(_p8##x,_n9##y,z,c), I[362] = (T)(img)(_p7##x,_n9##y,z,c), I[363] = (T)(img)(_p6##x,_n9##y,z,c), I[364] = (T)(img)(_p5##x,_n9##y,z,c), I[365] = (T)(img)(_p4##x,_n9##y,z,c), I[366] = (T)(img)(_p3##x,_n9##y,z,c), I[367] = (T)(img)(_p2##x,_n9##y,z,c), I[368] = (T)(img)(_p1##x,_n9##y,z,c), I[369] = (T)(img)(x,_n9##y,z,c), I[370] = (T)(img)(_n1##x,_n9##y,z,c), I[371] = (T)(img)(_n2##x,_n9##y,z,c), I[372] = (T)(img)(_n3##x,_n9##y,z,c), I[373] = (T)(img)(_n4##x,_n9##y,z,c), I[374] = (T)(img)(_n5##x,_n9##y,z,c), I[375] = (T)(img)(_n6##x,_n9##y,z,c), I[376] = (T)(img)(_n7##x,_n9##y,z,c), I[377] = (T)(img)(_n8##x,_n9##y,z,c), I[378] = (T)(img)(_n9##x,_n9##y,z,c), I[379] = (T)(img)(_n10##x,_n9##y,z,c), \
I[380] = (T)(img)(_p9##x,_n10##y,z,c), I[381] = (T)(img)(_p8##x,_n10##y,z,c), I[382] = (T)(img)(_p7##x,_n10##y,z,c), I[383] = (T)(img)(_p6##x,_n10##y,z,c), I[384] = (T)(img)(_p5##x,_n10##y,z,c), I[385] = (T)(img)(_p4##x,_n10##y,z,c), I[386] = (T)(img)(_p3##x,_n10##y,z,c), I[387] = (T)(img)(_p2##x,_n10##y,z,c), I[388] = (T)(img)(_p1##x,_n10##y,z,c), I[389] = (T)(img)(x,_n10##y,z,c), I[390] = (T)(img)(_n1##x,_n10##y,z,c), I[391] = (T)(img)(_n2##x,_n10##y,z,c), I[392] = (T)(img)(_n3##x,_n10##y,z,c), I[393] = (T)(img)(_n4##x,_n10##y,z,c), I[394] = (T)(img)(_n5##x,_n10##y,z,c), I[395] = (T)(img)(_n6##x,_n10##y,z,c), I[396] = (T)(img)(_n7##x,_n10##y,z,c), I[397] = (T)(img)(_n8##x,_n10##y,z,c), I[398] = (T)(img)(_n9##x,_n10##y,z,c), I[399] = (T)(img)(_n10##x,_n10##y,z,c);
// Define 21x21 loop macros
//-------------------------
#define cimg_for21(bound,i) for (int i = 0, \
_p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10; \
_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
#define cimg_for21X(img,x) cimg_for21((img)._width,x)
#define cimg_for21Y(img,y) cimg_for21((img)._height,y)
#define cimg_for21Z(img,z) cimg_for21((img)._depth,z)
#define cimg_for21C(img,c) cimg_for21((img)._spectrum,c)
#define cimg_for21XY(img,x,y) cimg_for21Y(img,y) cimg_for21X(img,x)
#define cimg_for21XZ(img,x,z) cimg_for21Z(img,z) cimg_for21X(img,x)
#define cimg_for21XC(img,x,c) cimg_for21C(img,c) cimg_for21X(img,x)
#define cimg_for21YZ(img,y,z) cimg_for21Z(img,z) cimg_for21Y(img,y)
#define cimg_for21YC(img,y,c) cimg_for21C(img,c) cimg_for21Y(img,y)
#define cimg_for21ZC(img,z,c) cimg_for21C(img,c) cimg_for21Z(img,z)
#define cimg_for21XYZ(img,x,y,z) cimg_for21Z(img,z) cimg_for21XY(img,x,y)
#define cimg_for21XZC(img,x,z,c) cimg_for21C(img,c) cimg_for21XZ(img,x,z)
#define cimg_for21YZC(img,y,z,c) cimg_for21C(img,c) cimg_for21YZ(img,y,z)
#define cimg_for21XYZC(img,x,y,z,c) cimg_for21C(img,c) cimg_for21XYZ(img,x,y,z)
#define cimg_for_in21(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10; \
i<=(int)(i1) && (_n10##i<(int)(bound) || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i)
#define cimg_for_in21X(img,x0,x1,x) cimg_for_in21((img)._width,x0,x1,x)
#define cimg_for_in21Y(img,y0,y1,y) cimg_for_in21((img)._height,y0,y1,y)
#define cimg_for_in21Z(img,z0,z1,z) cimg_for_in21((img)._depth,z0,z1,z)
#define cimg_for_in21C(img,c0,c1,c) cimg_for_in21((img)._spectrum,c0,c1,c)
#define cimg_for_in21XY(img,x0,y0,x1,y1,x,y) cimg_for_in21Y(img,y0,y1,y) cimg_for_in21X(img,x0,x1,x)
#define cimg_for_in21XZ(img,x0,z0,x1,z1,x,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21X(img,x0,x1,x)
#define cimg_for_in21XC(img,x0,c0,x1,c1,x,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21X(img,x0,x1,x)
#define cimg_for_in21YZ(img,y0,z0,y1,z1,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21Y(img,y0,y1,y)
#define cimg_for_in21YC(img,y0,c0,y1,c1,y,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21Y(img,y0,y1,y)
#define cimg_for_in21ZC(img,z0,c0,z1,c1,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21Z(img,z0,z1,z)
#define cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in21Z(img,z0,z1,z) cimg_for_in21XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in21XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in21YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in21XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in21C(img,c0,c1,c) cimg_for_in21XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for21x21(img,x,y,z,c,I,T) \
cimg_for21((img)._height,y) for (int x = 0, \
_p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p10##y,z,c)), \
(I[21] = I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_p9##y,z,c)), \
(I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = (T)(img)(0,_p8##y,z,c)), \
(I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = (T)(img)(0,_p7##y,z,c)), \
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_p6##y,z,c)), \
(I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_p5##y,z,c)), \
(I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = (T)(img)(0,_p4##y,z,c)), \
(I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = (T)(img)(0,_p3##y,z,c)), \
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = (T)(img)(0,_p2##y,z,c)), \
(I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_p1##y,z,c)), \
(I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = (T)(img)(0,y,z,c)), \
(I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (T)(img)(0,_n1##y,z,c)), \
(I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = (T)(img)(0,_n2##y,z,c)), \
(I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = (T)(img)(0,_n3##y,z,c)), \
(I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = (T)(img)(0,_n4##y,z,c)), \
(I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = (T)(img)(0,_n5##y,z,c)), \
(I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = (T)(img)(0,_n6##y,z,c)), \
(I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = (T)(img)(0,_n7##y,z,c)), \
(I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = (T)(img)(0,_n8##y,z,c)), \
(I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = (T)(img)(0,_n9##y,z,c)), \
(I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = (T)(img)(0,_n10##y,z,c)), \
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[32] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[53] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[74] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[95] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[116] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[137] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[158] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[179] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[200] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[221] = (T)(img)(_n1##x,y,z,c)), \
(I[242] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[263] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[284] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[305] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[326] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[347] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[368] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[389] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[410] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[431] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[33] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[54] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[75] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[96] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[117] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[138] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[159] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[180] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[201] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[222] = (T)(img)(_n2##x,y,z,c)), \
(I[243] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[264] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[285] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[306] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[327] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[348] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[369] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[390] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[411] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[432] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[34] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[55] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[76] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[97] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[118] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[139] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[160] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[181] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[202] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[223] = (T)(img)(_n3##x,y,z,c)), \
(I[244] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[265] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[286] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[307] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[328] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[349] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[370] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[391] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[412] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[433] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[35] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[56] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[77] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[98] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[119] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[140] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[161] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[182] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[203] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[224] = (T)(img)(_n4##x,y,z,c)), \
(I[245] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[266] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[287] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[308] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[329] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[350] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[371] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[392] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[413] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[434] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[36] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[57] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[78] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[99] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[120] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[141] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[162] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[183] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[204] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[225] = (T)(img)(_n5##x,y,z,c)), \
(I[246] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[267] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[288] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[309] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[330] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[351] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[372] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[393] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[414] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[435] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[37] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[58] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[79] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[100] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[121] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[142] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[163] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[184] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[205] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[226] = (T)(img)(_n6##x,y,z,c)), \
(I[247] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[268] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[289] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[310] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[331] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[352] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[373] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[394] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[415] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[436] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[38] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[59] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[80] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[101] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[122] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[143] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[164] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[185] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[206] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[227] = (T)(img)(_n7##x,y,z,c)), \
(I[248] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[269] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[290] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[311] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[332] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[353] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[374] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[395] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[416] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[437] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[39] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[60] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[81] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[102] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[123] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[144] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[165] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[186] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[207] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[228] = (T)(img)(_n8##x,y,z,c)), \
(I[249] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[270] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[291] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[312] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[333] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[354] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[375] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[396] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[417] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[438] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[40] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[61] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[82] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[103] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[124] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[145] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[166] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[187] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[208] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[229] = (T)(img)(_n9##x,y,z,c)), \
(I[250] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[271] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[292] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[313] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[334] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[355] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[376] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[397] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[418] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[439] = (T)(img)(_n9##x,_n10##y,z,c)), \
10>=((img)._width)?(img).width() - 1:10); \
(_n10##x<(img).width() && ( \
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[41] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[62] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[83] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[104] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[125] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[146] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[167] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[188] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[209] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[230] = (T)(img)(_n10##x,y,z,c)), \
(I[251] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[272] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[293] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[314] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[335] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[356] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[377] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[398] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[419] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[440] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \
I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \
I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
#define cimg_for_in21x21(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in21((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = (int)( \
(I[0] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[21] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[42] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[63] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[84] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[105] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[126] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[147] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[168] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[189] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[210] = (T)(img)(_p10##x,y,z,c)), \
(I[231] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[252] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[273] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[294] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[315] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[336] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[357] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[378] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[399] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[420] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[1] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[22] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[43] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[64] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[85] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[106] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[127] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[148] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[169] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[190] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[211] = (T)(img)(_p9##x,y,z,c)), \
(I[232] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[253] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[274] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[295] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[316] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[337] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[358] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[379] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[400] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[421] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[2] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[23] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[44] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[65] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[86] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[107] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[128] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[149] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[170] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[191] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[212] = (T)(img)(_p8##x,y,z,c)), \
(I[233] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[254] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[275] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[296] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[317] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[338] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[359] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[380] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[401] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[422] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[3] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[24] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[45] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[66] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[87] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[108] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[129] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[150] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[171] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[192] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[213] = (T)(img)(_p7##x,y,z,c)), \
(I[234] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[255] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[276] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[297] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[318] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[339] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[360] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[381] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[402] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[423] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[4] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[25] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[46] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[67] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[88] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[109] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[130] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[151] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[172] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[193] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[214] = (T)(img)(_p6##x,y,z,c)), \
(I[235] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[256] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[277] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[298] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[319] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[340] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[361] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[382] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[403] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[424] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[5] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[26] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[47] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[68] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[89] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[110] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[131] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[152] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[173] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[194] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[215] = (T)(img)(_p5##x,y,z,c)), \
(I[236] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[257] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[278] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[299] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[320] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[341] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[362] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[383] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[404] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[425] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[6] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[27] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[48] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[69] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[90] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[111] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[132] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[153] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[174] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[195] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[216] = (T)(img)(_p4##x,y,z,c)), \
(I[237] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[258] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[279] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[300] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[321] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[342] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[363] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[384] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[405] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[426] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[7] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[28] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[49] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[70] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[91] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[112] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[133] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[154] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[175] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[196] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[217] = (T)(img)(_p3##x,y,z,c)), \
(I[238] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[259] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[280] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[301] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[322] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[343] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[364] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[385] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[406] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[427] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[8] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[29] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[50] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[71] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[92] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[113] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[134] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[155] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[176] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[197] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[218] = (T)(img)(_p2##x,y,z,c)), \
(I[239] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[260] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[281] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[302] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[323] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[344] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[365] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[386] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[407] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[428] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[9] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[30] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[51] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[72] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[93] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[114] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[135] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[156] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[177] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[198] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[219] = (T)(img)(_p1##x,y,z,c)), \
(I[240] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[261] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[282] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[303] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[324] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[345] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[366] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[387] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[408] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[429] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[10] = (T)(img)(x,_p10##y,z,c)), \
(I[31] = (T)(img)(x,_p9##y,z,c)), \
(I[52] = (T)(img)(x,_p8##y,z,c)), \
(I[73] = (T)(img)(x,_p7##y,z,c)), \
(I[94] = (T)(img)(x,_p6##y,z,c)), \
(I[115] = (T)(img)(x,_p5##y,z,c)), \
(I[136] = (T)(img)(x,_p4##y,z,c)), \
(I[157] = (T)(img)(x,_p3##y,z,c)), \
(I[178] = (T)(img)(x,_p2##y,z,c)), \
(I[199] = (T)(img)(x,_p1##y,z,c)), \
(I[220] = (T)(img)(x,y,z,c)), \
(I[241] = (T)(img)(x,_n1##y,z,c)), \
(I[262] = (T)(img)(x,_n2##y,z,c)), \
(I[283] = (T)(img)(x,_n3##y,z,c)), \
(I[304] = (T)(img)(x,_n4##y,z,c)), \
(I[325] = (T)(img)(x,_n5##y,z,c)), \
(I[346] = (T)(img)(x,_n6##y,z,c)), \
(I[367] = (T)(img)(x,_n7##y,z,c)), \
(I[388] = (T)(img)(x,_n8##y,z,c)), \
(I[409] = (T)(img)(x,_n9##y,z,c)), \
(I[430] = (T)(img)(x,_n10##y,z,c)), \
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[32] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[53] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[74] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[95] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[116] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[137] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[158] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[179] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[200] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[221] = (T)(img)(_n1##x,y,z,c)), \
(I[242] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[263] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[284] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[305] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[326] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[347] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[368] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[389] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[410] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[431] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[33] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[54] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[75] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[96] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[117] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[138] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[159] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[180] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[201] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[222] = (T)(img)(_n2##x,y,z,c)), \
(I[243] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[264] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[285] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[306] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[327] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[348] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[369] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[390] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[411] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[432] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[34] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[55] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[76] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[97] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[118] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[139] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[160] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[181] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[202] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[223] = (T)(img)(_n3##x,y,z,c)), \
(I[244] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[265] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[286] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[307] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[328] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[349] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[370] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[391] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[412] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[433] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[35] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[56] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[77] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[98] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[119] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[140] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[161] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[182] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[203] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[224] = (T)(img)(_n4##x,y,z,c)), \
(I[245] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[266] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[287] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[308] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[329] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[350] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[371] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[392] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[413] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[434] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[36] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[57] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[78] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[99] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[120] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[141] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[162] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[183] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[204] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[225] = (T)(img)(_n5##x,y,z,c)), \
(I[246] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[267] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[288] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[309] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[330] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[351] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[372] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[393] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[414] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[435] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[37] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[58] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[79] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[100] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[121] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[142] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[163] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[184] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[205] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[226] = (T)(img)(_n6##x,y,z,c)), \
(I[247] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[268] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[289] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[310] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[331] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[352] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[373] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[394] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[415] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[436] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[38] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[59] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[80] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[101] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[122] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[143] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[164] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[185] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[206] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[227] = (T)(img)(_n7##x,y,z,c)), \
(I[248] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[269] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[290] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[311] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[332] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[353] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[374] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[395] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[416] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[437] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[39] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[60] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[81] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[102] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[123] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[144] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[165] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[186] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[207] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[228] = (T)(img)(_n8##x,y,z,c)), \
(I[249] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[270] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[291] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[312] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[333] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[354] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[375] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[396] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[417] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[438] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[40] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[61] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[82] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[103] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[124] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[145] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[166] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[187] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[208] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[229] = (T)(img)(_n9##x,y,z,c)), \
(I[250] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[271] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[292] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[313] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[334] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[355] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[376] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[397] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[418] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[439] = (T)(img)(_n9##x,_n10##y,z,c)), \
x + 10>=(img).width()?(img).width() - 1:x + 10); \
x<=(int)(x1) && ((_n10##x<(img).width() && ( \
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[41] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[62] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[83] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[104] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[125] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[146] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[167] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[188] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[209] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[230] = (T)(img)(_n10##x,y,z,c)), \
(I[251] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[272] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[293] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[314] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[335] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[356] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[377] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[398] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[419] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[440] = (T)(img)(_n10##x,_n10##y,z,c)),1)) || \
_n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], \
I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], \
I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], \
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x)
#define cimg_get21x21(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p10##x,_p10##y,z,c), I[1] = (T)(img)(_p9##x,_p10##y,z,c), I[2] = (T)(img)(_p8##x,_p10##y,z,c), I[3] = (T)(img)(_p7##x,_p10##y,z,c), I[4] = (T)(img)(_p6##x,_p10##y,z,c), I[5] = (T)(img)(_p5##x,_p10##y,z,c), I[6] = (T)(img)(_p4##x,_p10##y,z,c), I[7] = (T)(img)(_p3##x,_p10##y,z,c), I[8] = (T)(img)(_p2##x,_p10##y,z,c), I[9] = (T)(img)(_p1##x,_p10##y,z,c), I[10] = (T)(img)(x,_p10##y,z,c), I[11] = (T)(img)(_n1##x,_p10##y,z,c), I[12] = (T)(img)(_n2##x,_p10##y,z,c), I[13] = (T)(img)(_n3##x,_p10##y,z,c), I[14] = (T)(img)(_n4##x,_p10##y,z,c), I[15] = (T)(img)(_n5##x,_p10##y,z,c), I[16] = (T)(img)(_n6##x,_p10##y,z,c), I[17] = (T)(img)(_n7##x,_p10##y,z,c), I[18] = (T)(img)(_n8##x,_p10##y,z,c), I[19] = (T)(img)(_n9##x,_p10##y,z,c), I[20] = (T)(img)(_n10##x,_p10##y,z,c), \
I[21] = (T)(img)(_p10##x,_p9##y,z,c), I[22] = (T)(img)(_p9##x,_p9##y,z,c), I[23] = (T)(img)(_p8##x,_p9##y,z,c), I[24] = (T)(img)(_p7##x,_p9##y,z,c), I[25] = (T)(img)(_p6##x,_p9##y,z,c), I[26] = (T)(img)(_p5##x,_p9##y,z,c), I[27] = (T)(img)(_p4##x,_p9##y,z,c), I[28] = (T)(img)(_p3##x,_p9##y,z,c), I[29] = (T)(img)(_p2##x,_p9##y,z,c), I[30] = (T)(img)(_p1##x,_p9##y,z,c), I[31] = (T)(img)(x,_p9##y,z,c), I[32] = (T)(img)(_n1##x,_p9##y,z,c), I[33] = (T)(img)(_n2##x,_p9##y,z,c), I[34] = (T)(img)(_n3##x,_p9##y,z,c), I[35] = (T)(img)(_n4##x,_p9##y,z,c), I[36] = (T)(img)(_n5##x,_p9##y,z,c), I[37] = (T)(img)(_n6##x,_p9##y,z,c), I[38] = (T)(img)(_n7##x,_p9##y,z,c), I[39] = (T)(img)(_n8##x,_p9##y,z,c), I[40] = (T)(img)(_n9##x,_p9##y,z,c), I[41] = (T)(img)(_n10##x,_p9##y,z,c), \
I[42] = (T)(img)(_p10##x,_p8##y,z,c), I[43] = (T)(img)(_p9##x,_p8##y,z,c), I[44] = (T)(img)(_p8##x,_p8##y,z,c), I[45] = (T)(img)(_p7##x,_p8##y,z,c), I[46] = (T)(img)(_p6##x,_p8##y,z,c), I[47] = (T)(img)(_p5##x,_p8##y,z,c), I[48] = (T)(img)(_p4##x,_p8##y,z,c), I[49] = (T)(img)(_p3##x,_p8##y,z,c), I[50] = (T)(img)(_p2##x,_p8##y,z,c), I[51] = (T)(img)(_p1##x,_p8##y,z,c), I[52] = (T)(img)(x,_p8##y,z,c), I[53] = (T)(img)(_n1##x,_p8##y,z,c), I[54] = (T)(img)(_n2##x,_p8##y,z,c), I[55] = (T)(img)(_n3##x,_p8##y,z,c), I[56] = (T)(img)(_n4##x,_p8##y,z,c), I[57] = (T)(img)(_n5##x,_p8##y,z,c), I[58] = (T)(img)(_n6##x,_p8##y,z,c), I[59] = (T)(img)(_n7##x,_p8##y,z,c), I[60] = (T)(img)(_n8##x,_p8##y,z,c), I[61] = (T)(img)(_n9##x,_p8##y,z,c), I[62] = (T)(img)(_n10##x,_p8##y,z,c), \
I[63] = (T)(img)(_p10##x,_p7##y,z,c), I[64] = (T)(img)(_p9##x,_p7##y,z,c), I[65] = (T)(img)(_p8##x,_p7##y,z,c), I[66] = (T)(img)(_p7##x,_p7##y,z,c), I[67] = (T)(img)(_p6##x,_p7##y,z,c), I[68] = (T)(img)(_p5##x,_p7##y,z,c), I[69] = (T)(img)(_p4##x,_p7##y,z,c), I[70] = (T)(img)(_p3##x,_p7##y,z,c), I[71] = (T)(img)(_p2##x,_p7##y,z,c), I[72] = (T)(img)(_p1##x,_p7##y,z,c), I[73] = (T)(img)(x,_p7##y,z,c), I[74] = (T)(img)(_n1##x,_p7##y,z,c), I[75] = (T)(img)(_n2##x,_p7##y,z,c), I[76] = (T)(img)(_n3##x,_p7##y,z,c), I[77] = (T)(img)(_n4##x,_p7##y,z,c), I[78] = (T)(img)(_n5##x,_p7##y,z,c), I[79] = (T)(img)(_n6##x,_p7##y,z,c), I[80] = (T)(img)(_n7##x,_p7##y,z,c), I[81] = (T)(img)(_n8##x,_p7##y,z,c), I[82] = (T)(img)(_n9##x,_p7##y,z,c), I[83] = (T)(img)(_n10##x,_p7##y,z,c), \
I[84] = (T)(img)(_p10##x,_p6##y,z,c), I[85] = (T)(img)(_p9##x,_p6##y,z,c), I[86] = (T)(img)(_p8##x,_p6##y,z,c), I[87] = (T)(img)(_p7##x,_p6##y,z,c), I[88] = (T)(img)(_p6##x,_p6##y,z,c), I[89] = (T)(img)(_p5##x,_p6##y,z,c), I[90] = (T)(img)(_p4##x,_p6##y,z,c), I[91] = (T)(img)(_p3##x,_p6##y,z,c), I[92] = (T)(img)(_p2##x,_p6##y,z,c), I[93] = (T)(img)(_p1##x,_p6##y,z,c), I[94] = (T)(img)(x,_p6##y,z,c), I[95] = (T)(img)(_n1##x,_p6##y,z,c), I[96] = (T)(img)(_n2##x,_p6##y,z,c), I[97] = (T)(img)(_n3##x,_p6##y,z,c), I[98] = (T)(img)(_n4##x,_p6##y,z,c), I[99] = (T)(img)(_n5##x,_p6##y,z,c), I[100] = (T)(img)(_n6##x,_p6##y,z,c), I[101] = (T)(img)(_n7##x,_p6##y,z,c), I[102] = (T)(img)(_n8##x,_p6##y,z,c), I[103] = (T)(img)(_n9##x,_p6##y,z,c), I[104] = (T)(img)(_n10##x,_p6##y,z,c), \
I[105] = (T)(img)(_p10##x,_p5##y,z,c), I[106] = (T)(img)(_p9##x,_p5##y,z,c), I[107] = (T)(img)(_p8##x,_p5##y,z,c), I[108] = (T)(img)(_p7##x,_p5##y,z,c), I[109] = (T)(img)(_p6##x,_p5##y,z,c), I[110] = (T)(img)(_p5##x,_p5##y,z,c), I[111] = (T)(img)(_p4##x,_p5##y,z,c), I[112] = (T)(img)(_p3##x,_p5##y,z,c), I[113] = (T)(img)(_p2##x,_p5##y,z,c), I[114] = (T)(img)(_p1##x,_p5##y,z,c), I[115] = (T)(img)(x,_p5##y,z,c), I[116] = (T)(img)(_n1##x,_p5##y,z,c), I[117] = (T)(img)(_n2##x,_p5##y,z,c), I[118] = (T)(img)(_n3##x,_p5##y,z,c), I[119] = (T)(img)(_n4##x,_p5##y,z,c), I[120] = (T)(img)(_n5##x,_p5##y,z,c), I[121] = (T)(img)(_n6##x,_p5##y,z,c), I[122] = (T)(img)(_n7##x,_p5##y,z,c), I[123] = (T)(img)(_n8##x,_p5##y,z,c), I[124] = (T)(img)(_n9##x,_p5##y,z,c), I[125] = (T)(img)(_n10##x,_p5##y,z,c), \
I[126] = (T)(img)(_p10##x,_p4##y,z,c), I[127] = (T)(img)(_p9##x,_p4##y,z,c), I[128] = (T)(img)(_p8##x,_p4##y,z,c), I[129] = (T)(img)(_p7##x,_p4##y,z,c), I[130] = (T)(img)(_p6##x,_p4##y,z,c), I[131] = (T)(img)(_p5##x,_p4##y,z,c), I[132] = (T)(img)(_p4##x,_p4##y,z,c), I[133] = (T)(img)(_p3##x,_p4##y,z,c), I[134] = (T)(img)(_p2##x,_p4##y,z,c), I[135] = (T)(img)(_p1##x,_p4##y,z,c), I[136] = (T)(img)(x,_p4##y,z,c), I[137] = (T)(img)(_n1##x,_p4##y,z,c), I[138] = (T)(img)(_n2##x,_p4##y,z,c), I[139] = (T)(img)(_n3##x,_p4##y,z,c), I[140] = (T)(img)(_n4##x,_p4##y,z,c), I[141] = (T)(img)(_n5##x,_p4##y,z,c), I[142] = (T)(img)(_n6##x,_p4##y,z,c), I[143] = (T)(img)(_n7##x,_p4##y,z,c), I[144] = (T)(img)(_n8##x,_p4##y,z,c), I[145] = (T)(img)(_n9##x,_p4##y,z,c), I[146] = (T)(img)(_n10##x,_p4##y,z,c), \
I[147] = (T)(img)(_p10##x,_p3##y,z,c), I[148] = (T)(img)(_p9##x,_p3##y,z,c), I[149] = (T)(img)(_p8##x,_p3##y,z,c), I[150] = (T)(img)(_p7##x,_p3##y,z,c), I[151] = (T)(img)(_p6##x,_p3##y,z,c), I[152] = (T)(img)(_p5##x,_p3##y,z,c), I[153] = (T)(img)(_p4##x,_p3##y,z,c), I[154] = (T)(img)(_p3##x,_p3##y,z,c), I[155] = (T)(img)(_p2##x,_p3##y,z,c), I[156] = (T)(img)(_p1##x,_p3##y,z,c), I[157] = (T)(img)(x,_p3##y,z,c), I[158] = (T)(img)(_n1##x,_p3##y,z,c), I[159] = (T)(img)(_n2##x,_p3##y,z,c), I[160] = (T)(img)(_n3##x,_p3##y,z,c), I[161] = (T)(img)(_n4##x,_p3##y,z,c), I[162] = (T)(img)(_n5##x,_p3##y,z,c), I[163] = (T)(img)(_n6##x,_p3##y,z,c), I[164] = (T)(img)(_n7##x,_p3##y,z,c), I[165] = (T)(img)(_n8##x,_p3##y,z,c), I[166] = (T)(img)(_n9##x,_p3##y,z,c), I[167] = (T)(img)(_n10##x,_p3##y,z,c), \
I[168] = (T)(img)(_p10##x,_p2##y,z,c), I[169] = (T)(img)(_p9##x,_p2##y,z,c), I[170] = (T)(img)(_p8##x,_p2##y,z,c), I[171] = (T)(img)(_p7##x,_p2##y,z,c), I[172] = (T)(img)(_p6##x,_p2##y,z,c), I[173] = (T)(img)(_p5##x,_p2##y,z,c), I[174] = (T)(img)(_p4##x,_p2##y,z,c), I[175] = (T)(img)(_p3##x,_p2##y,z,c), I[176] = (T)(img)(_p2##x,_p2##y,z,c), I[177] = (T)(img)(_p1##x,_p2##y,z,c), I[178] = (T)(img)(x,_p2##y,z,c), I[179] = (T)(img)(_n1##x,_p2##y,z,c), I[180] = (T)(img)(_n2##x,_p2##y,z,c), I[181] = (T)(img)(_n3##x,_p2##y,z,c), I[182] = (T)(img)(_n4##x,_p2##y,z,c), I[183] = (T)(img)(_n5##x,_p2##y,z,c), I[184] = (T)(img)(_n6##x,_p2##y,z,c), I[185] = (T)(img)(_n7##x,_p2##y,z,c), I[186] = (T)(img)(_n8##x,_p2##y,z,c), I[187] = (T)(img)(_n9##x,_p2##y,z,c), I[188] = (T)(img)(_n10##x,_p2##y,z,c), \
I[189] = (T)(img)(_p10##x,_p1##y,z,c), I[190] = (T)(img)(_p9##x,_p1##y,z,c), I[191] = (T)(img)(_p8##x,_p1##y,z,c), I[192] = (T)(img)(_p7##x,_p1##y,z,c), I[193] = (T)(img)(_p6##x,_p1##y,z,c), I[194] = (T)(img)(_p5##x,_p1##y,z,c), I[195] = (T)(img)(_p4##x,_p1##y,z,c), I[196] = (T)(img)(_p3##x,_p1##y,z,c), I[197] = (T)(img)(_p2##x,_p1##y,z,c), I[198] = (T)(img)(_p1##x,_p1##y,z,c), I[199] = (T)(img)(x,_p1##y,z,c), I[200] = (T)(img)(_n1##x,_p1##y,z,c), I[201] = (T)(img)(_n2##x,_p1##y,z,c), I[202] = (T)(img)(_n3##x,_p1##y,z,c), I[203] = (T)(img)(_n4##x,_p1##y,z,c), I[204] = (T)(img)(_n5##x,_p1##y,z,c), I[205] = (T)(img)(_n6##x,_p1##y,z,c), I[206] = (T)(img)(_n7##x,_p1##y,z,c), I[207] = (T)(img)(_n8##x,_p1##y,z,c), I[208] = (T)(img)(_n9##x,_p1##y,z,c), I[209] = (T)(img)(_n10##x,_p1##y,z,c), \
I[210] = (T)(img)(_p10##x,y,z,c), I[211] = (T)(img)(_p9##x,y,z,c), I[212] = (T)(img)(_p8##x,y,z,c), I[213] = (T)(img)(_p7##x,y,z,c), I[214] = (T)(img)(_p6##x,y,z,c), I[215] = (T)(img)(_p5##x,y,z,c), I[216] = (T)(img)(_p4##x,y,z,c), I[217] = (T)(img)(_p3##x,y,z,c), I[218] = (T)(img)(_p2##x,y,z,c), I[219] = (T)(img)(_p1##x,y,z,c), I[220] = (T)(img)(x,y,z,c), I[221] = (T)(img)(_n1##x,y,z,c), I[222] = (T)(img)(_n2##x,y,z,c), I[223] = (T)(img)(_n3##x,y,z,c), I[224] = (T)(img)(_n4##x,y,z,c), I[225] = (T)(img)(_n5##x,y,z,c), I[226] = (T)(img)(_n6##x,y,z,c), I[227] = (T)(img)(_n7##x,y,z,c), I[228] = (T)(img)(_n8##x,y,z,c), I[229] = (T)(img)(_n9##x,y,z,c), I[230] = (T)(img)(_n10##x,y,z,c), \
I[231] = (T)(img)(_p10##x,_n1##y,z,c), I[232] = (T)(img)(_p9##x,_n1##y,z,c), I[233] = (T)(img)(_p8##x,_n1##y,z,c), I[234] = (T)(img)(_p7##x,_n1##y,z,c), I[235] = (T)(img)(_p6##x,_n1##y,z,c), I[236] = (T)(img)(_p5##x,_n1##y,z,c), I[237] = (T)(img)(_p4##x,_n1##y,z,c), I[238] = (T)(img)(_p3##x,_n1##y,z,c), I[239] = (T)(img)(_p2##x,_n1##y,z,c), I[240] = (T)(img)(_p1##x,_n1##y,z,c), I[241] = (T)(img)(x,_n1##y,z,c), I[242] = (T)(img)(_n1##x,_n1##y,z,c), I[243] = (T)(img)(_n2##x,_n1##y,z,c), I[244] = (T)(img)(_n3##x,_n1##y,z,c), I[245] = (T)(img)(_n4##x,_n1##y,z,c), I[246] = (T)(img)(_n5##x,_n1##y,z,c), I[247] = (T)(img)(_n6##x,_n1##y,z,c), I[248] = (T)(img)(_n7##x,_n1##y,z,c), I[249] = (T)(img)(_n8##x,_n1##y,z,c), I[250] = (T)(img)(_n9##x,_n1##y,z,c), I[251] = (T)(img)(_n10##x,_n1##y,z,c), \
I[252] = (T)(img)(_p10##x,_n2##y,z,c), I[253] = (T)(img)(_p9##x,_n2##y,z,c), I[254] = (T)(img)(_p8##x,_n2##y,z,c), I[255] = (T)(img)(_p7##x,_n2##y,z,c), I[256] = (T)(img)(_p6##x,_n2##y,z,c), I[257] = (T)(img)(_p5##x,_n2##y,z,c), I[258] = (T)(img)(_p4##x,_n2##y,z,c), I[259] = (T)(img)(_p3##x,_n2##y,z,c), I[260] = (T)(img)(_p2##x,_n2##y,z,c), I[261] = (T)(img)(_p1##x,_n2##y,z,c), I[262] = (T)(img)(x,_n2##y,z,c), I[263] = (T)(img)(_n1##x,_n2##y,z,c), I[264] = (T)(img)(_n2##x,_n2##y,z,c), I[265] = (T)(img)(_n3##x,_n2##y,z,c), I[266] = (T)(img)(_n4##x,_n2##y,z,c), I[267] = (T)(img)(_n5##x,_n2##y,z,c), I[268] = (T)(img)(_n6##x,_n2##y,z,c), I[269] = (T)(img)(_n7##x,_n2##y,z,c), I[270] = (T)(img)(_n8##x,_n2##y,z,c), I[271] = (T)(img)(_n9##x,_n2##y,z,c), I[272] = (T)(img)(_n10##x,_n2##y,z,c), \
I[273] = (T)(img)(_p10##x,_n3##y,z,c), I[274] = (T)(img)(_p9##x,_n3##y,z,c), I[275] = (T)(img)(_p8##x,_n3##y,z,c), I[276] = (T)(img)(_p7##x,_n3##y,z,c), I[277] = (T)(img)(_p6##x,_n3##y,z,c), I[278] = (T)(img)(_p5##x,_n3##y,z,c), I[279] = (T)(img)(_p4##x,_n3##y,z,c), I[280] = (T)(img)(_p3##x,_n3##y,z,c), I[281] = (T)(img)(_p2##x,_n3##y,z,c), I[282] = (T)(img)(_p1##x,_n3##y,z,c), I[283] = (T)(img)(x,_n3##y,z,c), I[284] = (T)(img)(_n1##x,_n3##y,z,c), I[285] = (T)(img)(_n2##x,_n3##y,z,c), I[286] = (T)(img)(_n3##x,_n3##y,z,c), I[287] = (T)(img)(_n4##x,_n3##y,z,c), I[288] = (T)(img)(_n5##x,_n3##y,z,c), I[289] = (T)(img)(_n6##x,_n3##y,z,c), I[290] = (T)(img)(_n7##x,_n3##y,z,c), I[291] = (T)(img)(_n8##x,_n3##y,z,c), I[292] = (T)(img)(_n9##x,_n3##y,z,c), I[293] = (T)(img)(_n10##x,_n3##y,z,c), \
I[294] = (T)(img)(_p10##x,_n4##y,z,c), I[295] = (T)(img)(_p9##x,_n4##y,z,c), I[296] = (T)(img)(_p8##x,_n4##y,z,c), I[297] = (T)(img)(_p7##x,_n4##y,z,c), I[298] = (T)(img)(_p6##x,_n4##y,z,c), I[299] = (T)(img)(_p5##x,_n4##y,z,c), I[300] = (T)(img)(_p4##x,_n4##y,z,c), I[301] = (T)(img)(_p3##x,_n4##y,z,c), I[302] = (T)(img)(_p2##x,_n4##y,z,c), I[303] = (T)(img)(_p1##x,_n4##y,z,c), I[304] = (T)(img)(x,_n4##y,z,c), I[305] = (T)(img)(_n1##x,_n4##y,z,c), I[306] = (T)(img)(_n2##x,_n4##y,z,c), I[307] = (T)(img)(_n3##x,_n4##y,z,c), I[308] = (T)(img)(_n4##x,_n4##y,z,c), I[309] = (T)(img)(_n5##x,_n4##y,z,c), I[310] = (T)(img)(_n6##x,_n4##y,z,c), I[311] = (T)(img)(_n7##x,_n4##y,z,c), I[312] = (T)(img)(_n8##x,_n4##y,z,c), I[313] = (T)(img)(_n9##x,_n4##y,z,c), I[314] = (T)(img)(_n10##x,_n4##y,z,c), \
I[315] = (T)(img)(_p10##x,_n5##y,z,c), I[316] = (T)(img)(_p9##x,_n5##y,z,c), I[317] = (T)(img)(_p8##x,_n5##y,z,c), I[318] = (T)(img)(_p7##x,_n5##y,z,c), I[319] = (T)(img)(_p6##x,_n5##y,z,c), I[320] = (T)(img)(_p5##x,_n5##y,z,c), I[321] = (T)(img)(_p4##x,_n5##y,z,c), I[322] = (T)(img)(_p3##x,_n5##y,z,c), I[323] = (T)(img)(_p2##x,_n5##y,z,c), I[324] = (T)(img)(_p1##x,_n5##y,z,c), I[325] = (T)(img)(x,_n5##y,z,c), I[326] = (T)(img)(_n1##x,_n5##y,z,c), I[327] = (T)(img)(_n2##x,_n5##y,z,c), I[328] = (T)(img)(_n3##x,_n5##y,z,c), I[329] = (T)(img)(_n4##x,_n5##y,z,c), I[330] = (T)(img)(_n5##x,_n5##y,z,c), I[331] = (T)(img)(_n6##x,_n5##y,z,c), I[332] = (T)(img)(_n7##x,_n5##y,z,c), I[333] = (T)(img)(_n8##x,_n5##y,z,c), I[334] = (T)(img)(_n9##x,_n5##y,z,c), I[335] = (T)(img)(_n10##x,_n5##y,z,c), \
I[336] = (T)(img)(_p10##x,_n6##y,z,c), I[337] = (T)(img)(_p9##x,_n6##y,z,c), I[338] = (T)(img)(_p8##x,_n6##y,z,c), I[339] = (T)(img)(_p7##x,_n6##y,z,c), I[340] = (T)(img)(_p6##x,_n6##y,z,c), I[341] = (T)(img)(_p5##x,_n6##y,z,c), I[342] = (T)(img)(_p4##x,_n6##y,z,c), I[343] = (T)(img)(_p3##x,_n6##y,z,c), I[344] = (T)(img)(_p2##x,_n6##y,z,c), I[345] = (T)(img)(_p1##x,_n6##y,z,c), I[346] = (T)(img)(x,_n6##y,z,c), I[347] = (T)(img)(_n1##x,_n6##y,z,c), I[348] = (T)(img)(_n2##x,_n6##y,z,c), I[349] = (T)(img)(_n3##x,_n6##y,z,c), I[350] = (T)(img)(_n4##x,_n6##y,z,c), I[351] = (T)(img)(_n5##x,_n6##y,z,c), I[352] = (T)(img)(_n6##x,_n6##y,z,c), I[353] = (T)(img)(_n7##x,_n6##y,z,c), I[354] = (T)(img)(_n8##x,_n6##y,z,c), I[355] = (T)(img)(_n9##x,_n6##y,z,c), I[356] = (T)(img)(_n10##x,_n6##y,z,c), \
I[357] = (T)(img)(_p10##x,_n7##y,z,c), I[358] = (T)(img)(_p9##x,_n7##y,z,c), I[359] = (T)(img)(_p8##x,_n7##y,z,c), I[360] = (T)(img)(_p7##x,_n7##y,z,c), I[361] = (T)(img)(_p6##x,_n7##y,z,c), I[362] = (T)(img)(_p5##x,_n7##y,z,c), I[363] = (T)(img)(_p4##x,_n7##y,z,c), I[364] = (T)(img)(_p3##x,_n7##y,z,c), I[365] = (T)(img)(_p2##x,_n7##y,z,c), I[366] = (T)(img)(_p1##x,_n7##y,z,c), I[367] = (T)(img)(x,_n7##y,z,c), I[368] = (T)(img)(_n1##x,_n7##y,z,c), I[369] = (T)(img)(_n2##x,_n7##y,z,c), I[370] = (T)(img)(_n3##x,_n7##y,z,c), I[371] = (T)(img)(_n4##x,_n7##y,z,c), I[372] = (T)(img)(_n5##x,_n7##y,z,c), I[373] = (T)(img)(_n6##x,_n7##y,z,c), I[374] = (T)(img)(_n7##x,_n7##y,z,c), I[375] = (T)(img)(_n8##x,_n7##y,z,c), I[376] = (T)(img)(_n9##x,_n7##y,z,c), I[377] = (T)(img)(_n10##x,_n7##y,z,c), \
I[378] = (T)(img)(_p10##x,_n8##y,z,c), I[379] = (T)(img)(_p9##x,_n8##y,z,c), I[380] = (T)(img)(_p8##x,_n8##y,z,c), I[381] = (T)(img)(_p7##x,_n8##y,z,c), I[382] = (T)(img)(_p6##x,_n8##y,z,c), I[383] = (T)(img)(_p5##x,_n8##y,z,c), I[384] = (T)(img)(_p4##x,_n8##y,z,c), I[385] = (T)(img)(_p3##x,_n8##y,z,c), I[386] = (T)(img)(_p2##x,_n8##y,z,c), I[387] = (T)(img)(_p1##x,_n8##y,z,c), I[388] = (T)(img)(x,_n8##y,z,c), I[389] = (T)(img)(_n1##x,_n8##y,z,c), I[390] = (T)(img)(_n2##x,_n8##y,z,c), I[391] = (T)(img)(_n3##x,_n8##y,z,c), I[392] = (T)(img)(_n4##x,_n8##y,z,c), I[393] = (T)(img)(_n5##x,_n8##y,z,c), I[394] = (T)(img)(_n6##x,_n8##y,z,c), I[395] = (T)(img)(_n7##x,_n8##y,z,c), I[396] = (T)(img)(_n8##x,_n8##y,z,c), I[397] = (T)(img)(_n9##x,_n8##y,z,c), I[398] = (T)(img)(_n10##x,_n8##y,z,c), \
I[399] = (T)(img)(_p10##x,_n9##y,z,c), I[400] = (T)(img)(_p9##x,_n9##y,z,c), I[401] = (T)(img)(_p8##x,_n9##y,z,c), I[402] = (T)(img)(_p7##x,_n9##y,z,c), I[403] = (T)(img)(_p6##x,_n9##y,z,c), I[404] = (T)(img)(_p5##x,_n9##y,z,c), I[405] = (T)(img)(_p4##x,_n9##y,z,c), I[406] = (T)(img)(_p3##x,_n9##y,z,c), I[407] = (T)(img)(_p2##x,_n9##y,z,c), I[408] = (T)(img)(_p1##x,_n9##y,z,c), I[409] = (T)(img)(x,_n9##y,z,c), I[410] = (T)(img)(_n1##x,_n9##y,z,c), I[411] = (T)(img)(_n2##x,_n9##y,z,c), I[412] = (T)(img)(_n3##x,_n9##y,z,c), I[413] = (T)(img)(_n4##x,_n9##y,z,c), I[414] = (T)(img)(_n5##x,_n9##y,z,c), I[415] = (T)(img)(_n6##x,_n9##y,z,c), I[416] = (T)(img)(_n7##x,_n9##y,z,c), I[417] = (T)(img)(_n8##x,_n9##y,z,c), I[418] = (T)(img)(_n9##x,_n9##y,z,c), I[419] = (T)(img)(_n10##x,_n9##y,z,c), \
I[420] = (T)(img)(_p10##x,_n10##y,z,c), I[421] = (T)(img)(_p9##x,_n10##y,z,c), I[422] = (T)(img)(_p8##x,_n10##y,z,c), I[423] = (T)(img)(_p7##x,_n10##y,z,c), I[424] = (T)(img)(_p6##x,_n10##y,z,c), I[425] = (T)(img)(_p5##x,_n10##y,z,c), I[426] = (T)(img)(_p4##x,_n10##y,z,c), I[427] = (T)(img)(_p3##x,_n10##y,z,c), I[428] = (T)(img)(_p2##x,_n10##y,z,c), I[429] = (T)(img)(_p1##x,_n10##y,z,c), I[430] = (T)(img)(x,_n10##y,z,c), I[431] = (T)(img)(_n1##x,_n10##y,z,c), I[432] = (T)(img)(_n2##x,_n10##y,z,c), I[433] = (T)(img)(_n3##x,_n10##y,z,c), I[434] = (T)(img)(_n4##x,_n10##y,z,c), I[435] = (T)(img)(_n5##x,_n10##y,z,c), I[436] = (T)(img)(_n6##x,_n10##y,z,c), I[437] = (T)(img)(_n7##x,_n10##y,z,c), I[438] = (T)(img)(_n8##x,_n10##y,z,c), I[439] = (T)(img)(_n9##x,_n10##y,z,c), I[440] = (T)(img)(_n10##x,_n10##y,z,c);
// Define 22x22 loop macros
//-------------------------
#define cimg_for22(bound,i) for (int i = 0, \
_p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11; \
_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
#define cimg_for22X(img,x) cimg_for22((img)._width,x)
#define cimg_for22Y(img,y) cimg_for22((img)._height,y)
#define cimg_for22Z(img,z) cimg_for22((img)._depth,z)
#define cimg_for22C(img,c) cimg_for22((img)._spectrum,c)
#define cimg_for22XY(img,x,y) cimg_for22Y(img,y) cimg_for22X(img,x)
#define cimg_for22XZ(img,x,z) cimg_for22Z(img,z) cimg_for22X(img,x)
#define cimg_for22XC(img,x,c) cimg_for22C(img,c) cimg_for22X(img,x)
#define cimg_for22YZ(img,y,z) cimg_for22Z(img,z) cimg_for22Y(img,y)
#define cimg_for22YC(img,y,c) cimg_for22C(img,c) cimg_for22Y(img,y)
#define cimg_for22ZC(img,z,c) cimg_for22C(img,c) cimg_for22Z(img,z)
#define cimg_for22XYZ(img,x,y,z) cimg_for22Z(img,z) cimg_for22XY(img,x,y)
#define cimg_for22XZC(img,x,z,c) cimg_for22C(img,c) cimg_for22XZ(img,x,z)
#define cimg_for22YZC(img,y,z,c) cimg_for22C(img,c) cimg_for22YZ(img,y,z)
#define cimg_for22XYZC(img,x,y,z,c) cimg_for22C(img,c) cimg_for22XYZ(img,x,y,z)
#define cimg_for_in22(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11; \
i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
#define cimg_for_in22X(img,x0,x1,x) cimg_for_in22((img)._width,x0,x1,x)
#define cimg_for_in22Y(img,y0,y1,y) cimg_for_in22((img)._height,y0,y1,y)
#define cimg_for_in22Z(img,z0,z1,z) cimg_for_in22((img)._depth,z0,z1,z)
#define cimg_for_in22C(img,c0,c1,c) cimg_for_in22((img)._spectrum,c0,c1,c)
#define cimg_for_in22XY(img,x0,y0,x1,y1,x,y) cimg_for_in22Y(img,y0,y1,y) cimg_for_in22X(img,x0,x1,x)
#define cimg_for_in22XZ(img,x0,z0,x1,z1,x,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22X(img,x0,x1,x)
#define cimg_for_in22XC(img,x0,c0,x1,c1,x,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22X(img,x0,x1,x)
#define cimg_for_in22YZ(img,y0,z0,y1,z1,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22Y(img,y0,y1,y)
#define cimg_for_in22YC(img,y0,c0,y1,c1,y,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22Y(img,y0,y1,y)
#define cimg_for_in22ZC(img,z0,c0,z1,c1,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22Z(img,z0,z1,z)
#define cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in22Z(img,z0,z1,z) cimg_for_in22XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in22XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in22YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in22XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in22C(img,c0,c1,c) cimg_for_in22XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for22x22(img,x,y,z,c,I,T) \
cimg_for22((img)._height,y) for (int x = 0, \
_p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p10##y,z,c)), \
(I[22] = I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = (T)(img)(0,_p9##y,z,c)), \
(I[44] = I[45] = I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = (T)(img)(0,_p8##y,z,c)), \
(I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_p7##y,z,c)), \
(I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = (T)(img)(0,_p6##y,z,c)), \
(I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = (T)(img)(0,_p5##y,z,c)), \
(I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_p4##y,z,c)), \
(I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = (T)(img)(0,_p3##y,z,c)), \
(I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = (T)(img)(0,_p2##y,z,c)), \
(I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = (T)(img)(0,_p1##y,z,c)), \
(I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = (T)(img)(0,y,z,c)), \
(I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = (T)(img)(0,_n1##y,z,c)), \
(I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = (T)(img)(0,_n2##y,z,c)), \
(I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = (T)(img)(0,_n3##y,z,c)), \
(I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = (T)(img)(0,_n4##y,z,c)), \
(I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = I[338] = I[339] = I[340] = (T)(img)(0,_n5##y,z,c)), \
(I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (T)(img)(0,_n6##y,z,c)), \
(I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = (T)(img)(0,_n7##y,z,c)), \
(I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = (T)(img)(0,_n8##y,z,c)), \
(I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = (T)(img)(0,_n9##y,z,c)), \
(I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = I[450] = (T)(img)(0,_n10##y,z,c)), \
(I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = (T)(img)(0,_n11##y,z,c)), \
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[33] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[55] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[77] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[99] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[121] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[165] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[187] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[209] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[231] = (T)(img)(_n1##x,y,z,c)), \
(I[253] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[275] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[297] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[319] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[341] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[363] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[385] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[407] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[429] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[451] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[473] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[34] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[56] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[78] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[100] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[122] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[166] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[188] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[210] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[232] = (T)(img)(_n2##x,y,z,c)), \
(I[254] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[276] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[298] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[320] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[342] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[364] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[386] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[408] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[430] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[452] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[474] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[35] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[57] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[79] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[101] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[123] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[167] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[189] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[211] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[233] = (T)(img)(_n3##x,y,z,c)), \
(I[255] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[277] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[299] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[321] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[343] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[365] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[387] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[409] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[431] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[453] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[475] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[36] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[58] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[80] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[102] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[124] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[168] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[190] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[212] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[234] = (T)(img)(_n4##x,y,z,c)), \
(I[256] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[278] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[300] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[322] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[344] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[366] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[388] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[410] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[432] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[454] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[476] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[37] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[59] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[81] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[103] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[125] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[169] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[191] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[213] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[235] = (T)(img)(_n5##x,y,z,c)), \
(I[257] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[279] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[301] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[323] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[345] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[367] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[389] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[411] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[433] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[455] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[477] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[38] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[60] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[82] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[104] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[126] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[170] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[192] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[214] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[236] = (T)(img)(_n6##x,y,z,c)), \
(I[258] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[280] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[302] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[324] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[346] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[368] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[390] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[412] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[434] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[456] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[478] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[39] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[61] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[83] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[105] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[127] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[171] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[193] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[215] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[237] = (T)(img)(_n7##x,y,z,c)), \
(I[259] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[281] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[303] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[325] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[347] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[369] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[391] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[413] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[435] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[457] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[479] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[40] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[62] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[84] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[106] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[128] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[150] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[172] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[194] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[216] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[238] = (T)(img)(_n8##x,y,z,c)), \
(I[260] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[282] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[304] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[326] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[348] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[370] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[392] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[414] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[436] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[458] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[480] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[41] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[63] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[85] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[107] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[129] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[151] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[173] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[195] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[217] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[239] = (T)(img)(_n9##x,y,z,c)), \
(I[261] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[283] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[305] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[327] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[349] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[371] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[393] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[415] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[437] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[459] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[481] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[42] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[64] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[86] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[108] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[130] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[152] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[174] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[196] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[218] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[240] = (T)(img)(_n10##x,y,z,c)), \
(I[262] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[284] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[306] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[328] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[350] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[372] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[394] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[416] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[438] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[460] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[482] = (T)(img)(_n10##x,_n11##y,z,c)), \
11>=((img)._width)?(img).width() - 1:11); \
(_n11##x<(img).width() && ( \
(I[21] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[43] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[65] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[87] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[109] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[131] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[153] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[175] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[197] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[219] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[241] = (T)(img)(_n11##x,y,z,c)), \
(I[263] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[285] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[307] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[329] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[351] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[373] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[395] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[417] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[439] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[461] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[483] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \
I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \
I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \
I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \
I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \
I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
#define cimg_for_in22x22(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in22((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = (int)( \
(I[0] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[22] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[44] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[66] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[88] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[110] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[132] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[154] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[176] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[198] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[220] = (T)(img)(_p10##x,y,z,c)), \
(I[242] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[264] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[286] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[308] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[330] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[352] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[374] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[396] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[418] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[440] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[462] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[1] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[23] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[45] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[67] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[89] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[111] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[133] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[155] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[177] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[199] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[221] = (T)(img)(_p9##x,y,z,c)), \
(I[243] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[265] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[287] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[309] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[331] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[353] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[375] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[397] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[419] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[441] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[463] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[2] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[24] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[46] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[68] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[90] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[112] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[134] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[156] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[178] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[200] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[222] = (T)(img)(_p8##x,y,z,c)), \
(I[244] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[266] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[288] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[310] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[332] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[354] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[376] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[398] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[420] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[442] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[464] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[3] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[25] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[47] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[69] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[91] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[113] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[135] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[157] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[179] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[201] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[223] = (T)(img)(_p7##x,y,z,c)), \
(I[245] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[267] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[289] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[311] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[333] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[355] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[377] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[399] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[421] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[443] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[465] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[4] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[26] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[48] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[70] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[92] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[114] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[136] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[158] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[180] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[202] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[224] = (T)(img)(_p6##x,y,z,c)), \
(I[246] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[268] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[290] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[312] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[334] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[356] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[378] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[400] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[422] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[444] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[466] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[5] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[27] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[49] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[71] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[93] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[115] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[137] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[159] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[181] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[203] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[225] = (T)(img)(_p5##x,y,z,c)), \
(I[247] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[269] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[291] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[313] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[335] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[357] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[379] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[401] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[423] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[445] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[467] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[6] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[28] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[50] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[72] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[94] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[116] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[138] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[160] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[182] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[204] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[226] = (T)(img)(_p4##x,y,z,c)), \
(I[248] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[270] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[292] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[314] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[336] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[358] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[380] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[402] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[424] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[446] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[468] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[7] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[29] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[51] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[73] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[95] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[117] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[139] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[161] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[183] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[205] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[227] = (T)(img)(_p3##x,y,z,c)), \
(I[249] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[271] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[293] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[315] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[337] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[359] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[381] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[403] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[425] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[447] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[469] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[8] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[30] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[52] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[74] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[96] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[118] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[140] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[162] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[184] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[206] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[228] = (T)(img)(_p2##x,y,z,c)), \
(I[250] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[272] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[294] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[316] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[338] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[360] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[382] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[404] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[426] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[448] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[470] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[9] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[31] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[53] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[75] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[97] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[119] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[141] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[163] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[185] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[207] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[229] = (T)(img)(_p1##x,y,z,c)), \
(I[251] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[273] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[295] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[317] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[339] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[361] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[383] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[405] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[427] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[449] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[471] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[10] = (T)(img)(x,_p10##y,z,c)), \
(I[32] = (T)(img)(x,_p9##y,z,c)), \
(I[54] = (T)(img)(x,_p8##y,z,c)), \
(I[76] = (T)(img)(x,_p7##y,z,c)), \
(I[98] = (T)(img)(x,_p6##y,z,c)), \
(I[120] = (T)(img)(x,_p5##y,z,c)), \
(I[142] = (T)(img)(x,_p4##y,z,c)), \
(I[164] = (T)(img)(x,_p3##y,z,c)), \
(I[186] = (T)(img)(x,_p2##y,z,c)), \
(I[208] = (T)(img)(x,_p1##y,z,c)), \
(I[230] = (T)(img)(x,y,z,c)), \
(I[252] = (T)(img)(x,_n1##y,z,c)), \
(I[274] = (T)(img)(x,_n2##y,z,c)), \
(I[296] = (T)(img)(x,_n3##y,z,c)), \
(I[318] = (T)(img)(x,_n4##y,z,c)), \
(I[340] = (T)(img)(x,_n5##y,z,c)), \
(I[362] = (T)(img)(x,_n6##y,z,c)), \
(I[384] = (T)(img)(x,_n7##y,z,c)), \
(I[406] = (T)(img)(x,_n8##y,z,c)), \
(I[428] = (T)(img)(x,_n9##y,z,c)), \
(I[450] = (T)(img)(x,_n10##y,z,c)), \
(I[472] = (T)(img)(x,_n11##y,z,c)), \
(I[11] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[33] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[55] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[77] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[99] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[121] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[165] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[187] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[209] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[231] = (T)(img)(_n1##x,y,z,c)), \
(I[253] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[275] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[297] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[319] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[341] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[363] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[385] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[407] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[429] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[451] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[473] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[12] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[34] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[56] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[78] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[100] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[122] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[166] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[188] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[210] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[232] = (T)(img)(_n2##x,y,z,c)), \
(I[254] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[276] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[298] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[320] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[342] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[364] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[386] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[408] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[430] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[452] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[474] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[13] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[35] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[57] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[79] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[101] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[123] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[167] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[189] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[211] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[233] = (T)(img)(_n3##x,y,z,c)), \
(I[255] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[277] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[299] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[321] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[343] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[365] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[387] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[409] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[431] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[453] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[475] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[14] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[36] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[58] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[80] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[102] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[124] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[168] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[190] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[212] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[234] = (T)(img)(_n4##x,y,z,c)), \
(I[256] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[278] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[300] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[322] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[344] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[366] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[388] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[410] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[432] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[454] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[476] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[15] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[37] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[59] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[81] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[103] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[125] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[169] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[191] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[213] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[235] = (T)(img)(_n5##x,y,z,c)), \
(I[257] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[279] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[301] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[323] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[345] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[367] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[389] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[411] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[433] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[455] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[477] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[16] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[38] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[60] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[82] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[104] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[126] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[170] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[192] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[214] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[236] = (T)(img)(_n6##x,y,z,c)), \
(I[258] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[280] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[302] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[324] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[346] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[368] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[390] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[412] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[434] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[456] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[478] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[17] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[39] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[61] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[83] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[105] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[127] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[171] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[193] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[215] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[237] = (T)(img)(_n7##x,y,z,c)), \
(I[259] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[281] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[303] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[325] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[347] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[369] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[391] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[413] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[435] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[457] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[479] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[18] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[40] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[62] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[84] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[106] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[128] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[150] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[172] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[194] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[216] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[238] = (T)(img)(_n8##x,y,z,c)), \
(I[260] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[282] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[304] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[326] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[348] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[370] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[392] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[414] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[436] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[458] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[480] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[19] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[41] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[63] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[85] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[107] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[129] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[151] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[173] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[195] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[217] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[239] = (T)(img)(_n9##x,y,z,c)), \
(I[261] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[283] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[305] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[327] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[349] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[371] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[393] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[415] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[437] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[459] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[481] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[20] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[42] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[64] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[86] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[108] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[130] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[152] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[174] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[196] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[218] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[240] = (T)(img)(_n10##x,y,z,c)), \
(I[262] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[284] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[306] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[328] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[350] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[372] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[394] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[416] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[438] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[460] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[482] = (T)(img)(_n10##x,_n11##y,z,c)), \
x + 11>=(img).width()?(img).width() - 1:x + 11); \
x<=(int)(x1) && ((_n11##x<(img).width() && ( \
(I[21] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[43] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[65] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[87] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[109] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[131] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[153] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[175] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[197] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[219] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[241] = (T)(img)(_n11##x,y,z,c)), \
(I[263] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[285] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[307] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[329] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[351] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[373] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[395] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[417] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[439] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[461] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[483] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], \
I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], \
I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], \
I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], \
I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], \
I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], \
I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], \
I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], \
I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], \
_p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
#define cimg_get22x22(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p10##x,_p10##y,z,c), I[1] = (T)(img)(_p9##x,_p10##y,z,c), I[2] = (T)(img)(_p8##x,_p10##y,z,c), I[3] = (T)(img)(_p7##x,_p10##y,z,c), I[4] = (T)(img)(_p6##x,_p10##y,z,c), I[5] = (T)(img)(_p5##x,_p10##y,z,c), I[6] = (T)(img)(_p4##x,_p10##y,z,c), I[7] = (T)(img)(_p3##x,_p10##y,z,c), I[8] = (T)(img)(_p2##x,_p10##y,z,c), I[9] = (T)(img)(_p1##x,_p10##y,z,c), I[10] = (T)(img)(x,_p10##y,z,c), I[11] = (T)(img)(_n1##x,_p10##y,z,c), I[12] = (T)(img)(_n2##x,_p10##y,z,c), I[13] = (T)(img)(_n3##x,_p10##y,z,c), I[14] = (T)(img)(_n4##x,_p10##y,z,c), I[15] = (T)(img)(_n5##x,_p10##y,z,c), I[16] = (T)(img)(_n6##x,_p10##y,z,c), I[17] = (T)(img)(_n7##x,_p10##y,z,c), I[18] = (T)(img)(_n8##x,_p10##y,z,c), I[19] = (T)(img)(_n9##x,_p10##y,z,c), I[20] = (T)(img)(_n10##x,_p10##y,z,c), I[21] = (T)(img)(_n11##x,_p10##y,z,c), \
I[22] = (T)(img)(_p10##x,_p9##y,z,c), I[23] = (T)(img)(_p9##x,_p9##y,z,c), I[24] = (T)(img)(_p8##x,_p9##y,z,c), I[25] = (T)(img)(_p7##x,_p9##y,z,c), I[26] = (T)(img)(_p6##x,_p9##y,z,c), I[27] = (T)(img)(_p5##x,_p9##y,z,c), I[28] = (T)(img)(_p4##x,_p9##y,z,c), I[29] = (T)(img)(_p3##x,_p9##y,z,c), I[30] = (T)(img)(_p2##x,_p9##y,z,c), I[31] = (T)(img)(_p1##x,_p9##y,z,c), I[32] = (T)(img)(x,_p9##y,z,c), I[33] = (T)(img)(_n1##x,_p9##y,z,c), I[34] = (T)(img)(_n2##x,_p9##y,z,c), I[35] = (T)(img)(_n3##x,_p9##y,z,c), I[36] = (T)(img)(_n4##x,_p9##y,z,c), I[37] = (T)(img)(_n5##x,_p9##y,z,c), I[38] = (T)(img)(_n6##x,_p9##y,z,c), I[39] = (T)(img)(_n7##x,_p9##y,z,c), I[40] = (T)(img)(_n8##x,_p9##y,z,c), I[41] = (T)(img)(_n9##x,_p9##y,z,c), I[42] = (T)(img)(_n10##x,_p9##y,z,c), I[43] = (T)(img)(_n11##x,_p9##y,z,c), \
I[44] = (T)(img)(_p10##x,_p8##y,z,c), I[45] = (T)(img)(_p9##x,_p8##y,z,c), I[46] = (T)(img)(_p8##x,_p8##y,z,c), I[47] = (T)(img)(_p7##x,_p8##y,z,c), I[48] = (T)(img)(_p6##x,_p8##y,z,c), I[49] = (T)(img)(_p5##x,_p8##y,z,c), I[50] = (T)(img)(_p4##x,_p8##y,z,c), I[51] = (T)(img)(_p3##x,_p8##y,z,c), I[52] = (T)(img)(_p2##x,_p8##y,z,c), I[53] = (T)(img)(_p1##x,_p8##y,z,c), I[54] = (T)(img)(x,_p8##y,z,c), I[55] = (T)(img)(_n1##x,_p8##y,z,c), I[56] = (T)(img)(_n2##x,_p8##y,z,c), I[57] = (T)(img)(_n3##x,_p8##y,z,c), I[58] = (T)(img)(_n4##x,_p8##y,z,c), I[59] = (T)(img)(_n5##x,_p8##y,z,c), I[60] = (T)(img)(_n6##x,_p8##y,z,c), I[61] = (T)(img)(_n7##x,_p8##y,z,c), I[62] = (T)(img)(_n8##x,_p8##y,z,c), I[63] = (T)(img)(_n9##x,_p8##y,z,c), I[64] = (T)(img)(_n10##x,_p8##y,z,c), I[65] = (T)(img)(_n11##x,_p8##y,z,c), \
I[66] = (T)(img)(_p10##x,_p7##y,z,c), I[67] = (T)(img)(_p9##x,_p7##y,z,c), I[68] = (T)(img)(_p8##x,_p7##y,z,c), I[69] = (T)(img)(_p7##x,_p7##y,z,c), I[70] = (T)(img)(_p6##x,_p7##y,z,c), I[71] = (T)(img)(_p5##x,_p7##y,z,c), I[72] = (T)(img)(_p4##x,_p7##y,z,c), I[73] = (T)(img)(_p3##x,_p7##y,z,c), I[74] = (T)(img)(_p2##x,_p7##y,z,c), I[75] = (T)(img)(_p1##x,_p7##y,z,c), I[76] = (T)(img)(x,_p7##y,z,c), I[77] = (T)(img)(_n1##x,_p7##y,z,c), I[78] = (T)(img)(_n2##x,_p7##y,z,c), I[79] = (T)(img)(_n3##x,_p7##y,z,c), I[80] = (T)(img)(_n4##x,_p7##y,z,c), I[81] = (T)(img)(_n5##x,_p7##y,z,c), I[82] = (T)(img)(_n6##x,_p7##y,z,c), I[83] = (T)(img)(_n7##x,_p7##y,z,c), I[84] = (T)(img)(_n8##x,_p7##y,z,c), I[85] = (T)(img)(_n9##x,_p7##y,z,c), I[86] = (T)(img)(_n10##x,_p7##y,z,c), I[87] = (T)(img)(_n11##x,_p7##y,z,c), \
I[88] = (T)(img)(_p10##x,_p6##y,z,c), I[89] = (T)(img)(_p9##x,_p6##y,z,c), I[90] = (T)(img)(_p8##x,_p6##y,z,c), I[91] = (T)(img)(_p7##x,_p6##y,z,c), I[92] = (T)(img)(_p6##x,_p6##y,z,c), I[93] = (T)(img)(_p5##x,_p6##y,z,c), I[94] = (T)(img)(_p4##x,_p6##y,z,c), I[95] = (T)(img)(_p3##x,_p6##y,z,c), I[96] = (T)(img)(_p2##x,_p6##y,z,c), I[97] = (T)(img)(_p1##x,_p6##y,z,c), I[98] = (T)(img)(x,_p6##y,z,c), I[99] = (T)(img)(_n1##x,_p6##y,z,c), I[100] = (T)(img)(_n2##x,_p6##y,z,c), I[101] = (T)(img)(_n3##x,_p6##y,z,c), I[102] = (T)(img)(_n4##x,_p6##y,z,c), I[103] = (T)(img)(_n5##x,_p6##y,z,c), I[104] = (T)(img)(_n6##x,_p6##y,z,c), I[105] = (T)(img)(_n7##x,_p6##y,z,c), I[106] = (T)(img)(_n8##x,_p6##y,z,c), I[107] = (T)(img)(_n9##x,_p6##y,z,c), I[108] = (T)(img)(_n10##x,_p6##y,z,c), I[109] = (T)(img)(_n11##x,_p6##y,z,c), \
I[110] = (T)(img)(_p10##x,_p5##y,z,c), I[111] = (T)(img)(_p9##x,_p5##y,z,c), I[112] = (T)(img)(_p8##x,_p5##y,z,c), I[113] = (T)(img)(_p7##x,_p5##y,z,c), I[114] = (T)(img)(_p6##x,_p5##y,z,c), I[115] = (T)(img)(_p5##x,_p5##y,z,c), I[116] = (T)(img)(_p4##x,_p5##y,z,c), I[117] = (T)(img)(_p3##x,_p5##y,z,c), I[118] = (T)(img)(_p2##x,_p5##y,z,c), I[119] = (T)(img)(_p1##x,_p5##y,z,c), I[120] = (T)(img)(x,_p5##y,z,c), I[121] = (T)(img)(_n1##x,_p5##y,z,c), I[122] = (T)(img)(_n2##x,_p5##y,z,c), I[123] = (T)(img)(_n3##x,_p5##y,z,c), I[124] = (T)(img)(_n4##x,_p5##y,z,c), I[125] = (T)(img)(_n5##x,_p5##y,z,c), I[126] = (T)(img)(_n6##x,_p5##y,z,c), I[127] = (T)(img)(_n7##x,_p5##y,z,c), I[128] = (T)(img)(_n8##x,_p5##y,z,c), I[129] = (T)(img)(_n9##x,_p5##y,z,c), I[130] = (T)(img)(_n10##x,_p5##y,z,c), I[131] = (T)(img)(_n11##x,_p5##y,z,c), \
I[132] = (T)(img)(_p10##x,_p4##y,z,c), I[133] = (T)(img)(_p9##x,_p4##y,z,c), I[134] = (T)(img)(_p8##x,_p4##y,z,c), I[135] = (T)(img)(_p7##x,_p4##y,z,c), I[136] = (T)(img)(_p6##x,_p4##y,z,c), I[137] = (T)(img)(_p5##x,_p4##y,z,c), I[138] = (T)(img)(_p4##x,_p4##y,z,c), I[139] = (T)(img)(_p3##x,_p4##y,z,c), I[140] = (T)(img)(_p2##x,_p4##y,z,c), I[141] = (T)(img)(_p1##x,_p4##y,z,c), I[142] = (T)(img)(x,_p4##y,z,c), I[143] = (T)(img)(_n1##x,_p4##y,z,c), I[144] = (T)(img)(_n2##x,_p4##y,z,c), I[145] = (T)(img)(_n3##x,_p4##y,z,c), I[146] = (T)(img)(_n4##x,_p4##y,z,c), I[147] = (T)(img)(_n5##x,_p4##y,z,c), I[148] = (T)(img)(_n6##x,_p4##y,z,c), I[149] = (T)(img)(_n7##x,_p4##y,z,c), I[150] = (T)(img)(_n8##x,_p4##y,z,c), I[151] = (T)(img)(_n9##x,_p4##y,z,c), I[152] = (T)(img)(_n10##x,_p4##y,z,c), I[153] = (T)(img)(_n11##x,_p4##y,z,c), \
I[154] = (T)(img)(_p10##x,_p3##y,z,c), I[155] = (T)(img)(_p9##x,_p3##y,z,c), I[156] = (T)(img)(_p8##x,_p3##y,z,c), I[157] = (T)(img)(_p7##x,_p3##y,z,c), I[158] = (T)(img)(_p6##x,_p3##y,z,c), I[159] = (T)(img)(_p5##x,_p3##y,z,c), I[160] = (T)(img)(_p4##x,_p3##y,z,c), I[161] = (T)(img)(_p3##x,_p3##y,z,c), I[162] = (T)(img)(_p2##x,_p3##y,z,c), I[163] = (T)(img)(_p1##x,_p3##y,z,c), I[164] = (T)(img)(x,_p3##y,z,c), I[165] = (T)(img)(_n1##x,_p3##y,z,c), I[166] = (T)(img)(_n2##x,_p3##y,z,c), I[167] = (T)(img)(_n3##x,_p3##y,z,c), I[168] = (T)(img)(_n4##x,_p3##y,z,c), I[169] = (T)(img)(_n5##x,_p3##y,z,c), I[170] = (T)(img)(_n6##x,_p3##y,z,c), I[171] = (T)(img)(_n7##x,_p3##y,z,c), I[172] = (T)(img)(_n8##x,_p3##y,z,c), I[173] = (T)(img)(_n9##x,_p3##y,z,c), I[174] = (T)(img)(_n10##x,_p3##y,z,c), I[175] = (T)(img)(_n11##x,_p3##y,z,c), \
I[176] = (T)(img)(_p10##x,_p2##y,z,c), I[177] = (T)(img)(_p9##x,_p2##y,z,c), I[178] = (T)(img)(_p8##x,_p2##y,z,c), I[179] = (T)(img)(_p7##x,_p2##y,z,c), I[180] = (T)(img)(_p6##x,_p2##y,z,c), I[181] = (T)(img)(_p5##x,_p2##y,z,c), I[182] = (T)(img)(_p4##x,_p2##y,z,c), I[183] = (T)(img)(_p3##x,_p2##y,z,c), I[184] = (T)(img)(_p2##x,_p2##y,z,c), I[185] = (T)(img)(_p1##x,_p2##y,z,c), I[186] = (T)(img)(x,_p2##y,z,c), I[187] = (T)(img)(_n1##x,_p2##y,z,c), I[188] = (T)(img)(_n2##x,_p2##y,z,c), I[189] = (T)(img)(_n3##x,_p2##y,z,c), I[190] = (T)(img)(_n4##x,_p2##y,z,c), I[191] = (T)(img)(_n5##x,_p2##y,z,c), I[192] = (T)(img)(_n6##x,_p2##y,z,c), I[193] = (T)(img)(_n7##x,_p2##y,z,c), I[194] = (T)(img)(_n8##x,_p2##y,z,c), I[195] = (T)(img)(_n9##x,_p2##y,z,c), I[196] = (T)(img)(_n10##x,_p2##y,z,c), I[197] = (T)(img)(_n11##x,_p2##y,z,c), \
I[198] = (T)(img)(_p10##x,_p1##y,z,c), I[199] = (T)(img)(_p9##x,_p1##y,z,c), I[200] = (T)(img)(_p8##x,_p1##y,z,c), I[201] = (T)(img)(_p7##x,_p1##y,z,c), I[202] = (T)(img)(_p6##x,_p1##y,z,c), I[203] = (T)(img)(_p5##x,_p1##y,z,c), I[204] = (T)(img)(_p4##x,_p1##y,z,c), I[205] = (T)(img)(_p3##x,_p1##y,z,c), I[206] = (T)(img)(_p2##x,_p1##y,z,c), I[207] = (T)(img)(_p1##x,_p1##y,z,c), I[208] = (T)(img)(x,_p1##y,z,c), I[209] = (T)(img)(_n1##x,_p1##y,z,c), I[210] = (T)(img)(_n2##x,_p1##y,z,c), I[211] = (T)(img)(_n3##x,_p1##y,z,c), I[212] = (T)(img)(_n4##x,_p1##y,z,c), I[213] = (T)(img)(_n5##x,_p1##y,z,c), I[214] = (T)(img)(_n6##x,_p1##y,z,c), I[215] = (T)(img)(_n7##x,_p1##y,z,c), I[216] = (T)(img)(_n8##x,_p1##y,z,c), I[217] = (T)(img)(_n9##x,_p1##y,z,c), I[218] = (T)(img)(_n10##x,_p1##y,z,c), I[219] = (T)(img)(_n11##x,_p1##y,z,c), \
I[220] = (T)(img)(_p10##x,y,z,c), I[221] = (T)(img)(_p9##x,y,z,c), I[222] = (T)(img)(_p8##x,y,z,c), I[223] = (T)(img)(_p7##x,y,z,c), I[224] = (T)(img)(_p6##x,y,z,c), I[225] = (T)(img)(_p5##x,y,z,c), I[226] = (T)(img)(_p4##x,y,z,c), I[227] = (T)(img)(_p3##x,y,z,c), I[228] = (T)(img)(_p2##x,y,z,c), I[229] = (T)(img)(_p1##x,y,z,c), I[230] = (T)(img)(x,y,z,c), I[231] = (T)(img)(_n1##x,y,z,c), I[232] = (T)(img)(_n2##x,y,z,c), I[233] = (T)(img)(_n3##x,y,z,c), I[234] = (T)(img)(_n4##x,y,z,c), I[235] = (T)(img)(_n5##x,y,z,c), I[236] = (T)(img)(_n6##x,y,z,c), I[237] = (T)(img)(_n7##x,y,z,c), I[238] = (T)(img)(_n8##x,y,z,c), I[239] = (T)(img)(_n9##x,y,z,c), I[240] = (T)(img)(_n10##x,y,z,c), I[241] = (T)(img)(_n11##x,y,z,c), \
I[242] = (T)(img)(_p10##x,_n1##y,z,c), I[243] = (T)(img)(_p9##x,_n1##y,z,c), I[244] = (T)(img)(_p8##x,_n1##y,z,c), I[245] = (T)(img)(_p7##x,_n1##y,z,c), I[246] = (T)(img)(_p6##x,_n1##y,z,c), I[247] = (T)(img)(_p5##x,_n1##y,z,c), I[248] = (T)(img)(_p4##x,_n1##y,z,c), I[249] = (T)(img)(_p3##x,_n1##y,z,c), I[250] = (T)(img)(_p2##x,_n1##y,z,c), I[251] = (T)(img)(_p1##x,_n1##y,z,c), I[252] = (T)(img)(x,_n1##y,z,c), I[253] = (T)(img)(_n1##x,_n1##y,z,c), I[254] = (T)(img)(_n2##x,_n1##y,z,c), I[255] = (T)(img)(_n3##x,_n1##y,z,c), I[256] = (T)(img)(_n4##x,_n1##y,z,c), I[257] = (T)(img)(_n5##x,_n1##y,z,c), I[258] = (T)(img)(_n6##x,_n1##y,z,c), I[259] = (T)(img)(_n7##x,_n1##y,z,c), I[260] = (T)(img)(_n8##x,_n1##y,z,c), I[261] = (T)(img)(_n9##x,_n1##y,z,c), I[262] = (T)(img)(_n10##x,_n1##y,z,c), I[263] = (T)(img)(_n11##x,_n1##y,z,c), \
I[264] = (T)(img)(_p10##x,_n2##y,z,c), I[265] = (T)(img)(_p9##x,_n2##y,z,c), I[266] = (T)(img)(_p8##x,_n2##y,z,c), I[267] = (T)(img)(_p7##x,_n2##y,z,c), I[268] = (T)(img)(_p6##x,_n2##y,z,c), I[269] = (T)(img)(_p5##x,_n2##y,z,c), I[270] = (T)(img)(_p4##x,_n2##y,z,c), I[271] = (T)(img)(_p3##x,_n2##y,z,c), I[272] = (T)(img)(_p2##x,_n2##y,z,c), I[273] = (T)(img)(_p1##x,_n2##y,z,c), I[274] = (T)(img)(x,_n2##y,z,c), I[275] = (T)(img)(_n1##x,_n2##y,z,c), I[276] = (T)(img)(_n2##x,_n2##y,z,c), I[277] = (T)(img)(_n3##x,_n2##y,z,c), I[278] = (T)(img)(_n4##x,_n2##y,z,c), I[279] = (T)(img)(_n5##x,_n2##y,z,c), I[280] = (T)(img)(_n6##x,_n2##y,z,c), I[281] = (T)(img)(_n7##x,_n2##y,z,c), I[282] = (T)(img)(_n8##x,_n2##y,z,c), I[283] = (T)(img)(_n9##x,_n2##y,z,c), I[284] = (T)(img)(_n10##x,_n2##y,z,c), I[285] = (T)(img)(_n11##x,_n2##y,z,c), \
I[286] = (T)(img)(_p10##x,_n3##y,z,c), I[287] = (T)(img)(_p9##x,_n3##y,z,c), I[288] = (T)(img)(_p8##x,_n3##y,z,c), I[289] = (T)(img)(_p7##x,_n3##y,z,c), I[290] = (T)(img)(_p6##x,_n3##y,z,c), I[291] = (T)(img)(_p5##x,_n3##y,z,c), I[292] = (T)(img)(_p4##x,_n3##y,z,c), I[293] = (T)(img)(_p3##x,_n3##y,z,c), I[294] = (T)(img)(_p2##x,_n3##y,z,c), I[295] = (T)(img)(_p1##x,_n3##y,z,c), I[296] = (T)(img)(x,_n3##y,z,c), I[297] = (T)(img)(_n1##x,_n3##y,z,c), I[298] = (T)(img)(_n2##x,_n3##y,z,c), I[299] = (T)(img)(_n3##x,_n3##y,z,c), I[300] = (T)(img)(_n4##x,_n3##y,z,c), I[301] = (T)(img)(_n5##x,_n3##y,z,c), I[302] = (T)(img)(_n6##x,_n3##y,z,c), I[303] = (T)(img)(_n7##x,_n3##y,z,c), I[304] = (T)(img)(_n8##x,_n3##y,z,c), I[305] = (T)(img)(_n9##x,_n3##y,z,c), I[306] = (T)(img)(_n10##x,_n3##y,z,c), I[307] = (T)(img)(_n11##x,_n3##y,z,c), \
I[308] = (T)(img)(_p10##x,_n4##y,z,c), I[309] = (T)(img)(_p9##x,_n4##y,z,c), I[310] = (T)(img)(_p8##x,_n4##y,z,c), I[311] = (T)(img)(_p7##x,_n4##y,z,c), I[312] = (T)(img)(_p6##x,_n4##y,z,c), I[313] = (T)(img)(_p5##x,_n4##y,z,c), I[314] = (T)(img)(_p4##x,_n4##y,z,c), I[315] = (T)(img)(_p3##x,_n4##y,z,c), I[316] = (T)(img)(_p2##x,_n4##y,z,c), I[317] = (T)(img)(_p1##x,_n4##y,z,c), I[318] = (T)(img)(x,_n4##y,z,c), I[319] = (T)(img)(_n1##x,_n4##y,z,c), I[320] = (T)(img)(_n2##x,_n4##y,z,c), I[321] = (T)(img)(_n3##x,_n4##y,z,c), I[322] = (T)(img)(_n4##x,_n4##y,z,c), I[323] = (T)(img)(_n5##x,_n4##y,z,c), I[324] = (T)(img)(_n6##x,_n4##y,z,c), I[325] = (T)(img)(_n7##x,_n4##y,z,c), I[326] = (T)(img)(_n8##x,_n4##y,z,c), I[327] = (T)(img)(_n9##x,_n4##y,z,c), I[328] = (T)(img)(_n10##x,_n4##y,z,c), I[329] = (T)(img)(_n11##x,_n4##y,z,c), \
I[330] = (T)(img)(_p10##x,_n5##y,z,c), I[331] = (T)(img)(_p9##x,_n5##y,z,c), I[332] = (T)(img)(_p8##x,_n5##y,z,c), I[333] = (T)(img)(_p7##x,_n5##y,z,c), I[334] = (T)(img)(_p6##x,_n5##y,z,c), I[335] = (T)(img)(_p5##x,_n5##y,z,c), I[336] = (T)(img)(_p4##x,_n5##y,z,c), I[337] = (T)(img)(_p3##x,_n5##y,z,c), I[338] = (T)(img)(_p2##x,_n5##y,z,c), I[339] = (T)(img)(_p1##x,_n5##y,z,c), I[340] = (T)(img)(x,_n5##y,z,c), I[341] = (T)(img)(_n1##x,_n5##y,z,c), I[342] = (T)(img)(_n2##x,_n5##y,z,c), I[343] = (T)(img)(_n3##x,_n5##y,z,c), I[344] = (T)(img)(_n4##x,_n5##y,z,c), I[345] = (T)(img)(_n5##x,_n5##y,z,c), I[346] = (T)(img)(_n6##x,_n5##y,z,c), I[347] = (T)(img)(_n7##x,_n5##y,z,c), I[348] = (T)(img)(_n8##x,_n5##y,z,c), I[349] = (T)(img)(_n9##x,_n5##y,z,c), I[350] = (T)(img)(_n10##x,_n5##y,z,c), I[351] = (T)(img)(_n11##x,_n5##y,z,c), \
I[352] = (T)(img)(_p10##x,_n6##y,z,c), I[353] = (T)(img)(_p9##x,_n6##y,z,c), I[354] = (T)(img)(_p8##x,_n6##y,z,c), I[355] = (T)(img)(_p7##x,_n6##y,z,c), I[356] = (T)(img)(_p6##x,_n6##y,z,c), I[357] = (T)(img)(_p5##x,_n6##y,z,c), I[358] = (T)(img)(_p4##x,_n6##y,z,c), I[359] = (T)(img)(_p3##x,_n6##y,z,c), I[360] = (T)(img)(_p2##x,_n6##y,z,c), I[361] = (T)(img)(_p1##x,_n6##y,z,c), I[362] = (T)(img)(x,_n6##y,z,c), I[363] = (T)(img)(_n1##x,_n6##y,z,c), I[364] = (T)(img)(_n2##x,_n6##y,z,c), I[365] = (T)(img)(_n3##x,_n6##y,z,c), I[366] = (T)(img)(_n4##x,_n6##y,z,c), I[367] = (T)(img)(_n5##x,_n6##y,z,c), I[368] = (T)(img)(_n6##x,_n6##y,z,c), I[369] = (T)(img)(_n7##x,_n6##y,z,c), I[370] = (T)(img)(_n8##x,_n6##y,z,c), I[371] = (T)(img)(_n9##x,_n6##y,z,c), I[372] = (T)(img)(_n10##x,_n6##y,z,c), I[373] = (T)(img)(_n11##x,_n6##y,z,c), \
I[374] = (T)(img)(_p10##x,_n7##y,z,c), I[375] = (T)(img)(_p9##x,_n7##y,z,c), I[376] = (T)(img)(_p8##x,_n7##y,z,c), I[377] = (T)(img)(_p7##x,_n7##y,z,c), I[378] = (T)(img)(_p6##x,_n7##y,z,c), I[379] = (T)(img)(_p5##x,_n7##y,z,c), I[380] = (T)(img)(_p4##x,_n7##y,z,c), I[381] = (T)(img)(_p3##x,_n7##y,z,c), I[382] = (T)(img)(_p2##x,_n7##y,z,c), I[383] = (T)(img)(_p1##x,_n7##y,z,c), I[384] = (T)(img)(x,_n7##y,z,c), I[385] = (T)(img)(_n1##x,_n7##y,z,c), I[386] = (T)(img)(_n2##x,_n7##y,z,c), I[387] = (T)(img)(_n3##x,_n7##y,z,c), I[388] = (T)(img)(_n4##x,_n7##y,z,c), I[389] = (T)(img)(_n5##x,_n7##y,z,c), I[390] = (T)(img)(_n6##x,_n7##y,z,c), I[391] = (T)(img)(_n7##x,_n7##y,z,c), I[392] = (T)(img)(_n8##x,_n7##y,z,c), I[393] = (T)(img)(_n9##x,_n7##y,z,c), I[394] = (T)(img)(_n10##x,_n7##y,z,c), I[395] = (T)(img)(_n11##x,_n7##y,z,c), \
I[396] = (T)(img)(_p10##x,_n8##y,z,c), I[397] = (T)(img)(_p9##x,_n8##y,z,c), I[398] = (T)(img)(_p8##x,_n8##y,z,c), I[399] = (T)(img)(_p7##x,_n8##y,z,c), I[400] = (T)(img)(_p6##x,_n8##y,z,c), I[401] = (T)(img)(_p5##x,_n8##y,z,c), I[402] = (T)(img)(_p4##x,_n8##y,z,c), I[403] = (T)(img)(_p3##x,_n8##y,z,c), I[404] = (T)(img)(_p2##x,_n8##y,z,c), I[405] = (T)(img)(_p1##x,_n8##y,z,c), I[406] = (T)(img)(x,_n8##y,z,c), I[407] = (T)(img)(_n1##x,_n8##y,z,c), I[408] = (T)(img)(_n2##x,_n8##y,z,c), I[409] = (T)(img)(_n3##x,_n8##y,z,c), I[410] = (T)(img)(_n4##x,_n8##y,z,c), I[411] = (T)(img)(_n5##x,_n8##y,z,c), I[412] = (T)(img)(_n6##x,_n8##y,z,c), I[413] = (T)(img)(_n7##x,_n8##y,z,c), I[414] = (T)(img)(_n8##x,_n8##y,z,c), I[415] = (T)(img)(_n9##x,_n8##y,z,c), I[416] = (T)(img)(_n10##x,_n8##y,z,c), I[417] = (T)(img)(_n11##x,_n8##y,z,c), \
I[418] = (T)(img)(_p10##x,_n9##y,z,c), I[419] = (T)(img)(_p9##x,_n9##y,z,c), I[420] = (T)(img)(_p8##x,_n9##y,z,c), I[421] = (T)(img)(_p7##x,_n9##y,z,c), I[422] = (T)(img)(_p6##x,_n9##y,z,c), I[423] = (T)(img)(_p5##x,_n9##y,z,c), I[424] = (T)(img)(_p4##x,_n9##y,z,c), I[425] = (T)(img)(_p3##x,_n9##y,z,c), I[426] = (T)(img)(_p2##x,_n9##y,z,c), I[427] = (T)(img)(_p1##x,_n9##y,z,c), I[428] = (T)(img)(x,_n9##y,z,c), I[429] = (T)(img)(_n1##x,_n9##y,z,c), I[430] = (T)(img)(_n2##x,_n9##y,z,c), I[431] = (T)(img)(_n3##x,_n9##y,z,c), I[432] = (T)(img)(_n4##x,_n9##y,z,c), I[433] = (T)(img)(_n5##x,_n9##y,z,c), I[434] = (T)(img)(_n6##x,_n9##y,z,c), I[435] = (T)(img)(_n7##x,_n9##y,z,c), I[436] = (T)(img)(_n8##x,_n9##y,z,c), I[437] = (T)(img)(_n9##x,_n9##y,z,c), I[438] = (T)(img)(_n10##x,_n9##y,z,c), I[439] = (T)(img)(_n11##x,_n9##y,z,c), \
I[440] = (T)(img)(_p10##x,_n10##y,z,c), I[441] = (T)(img)(_p9##x,_n10##y,z,c), I[442] = (T)(img)(_p8##x,_n10##y,z,c), I[443] = (T)(img)(_p7##x,_n10##y,z,c), I[444] = (T)(img)(_p6##x,_n10##y,z,c), I[445] = (T)(img)(_p5##x,_n10##y,z,c), I[446] = (T)(img)(_p4##x,_n10##y,z,c), I[447] = (T)(img)(_p3##x,_n10##y,z,c), I[448] = (T)(img)(_p2##x,_n10##y,z,c), I[449] = (T)(img)(_p1##x,_n10##y,z,c), I[450] = (T)(img)(x,_n10##y,z,c), I[451] = (T)(img)(_n1##x,_n10##y,z,c), I[452] = (T)(img)(_n2##x,_n10##y,z,c), I[453] = (T)(img)(_n3##x,_n10##y,z,c), I[454] = (T)(img)(_n4##x,_n10##y,z,c), I[455] = (T)(img)(_n5##x,_n10##y,z,c), I[456] = (T)(img)(_n6##x,_n10##y,z,c), I[457] = (T)(img)(_n7##x,_n10##y,z,c), I[458] = (T)(img)(_n8##x,_n10##y,z,c), I[459] = (T)(img)(_n9##x,_n10##y,z,c), I[460] = (T)(img)(_n10##x,_n10##y,z,c), I[461] = (T)(img)(_n11##x,_n10##y,z,c), \
I[462] = (T)(img)(_p10##x,_n11##y,z,c), I[463] = (T)(img)(_p9##x,_n11##y,z,c), I[464] = (T)(img)(_p8##x,_n11##y,z,c), I[465] = (T)(img)(_p7##x,_n11##y,z,c), I[466] = (T)(img)(_p6##x,_n11##y,z,c), I[467] = (T)(img)(_p5##x,_n11##y,z,c), I[468] = (T)(img)(_p4##x,_n11##y,z,c), I[469] = (T)(img)(_p3##x,_n11##y,z,c), I[470] = (T)(img)(_p2##x,_n11##y,z,c), I[471] = (T)(img)(_p1##x,_n11##y,z,c), I[472] = (T)(img)(x,_n11##y,z,c), I[473] = (T)(img)(_n1##x,_n11##y,z,c), I[474] = (T)(img)(_n2##x,_n11##y,z,c), I[475] = (T)(img)(_n3##x,_n11##y,z,c), I[476] = (T)(img)(_n4##x,_n11##y,z,c), I[477] = (T)(img)(_n5##x,_n11##y,z,c), I[478] = (T)(img)(_n6##x,_n11##y,z,c), I[479] = (T)(img)(_n7##x,_n11##y,z,c), I[480] = (T)(img)(_n8##x,_n11##y,z,c), I[481] = (T)(img)(_n9##x,_n11##y,z,c), I[482] = (T)(img)(_n10##x,_n11##y,z,c), I[483] = (T)(img)(_n11##x,_n11##y,z,c);
// Define 23x23 loop macros
//-------------------------
#define cimg_for23(bound,i) for (int i = 0, \
_p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11; \
_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
#define cimg_for23X(img,x) cimg_for23((img)._width,x)
#define cimg_for23Y(img,y) cimg_for23((img)._height,y)
#define cimg_for23Z(img,z) cimg_for23((img)._depth,z)
#define cimg_for23C(img,c) cimg_for23((img)._spectrum,c)
#define cimg_for23XY(img,x,y) cimg_for23Y(img,y) cimg_for23X(img,x)
#define cimg_for23XZ(img,x,z) cimg_for23Z(img,z) cimg_for23X(img,x)
#define cimg_for23XC(img,x,c) cimg_for23C(img,c) cimg_for23X(img,x)
#define cimg_for23YZ(img,y,z) cimg_for23Z(img,z) cimg_for23Y(img,y)
#define cimg_for23YC(img,y,c) cimg_for23C(img,c) cimg_for23Y(img,y)
#define cimg_for23ZC(img,z,c) cimg_for23C(img,c) cimg_for23Z(img,z)
#define cimg_for23XYZ(img,x,y,z) cimg_for23Z(img,z) cimg_for23XY(img,x,y)
#define cimg_for23XZC(img,x,z,c) cimg_for23C(img,c) cimg_for23XZ(img,x,z)
#define cimg_for23YZC(img,y,z,c) cimg_for23C(img,c) cimg_for23YZ(img,y,z)
#define cimg_for23XYZC(img,x,y,z,c) cimg_for23C(img,c) cimg_for23XYZ(img,x,y,z)
#define cimg_for_in23(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11; \
i<=(int)(i1) && (_n11##i<(int)(bound) || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i)
#define cimg_for_in23X(img,x0,x1,x) cimg_for_in23((img)._width,x0,x1,x)
#define cimg_for_in23Y(img,y0,y1,y) cimg_for_in23((img)._height,y0,y1,y)
#define cimg_for_in23Z(img,z0,z1,z) cimg_for_in23((img)._depth,z0,z1,z)
#define cimg_for_in23C(img,c0,c1,c) cimg_for_in23((img)._spectrum,c0,c1,c)
#define cimg_for_in23XY(img,x0,y0,x1,y1,x,y) cimg_for_in23Y(img,y0,y1,y) cimg_for_in23X(img,x0,x1,x)
#define cimg_for_in23XZ(img,x0,z0,x1,z1,x,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23X(img,x0,x1,x)
#define cimg_for_in23XC(img,x0,c0,x1,c1,x,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23X(img,x0,x1,x)
#define cimg_for_in23YZ(img,y0,z0,y1,z1,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23Y(img,y0,y1,y)
#define cimg_for_in23YC(img,y0,c0,y1,c1,y,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23Y(img,y0,y1,y)
#define cimg_for_in23ZC(img,z0,c0,z1,c1,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23Z(img,z0,z1,z)
#define cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in23Z(img,z0,z1,z) cimg_for_in23XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in23XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in23YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in23XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in23C(img,c0,c1,c) cimg_for_in23XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for23x23(img,x,y,z,c,I,T) \
cimg_for23((img)._height,y) for (int x = 0, \
_p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p11##y,z,c)), \
(I[23] = I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = (T)(img)(0,_p10##y,z,c)), \
(I[46] = I[47] = I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = (T)(img)(0,_p9##y,z,c)), \
(I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = (T)(img)(0,_p8##y,z,c)), \
(I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = (T)(img)(0,_p7##y,z,c)), \
(I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = (T)(img)(0,_p6##y,z,c)), \
(I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = (T)(img)(0,_p5##y,z,c)), \
(I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = (T)(img)(0,_p4##y,z,c)), \
(I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = (T)(img)(0,_p3##y,z,c)), \
(I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = (T)(img)(0,_p2##y,z,c)), \
(I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = (T)(img)(0,_p1##y,z,c)), \
(I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = (T)(img)(0,y,z,c)), \
(I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = (T)(img)(0,_n1##y,z,c)), \
(I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = (T)(img)(0,_n2##y,z,c)), \
(I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = (T)(img)(0,_n3##y,z,c)), \
(I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = (T)(img)(0,_n4##y,z,c)), \
(I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = (T)(img)(0,_n5##y,z,c)), \
(I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = (T)(img)(0,_n6##y,z,c)), \
(I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = (T)(img)(0,_n7##y,z,c)), \
(I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = (T)(img)(0,_n8##y,z,c)), \
(I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = (T)(img)(0,_n9##y,z,c)), \
(I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = (T)(img)(0,_n10##y,z,c)), \
(I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = (T)(img)(0,_n11##y,z,c)), \
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[35] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[58] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[81] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[104] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[127] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[150] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[173] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[219] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[242] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[265] = (T)(img)(_n1##x,y,z,c)), \
(I[288] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[311] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[334] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[357] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[380] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[403] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[426] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[449] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[472] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[495] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[518] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[36] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[59] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[82] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[105] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[128] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[151] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[174] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[220] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[243] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[266] = (T)(img)(_n2##x,y,z,c)), \
(I[289] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[312] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[335] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[358] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[381] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[404] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[427] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[450] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[473] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[496] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[519] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[37] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[60] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[83] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[106] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[129] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[152] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[175] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[221] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[244] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[267] = (T)(img)(_n3##x,y,z,c)), \
(I[290] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[313] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[336] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[359] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[382] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[405] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[428] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[451] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[474] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[497] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[520] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[38] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[61] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[84] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[107] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[130] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[153] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[176] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[222] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[245] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[268] = (T)(img)(_n4##x,y,z,c)), \
(I[291] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[314] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[337] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[360] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[383] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[406] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[429] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[452] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[475] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[498] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[521] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[39] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[62] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[85] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[108] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[131] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[154] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[177] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[200] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[223] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[246] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[269] = (T)(img)(_n5##x,y,z,c)), \
(I[292] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[315] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[338] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[361] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[384] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[407] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[430] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[453] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[476] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[499] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[522] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[40] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[63] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[86] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[109] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[132] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[155] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[178] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[201] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[224] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[247] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[270] = (T)(img)(_n6##x,y,z,c)), \
(I[293] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[316] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[339] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[362] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[385] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[408] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[431] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[454] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[477] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[500] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[523] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[41] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[64] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[87] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[110] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[133] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[156] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[179] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[202] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[225] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[248] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[271] = (T)(img)(_n7##x,y,z,c)), \
(I[294] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[317] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[340] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[363] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[386] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[409] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[432] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[455] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[478] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[501] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[524] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[42] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[65] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[88] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[111] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[134] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[157] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[180] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[203] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[226] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[249] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[272] = (T)(img)(_n8##x,y,z,c)), \
(I[295] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[318] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[341] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[364] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[387] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[410] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[433] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[456] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[479] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[502] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[525] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[43] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[66] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[89] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[112] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[135] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[158] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[181] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[204] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[227] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[250] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[273] = (T)(img)(_n9##x,y,z,c)), \
(I[296] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[319] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[342] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[365] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[388] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[411] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[434] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[457] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[480] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[503] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[526] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[44] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[67] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[90] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[113] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[136] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[159] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[182] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[205] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[228] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[251] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[274] = (T)(img)(_n10##x,y,z,c)), \
(I[297] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[320] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[343] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[366] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[389] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[412] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[435] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[458] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[481] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[504] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[527] = (T)(img)(_n10##x,_n11##y,z,c)), \
11>=((img)._width)?(img).width() - 1:11); \
(_n11##x<(img).width() && ( \
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[45] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[68] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[91] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[114] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[137] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[160] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[183] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[206] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[229] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[252] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[275] = (T)(img)(_n11##x,y,z,c)), \
(I[298] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[321] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[344] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[367] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[390] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[413] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[436] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[459] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[482] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[505] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[528] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \
I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \
I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \
I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \
I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \
I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \
I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \
I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \
I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \
I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \
I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \
I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \
I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \
I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \
I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \
I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \
I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
#define cimg_for_in23x23(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in23((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = (int)( \
(I[0] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[23] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[46] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[69] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[92] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[115] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[138] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[161] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[184] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[207] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[230] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[253] = (T)(img)(_p11##x,y,z,c)), \
(I[276] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[299] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[322] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[345] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[368] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[391] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[414] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[437] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[460] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[483] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[506] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[1] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[24] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[47] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[70] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[93] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[116] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[139] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[162] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[185] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[208] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[231] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[254] = (T)(img)(_p10##x,y,z,c)), \
(I[277] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[300] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[323] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[346] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[369] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[392] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[415] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[438] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[461] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[484] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[507] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[2] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[25] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[48] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[71] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[94] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[117] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[140] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[163] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[186] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[209] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[232] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[255] = (T)(img)(_p9##x,y,z,c)), \
(I[278] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[301] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[324] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[347] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[370] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[393] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[416] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[439] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[462] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[485] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[508] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[3] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[26] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[49] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[72] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[95] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[118] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[141] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[164] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[187] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[210] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[233] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[256] = (T)(img)(_p8##x,y,z,c)), \
(I[279] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[302] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[325] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[348] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[371] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[394] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[417] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[440] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[463] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[486] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[509] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[4] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[27] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[50] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[73] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[96] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[119] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[142] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[165] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[188] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[211] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[234] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[257] = (T)(img)(_p7##x,y,z,c)), \
(I[280] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[303] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[326] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[349] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[372] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[395] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[418] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[441] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[464] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[487] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[510] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[5] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[28] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[51] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[74] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[97] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[120] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[143] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[166] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[189] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[212] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[235] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[258] = (T)(img)(_p6##x,y,z,c)), \
(I[281] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[304] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[327] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[350] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[373] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[396] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[419] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[442] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[465] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[488] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[511] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[6] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[29] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[52] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[75] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[98] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[121] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[144] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[167] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[190] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[213] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[236] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[259] = (T)(img)(_p5##x,y,z,c)), \
(I[282] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[305] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[328] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[351] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[374] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[397] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[420] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[443] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[466] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[489] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[512] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[7] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[30] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[53] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[76] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[99] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[122] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[145] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[168] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[191] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[214] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[237] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[260] = (T)(img)(_p4##x,y,z,c)), \
(I[283] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[306] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[329] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[352] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[375] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[398] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[421] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[444] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[467] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[490] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[513] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[8] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[31] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[54] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[77] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[100] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[123] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[146] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[169] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[192] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[215] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[238] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[261] = (T)(img)(_p3##x,y,z,c)), \
(I[284] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[307] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[330] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[353] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[376] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[399] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[422] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[445] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[468] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[491] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[514] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[9] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[32] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[55] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[78] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[101] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[124] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[147] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[170] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[193] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[216] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[239] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[262] = (T)(img)(_p2##x,y,z,c)), \
(I[285] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[308] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[331] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[354] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[377] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[400] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[423] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[446] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[469] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[492] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[515] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[10] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[33] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[56] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[79] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[102] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[125] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[148] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[171] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[194] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[217] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[240] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[263] = (T)(img)(_p1##x,y,z,c)), \
(I[286] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[309] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[332] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[355] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[378] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[401] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[424] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[447] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[470] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[493] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[516] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[11] = (T)(img)(x,_p11##y,z,c)), \
(I[34] = (T)(img)(x,_p10##y,z,c)), \
(I[57] = (T)(img)(x,_p9##y,z,c)), \
(I[80] = (T)(img)(x,_p8##y,z,c)), \
(I[103] = (T)(img)(x,_p7##y,z,c)), \
(I[126] = (T)(img)(x,_p6##y,z,c)), \
(I[149] = (T)(img)(x,_p5##y,z,c)), \
(I[172] = (T)(img)(x,_p4##y,z,c)), \
(I[195] = (T)(img)(x,_p3##y,z,c)), \
(I[218] = (T)(img)(x,_p2##y,z,c)), \
(I[241] = (T)(img)(x,_p1##y,z,c)), \
(I[264] = (T)(img)(x,y,z,c)), \
(I[287] = (T)(img)(x,_n1##y,z,c)), \
(I[310] = (T)(img)(x,_n2##y,z,c)), \
(I[333] = (T)(img)(x,_n3##y,z,c)), \
(I[356] = (T)(img)(x,_n4##y,z,c)), \
(I[379] = (T)(img)(x,_n5##y,z,c)), \
(I[402] = (T)(img)(x,_n6##y,z,c)), \
(I[425] = (T)(img)(x,_n7##y,z,c)), \
(I[448] = (T)(img)(x,_n8##y,z,c)), \
(I[471] = (T)(img)(x,_n9##y,z,c)), \
(I[494] = (T)(img)(x,_n10##y,z,c)), \
(I[517] = (T)(img)(x,_n11##y,z,c)), \
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[35] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[58] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[81] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[104] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[127] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[150] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[173] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[219] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[242] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[265] = (T)(img)(_n1##x,y,z,c)), \
(I[288] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[311] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[334] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[357] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[380] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[403] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[426] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[449] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[472] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[495] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[518] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[36] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[59] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[82] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[105] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[128] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[151] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[174] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[220] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[243] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[266] = (T)(img)(_n2##x,y,z,c)), \
(I[289] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[312] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[335] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[358] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[381] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[404] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[427] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[450] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[473] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[496] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[519] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[37] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[60] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[83] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[106] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[129] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[152] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[175] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[221] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[244] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[267] = (T)(img)(_n3##x,y,z,c)), \
(I[290] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[313] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[336] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[359] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[382] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[405] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[428] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[451] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[474] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[497] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[520] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[38] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[61] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[84] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[107] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[130] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[153] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[176] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[222] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[245] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[268] = (T)(img)(_n4##x,y,z,c)), \
(I[291] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[314] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[337] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[360] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[383] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[406] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[429] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[452] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[475] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[498] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[521] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[39] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[62] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[85] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[108] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[131] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[154] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[177] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[200] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[223] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[246] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[269] = (T)(img)(_n5##x,y,z,c)), \
(I[292] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[315] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[338] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[361] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[384] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[407] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[430] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[453] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[476] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[499] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[522] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[40] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[63] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[86] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[109] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[132] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[155] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[178] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[201] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[224] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[247] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[270] = (T)(img)(_n6##x,y,z,c)), \
(I[293] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[316] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[339] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[362] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[385] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[408] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[431] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[454] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[477] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[500] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[523] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[41] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[64] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[87] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[110] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[133] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[156] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[179] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[202] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[225] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[248] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[271] = (T)(img)(_n7##x,y,z,c)), \
(I[294] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[317] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[340] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[363] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[386] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[409] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[432] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[455] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[478] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[501] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[524] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[42] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[65] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[88] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[111] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[134] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[157] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[180] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[203] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[226] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[249] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[272] = (T)(img)(_n8##x,y,z,c)), \
(I[295] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[318] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[341] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[364] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[387] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[410] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[433] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[456] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[479] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[502] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[525] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[43] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[66] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[89] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[112] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[135] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[158] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[181] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[204] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[227] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[250] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[273] = (T)(img)(_n9##x,y,z,c)), \
(I[296] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[319] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[342] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[365] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[388] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[411] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[434] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[457] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[480] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[503] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[526] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[44] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[67] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[90] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[113] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[136] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[159] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[182] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[205] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[228] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[251] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[274] = (T)(img)(_n10##x,y,z,c)), \
(I[297] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[320] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[343] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[366] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[389] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[412] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[435] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[458] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[481] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[504] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[527] = (T)(img)(_n10##x,_n11##y,z,c)), \
x + 11>=(img).width()?(img).width() - 1:x + 11); \
x<=(int)(x1) && ((_n11##x<(img).width() && ( \
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[45] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[68] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[91] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[114] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[137] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[160] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[183] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[206] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[229] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[252] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[275] = (T)(img)(_n11##x,y,z,c)), \
(I[298] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[321] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[344] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[367] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[390] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[413] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[436] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[459] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[482] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[505] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[528] = (T)(img)(_n11##x,_n11##y,z,c)),1)) || \
_n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], \
I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], \
I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], \
I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], \
I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], \
I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], \
I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], \
I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], \
I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], \
I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], \
I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], \
I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], \
I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], \
I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], \
I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], \
I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], \
I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], \
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x)
#define cimg_get23x23(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p11##x,_p11##y,z,c), I[1] = (T)(img)(_p10##x,_p11##y,z,c), I[2] = (T)(img)(_p9##x,_p11##y,z,c), I[3] = (T)(img)(_p8##x,_p11##y,z,c), I[4] = (T)(img)(_p7##x,_p11##y,z,c), I[5] = (T)(img)(_p6##x,_p11##y,z,c), I[6] = (T)(img)(_p5##x,_p11##y,z,c), I[7] = (T)(img)(_p4##x,_p11##y,z,c), I[8] = (T)(img)(_p3##x,_p11##y,z,c), I[9] = (T)(img)(_p2##x,_p11##y,z,c), I[10] = (T)(img)(_p1##x,_p11##y,z,c), I[11] = (T)(img)(x,_p11##y,z,c), I[12] = (T)(img)(_n1##x,_p11##y,z,c), I[13] = (T)(img)(_n2##x,_p11##y,z,c), I[14] = (T)(img)(_n3##x,_p11##y,z,c), I[15] = (T)(img)(_n4##x,_p11##y,z,c), I[16] = (T)(img)(_n5##x,_p11##y,z,c), I[17] = (T)(img)(_n6##x,_p11##y,z,c), I[18] = (T)(img)(_n7##x,_p11##y,z,c), I[19] = (T)(img)(_n8##x,_p11##y,z,c), I[20] = (T)(img)(_n9##x,_p11##y,z,c), I[21] = (T)(img)(_n10##x,_p11##y,z,c), I[22] = (T)(img)(_n11##x,_p11##y,z,c), \
I[23] = (T)(img)(_p11##x,_p10##y,z,c), I[24] = (T)(img)(_p10##x,_p10##y,z,c), I[25] = (T)(img)(_p9##x,_p10##y,z,c), I[26] = (T)(img)(_p8##x,_p10##y,z,c), I[27] = (T)(img)(_p7##x,_p10##y,z,c), I[28] = (T)(img)(_p6##x,_p10##y,z,c), I[29] = (T)(img)(_p5##x,_p10##y,z,c), I[30] = (T)(img)(_p4##x,_p10##y,z,c), I[31] = (T)(img)(_p3##x,_p10##y,z,c), I[32] = (T)(img)(_p2##x,_p10##y,z,c), I[33] = (T)(img)(_p1##x,_p10##y,z,c), I[34] = (T)(img)(x,_p10##y,z,c), I[35] = (T)(img)(_n1##x,_p10##y,z,c), I[36] = (T)(img)(_n2##x,_p10##y,z,c), I[37] = (T)(img)(_n3##x,_p10##y,z,c), I[38] = (T)(img)(_n4##x,_p10##y,z,c), I[39] = (T)(img)(_n5##x,_p10##y,z,c), I[40] = (T)(img)(_n6##x,_p10##y,z,c), I[41] = (T)(img)(_n7##x,_p10##y,z,c), I[42] = (T)(img)(_n8##x,_p10##y,z,c), I[43] = (T)(img)(_n9##x,_p10##y,z,c), I[44] = (T)(img)(_n10##x,_p10##y,z,c), I[45] = (T)(img)(_n11##x,_p10##y,z,c), \
I[46] = (T)(img)(_p11##x,_p9##y,z,c), I[47] = (T)(img)(_p10##x,_p9##y,z,c), I[48] = (T)(img)(_p9##x,_p9##y,z,c), I[49] = (T)(img)(_p8##x,_p9##y,z,c), I[50] = (T)(img)(_p7##x,_p9##y,z,c), I[51] = (T)(img)(_p6##x,_p9##y,z,c), I[52] = (T)(img)(_p5##x,_p9##y,z,c), I[53] = (T)(img)(_p4##x,_p9##y,z,c), I[54] = (T)(img)(_p3##x,_p9##y,z,c), I[55] = (T)(img)(_p2##x,_p9##y,z,c), I[56] = (T)(img)(_p1##x,_p9##y,z,c), I[57] = (T)(img)(x,_p9##y,z,c), I[58] = (T)(img)(_n1##x,_p9##y,z,c), I[59] = (T)(img)(_n2##x,_p9##y,z,c), I[60] = (T)(img)(_n3##x,_p9##y,z,c), I[61] = (T)(img)(_n4##x,_p9##y,z,c), I[62] = (T)(img)(_n5##x,_p9##y,z,c), I[63] = (T)(img)(_n6##x,_p9##y,z,c), I[64] = (T)(img)(_n7##x,_p9##y,z,c), I[65] = (T)(img)(_n8##x,_p9##y,z,c), I[66] = (T)(img)(_n9##x,_p9##y,z,c), I[67] = (T)(img)(_n10##x,_p9##y,z,c), I[68] = (T)(img)(_n11##x,_p9##y,z,c), \
I[69] = (T)(img)(_p11##x,_p8##y,z,c), I[70] = (T)(img)(_p10##x,_p8##y,z,c), I[71] = (T)(img)(_p9##x,_p8##y,z,c), I[72] = (T)(img)(_p8##x,_p8##y,z,c), I[73] = (T)(img)(_p7##x,_p8##y,z,c), I[74] = (T)(img)(_p6##x,_p8##y,z,c), I[75] = (T)(img)(_p5##x,_p8##y,z,c), I[76] = (T)(img)(_p4##x,_p8##y,z,c), I[77] = (T)(img)(_p3##x,_p8##y,z,c), I[78] = (T)(img)(_p2##x,_p8##y,z,c), I[79] = (T)(img)(_p1##x,_p8##y,z,c), I[80] = (T)(img)(x,_p8##y,z,c), I[81] = (T)(img)(_n1##x,_p8##y,z,c), I[82] = (T)(img)(_n2##x,_p8##y,z,c), I[83] = (T)(img)(_n3##x,_p8##y,z,c), I[84] = (T)(img)(_n4##x,_p8##y,z,c), I[85] = (T)(img)(_n5##x,_p8##y,z,c), I[86] = (T)(img)(_n6##x,_p8##y,z,c), I[87] = (T)(img)(_n7##x,_p8##y,z,c), I[88] = (T)(img)(_n8##x,_p8##y,z,c), I[89] = (T)(img)(_n9##x,_p8##y,z,c), I[90] = (T)(img)(_n10##x,_p8##y,z,c), I[91] = (T)(img)(_n11##x,_p8##y,z,c), \
I[92] = (T)(img)(_p11##x,_p7##y,z,c), I[93] = (T)(img)(_p10##x,_p7##y,z,c), I[94] = (T)(img)(_p9##x,_p7##y,z,c), I[95] = (T)(img)(_p8##x,_p7##y,z,c), I[96] = (T)(img)(_p7##x,_p7##y,z,c), I[97] = (T)(img)(_p6##x,_p7##y,z,c), I[98] = (T)(img)(_p5##x,_p7##y,z,c), I[99] = (T)(img)(_p4##x,_p7##y,z,c), I[100] = (T)(img)(_p3##x,_p7##y,z,c), I[101] = (T)(img)(_p2##x,_p7##y,z,c), I[102] = (T)(img)(_p1##x,_p7##y,z,c), I[103] = (T)(img)(x,_p7##y,z,c), I[104] = (T)(img)(_n1##x,_p7##y,z,c), I[105] = (T)(img)(_n2##x,_p7##y,z,c), I[106] = (T)(img)(_n3##x,_p7##y,z,c), I[107] = (T)(img)(_n4##x,_p7##y,z,c), I[108] = (T)(img)(_n5##x,_p7##y,z,c), I[109] = (T)(img)(_n6##x,_p7##y,z,c), I[110] = (T)(img)(_n7##x,_p7##y,z,c), I[111] = (T)(img)(_n8##x,_p7##y,z,c), I[112] = (T)(img)(_n9##x,_p7##y,z,c), I[113] = (T)(img)(_n10##x,_p7##y,z,c), I[114] = (T)(img)(_n11##x,_p7##y,z,c), \
I[115] = (T)(img)(_p11##x,_p6##y,z,c), I[116] = (T)(img)(_p10##x,_p6##y,z,c), I[117] = (T)(img)(_p9##x,_p6##y,z,c), I[118] = (T)(img)(_p8##x,_p6##y,z,c), I[119] = (T)(img)(_p7##x,_p6##y,z,c), I[120] = (T)(img)(_p6##x,_p6##y,z,c), I[121] = (T)(img)(_p5##x,_p6##y,z,c), I[122] = (T)(img)(_p4##x,_p6##y,z,c), I[123] = (T)(img)(_p3##x,_p6##y,z,c), I[124] = (T)(img)(_p2##x,_p6##y,z,c), I[125] = (T)(img)(_p1##x,_p6##y,z,c), I[126] = (T)(img)(x,_p6##y,z,c), I[127] = (T)(img)(_n1##x,_p6##y,z,c), I[128] = (T)(img)(_n2##x,_p6##y,z,c), I[129] = (T)(img)(_n3##x,_p6##y,z,c), I[130] = (T)(img)(_n4##x,_p6##y,z,c), I[131] = (T)(img)(_n5##x,_p6##y,z,c), I[132] = (T)(img)(_n6##x,_p6##y,z,c), I[133] = (T)(img)(_n7##x,_p6##y,z,c), I[134] = (T)(img)(_n8##x,_p6##y,z,c), I[135] = (T)(img)(_n9##x,_p6##y,z,c), I[136] = (T)(img)(_n10##x,_p6##y,z,c), I[137] = (T)(img)(_n11##x,_p6##y,z,c), \
I[138] = (T)(img)(_p11##x,_p5##y,z,c), I[139] = (T)(img)(_p10##x,_p5##y,z,c), I[140] = (T)(img)(_p9##x,_p5##y,z,c), I[141] = (T)(img)(_p8##x,_p5##y,z,c), I[142] = (T)(img)(_p7##x,_p5##y,z,c), I[143] = (T)(img)(_p6##x,_p5##y,z,c), I[144] = (T)(img)(_p5##x,_p5##y,z,c), I[145] = (T)(img)(_p4##x,_p5##y,z,c), I[146] = (T)(img)(_p3##x,_p5##y,z,c), I[147] = (T)(img)(_p2##x,_p5##y,z,c), I[148] = (T)(img)(_p1##x,_p5##y,z,c), I[149] = (T)(img)(x,_p5##y,z,c), I[150] = (T)(img)(_n1##x,_p5##y,z,c), I[151] = (T)(img)(_n2##x,_p5##y,z,c), I[152] = (T)(img)(_n3##x,_p5##y,z,c), I[153] = (T)(img)(_n4##x,_p5##y,z,c), I[154] = (T)(img)(_n5##x,_p5##y,z,c), I[155] = (T)(img)(_n6##x,_p5##y,z,c), I[156] = (T)(img)(_n7##x,_p5##y,z,c), I[157] = (T)(img)(_n8##x,_p5##y,z,c), I[158] = (T)(img)(_n9##x,_p5##y,z,c), I[159] = (T)(img)(_n10##x,_p5##y,z,c), I[160] = (T)(img)(_n11##x,_p5##y,z,c), \
I[161] = (T)(img)(_p11##x,_p4##y,z,c), I[162] = (T)(img)(_p10##x,_p4##y,z,c), I[163] = (T)(img)(_p9##x,_p4##y,z,c), I[164] = (T)(img)(_p8##x,_p4##y,z,c), I[165] = (T)(img)(_p7##x,_p4##y,z,c), I[166] = (T)(img)(_p6##x,_p4##y,z,c), I[167] = (T)(img)(_p5##x,_p4##y,z,c), I[168] = (T)(img)(_p4##x,_p4##y,z,c), I[169] = (T)(img)(_p3##x,_p4##y,z,c), I[170] = (T)(img)(_p2##x,_p4##y,z,c), I[171] = (T)(img)(_p1##x,_p4##y,z,c), I[172] = (T)(img)(x,_p4##y,z,c), I[173] = (T)(img)(_n1##x,_p4##y,z,c), I[174] = (T)(img)(_n2##x,_p4##y,z,c), I[175] = (T)(img)(_n3##x,_p4##y,z,c), I[176] = (T)(img)(_n4##x,_p4##y,z,c), I[177] = (T)(img)(_n5##x,_p4##y,z,c), I[178] = (T)(img)(_n6##x,_p4##y,z,c), I[179] = (T)(img)(_n7##x,_p4##y,z,c), I[180] = (T)(img)(_n8##x,_p4##y,z,c), I[181] = (T)(img)(_n9##x,_p4##y,z,c), I[182] = (T)(img)(_n10##x,_p4##y,z,c), I[183] = (T)(img)(_n11##x,_p4##y,z,c), \
I[184] = (T)(img)(_p11##x,_p3##y,z,c), I[185] = (T)(img)(_p10##x,_p3##y,z,c), I[186] = (T)(img)(_p9##x,_p3##y,z,c), I[187] = (T)(img)(_p8##x,_p3##y,z,c), I[188] = (T)(img)(_p7##x,_p3##y,z,c), I[189] = (T)(img)(_p6##x,_p3##y,z,c), I[190] = (T)(img)(_p5##x,_p3##y,z,c), I[191] = (T)(img)(_p4##x,_p3##y,z,c), I[192] = (T)(img)(_p3##x,_p3##y,z,c), I[193] = (T)(img)(_p2##x,_p3##y,z,c), I[194] = (T)(img)(_p1##x,_p3##y,z,c), I[195] = (T)(img)(x,_p3##y,z,c), I[196] = (T)(img)(_n1##x,_p3##y,z,c), I[197] = (T)(img)(_n2##x,_p3##y,z,c), I[198] = (T)(img)(_n3##x,_p3##y,z,c), I[199] = (T)(img)(_n4##x,_p3##y,z,c), I[200] = (T)(img)(_n5##x,_p3##y,z,c), I[201] = (T)(img)(_n6##x,_p3##y,z,c), I[202] = (T)(img)(_n7##x,_p3##y,z,c), I[203] = (T)(img)(_n8##x,_p3##y,z,c), I[204] = (T)(img)(_n9##x,_p3##y,z,c), I[205] = (T)(img)(_n10##x,_p3##y,z,c), I[206] = (T)(img)(_n11##x,_p3##y,z,c), \
I[207] = (T)(img)(_p11##x,_p2##y,z,c), I[208] = (T)(img)(_p10##x,_p2##y,z,c), I[209] = (T)(img)(_p9##x,_p2##y,z,c), I[210] = (T)(img)(_p8##x,_p2##y,z,c), I[211] = (T)(img)(_p7##x,_p2##y,z,c), I[212] = (T)(img)(_p6##x,_p2##y,z,c), I[213] = (T)(img)(_p5##x,_p2##y,z,c), I[214] = (T)(img)(_p4##x,_p2##y,z,c), I[215] = (T)(img)(_p3##x,_p2##y,z,c), I[216] = (T)(img)(_p2##x,_p2##y,z,c), I[217] = (T)(img)(_p1##x,_p2##y,z,c), I[218] = (T)(img)(x,_p2##y,z,c), I[219] = (T)(img)(_n1##x,_p2##y,z,c), I[220] = (T)(img)(_n2##x,_p2##y,z,c), I[221] = (T)(img)(_n3##x,_p2##y,z,c), I[222] = (T)(img)(_n4##x,_p2##y,z,c), I[223] = (T)(img)(_n5##x,_p2##y,z,c), I[224] = (T)(img)(_n6##x,_p2##y,z,c), I[225] = (T)(img)(_n7##x,_p2##y,z,c), I[226] = (T)(img)(_n8##x,_p2##y,z,c), I[227] = (T)(img)(_n9##x,_p2##y,z,c), I[228] = (T)(img)(_n10##x,_p2##y,z,c), I[229] = (T)(img)(_n11##x,_p2##y,z,c), \
I[230] = (T)(img)(_p11##x,_p1##y,z,c), I[231] = (T)(img)(_p10##x,_p1##y,z,c), I[232] = (T)(img)(_p9##x,_p1##y,z,c), I[233] = (T)(img)(_p8##x,_p1##y,z,c), I[234] = (T)(img)(_p7##x,_p1##y,z,c), I[235] = (T)(img)(_p6##x,_p1##y,z,c), I[236] = (T)(img)(_p5##x,_p1##y,z,c), I[237] = (T)(img)(_p4##x,_p1##y,z,c), I[238] = (T)(img)(_p3##x,_p1##y,z,c), I[239] = (T)(img)(_p2##x,_p1##y,z,c), I[240] = (T)(img)(_p1##x,_p1##y,z,c), I[241] = (T)(img)(x,_p1##y,z,c), I[242] = (T)(img)(_n1##x,_p1##y,z,c), I[243] = (T)(img)(_n2##x,_p1##y,z,c), I[244] = (T)(img)(_n3##x,_p1##y,z,c), I[245] = (T)(img)(_n4##x,_p1##y,z,c), I[246] = (T)(img)(_n5##x,_p1##y,z,c), I[247] = (T)(img)(_n6##x,_p1##y,z,c), I[248] = (T)(img)(_n7##x,_p1##y,z,c), I[249] = (T)(img)(_n8##x,_p1##y,z,c), I[250] = (T)(img)(_n9##x,_p1##y,z,c), I[251] = (T)(img)(_n10##x,_p1##y,z,c), I[252] = (T)(img)(_n11##x,_p1##y,z,c), \
I[253] = (T)(img)(_p11##x,y,z,c), I[254] = (T)(img)(_p10##x,y,z,c), I[255] = (T)(img)(_p9##x,y,z,c), I[256] = (T)(img)(_p8##x,y,z,c), I[257] = (T)(img)(_p7##x,y,z,c), I[258] = (T)(img)(_p6##x,y,z,c), I[259] = (T)(img)(_p5##x,y,z,c), I[260] = (T)(img)(_p4##x,y,z,c), I[261] = (T)(img)(_p3##x,y,z,c), I[262] = (T)(img)(_p2##x,y,z,c), I[263] = (T)(img)(_p1##x,y,z,c), I[264] = (T)(img)(x,y,z,c), I[265] = (T)(img)(_n1##x,y,z,c), I[266] = (T)(img)(_n2##x,y,z,c), I[267] = (T)(img)(_n3##x,y,z,c), I[268] = (T)(img)(_n4##x,y,z,c), I[269] = (T)(img)(_n5##x,y,z,c), I[270] = (T)(img)(_n6##x,y,z,c), I[271] = (T)(img)(_n7##x,y,z,c), I[272] = (T)(img)(_n8##x,y,z,c), I[273] = (T)(img)(_n9##x,y,z,c), I[274] = (T)(img)(_n10##x,y,z,c), I[275] = (T)(img)(_n11##x,y,z,c), \
I[276] = (T)(img)(_p11##x,_n1##y,z,c), I[277] = (T)(img)(_p10##x,_n1##y,z,c), I[278] = (T)(img)(_p9##x,_n1##y,z,c), I[279] = (T)(img)(_p8##x,_n1##y,z,c), I[280] = (T)(img)(_p7##x,_n1##y,z,c), I[281] = (T)(img)(_p6##x,_n1##y,z,c), I[282] = (T)(img)(_p5##x,_n1##y,z,c), I[283] = (T)(img)(_p4##x,_n1##y,z,c), I[284] = (T)(img)(_p3##x,_n1##y,z,c), I[285] = (T)(img)(_p2##x,_n1##y,z,c), I[286] = (T)(img)(_p1##x,_n1##y,z,c), I[287] = (T)(img)(x,_n1##y,z,c), I[288] = (T)(img)(_n1##x,_n1##y,z,c), I[289] = (T)(img)(_n2##x,_n1##y,z,c), I[290] = (T)(img)(_n3##x,_n1##y,z,c), I[291] = (T)(img)(_n4##x,_n1##y,z,c), I[292] = (T)(img)(_n5##x,_n1##y,z,c), I[293] = (T)(img)(_n6##x,_n1##y,z,c), I[294] = (T)(img)(_n7##x,_n1##y,z,c), I[295] = (T)(img)(_n8##x,_n1##y,z,c), I[296] = (T)(img)(_n9##x,_n1##y,z,c), I[297] = (T)(img)(_n10##x,_n1##y,z,c), I[298] = (T)(img)(_n11##x,_n1##y,z,c), \
I[299] = (T)(img)(_p11##x,_n2##y,z,c), I[300] = (T)(img)(_p10##x,_n2##y,z,c), I[301] = (T)(img)(_p9##x,_n2##y,z,c), I[302] = (T)(img)(_p8##x,_n2##y,z,c), I[303] = (T)(img)(_p7##x,_n2##y,z,c), I[304] = (T)(img)(_p6##x,_n2##y,z,c), I[305] = (T)(img)(_p5##x,_n2##y,z,c), I[306] = (T)(img)(_p4##x,_n2##y,z,c), I[307] = (T)(img)(_p3##x,_n2##y,z,c), I[308] = (T)(img)(_p2##x,_n2##y,z,c), I[309] = (T)(img)(_p1##x,_n2##y,z,c), I[310] = (T)(img)(x,_n2##y,z,c), I[311] = (T)(img)(_n1##x,_n2##y,z,c), I[312] = (T)(img)(_n2##x,_n2##y,z,c), I[313] = (T)(img)(_n3##x,_n2##y,z,c), I[314] = (T)(img)(_n4##x,_n2##y,z,c), I[315] = (T)(img)(_n5##x,_n2##y,z,c), I[316] = (T)(img)(_n6##x,_n2##y,z,c), I[317] = (T)(img)(_n7##x,_n2##y,z,c), I[318] = (T)(img)(_n8##x,_n2##y,z,c), I[319] = (T)(img)(_n9##x,_n2##y,z,c), I[320] = (T)(img)(_n10##x,_n2##y,z,c), I[321] = (T)(img)(_n11##x,_n2##y,z,c), \
I[322] = (T)(img)(_p11##x,_n3##y,z,c), I[323] = (T)(img)(_p10##x,_n3##y,z,c), I[324] = (T)(img)(_p9##x,_n3##y,z,c), I[325] = (T)(img)(_p8##x,_n3##y,z,c), I[326] = (T)(img)(_p7##x,_n3##y,z,c), I[327] = (T)(img)(_p6##x,_n3##y,z,c), I[328] = (T)(img)(_p5##x,_n3##y,z,c), I[329] = (T)(img)(_p4##x,_n3##y,z,c), I[330] = (T)(img)(_p3##x,_n3##y,z,c), I[331] = (T)(img)(_p2##x,_n3##y,z,c), I[332] = (T)(img)(_p1##x,_n3##y,z,c), I[333] = (T)(img)(x,_n3##y,z,c), I[334] = (T)(img)(_n1##x,_n3##y,z,c), I[335] = (T)(img)(_n2##x,_n3##y,z,c), I[336] = (T)(img)(_n3##x,_n3##y,z,c), I[337] = (T)(img)(_n4##x,_n3##y,z,c), I[338] = (T)(img)(_n5##x,_n3##y,z,c), I[339] = (T)(img)(_n6##x,_n3##y,z,c), I[340] = (T)(img)(_n7##x,_n3##y,z,c), I[341] = (T)(img)(_n8##x,_n3##y,z,c), I[342] = (T)(img)(_n9##x,_n3##y,z,c), I[343] = (T)(img)(_n10##x,_n3##y,z,c), I[344] = (T)(img)(_n11##x,_n3##y,z,c), \
I[345] = (T)(img)(_p11##x,_n4##y,z,c), I[346] = (T)(img)(_p10##x,_n4##y,z,c), I[347] = (T)(img)(_p9##x,_n4##y,z,c), I[348] = (T)(img)(_p8##x,_n4##y,z,c), I[349] = (T)(img)(_p7##x,_n4##y,z,c), I[350] = (T)(img)(_p6##x,_n4##y,z,c), I[351] = (T)(img)(_p5##x,_n4##y,z,c), I[352] = (T)(img)(_p4##x,_n4##y,z,c), I[353] = (T)(img)(_p3##x,_n4##y,z,c), I[354] = (T)(img)(_p2##x,_n4##y,z,c), I[355] = (T)(img)(_p1##x,_n4##y,z,c), I[356] = (T)(img)(x,_n4##y,z,c), I[357] = (T)(img)(_n1##x,_n4##y,z,c), I[358] = (T)(img)(_n2##x,_n4##y,z,c), I[359] = (T)(img)(_n3##x,_n4##y,z,c), I[360] = (T)(img)(_n4##x,_n4##y,z,c), I[361] = (T)(img)(_n5##x,_n4##y,z,c), I[362] = (T)(img)(_n6##x,_n4##y,z,c), I[363] = (T)(img)(_n7##x,_n4##y,z,c), I[364] = (T)(img)(_n8##x,_n4##y,z,c), I[365] = (T)(img)(_n9##x,_n4##y,z,c), I[366] = (T)(img)(_n10##x,_n4##y,z,c), I[367] = (T)(img)(_n11##x,_n4##y,z,c), \
I[368] = (T)(img)(_p11##x,_n5##y,z,c), I[369] = (T)(img)(_p10##x,_n5##y,z,c), I[370] = (T)(img)(_p9##x,_n5##y,z,c), I[371] = (T)(img)(_p8##x,_n5##y,z,c), I[372] = (T)(img)(_p7##x,_n5##y,z,c), I[373] = (T)(img)(_p6##x,_n5##y,z,c), I[374] = (T)(img)(_p5##x,_n5##y,z,c), I[375] = (T)(img)(_p4##x,_n5##y,z,c), I[376] = (T)(img)(_p3##x,_n5##y,z,c), I[377] = (T)(img)(_p2##x,_n5##y,z,c), I[378] = (T)(img)(_p1##x,_n5##y,z,c), I[379] = (T)(img)(x,_n5##y,z,c), I[380] = (T)(img)(_n1##x,_n5##y,z,c), I[381] = (T)(img)(_n2##x,_n5##y,z,c), I[382] = (T)(img)(_n3##x,_n5##y,z,c), I[383] = (T)(img)(_n4##x,_n5##y,z,c), I[384] = (T)(img)(_n5##x,_n5##y,z,c), I[385] = (T)(img)(_n6##x,_n5##y,z,c), I[386] = (T)(img)(_n7##x,_n5##y,z,c), I[387] = (T)(img)(_n8##x,_n5##y,z,c), I[388] = (T)(img)(_n9##x,_n5##y,z,c), I[389] = (T)(img)(_n10##x,_n5##y,z,c), I[390] = (T)(img)(_n11##x,_n5##y,z,c), \
I[391] = (T)(img)(_p11##x,_n6##y,z,c), I[392] = (T)(img)(_p10##x,_n6##y,z,c), I[393] = (T)(img)(_p9##x,_n6##y,z,c), I[394] = (T)(img)(_p8##x,_n6##y,z,c), I[395] = (T)(img)(_p7##x,_n6##y,z,c), I[396] = (T)(img)(_p6##x,_n6##y,z,c), I[397] = (T)(img)(_p5##x,_n6##y,z,c), I[398] = (T)(img)(_p4##x,_n6##y,z,c), I[399] = (T)(img)(_p3##x,_n6##y,z,c), I[400] = (T)(img)(_p2##x,_n6##y,z,c), I[401] = (T)(img)(_p1##x,_n6##y,z,c), I[402] = (T)(img)(x,_n6##y,z,c), I[403] = (T)(img)(_n1##x,_n6##y,z,c), I[404] = (T)(img)(_n2##x,_n6##y,z,c), I[405] = (T)(img)(_n3##x,_n6##y,z,c), I[406] = (T)(img)(_n4##x,_n6##y,z,c), I[407] = (T)(img)(_n5##x,_n6##y,z,c), I[408] = (T)(img)(_n6##x,_n6##y,z,c), I[409] = (T)(img)(_n7##x,_n6##y,z,c), I[410] = (T)(img)(_n8##x,_n6##y,z,c), I[411] = (T)(img)(_n9##x,_n6##y,z,c), I[412] = (T)(img)(_n10##x,_n6##y,z,c), I[413] = (T)(img)(_n11##x,_n6##y,z,c), \
I[414] = (T)(img)(_p11##x,_n7##y,z,c), I[415] = (T)(img)(_p10##x,_n7##y,z,c), I[416] = (T)(img)(_p9##x,_n7##y,z,c), I[417] = (T)(img)(_p8##x,_n7##y,z,c), I[418] = (T)(img)(_p7##x,_n7##y,z,c), I[419] = (T)(img)(_p6##x,_n7##y,z,c), I[420] = (T)(img)(_p5##x,_n7##y,z,c), I[421] = (T)(img)(_p4##x,_n7##y,z,c), I[422] = (T)(img)(_p3##x,_n7##y,z,c), I[423] = (T)(img)(_p2##x,_n7##y,z,c), I[424] = (T)(img)(_p1##x,_n7##y,z,c), I[425] = (T)(img)(x,_n7##y,z,c), I[426] = (T)(img)(_n1##x,_n7##y,z,c), I[427] = (T)(img)(_n2##x,_n7##y,z,c), I[428] = (T)(img)(_n3##x,_n7##y,z,c), I[429] = (T)(img)(_n4##x,_n7##y,z,c), I[430] = (T)(img)(_n5##x,_n7##y,z,c), I[431] = (T)(img)(_n6##x,_n7##y,z,c), I[432] = (T)(img)(_n7##x,_n7##y,z,c), I[433] = (T)(img)(_n8##x,_n7##y,z,c), I[434] = (T)(img)(_n9##x,_n7##y,z,c), I[435] = (T)(img)(_n10##x,_n7##y,z,c), I[436] = (T)(img)(_n11##x,_n7##y,z,c), \
I[437] = (T)(img)(_p11##x,_n8##y,z,c), I[438] = (T)(img)(_p10##x,_n8##y,z,c), I[439] = (T)(img)(_p9##x,_n8##y,z,c), I[440] = (T)(img)(_p8##x,_n8##y,z,c), I[441] = (T)(img)(_p7##x,_n8##y,z,c), I[442] = (T)(img)(_p6##x,_n8##y,z,c), I[443] = (T)(img)(_p5##x,_n8##y,z,c), I[444] = (T)(img)(_p4##x,_n8##y,z,c), I[445] = (T)(img)(_p3##x,_n8##y,z,c), I[446] = (T)(img)(_p2##x,_n8##y,z,c), I[447] = (T)(img)(_p1##x,_n8##y,z,c), I[448] = (T)(img)(x,_n8##y,z,c), I[449] = (T)(img)(_n1##x,_n8##y,z,c), I[450] = (T)(img)(_n2##x,_n8##y,z,c), I[451] = (T)(img)(_n3##x,_n8##y,z,c), I[452] = (T)(img)(_n4##x,_n8##y,z,c), I[453] = (T)(img)(_n5##x,_n8##y,z,c), I[454] = (T)(img)(_n6##x,_n8##y,z,c), I[455] = (T)(img)(_n7##x,_n8##y,z,c), I[456] = (T)(img)(_n8##x,_n8##y,z,c), I[457] = (T)(img)(_n9##x,_n8##y,z,c), I[458] = (T)(img)(_n10##x,_n8##y,z,c), I[459] = (T)(img)(_n11##x,_n8##y,z,c), \
I[460] = (T)(img)(_p11##x,_n9##y,z,c), I[461] = (T)(img)(_p10##x,_n9##y,z,c), I[462] = (T)(img)(_p9##x,_n9##y,z,c), I[463] = (T)(img)(_p8##x,_n9##y,z,c), I[464] = (T)(img)(_p7##x,_n9##y,z,c), I[465] = (T)(img)(_p6##x,_n9##y,z,c), I[466] = (T)(img)(_p5##x,_n9##y,z,c), I[467] = (T)(img)(_p4##x,_n9##y,z,c), I[468] = (T)(img)(_p3##x,_n9##y,z,c), I[469] = (T)(img)(_p2##x,_n9##y,z,c), I[470] = (T)(img)(_p1##x,_n9##y,z,c), I[471] = (T)(img)(x,_n9##y,z,c), I[472] = (T)(img)(_n1##x,_n9##y,z,c), I[473] = (T)(img)(_n2##x,_n9##y,z,c), I[474] = (T)(img)(_n3##x,_n9##y,z,c), I[475] = (T)(img)(_n4##x,_n9##y,z,c), I[476] = (T)(img)(_n5##x,_n9##y,z,c), I[477] = (T)(img)(_n6##x,_n9##y,z,c), I[478] = (T)(img)(_n7##x,_n9##y,z,c), I[479] = (T)(img)(_n8##x,_n9##y,z,c), I[480] = (T)(img)(_n9##x,_n9##y,z,c), I[481] = (T)(img)(_n10##x,_n9##y,z,c), I[482] = (T)(img)(_n11##x,_n9##y,z,c), \
I[483] = (T)(img)(_p11##x,_n10##y,z,c), I[484] = (T)(img)(_p10##x,_n10##y,z,c), I[485] = (T)(img)(_p9##x,_n10##y,z,c), I[486] = (T)(img)(_p8##x,_n10##y,z,c), I[487] = (T)(img)(_p7##x,_n10##y,z,c), I[488] = (T)(img)(_p6##x,_n10##y,z,c), I[489] = (T)(img)(_p5##x,_n10##y,z,c), I[490] = (T)(img)(_p4##x,_n10##y,z,c), I[491] = (T)(img)(_p3##x,_n10##y,z,c), I[492] = (T)(img)(_p2##x,_n10##y,z,c), I[493] = (T)(img)(_p1##x,_n10##y,z,c), I[494] = (T)(img)(x,_n10##y,z,c), I[495] = (T)(img)(_n1##x,_n10##y,z,c), I[496] = (T)(img)(_n2##x,_n10##y,z,c), I[497] = (T)(img)(_n3##x,_n10##y,z,c), I[498] = (T)(img)(_n4##x,_n10##y,z,c), I[499] = (T)(img)(_n5##x,_n10##y,z,c), I[500] = (T)(img)(_n6##x,_n10##y,z,c), I[501] = (T)(img)(_n7##x,_n10##y,z,c), I[502] = (T)(img)(_n8##x,_n10##y,z,c), I[503] = (T)(img)(_n9##x,_n10##y,z,c), I[504] = (T)(img)(_n10##x,_n10##y,z,c), I[505] = (T)(img)(_n11##x,_n10##y,z,c), \
I[506] = (T)(img)(_p11##x,_n11##y,z,c), I[507] = (T)(img)(_p10##x,_n11##y,z,c), I[508] = (T)(img)(_p9##x,_n11##y,z,c), I[509] = (T)(img)(_p8##x,_n11##y,z,c), I[510] = (T)(img)(_p7##x,_n11##y,z,c), I[511] = (T)(img)(_p6##x,_n11##y,z,c), I[512] = (T)(img)(_p5##x,_n11##y,z,c), I[513] = (T)(img)(_p4##x,_n11##y,z,c), I[514] = (T)(img)(_p3##x,_n11##y,z,c), I[515] = (T)(img)(_p2##x,_n11##y,z,c), I[516] = (T)(img)(_p1##x,_n11##y,z,c), I[517] = (T)(img)(x,_n11##y,z,c), I[518] = (T)(img)(_n1##x,_n11##y,z,c), I[519] = (T)(img)(_n2##x,_n11##y,z,c), I[520] = (T)(img)(_n3##x,_n11##y,z,c), I[521] = (T)(img)(_n4##x,_n11##y,z,c), I[522] = (T)(img)(_n5##x,_n11##y,z,c), I[523] = (T)(img)(_n6##x,_n11##y,z,c), I[524] = (T)(img)(_n7##x,_n11##y,z,c), I[525] = (T)(img)(_n8##x,_n11##y,z,c), I[526] = (T)(img)(_n9##x,_n11##y,z,c), I[527] = (T)(img)(_n10##x,_n11##y,z,c), I[528] = (T)(img)(_n11##x,_n11##y,z,c);
// Define 24x24 loop macros
//-------------------------
#define cimg_for24(bound,i) for (int i = 0, \
_p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12; \
_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
#define cimg_for24X(img,x) cimg_for24((img)._width,x)
#define cimg_for24Y(img,y) cimg_for24((img)._height,y)
#define cimg_for24Z(img,z) cimg_for24((img)._depth,z)
#define cimg_for24C(img,c) cimg_for24((img)._spectrum,c)
#define cimg_for24XY(img,x,y) cimg_for24Y(img,y) cimg_for24X(img,x)
#define cimg_for24XZ(img,x,z) cimg_for24Z(img,z) cimg_for24X(img,x)
#define cimg_for24XC(img,x,c) cimg_for24C(img,c) cimg_for24X(img,x)
#define cimg_for24YZ(img,y,z) cimg_for24Z(img,z) cimg_for24Y(img,y)
#define cimg_for24YC(img,y,c) cimg_for24C(img,c) cimg_for24Y(img,y)
#define cimg_for24ZC(img,z,c) cimg_for24C(img,c) cimg_for24Z(img,z)
#define cimg_for24XYZ(img,x,y,z) cimg_for24Z(img,z) cimg_for24XY(img,x,y)
#define cimg_for24XZC(img,x,z,c) cimg_for24C(img,c) cimg_for24XZ(img,x,z)
#define cimg_for24YZC(img,y,z,c) cimg_for24C(img,c) cimg_for24YZ(img,y,z)
#define cimg_for24XYZC(img,x,y,z,c) cimg_for24C(img,c) cimg_for24XYZ(img,x,y,z)
#define cimg_for_in24(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12; \
i<=(int)(i1) && (_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
#define cimg_for_in24X(img,x0,x1,x) cimg_for_in24((img)._width,x0,x1,x)
#define cimg_for_in24Y(img,y0,y1,y) cimg_for_in24((img)._height,y0,y1,y)
#define cimg_for_in24Z(img,z0,z1,z) cimg_for_in24((img)._depth,z0,z1,z)
#define cimg_for_in24C(img,c0,c1,c) cimg_for_in24((img)._spectrum,c0,c1,c)
#define cimg_for_in24XY(img,x0,y0,x1,y1,x,y) cimg_for_in24Y(img,y0,y1,y) cimg_for_in24X(img,x0,x1,x)
#define cimg_for_in24XZ(img,x0,z0,x1,z1,x,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24X(img,x0,x1,x)
#define cimg_for_in24XC(img,x0,c0,x1,c1,x,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24X(img,x0,x1,x)
#define cimg_for_in24YZ(img,y0,z0,y1,z1,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24Y(img,y0,y1,y)
#define cimg_for_in24YC(img,y0,c0,y1,c1,y,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24Y(img,y0,y1,y)
#define cimg_for_in24ZC(img,z0,c0,z1,c1,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24Z(img,z0,z1,z)
#define cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in24Z(img,z0,z1,z) cimg_for_in24XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in24XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in24YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in24XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in24C(img,c0,c1,c) cimg_for_in24XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for24x24(img,x,y,z,c,I,T) \
cimg_for24((img)._height,y) for (int x = 0, \
_p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p11##y,z,c)), \
(I[24] = I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = (T)(img)(0,_p10##y,z,c)), \
(I[48] = I[49] = I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_p9##y,z,c)), \
(I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = (T)(img)(0,_p8##y,z,c)), \
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = (T)(img)(0,_p7##y,z,c)), \
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = (T)(img)(0,_p6##y,z,c)), \
(I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = (T)(img)(0,_p5##y,z,c)), \
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = (T)(img)(0,_p4##y,z,c)), \
(I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = (T)(img)(0,_p3##y,z,c)), \
(I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = (T)(img)(0,_p2##y,z,c)), \
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = (T)(img)(0,_p1##y,z,c)), \
(I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (T)(img)(0,y,z,c)), \
(I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = (T)(img)(0,_n1##y,z,c)), \
(I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = (T)(img)(0,_n2##y,z,c)), \
(I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = (T)(img)(0,_n3##y,z,c)), \
(I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = (T)(img)(0,_n4##y,z,c)), \
(I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = (T)(img)(0,_n5##y,z,c)), \
(I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = (T)(img)(0,_n6##y,z,c)), \
(I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = (T)(img)(0,_n7##y,z,c)), \
(I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = (T)(img)(0,_n8##y,z,c)), \
(I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = (T)(img)(0,_n9##y,z,c)), \
(I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = (T)(img)(0,_n10##y,z,c)), \
(I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = (T)(img)(0,_n11##y,z,c)), \
(I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = (T)(img)(0,_n12##y,z,c)), \
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[36] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[60] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[84] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[108] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[132] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[156] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[180] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[204] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[228] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[252] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[276] = (T)(img)(_n1##x,y,z,c)), \
(I[300] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[324] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[348] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[372] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[396] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[420] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[444] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[468] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[492] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[516] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[540] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[564] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[37] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[61] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[85] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[109] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[133] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[157] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[181] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[205] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[229] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[253] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[277] = (T)(img)(_n2##x,y,z,c)), \
(I[301] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[325] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[349] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[373] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[397] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[421] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[445] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[469] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[493] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[517] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[541] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[565] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[38] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[62] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[86] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[110] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[134] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[158] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[182] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[206] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[230] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[254] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[278] = (T)(img)(_n3##x,y,z,c)), \
(I[302] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[326] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[350] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[374] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[398] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[422] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[446] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[470] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[494] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[518] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[542] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[566] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[39] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[63] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[87] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[111] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[135] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[159] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[183] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[207] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[231] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[255] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[279] = (T)(img)(_n4##x,y,z,c)), \
(I[303] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[327] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[351] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[375] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[399] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[423] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[447] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[471] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[495] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[519] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[543] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[567] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[40] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[64] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[88] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[112] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[136] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[160] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[184] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[208] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[232] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[256] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[280] = (T)(img)(_n5##x,y,z,c)), \
(I[304] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[328] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[352] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[376] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[400] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[424] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[448] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[472] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[496] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[520] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[544] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[568] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[41] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[65] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[89] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[113] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[137] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[161] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[185] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[209] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[233] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[257] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[281] = (T)(img)(_n6##x,y,z,c)), \
(I[305] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[329] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[353] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[377] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[401] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[425] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[449] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[473] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[497] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[521] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[545] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[569] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[42] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[66] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[90] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[114] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[138] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[162] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[186] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[210] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[234] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[258] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[282] = (T)(img)(_n7##x,y,z,c)), \
(I[306] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[330] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[354] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[378] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[402] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[426] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[450] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[474] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[498] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[522] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[546] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[570] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[43] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[67] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[91] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[115] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[139] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[163] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[187] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[211] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[235] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[259] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[283] = (T)(img)(_n8##x,y,z,c)), \
(I[307] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[331] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[355] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[379] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[403] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[427] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[451] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[475] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[499] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[523] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[547] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[571] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[44] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[68] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[92] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[116] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[140] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[164] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[188] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[212] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[236] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[260] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[284] = (T)(img)(_n9##x,y,z,c)), \
(I[308] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[332] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[356] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[380] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[404] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[428] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[452] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[476] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[500] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[524] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[548] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[572] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[45] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[69] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[93] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[117] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[141] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[165] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[189] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[213] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[237] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[261] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[285] = (T)(img)(_n10##x,y,z,c)), \
(I[309] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[333] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[357] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[381] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[405] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[429] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[453] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[477] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[501] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[525] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[549] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[573] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[46] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[70] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[94] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[118] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[142] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[166] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[190] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[214] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[238] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[262] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[286] = (T)(img)(_n11##x,y,z,c)), \
(I[310] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[334] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[358] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[382] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[406] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[430] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[454] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[478] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[502] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[526] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[550] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[574] = (T)(img)(_n11##x,_n12##y,z,c)), \
12>=((img)._width)?(img).width() - 1:12); \
(_n12##x<(img).width() && ( \
(I[23] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[47] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[71] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[95] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[119] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[143] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[167] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[191] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[215] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[239] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[263] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[287] = (T)(img)(_n12##x,y,z,c)), \
(I[311] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[335] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[359] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[383] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[407] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[431] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[455] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[479] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[503] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[527] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[551] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[575] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \
I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \
I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
#define cimg_for_in24x24(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in24((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = (int)( \
(I[0] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[24] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[48] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[72] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[96] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[120] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[144] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[168] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[192] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[216] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[240] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[264] = (T)(img)(_p11##x,y,z,c)), \
(I[288] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[312] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[336] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[360] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[384] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[408] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[432] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[456] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[480] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[504] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[528] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[552] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[1] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[25] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[49] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[73] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[97] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[121] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[145] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[169] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[193] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[217] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[241] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[265] = (T)(img)(_p10##x,y,z,c)), \
(I[289] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[313] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[337] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[361] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[385] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[409] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[433] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[457] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[481] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[505] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[529] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[553] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[2] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[26] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[50] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[74] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[98] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[122] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[146] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[170] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[194] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[218] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[242] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[266] = (T)(img)(_p9##x,y,z,c)), \
(I[290] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[314] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[338] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[362] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[386] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[410] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[434] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[458] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[482] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[506] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[530] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[554] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[3] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[27] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[51] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[75] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[99] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[123] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[147] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[171] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[195] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[219] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[243] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[267] = (T)(img)(_p8##x,y,z,c)), \
(I[291] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[315] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[339] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[363] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[387] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[411] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[435] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[459] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[483] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[507] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[531] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[555] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[4] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[28] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[52] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[76] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[100] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[124] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[148] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[172] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[196] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[220] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[244] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[268] = (T)(img)(_p7##x,y,z,c)), \
(I[292] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[316] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[340] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[364] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[388] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[412] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[436] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[460] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[484] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[508] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[532] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[556] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[5] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[29] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[53] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[77] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[101] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[125] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[149] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[173] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[197] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[221] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[245] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[269] = (T)(img)(_p6##x,y,z,c)), \
(I[293] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[317] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[341] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[365] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[389] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[413] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[437] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[461] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[485] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[509] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[533] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[557] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[6] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[30] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[54] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[78] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[102] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[126] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[150] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[174] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[198] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[222] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[246] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[270] = (T)(img)(_p5##x,y,z,c)), \
(I[294] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[318] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[342] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[366] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[390] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[414] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[438] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[462] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[486] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[510] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[534] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[558] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[7] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[31] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[55] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[79] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[103] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[127] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[151] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[175] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[199] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[223] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[247] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[271] = (T)(img)(_p4##x,y,z,c)), \
(I[295] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[319] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[343] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[367] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[391] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[415] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[439] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[463] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[487] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[511] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[535] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[559] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[8] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[32] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[56] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[80] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[104] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[128] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[152] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[176] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[200] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[224] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[248] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[272] = (T)(img)(_p3##x,y,z,c)), \
(I[296] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[320] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[344] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[368] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[392] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[416] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[440] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[464] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[488] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[512] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[536] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[560] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[9] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[33] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[57] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[81] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[105] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[129] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[153] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[177] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[201] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[225] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[249] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[273] = (T)(img)(_p2##x,y,z,c)), \
(I[297] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[321] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[345] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[369] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[393] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[417] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[441] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[465] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[489] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[513] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[537] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[561] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[10] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[34] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[58] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[82] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[106] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[130] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[154] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[178] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[202] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[226] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[250] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[274] = (T)(img)(_p1##x,y,z,c)), \
(I[298] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[322] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[346] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[370] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[394] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[418] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[442] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[466] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[490] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[514] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[538] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[562] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[11] = (T)(img)(x,_p11##y,z,c)), \
(I[35] = (T)(img)(x,_p10##y,z,c)), \
(I[59] = (T)(img)(x,_p9##y,z,c)), \
(I[83] = (T)(img)(x,_p8##y,z,c)), \
(I[107] = (T)(img)(x,_p7##y,z,c)), \
(I[131] = (T)(img)(x,_p6##y,z,c)), \
(I[155] = (T)(img)(x,_p5##y,z,c)), \
(I[179] = (T)(img)(x,_p4##y,z,c)), \
(I[203] = (T)(img)(x,_p3##y,z,c)), \
(I[227] = (T)(img)(x,_p2##y,z,c)), \
(I[251] = (T)(img)(x,_p1##y,z,c)), \
(I[275] = (T)(img)(x,y,z,c)), \
(I[299] = (T)(img)(x,_n1##y,z,c)), \
(I[323] = (T)(img)(x,_n2##y,z,c)), \
(I[347] = (T)(img)(x,_n3##y,z,c)), \
(I[371] = (T)(img)(x,_n4##y,z,c)), \
(I[395] = (T)(img)(x,_n5##y,z,c)), \
(I[419] = (T)(img)(x,_n6##y,z,c)), \
(I[443] = (T)(img)(x,_n7##y,z,c)), \
(I[467] = (T)(img)(x,_n8##y,z,c)), \
(I[491] = (T)(img)(x,_n9##y,z,c)), \
(I[515] = (T)(img)(x,_n10##y,z,c)), \
(I[539] = (T)(img)(x,_n11##y,z,c)), \
(I[563] = (T)(img)(x,_n12##y,z,c)), \
(I[12] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[36] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[60] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[84] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[108] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[132] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[156] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[180] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[204] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[228] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[252] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[276] = (T)(img)(_n1##x,y,z,c)), \
(I[300] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[324] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[348] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[372] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[396] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[420] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[444] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[468] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[492] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[516] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[540] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[564] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[13] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[37] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[61] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[85] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[109] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[133] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[157] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[181] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[205] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[229] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[253] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[277] = (T)(img)(_n2##x,y,z,c)), \
(I[301] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[325] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[349] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[373] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[397] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[421] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[445] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[469] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[493] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[517] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[541] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[565] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[14] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[38] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[62] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[86] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[110] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[134] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[158] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[182] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[206] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[230] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[254] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[278] = (T)(img)(_n3##x,y,z,c)), \
(I[302] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[326] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[350] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[374] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[398] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[422] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[446] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[470] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[494] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[518] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[542] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[566] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[15] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[39] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[63] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[87] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[111] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[135] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[159] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[183] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[207] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[231] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[255] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[279] = (T)(img)(_n4##x,y,z,c)), \
(I[303] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[327] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[351] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[375] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[399] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[423] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[447] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[471] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[495] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[519] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[543] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[567] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[16] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[40] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[64] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[88] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[112] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[136] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[160] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[184] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[208] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[232] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[256] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[280] = (T)(img)(_n5##x,y,z,c)), \
(I[304] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[328] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[352] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[376] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[400] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[424] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[448] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[472] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[496] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[520] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[544] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[568] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[17] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[41] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[65] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[89] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[113] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[137] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[161] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[185] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[209] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[233] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[257] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[281] = (T)(img)(_n6##x,y,z,c)), \
(I[305] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[329] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[353] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[377] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[401] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[425] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[449] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[473] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[497] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[521] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[545] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[569] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[18] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[42] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[66] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[90] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[114] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[138] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[162] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[186] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[210] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[234] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[258] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[282] = (T)(img)(_n7##x,y,z,c)), \
(I[306] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[330] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[354] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[378] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[402] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[426] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[450] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[474] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[498] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[522] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[546] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[570] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[19] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[43] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[67] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[91] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[115] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[139] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[163] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[187] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[211] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[235] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[259] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[283] = (T)(img)(_n8##x,y,z,c)), \
(I[307] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[331] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[355] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[379] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[403] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[427] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[451] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[475] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[499] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[523] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[547] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[571] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[20] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[44] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[68] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[92] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[116] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[140] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[164] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[188] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[212] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[236] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[260] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[284] = (T)(img)(_n9##x,y,z,c)), \
(I[308] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[332] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[356] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[380] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[404] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[428] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[452] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[476] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[500] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[524] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[548] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[572] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[21] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[45] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[69] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[93] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[117] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[141] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[165] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[189] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[213] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[237] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[261] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[285] = (T)(img)(_n10##x,y,z,c)), \
(I[309] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[333] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[357] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[381] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[405] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[429] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[453] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[477] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[501] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[525] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[549] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[573] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[22] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[46] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[70] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[94] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[118] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[142] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[166] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[190] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[214] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[238] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[262] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[286] = (T)(img)(_n11##x,y,z,c)), \
(I[310] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[334] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[358] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[382] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[406] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[430] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[454] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[478] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[502] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[526] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[550] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[574] = (T)(img)(_n11##x,_n12##y,z,c)), \
x + 12>=(img).width()?(img).width() - 1:x + 12); \
x<=(int)(x1) && ((_n12##x<(img).width() && ( \
(I[23] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[47] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[71] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[95] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[119] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[143] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[167] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[191] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[215] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[239] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[263] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[287] = (T)(img)(_n12##x,y,z,c)), \
(I[311] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[335] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[359] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[383] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[407] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[431] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[455] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[479] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[503] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[527] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[551] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[575] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], \
I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], \
I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
_p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
#define cimg_get24x24(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p11##x,_p11##y,z,c), I[1] = (T)(img)(_p10##x,_p11##y,z,c), I[2] = (T)(img)(_p9##x,_p11##y,z,c), I[3] = (T)(img)(_p8##x,_p11##y,z,c), I[4] = (T)(img)(_p7##x,_p11##y,z,c), I[5] = (T)(img)(_p6##x,_p11##y,z,c), I[6] = (T)(img)(_p5##x,_p11##y,z,c), I[7] = (T)(img)(_p4##x,_p11##y,z,c), I[8] = (T)(img)(_p3##x,_p11##y,z,c), I[9] = (T)(img)(_p2##x,_p11##y,z,c), I[10] = (T)(img)(_p1##x,_p11##y,z,c), I[11] = (T)(img)(x,_p11##y,z,c), I[12] = (T)(img)(_n1##x,_p11##y,z,c), I[13] = (T)(img)(_n2##x,_p11##y,z,c), I[14] = (T)(img)(_n3##x,_p11##y,z,c), I[15] = (T)(img)(_n4##x,_p11##y,z,c), I[16] = (T)(img)(_n5##x,_p11##y,z,c), I[17] = (T)(img)(_n6##x,_p11##y,z,c), I[18] = (T)(img)(_n7##x,_p11##y,z,c), I[19] = (T)(img)(_n8##x,_p11##y,z,c), I[20] = (T)(img)(_n9##x,_p11##y,z,c), I[21] = (T)(img)(_n10##x,_p11##y,z,c), I[22] = (T)(img)(_n11##x,_p11##y,z,c), I[23] = (T)(img)(_n12##x,_p11##y,z,c), \
I[24] = (T)(img)(_p11##x,_p10##y,z,c), I[25] = (T)(img)(_p10##x,_p10##y,z,c), I[26] = (T)(img)(_p9##x,_p10##y,z,c), I[27] = (T)(img)(_p8##x,_p10##y,z,c), I[28] = (T)(img)(_p7##x,_p10##y,z,c), I[29] = (T)(img)(_p6##x,_p10##y,z,c), I[30] = (T)(img)(_p5##x,_p10##y,z,c), I[31] = (T)(img)(_p4##x,_p10##y,z,c), I[32] = (T)(img)(_p3##x,_p10##y,z,c), I[33] = (T)(img)(_p2##x,_p10##y,z,c), I[34] = (T)(img)(_p1##x,_p10##y,z,c), I[35] = (T)(img)(x,_p10##y,z,c), I[36] = (T)(img)(_n1##x,_p10##y,z,c), I[37] = (T)(img)(_n2##x,_p10##y,z,c), I[38] = (T)(img)(_n3##x,_p10##y,z,c), I[39] = (T)(img)(_n4##x,_p10##y,z,c), I[40] = (T)(img)(_n5##x,_p10##y,z,c), I[41] = (T)(img)(_n6##x,_p10##y,z,c), I[42] = (T)(img)(_n7##x,_p10##y,z,c), I[43] = (T)(img)(_n8##x,_p10##y,z,c), I[44] = (T)(img)(_n9##x,_p10##y,z,c), I[45] = (T)(img)(_n10##x,_p10##y,z,c), I[46] = (T)(img)(_n11##x,_p10##y,z,c), I[47] = (T)(img)(_n12##x,_p10##y,z,c), \
I[48] = (T)(img)(_p11##x,_p9##y,z,c), I[49] = (T)(img)(_p10##x,_p9##y,z,c), I[50] = (T)(img)(_p9##x,_p9##y,z,c), I[51] = (T)(img)(_p8##x,_p9##y,z,c), I[52] = (T)(img)(_p7##x,_p9##y,z,c), I[53] = (T)(img)(_p6##x,_p9##y,z,c), I[54] = (T)(img)(_p5##x,_p9##y,z,c), I[55] = (T)(img)(_p4##x,_p9##y,z,c), I[56] = (T)(img)(_p3##x,_p9##y,z,c), I[57] = (T)(img)(_p2##x,_p9##y,z,c), I[58] = (T)(img)(_p1##x,_p9##y,z,c), I[59] = (T)(img)(x,_p9##y,z,c), I[60] = (T)(img)(_n1##x,_p9##y,z,c), I[61] = (T)(img)(_n2##x,_p9##y,z,c), I[62] = (T)(img)(_n3##x,_p9##y,z,c), I[63] = (T)(img)(_n4##x,_p9##y,z,c), I[64] = (T)(img)(_n5##x,_p9##y,z,c), I[65] = (T)(img)(_n6##x,_p9##y,z,c), I[66] = (T)(img)(_n7##x,_p9##y,z,c), I[67] = (T)(img)(_n8##x,_p9##y,z,c), I[68] = (T)(img)(_n9##x,_p9##y,z,c), I[69] = (T)(img)(_n10##x,_p9##y,z,c), I[70] = (T)(img)(_n11##x,_p9##y,z,c), I[71] = (T)(img)(_n12##x,_p9##y,z,c), \
I[72] = (T)(img)(_p11##x,_p8##y,z,c), I[73] = (T)(img)(_p10##x,_p8##y,z,c), I[74] = (T)(img)(_p9##x,_p8##y,z,c), I[75] = (T)(img)(_p8##x,_p8##y,z,c), I[76] = (T)(img)(_p7##x,_p8##y,z,c), I[77] = (T)(img)(_p6##x,_p8##y,z,c), I[78] = (T)(img)(_p5##x,_p8##y,z,c), I[79] = (T)(img)(_p4##x,_p8##y,z,c), I[80] = (T)(img)(_p3##x,_p8##y,z,c), I[81] = (T)(img)(_p2##x,_p8##y,z,c), I[82] = (T)(img)(_p1##x,_p8##y,z,c), I[83] = (T)(img)(x,_p8##y,z,c), I[84] = (T)(img)(_n1##x,_p8##y,z,c), I[85] = (T)(img)(_n2##x,_p8##y,z,c), I[86] = (T)(img)(_n3##x,_p8##y,z,c), I[87] = (T)(img)(_n4##x,_p8##y,z,c), I[88] = (T)(img)(_n5##x,_p8##y,z,c), I[89] = (T)(img)(_n6##x,_p8##y,z,c), I[90] = (T)(img)(_n7##x,_p8##y,z,c), I[91] = (T)(img)(_n8##x,_p8##y,z,c), I[92] = (T)(img)(_n9##x,_p8##y,z,c), I[93] = (T)(img)(_n10##x,_p8##y,z,c), I[94] = (T)(img)(_n11##x,_p8##y,z,c), I[95] = (T)(img)(_n12##x,_p8##y,z,c), \
I[96] = (T)(img)(_p11##x,_p7##y,z,c), I[97] = (T)(img)(_p10##x,_p7##y,z,c), I[98] = (T)(img)(_p9##x,_p7##y,z,c), I[99] = (T)(img)(_p8##x,_p7##y,z,c), I[100] = (T)(img)(_p7##x,_p7##y,z,c), I[101] = (T)(img)(_p6##x,_p7##y,z,c), I[102] = (T)(img)(_p5##x,_p7##y,z,c), I[103] = (T)(img)(_p4##x,_p7##y,z,c), I[104] = (T)(img)(_p3##x,_p7##y,z,c), I[105] = (T)(img)(_p2##x,_p7##y,z,c), I[106] = (T)(img)(_p1##x,_p7##y,z,c), I[107] = (T)(img)(x,_p7##y,z,c), I[108] = (T)(img)(_n1##x,_p7##y,z,c), I[109] = (T)(img)(_n2##x,_p7##y,z,c), I[110] = (T)(img)(_n3##x,_p7##y,z,c), I[111] = (T)(img)(_n4##x,_p7##y,z,c), I[112] = (T)(img)(_n5##x,_p7##y,z,c), I[113] = (T)(img)(_n6##x,_p7##y,z,c), I[114] = (T)(img)(_n7##x,_p7##y,z,c), I[115] = (T)(img)(_n8##x,_p7##y,z,c), I[116] = (T)(img)(_n9##x,_p7##y,z,c), I[117] = (T)(img)(_n10##x,_p7##y,z,c), I[118] = (T)(img)(_n11##x,_p7##y,z,c), I[119] = (T)(img)(_n12##x,_p7##y,z,c), \
I[120] = (T)(img)(_p11##x,_p6##y,z,c), I[121] = (T)(img)(_p10##x,_p6##y,z,c), I[122] = (T)(img)(_p9##x,_p6##y,z,c), I[123] = (T)(img)(_p8##x,_p6##y,z,c), I[124] = (T)(img)(_p7##x,_p6##y,z,c), I[125] = (T)(img)(_p6##x,_p6##y,z,c), I[126] = (T)(img)(_p5##x,_p6##y,z,c), I[127] = (T)(img)(_p4##x,_p6##y,z,c), I[128] = (T)(img)(_p3##x,_p6##y,z,c), I[129] = (T)(img)(_p2##x,_p6##y,z,c), I[130] = (T)(img)(_p1##x,_p6##y,z,c), I[131] = (T)(img)(x,_p6##y,z,c), I[132] = (T)(img)(_n1##x,_p6##y,z,c), I[133] = (T)(img)(_n2##x,_p6##y,z,c), I[134] = (T)(img)(_n3##x,_p6##y,z,c), I[135] = (T)(img)(_n4##x,_p6##y,z,c), I[136] = (T)(img)(_n5##x,_p6##y,z,c), I[137] = (T)(img)(_n6##x,_p6##y,z,c), I[138] = (T)(img)(_n7##x,_p6##y,z,c), I[139] = (T)(img)(_n8##x,_p6##y,z,c), I[140] = (T)(img)(_n9##x,_p6##y,z,c), I[141] = (T)(img)(_n10##x,_p6##y,z,c), I[142] = (T)(img)(_n11##x,_p6##y,z,c), I[143] = (T)(img)(_n12##x,_p6##y,z,c), \
I[144] = (T)(img)(_p11##x,_p5##y,z,c), I[145] = (T)(img)(_p10##x,_p5##y,z,c), I[146] = (T)(img)(_p9##x,_p5##y,z,c), I[147] = (T)(img)(_p8##x,_p5##y,z,c), I[148] = (T)(img)(_p7##x,_p5##y,z,c), I[149] = (T)(img)(_p6##x,_p5##y,z,c), I[150] = (T)(img)(_p5##x,_p5##y,z,c), I[151] = (T)(img)(_p4##x,_p5##y,z,c), I[152] = (T)(img)(_p3##x,_p5##y,z,c), I[153] = (T)(img)(_p2##x,_p5##y,z,c), I[154] = (T)(img)(_p1##x,_p5##y,z,c), I[155] = (T)(img)(x,_p5##y,z,c), I[156] = (T)(img)(_n1##x,_p5##y,z,c), I[157] = (T)(img)(_n2##x,_p5##y,z,c), I[158] = (T)(img)(_n3##x,_p5##y,z,c), I[159] = (T)(img)(_n4##x,_p5##y,z,c), I[160] = (T)(img)(_n5##x,_p5##y,z,c), I[161] = (T)(img)(_n6##x,_p5##y,z,c), I[162] = (T)(img)(_n7##x,_p5##y,z,c), I[163] = (T)(img)(_n8##x,_p5##y,z,c), I[164] = (T)(img)(_n9##x,_p5##y,z,c), I[165] = (T)(img)(_n10##x,_p5##y,z,c), I[166] = (T)(img)(_n11##x,_p5##y,z,c), I[167] = (T)(img)(_n12##x,_p5##y,z,c), \
I[168] = (T)(img)(_p11##x,_p4##y,z,c), I[169] = (T)(img)(_p10##x,_p4##y,z,c), I[170] = (T)(img)(_p9##x,_p4##y,z,c), I[171] = (T)(img)(_p8##x,_p4##y,z,c), I[172] = (T)(img)(_p7##x,_p4##y,z,c), I[173] = (T)(img)(_p6##x,_p4##y,z,c), I[174] = (T)(img)(_p5##x,_p4##y,z,c), I[175] = (T)(img)(_p4##x,_p4##y,z,c), I[176] = (T)(img)(_p3##x,_p4##y,z,c), I[177] = (T)(img)(_p2##x,_p4##y,z,c), I[178] = (T)(img)(_p1##x,_p4##y,z,c), I[179] = (T)(img)(x,_p4##y,z,c), I[180] = (T)(img)(_n1##x,_p4##y,z,c), I[181] = (T)(img)(_n2##x,_p4##y,z,c), I[182] = (T)(img)(_n3##x,_p4##y,z,c), I[183] = (T)(img)(_n4##x,_p4##y,z,c), I[184] = (T)(img)(_n5##x,_p4##y,z,c), I[185] = (T)(img)(_n6##x,_p4##y,z,c), I[186] = (T)(img)(_n7##x,_p4##y,z,c), I[187] = (T)(img)(_n8##x,_p4##y,z,c), I[188] = (T)(img)(_n9##x,_p4##y,z,c), I[189] = (T)(img)(_n10##x,_p4##y,z,c), I[190] = (T)(img)(_n11##x,_p4##y,z,c), I[191] = (T)(img)(_n12##x,_p4##y,z,c), \
I[192] = (T)(img)(_p11##x,_p3##y,z,c), I[193] = (T)(img)(_p10##x,_p3##y,z,c), I[194] = (T)(img)(_p9##x,_p3##y,z,c), I[195] = (T)(img)(_p8##x,_p3##y,z,c), I[196] = (T)(img)(_p7##x,_p3##y,z,c), I[197] = (T)(img)(_p6##x,_p3##y,z,c), I[198] = (T)(img)(_p5##x,_p3##y,z,c), I[199] = (T)(img)(_p4##x,_p3##y,z,c), I[200] = (T)(img)(_p3##x,_p3##y,z,c), I[201] = (T)(img)(_p2##x,_p3##y,z,c), I[202] = (T)(img)(_p1##x,_p3##y,z,c), I[203] = (T)(img)(x,_p3##y,z,c), I[204] = (T)(img)(_n1##x,_p3##y,z,c), I[205] = (T)(img)(_n2##x,_p3##y,z,c), I[206] = (T)(img)(_n3##x,_p3##y,z,c), I[207] = (T)(img)(_n4##x,_p3##y,z,c), I[208] = (T)(img)(_n5##x,_p3##y,z,c), I[209] = (T)(img)(_n6##x,_p3##y,z,c), I[210] = (T)(img)(_n7##x,_p3##y,z,c), I[211] = (T)(img)(_n8##x,_p3##y,z,c), I[212] = (T)(img)(_n9##x,_p3##y,z,c), I[213] = (T)(img)(_n10##x,_p3##y,z,c), I[214] = (T)(img)(_n11##x,_p3##y,z,c), I[215] = (T)(img)(_n12##x,_p3##y,z,c), \
I[216] = (T)(img)(_p11##x,_p2##y,z,c), I[217] = (T)(img)(_p10##x,_p2##y,z,c), I[218] = (T)(img)(_p9##x,_p2##y,z,c), I[219] = (T)(img)(_p8##x,_p2##y,z,c), I[220] = (T)(img)(_p7##x,_p2##y,z,c), I[221] = (T)(img)(_p6##x,_p2##y,z,c), I[222] = (T)(img)(_p5##x,_p2##y,z,c), I[223] = (T)(img)(_p4##x,_p2##y,z,c), I[224] = (T)(img)(_p3##x,_p2##y,z,c), I[225] = (T)(img)(_p2##x,_p2##y,z,c), I[226] = (T)(img)(_p1##x,_p2##y,z,c), I[227] = (T)(img)(x,_p2##y,z,c), I[228] = (T)(img)(_n1##x,_p2##y,z,c), I[229] = (T)(img)(_n2##x,_p2##y,z,c), I[230] = (T)(img)(_n3##x,_p2##y,z,c), I[231] = (T)(img)(_n4##x,_p2##y,z,c), I[232] = (T)(img)(_n5##x,_p2##y,z,c), I[233] = (T)(img)(_n6##x,_p2##y,z,c), I[234] = (T)(img)(_n7##x,_p2##y,z,c), I[235] = (T)(img)(_n8##x,_p2##y,z,c), I[236] = (T)(img)(_n9##x,_p2##y,z,c), I[237] = (T)(img)(_n10##x,_p2##y,z,c), I[238] = (T)(img)(_n11##x,_p2##y,z,c), I[239] = (T)(img)(_n12##x,_p2##y,z,c), \
I[240] = (T)(img)(_p11##x,_p1##y,z,c), I[241] = (T)(img)(_p10##x,_p1##y,z,c), I[242] = (T)(img)(_p9##x,_p1##y,z,c), I[243] = (T)(img)(_p8##x,_p1##y,z,c), I[244] = (T)(img)(_p7##x,_p1##y,z,c), I[245] = (T)(img)(_p6##x,_p1##y,z,c), I[246] = (T)(img)(_p5##x,_p1##y,z,c), I[247] = (T)(img)(_p4##x,_p1##y,z,c), I[248] = (T)(img)(_p3##x,_p1##y,z,c), I[249] = (T)(img)(_p2##x,_p1##y,z,c), I[250] = (T)(img)(_p1##x,_p1##y,z,c), I[251] = (T)(img)(x,_p1##y,z,c), I[252] = (T)(img)(_n1##x,_p1##y,z,c), I[253] = (T)(img)(_n2##x,_p1##y,z,c), I[254] = (T)(img)(_n3##x,_p1##y,z,c), I[255] = (T)(img)(_n4##x,_p1##y,z,c), I[256] = (T)(img)(_n5##x,_p1##y,z,c), I[257] = (T)(img)(_n6##x,_p1##y,z,c), I[258] = (T)(img)(_n7##x,_p1##y,z,c), I[259] = (T)(img)(_n8##x,_p1##y,z,c), I[260] = (T)(img)(_n9##x,_p1##y,z,c), I[261] = (T)(img)(_n10##x,_p1##y,z,c), I[262] = (T)(img)(_n11##x,_p1##y,z,c), I[263] = (T)(img)(_n12##x,_p1##y,z,c), \
I[264] = (T)(img)(_p11##x,y,z,c), I[265] = (T)(img)(_p10##x,y,z,c), I[266] = (T)(img)(_p9##x,y,z,c), I[267] = (T)(img)(_p8##x,y,z,c), I[268] = (T)(img)(_p7##x,y,z,c), I[269] = (T)(img)(_p6##x,y,z,c), I[270] = (T)(img)(_p5##x,y,z,c), I[271] = (T)(img)(_p4##x,y,z,c), I[272] = (T)(img)(_p3##x,y,z,c), I[273] = (T)(img)(_p2##x,y,z,c), I[274] = (T)(img)(_p1##x,y,z,c), I[275] = (T)(img)(x,y,z,c), I[276] = (T)(img)(_n1##x,y,z,c), I[277] = (T)(img)(_n2##x,y,z,c), I[278] = (T)(img)(_n3##x,y,z,c), I[279] = (T)(img)(_n4##x,y,z,c), I[280] = (T)(img)(_n5##x,y,z,c), I[281] = (T)(img)(_n6##x,y,z,c), I[282] = (T)(img)(_n7##x,y,z,c), I[283] = (T)(img)(_n8##x,y,z,c), I[284] = (T)(img)(_n9##x,y,z,c), I[285] = (T)(img)(_n10##x,y,z,c), I[286] = (T)(img)(_n11##x,y,z,c), I[287] = (T)(img)(_n12##x,y,z,c), \
I[288] = (T)(img)(_p11##x,_n1##y,z,c), I[289] = (T)(img)(_p10##x,_n1##y,z,c), I[290] = (T)(img)(_p9##x,_n1##y,z,c), I[291] = (T)(img)(_p8##x,_n1##y,z,c), I[292] = (T)(img)(_p7##x,_n1##y,z,c), I[293] = (T)(img)(_p6##x,_n1##y,z,c), I[294] = (T)(img)(_p5##x,_n1##y,z,c), I[295] = (T)(img)(_p4##x,_n1##y,z,c), I[296] = (T)(img)(_p3##x,_n1##y,z,c), I[297] = (T)(img)(_p2##x,_n1##y,z,c), I[298] = (T)(img)(_p1##x,_n1##y,z,c), I[299] = (T)(img)(x,_n1##y,z,c), I[300] = (T)(img)(_n1##x,_n1##y,z,c), I[301] = (T)(img)(_n2##x,_n1##y,z,c), I[302] = (T)(img)(_n3##x,_n1##y,z,c), I[303] = (T)(img)(_n4##x,_n1##y,z,c), I[304] = (T)(img)(_n5##x,_n1##y,z,c), I[305] = (T)(img)(_n6##x,_n1##y,z,c), I[306] = (T)(img)(_n7##x,_n1##y,z,c), I[307] = (T)(img)(_n8##x,_n1##y,z,c), I[308] = (T)(img)(_n9##x,_n1##y,z,c), I[309] = (T)(img)(_n10##x,_n1##y,z,c), I[310] = (T)(img)(_n11##x,_n1##y,z,c), I[311] = (T)(img)(_n12##x,_n1##y,z,c), \
I[312] = (T)(img)(_p11##x,_n2##y,z,c), I[313] = (T)(img)(_p10##x,_n2##y,z,c), I[314] = (T)(img)(_p9##x,_n2##y,z,c), I[315] = (T)(img)(_p8##x,_n2##y,z,c), I[316] = (T)(img)(_p7##x,_n2##y,z,c), I[317] = (T)(img)(_p6##x,_n2##y,z,c), I[318] = (T)(img)(_p5##x,_n2##y,z,c), I[319] = (T)(img)(_p4##x,_n2##y,z,c), I[320] = (T)(img)(_p3##x,_n2##y,z,c), I[321] = (T)(img)(_p2##x,_n2##y,z,c), I[322] = (T)(img)(_p1##x,_n2##y,z,c), I[323] = (T)(img)(x,_n2##y,z,c), I[324] = (T)(img)(_n1##x,_n2##y,z,c), I[325] = (T)(img)(_n2##x,_n2##y,z,c), I[326] = (T)(img)(_n3##x,_n2##y,z,c), I[327] = (T)(img)(_n4##x,_n2##y,z,c), I[328] = (T)(img)(_n5##x,_n2##y,z,c), I[329] = (T)(img)(_n6##x,_n2##y,z,c), I[330] = (T)(img)(_n7##x,_n2##y,z,c), I[331] = (T)(img)(_n8##x,_n2##y,z,c), I[332] = (T)(img)(_n9##x,_n2##y,z,c), I[333] = (T)(img)(_n10##x,_n2##y,z,c), I[334] = (T)(img)(_n11##x,_n2##y,z,c), I[335] = (T)(img)(_n12##x,_n2##y,z,c), \
I[336] = (T)(img)(_p11##x,_n3##y,z,c), I[337] = (T)(img)(_p10##x,_n3##y,z,c), I[338] = (T)(img)(_p9##x,_n3##y,z,c), I[339] = (T)(img)(_p8##x,_n3##y,z,c), I[340] = (T)(img)(_p7##x,_n3##y,z,c), I[341] = (T)(img)(_p6##x,_n3##y,z,c), I[342] = (T)(img)(_p5##x,_n3##y,z,c), I[343] = (T)(img)(_p4##x,_n3##y,z,c), I[344] = (T)(img)(_p3##x,_n3##y,z,c), I[345] = (T)(img)(_p2##x,_n3##y,z,c), I[346] = (T)(img)(_p1##x,_n3##y,z,c), I[347] = (T)(img)(x,_n3##y,z,c), I[348] = (T)(img)(_n1##x,_n3##y,z,c), I[349] = (T)(img)(_n2##x,_n3##y,z,c), I[350] = (T)(img)(_n3##x,_n3##y,z,c), I[351] = (T)(img)(_n4##x,_n3##y,z,c), I[352] = (T)(img)(_n5##x,_n3##y,z,c), I[353] = (T)(img)(_n6##x,_n3##y,z,c), I[354] = (T)(img)(_n7##x,_n3##y,z,c), I[355] = (T)(img)(_n8##x,_n3##y,z,c), I[356] = (T)(img)(_n9##x,_n3##y,z,c), I[357] = (T)(img)(_n10##x,_n3##y,z,c), I[358] = (T)(img)(_n11##x,_n3##y,z,c), I[359] = (T)(img)(_n12##x,_n3##y,z,c), \
I[360] = (T)(img)(_p11##x,_n4##y,z,c), I[361] = (T)(img)(_p10##x,_n4##y,z,c), I[362] = (T)(img)(_p9##x,_n4##y,z,c), I[363] = (T)(img)(_p8##x,_n4##y,z,c), I[364] = (T)(img)(_p7##x,_n4##y,z,c), I[365] = (T)(img)(_p6##x,_n4##y,z,c), I[366] = (T)(img)(_p5##x,_n4##y,z,c), I[367] = (T)(img)(_p4##x,_n4##y,z,c), I[368] = (T)(img)(_p3##x,_n4##y,z,c), I[369] = (T)(img)(_p2##x,_n4##y,z,c), I[370] = (T)(img)(_p1##x,_n4##y,z,c), I[371] = (T)(img)(x,_n4##y,z,c), I[372] = (T)(img)(_n1##x,_n4##y,z,c), I[373] = (T)(img)(_n2##x,_n4##y,z,c), I[374] = (T)(img)(_n3##x,_n4##y,z,c), I[375] = (T)(img)(_n4##x,_n4##y,z,c), I[376] = (T)(img)(_n5##x,_n4##y,z,c), I[377] = (T)(img)(_n6##x,_n4##y,z,c), I[378] = (T)(img)(_n7##x,_n4##y,z,c), I[379] = (T)(img)(_n8##x,_n4##y,z,c), I[380] = (T)(img)(_n9##x,_n4##y,z,c), I[381] = (T)(img)(_n10##x,_n4##y,z,c), I[382] = (T)(img)(_n11##x,_n4##y,z,c), I[383] = (T)(img)(_n12##x,_n4##y,z,c), \
I[384] = (T)(img)(_p11##x,_n5##y,z,c), I[385] = (T)(img)(_p10##x,_n5##y,z,c), I[386] = (T)(img)(_p9##x,_n5##y,z,c), I[387] = (T)(img)(_p8##x,_n5##y,z,c), I[388] = (T)(img)(_p7##x,_n5##y,z,c), I[389] = (T)(img)(_p6##x,_n5##y,z,c), I[390] = (T)(img)(_p5##x,_n5##y,z,c), I[391] = (T)(img)(_p4##x,_n5##y,z,c), I[392] = (T)(img)(_p3##x,_n5##y,z,c), I[393] = (T)(img)(_p2##x,_n5##y,z,c), I[394] = (T)(img)(_p1##x,_n5##y,z,c), I[395] = (T)(img)(x,_n5##y,z,c), I[396] = (T)(img)(_n1##x,_n5##y,z,c), I[397] = (T)(img)(_n2##x,_n5##y,z,c), I[398] = (T)(img)(_n3##x,_n5##y,z,c), I[399] = (T)(img)(_n4##x,_n5##y,z,c), I[400] = (T)(img)(_n5##x,_n5##y,z,c), I[401] = (T)(img)(_n6##x,_n5##y,z,c), I[402] = (T)(img)(_n7##x,_n5##y,z,c), I[403] = (T)(img)(_n8##x,_n5##y,z,c), I[404] = (T)(img)(_n9##x,_n5##y,z,c), I[405] = (T)(img)(_n10##x,_n5##y,z,c), I[406] = (T)(img)(_n11##x,_n5##y,z,c), I[407] = (T)(img)(_n12##x,_n5##y,z,c), \
I[408] = (T)(img)(_p11##x,_n6##y,z,c), I[409] = (T)(img)(_p10##x,_n6##y,z,c), I[410] = (T)(img)(_p9##x,_n6##y,z,c), I[411] = (T)(img)(_p8##x,_n6##y,z,c), I[412] = (T)(img)(_p7##x,_n6##y,z,c), I[413] = (T)(img)(_p6##x,_n6##y,z,c), I[414] = (T)(img)(_p5##x,_n6##y,z,c), I[415] = (T)(img)(_p4##x,_n6##y,z,c), I[416] = (T)(img)(_p3##x,_n6##y,z,c), I[417] = (T)(img)(_p2##x,_n6##y,z,c), I[418] = (T)(img)(_p1##x,_n6##y,z,c), I[419] = (T)(img)(x,_n6##y,z,c), I[420] = (T)(img)(_n1##x,_n6##y,z,c), I[421] = (T)(img)(_n2##x,_n6##y,z,c), I[422] = (T)(img)(_n3##x,_n6##y,z,c), I[423] = (T)(img)(_n4##x,_n6##y,z,c), I[424] = (T)(img)(_n5##x,_n6##y,z,c), I[425] = (T)(img)(_n6##x,_n6##y,z,c), I[426] = (T)(img)(_n7##x,_n6##y,z,c), I[427] = (T)(img)(_n8##x,_n6##y,z,c), I[428] = (T)(img)(_n9##x,_n6##y,z,c), I[429] = (T)(img)(_n10##x,_n6##y,z,c), I[430] = (T)(img)(_n11##x,_n6##y,z,c), I[431] = (T)(img)(_n12##x,_n6##y,z,c), \
I[432] = (T)(img)(_p11##x,_n7##y,z,c), I[433] = (T)(img)(_p10##x,_n7##y,z,c), I[434] = (T)(img)(_p9##x,_n7##y,z,c), I[435] = (T)(img)(_p8##x,_n7##y,z,c), I[436] = (T)(img)(_p7##x,_n7##y,z,c), I[437] = (T)(img)(_p6##x,_n7##y,z,c), I[438] = (T)(img)(_p5##x,_n7##y,z,c), I[439] = (T)(img)(_p4##x,_n7##y,z,c), I[440] = (T)(img)(_p3##x,_n7##y,z,c), I[441] = (T)(img)(_p2##x,_n7##y,z,c), I[442] = (T)(img)(_p1##x,_n7##y,z,c), I[443] = (T)(img)(x,_n7##y,z,c), I[444] = (T)(img)(_n1##x,_n7##y,z,c), I[445] = (T)(img)(_n2##x,_n7##y,z,c), I[446] = (T)(img)(_n3##x,_n7##y,z,c), I[447] = (T)(img)(_n4##x,_n7##y,z,c), I[448] = (T)(img)(_n5##x,_n7##y,z,c), I[449] = (T)(img)(_n6##x,_n7##y,z,c), I[450] = (T)(img)(_n7##x,_n7##y,z,c), I[451] = (T)(img)(_n8##x,_n7##y,z,c), I[452] = (T)(img)(_n9##x,_n7##y,z,c), I[453] = (T)(img)(_n10##x,_n7##y,z,c), I[454] = (T)(img)(_n11##x,_n7##y,z,c), I[455] = (T)(img)(_n12##x,_n7##y,z,c), \
I[456] = (T)(img)(_p11##x,_n8##y,z,c), I[457] = (T)(img)(_p10##x,_n8##y,z,c), I[458] = (T)(img)(_p9##x,_n8##y,z,c), I[459] = (T)(img)(_p8##x,_n8##y,z,c), I[460] = (T)(img)(_p7##x,_n8##y,z,c), I[461] = (T)(img)(_p6##x,_n8##y,z,c), I[462] = (T)(img)(_p5##x,_n8##y,z,c), I[463] = (T)(img)(_p4##x,_n8##y,z,c), I[464] = (T)(img)(_p3##x,_n8##y,z,c), I[465] = (T)(img)(_p2##x,_n8##y,z,c), I[466] = (T)(img)(_p1##x,_n8##y,z,c), I[467] = (T)(img)(x,_n8##y,z,c), I[468] = (T)(img)(_n1##x,_n8##y,z,c), I[469] = (T)(img)(_n2##x,_n8##y,z,c), I[470] = (T)(img)(_n3##x,_n8##y,z,c), I[471] = (T)(img)(_n4##x,_n8##y,z,c), I[472] = (T)(img)(_n5##x,_n8##y,z,c), I[473] = (T)(img)(_n6##x,_n8##y,z,c), I[474] = (T)(img)(_n7##x,_n8##y,z,c), I[475] = (T)(img)(_n8##x,_n8##y,z,c), I[476] = (T)(img)(_n9##x,_n8##y,z,c), I[477] = (T)(img)(_n10##x,_n8##y,z,c), I[478] = (T)(img)(_n11##x,_n8##y,z,c), I[479] = (T)(img)(_n12##x,_n8##y,z,c), \
I[480] = (T)(img)(_p11##x,_n9##y,z,c), I[481] = (T)(img)(_p10##x,_n9##y,z,c), I[482] = (T)(img)(_p9##x,_n9##y,z,c), I[483] = (T)(img)(_p8##x,_n9##y,z,c), I[484] = (T)(img)(_p7##x,_n9##y,z,c), I[485] = (T)(img)(_p6##x,_n9##y,z,c), I[486] = (T)(img)(_p5##x,_n9##y,z,c), I[487] = (T)(img)(_p4##x,_n9##y,z,c), I[488] = (T)(img)(_p3##x,_n9##y,z,c), I[489] = (T)(img)(_p2##x,_n9##y,z,c), I[490] = (T)(img)(_p1##x,_n9##y,z,c), I[491] = (T)(img)(x,_n9##y,z,c), I[492] = (T)(img)(_n1##x,_n9##y,z,c), I[493] = (T)(img)(_n2##x,_n9##y,z,c), I[494] = (T)(img)(_n3##x,_n9##y,z,c), I[495] = (T)(img)(_n4##x,_n9##y,z,c), I[496] = (T)(img)(_n5##x,_n9##y,z,c), I[497] = (T)(img)(_n6##x,_n9##y,z,c), I[498] = (T)(img)(_n7##x,_n9##y,z,c), I[499] = (T)(img)(_n8##x,_n9##y,z,c), I[500] = (T)(img)(_n9##x,_n9##y,z,c), I[501] = (T)(img)(_n10##x,_n9##y,z,c), I[502] = (T)(img)(_n11##x,_n9##y,z,c), I[503] = (T)(img)(_n12##x,_n9##y,z,c), \
I[504] = (T)(img)(_p11##x,_n10##y,z,c), I[505] = (T)(img)(_p10##x,_n10##y,z,c), I[506] = (T)(img)(_p9##x,_n10##y,z,c), I[507] = (T)(img)(_p8##x,_n10##y,z,c), I[508] = (T)(img)(_p7##x,_n10##y,z,c), I[509] = (T)(img)(_p6##x,_n10##y,z,c), I[510] = (T)(img)(_p5##x,_n10##y,z,c), I[511] = (T)(img)(_p4##x,_n10##y,z,c), I[512] = (T)(img)(_p3##x,_n10##y,z,c), I[513] = (T)(img)(_p2##x,_n10##y,z,c), I[514] = (T)(img)(_p1##x,_n10##y,z,c), I[515] = (T)(img)(x,_n10##y,z,c), I[516] = (T)(img)(_n1##x,_n10##y,z,c), I[517] = (T)(img)(_n2##x,_n10##y,z,c), I[518] = (T)(img)(_n3##x,_n10##y,z,c), I[519] = (T)(img)(_n4##x,_n10##y,z,c), I[520] = (T)(img)(_n5##x,_n10##y,z,c), I[521] = (T)(img)(_n6##x,_n10##y,z,c), I[522] = (T)(img)(_n7##x,_n10##y,z,c), I[523] = (T)(img)(_n8##x,_n10##y,z,c), I[524] = (T)(img)(_n9##x,_n10##y,z,c), I[525] = (T)(img)(_n10##x,_n10##y,z,c), I[526] = (T)(img)(_n11##x,_n10##y,z,c), I[527] = (T)(img)(_n12##x,_n10##y,z,c), \
I[528] = (T)(img)(_p11##x,_n11##y,z,c), I[529] = (T)(img)(_p10##x,_n11##y,z,c), I[530] = (T)(img)(_p9##x,_n11##y,z,c), I[531] = (T)(img)(_p8##x,_n11##y,z,c), I[532] = (T)(img)(_p7##x,_n11##y,z,c), I[533] = (T)(img)(_p6##x,_n11##y,z,c), I[534] = (T)(img)(_p5##x,_n11##y,z,c), I[535] = (T)(img)(_p4##x,_n11##y,z,c), I[536] = (T)(img)(_p3##x,_n11##y,z,c), I[537] = (T)(img)(_p2##x,_n11##y,z,c), I[538] = (T)(img)(_p1##x,_n11##y,z,c), I[539] = (T)(img)(x,_n11##y,z,c), I[540] = (T)(img)(_n1##x,_n11##y,z,c), I[541] = (T)(img)(_n2##x,_n11##y,z,c), I[542] = (T)(img)(_n3##x,_n11##y,z,c), I[543] = (T)(img)(_n4##x,_n11##y,z,c), I[544] = (T)(img)(_n5##x,_n11##y,z,c), I[545] = (T)(img)(_n6##x,_n11##y,z,c), I[546] = (T)(img)(_n7##x,_n11##y,z,c), I[547] = (T)(img)(_n8##x,_n11##y,z,c), I[548] = (T)(img)(_n9##x,_n11##y,z,c), I[549] = (T)(img)(_n10##x,_n11##y,z,c), I[550] = (T)(img)(_n11##x,_n11##y,z,c), I[551] = (T)(img)(_n12##x,_n11##y,z,c), \
I[552] = (T)(img)(_p11##x,_n12##y,z,c), I[553] = (T)(img)(_p10##x,_n12##y,z,c), I[554] = (T)(img)(_p9##x,_n12##y,z,c), I[555] = (T)(img)(_p8##x,_n12##y,z,c), I[556] = (T)(img)(_p7##x,_n12##y,z,c), I[557] = (T)(img)(_p6##x,_n12##y,z,c), I[558] = (T)(img)(_p5##x,_n12##y,z,c), I[559] = (T)(img)(_p4##x,_n12##y,z,c), I[560] = (T)(img)(_p3##x,_n12##y,z,c), I[561] = (T)(img)(_p2##x,_n12##y,z,c), I[562] = (T)(img)(_p1##x,_n12##y,z,c), I[563] = (T)(img)(x,_n12##y,z,c), I[564] = (T)(img)(_n1##x,_n12##y,z,c), I[565] = (T)(img)(_n2##x,_n12##y,z,c), I[566] = (T)(img)(_n3##x,_n12##y,z,c), I[567] = (T)(img)(_n4##x,_n12##y,z,c), I[568] = (T)(img)(_n5##x,_n12##y,z,c), I[569] = (T)(img)(_n6##x,_n12##y,z,c), I[570] = (T)(img)(_n7##x,_n12##y,z,c), I[571] = (T)(img)(_n8##x,_n12##y,z,c), I[572] = (T)(img)(_n9##x,_n12##y,z,c), I[573] = (T)(img)(_n10##x,_n12##y,z,c), I[574] = (T)(img)(_n11##x,_n12##y,z,c), I[575] = (T)(img)(_n12##x,_n12##y,z,c);
// Define 25x25 loop macros
//-------------------------
#define cimg_for25(bound,i) for (int i = 0, \
_p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12; \
_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
#define cimg_for25X(img,x) cimg_for25((img)._width,x)
#define cimg_for25Y(img,y) cimg_for25((img)._height,y)
#define cimg_for25Z(img,z) cimg_for25((img)._depth,z)
#define cimg_for25C(img,c) cimg_for25((img)._spectrum,c)
#define cimg_for25XY(img,x,y) cimg_for25Y(img,y) cimg_for25X(img,x)
#define cimg_for25XZ(img,x,z) cimg_for25Z(img,z) cimg_for25X(img,x)
#define cimg_for25XC(img,x,c) cimg_for25C(img,c) cimg_for25X(img,x)
#define cimg_for25YZ(img,y,z) cimg_for25Z(img,z) cimg_for25Y(img,y)
#define cimg_for25YC(img,y,c) cimg_for25C(img,c) cimg_for25Y(img,y)
#define cimg_for25ZC(img,z,c) cimg_for25C(img,c) cimg_for25Z(img,z)
#define cimg_for25XYZ(img,x,y,z) cimg_for25Z(img,z) cimg_for25XY(img,x,y)
#define cimg_for25XZC(img,x,z,c) cimg_for25C(img,c) cimg_for25XZ(img,x,z)
#define cimg_for25YZC(img,y,z,c) cimg_for25C(img,c) cimg_for25YZ(img,y,z)
#define cimg_for25XYZC(img,x,y,z,c) cimg_for25C(img,c) cimg_for25XYZ(img,x,y,z)
#define cimg_for_in25(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12; \
i<=(int)(i1) && (_n12##i<(int)(bound) || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i)
#define cimg_for_in25X(img,x0,x1,x) cimg_for_in25((img)._width,x0,x1,x)
#define cimg_for_in25Y(img,y0,y1,y) cimg_for_in25((img)._height,y0,y1,y)
#define cimg_for_in25Z(img,z0,z1,z) cimg_for_in25((img)._depth,z0,z1,z)
#define cimg_for_in25C(img,c0,c1,c) cimg_for_in25((img)._spectrum,c0,c1,c)
#define cimg_for_in25XY(img,x0,y0,x1,y1,x,y) cimg_for_in25Y(img,y0,y1,y) cimg_for_in25X(img,x0,x1,x)
#define cimg_for_in25XZ(img,x0,z0,x1,z1,x,z) cimg_for_in25Z(img,z0,z1,z) cimg_for_in25X(img,x0,x1,x)
#define cimg_for_in25XC(img,x0,c0,x1,c1,x,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25X(img,x0,x1,x)
#define cimg_for_in25YZ(img,y0,z0,y1,z1,y,z) cimg_for_in25Z(img,z0,z1,z) cimg_for_in25Y(img,y0,y1,y)
#define cimg_for_in25YC(img,y0,c0,y1,c1,y,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25Y(img,y0,y1,y)
#define cimg_for_in25ZC(img,z0,c0,z1,c1,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25Z(img,z0,z1,z)
#define cimg_for_in25XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in25Z(img,z0,z1,z) cimg_for_in25XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in25XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in25YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in25XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in25C(img,c0,c1,c) cimg_for_in25XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for25x25(img,x,y,z,c,I,T) \
cimg_for25((img)._height,y) for (int x = 0, \
_p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = (T)(img)(0,_p12##y,z,c)), \
(I[25] = I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = (T)(img)(0,_p11##y,z,c)), \
(I[50] = I[51] = I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = (T)(img)(0,_p10##y,z,c)), \
(I[75] = I[76] = I[77] = I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = (T)(img)(0,_p9##y,z,c)), \
(I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = (T)(img)(0,_p8##y,z,c)), \
(I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = (T)(img)(0,_p7##y,z,c)), \
(I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = (T)(img)(0,_p6##y,z,c)), \
(I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = (T)(img)(0,_p5##y,z,c)), \
(I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = (T)(img)(0,_p4##y,z,c)), \
(I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (T)(img)(0,_p3##y,z,c)), \
(I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = (T)(img)(0,_p2##y,z,c)), \
(I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = (T)(img)(0,_p1##y,z,c)), \
(I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = (T)(img)(0,y,z,c)), \
(I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = (T)(img)(0,_n1##y,z,c)), \
(I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (T)(img)(0,_n2##y,z,c)), \
(I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = (T)(img)(0,_n3##y,z,c)), \
(I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = (T)(img)(0,_n4##y,z,c)), \
(I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = (T)(img)(0,_n5##y,z,c)), \
(I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = (T)(img)(0,_n6##y,z,c)), \
(I[475] = I[476] = I[477] = I[478] = I[479] = I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = (T)(img)(0,_n7##y,z,c)), \
(I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = (T)(img)(0,_n8##y,z,c)), \
(I[525] = I[526] = I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = (T)(img)(0,_n9##y,z,c)), \
(I[550] = I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = (T)(img)(0,_n10##y,z,c)), \
(I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = I[585] = I[586] = I[587] = (T)(img)(0,_n11##y,z,c)), \
(I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = I[608] = I[609] = I[610] = I[611] = I[612] = (T)(img)(0,_n12##y,z,c)), \
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[38] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[63] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[88] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[113] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[138] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[163] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[188] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[213] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[238] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[263] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[288] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[313] = (T)(img)(_n1##x,y,z,c)), \
(I[338] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[363] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[388] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[413] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[438] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[463] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[488] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[513] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[538] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[563] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[588] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[613] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[39] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[64] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[89] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[114] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[139] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[164] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[189] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[214] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[239] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[264] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[289] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[314] = (T)(img)(_n2##x,y,z,c)), \
(I[339] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[364] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[389] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[414] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[439] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[464] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[489] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[514] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[539] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[564] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[589] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[614] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[40] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[65] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[90] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[115] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[140] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[165] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[190] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[215] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[240] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[265] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[290] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[315] = (T)(img)(_n3##x,y,z,c)), \
(I[340] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[365] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[390] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[415] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[440] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[465] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[490] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[515] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[540] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[565] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[590] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[615] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[41] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[66] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[91] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[116] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[141] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[166] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[191] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[216] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[241] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[266] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[291] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[316] = (T)(img)(_n4##x,y,z,c)), \
(I[341] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[366] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[391] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[416] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[441] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[466] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[491] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[516] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[541] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[566] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[591] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[616] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[42] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[67] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[92] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[117] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[142] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[167] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[192] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[217] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[242] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[267] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[292] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[317] = (T)(img)(_n5##x,y,z,c)), \
(I[342] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[367] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[392] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[417] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[442] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[467] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[492] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[517] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[542] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[567] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[592] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[617] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[43] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[68] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[93] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[118] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[143] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[168] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[193] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[218] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[243] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[268] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[293] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[318] = (T)(img)(_n6##x,y,z,c)), \
(I[343] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[368] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[393] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[418] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[443] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[468] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[493] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[518] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[543] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[568] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[593] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[618] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[44] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[69] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[94] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[119] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[144] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[169] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[194] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[219] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[244] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[269] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[294] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[319] = (T)(img)(_n7##x,y,z,c)), \
(I[344] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[369] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[394] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[419] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[444] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[469] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[494] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[519] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[544] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[569] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[594] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[619] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[45] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[70] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[95] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[120] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[145] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[170] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[195] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[220] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[245] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[270] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[295] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[320] = (T)(img)(_n8##x,y,z,c)), \
(I[345] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[370] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[395] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[420] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[445] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[470] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[495] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[520] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[545] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[570] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[595] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[620] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[46] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[71] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[96] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[121] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[146] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[171] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[196] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[221] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[246] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[271] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[296] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[321] = (T)(img)(_n9##x,y,z,c)), \
(I[346] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[371] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[396] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[421] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[446] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[471] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[496] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[521] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[546] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[571] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[596] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[621] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[47] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[72] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[97] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[122] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[147] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[172] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[197] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[222] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[247] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[272] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[297] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[322] = (T)(img)(_n10##x,y,z,c)), \
(I[347] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[372] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[397] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[422] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[447] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[472] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[497] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[522] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[547] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[572] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[597] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[622] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[48] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[73] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[98] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[123] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[148] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[173] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[198] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[223] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[248] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[273] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[298] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[323] = (T)(img)(_n11##x,y,z,c)), \
(I[348] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[373] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[398] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[423] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[448] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[473] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[498] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[523] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[548] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[573] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[598] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[623] = (T)(img)(_n11##x,_n12##y,z,c)), \
12>=((img)._width)?(img).width() - 1:12); \
(_n12##x<(img).width() && ( \
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[49] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[74] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[99] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[124] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[149] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[174] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[199] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[224] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[249] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[274] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[299] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[324] = (T)(img)(_n12##x,y,z,c)), \
(I[349] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[374] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[399] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[424] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[449] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[474] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[499] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[524] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[549] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[574] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[599] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[624] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], \
I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], \
I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], \
I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], \
I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], \
I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], \
I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], \
I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], \
I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], \
I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], \
I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], \
I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], \
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
#define cimg_for_in25x25(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in25((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = (int)( \
(I[0] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[25] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[50] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[75] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[100] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[125] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[150] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[175] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[200] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[225] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[250] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[275] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[300] = (T)(img)(_p12##x,y,z,c)), \
(I[325] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[350] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[375] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[400] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[425] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[450] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[475] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[500] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[525] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[550] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[575] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[600] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[1] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[26] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[51] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[76] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[101] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[126] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[151] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[176] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[201] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[226] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[251] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[276] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[301] = (T)(img)(_p11##x,y,z,c)), \
(I[326] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[351] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[376] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[401] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[426] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[451] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[476] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[501] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[526] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[551] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[576] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[601] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[2] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[27] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[52] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[77] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[102] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[127] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[152] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[177] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[202] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[227] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[252] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[277] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[302] = (T)(img)(_p10##x,y,z,c)), \
(I[327] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[352] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[377] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[402] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[427] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[452] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[477] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[502] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[527] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[552] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[577] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[602] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[3] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[28] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[53] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[78] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[103] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[128] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[153] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[178] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[203] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[228] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[253] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[278] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[303] = (T)(img)(_p9##x,y,z,c)), \
(I[328] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[353] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[378] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[403] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[428] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[453] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[478] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[503] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[528] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[553] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[578] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[603] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[4] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[29] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[54] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[79] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[104] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[129] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[154] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[179] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[204] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[229] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[254] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[279] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[304] = (T)(img)(_p8##x,y,z,c)), \
(I[329] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[354] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[379] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[404] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[429] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[454] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[479] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[504] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[529] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[554] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[579] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[604] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[5] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[30] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[55] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[80] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[105] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[130] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[155] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[180] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[205] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[230] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[255] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[280] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[305] = (T)(img)(_p7##x,y,z,c)), \
(I[330] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[355] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[380] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[405] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[430] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[455] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[480] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[505] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[530] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[555] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[580] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[605] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[6] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[31] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[56] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[81] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[106] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[131] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[156] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[181] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[206] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[231] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[256] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[281] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[306] = (T)(img)(_p6##x,y,z,c)), \
(I[331] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[356] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[381] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[406] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[431] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[456] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[481] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[506] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[531] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[556] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[581] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[606] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[7] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[32] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[57] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[82] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[107] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[132] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[157] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[182] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[207] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[232] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[257] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[282] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[307] = (T)(img)(_p5##x,y,z,c)), \
(I[332] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[357] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[382] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[407] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[432] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[457] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[482] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[507] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[532] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[557] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[582] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[607] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[8] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[33] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[58] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[83] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[108] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[133] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[158] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[183] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[208] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[233] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[258] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[283] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[308] = (T)(img)(_p4##x,y,z,c)), \
(I[333] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[358] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[383] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[408] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[433] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[458] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[483] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[508] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[533] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[558] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[583] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[608] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[9] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[34] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[59] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[84] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[109] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[134] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[159] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[184] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[209] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[234] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[259] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[284] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[309] = (T)(img)(_p3##x,y,z,c)), \
(I[334] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[359] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[384] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[409] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[434] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[459] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[484] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[509] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[534] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[559] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[584] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[609] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[10] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[35] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[60] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[85] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[110] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[135] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[160] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[185] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[210] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[235] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[260] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[285] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[310] = (T)(img)(_p2##x,y,z,c)), \
(I[335] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[360] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[385] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[410] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[435] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[460] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[485] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[510] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[535] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[560] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[585] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[610] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[11] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[36] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[61] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[86] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[111] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[136] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[161] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[186] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[211] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[236] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[261] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[286] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[311] = (T)(img)(_p1##x,y,z,c)), \
(I[336] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[361] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[386] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[411] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[436] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[461] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[486] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[511] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[536] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[561] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[586] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[611] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[12] = (T)(img)(x,_p12##y,z,c)), \
(I[37] = (T)(img)(x,_p11##y,z,c)), \
(I[62] = (T)(img)(x,_p10##y,z,c)), \
(I[87] = (T)(img)(x,_p9##y,z,c)), \
(I[112] = (T)(img)(x,_p8##y,z,c)), \
(I[137] = (T)(img)(x,_p7##y,z,c)), \
(I[162] = (T)(img)(x,_p6##y,z,c)), \
(I[187] = (T)(img)(x,_p5##y,z,c)), \
(I[212] = (T)(img)(x,_p4##y,z,c)), \
(I[237] = (T)(img)(x,_p3##y,z,c)), \
(I[262] = (T)(img)(x,_p2##y,z,c)), \
(I[287] = (T)(img)(x,_p1##y,z,c)), \
(I[312] = (T)(img)(x,y,z,c)), \
(I[337] = (T)(img)(x,_n1##y,z,c)), \
(I[362] = (T)(img)(x,_n2##y,z,c)), \
(I[387] = (T)(img)(x,_n3##y,z,c)), \
(I[412] = (T)(img)(x,_n4##y,z,c)), \
(I[437] = (T)(img)(x,_n5##y,z,c)), \
(I[462] = (T)(img)(x,_n6##y,z,c)), \
(I[487] = (T)(img)(x,_n7##y,z,c)), \
(I[512] = (T)(img)(x,_n8##y,z,c)), \
(I[537] = (T)(img)(x,_n9##y,z,c)), \
(I[562] = (T)(img)(x,_n10##y,z,c)), \
(I[587] = (T)(img)(x,_n11##y,z,c)), \
(I[612] = (T)(img)(x,_n12##y,z,c)), \
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[38] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[63] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[88] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[113] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[138] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[163] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[188] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[213] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[238] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[263] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[288] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[313] = (T)(img)(_n1##x,y,z,c)), \
(I[338] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[363] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[388] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[413] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[438] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[463] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[488] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[513] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[538] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[563] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[588] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[613] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[39] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[64] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[89] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[114] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[139] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[164] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[189] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[214] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[239] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[264] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[289] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[314] = (T)(img)(_n2##x,y,z,c)), \
(I[339] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[364] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[389] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[414] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[439] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[464] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[489] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[514] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[539] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[564] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[589] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[614] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[40] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[65] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[90] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[115] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[140] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[165] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[190] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[215] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[240] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[265] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[290] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[315] = (T)(img)(_n3##x,y,z,c)), \
(I[340] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[365] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[390] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[415] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[440] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[465] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[490] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[515] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[540] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[565] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[590] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[615] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[41] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[66] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[91] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[116] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[141] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[166] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[191] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[216] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[241] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[266] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[291] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[316] = (T)(img)(_n4##x,y,z,c)), \
(I[341] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[366] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[391] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[416] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[441] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[466] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[491] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[516] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[541] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[566] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[591] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[616] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[42] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[67] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[92] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[117] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[142] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[167] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[192] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[217] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[242] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[267] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[292] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[317] = (T)(img)(_n5##x,y,z,c)), \
(I[342] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[367] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[392] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[417] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[442] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[467] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[492] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[517] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[542] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[567] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[592] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[617] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[43] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[68] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[93] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[118] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[143] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[168] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[193] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[218] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[243] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[268] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[293] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[318] = (T)(img)(_n6##x,y,z,c)), \
(I[343] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[368] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[393] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[418] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[443] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[468] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[493] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[518] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[543] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[568] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[593] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[618] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[44] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[69] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[94] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[119] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[144] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[169] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[194] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[219] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[244] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[269] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[294] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[319] = (T)(img)(_n7##x,y,z,c)), \
(I[344] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[369] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[394] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[419] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[444] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[469] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[494] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[519] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[544] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[569] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[594] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[619] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[45] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[70] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[95] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[120] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[145] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[170] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[195] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[220] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[245] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[270] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[295] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[320] = (T)(img)(_n8##x,y,z,c)), \
(I[345] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[370] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[395] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[420] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[445] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[470] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[495] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[520] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[545] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[570] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[595] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[620] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[46] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[71] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[96] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[121] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[146] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[171] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[196] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[221] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[246] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[271] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[296] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[321] = (T)(img)(_n9##x,y,z,c)), \
(I[346] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[371] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[396] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[421] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[446] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[471] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[496] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[521] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[546] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[571] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[596] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[621] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[47] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[72] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[97] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[122] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[147] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[172] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[197] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[222] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[247] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[272] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[297] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[322] = (T)(img)(_n10##x,y,z,c)), \
(I[347] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[372] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[397] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[422] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[447] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[472] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[497] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[522] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[547] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[572] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[597] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[622] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[48] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[73] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[98] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[123] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[148] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[173] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[198] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[223] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[248] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[273] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[298] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[323] = (T)(img)(_n11##x,y,z,c)), \
(I[348] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[373] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[398] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[423] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[448] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[473] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[498] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[523] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[548] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[573] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[598] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[623] = (T)(img)(_n11##x,_n12##y,z,c)), \
x + 12>=(img).width()?(img).width() - 1:x + 12); \
x<=(int)(x1) && ((_n12##x<(img).width() && ( \
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[49] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[74] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[99] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[124] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[149] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[174] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[199] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[224] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[249] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[274] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[299] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[324] = (T)(img)(_n12##x,y,z,c)), \
(I[349] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[374] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[399] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[424] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[449] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[474] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[499] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[524] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[549] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[574] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[599] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[624] = (T)(img)(_n12##x,_n12##y,z,c)),1)) || \
_n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], \
I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], \
I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], \
I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], \
I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], \
I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], \
I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], \
I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], \
I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], \
I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], \
I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], \
I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], \
I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], \
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x)
#define cimg_get25x25(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p12##x,_p12##y,z,c), I[1] = (T)(img)(_p11##x,_p12##y,z,c), I[2] = (T)(img)(_p10##x,_p12##y,z,c), I[3] = (T)(img)(_p9##x,_p12##y,z,c), I[4] = (T)(img)(_p8##x,_p12##y,z,c), I[5] = (T)(img)(_p7##x,_p12##y,z,c), I[6] = (T)(img)(_p6##x,_p12##y,z,c), I[7] = (T)(img)(_p5##x,_p12##y,z,c), I[8] = (T)(img)(_p4##x,_p12##y,z,c), I[9] = (T)(img)(_p3##x,_p12##y,z,c), I[10] = (T)(img)(_p2##x,_p12##y,z,c), I[11] = (T)(img)(_p1##x,_p12##y,z,c), I[12] = (T)(img)(x,_p12##y,z,c), I[13] = (T)(img)(_n1##x,_p12##y,z,c), I[14] = (T)(img)(_n2##x,_p12##y,z,c), I[15] = (T)(img)(_n3##x,_p12##y,z,c), I[16] = (T)(img)(_n4##x,_p12##y,z,c), I[17] = (T)(img)(_n5##x,_p12##y,z,c), I[18] = (T)(img)(_n6##x,_p12##y,z,c), I[19] = (T)(img)(_n7##x,_p12##y,z,c), I[20] = (T)(img)(_n8##x,_p12##y,z,c), I[21] = (T)(img)(_n9##x,_p12##y,z,c), I[22] = (T)(img)(_n10##x,_p12##y,z,c), I[23] = (T)(img)(_n11##x,_p12##y,z,c), I[24] = (T)(img)(_n12##x,_p12##y,z,c), \
I[25] = (T)(img)(_p12##x,_p11##y,z,c), I[26] = (T)(img)(_p11##x,_p11##y,z,c), I[27] = (T)(img)(_p10##x,_p11##y,z,c), I[28] = (T)(img)(_p9##x,_p11##y,z,c), I[29] = (T)(img)(_p8##x,_p11##y,z,c), I[30] = (T)(img)(_p7##x,_p11##y,z,c), I[31] = (T)(img)(_p6##x,_p11##y,z,c), I[32] = (T)(img)(_p5##x,_p11##y,z,c), I[33] = (T)(img)(_p4##x,_p11##y,z,c), I[34] = (T)(img)(_p3##x,_p11##y,z,c), I[35] = (T)(img)(_p2##x,_p11##y,z,c), I[36] = (T)(img)(_p1##x,_p11##y,z,c), I[37] = (T)(img)(x,_p11##y,z,c), I[38] = (T)(img)(_n1##x,_p11##y,z,c), I[39] = (T)(img)(_n2##x,_p11##y,z,c), I[40] = (T)(img)(_n3##x,_p11##y,z,c), I[41] = (T)(img)(_n4##x,_p11##y,z,c), I[42] = (T)(img)(_n5##x,_p11##y,z,c), I[43] = (T)(img)(_n6##x,_p11##y,z,c), I[44] = (T)(img)(_n7##x,_p11##y,z,c), I[45] = (T)(img)(_n8##x,_p11##y,z,c), I[46] = (T)(img)(_n9##x,_p11##y,z,c), I[47] = (T)(img)(_n10##x,_p11##y,z,c), I[48] = (T)(img)(_n11##x,_p11##y,z,c), I[49] = (T)(img)(_n12##x,_p11##y,z,c), \
I[50] = (T)(img)(_p12##x,_p10##y,z,c), I[51] = (T)(img)(_p11##x,_p10##y,z,c), I[52] = (T)(img)(_p10##x,_p10##y,z,c), I[53] = (T)(img)(_p9##x,_p10##y,z,c), I[54] = (T)(img)(_p8##x,_p10##y,z,c), I[55] = (T)(img)(_p7##x,_p10##y,z,c), I[56] = (T)(img)(_p6##x,_p10##y,z,c), I[57] = (T)(img)(_p5##x,_p10##y,z,c), I[58] = (T)(img)(_p4##x,_p10##y,z,c), I[59] = (T)(img)(_p3##x,_p10##y,z,c), I[60] = (T)(img)(_p2##x,_p10##y,z,c), I[61] = (T)(img)(_p1##x,_p10##y,z,c), I[62] = (T)(img)(x,_p10##y,z,c), I[63] = (T)(img)(_n1##x,_p10##y,z,c), I[64] = (T)(img)(_n2##x,_p10##y,z,c), I[65] = (T)(img)(_n3##x,_p10##y,z,c), I[66] = (T)(img)(_n4##x,_p10##y,z,c), I[67] = (T)(img)(_n5##x,_p10##y,z,c), I[68] = (T)(img)(_n6##x,_p10##y,z,c), I[69] = (T)(img)(_n7##x,_p10##y,z,c), I[70] = (T)(img)(_n8##x,_p10##y,z,c), I[71] = (T)(img)(_n9##x,_p10##y,z,c), I[72] = (T)(img)(_n10##x,_p10##y,z,c), I[73] = (T)(img)(_n11##x,_p10##y,z,c), I[74] = (T)(img)(_n12##x,_p10##y,z,c), \
I[75] = (T)(img)(_p12##x,_p9##y,z,c), I[76] = (T)(img)(_p11##x,_p9##y,z,c), I[77] = (T)(img)(_p10##x,_p9##y,z,c), I[78] = (T)(img)(_p9##x,_p9##y,z,c), I[79] = (T)(img)(_p8##x,_p9##y,z,c), I[80] = (T)(img)(_p7##x,_p9##y,z,c), I[81] = (T)(img)(_p6##x,_p9##y,z,c), I[82] = (T)(img)(_p5##x,_p9##y,z,c), I[83] = (T)(img)(_p4##x,_p9##y,z,c), I[84] = (T)(img)(_p3##x,_p9##y,z,c), I[85] = (T)(img)(_p2##x,_p9##y,z,c), I[86] = (T)(img)(_p1##x,_p9##y,z,c), I[87] = (T)(img)(x,_p9##y,z,c), I[88] = (T)(img)(_n1##x,_p9##y,z,c), I[89] = (T)(img)(_n2##x,_p9##y,z,c), I[90] = (T)(img)(_n3##x,_p9##y,z,c), I[91] = (T)(img)(_n4##x,_p9##y,z,c), I[92] = (T)(img)(_n5##x,_p9##y,z,c), I[93] = (T)(img)(_n6##x,_p9##y,z,c), I[94] = (T)(img)(_n7##x,_p9##y,z,c), I[95] = (T)(img)(_n8##x,_p9##y,z,c), I[96] = (T)(img)(_n9##x,_p9##y,z,c), I[97] = (T)(img)(_n10##x,_p9##y,z,c), I[98] = (T)(img)(_n11##x,_p9##y,z,c), I[99] = (T)(img)(_n12##x,_p9##y,z,c), \
I[100] = (T)(img)(_p12##x,_p8##y,z,c), I[101] = (T)(img)(_p11##x,_p8##y,z,c), I[102] = (T)(img)(_p10##x,_p8##y,z,c), I[103] = (T)(img)(_p9##x,_p8##y,z,c), I[104] = (T)(img)(_p8##x,_p8##y,z,c), I[105] = (T)(img)(_p7##x,_p8##y,z,c), I[106] = (T)(img)(_p6##x,_p8##y,z,c), I[107] = (T)(img)(_p5##x,_p8##y,z,c), I[108] = (T)(img)(_p4##x,_p8##y,z,c), I[109] = (T)(img)(_p3##x,_p8##y,z,c), I[110] = (T)(img)(_p2##x,_p8##y,z,c), I[111] = (T)(img)(_p1##x,_p8##y,z,c), I[112] = (T)(img)(x,_p8##y,z,c), I[113] = (T)(img)(_n1##x,_p8##y,z,c), I[114] = (T)(img)(_n2##x,_p8##y,z,c), I[115] = (T)(img)(_n3##x,_p8##y,z,c), I[116] = (T)(img)(_n4##x,_p8##y,z,c), I[117] = (T)(img)(_n5##x,_p8##y,z,c), I[118] = (T)(img)(_n6##x,_p8##y,z,c), I[119] = (T)(img)(_n7##x,_p8##y,z,c), I[120] = (T)(img)(_n8##x,_p8##y,z,c), I[121] = (T)(img)(_n9##x,_p8##y,z,c), I[122] = (T)(img)(_n10##x,_p8##y,z,c), I[123] = (T)(img)(_n11##x,_p8##y,z,c), I[124] = (T)(img)(_n12##x,_p8##y,z,c), \
I[125] = (T)(img)(_p12##x,_p7##y,z,c), I[126] = (T)(img)(_p11##x,_p7##y,z,c), I[127] = (T)(img)(_p10##x,_p7##y,z,c), I[128] = (T)(img)(_p9##x,_p7##y,z,c), I[129] = (T)(img)(_p8##x,_p7##y,z,c), I[130] = (T)(img)(_p7##x,_p7##y,z,c), I[131] = (T)(img)(_p6##x,_p7##y,z,c), I[132] = (T)(img)(_p5##x,_p7##y,z,c), I[133] = (T)(img)(_p4##x,_p7##y,z,c), I[134] = (T)(img)(_p3##x,_p7##y,z,c), I[135] = (T)(img)(_p2##x,_p7##y,z,c), I[136] = (T)(img)(_p1##x,_p7##y,z,c), I[137] = (T)(img)(x,_p7##y,z,c), I[138] = (T)(img)(_n1##x,_p7##y,z,c), I[139] = (T)(img)(_n2##x,_p7##y,z,c), I[140] = (T)(img)(_n3##x,_p7##y,z,c), I[141] = (T)(img)(_n4##x,_p7##y,z,c), I[142] = (T)(img)(_n5##x,_p7##y,z,c), I[143] = (T)(img)(_n6##x,_p7##y,z,c), I[144] = (T)(img)(_n7##x,_p7##y,z,c), I[145] = (T)(img)(_n8##x,_p7##y,z,c), I[146] = (T)(img)(_n9##x,_p7##y,z,c), I[147] = (T)(img)(_n10##x,_p7##y,z,c), I[148] = (T)(img)(_n11##x,_p7##y,z,c), I[149] = (T)(img)(_n12##x,_p7##y,z,c), \
I[150] = (T)(img)(_p12##x,_p6##y,z,c), I[151] = (T)(img)(_p11##x,_p6##y,z,c), I[152] = (T)(img)(_p10##x,_p6##y,z,c), I[153] = (T)(img)(_p9##x,_p6##y,z,c), I[154] = (T)(img)(_p8##x,_p6##y,z,c), I[155] = (T)(img)(_p7##x,_p6##y,z,c), I[156] = (T)(img)(_p6##x,_p6##y,z,c), I[157] = (T)(img)(_p5##x,_p6##y,z,c), I[158] = (T)(img)(_p4##x,_p6##y,z,c), I[159] = (T)(img)(_p3##x,_p6##y,z,c), I[160] = (T)(img)(_p2##x,_p6##y,z,c), I[161] = (T)(img)(_p1##x,_p6##y,z,c), I[162] = (T)(img)(x,_p6##y,z,c), I[163] = (T)(img)(_n1##x,_p6##y,z,c), I[164] = (T)(img)(_n2##x,_p6##y,z,c), I[165] = (T)(img)(_n3##x,_p6##y,z,c), I[166] = (T)(img)(_n4##x,_p6##y,z,c), I[167] = (T)(img)(_n5##x,_p6##y,z,c), I[168] = (T)(img)(_n6##x,_p6##y,z,c), I[169] = (T)(img)(_n7##x,_p6##y,z,c), I[170] = (T)(img)(_n8##x,_p6##y,z,c), I[171] = (T)(img)(_n9##x,_p6##y,z,c), I[172] = (T)(img)(_n10##x,_p6##y,z,c), I[173] = (T)(img)(_n11##x,_p6##y,z,c), I[174] = (T)(img)(_n12##x,_p6##y,z,c), \
I[175] = (T)(img)(_p12##x,_p5##y,z,c), I[176] = (T)(img)(_p11##x,_p5##y,z,c), I[177] = (T)(img)(_p10##x,_p5##y,z,c), I[178] = (T)(img)(_p9##x,_p5##y,z,c), I[179] = (T)(img)(_p8##x,_p5##y,z,c), I[180] = (T)(img)(_p7##x,_p5##y,z,c), I[181] = (T)(img)(_p6##x,_p5##y,z,c), I[182] = (T)(img)(_p5##x,_p5##y,z,c), I[183] = (T)(img)(_p4##x,_p5##y,z,c), I[184] = (T)(img)(_p3##x,_p5##y,z,c), I[185] = (T)(img)(_p2##x,_p5##y,z,c), I[186] = (T)(img)(_p1##x,_p5##y,z,c), I[187] = (T)(img)(x,_p5##y,z,c), I[188] = (T)(img)(_n1##x,_p5##y,z,c), I[189] = (T)(img)(_n2##x,_p5##y,z,c), I[190] = (T)(img)(_n3##x,_p5##y,z,c), I[191] = (T)(img)(_n4##x,_p5##y,z,c), I[192] = (T)(img)(_n5##x,_p5##y,z,c), I[193] = (T)(img)(_n6##x,_p5##y,z,c), I[194] = (T)(img)(_n7##x,_p5##y,z,c), I[195] = (T)(img)(_n8##x,_p5##y,z,c), I[196] = (T)(img)(_n9##x,_p5##y,z,c), I[197] = (T)(img)(_n10##x,_p5##y,z,c), I[198] = (T)(img)(_n11##x,_p5##y,z,c), I[199] = (T)(img)(_n12##x,_p5##y,z,c), \
I[200] = (T)(img)(_p12##x,_p4##y,z,c), I[201] = (T)(img)(_p11##x,_p4##y,z,c), I[202] = (T)(img)(_p10##x,_p4##y,z,c), I[203] = (T)(img)(_p9##x,_p4##y,z,c), I[204] = (T)(img)(_p8##x,_p4##y,z,c), I[205] = (T)(img)(_p7##x,_p4##y,z,c), I[206] = (T)(img)(_p6##x,_p4##y,z,c), I[207] = (T)(img)(_p5##x,_p4##y,z,c), I[208] = (T)(img)(_p4##x,_p4##y,z,c), I[209] = (T)(img)(_p3##x,_p4##y,z,c), I[210] = (T)(img)(_p2##x,_p4##y,z,c), I[211] = (T)(img)(_p1##x,_p4##y,z,c), I[212] = (T)(img)(x,_p4##y,z,c), I[213] = (T)(img)(_n1##x,_p4##y,z,c), I[214] = (T)(img)(_n2##x,_p4##y,z,c), I[215] = (T)(img)(_n3##x,_p4##y,z,c), I[216] = (T)(img)(_n4##x,_p4##y,z,c), I[217] = (T)(img)(_n5##x,_p4##y,z,c), I[218] = (T)(img)(_n6##x,_p4##y,z,c), I[219] = (T)(img)(_n7##x,_p4##y,z,c), I[220] = (T)(img)(_n8##x,_p4##y,z,c), I[221] = (T)(img)(_n9##x,_p4##y,z,c), I[222] = (T)(img)(_n10##x,_p4##y,z,c), I[223] = (T)(img)(_n11##x,_p4##y,z,c), I[224] = (T)(img)(_n12##x,_p4##y,z,c), \
I[225] = (T)(img)(_p12##x,_p3##y,z,c), I[226] = (T)(img)(_p11##x,_p3##y,z,c), I[227] = (T)(img)(_p10##x,_p3##y,z,c), I[228] = (T)(img)(_p9##x,_p3##y,z,c), I[229] = (T)(img)(_p8##x,_p3##y,z,c), I[230] = (T)(img)(_p7##x,_p3##y,z,c), I[231] = (T)(img)(_p6##x,_p3##y,z,c), I[232] = (T)(img)(_p5##x,_p3##y,z,c), I[233] = (T)(img)(_p4##x,_p3##y,z,c), I[234] = (T)(img)(_p3##x,_p3##y,z,c), I[235] = (T)(img)(_p2##x,_p3##y,z,c), I[236] = (T)(img)(_p1##x,_p3##y,z,c), I[237] = (T)(img)(x,_p3##y,z,c), I[238] = (T)(img)(_n1##x,_p3##y,z,c), I[239] = (T)(img)(_n2##x,_p3##y,z,c), I[240] = (T)(img)(_n3##x,_p3##y,z,c), I[241] = (T)(img)(_n4##x,_p3##y,z,c), I[242] = (T)(img)(_n5##x,_p3##y,z,c), I[243] = (T)(img)(_n6##x,_p3##y,z,c), I[244] = (T)(img)(_n7##x,_p3##y,z,c), I[245] = (T)(img)(_n8##x,_p3##y,z,c), I[246] = (T)(img)(_n9##x,_p3##y,z,c), I[247] = (T)(img)(_n10##x,_p3##y,z,c), I[248] = (T)(img)(_n11##x,_p3##y,z,c), I[249] = (T)(img)(_n12##x,_p3##y,z,c), \
I[250] = (T)(img)(_p12##x,_p2##y,z,c), I[251] = (T)(img)(_p11##x,_p2##y,z,c), I[252] = (T)(img)(_p10##x,_p2##y,z,c), I[253] = (T)(img)(_p9##x,_p2##y,z,c), I[254] = (T)(img)(_p8##x,_p2##y,z,c), I[255] = (T)(img)(_p7##x,_p2##y,z,c), I[256] = (T)(img)(_p6##x,_p2##y,z,c), I[257] = (T)(img)(_p5##x,_p2##y,z,c), I[258] = (T)(img)(_p4##x,_p2##y,z,c), I[259] = (T)(img)(_p3##x,_p2##y,z,c), I[260] = (T)(img)(_p2##x,_p2##y,z,c), I[261] = (T)(img)(_p1##x,_p2##y,z,c), I[262] = (T)(img)(x,_p2##y,z,c), I[263] = (T)(img)(_n1##x,_p2##y,z,c), I[264] = (T)(img)(_n2##x,_p2##y,z,c), I[265] = (T)(img)(_n3##x,_p2##y,z,c), I[266] = (T)(img)(_n4##x,_p2##y,z,c), I[267] = (T)(img)(_n5##x,_p2##y,z,c), I[268] = (T)(img)(_n6##x,_p2##y,z,c), I[269] = (T)(img)(_n7##x,_p2##y,z,c), I[270] = (T)(img)(_n8##x,_p2##y,z,c), I[271] = (T)(img)(_n9##x,_p2##y,z,c), I[272] = (T)(img)(_n10##x,_p2##y,z,c), I[273] = (T)(img)(_n11##x,_p2##y,z,c), I[274] = (T)(img)(_n12##x,_p2##y,z,c), \
I[275] = (T)(img)(_p12##x,_p1##y,z,c), I[276] = (T)(img)(_p11##x,_p1##y,z,c), I[277] = (T)(img)(_p10##x,_p1##y,z,c), I[278] = (T)(img)(_p9##x,_p1##y,z,c), I[279] = (T)(img)(_p8##x,_p1##y,z,c), I[280] = (T)(img)(_p7##x,_p1##y,z,c), I[281] = (T)(img)(_p6##x,_p1##y,z,c), I[282] = (T)(img)(_p5##x,_p1##y,z,c), I[283] = (T)(img)(_p4##x,_p1##y,z,c), I[284] = (T)(img)(_p3##x,_p1##y,z,c), I[285] = (T)(img)(_p2##x,_p1##y,z,c), I[286] = (T)(img)(_p1##x,_p1##y,z,c), I[287] = (T)(img)(x,_p1##y,z,c), I[288] = (T)(img)(_n1##x,_p1##y,z,c), I[289] = (T)(img)(_n2##x,_p1##y,z,c), I[290] = (T)(img)(_n3##x,_p1##y,z,c), I[291] = (T)(img)(_n4##x,_p1##y,z,c), I[292] = (T)(img)(_n5##x,_p1##y,z,c), I[293] = (T)(img)(_n6##x,_p1##y,z,c), I[294] = (T)(img)(_n7##x,_p1##y,z,c), I[295] = (T)(img)(_n8##x,_p1##y,z,c), I[296] = (T)(img)(_n9##x,_p1##y,z,c), I[297] = (T)(img)(_n10##x,_p1##y,z,c), I[298] = (T)(img)(_n11##x,_p1##y,z,c), I[299] = (T)(img)(_n12##x,_p1##y,z,c), \
I[300] = (T)(img)(_p12##x,y,z,c), I[301] = (T)(img)(_p11##x,y,z,c), I[302] = (T)(img)(_p10##x,y,z,c), I[303] = (T)(img)(_p9##x,y,z,c), I[304] = (T)(img)(_p8##x,y,z,c), I[305] = (T)(img)(_p7##x,y,z,c), I[306] = (T)(img)(_p6##x,y,z,c), I[307] = (T)(img)(_p5##x,y,z,c), I[308] = (T)(img)(_p4##x,y,z,c), I[309] = (T)(img)(_p3##x,y,z,c), I[310] = (T)(img)(_p2##x,y,z,c), I[311] = (T)(img)(_p1##x,y,z,c), I[312] = (T)(img)(x,y,z,c), I[313] = (T)(img)(_n1##x,y,z,c), I[314] = (T)(img)(_n2##x,y,z,c), I[315] = (T)(img)(_n3##x,y,z,c), I[316] = (T)(img)(_n4##x,y,z,c), I[317] = (T)(img)(_n5##x,y,z,c), I[318] = (T)(img)(_n6##x,y,z,c), I[319] = (T)(img)(_n7##x,y,z,c), I[320] = (T)(img)(_n8##x,y,z,c), I[321] = (T)(img)(_n9##x,y,z,c), I[322] = (T)(img)(_n10##x,y,z,c), I[323] = (T)(img)(_n11##x,y,z,c), I[324] = (T)(img)(_n12##x,y,z,c), \
I[325] = (T)(img)(_p12##x,_n1##y,z,c), I[326] = (T)(img)(_p11##x,_n1##y,z,c), I[327] = (T)(img)(_p10##x,_n1##y,z,c), I[328] = (T)(img)(_p9##x,_n1##y,z,c), I[329] = (T)(img)(_p8##x,_n1##y,z,c), I[330] = (T)(img)(_p7##x,_n1##y,z,c), I[331] = (T)(img)(_p6##x,_n1##y,z,c), I[332] = (T)(img)(_p5##x,_n1##y,z,c), I[333] = (T)(img)(_p4##x,_n1##y,z,c), I[334] = (T)(img)(_p3##x,_n1##y,z,c), I[335] = (T)(img)(_p2##x,_n1##y,z,c), I[336] = (T)(img)(_p1##x,_n1##y,z,c), I[337] = (T)(img)(x,_n1##y,z,c), I[338] = (T)(img)(_n1##x,_n1##y,z,c), I[339] = (T)(img)(_n2##x,_n1##y,z,c), I[340] = (T)(img)(_n3##x,_n1##y,z,c), I[341] = (T)(img)(_n4##x,_n1##y,z,c), I[342] = (T)(img)(_n5##x,_n1##y,z,c), I[343] = (T)(img)(_n6##x,_n1##y,z,c), I[344] = (T)(img)(_n7##x,_n1##y,z,c), I[345] = (T)(img)(_n8##x,_n1##y,z,c), I[346] = (T)(img)(_n9##x,_n1##y,z,c), I[347] = (T)(img)(_n10##x,_n1##y,z,c), I[348] = (T)(img)(_n11##x,_n1##y,z,c), I[349] = (T)(img)(_n12##x,_n1##y,z,c), \
I[350] = (T)(img)(_p12##x,_n2##y,z,c), I[351] = (T)(img)(_p11##x,_n2##y,z,c), I[352] = (T)(img)(_p10##x,_n2##y,z,c), I[353] = (T)(img)(_p9##x,_n2##y,z,c), I[354] = (T)(img)(_p8##x,_n2##y,z,c), I[355] = (T)(img)(_p7##x,_n2##y,z,c), I[356] = (T)(img)(_p6##x,_n2##y,z,c), I[357] = (T)(img)(_p5##x,_n2##y,z,c), I[358] = (T)(img)(_p4##x,_n2##y,z,c), I[359] = (T)(img)(_p3##x,_n2##y,z,c), I[360] = (T)(img)(_p2##x,_n2##y,z,c), I[361] = (T)(img)(_p1##x,_n2##y,z,c), I[362] = (T)(img)(x,_n2##y,z,c), I[363] = (T)(img)(_n1##x,_n2##y,z,c), I[364] = (T)(img)(_n2##x,_n2##y,z,c), I[365] = (T)(img)(_n3##x,_n2##y,z,c), I[366] = (T)(img)(_n4##x,_n2##y,z,c), I[367] = (T)(img)(_n5##x,_n2##y,z,c), I[368] = (T)(img)(_n6##x,_n2##y,z,c), I[369] = (T)(img)(_n7##x,_n2##y,z,c), I[370] = (T)(img)(_n8##x,_n2##y,z,c), I[371] = (T)(img)(_n9##x,_n2##y,z,c), I[372] = (T)(img)(_n10##x,_n2##y,z,c), I[373] = (T)(img)(_n11##x,_n2##y,z,c), I[374] = (T)(img)(_n12##x,_n2##y,z,c), \
I[375] = (T)(img)(_p12##x,_n3##y,z,c), I[376] = (T)(img)(_p11##x,_n3##y,z,c), I[377] = (T)(img)(_p10##x,_n3##y,z,c), I[378] = (T)(img)(_p9##x,_n3##y,z,c), I[379] = (T)(img)(_p8##x,_n3##y,z,c), I[380] = (T)(img)(_p7##x,_n3##y,z,c), I[381] = (T)(img)(_p6##x,_n3##y,z,c), I[382] = (T)(img)(_p5##x,_n3##y,z,c), I[383] = (T)(img)(_p4##x,_n3##y,z,c), I[384] = (T)(img)(_p3##x,_n3##y,z,c), I[385] = (T)(img)(_p2##x,_n3##y,z,c), I[386] = (T)(img)(_p1##x,_n3##y,z,c), I[387] = (T)(img)(x,_n3##y,z,c), I[388] = (T)(img)(_n1##x,_n3##y,z,c), I[389] = (T)(img)(_n2##x,_n3##y,z,c), I[390] = (T)(img)(_n3##x,_n3##y,z,c), I[391] = (T)(img)(_n4##x,_n3##y,z,c), I[392] = (T)(img)(_n5##x,_n3##y,z,c), I[393] = (T)(img)(_n6##x,_n3##y,z,c), I[394] = (T)(img)(_n7##x,_n3##y,z,c), I[395] = (T)(img)(_n8##x,_n3##y,z,c), I[396] = (T)(img)(_n9##x,_n3##y,z,c), I[397] = (T)(img)(_n10##x,_n3##y,z,c), I[398] = (T)(img)(_n11##x,_n3##y,z,c), I[399] = (T)(img)(_n12##x,_n3##y,z,c), \
I[400] = (T)(img)(_p12##x,_n4##y,z,c), I[401] = (T)(img)(_p11##x,_n4##y,z,c), I[402] = (T)(img)(_p10##x,_n4##y,z,c), I[403] = (T)(img)(_p9##x,_n4##y,z,c), I[404] = (T)(img)(_p8##x,_n4##y,z,c), I[405] = (T)(img)(_p7##x,_n4##y,z,c), I[406] = (T)(img)(_p6##x,_n4##y,z,c), I[407] = (T)(img)(_p5##x,_n4##y,z,c), I[408] = (T)(img)(_p4##x,_n4##y,z,c), I[409] = (T)(img)(_p3##x,_n4##y,z,c), I[410] = (T)(img)(_p2##x,_n4##y,z,c), I[411] = (T)(img)(_p1##x,_n4##y,z,c), I[412] = (T)(img)(x,_n4##y,z,c), I[413] = (T)(img)(_n1##x,_n4##y,z,c), I[414] = (T)(img)(_n2##x,_n4##y,z,c), I[415] = (T)(img)(_n3##x,_n4##y,z,c), I[416] = (T)(img)(_n4##x,_n4##y,z,c), I[417] = (T)(img)(_n5##x,_n4##y,z,c), I[418] = (T)(img)(_n6##x,_n4##y,z,c), I[419] = (T)(img)(_n7##x,_n4##y,z,c), I[420] = (T)(img)(_n8##x,_n4##y,z,c), I[421] = (T)(img)(_n9##x,_n4##y,z,c), I[422] = (T)(img)(_n10##x,_n4##y,z,c), I[423] = (T)(img)(_n11##x,_n4##y,z,c), I[424] = (T)(img)(_n12##x,_n4##y,z,c), \
I[425] = (T)(img)(_p12##x,_n5##y,z,c), I[426] = (T)(img)(_p11##x,_n5##y,z,c), I[427] = (T)(img)(_p10##x,_n5##y,z,c), I[428] = (T)(img)(_p9##x,_n5##y,z,c), I[429] = (T)(img)(_p8##x,_n5##y,z,c), I[430] = (T)(img)(_p7##x,_n5##y,z,c), I[431] = (T)(img)(_p6##x,_n5##y,z,c), I[432] = (T)(img)(_p5##x,_n5##y,z,c), I[433] = (T)(img)(_p4##x,_n5##y,z,c), I[434] = (T)(img)(_p3##x,_n5##y,z,c), I[435] = (T)(img)(_p2##x,_n5##y,z,c), I[436] = (T)(img)(_p1##x,_n5##y,z,c), I[437] = (T)(img)(x,_n5##y,z,c), I[438] = (T)(img)(_n1##x,_n5##y,z,c), I[439] = (T)(img)(_n2##x,_n5##y,z,c), I[440] = (T)(img)(_n3##x,_n5##y,z,c), I[441] = (T)(img)(_n4##x,_n5##y,z,c), I[442] = (T)(img)(_n5##x,_n5##y,z,c), I[443] = (T)(img)(_n6##x,_n5##y,z,c), I[444] = (T)(img)(_n7##x,_n5##y,z,c), I[445] = (T)(img)(_n8##x,_n5##y,z,c), I[446] = (T)(img)(_n9##x,_n5##y,z,c), I[447] = (T)(img)(_n10##x,_n5##y,z,c), I[448] = (T)(img)(_n11##x,_n5##y,z,c), I[449] = (T)(img)(_n12##x,_n5##y,z,c), \
I[450] = (T)(img)(_p12##x,_n6##y,z,c), I[451] = (T)(img)(_p11##x,_n6##y,z,c), I[452] = (T)(img)(_p10##x,_n6##y,z,c), I[453] = (T)(img)(_p9##x,_n6##y,z,c), I[454] = (T)(img)(_p8##x,_n6##y,z,c), I[455] = (T)(img)(_p7##x,_n6##y,z,c), I[456] = (T)(img)(_p6##x,_n6##y,z,c), I[457] = (T)(img)(_p5##x,_n6##y,z,c), I[458] = (T)(img)(_p4##x,_n6##y,z,c), I[459] = (T)(img)(_p3##x,_n6##y,z,c), I[460] = (T)(img)(_p2##x,_n6##y,z,c), I[461] = (T)(img)(_p1##x,_n6##y,z,c), I[462] = (T)(img)(x,_n6##y,z,c), I[463] = (T)(img)(_n1##x,_n6##y,z,c), I[464] = (T)(img)(_n2##x,_n6##y,z,c), I[465] = (T)(img)(_n3##x,_n6##y,z,c), I[466] = (T)(img)(_n4##x,_n6##y,z,c), I[467] = (T)(img)(_n5##x,_n6##y,z,c), I[468] = (T)(img)(_n6##x,_n6##y,z,c), I[469] = (T)(img)(_n7##x,_n6##y,z,c), I[470] = (T)(img)(_n8##x,_n6##y,z,c), I[471] = (T)(img)(_n9##x,_n6##y,z,c), I[472] = (T)(img)(_n10##x,_n6##y,z,c), I[473] = (T)(img)(_n11##x,_n6##y,z,c), I[474] = (T)(img)(_n12##x,_n6##y,z,c), \
I[475] = (T)(img)(_p12##x,_n7##y,z,c), I[476] = (T)(img)(_p11##x,_n7##y,z,c), I[477] = (T)(img)(_p10##x,_n7##y,z,c), I[478] = (T)(img)(_p9##x,_n7##y,z,c), I[479] = (T)(img)(_p8##x,_n7##y,z,c), I[480] = (T)(img)(_p7##x,_n7##y,z,c), I[481] = (T)(img)(_p6##x,_n7##y,z,c), I[482] = (T)(img)(_p5##x,_n7##y,z,c), I[483] = (T)(img)(_p4##x,_n7##y,z,c), I[484] = (T)(img)(_p3##x,_n7##y,z,c), I[485] = (T)(img)(_p2##x,_n7##y,z,c), I[486] = (T)(img)(_p1##x,_n7##y,z,c), I[487] = (T)(img)(x,_n7##y,z,c), I[488] = (T)(img)(_n1##x,_n7##y,z,c), I[489] = (T)(img)(_n2##x,_n7##y,z,c), I[490] = (T)(img)(_n3##x,_n7##y,z,c), I[491] = (T)(img)(_n4##x,_n7##y,z,c), I[492] = (T)(img)(_n5##x,_n7##y,z,c), I[493] = (T)(img)(_n6##x,_n7##y,z,c), I[494] = (T)(img)(_n7##x,_n7##y,z,c), I[495] = (T)(img)(_n8##x,_n7##y,z,c), I[496] = (T)(img)(_n9##x,_n7##y,z,c), I[497] = (T)(img)(_n10##x,_n7##y,z,c), I[498] = (T)(img)(_n11##x,_n7##y,z,c), I[499] = (T)(img)(_n12##x,_n7##y,z,c), \
I[500] = (T)(img)(_p12##x,_n8##y,z,c), I[501] = (T)(img)(_p11##x,_n8##y,z,c), I[502] = (T)(img)(_p10##x,_n8##y,z,c), I[503] = (T)(img)(_p9##x,_n8##y,z,c), I[504] = (T)(img)(_p8##x,_n8##y,z,c), I[505] = (T)(img)(_p7##x,_n8##y,z,c), I[506] = (T)(img)(_p6##x,_n8##y,z,c), I[507] = (T)(img)(_p5##x,_n8##y,z,c), I[508] = (T)(img)(_p4##x,_n8##y,z,c), I[509] = (T)(img)(_p3##x,_n8##y,z,c), I[510] = (T)(img)(_p2##x,_n8##y,z,c), I[511] = (T)(img)(_p1##x,_n8##y,z,c), I[512] = (T)(img)(x,_n8##y,z,c), I[513] = (T)(img)(_n1##x,_n8##y,z,c), I[514] = (T)(img)(_n2##x,_n8##y,z,c), I[515] = (T)(img)(_n3##x,_n8##y,z,c), I[516] = (T)(img)(_n4##x,_n8##y,z,c), I[517] = (T)(img)(_n5##x,_n8##y,z,c), I[518] = (T)(img)(_n6##x,_n8##y,z,c), I[519] = (T)(img)(_n7##x,_n8##y,z,c), I[520] = (T)(img)(_n8##x,_n8##y,z,c), I[521] = (T)(img)(_n9##x,_n8##y,z,c), I[522] = (T)(img)(_n10##x,_n8##y,z,c), I[523] = (T)(img)(_n11##x,_n8##y,z,c), I[524] = (T)(img)(_n12##x,_n8##y,z,c), \
I[525] = (T)(img)(_p12##x,_n9##y,z,c), I[526] = (T)(img)(_p11##x,_n9##y,z,c), I[527] = (T)(img)(_p10##x,_n9##y,z,c), I[528] = (T)(img)(_p9##x,_n9##y,z,c), I[529] = (T)(img)(_p8##x,_n9##y,z,c), I[530] = (T)(img)(_p7##x,_n9##y,z,c), I[531] = (T)(img)(_p6##x,_n9##y,z,c), I[532] = (T)(img)(_p5##x,_n9##y,z,c), I[533] = (T)(img)(_p4##x,_n9##y,z,c), I[534] = (T)(img)(_p3##x,_n9##y,z,c), I[535] = (T)(img)(_p2##x,_n9##y,z,c), I[536] = (T)(img)(_p1##x,_n9##y,z,c), I[537] = (T)(img)(x,_n9##y,z,c), I[538] = (T)(img)(_n1##x,_n9##y,z,c), I[539] = (T)(img)(_n2##x,_n9##y,z,c), I[540] = (T)(img)(_n3##x,_n9##y,z,c), I[541] = (T)(img)(_n4##x,_n9##y,z,c), I[542] = (T)(img)(_n5##x,_n9##y,z,c), I[543] = (T)(img)(_n6##x,_n9##y,z,c), I[544] = (T)(img)(_n7##x,_n9##y,z,c), I[545] = (T)(img)(_n8##x,_n9##y,z,c), I[546] = (T)(img)(_n9##x,_n9##y,z,c), I[547] = (T)(img)(_n10##x,_n9##y,z,c), I[548] = (T)(img)(_n11##x,_n9##y,z,c), I[549] = (T)(img)(_n12##x,_n9##y,z,c), \
I[550] = (T)(img)(_p12##x,_n10##y,z,c), I[551] = (T)(img)(_p11##x,_n10##y,z,c), I[552] = (T)(img)(_p10##x,_n10##y,z,c), I[553] = (T)(img)(_p9##x,_n10##y,z,c), I[554] = (T)(img)(_p8##x,_n10##y,z,c), I[555] = (T)(img)(_p7##x,_n10##y,z,c), I[556] = (T)(img)(_p6##x,_n10##y,z,c), I[557] = (T)(img)(_p5##x,_n10##y,z,c), I[558] = (T)(img)(_p4##x,_n10##y,z,c), I[559] = (T)(img)(_p3##x,_n10##y,z,c), I[560] = (T)(img)(_p2##x,_n10##y,z,c), I[561] = (T)(img)(_p1##x,_n10##y,z,c), I[562] = (T)(img)(x,_n10##y,z,c), I[563] = (T)(img)(_n1##x,_n10##y,z,c), I[564] = (T)(img)(_n2##x,_n10##y,z,c), I[565] = (T)(img)(_n3##x,_n10##y,z,c), I[566] = (T)(img)(_n4##x,_n10##y,z,c), I[567] = (T)(img)(_n5##x,_n10##y,z,c), I[568] = (T)(img)(_n6##x,_n10##y,z,c), I[569] = (T)(img)(_n7##x,_n10##y,z,c), I[570] = (T)(img)(_n8##x,_n10##y,z,c), I[571] = (T)(img)(_n9##x,_n10##y,z,c), I[572] = (T)(img)(_n10##x,_n10##y,z,c), I[573] = (T)(img)(_n11##x,_n10##y,z,c), I[574] = (T)(img)(_n12##x,_n10##y,z,c), \
I[575] = (T)(img)(_p12##x,_n11##y,z,c), I[576] = (T)(img)(_p11##x,_n11##y,z,c), I[577] = (T)(img)(_p10##x,_n11##y,z,c), I[578] = (T)(img)(_p9##x,_n11##y,z,c), I[579] = (T)(img)(_p8##x,_n11##y,z,c), I[580] = (T)(img)(_p7##x,_n11##y,z,c), I[581] = (T)(img)(_p6##x,_n11##y,z,c), I[582] = (T)(img)(_p5##x,_n11##y,z,c), I[583] = (T)(img)(_p4##x,_n11##y,z,c), I[584] = (T)(img)(_p3##x,_n11##y,z,c), I[585] = (T)(img)(_p2##x,_n11##y,z,c), I[586] = (T)(img)(_p1##x,_n11##y,z,c), I[587] = (T)(img)(x,_n11##y,z,c), I[588] = (T)(img)(_n1##x,_n11##y,z,c), I[589] = (T)(img)(_n2##x,_n11##y,z,c), I[590] = (T)(img)(_n3##x,_n11##y,z,c), I[591] = (T)(img)(_n4##x,_n11##y,z,c), I[592] = (T)(img)(_n5##x,_n11##y,z,c), I[593] = (T)(img)(_n6##x,_n11##y,z,c), I[594] = (T)(img)(_n7##x,_n11##y,z,c), I[595] = (T)(img)(_n8##x,_n11##y,z,c), I[596] = (T)(img)(_n9##x,_n11##y,z,c), I[597] = (T)(img)(_n10##x,_n11##y,z,c), I[598] = (T)(img)(_n11##x,_n11##y,z,c), I[599] = (T)(img)(_n12##x,_n11##y,z,c), \
I[600] = (T)(img)(_p12##x,_n12##y,z,c), I[601] = (T)(img)(_p11##x,_n12##y,z,c), I[602] = (T)(img)(_p10##x,_n12##y,z,c), I[603] = (T)(img)(_p9##x,_n12##y,z,c), I[604] = (T)(img)(_p8##x,_n12##y,z,c), I[605] = (T)(img)(_p7##x,_n12##y,z,c), I[606] = (T)(img)(_p6##x,_n12##y,z,c), I[607] = (T)(img)(_p5##x,_n12##y,z,c), I[608] = (T)(img)(_p4##x,_n12##y,z,c), I[609] = (T)(img)(_p3##x,_n12##y,z,c), I[610] = (T)(img)(_p2##x,_n12##y,z,c), I[611] = (T)(img)(_p1##x,_n12##y,z,c), I[612] = (T)(img)(x,_n12##y,z,c), I[613] = (T)(img)(_n1##x,_n12##y,z,c), I[614] = (T)(img)(_n2##x,_n12##y,z,c), I[615] = (T)(img)(_n3##x,_n12##y,z,c), I[616] = (T)(img)(_n4##x,_n12##y,z,c), I[617] = (T)(img)(_n5##x,_n12##y,z,c), I[618] = (T)(img)(_n6##x,_n12##y,z,c), I[619] = (T)(img)(_n7##x,_n12##y,z,c), I[620] = (T)(img)(_n8##x,_n12##y,z,c), I[621] = (T)(img)(_n9##x,_n12##y,z,c), I[622] = (T)(img)(_n10##x,_n12##y,z,c), I[623] = (T)(img)(_n11##x,_n12##y,z,c), I[624] = (T)(img)(_n12##x,_n12##y,z,c);
// Define 26x26 loop macros
//-------------------------
#define cimg_for26(bound,i) for (int i = 0, \
_p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13; \
_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
#define cimg_for26X(img,x) cimg_for26((img)._width,x)
#define cimg_for26Y(img,y) cimg_for26((img)._height,y)
#define cimg_for26Z(img,z) cimg_for26((img)._depth,z)
#define cimg_for26C(img,c) cimg_for26((img)._spectrum,c)
#define cimg_for26XY(img,x,y) cimg_for26Y(img,y) cimg_for26X(img,x)
#define cimg_for26XZ(img,x,z) cimg_for26Z(img,z) cimg_for26X(img,x)
#define cimg_for26XC(img,x,c) cimg_for26C(img,c) cimg_for26X(img,x)
#define cimg_for26YZ(img,y,z) cimg_for26Z(img,z) cimg_for26Y(img,y)
#define cimg_for26YC(img,y,c) cimg_for26C(img,c) cimg_for26Y(img,y)
#define cimg_for26ZC(img,z,c) cimg_for26C(img,c) cimg_for26Z(img,z)
#define cimg_for26XYZ(img,x,y,z) cimg_for26Z(img,z) cimg_for26XY(img,x,y)
#define cimg_for26XZC(img,x,z,c) cimg_for26C(img,c) cimg_for26XZ(img,x,z)
#define cimg_for26YZC(img,y,z,c) cimg_for26C(img,c) cimg_for26YZ(img,y,z)
#define cimg_for26XYZC(img,x,y,z,c) cimg_for26C(img,c) cimg_for26XYZ(img,x,y,z)
#define cimg_for_in26(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13; \
i<=(int)(i1) && (_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
#define cimg_for_in26X(img,x0,x1,x) cimg_for_in26((img)._width,x0,x1,x)
#define cimg_for_in26Y(img,y0,y1,y) cimg_for_in26((img)._height,y0,y1,y)
#define cimg_for_in26Z(img,z0,z1,z) cimg_for_in26((img)._depth,z0,z1,z)
#define cimg_for_in26C(img,c0,c1,c) cimg_for_in26((img)._spectrum,c0,c1,c)
#define cimg_for_in26XY(img,x0,y0,x1,y1,x,y) cimg_for_in26Y(img,y0,y1,y) cimg_for_in26X(img,x0,x1,x)
#define cimg_for_in26XZ(img,x0,z0,x1,z1,x,z) cimg_for_in26Z(img,z0,z1,z) cimg_for_in26X(img,x0,x1,x)
#define cimg_for_in26XC(img,x0,c0,x1,c1,x,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26X(img,x0,x1,x)
#define cimg_for_in26YZ(img,y0,z0,y1,z1,y,z) cimg_for_in26Z(img,z0,z1,z) cimg_for_in26Y(img,y0,y1,y)
#define cimg_for_in26YC(img,y0,c0,y1,c1,y,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26Y(img,y0,y1,y)
#define cimg_for_in26ZC(img,z0,c0,z1,c1,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26Z(img,z0,z1,z)
#define cimg_for_in26XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in26Z(img,z0,z1,z) cimg_for_in26XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in26XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in26YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in26XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in26C(img,c0,c1,c) cimg_for_in26XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for26x26(img,x,y,z,c,I,T) \
cimg_for26((img)._height,y) for (int x = 0, \
_p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
_n13##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = (T)(img)(0,_p12##y,z,c)), \
(I[26] = I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_p11##y,z,c)), \
(I[52] = I[53] = I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = (T)(img)(0,_p10##y,z,c)), \
(I[78] = I[79] = I[80] = I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = (T)(img)(0,_p9##y,z,c)), \
(I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = (T)(img)(0,_p8##y,z,c)), \
(I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = (T)(img)(0,_p7##y,z,c)), \
(I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = (T)(img)(0,_p6##y,z,c)), \
(I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = (T)(img)(0,_p5##y,z,c)), \
(I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = (T)(img)(0,_p4##y,z,c)), \
(I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (T)(img)(0,_p3##y,z,c)), \
(I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = (T)(img)(0,_p2##y,z,c)), \
(I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = (T)(img)(0,_p1##y,z,c)), \
(I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = (T)(img)(0,y,z,c)), \
(I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = (T)(img)(0,_n1##y,z,c)), \
(I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = (T)(img)(0,_n2##y,z,c)), \
(I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = (T)(img)(0,_n3##y,z,c)), \
(I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = (T)(img)(0,_n4##y,z,c)), \
(I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = I[450] = I[451] = I[452] = I[453] = I[454] = (T)(img)(0,_n5##y,z,c)), \
(I[468] = I[469] = I[470] = I[471] = I[472] = I[473] = I[474] = I[475] = I[476] = I[477] = I[478] = I[479] = I[480] = (T)(img)(0,_n6##y,z,c)), \
(I[494] = I[495] = I[496] = I[497] = I[498] = I[499] = I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = (T)(img)(0,_n7##y,z,c)), \
(I[520] = I[521] = I[522] = I[523] = I[524] = I[525] = I[526] = I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = (T)(img)(0,_n8##y,z,c)), \
(I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = (T)(img)(0,_n9##y,z,c)), \
(I[572] = I[573] = I[574] = I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = (T)(img)(0,_n10##y,z,c)), \
(I[598] = I[599] = I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = I[608] = I[609] = I[610] = (T)(img)(0,_n11##y,z,c)), \
(I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = I[630] = I[631] = I[632] = I[633] = I[634] = I[635] = I[636] = (T)(img)(0,_n12##y,z,c)), \
(I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = I[658] = I[659] = I[660] = I[661] = I[662] = (T)(img)(0,_n13##y,z,c)), \
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[39] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[65] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[91] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[117] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[169] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[195] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[221] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[247] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[273] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[299] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[325] = (T)(img)(_n1##x,y,z,c)), \
(I[351] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[377] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[403] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[429] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[455] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[481] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[507] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[533] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[559] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[585] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[611] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[637] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[663] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[40] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[66] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[92] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[118] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[170] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[196] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[222] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[248] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[274] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[300] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[326] = (T)(img)(_n2##x,y,z,c)), \
(I[352] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[378] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[404] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[430] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[456] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[482] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[508] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[534] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[560] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[586] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[612] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[638] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[664] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[41] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[67] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[93] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[119] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[171] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[197] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[223] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[249] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[275] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[301] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[327] = (T)(img)(_n3##x,y,z,c)), \
(I[353] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[379] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[405] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[431] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[457] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[483] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[509] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[535] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[561] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[587] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[613] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[639] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[665] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[42] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[68] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[94] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[120] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[172] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[198] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[224] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[250] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[276] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[302] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[328] = (T)(img)(_n4##x,y,z,c)), \
(I[354] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[380] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[406] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[432] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[458] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[484] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[510] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[536] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[562] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[588] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[614] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[640] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[666] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[43] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[69] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[95] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[121] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[173] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[199] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[225] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[251] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[277] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[303] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[329] = (T)(img)(_n5##x,y,z,c)), \
(I[355] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[381] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[407] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[433] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[459] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[485] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[511] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[537] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[563] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[589] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[615] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[641] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[667] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[44] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[70] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[96] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[122] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[174] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[200] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[226] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[252] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[278] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[304] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[330] = (T)(img)(_n6##x,y,z,c)), \
(I[356] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[382] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[408] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[434] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[460] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[486] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[512] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[538] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[564] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[590] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[616] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[642] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[668] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[45] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[71] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[97] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[123] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[175] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[201] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[227] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[253] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[279] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[305] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[331] = (T)(img)(_n7##x,y,z,c)), \
(I[357] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[383] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[409] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[435] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[461] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[487] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[513] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[539] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[565] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[591] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[617] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[643] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[669] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[46] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[72] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[98] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[124] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[150] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[176] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[202] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[228] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[254] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[280] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[306] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[332] = (T)(img)(_n8##x,y,z,c)), \
(I[358] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[384] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[410] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[436] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[462] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[488] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[514] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[540] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[566] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[592] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[618] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[644] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[670] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[47] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[73] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[99] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[125] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[151] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[177] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[203] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[229] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[255] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[281] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[307] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[333] = (T)(img)(_n9##x,y,z,c)), \
(I[359] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[385] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[411] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[437] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[463] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[489] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[515] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[541] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[567] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[593] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[619] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[645] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[671] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[48] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[74] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[100] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[126] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[152] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[178] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[204] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[230] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[256] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[282] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[308] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[334] = (T)(img)(_n10##x,y,z,c)), \
(I[360] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[386] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[412] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[438] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[464] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[490] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[516] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[542] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[568] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[594] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[620] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[646] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[672] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[49] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[75] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[101] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[127] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[153] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[179] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[205] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[231] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[257] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[283] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[309] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[335] = (T)(img)(_n11##x,y,z,c)), \
(I[361] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[387] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[413] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[439] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[465] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[491] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[517] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[543] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[569] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[595] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[621] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[647] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[673] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[50] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[76] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[102] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[128] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[154] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[180] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[206] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[232] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[258] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[284] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[310] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[336] = (T)(img)(_n12##x,y,z,c)), \
(I[362] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[388] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[414] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[440] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[466] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[492] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[518] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[544] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[570] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[596] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[622] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[648] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[674] = (T)(img)(_n12##x,_n13##y,z,c)), \
13>=((img)._width)?(img).width() - 1:13); \
(_n13##x<(img).width() && ( \
(I[25] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[51] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[77] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[103] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[129] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[155] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[181] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[207] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[233] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[259] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[285] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[311] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[337] = (T)(img)(_n13##x,y,z,c)), \
(I[363] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[389] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[415] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[441] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[467] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[493] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[519] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[545] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[571] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[597] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[623] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[649] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[675] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], \
I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], \
I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], \
I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], \
I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], \
I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], \
I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], \
I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], \
I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], \
I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], \
I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], \
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
#define cimg_for_in26x26(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in26((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
_n13##x = (int)( \
(I[0] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[26] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[52] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[78] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[104] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[130] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[156] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[182] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[208] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[234] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[260] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[286] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[312] = (T)(img)(_p12##x,y,z,c)), \
(I[338] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[364] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[390] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[416] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[442] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[468] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[494] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[520] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[546] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[572] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[598] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[624] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[650] = (T)(img)(_p12##x,_n13##y,z,c)), \
(I[1] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[27] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[53] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[79] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[105] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[131] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[157] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[183] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[209] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[235] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[261] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[287] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[313] = (T)(img)(_p11##x,y,z,c)), \
(I[339] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[365] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[391] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[417] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[443] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[469] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[495] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[521] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[547] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[573] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[599] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[625] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[651] = (T)(img)(_p11##x,_n13##y,z,c)), \
(I[2] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[28] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[54] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[80] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[106] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[132] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[158] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[184] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[210] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[236] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[262] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[288] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[314] = (T)(img)(_p10##x,y,z,c)), \
(I[340] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[366] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[392] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[418] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[444] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[470] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[496] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[522] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[548] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[574] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[600] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[626] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[652] = (T)(img)(_p10##x,_n13##y,z,c)), \
(I[3] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[29] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[55] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[81] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[107] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[133] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[159] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[185] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[211] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[237] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[263] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[289] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[315] = (T)(img)(_p9##x,y,z,c)), \
(I[341] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[367] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[393] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[419] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[445] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[471] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[497] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[523] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[549] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[575] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[601] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[627] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[653] = (T)(img)(_p9##x,_n13##y,z,c)), \
(I[4] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[30] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[56] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[82] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[108] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[134] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[160] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[186] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[212] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[238] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[264] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[290] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[316] = (T)(img)(_p8##x,y,z,c)), \
(I[342] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[368] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[394] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[420] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[446] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[472] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[498] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[524] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[550] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[576] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[602] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[628] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[654] = (T)(img)(_p8##x,_n13##y,z,c)), \
(I[5] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[31] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[57] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[83] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[109] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[135] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[161] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[187] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[213] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[239] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[265] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[291] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[317] = (T)(img)(_p7##x,y,z,c)), \
(I[343] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[369] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[395] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[421] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[447] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[473] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[499] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[525] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[551] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[577] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[603] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[629] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[655] = (T)(img)(_p7##x,_n13##y,z,c)), \
(I[6] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[32] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[58] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[84] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[110] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[136] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[162] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[188] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[214] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[240] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[266] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[292] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[318] = (T)(img)(_p6##x,y,z,c)), \
(I[344] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[370] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[396] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[422] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[448] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[474] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[500] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[526] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[552] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[578] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[604] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[630] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[656] = (T)(img)(_p6##x,_n13##y,z,c)), \
(I[7] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[33] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[59] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[85] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[111] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[137] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[163] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[189] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[215] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[241] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[267] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[293] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[319] = (T)(img)(_p5##x,y,z,c)), \
(I[345] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[371] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[397] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[423] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[449] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[475] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[501] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[527] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[553] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[579] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[605] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[631] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[657] = (T)(img)(_p5##x,_n13##y,z,c)), \
(I[8] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[34] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[60] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[86] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[112] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[138] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[164] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[190] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[216] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[242] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[268] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[294] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[320] = (T)(img)(_p4##x,y,z,c)), \
(I[346] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[372] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[398] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[424] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[450] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[476] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[502] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[528] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[554] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[580] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[606] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[632] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[658] = (T)(img)(_p4##x,_n13##y,z,c)), \
(I[9] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[35] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[61] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[87] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[113] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[139] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[165] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[191] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[217] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[243] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[269] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[295] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[321] = (T)(img)(_p3##x,y,z,c)), \
(I[347] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[373] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[399] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[425] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[451] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[477] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[503] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[529] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[555] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[581] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[607] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[633] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[659] = (T)(img)(_p3##x,_n13##y,z,c)), \
(I[10] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[36] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[62] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[88] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[114] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[140] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[166] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[192] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[218] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[244] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[270] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[296] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[322] = (T)(img)(_p2##x,y,z,c)), \
(I[348] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[374] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[400] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[426] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[452] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[478] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[504] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[530] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[556] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[582] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[608] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[634] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[660] = (T)(img)(_p2##x,_n13##y,z,c)), \
(I[11] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[37] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[63] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[89] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[115] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[141] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[167] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[193] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[219] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[245] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[271] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[297] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[323] = (T)(img)(_p1##x,y,z,c)), \
(I[349] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[375] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[401] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[427] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[453] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[479] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[505] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[531] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[557] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[583] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[609] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[635] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[661] = (T)(img)(_p1##x,_n13##y,z,c)), \
(I[12] = (T)(img)(x,_p12##y,z,c)), \
(I[38] = (T)(img)(x,_p11##y,z,c)), \
(I[64] = (T)(img)(x,_p10##y,z,c)), \
(I[90] = (T)(img)(x,_p9##y,z,c)), \
(I[116] = (T)(img)(x,_p8##y,z,c)), \
(I[142] = (T)(img)(x,_p7##y,z,c)), \
(I[168] = (T)(img)(x,_p6##y,z,c)), \
(I[194] = (T)(img)(x,_p5##y,z,c)), \
(I[220] = (T)(img)(x,_p4##y,z,c)), \
(I[246] = (T)(img)(x,_p3##y,z,c)), \
(I[272] = (T)(img)(x,_p2##y,z,c)), \
(I[298] = (T)(img)(x,_p1##y,z,c)), \
(I[324] = (T)(img)(x,y,z,c)), \
(I[350] = (T)(img)(x,_n1##y,z,c)), \
(I[376] = (T)(img)(x,_n2##y,z,c)), \
(I[402] = (T)(img)(x,_n3##y,z,c)), \
(I[428] = (T)(img)(x,_n4##y,z,c)), \
(I[454] = (T)(img)(x,_n5##y,z,c)), \
(I[480] = (T)(img)(x,_n6##y,z,c)), \
(I[506] = (T)(img)(x,_n7##y,z,c)), \
(I[532] = (T)(img)(x,_n8##y,z,c)), \
(I[558] = (T)(img)(x,_n9##y,z,c)), \
(I[584] = (T)(img)(x,_n10##y,z,c)), \
(I[610] = (T)(img)(x,_n11##y,z,c)), \
(I[636] = (T)(img)(x,_n12##y,z,c)), \
(I[662] = (T)(img)(x,_n13##y,z,c)), \
(I[13] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[39] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[65] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[91] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[117] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[143] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[169] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[195] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[221] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[247] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[273] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[299] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[325] = (T)(img)(_n1##x,y,z,c)), \
(I[351] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[377] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[403] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[429] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[455] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[481] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[507] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[533] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[559] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[585] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[611] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[637] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[663] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[14] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[40] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[66] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[92] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[118] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[144] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[170] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[196] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[222] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[248] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[274] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[300] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[326] = (T)(img)(_n2##x,y,z,c)), \
(I[352] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[378] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[404] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[430] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[456] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[482] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[508] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[534] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[560] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[586] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[612] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[638] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[664] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[15] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[41] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[67] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[93] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[119] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[145] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[171] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[197] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[223] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[249] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[275] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[301] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[327] = (T)(img)(_n3##x,y,z,c)), \
(I[353] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[379] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[405] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[431] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[457] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[483] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[509] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[535] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[561] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[587] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[613] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[639] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[665] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[16] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[42] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[68] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[94] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[120] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[146] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[172] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[198] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[224] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[250] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[276] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[302] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[328] = (T)(img)(_n4##x,y,z,c)), \
(I[354] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[380] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[406] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[432] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[458] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[484] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[510] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[536] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[562] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[588] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[614] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[640] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[666] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[17] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[43] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[69] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[95] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[121] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[147] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[173] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[199] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[225] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[251] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[277] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[303] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[329] = (T)(img)(_n5##x,y,z,c)), \
(I[355] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[381] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[407] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[433] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[459] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[485] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[511] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[537] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[563] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[589] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[615] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[641] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[667] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[18] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[44] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[70] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[96] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[122] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[148] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[174] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[200] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[226] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[252] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[278] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[304] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[330] = (T)(img)(_n6##x,y,z,c)), \
(I[356] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[382] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[408] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[434] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[460] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[486] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[512] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[538] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[564] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[590] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[616] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[642] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[668] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[19] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[45] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[71] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[97] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[123] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[149] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[175] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[201] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[227] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[253] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[279] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[305] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[331] = (T)(img)(_n7##x,y,z,c)), \
(I[357] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[383] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[409] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[435] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[461] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[487] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[513] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[539] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[565] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[591] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[617] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[643] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[669] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[20] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[46] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[72] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[98] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[124] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[150] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[176] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[202] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[228] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[254] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[280] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[306] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[332] = (T)(img)(_n8##x,y,z,c)), \
(I[358] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[384] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[410] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[436] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[462] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[488] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[514] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[540] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[566] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[592] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[618] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[644] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[670] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[21] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[47] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[73] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[99] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[125] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[151] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[177] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[203] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[229] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[255] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[281] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[307] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[333] = (T)(img)(_n9##x,y,z,c)), \
(I[359] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[385] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[411] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[437] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[463] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[489] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[515] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[541] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[567] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[593] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[619] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[645] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[671] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[22] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[48] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[74] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[100] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[126] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[152] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[178] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[204] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[230] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[256] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[282] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[308] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[334] = (T)(img)(_n10##x,y,z,c)), \
(I[360] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[386] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[412] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[438] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[464] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[490] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[516] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[542] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[568] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[594] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[620] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[646] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[672] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[23] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[49] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[75] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[101] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[127] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[153] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[179] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[205] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[231] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[257] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[283] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[309] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[335] = (T)(img)(_n11##x,y,z,c)), \
(I[361] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[387] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[413] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[439] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[465] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[491] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[517] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[543] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[569] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[595] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[621] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[647] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[673] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[24] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[50] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[76] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[102] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[128] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[154] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[180] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[206] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[232] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[258] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[284] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[310] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[336] = (T)(img)(_n12##x,y,z,c)), \
(I[362] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[388] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[414] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[440] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[466] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[492] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[518] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[544] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[570] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[596] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[622] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[648] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[674] = (T)(img)(_n12##x,_n13##y,z,c)), \
x + 13>=(img).width()?(img).width() - 1:x + 13); \
x<=(int)(x1) && ((_n13##x<(img).width() && ( \
(I[25] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[51] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[77] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[103] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[129] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[155] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[181] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[207] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[233] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[259] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[285] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[311] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[337] = (T)(img)(_n13##x,y,z,c)), \
(I[363] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[389] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[415] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[441] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[467] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[493] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[519] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[545] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[571] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[597] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[623] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[649] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[675] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], \
I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], \
I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], \
I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], \
I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], \
I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], \
I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], \
I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], \
I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], \
I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], \
I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], \
I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], \
I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], \
I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], \
I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], \
I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], \
I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], \
_p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
#define cimg_get26x26(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p12##x,_p12##y,z,c), I[1] = (T)(img)(_p11##x,_p12##y,z,c), I[2] = (T)(img)(_p10##x,_p12##y,z,c), I[3] = (T)(img)(_p9##x,_p12##y,z,c), I[4] = (T)(img)(_p8##x,_p12##y,z,c), I[5] = (T)(img)(_p7##x,_p12##y,z,c), I[6] = (T)(img)(_p6##x,_p12##y,z,c), I[7] = (T)(img)(_p5##x,_p12##y,z,c), I[8] = (T)(img)(_p4##x,_p12##y,z,c), I[9] = (T)(img)(_p3##x,_p12##y,z,c), I[10] = (T)(img)(_p2##x,_p12##y,z,c), I[11] = (T)(img)(_p1##x,_p12##y,z,c), I[12] = (T)(img)(x,_p12##y,z,c), I[13] = (T)(img)(_n1##x,_p12##y,z,c), I[14] = (T)(img)(_n2##x,_p12##y,z,c), I[15] = (T)(img)(_n3##x,_p12##y,z,c), I[16] = (T)(img)(_n4##x,_p12##y,z,c), I[17] = (T)(img)(_n5##x,_p12##y,z,c), I[18] = (T)(img)(_n6##x,_p12##y,z,c), I[19] = (T)(img)(_n7##x,_p12##y,z,c), I[20] = (T)(img)(_n8##x,_p12##y,z,c), I[21] = (T)(img)(_n9##x,_p12##y,z,c), I[22] = (T)(img)(_n10##x,_p12##y,z,c), I[23] = (T)(img)(_n11##x,_p12##y,z,c), I[24] = (T)(img)(_n12##x,_p12##y,z,c), I[25] = (T)(img)(_n13##x,_p12##y,z,c), \
I[26] = (T)(img)(_p12##x,_p11##y,z,c), I[27] = (T)(img)(_p11##x,_p11##y,z,c), I[28] = (T)(img)(_p10##x,_p11##y,z,c), I[29] = (T)(img)(_p9##x,_p11##y,z,c), I[30] = (T)(img)(_p8##x,_p11##y,z,c), I[31] = (T)(img)(_p7##x,_p11##y,z,c), I[32] = (T)(img)(_p6##x,_p11##y,z,c), I[33] = (T)(img)(_p5##x,_p11##y,z,c), I[34] = (T)(img)(_p4##x,_p11##y,z,c), I[35] = (T)(img)(_p3##x,_p11##y,z,c), I[36] = (T)(img)(_p2##x,_p11##y,z,c), I[37] = (T)(img)(_p1##x,_p11##y,z,c), I[38] = (T)(img)(x,_p11##y,z,c), I[39] = (T)(img)(_n1##x,_p11##y,z,c), I[40] = (T)(img)(_n2##x,_p11##y,z,c), I[41] = (T)(img)(_n3##x,_p11##y,z,c), I[42] = (T)(img)(_n4##x,_p11##y,z,c), I[43] = (T)(img)(_n5##x,_p11##y,z,c), I[44] = (T)(img)(_n6##x,_p11##y,z,c), I[45] = (T)(img)(_n7##x,_p11##y,z,c), I[46] = (T)(img)(_n8##x,_p11##y,z,c), I[47] = (T)(img)(_n9##x,_p11##y,z,c), I[48] = (T)(img)(_n10##x,_p11##y,z,c), I[49] = (T)(img)(_n11##x,_p11##y,z,c), I[50] = (T)(img)(_n12##x,_p11##y,z,c), I[51] = (T)(img)(_n13##x,_p11##y,z,c), \
I[52] = (T)(img)(_p12##x,_p10##y,z,c), I[53] = (T)(img)(_p11##x,_p10##y,z,c), I[54] = (T)(img)(_p10##x,_p10##y,z,c), I[55] = (T)(img)(_p9##x,_p10##y,z,c), I[56] = (T)(img)(_p8##x,_p10##y,z,c), I[57] = (T)(img)(_p7##x,_p10##y,z,c), I[58] = (T)(img)(_p6##x,_p10##y,z,c), I[59] = (T)(img)(_p5##x,_p10##y,z,c), I[60] = (T)(img)(_p4##x,_p10##y,z,c), I[61] = (T)(img)(_p3##x,_p10##y,z,c), I[62] = (T)(img)(_p2##x,_p10##y,z,c), I[63] = (T)(img)(_p1##x,_p10##y,z,c), I[64] = (T)(img)(x,_p10##y,z,c), I[65] = (T)(img)(_n1##x,_p10##y,z,c), I[66] = (T)(img)(_n2##x,_p10##y,z,c), I[67] = (T)(img)(_n3##x,_p10##y,z,c), I[68] = (T)(img)(_n4##x,_p10##y,z,c), I[69] = (T)(img)(_n5##x,_p10##y,z,c), I[70] = (T)(img)(_n6##x,_p10##y,z,c), I[71] = (T)(img)(_n7##x,_p10##y,z,c), I[72] = (T)(img)(_n8##x,_p10##y,z,c), I[73] = (T)(img)(_n9##x,_p10##y,z,c), I[74] = (T)(img)(_n10##x,_p10##y,z,c), I[75] = (T)(img)(_n11##x,_p10##y,z,c), I[76] = (T)(img)(_n12##x,_p10##y,z,c), I[77] = (T)(img)(_n13##x,_p10##y,z,c), \
I[78] = (T)(img)(_p12##x,_p9##y,z,c), I[79] = (T)(img)(_p11##x,_p9##y,z,c), I[80] = (T)(img)(_p10##x,_p9##y,z,c), I[81] = (T)(img)(_p9##x,_p9##y,z,c), I[82] = (T)(img)(_p8##x,_p9##y,z,c), I[83] = (T)(img)(_p7##x,_p9##y,z,c), I[84] = (T)(img)(_p6##x,_p9##y,z,c), I[85] = (T)(img)(_p5##x,_p9##y,z,c), I[86] = (T)(img)(_p4##x,_p9##y,z,c), I[87] = (T)(img)(_p3##x,_p9##y,z,c), I[88] = (T)(img)(_p2##x,_p9##y,z,c), I[89] = (T)(img)(_p1##x,_p9##y,z,c), I[90] = (T)(img)(x,_p9##y,z,c), I[91] = (T)(img)(_n1##x,_p9##y,z,c), I[92] = (T)(img)(_n2##x,_p9##y,z,c), I[93] = (T)(img)(_n3##x,_p9##y,z,c), I[94] = (T)(img)(_n4##x,_p9##y,z,c), I[95] = (T)(img)(_n5##x,_p9##y,z,c), I[96] = (T)(img)(_n6##x,_p9##y,z,c), I[97] = (T)(img)(_n7##x,_p9##y,z,c), I[98] = (T)(img)(_n8##x,_p9##y,z,c), I[99] = (T)(img)(_n9##x,_p9##y,z,c), I[100] = (T)(img)(_n10##x,_p9##y,z,c), I[101] = (T)(img)(_n11##x,_p9##y,z,c), I[102] = (T)(img)(_n12##x,_p9##y,z,c), I[103] = (T)(img)(_n13##x,_p9##y,z,c), \
I[104] = (T)(img)(_p12##x,_p8##y,z,c), I[105] = (T)(img)(_p11##x,_p8##y,z,c), I[106] = (T)(img)(_p10##x,_p8##y,z,c), I[107] = (T)(img)(_p9##x,_p8##y,z,c), I[108] = (T)(img)(_p8##x,_p8##y,z,c), I[109] = (T)(img)(_p7##x,_p8##y,z,c), I[110] = (T)(img)(_p6##x,_p8##y,z,c), I[111] = (T)(img)(_p5##x,_p8##y,z,c), I[112] = (T)(img)(_p4##x,_p8##y,z,c), I[113] = (T)(img)(_p3##x,_p8##y,z,c), I[114] = (T)(img)(_p2##x,_p8##y,z,c), I[115] = (T)(img)(_p1##x,_p8##y,z,c), I[116] = (T)(img)(x,_p8##y,z,c), I[117] = (T)(img)(_n1##x,_p8##y,z,c), I[118] = (T)(img)(_n2##x,_p8##y,z,c), I[119] = (T)(img)(_n3##x,_p8##y,z,c), I[120] = (T)(img)(_n4##x,_p8##y,z,c), I[121] = (T)(img)(_n5##x,_p8##y,z,c), I[122] = (T)(img)(_n6##x,_p8##y,z,c), I[123] = (T)(img)(_n7##x,_p8##y,z,c), I[124] = (T)(img)(_n8##x,_p8##y,z,c), I[125] = (T)(img)(_n9##x,_p8##y,z,c), I[126] = (T)(img)(_n10##x,_p8##y,z,c), I[127] = (T)(img)(_n11##x,_p8##y,z,c), I[128] = (T)(img)(_n12##x,_p8##y,z,c), I[129] = (T)(img)(_n13##x,_p8##y,z,c), \
I[130] = (T)(img)(_p12##x,_p7##y,z,c), I[131] = (T)(img)(_p11##x,_p7##y,z,c), I[132] = (T)(img)(_p10##x,_p7##y,z,c), I[133] = (T)(img)(_p9##x,_p7##y,z,c), I[134] = (T)(img)(_p8##x,_p7##y,z,c), I[135] = (T)(img)(_p7##x,_p7##y,z,c), I[136] = (T)(img)(_p6##x,_p7##y,z,c), I[137] = (T)(img)(_p5##x,_p7##y,z,c), I[138] = (T)(img)(_p4##x,_p7##y,z,c), I[139] = (T)(img)(_p3##x,_p7##y,z,c), I[140] = (T)(img)(_p2##x,_p7##y,z,c), I[141] = (T)(img)(_p1##x,_p7##y,z,c), I[142] = (T)(img)(x,_p7##y,z,c), I[143] = (T)(img)(_n1##x,_p7##y,z,c), I[144] = (T)(img)(_n2##x,_p7##y,z,c), I[145] = (T)(img)(_n3##x,_p7##y,z,c), I[146] = (T)(img)(_n4##x,_p7##y,z,c), I[147] = (T)(img)(_n5##x,_p7##y,z,c), I[148] = (T)(img)(_n6##x,_p7##y,z,c), I[149] = (T)(img)(_n7##x,_p7##y,z,c), I[150] = (T)(img)(_n8##x,_p7##y,z,c), I[151] = (T)(img)(_n9##x,_p7##y,z,c), I[152] = (T)(img)(_n10##x,_p7##y,z,c), I[153] = (T)(img)(_n11##x,_p7##y,z,c), I[154] = (T)(img)(_n12##x,_p7##y,z,c), I[155] = (T)(img)(_n13##x,_p7##y,z,c), \
I[156] = (T)(img)(_p12##x,_p6##y,z,c), I[157] = (T)(img)(_p11##x,_p6##y,z,c), I[158] = (T)(img)(_p10##x,_p6##y,z,c), I[159] = (T)(img)(_p9##x,_p6##y,z,c), I[160] = (T)(img)(_p8##x,_p6##y,z,c), I[161] = (T)(img)(_p7##x,_p6##y,z,c), I[162] = (T)(img)(_p6##x,_p6##y,z,c), I[163] = (T)(img)(_p5##x,_p6##y,z,c), I[164] = (T)(img)(_p4##x,_p6##y,z,c), I[165] = (T)(img)(_p3##x,_p6##y,z,c), I[166] = (T)(img)(_p2##x,_p6##y,z,c), I[167] = (T)(img)(_p1##x,_p6##y,z,c), I[168] = (T)(img)(x,_p6##y,z,c), I[169] = (T)(img)(_n1##x,_p6##y,z,c), I[170] = (T)(img)(_n2##x,_p6##y,z,c), I[171] = (T)(img)(_n3##x,_p6##y,z,c), I[172] = (T)(img)(_n4##x,_p6##y,z,c), I[173] = (T)(img)(_n5##x,_p6##y,z,c), I[174] = (T)(img)(_n6##x,_p6##y,z,c), I[175] = (T)(img)(_n7##x,_p6##y,z,c), I[176] = (T)(img)(_n8##x,_p6##y,z,c), I[177] = (T)(img)(_n9##x,_p6##y,z,c), I[178] = (T)(img)(_n10##x,_p6##y,z,c), I[179] = (T)(img)(_n11##x,_p6##y,z,c), I[180] = (T)(img)(_n12##x,_p6##y,z,c), I[181] = (T)(img)(_n13##x,_p6##y,z,c), \
I[182] = (T)(img)(_p12##x,_p5##y,z,c), I[183] = (T)(img)(_p11##x,_p5##y,z,c), I[184] = (T)(img)(_p10##x,_p5##y,z,c), I[185] = (T)(img)(_p9##x,_p5##y,z,c), I[186] = (T)(img)(_p8##x,_p5##y,z,c), I[187] = (T)(img)(_p7##x,_p5##y,z,c), I[188] = (T)(img)(_p6##x,_p5##y,z,c), I[189] = (T)(img)(_p5##x,_p5##y,z,c), I[190] = (T)(img)(_p4##x,_p5##y,z,c), I[191] = (T)(img)(_p3##x,_p5##y,z,c), I[192] = (T)(img)(_p2##x,_p5##y,z,c), I[193] = (T)(img)(_p1##x,_p5##y,z,c), I[194] = (T)(img)(x,_p5##y,z,c), I[195] = (T)(img)(_n1##x,_p5##y,z,c), I[196] = (T)(img)(_n2##x,_p5##y,z,c), I[197] = (T)(img)(_n3##x,_p5##y,z,c), I[198] = (T)(img)(_n4##x,_p5##y,z,c), I[199] = (T)(img)(_n5##x,_p5##y,z,c), I[200] = (T)(img)(_n6##x,_p5##y,z,c), I[201] = (T)(img)(_n7##x,_p5##y,z,c), I[202] = (T)(img)(_n8##x,_p5##y,z,c), I[203] = (T)(img)(_n9##x,_p5##y,z,c), I[204] = (T)(img)(_n10##x,_p5##y,z,c), I[205] = (T)(img)(_n11##x,_p5##y,z,c), I[206] = (T)(img)(_n12##x,_p5##y,z,c), I[207] = (T)(img)(_n13##x,_p5##y,z,c), \
I[208] = (T)(img)(_p12##x,_p4##y,z,c), I[209] = (T)(img)(_p11##x,_p4##y,z,c), I[210] = (T)(img)(_p10##x,_p4##y,z,c), I[211] = (T)(img)(_p9##x,_p4##y,z,c), I[212] = (T)(img)(_p8##x,_p4##y,z,c), I[213] = (T)(img)(_p7##x,_p4##y,z,c), I[214] = (T)(img)(_p6##x,_p4##y,z,c), I[215] = (T)(img)(_p5##x,_p4##y,z,c), I[216] = (T)(img)(_p4##x,_p4##y,z,c), I[217] = (T)(img)(_p3##x,_p4##y,z,c), I[218] = (T)(img)(_p2##x,_p4##y,z,c), I[219] = (T)(img)(_p1##x,_p4##y,z,c), I[220] = (T)(img)(x,_p4##y,z,c), I[221] = (T)(img)(_n1##x,_p4##y,z,c), I[222] = (T)(img)(_n2##x,_p4##y,z,c), I[223] = (T)(img)(_n3##x,_p4##y,z,c), I[224] = (T)(img)(_n4##x,_p4##y,z,c), I[225] = (T)(img)(_n5##x,_p4##y,z,c), I[226] = (T)(img)(_n6##x,_p4##y,z,c), I[227] = (T)(img)(_n7##x,_p4##y,z,c), I[228] = (T)(img)(_n8##x,_p4##y,z,c), I[229] = (T)(img)(_n9##x,_p4##y,z,c), I[230] = (T)(img)(_n10##x,_p4##y,z,c), I[231] = (T)(img)(_n11##x,_p4##y,z,c), I[232] = (T)(img)(_n12##x,_p4##y,z,c), I[233] = (T)(img)(_n13##x,_p4##y,z,c), \
I[234] = (T)(img)(_p12##x,_p3##y,z,c), I[235] = (T)(img)(_p11##x,_p3##y,z,c), I[236] = (T)(img)(_p10##x,_p3##y,z,c), I[237] = (T)(img)(_p9##x,_p3##y,z,c), I[238] = (T)(img)(_p8##x,_p3##y,z,c), I[239] = (T)(img)(_p7##x,_p3##y,z,c), I[240] = (T)(img)(_p6##x,_p3##y,z,c), I[241] = (T)(img)(_p5##x,_p3##y,z,c), I[242] = (T)(img)(_p4##x,_p3##y,z,c), I[243] = (T)(img)(_p3##x,_p3##y,z,c), I[244] = (T)(img)(_p2##x,_p3##y,z,c), I[245] = (T)(img)(_p1##x,_p3##y,z,c), I[246] = (T)(img)(x,_p3##y,z,c), I[247] = (T)(img)(_n1##x,_p3##y,z,c), I[248] = (T)(img)(_n2##x,_p3##y,z,c), I[249] = (T)(img)(_n3##x,_p3##y,z,c), I[250] = (T)(img)(_n4##x,_p3##y,z,c), I[251] = (T)(img)(_n5##x,_p3##y,z,c), I[252] = (T)(img)(_n6##x,_p3##y,z,c), I[253] = (T)(img)(_n7##x,_p3##y,z,c), I[254] = (T)(img)(_n8##x,_p3##y,z,c), I[255] = (T)(img)(_n9##x,_p3##y,z,c), I[256] = (T)(img)(_n10##x,_p3##y,z,c), I[257] = (T)(img)(_n11##x,_p3##y,z,c), I[258] = (T)(img)(_n12##x,_p3##y,z,c), I[259] = (T)(img)(_n13##x,_p3##y,z,c), \
I[260] = (T)(img)(_p12##x,_p2##y,z,c), I[261] = (T)(img)(_p11##x,_p2##y,z,c), I[262] = (T)(img)(_p10##x,_p2##y,z,c), I[263] = (T)(img)(_p9##x,_p2##y,z,c), I[264] = (T)(img)(_p8##x,_p2##y,z,c), I[265] = (T)(img)(_p7##x,_p2##y,z,c), I[266] = (T)(img)(_p6##x,_p2##y,z,c), I[267] = (T)(img)(_p5##x,_p2##y,z,c), I[268] = (T)(img)(_p4##x,_p2##y,z,c), I[269] = (T)(img)(_p3##x,_p2##y,z,c), I[270] = (T)(img)(_p2##x,_p2##y,z,c), I[271] = (T)(img)(_p1##x,_p2##y,z,c), I[272] = (T)(img)(x,_p2##y,z,c), I[273] = (T)(img)(_n1##x,_p2##y,z,c), I[274] = (T)(img)(_n2##x,_p2##y,z,c), I[275] = (T)(img)(_n3##x,_p2##y,z,c), I[276] = (T)(img)(_n4##x,_p2##y,z,c), I[277] = (T)(img)(_n5##x,_p2##y,z,c), I[278] = (T)(img)(_n6##x,_p2##y,z,c), I[279] = (T)(img)(_n7##x,_p2##y,z,c), I[280] = (T)(img)(_n8##x,_p2##y,z,c), I[281] = (T)(img)(_n9##x,_p2##y,z,c), I[282] = (T)(img)(_n10##x,_p2##y,z,c), I[283] = (T)(img)(_n11##x,_p2##y,z,c), I[284] = (T)(img)(_n12##x,_p2##y,z,c), I[285] = (T)(img)(_n13##x,_p2##y,z,c), \
I[286] = (T)(img)(_p12##x,_p1##y,z,c), I[287] = (T)(img)(_p11##x,_p1##y,z,c), I[288] = (T)(img)(_p10##x,_p1##y,z,c), I[289] = (T)(img)(_p9##x,_p1##y,z,c), I[290] = (T)(img)(_p8##x,_p1##y,z,c), I[291] = (T)(img)(_p7##x,_p1##y,z,c), I[292] = (T)(img)(_p6##x,_p1##y,z,c), I[293] = (T)(img)(_p5##x,_p1##y,z,c), I[294] = (T)(img)(_p4##x,_p1##y,z,c), I[295] = (T)(img)(_p3##x,_p1##y,z,c), I[296] = (T)(img)(_p2##x,_p1##y,z,c), I[297] = (T)(img)(_p1##x,_p1##y,z,c), I[298] = (T)(img)(x,_p1##y,z,c), I[299] = (T)(img)(_n1##x,_p1##y,z,c), I[300] = (T)(img)(_n2##x,_p1##y,z,c), I[301] = (T)(img)(_n3##x,_p1##y,z,c), I[302] = (T)(img)(_n4##x,_p1##y,z,c), I[303] = (T)(img)(_n5##x,_p1##y,z,c), I[304] = (T)(img)(_n6##x,_p1##y,z,c), I[305] = (T)(img)(_n7##x,_p1##y,z,c), I[306] = (T)(img)(_n8##x,_p1##y,z,c), I[307] = (T)(img)(_n9##x,_p1##y,z,c), I[308] = (T)(img)(_n10##x,_p1##y,z,c), I[309] = (T)(img)(_n11##x,_p1##y,z,c), I[310] = (T)(img)(_n12##x,_p1##y,z,c), I[311] = (T)(img)(_n13##x,_p1##y,z,c), \
I[312] = (T)(img)(_p12##x,y,z,c), I[313] = (T)(img)(_p11##x,y,z,c), I[314] = (T)(img)(_p10##x,y,z,c), I[315] = (T)(img)(_p9##x,y,z,c), I[316] = (T)(img)(_p8##x,y,z,c), I[317] = (T)(img)(_p7##x,y,z,c), I[318] = (T)(img)(_p6##x,y,z,c), I[319] = (T)(img)(_p5##x,y,z,c), I[320] = (T)(img)(_p4##x,y,z,c), I[321] = (T)(img)(_p3##x,y,z,c), I[322] = (T)(img)(_p2##x,y,z,c), I[323] = (T)(img)(_p1##x,y,z,c), I[324] = (T)(img)(x,y,z,c), I[325] = (T)(img)(_n1##x,y,z,c), I[326] = (T)(img)(_n2##x,y,z,c), I[327] = (T)(img)(_n3##x,y,z,c), I[328] = (T)(img)(_n4##x,y,z,c), I[329] = (T)(img)(_n5##x,y,z,c), I[330] = (T)(img)(_n6##x,y,z,c), I[331] = (T)(img)(_n7##x,y,z,c), I[332] = (T)(img)(_n8##x,y,z,c), I[333] = (T)(img)(_n9##x,y,z,c), I[334] = (T)(img)(_n10##x,y,z,c), I[335] = (T)(img)(_n11##x,y,z,c), I[336] = (T)(img)(_n12##x,y,z,c), I[337] = (T)(img)(_n13##x,y,z,c), \
I[338] = (T)(img)(_p12##x,_n1##y,z,c), I[339] = (T)(img)(_p11##x,_n1##y,z,c), I[340] = (T)(img)(_p10##x,_n1##y,z,c), I[341] = (T)(img)(_p9##x,_n1##y,z,c), I[342] = (T)(img)(_p8##x,_n1##y,z,c), I[343] = (T)(img)(_p7##x,_n1##y,z,c), I[344] = (T)(img)(_p6##x,_n1##y,z,c), I[345] = (T)(img)(_p5##x,_n1##y,z,c), I[346] = (T)(img)(_p4##x,_n1##y,z,c), I[347] = (T)(img)(_p3##x,_n1##y,z,c), I[348] = (T)(img)(_p2##x,_n1##y,z,c), I[349] = (T)(img)(_p1##x,_n1##y,z,c), I[350] = (T)(img)(x,_n1##y,z,c), I[351] = (T)(img)(_n1##x,_n1##y,z,c), I[352] = (T)(img)(_n2##x,_n1##y,z,c), I[353] = (T)(img)(_n3##x,_n1##y,z,c), I[354] = (T)(img)(_n4##x,_n1##y,z,c), I[355] = (T)(img)(_n5##x,_n1##y,z,c), I[356] = (T)(img)(_n6##x,_n1##y,z,c), I[357] = (T)(img)(_n7##x,_n1##y,z,c), I[358] = (T)(img)(_n8##x,_n1##y,z,c), I[359] = (T)(img)(_n9##x,_n1##y,z,c), I[360] = (T)(img)(_n10##x,_n1##y,z,c), I[361] = (T)(img)(_n11##x,_n1##y,z,c), I[362] = (T)(img)(_n12##x,_n1##y,z,c), I[363] = (T)(img)(_n13##x,_n1##y,z,c), \
I[364] = (T)(img)(_p12##x,_n2##y,z,c), I[365] = (T)(img)(_p11##x,_n2##y,z,c), I[366] = (T)(img)(_p10##x,_n2##y,z,c), I[367] = (T)(img)(_p9##x,_n2##y,z,c), I[368] = (T)(img)(_p8##x,_n2##y,z,c), I[369] = (T)(img)(_p7##x,_n2##y,z,c), I[370] = (T)(img)(_p6##x,_n2##y,z,c), I[371] = (T)(img)(_p5##x,_n2##y,z,c), I[372] = (T)(img)(_p4##x,_n2##y,z,c), I[373] = (T)(img)(_p3##x,_n2##y,z,c), I[374] = (T)(img)(_p2##x,_n2##y,z,c), I[375] = (T)(img)(_p1##x,_n2##y,z,c), I[376] = (T)(img)(x,_n2##y,z,c), I[377] = (T)(img)(_n1##x,_n2##y,z,c), I[378] = (T)(img)(_n2##x,_n2##y,z,c), I[379] = (T)(img)(_n3##x,_n2##y,z,c), I[380] = (T)(img)(_n4##x,_n2##y,z,c), I[381] = (T)(img)(_n5##x,_n2##y,z,c), I[382] = (T)(img)(_n6##x,_n2##y,z,c), I[383] = (T)(img)(_n7##x,_n2##y,z,c), I[384] = (T)(img)(_n8##x,_n2##y,z,c), I[385] = (T)(img)(_n9##x,_n2##y,z,c), I[386] = (T)(img)(_n10##x,_n2##y,z,c), I[387] = (T)(img)(_n11##x,_n2##y,z,c), I[388] = (T)(img)(_n12##x,_n2##y,z,c), I[389] = (T)(img)(_n13##x,_n2##y,z,c), \
I[390] = (T)(img)(_p12##x,_n3##y,z,c), I[391] = (T)(img)(_p11##x,_n3##y,z,c), I[392] = (T)(img)(_p10##x,_n3##y,z,c), I[393] = (T)(img)(_p9##x,_n3##y,z,c), I[394] = (T)(img)(_p8##x,_n3##y,z,c), I[395] = (T)(img)(_p7##x,_n3##y,z,c), I[396] = (T)(img)(_p6##x,_n3##y,z,c), I[397] = (T)(img)(_p5##x,_n3##y,z,c), I[398] = (T)(img)(_p4##x,_n3##y,z,c), I[399] = (T)(img)(_p3##x,_n3##y,z,c), I[400] = (T)(img)(_p2##x,_n3##y,z,c), I[401] = (T)(img)(_p1##x,_n3##y,z,c), I[402] = (T)(img)(x,_n3##y,z,c), I[403] = (T)(img)(_n1##x,_n3##y,z,c), I[404] = (T)(img)(_n2##x,_n3##y,z,c), I[405] = (T)(img)(_n3##x,_n3##y,z,c), I[406] = (T)(img)(_n4##x,_n3##y,z,c), I[407] = (T)(img)(_n5##x,_n3##y,z,c), I[408] = (T)(img)(_n6##x,_n3##y,z,c), I[409] = (T)(img)(_n7##x,_n3##y,z,c), I[410] = (T)(img)(_n8##x,_n3##y,z,c), I[411] = (T)(img)(_n9##x,_n3##y,z,c), I[412] = (T)(img)(_n10##x,_n3##y,z,c), I[413] = (T)(img)(_n11##x,_n3##y,z,c), I[414] = (T)(img)(_n12##x,_n3##y,z,c), I[415] = (T)(img)(_n13##x,_n3##y,z,c), \
I[416] = (T)(img)(_p12##x,_n4##y,z,c), I[417] = (T)(img)(_p11##x,_n4##y,z,c), I[418] = (T)(img)(_p10##x,_n4##y,z,c), I[419] = (T)(img)(_p9##x,_n4##y,z,c), I[420] = (T)(img)(_p8##x,_n4##y,z,c), I[421] = (T)(img)(_p7##x,_n4##y,z,c), I[422] = (T)(img)(_p6##x,_n4##y,z,c), I[423] = (T)(img)(_p5##x,_n4##y,z,c), I[424] = (T)(img)(_p4##x,_n4##y,z,c), I[425] = (T)(img)(_p3##x,_n4##y,z,c), I[426] = (T)(img)(_p2##x,_n4##y,z,c), I[427] = (T)(img)(_p1##x,_n4##y,z,c), I[428] = (T)(img)(x,_n4##y,z,c), I[429] = (T)(img)(_n1##x,_n4##y,z,c), I[430] = (T)(img)(_n2##x,_n4##y,z,c), I[431] = (T)(img)(_n3##x,_n4##y,z,c), I[432] = (T)(img)(_n4##x,_n4##y,z,c), I[433] = (T)(img)(_n5##x,_n4##y,z,c), I[434] = (T)(img)(_n6##x,_n4##y,z,c), I[435] = (T)(img)(_n7##x,_n4##y,z,c), I[436] = (T)(img)(_n8##x,_n4##y,z,c), I[437] = (T)(img)(_n9##x,_n4##y,z,c), I[438] = (T)(img)(_n10##x,_n4##y,z,c), I[439] = (T)(img)(_n11##x,_n4##y,z,c), I[440] = (T)(img)(_n12##x,_n4##y,z,c), I[441] = (T)(img)(_n13##x,_n4##y,z,c), \
I[442] = (T)(img)(_p12##x,_n5##y,z,c), I[443] = (T)(img)(_p11##x,_n5##y,z,c), I[444] = (T)(img)(_p10##x,_n5##y,z,c), I[445] = (T)(img)(_p9##x,_n5##y,z,c), I[446] = (T)(img)(_p8##x,_n5##y,z,c), I[447] = (T)(img)(_p7##x,_n5##y,z,c), I[448] = (T)(img)(_p6##x,_n5##y,z,c), I[449] = (T)(img)(_p5##x,_n5##y,z,c), I[450] = (T)(img)(_p4##x,_n5##y,z,c), I[451] = (T)(img)(_p3##x,_n5##y,z,c), I[452] = (T)(img)(_p2##x,_n5##y,z,c), I[453] = (T)(img)(_p1##x,_n5##y,z,c), I[454] = (T)(img)(x,_n5##y,z,c), I[455] = (T)(img)(_n1##x,_n5##y,z,c), I[456] = (T)(img)(_n2##x,_n5##y,z,c), I[457] = (T)(img)(_n3##x,_n5##y,z,c), I[458] = (T)(img)(_n4##x,_n5##y,z,c), I[459] = (T)(img)(_n5##x,_n5##y,z,c), I[460] = (T)(img)(_n6##x,_n5##y,z,c), I[461] = (T)(img)(_n7##x,_n5##y,z,c), I[462] = (T)(img)(_n8##x,_n5##y,z,c), I[463] = (T)(img)(_n9##x,_n5##y,z,c), I[464] = (T)(img)(_n10##x,_n5##y,z,c), I[465] = (T)(img)(_n11##x,_n5##y,z,c), I[466] = (T)(img)(_n12##x,_n5##y,z,c), I[467] = (T)(img)(_n13##x,_n5##y,z,c), \
I[468] = (T)(img)(_p12##x,_n6##y,z,c), I[469] = (T)(img)(_p11##x,_n6##y,z,c), I[470] = (T)(img)(_p10##x,_n6##y,z,c), I[471] = (T)(img)(_p9##x,_n6##y,z,c), I[472] = (T)(img)(_p8##x,_n6##y,z,c), I[473] = (T)(img)(_p7##x,_n6##y,z,c), I[474] = (T)(img)(_p6##x,_n6##y,z,c), I[475] = (T)(img)(_p5##x,_n6##y,z,c), I[476] = (T)(img)(_p4##x,_n6##y,z,c), I[477] = (T)(img)(_p3##x,_n6##y,z,c), I[478] = (T)(img)(_p2##x,_n6##y,z,c), I[479] = (T)(img)(_p1##x,_n6##y,z,c), I[480] = (T)(img)(x,_n6##y,z,c), I[481] = (T)(img)(_n1##x,_n6##y,z,c), I[482] = (T)(img)(_n2##x,_n6##y,z,c), I[483] = (T)(img)(_n3##x,_n6##y,z,c), I[484] = (T)(img)(_n4##x,_n6##y,z,c), I[485] = (T)(img)(_n5##x,_n6##y,z,c), I[486] = (T)(img)(_n6##x,_n6##y,z,c), I[487] = (T)(img)(_n7##x,_n6##y,z,c), I[488] = (T)(img)(_n8##x,_n6##y,z,c), I[489] = (T)(img)(_n9##x,_n6##y,z,c), I[490] = (T)(img)(_n10##x,_n6##y,z,c), I[491] = (T)(img)(_n11##x,_n6##y,z,c), I[492] = (T)(img)(_n12##x,_n6##y,z,c), I[493] = (T)(img)(_n13##x,_n6##y,z,c), \
I[494] = (T)(img)(_p12##x,_n7##y,z,c), I[495] = (T)(img)(_p11##x,_n7##y,z,c), I[496] = (T)(img)(_p10##x,_n7##y,z,c), I[497] = (T)(img)(_p9##x,_n7##y,z,c), I[498] = (T)(img)(_p8##x,_n7##y,z,c), I[499] = (T)(img)(_p7##x,_n7##y,z,c), I[500] = (T)(img)(_p6##x,_n7##y,z,c), I[501] = (T)(img)(_p5##x,_n7##y,z,c), I[502] = (T)(img)(_p4##x,_n7##y,z,c), I[503] = (T)(img)(_p3##x,_n7##y,z,c), I[504] = (T)(img)(_p2##x,_n7##y,z,c), I[505] = (T)(img)(_p1##x,_n7##y,z,c), I[506] = (T)(img)(x,_n7##y,z,c), I[507] = (T)(img)(_n1##x,_n7##y,z,c), I[508] = (T)(img)(_n2##x,_n7##y,z,c), I[509] = (T)(img)(_n3##x,_n7##y,z,c), I[510] = (T)(img)(_n4##x,_n7##y,z,c), I[511] = (T)(img)(_n5##x,_n7##y,z,c), I[512] = (T)(img)(_n6##x,_n7##y,z,c), I[513] = (T)(img)(_n7##x,_n7##y,z,c), I[514] = (T)(img)(_n8##x,_n7##y,z,c), I[515] = (T)(img)(_n9##x,_n7##y,z,c), I[516] = (T)(img)(_n10##x,_n7##y,z,c), I[517] = (T)(img)(_n11##x,_n7##y,z,c), I[518] = (T)(img)(_n12##x,_n7##y,z,c), I[519] = (T)(img)(_n13##x,_n7##y,z,c), \
I[520] = (T)(img)(_p12##x,_n8##y,z,c), I[521] = (T)(img)(_p11##x,_n8##y,z,c), I[522] = (T)(img)(_p10##x,_n8##y,z,c), I[523] = (T)(img)(_p9##x,_n8##y,z,c), I[524] = (T)(img)(_p8##x,_n8##y,z,c), I[525] = (T)(img)(_p7##x,_n8##y,z,c), I[526] = (T)(img)(_p6##x,_n8##y,z,c), I[527] = (T)(img)(_p5##x,_n8##y,z,c), I[528] = (T)(img)(_p4##x,_n8##y,z,c), I[529] = (T)(img)(_p3##x,_n8##y,z,c), I[530] = (T)(img)(_p2##x,_n8##y,z,c), I[531] = (T)(img)(_p1##x,_n8##y,z,c), I[532] = (T)(img)(x,_n8##y,z,c), I[533] = (T)(img)(_n1##x,_n8##y,z,c), I[534] = (T)(img)(_n2##x,_n8##y,z,c), I[535] = (T)(img)(_n3##x,_n8##y,z,c), I[536] = (T)(img)(_n4##x,_n8##y,z,c), I[537] = (T)(img)(_n5##x,_n8##y,z,c), I[538] = (T)(img)(_n6##x,_n8##y,z,c), I[539] = (T)(img)(_n7##x,_n8##y,z,c), I[540] = (T)(img)(_n8##x,_n8##y,z,c), I[541] = (T)(img)(_n9##x,_n8##y,z,c), I[542] = (T)(img)(_n10##x,_n8##y,z,c), I[543] = (T)(img)(_n11##x,_n8##y,z,c), I[544] = (T)(img)(_n12##x,_n8##y,z,c), I[545] = (T)(img)(_n13##x,_n8##y,z,c), \
I[546] = (T)(img)(_p12##x,_n9##y,z,c), I[547] = (T)(img)(_p11##x,_n9##y,z,c), I[548] = (T)(img)(_p10##x,_n9##y,z,c), I[549] = (T)(img)(_p9##x,_n9##y,z,c), I[550] = (T)(img)(_p8##x,_n9##y,z,c), I[551] = (T)(img)(_p7##x,_n9##y,z,c), I[552] = (T)(img)(_p6##x,_n9##y,z,c), I[553] = (T)(img)(_p5##x,_n9##y,z,c), I[554] = (T)(img)(_p4##x,_n9##y,z,c), I[555] = (T)(img)(_p3##x,_n9##y,z,c), I[556] = (T)(img)(_p2##x,_n9##y,z,c), I[557] = (T)(img)(_p1##x,_n9##y,z,c), I[558] = (T)(img)(x,_n9##y,z,c), I[559] = (T)(img)(_n1##x,_n9##y,z,c), I[560] = (T)(img)(_n2##x,_n9##y,z,c), I[561] = (T)(img)(_n3##x,_n9##y,z,c), I[562] = (T)(img)(_n4##x,_n9##y,z,c), I[563] = (T)(img)(_n5##x,_n9##y,z,c), I[564] = (T)(img)(_n6##x,_n9##y,z,c), I[565] = (T)(img)(_n7##x,_n9##y,z,c), I[566] = (T)(img)(_n8##x,_n9##y,z,c), I[567] = (T)(img)(_n9##x,_n9##y,z,c), I[568] = (T)(img)(_n10##x,_n9##y,z,c), I[569] = (T)(img)(_n11##x,_n9##y,z,c), I[570] = (T)(img)(_n12##x,_n9##y,z,c), I[571] = (T)(img)(_n13##x,_n9##y,z,c), \
I[572] = (T)(img)(_p12##x,_n10##y,z,c), I[573] = (T)(img)(_p11##x,_n10##y,z,c), I[574] = (T)(img)(_p10##x,_n10##y,z,c), I[575] = (T)(img)(_p9##x,_n10##y,z,c), I[576] = (T)(img)(_p8##x,_n10##y,z,c), I[577] = (T)(img)(_p7##x,_n10##y,z,c), I[578] = (T)(img)(_p6##x,_n10##y,z,c), I[579] = (T)(img)(_p5##x,_n10##y,z,c), I[580] = (T)(img)(_p4##x,_n10##y,z,c), I[581] = (T)(img)(_p3##x,_n10##y,z,c), I[582] = (T)(img)(_p2##x,_n10##y,z,c), I[583] = (T)(img)(_p1##x,_n10##y,z,c), I[584] = (T)(img)(x,_n10##y,z,c), I[585] = (T)(img)(_n1##x,_n10##y,z,c), I[586] = (T)(img)(_n2##x,_n10##y,z,c), I[587] = (T)(img)(_n3##x,_n10##y,z,c), I[588] = (T)(img)(_n4##x,_n10##y,z,c), I[589] = (T)(img)(_n5##x,_n10##y,z,c), I[590] = (T)(img)(_n6##x,_n10##y,z,c), I[591] = (T)(img)(_n7##x,_n10##y,z,c), I[592] = (T)(img)(_n8##x,_n10##y,z,c), I[593] = (T)(img)(_n9##x,_n10##y,z,c), I[594] = (T)(img)(_n10##x,_n10##y,z,c), I[595] = (T)(img)(_n11##x,_n10##y,z,c), I[596] = (T)(img)(_n12##x,_n10##y,z,c), I[597] = (T)(img)(_n13##x,_n10##y,z,c), \
I[598] = (T)(img)(_p12##x,_n11##y,z,c), I[599] = (T)(img)(_p11##x,_n11##y,z,c), I[600] = (T)(img)(_p10##x,_n11##y,z,c), I[601] = (T)(img)(_p9##x,_n11##y,z,c), I[602] = (T)(img)(_p8##x,_n11##y,z,c), I[603] = (T)(img)(_p7##x,_n11##y,z,c), I[604] = (T)(img)(_p6##x,_n11##y,z,c), I[605] = (T)(img)(_p5##x,_n11##y,z,c), I[606] = (T)(img)(_p4##x,_n11##y,z,c), I[607] = (T)(img)(_p3##x,_n11##y,z,c), I[608] = (T)(img)(_p2##x,_n11##y,z,c), I[609] = (T)(img)(_p1##x,_n11##y,z,c), I[610] = (T)(img)(x,_n11##y,z,c), I[611] = (T)(img)(_n1##x,_n11##y,z,c), I[612] = (T)(img)(_n2##x,_n11##y,z,c), I[613] = (T)(img)(_n3##x,_n11##y,z,c), I[614] = (T)(img)(_n4##x,_n11##y,z,c), I[615] = (T)(img)(_n5##x,_n11##y,z,c), I[616] = (T)(img)(_n6##x,_n11##y,z,c), I[617] = (T)(img)(_n7##x,_n11##y,z,c), I[618] = (T)(img)(_n8##x,_n11##y,z,c), I[619] = (T)(img)(_n9##x,_n11##y,z,c), I[620] = (T)(img)(_n10##x,_n11##y,z,c), I[621] = (T)(img)(_n11##x,_n11##y,z,c), I[622] = (T)(img)(_n12##x,_n11##y,z,c), I[623] = (T)(img)(_n13##x,_n11##y,z,c), \
I[624] = (T)(img)(_p12##x,_n12##y,z,c), I[625] = (T)(img)(_p11##x,_n12##y,z,c), I[626] = (T)(img)(_p10##x,_n12##y,z,c), I[627] = (T)(img)(_p9##x,_n12##y,z,c), I[628] = (T)(img)(_p8##x,_n12##y,z,c), I[629] = (T)(img)(_p7##x,_n12##y,z,c), I[630] = (T)(img)(_p6##x,_n12##y,z,c), I[631] = (T)(img)(_p5##x,_n12##y,z,c), I[632] = (T)(img)(_p4##x,_n12##y,z,c), I[633] = (T)(img)(_p3##x,_n12##y,z,c), I[634] = (T)(img)(_p2##x,_n12##y,z,c), I[635] = (T)(img)(_p1##x,_n12##y,z,c), I[636] = (T)(img)(x,_n12##y,z,c), I[637] = (T)(img)(_n1##x,_n12##y,z,c), I[638] = (T)(img)(_n2##x,_n12##y,z,c), I[639] = (T)(img)(_n3##x,_n12##y,z,c), I[640] = (T)(img)(_n4##x,_n12##y,z,c), I[641] = (T)(img)(_n5##x,_n12##y,z,c), I[642] = (T)(img)(_n6##x,_n12##y,z,c), I[643] = (T)(img)(_n7##x,_n12##y,z,c), I[644] = (T)(img)(_n8##x,_n12##y,z,c), I[645] = (T)(img)(_n9##x,_n12##y,z,c), I[646] = (T)(img)(_n10##x,_n12##y,z,c), I[647] = (T)(img)(_n11##x,_n12##y,z,c), I[648] = (T)(img)(_n12##x,_n12##y,z,c), I[649] = (T)(img)(_n13##x,_n12##y,z,c), \
I[650] = (T)(img)(_p12##x,_n13##y,z,c), I[651] = (T)(img)(_p11##x,_n13##y,z,c), I[652] = (T)(img)(_p10##x,_n13##y,z,c), I[653] = (T)(img)(_p9##x,_n13##y,z,c), I[654] = (T)(img)(_p8##x,_n13##y,z,c), I[655] = (T)(img)(_p7##x,_n13##y,z,c), I[656] = (T)(img)(_p6##x,_n13##y,z,c), I[657] = (T)(img)(_p5##x,_n13##y,z,c), I[658] = (T)(img)(_p4##x,_n13##y,z,c), I[659] = (T)(img)(_p3##x,_n13##y,z,c), I[660] = (T)(img)(_p2##x,_n13##y,z,c), I[661] = (T)(img)(_p1##x,_n13##y,z,c), I[662] = (T)(img)(x,_n13##y,z,c), I[663] = (T)(img)(_n1##x,_n13##y,z,c), I[664] = (T)(img)(_n2##x,_n13##y,z,c), I[665] = (T)(img)(_n3##x,_n13##y,z,c), I[666] = (T)(img)(_n4##x,_n13##y,z,c), I[667] = (T)(img)(_n5##x,_n13##y,z,c), I[668] = (T)(img)(_n6##x,_n13##y,z,c), I[669] = (T)(img)(_n7##x,_n13##y,z,c), I[670] = (T)(img)(_n8##x,_n13##y,z,c), I[671] = (T)(img)(_n9##x,_n13##y,z,c), I[672] = (T)(img)(_n10##x,_n13##y,z,c), I[673] = (T)(img)(_n11##x,_n13##y,z,c), I[674] = (T)(img)(_n12##x,_n13##y,z,c), I[675] = (T)(img)(_n13##x,_n13##y,z,c);
// Define 27x27 loop macros
//-------------------------
#define cimg_for27(bound,i) for (int i = 0, \
_p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13; \
_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
#define cimg_for27X(img,x) cimg_for27((img)._width,x)
#define cimg_for27Y(img,y) cimg_for27((img)._height,y)
#define cimg_for27Z(img,z) cimg_for27((img)._depth,z)
#define cimg_for27C(img,c) cimg_for27((img)._spectrum,c)
#define cimg_for27XY(img,x,y) cimg_for27Y(img,y) cimg_for27X(img,x)
#define cimg_for27XZ(img,x,z) cimg_for27Z(img,z) cimg_for27X(img,x)
#define cimg_for27XC(img,x,c) cimg_for27C(img,c) cimg_for27X(img,x)
#define cimg_for27YZ(img,y,z) cimg_for27Z(img,z) cimg_for27Y(img,y)
#define cimg_for27YC(img,y,c) cimg_for27C(img,c) cimg_for27Y(img,y)
#define cimg_for27ZC(img,z,c) cimg_for27C(img,c) cimg_for27Z(img,z)
#define cimg_for27XYZ(img,x,y,z) cimg_for27Z(img,z) cimg_for27XY(img,x,y)
#define cimg_for27XZC(img,x,z,c) cimg_for27C(img,c) cimg_for27XZ(img,x,z)
#define cimg_for27YZC(img,y,z,c) cimg_for27C(img,c) cimg_for27YZ(img,y,z)
#define cimg_for27XYZC(img,x,y,z,c) cimg_for27C(img,c) cimg_for27XYZ(img,x,y,z)
#define cimg_for_in27(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p13##i = i - 13<0?0:i - 13, \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13; \
i<=(int)(i1) && (_n13##i<(int)(bound) || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i)
#define cimg_for_in27X(img,x0,x1,x) cimg_for_in27((img)._width,x0,x1,x)
#define cimg_for_in27Y(img,y0,y1,y) cimg_for_in27((img)._height,y0,y1,y)
#define cimg_for_in27Z(img,z0,z1,z) cimg_for_in27((img)._depth,z0,z1,z)
#define cimg_for_in27C(img,c0,c1,c) cimg_for_in27((img)._spectrum,c0,c1,c)
#define cimg_for_in27XY(img,x0,y0,x1,y1,x,y) cimg_for_in27Y(img,y0,y1,y) cimg_for_in27X(img,x0,x1,x)
#define cimg_for_in27XZ(img,x0,z0,x1,z1,x,z) cimg_for_in27Z(img,z0,z1,z) cimg_for_in27X(img,x0,x1,x)
#define cimg_for_in27XC(img,x0,c0,x1,c1,x,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27X(img,x0,x1,x)
#define cimg_for_in27YZ(img,y0,z0,y1,z1,y,z) cimg_for_in27Z(img,z0,z1,z) cimg_for_in27Y(img,y0,y1,y)
#define cimg_for_in27YC(img,y0,c0,y1,c1,y,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27Y(img,y0,y1,y)
#define cimg_for_in27ZC(img,z0,c0,z1,c1,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27Z(img,z0,z1,z)
#define cimg_for_in27XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in27Z(img,z0,z1,z) cimg_for_in27XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in27XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in27YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in27XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in27C(img,c0,c1,c) cimg_for_in27XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for27x27(img,x,y,z,c,I,T) \
cimg_for27((img)._height,y) for (int x = 0, \
_p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
_n13##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = (T)(img)(0,_p13##y,z,c)), \
(I[27] = I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = (T)(img)(0,_p12##y,z,c)), \
(I[54] = I[55] = I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_p11##y,z,c)), \
(I[81] = I[82] = I[83] = I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_p10##y,z,c)), \
(I[108] = I[109] = I[110] = I[111] = I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = (T)(img)(0,_p9##y,z,c)), \
(I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = (T)(img)(0,_p8##y,z,c)), \
(I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = (T)(img)(0,_p7##y,z,c)), \
(I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = (T)(img)(0,_p6##y,z,c)), \
(I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = (T)(img)(0,_p5##y,z,c)), \
(I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = (T)(img)(0,_p4##y,z,c)), \
(I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = (T)(img)(0,_p3##y,z,c)), \
(I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = (T)(img)(0,_p2##y,z,c)), \
(I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = (T)(img)(0,_p1##y,z,c)), \
(I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = (T)(img)(0,y,z,c)), \
(I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = (T)(img)(0,_n1##y,z,c)), \
(I[405] = I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = (T)(img)(0,_n2##y,z,c)), \
(I[432] = I[433] = I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = (T)(img)(0,_n3##y,z,c)), \
(I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = (T)(img)(0,_n4##y,z,c)), \
(I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = I[495] = I[496] = I[497] = I[498] = I[499] = (T)(img)(0,_n5##y,z,c)), \
(I[513] = I[514] = I[515] = I[516] = I[517] = I[518] = I[519] = I[520] = I[521] = I[522] = I[523] = I[524] = I[525] = I[526] = (T)(img)(0,_n6##y,z,c)), \
(I[540] = I[541] = I[542] = I[543] = I[544] = I[545] = I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = (T)(img)(0,_n7##y,z,c)), \
(I[567] = I[568] = I[569] = I[570] = I[571] = I[572] = I[573] = I[574] = I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = (T)(img)(0,_n8##y,z,c)), \
(I[594] = I[595] = I[596] = I[597] = I[598] = I[599] = I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = (T)(img)(0,_n9##y,z,c)), \
(I[621] = I[622] = I[623] = I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = I[630] = I[631] = I[632] = I[633] = I[634] = (T)(img)(0,_n10##y,z,c)), \
(I[648] = I[649] = I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = I[658] = I[659] = I[660] = I[661] = (T)(img)(0,_n11##y,z,c)), \
(I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = I[682] = I[683] = I[684] = I[685] = I[686] = I[687] = I[688] = (T)(img)(0,_n12##y,z,c)), \
(I[702] = I[703] = I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = I[711] = I[712] = I[713] = I[714] = I[715] = (T)(img)(0,_n13##y,z,c)), \
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[41] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[68] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[95] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[122] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[149] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[176] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[203] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[230] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[257] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[284] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[311] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[338] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[365] = (T)(img)(_n1##x,y,z,c)), \
(I[392] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[419] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[446] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[473] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[500] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[527] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[554] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[581] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[608] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[635] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[662] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[689] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[716] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[42] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[69] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[96] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[123] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[150] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[177] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[204] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[231] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[258] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[285] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[312] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[339] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[366] = (T)(img)(_n2##x,y,z,c)), \
(I[393] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[420] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[447] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[474] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[501] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[528] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[555] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[582] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[609] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[636] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[663] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[690] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[717] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[43] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[70] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[97] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[124] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[151] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[178] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[205] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[232] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[259] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[286] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[313] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[340] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[367] = (T)(img)(_n3##x,y,z,c)), \
(I[394] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[421] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[448] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[475] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[502] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[529] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[556] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[583] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[610] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[637] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[664] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[691] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[718] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[44] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[71] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[98] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[125] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[152] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[179] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[206] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[233] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[260] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[287] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[314] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[341] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[368] = (T)(img)(_n4##x,y,z,c)), \
(I[395] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[422] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[449] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[476] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[503] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[530] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[557] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[584] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[611] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[638] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[665] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[692] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[719] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[45] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[72] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[99] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[126] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[153] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[180] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[207] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[234] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[261] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[288] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[315] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[342] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[369] = (T)(img)(_n5##x,y,z,c)), \
(I[396] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[423] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[450] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[477] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[504] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[531] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[558] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[585] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[612] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[639] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[666] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[693] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[720] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[46] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[73] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[100] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[127] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[154] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[181] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[208] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[235] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[262] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[289] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[316] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[343] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[370] = (T)(img)(_n6##x,y,z,c)), \
(I[397] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[424] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[451] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[478] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[505] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[532] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[559] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[586] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[613] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[640] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[667] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[694] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[721] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[47] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[74] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[101] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[128] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[155] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[182] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[209] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[236] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[263] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[290] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[317] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[344] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[371] = (T)(img)(_n7##x,y,z,c)), \
(I[398] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[425] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[452] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[479] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[506] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[533] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[560] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[587] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[614] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[641] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[668] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[695] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[722] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[48] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[75] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[102] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[129] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[156] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[183] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[210] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[237] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[264] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[291] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[318] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[345] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[372] = (T)(img)(_n8##x,y,z,c)), \
(I[399] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[426] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[453] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[480] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[507] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[534] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[561] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[588] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[615] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[642] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[669] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[696] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[723] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[49] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[76] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[103] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[130] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[157] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[184] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[211] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[238] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[265] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[292] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[319] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[346] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[373] = (T)(img)(_n9##x,y,z,c)), \
(I[400] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[427] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[454] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[481] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[508] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[535] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[562] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[589] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[616] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[643] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[670] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[697] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[724] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[50] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[77] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[104] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[131] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[158] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[185] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[212] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[239] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[266] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[293] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[320] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[347] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[374] = (T)(img)(_n10##x,y,z,c)), \
(I[401] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[428] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[455] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[482] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[509] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[536] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[563] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[590] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[617] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[644] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[671] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[698] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[725] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[51] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[78] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[105] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[132] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[159] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[186] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[213] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[240] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[267] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[294] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[321] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[348] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[375] = (T)(img)(_n11##x,y,z,c)), \
(I[402] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[429] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[456] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[483] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[510] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[537] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[564] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[591] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[618] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[645] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[672] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[699] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[726] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[52] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[79] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[106] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[133] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[160] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[187] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[214] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[241] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[268] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[295] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[322] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[349] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[376] = (T)(img)(_n12##x,y,z,c)), \
(I[403] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[430] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[457] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[484] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[511] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[538] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[565] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[592] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[619] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[646] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[673] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[700] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[727] = (T)(img)(_n12##x,_n13##y,z,c)), \
13>=((img)._width)?(img).width() - 1:13); \
(_n13##x<(img).width() && ( \
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[53] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[80] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[107] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[134] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[161] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[188] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[215] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[242] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[269] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[296] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[323] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[350] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[377] = (T)(img)(_n13##x,y,z,c)), \
(I[404] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[431] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[458] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[485] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[512] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[539] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[566] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[593] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[620] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[647] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[674] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[701] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[728] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], \
I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], \
I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], \
I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], \
I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], \
I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], \
I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], \
I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], \
I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], \
I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], \
I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], \
I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], \
I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], \
I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], \
I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], \
I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], \
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
#define cimg_for_in27x27(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in27((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p13##x = x - 13<0?0:x - 13, \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
_n13##x = (int)( \
(I[0] = (T)(img)(_p13##x,_p13##y,z,c)), \
(I[27] = (T)(img)(_p13##x,_p12##y,z,c)), \
(I[54] = (T)(img)(_p13##x,_p11##y,z,c)), \
(I[81] = (T)(img)(_p13##x,_p10##y,z,c)), \
(I[108] = (T)(img)(_p13##x,_p9##y,z,c)), \
(I[135] = (T)(img)(_p13##x,_p8##y,z,c)), \
(I[162] = (T)(img)(_p13##x,_p7##y,z,c)), \
(I[189] = (T)(img)(_p13##x,_p6##y,z,c)), \
(I[216] = (T)(img)(_p13##x,_p5##y,z,c)), \
(I[243] = (T)(img)(_p13##x,_p4##y,z,c)), \
(I[270] = (T)(img)(_p13##x,_p3##y,z,c)), \
(I[297] = (T)(img)(_p13##x,_p2##y,z,c)), \
(I[324] = (T)(img)(_p13##x,_p1##y,z,c)), \
(I[351] = (T)(img)(_p13##x,y,z,c)), \
(I[378] = (T)(img)(_p13##x,_n1##y,z,c)), \
(I[405] = (T)(img)(_p13##x,_n2##y,z,c)), \
(I[432] = (T)(img)(_p13##x,_n3##y,z,c)), \
(I[459] = (T)(img)(_p13##x,_n4##y,z,c)), \
(I[486] = (T)(img)(_p13##x,_n5##y,z,c)), \
(I[513] = (T)(img)(_p13##x,_n6##y,z,c)), \
(I[540] = (T)(img)(_p13##x,_n7##y,z,c)), \
(I[567] = (T)(img)(_p13##x,_n8##y,z,c)), \
(I[594] = (T)(img)(_p13##x,_n9##y,z,c)), \
(I[621] = (T)(img)(_p13##x,_n10##y,z,c)), \
(I[648] = (T)(img)(_p13##x,_n11##y,z,c)), \
(I[675] = (T)(img)(_p13##x,_n12##y,z,c)), \
(I[702] = (T)(img)(_p13##x,_n13##y,z,c)), \
(I[1] = (T)(img)(_p12##x,_p13##y,z,c)), \
(I[28] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[55] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[82] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[109] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[136] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[163] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[190] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[217] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[244] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[271] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[298] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[325] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[352] = (T)(img)(_p12##x,y,z,c)), \
(I[379] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[406] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[433] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[460] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[487] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[514] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[541] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[568] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[595] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[622] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[649] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[676] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[703] = (T)(img)(_p12##x,_n13##y,z,c)), \
(I[2] = (T)(img)(_p11##x,_p13##y,z,c)), \
(I[29] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[56] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[83] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[110] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[137] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[164] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[191] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[218] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[245] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[272] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[299] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[326] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[353] = (T)(img)(_p11##x,y,z,c)), \
(I[380] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[407] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[434] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[461] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[488] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[515] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[542] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[569] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[596] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[623] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[650] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[677] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[704] = (T)(img)(_p11##x,_n13##y,z,c)), \
(I[3] = (T)(img)(_p10##x,_p13##y,z,c)), \
(I[30] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[57] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[84] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[111] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[138] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[165] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[192] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[219] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[246] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[273] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[300] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[327] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[354] = (T)(img)(_p10##x,y,z,c)), \
(I[381] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[408] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[435] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[462] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[489] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[516] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[543] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[570] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[597] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[624] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[651] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[678] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[705] = (T)(img)(_p10##x,_n13##y,z,c)), \
(I[4] = (T)(img)(_p9##x,_p13##y,z,c)), \
(I[31] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[58] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[85] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[112] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[139] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[166] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[193] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[220] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[247] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[274] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[301] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[328] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[355] = (T)(img)(_p9##x,y,z,c)), \
(I[382] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[409] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[436] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[463] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[490] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[517] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[544] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[571] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[598] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[625] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[652] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[679] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[706] = (T)(img)(_p9##x,_n13##y,z,c)), \
(I[5] = (T)(img)(_p8##x,_p13##y,z,c)), \
(I[32] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[59] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[86] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[113] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[140] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[167] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[194] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[221] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[248] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[275] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[302] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[329] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[356] = (T)(img)(_p8##x,y,z,c)), \
(I[383] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[410] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[437] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[464] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[491] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[518] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[545] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[572] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[599] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[626] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[653] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[680] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[707] = (T)(img)(_p8##x,_n13##y,z,c)), \
(I[6] = (T)(img)(_p7##x,_p13##y,z,c)), \
(I[33] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[60] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[87] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[114] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[141] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[168] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[195] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[222] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[249] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[276] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[303] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[330] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[357] = (T)(img)(_p7##x,y,z,c)), \
(I[384] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[411] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[438] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[465] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[492] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[519] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[546] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[573] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[600] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[627] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[654] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[681] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[708] = (T)(img)(_p7##x,_n13##y,z,c)), \
(I[7] = (T)(img)(_p6##x,_p13##y,z,c)), \
(I[34] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[61] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[88] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[115] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[142] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[169] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[196] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[223] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[250] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[277] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[304] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[331] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[358] = (T)(img)(_p6##x,y,z,c)), \
(I[385] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[412] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[439] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[466] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[493] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[520] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[547] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[574] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[601] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[628] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[655] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[682] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[709] = (T)(img)(_p6##x,_n13##y,z,c)), \
(I[8] = (T)(img)(_p5##x,_p13##y,z,c)), \
(I[35] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[62] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[89] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[116] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[143] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[170] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[197] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[224] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[251] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[278] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[305] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[332] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[359] = (T)(img)(_p5##x,y,z,c)), \
(I[386] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[413] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[440] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[467] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[494] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[521] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[548] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[575] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[602] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[629] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[656] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[683] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[710] = (T)(img)(_p5##x,_n13##y,z,c)), \
(I[9] = (T)(img)(_p4##x,_p13##y,z,c)), \
(I[36] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[63] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[90] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[117] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[144] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[171] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[198] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[225] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[252] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[279] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[306] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[333] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[360] = (T)(img)(_p4##x,y,z,c)), \
(I[387] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[414] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[441] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[468] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[495] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[522] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[549] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[576] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[603] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[630] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[657] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[684] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[711] = (T)(img)(_p4##x,_n13##y,z,c)), \
(I[10] = (T)(img)(_p3##x,_p13##y,z,c)), \
(I[37] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[64] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[91] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[118] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[145] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[172] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[199] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[226] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[253] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[280] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[307] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[334] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[361] = (T)(img)(_p3##x,y,z,c)), \
(I[388] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[415] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[442] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[469] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[496] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[523] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[550] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[577] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[604] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[631] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[658] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[685] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[712] = (T)(img)(_p3##x,_n13##y,z,c)), \
(I[11] = (T)(img)(_p2##x,_p13##y,z,c)), \
(I[38] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[65] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[92] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[119] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[146] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[173] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[200] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[227] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[254] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[281] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[308] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[335] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[362] = (T)(img)(_p2##x,y,z,c)), \
(I[389] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[416] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[443] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[470] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[497] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[524] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[551] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[578] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[605] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[632] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[659] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[686] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[713] = (T)(img)(_p2##x,_n13##y,z,c)), \
(I[12] = (T)(img)(_p1##x,_p13##y,z,c)), \
(I[39] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[66] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[93] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[120] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[147] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[174] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[201] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[228] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[255] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[282] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[309] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[336] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[363] = (T)(img)(_p1##x,y,z,c)), \
(I[390] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[417] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[444] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[471] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[498] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[525] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[552] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[579] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[606] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[633] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[660] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[687] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[714] = (T)(img)(_p1##x,_n13##y,z,c)), \
(I[13] = (T)(img)(x,_p13##y,z,c)), \
(I[40] = (T)(img)(x,_p12##y,z,c)), \
(I[67] = (T)(img)(x,_p11##y,z,c)), \
(I[94] = (T)(img)(x,_p10##y,z,c)), \
(I[121] = (T)(img)(x,_p9##y,z,c)), \
(I[148] = (T)(img)(x,_p8##y,z,c)), \
(I[175] = (T)(img)(x,_p7##y,z,c)), \
(I[202] = (T)(img)(x,_p6##y,z,c)), \
(I[229] = (T)(img)(x,_p5##y,z,c)), \
(I[256] = (T)(img)(x,_p4##y,z,c)), \
(I[283] = (T)(img)(x,_p3##y,z,c)), \
(I[310] = (T)(img)(x,_p2##y,z,c)), \
(I[337] = (T)(img)(x,_p1##y,z,c)), \
(I[364] = (T)(img)(x,y,z,c)), \
(I[391] = (T)(img)(x,_n1##y,z,c)), \
(I[418] = (T)(img)(x,_n2##y,z,c)), \
(I[445] = (T)(img)(x,_n3##y,z,c)), \
(I[472] = (T)(img)(x,_n4##y,z,c)), \
(I[499] = (T)(img)(x,_n5##y,z,c)), \
(I[526] = (T)(img)(x,_n6##y,z,c)), \
(I[553] = (T)(img)(x,_n7##y,z,c)), \
(I[580] = (T)(img)(x,_n8##y,z,c)), \
(I[607] = (T)(img)(x,_n9##y,z,c)), \
(I[634] = (T)(img)(x,_n10##y,z,c)), \
(I[661] = (T)(img)(x,_n11##y,z,c)), \
(I[688] = (T)(img)(x,_n12##y,z,c)), \
(I[715] = (T)(img)(x,_n13##y,z,c)), \
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[41] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[68] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[95] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[122] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[149] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[176] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[203] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[230] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[257] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[284] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[311] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[338] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[365] = (T)(img)(_n1##x,y,z,c)), \
(I[392] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[419] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[446] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[473] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[500] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[527] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[554] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[581] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[608] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[635] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[662] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[689] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[716] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[42] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[69] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[96] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[123] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[150] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[177] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[204] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[231] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[258] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[285] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[312] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[339] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[366] = (T)(img)(_n2##x,y,z,c)), \
(I[393] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[420] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[447] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[474] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[501] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[528] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[555] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[582] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[609] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[636] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[663] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[690] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[717] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[43] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[70] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[97] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[124] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[151] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[178] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[205] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[232] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[259] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[286] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[313] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[340] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[367] = (T)(img)(_n3##x,y,z,c)), \
(I[394] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[421] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[448] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[475] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[502] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[529] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[556] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[583] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[610] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[637] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[664] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[691] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[718] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[44] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[71] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[98] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[125] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[152] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[179] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[206] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[233] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[260] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[287] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[314] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[341] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[368] = (T)(img)(_n4##x,y,z,c)), \
(I[395] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[422] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[449] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[476] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[503] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[530] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[557] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[584] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[611] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[638] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[665] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[692] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[719] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[45] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[72] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[99] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[126] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[153] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[180] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[207] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[234] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[261] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[288] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[315] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[342] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[369] = (T)(img)(_n5##x,y,z,c)), \
(I[396] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[423] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[450] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[477] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[504] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[531] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[558] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[585] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[612] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[639] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[666] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[693] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[720] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[46] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[73] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[100] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[127] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[154] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[181] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[208] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[235] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[262] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[289] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[316] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[343] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[370] = (T)(img)(_n6##x,y,z,c)), \
(I[397] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[424] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[451] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[478] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[505] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[532] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[559] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[586] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[613] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[640] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[667] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[694] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[721] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[47] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[74] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[101] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[128] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[155] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[182] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[209] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[236] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[263] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[290] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[317] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[344] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[371] = (T)(img)(_n7##x,y,z,c)), \
(I[398] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[425] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[452] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[479] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[506] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[533] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[560] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[587] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[614] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[641] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[668] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[695] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[722] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[48] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[75] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[102] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[129] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[156] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[183] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[210] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[237] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[264] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[291] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[318] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[345] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[372] = (T)(img)(_n8##x,y,z,c)), \
(I[399] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[426] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[453] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[480] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[507] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[534] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[561] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[588] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[615] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[642] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[669] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[696] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[723] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[49] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[76] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[103] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[130] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[157] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[184] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[211] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[238] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[265] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[292] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[319] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[346] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[373] = (T)(img)(_n9##x,y,z,c)), \
(I[400] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[427] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[454] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[481] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[508] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[535] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[562] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[589] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[616] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[643] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[670] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[697] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[724] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[50] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[77] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[104] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[131] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[158] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[185] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[212] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[239] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[266] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[293] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[320] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[347] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[374] = (T)(img)(_n10##x,y,z,c)), \
(I[401] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[428] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[455] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[482] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[509] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[536] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[563] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[590] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[617] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[644] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[671] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[698] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[725] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[51] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[78] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[105] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[132] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[159] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[186] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[213] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[240] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[267] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[294] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[321] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[348] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[375] = (T)(img)(_n11##x,y,z,c)), \
(I[402] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[429] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[456] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[483] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[510] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[537] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[564] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[591] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[618] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[645] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[672] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[699] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[726] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[52] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[79] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[106] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[133] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[160] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[187] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[214] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[241] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[268] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[295] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[322] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[349] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[376] = (T)(img)(_n12##x,y,z,c)), \
(I[403] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[430] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[457] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[484] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[511] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[538] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[565] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[592] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[619] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[646] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[673] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[700] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[727] = (T)(img)(_n12##x,_n13##y,z,c)), \
x + 13>=(img).width()?(img).width() - 1:x + 13); \
x<=(int)(x1) && ((_n13##x<(img).width() && ( \
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[53] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[80] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[107] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[134] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[161] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[188] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[215] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[242] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[269] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[296] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[323] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[350] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[377] = (T)(img)(_n13##x,y,z,c)), \
(I[404] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[431] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[458] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[485] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[512] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[539] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[566] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[593] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[620] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[647] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[674] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[701] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[728] = (T)(img)(_n13##x,_n13##y,z,c)),1)) || \
_n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], \
I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], \
I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], \
I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], \
I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], \
I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], \
I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], \
I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], \
I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], \
I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], \
I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], \
I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], \
I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], \
I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], \
I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], \
I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], \
I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], \
I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], \
I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], \
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x)
#define cimg_get27x27(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p13##x,_p13##y,z,c), I[1] = (T)(img)(_p12##x,_p13##y,z,c), I[2] = (T)(img)(_p11##x,_p13##y,z,c), I[3] = (T)(img)(_p10##x,_p13##y,z,c), I[4] = (T)(img)(_p9##x,_p13##y,z,c), I[5] = (T)(img)(_p8##x,_p13##y,z,c), I[6] = (T)(img)(_p7##x,_p13##y,z,c), I[7] = (T)(img)(_p6##x,_p13##y,z,c), I[8] = (T)(img)(_p5##x,_p13##y,z,c), I[9] = (T)(img)(_p4##x,_p13##y,z,c), I[10] = (T)(img)(_p3##x,_p13##y,z,c), I[11] = (T)(img)(_p2##x,_p13##y,z,c), I[12] = (T)(img)(_p1##x,_p13##y,z,c), I[13] = (T)(img)(x,_p13##y,z,c), I[14] = (T)(img)(_n1##x,_p13##y,z,c), I[15] = (T)(img)(_n2##x,_p13##y,z,c), I[16] = (T)(img)(_n3##x,_p13##y,z,c), I[17] = (T)(img)(_n4##x,_p13##y,z,c), I[18] = (T)(img)(_n5##x,_p13##y,z,c), I[19] = (T)(img)(_n6##x,_p13##y,z,c), I[20] = (T)(img)(_n7##x,_p13##y,z,c), I[21] = (T)(img)(_n8##x,_p13##y,z,c), I[22] = (T)(img)(_n9##x,_p13##y,z,c), I[23] = (T)(img)(_n10##x,_p13##y,z,c), I[24] = (T)(img)(_n11##x,_p13##y,z,c), I[25] = (T)(img)(_n12##x,_p13##y,z,c), I[26] = (T)(img)(_n13##x,_p13##y,z,c), \
I[27] = (T)(img)(_p13##x,_p12##y,z,c), I[28] = (T)(img)(_p12##x,_p12##y,z,c), I[29] = (T)(img)(_p11##x,_p12##y,z,c), I[30] = (T)(img)(_p10##x,_p12##y,z,c), I[31] = (T)(img)(_p9##x,_p12##y,z,c), I[32] = (T)(img)(_p8##x,_p12##y,z,c), I[33] = (T)(img)(_p7##x,_p12##y,z,c), I[34] = (T)(img)(_p6##x,_p12##y,z,c), I[35] = (T)(img)(_p5##x,_p12##y,z,c), I[36] = (T)(img)(_p4##x,_p12##y,z,c), I[37] = (T)(img)(_p3##x,_p12##y,z,c), I[38] = (T)(img)(_p2##x,_p12##y,z,c), I[39] = (T)(img)(_p1##x,_p12##y,z,c), I[40] = (T)(img)(x,_p12##y,z,c), I[41] = (T)(img)(_n1##x,_p12##y,z,c), I[42] = (T)(img)(_n2##x,_p12##y,z,c), I[43] = (T)(img)(_n3##x,_p12##y,z,c), I[44] = (T)(img)(_n4##x,_p12##y,z,c), I[45] = (T)(img)(_n5##x,_p12##y,z,c), I[46] = (T)(img)(_n6##x,_p12##y,z,c), I[47] = (T)(img)(_n7##x,_p12##y,z,c), I[48] = (T)(img)(_n8##x,_p12##y,z,c), I[49] = (T)(img)(_n9##x,_p12##y,z,c), I[50] = (T)(img)(_n10##x,_p12##y,z,c), I[51] = (T)(img)(_n11##x,_p12##y,z,c), I[52] = (T)(img)(_n12##x,_p12##y,z,c), I[53] = (T)(img)(_n13##x,_p12##y,z,c), \
I[54] = (T)(img)(_p13##x,_p11##y,z,c), I[55] = (T)(img)(_p12##x,_p11##y,z,c), I[56] = (T)(img)(_p11##x,_p11##y,z,c), I[57] = (T)(img)(_p10##x,_p11##y,z,c), I[58] = (T)(img)(_p9##x,_p11##y,z,c), I[59] = (T)(img)(_p8##x,_p11##y,z,c), I[60] = (T)(img)(_p7##x,_p11##y,z,c), I[61] = (T)(img)(_p6##x,_p11##y,z,c), I[62] = (T)(img)(_p5##x,_p11##y,z,c), I[63] = (T)(img)(_p4##x,_p11##y,z,c), I[64] = (T)(img)(_p3##x,_p11##y,z,c), I[65] = (T)(img)(_p2##x,_p11##y,z,c), I[66] = (T)(img)(_p1##x,_p11##y,z,c), I[67] = (T)(img)(x,_p11##y,z,c), I[68] = (T)(img)(_n1##x,_p11##y,z,c), I[69] = (T)(img)(_n2##x,_p11##y,z,c), I[70] = (T)(img)(_n3##x,_p11##y,z,c), I[71] = (T)(img)(_n4##x,_p11##y,z,c), I[72] = (T)(img)(_n5##x,_p11##y,z,c), I[73] = (T)(img)(_n6##x,_p11##y,z,c), I[74] = (T)(img)(_n7##x,_p11##y,z,c), I[75] = (T)(img)(_n8##x,_p11##y,z,c), I[76] = (T)(img)(_n9##x,_p11##y,z,c), I[77] = (T)(img)(_n10##x,_p11##y,z,c), I[78] = (T)(img)(_n11##x,_p11##y,z,c), I[79] = (T)(img)(_n12##x,_p11##y,z,c), I[80] = (T)(img)(_n13##x,_p11##y,z,c), \
I[81] = (T)(img)(_p13##x,_p10##y,z,c), I[82] = (T)(img)(_p12##x,_p10##y,z,c), I[83] = (T)(img)(_p11##x,_p10##y,z,c), I[84] = (T)(img)(_p10##x,_p10##y,z,c), I[85] = (T)(img)(_p9##x,_p10##y,z,c), I[86] = (T)(img)(_p8##x,_p10##y,z,c), I[87] = (T)(img)(_p7##x,_p10##y,z,c), I[88] = (T)(img)(_p6##x,_p10##y,z,c), I[89] = (T)(img)(_p5##x,_p10##y,z,c), I[90] = (T)(img)(_p4##x,_p10##y,z,c), I[91] = (T)(img)(_p3##x,_p10##y,z,c), I[92] = (T)(img)(_p2##x,_p10##y,z,c), I[93] = (T)(img)(_p1##x,_p10##y,z,c), I[94] = (T)(img)(x,_p10##y,z,c), I[95] = (T)(img)(_n1##x,_p10##y,z,c), I[96] = (T)(img)(_n2##x,_p10##y,z,c), I[97] = (T)(img)(_n3##x,_p10##y,z,c), I[98] = (T)(img)(_n4##x,_p10##y,z,c), I[99] = (T)(img)(_n5##x,_p10##y,z,c), I[100] = (T)(img)(_n6##x,_p10##y,z,c), I[101] = (T)(img)(_n7##x,_p10##y,z,c), I[102] = (T)(img)(_n8##x,_p10##y,z,c), I[103] = (T)(img)(_n9##x,_p10##y,z,c), I[104] = (T)(img)(_n10##x,_p10##y,z,c), I[105] = (T)(img)(_n11##x,_p10##y,z,c), I[106] = (T)(img)(_n12##x,_p10##y,z,c), I[107] = (T)(img)(_n13##x,_p10##y,z,c), \
I[108] = (T)(img)(_p13##x,_p9##y,z,c), I[109] = (T)(img)(_p12##x,_p9##y,z,c), I[110] = (T)(img)(_p11##x,_p9##y,z,c), I[111] = (T)(img)(_p10##x,_p9##y,z,c), I[112] = (T)(img)(_p9##x,_p9##y,z,c), I[113] = (T)(img)(_p8##x,_p9##y,z,c), I[114] = (T)(img)(_p7##x,_p9##y,z,c), I[115] = (T)(img)(_p6##x,_p9##y,z,c), I[116] = (T)(img)(_p5##x,_p9##y,z,c), I[117] = (T)(img)(_p4##x,_p9##y,z,c), I[118] = (T)(img)(_p3##x,_p9##y,z,c), I[119] = (T)(img)(_p2##x,_p9##y,z,c), I[120] = (T)(img)(_p1##x,_p9##y,z,c), I[121] = (T)(img)(x,_p9##y,z,c), I[122] = (T)(img)(_n1##x,_p9##y,z,c), I[123] = (T)(img)(_n2##x,_p9##y,z,c), I[124] = (T)(img)(_n3##x,_p9##y,z,c), I[125] = (T)(img)(_n4##x,_p9##y,z,c), I[126] = (T)(img)(_n5##x,_p9##y,z,c), I[127] = (T)(img)(_n6##x,_p9##y,z,c), I[128] = (T)(img)(_n7##x,_p9##y,z,c), I[129] = (T)(img)(_n8##x,_p9##y,z,c), I[130] = (T)(img)(_n9##x,_p9##y,z,c), I[131] = (T)(img)(_n10##x,_p9##y,z,c), I[132] = (T)(img)(_n11##x,_p9##y,z,c), I[133] = (T)(img)(_n12##x,_p9##y,z,c), I[134] = (T)(img)(_n13##x,_p9##y,z,c), \
I[135] = (T)(img)(_p13##x,_p8##y,z,c), I[136] = (T)(img)(_p12##x,_p8##y,z,c), I[137] = (T)(img)(_p11##x,_p8##y,z,c), I[138] = (T)(img)(_p10##x,_p8##y,z,c), I[139] = (T)(img)(_p9##x,_p8##y,z,c), I[140] = (T)(img)(_p8##x,_p8##y,z,c), I[141] = (T)(img)(_p7##x,_p8##y,z,c), I[142] = (T)(img)(_p6##x,_p8##y,z,c), I[143] = (T)(img)(_p5##x,_p8##y,z,c), I[144] = (T)(img)(_p4##x,_p8##y,z,c), I[145] = (T)(img)(_p3##x,_p8##y,z,c), I[146] = (T)(img)(_p2##x,_p8##y,z,c), I[147] = (T)(img)(_p1##x,_p8##y,z,c), I[148] = (T)(img)(x,_p8##y,z,c), I[149] = (T)(img)(_n1##x,_p8##y,z,c), I[150] = (T)(img)(_n2##x,_p8##y,z,c), I[151] = (T)(img)(_n3##x,_p8##y,z,c), I[152] = (T)(img)(_n4##x,_p8##y,z,c), I[153] = (T)(img)(_n5##x,_p8##y,z,c), I[154] = (T)(img)(_n6##x,_p8##y,z,c), I[155] = (T)(img)(_n7##x,_p8##y,z,c), I[156] = (T)(img)(_n8##x,_p8##y,z,c), I[157] = (T)(img)(_n9##x,_p8##y,z,c), I[158] = (T)(img)(_n10##x,_p8##y,z,c), I[159] = (T)(img)(_n11##x,_p8##y,z,c), I[160] = (T)(img)(_n12##x,_p8##y,z,c), I[161] = (T)(img)(_n13##x,_p8##y,z,c), \
I[162] = (T)(img)(_p13##x,_p7##y,z,c), I[163] = (T)(img)(_p12##x,_p7##y,z,c), I[164] = (T)(img)(_p11##x,_p7##y,z,c), I[165] = (T)(img)(_p10##x,_p7##y,z,c), I[166] = (T)(img)(_p9##x,_p7##y,z,c), I[167] = (T)(img)(_p8##x,_p7##y,z,c), I[168] = (T)(img)(_p7##x,_p7##y,z,c), I[169] = (T)(img)(_p6##x,_p7##y,z,c), I[170] = (T)(img)(_p5##x,_p7##y,z,c), I[171] = (T)(img)(_p4##x,_p7##y,z,c), I[172] = (T)(img)(_p3##x,_p7##y,z,c), I[173] = (T)(img)(_p2##x,_p7##y,z,c), I[174] = (T)(img)(_p1##x,_p7##y,z,c), I[175] = (T)(img)(x,_p7##y,z,c), I[176] = (T)(img)(_n1##x,_p7##y,z,c), I[177] = (T)(img)(_n2##x,_p7##y,z,c), I[178] = (T)(img)(_n3##x,_p7##y,z,c), I[179] = (T)(img)(_n4##x,_p7##y,z,c), I[180] = (T)(img)(_n5##x,_p7##y,z,c), I[181] = (T)(img)(_n6##x,_p7##y,z,c), I[182] = (T)(img)(_n7##x,_p7##y,z,c), I[183] = (T)(img)(_n8##x,_p7##y,z,c), I[184] = (T)(img)(_n9##x,_p7##y,z,c), I[185] = (T)(img)(_n10##x,_p7##y,z,c), I[186] = (T)(img)(_n11##x,_p7##y,z,c), I[187] = (T)(img)(_n12##x,_p7##y,z,c), I[188] = (T)(img)(_n13##x,_p7##y,z,c), \
I[189] = (T)(img)(_p13##x,_p6##y,z,c), I[190] = (T)(img)(_p12##x,_p6##y,z,c), I[191] = (T)(img)(_p11##x,_p6##y,z,c), I[192] = (T)(img)(_p10##x,_p6##y,z,c), I[193] = (T)(img)(_p9##x,_p6##y,z,c), I[194] = (T)(img)(_p8##x,_p6##y,z,c), I[195] = (T)(img)(_p7##x,_p6##y,z,c), I[196] = (T)(img)(_p6##x,_p6##y,z,c), I[197] = (T)(img)(_p5##x,_p6##y,z,c), I[198] = (T)(img)(_p4##x,_p6##y,z,c), I[199] = (T)(img)(_p3##x,_p6##y,z,c), I[200] = (T)(img)(_p2##x,_p6##y,z,c), I[201] = (T)(img)(_p1##x,_p6##y,z,c), I[202] = (T)(img)(x,_p6##y,z,c), I[203] = (T)(img)(_n1##x,_p6##y,z,c), I[204] = (T)(img)(_n2##x,_p6##y,z,c), I[205] = (T)(img)(_n3##x,_p6##y,z,c), I[206] = (T)(img)(_n4##x,_p6##y,z,c), I[207] = (T)(img)(_n5##x,_p6##y,z,c), I[208] = (T)(img)(_n6##x,_p6##y,z,c), I[209] = (T)(img)(_n7##x,_p6##y,z,c), I[210] = (T)(img)(_n8##x,_p6##y,z,c), I[211] = (T)(img)(_n9##x,_p6##y,z,c), I[212] = (T)(img)(_n10##x,_p6##y,z,c), I[213] = (T)(img)(_n11##x,_p6##y,z,c), I[214] = (T)(img)(_n12##x,_p6##y,z,c), I[215] = (T)(img)(_n13##x,_p6##y,z,c), \
I[216] = (T)(img)(_p13##x,_p5##y,z,c), I[217] = (T)(img)(_p12##x,_p5##y,z,c), I[218] = (T)(img)(_p11##x,_p5##y,z,c), I[219] = (T)(img)(_p10##x,_p5##y,z,c), I[220] = (T)(img)(_p9##x,_p5##y,z,c), I[221] = (T)(img)(_p8##x,_p5##y,z,c), I[222] = (T)(img)(_p7##x,_p5##y,z,c), I[223] = (T)(img)(_p6##x,_p5##y,z,c), I[224] = (T)(img)(_p5##x,_p5##y,z,c), I[225] = (T)(img)(_p4##x,_p5##y,z,c), I[226] = (T)(img)(_p3##x,_p5##y,z,c), I[227] = (T)(img)(_p2##x,_p5##y,z,c), I[228] = (T)(img)(_p1##x,_p5##y,z,c), I[229] = (T)(img)(x,_p5##y,z,c), I[230] = (T)(img)(_n1##x,_p5##y,z,c), I[231] = (T)(img)(_n2##x,_p5##y,z,c), I[232] = (T)(img)(_n3##x,_p5##y,z,c), I[233] = (T)(img)(_n4##x,_p5##y,z,c), I[234] = (T)(img)(_n5##x,_p5##y,z,c), I[235] = (T)(img)(_n6##x,_p5##y,z,c), I[236] = (T)(img)(_n7##x,_p5##y,z,c), I[237] = (T)(img)(_n8##x,_p5##y,z,c), I[238] = (T)(img)(_n9##x,_p5##y,z,c), I[239] = (T)(img)(_n10##x,_p5##y,z,c), I[240] = (T)(img)(_n11##x,_p5##y,z,c), I[241] = (T)(img)(_n12##x,_p5##y,z,c), I[242] = (T)(img)(_n13##x,_p5##y,z,c), \
I[243] = (T)(img)(_p13##x,_p4##y,z,c), I[244] = (T)(img)(_p12##x,_p4##y,z,c), I[245] = (T)(img)(_p11##x,_p4##y,z,c), I[246] = (T)(img)(_p10##x,_p4##y,z,c), I[247] = (T)(img)(_p9##x,_p4##y,z,c), I[248] = (T)(img)(_p8##x,_p4##y,z,c), I[249] = (T)(img)(_p7##x,_p4##y,z,c), I[250] = (T)(img)(_p6##x,_p4##y,z,c), I[251] = (T)(img)(_p5##x,_p4##y,z,c), I[252] = (T)(img)(_p4##x,_p4##y,z,c), I[253] = (T)(img)(_p3##x,_p4##y,z,c), I[254] = (T)(img)(_p2##x,_p4##y,z,c), I[255] = (T)(img)(_p1##x,_p4##y,z,c), I[256] = (T)(img)(x,_p4##y,z,c), I[257] = (T)(img)(_n1##x,_p4##y,z,c), I[258] = (T)(img)(_n2##x,_p4##y,z,c), I[259] = (T)(img)(_n3##x,_p4##y,z,c), I[260] = (T)(img)(_n4##x,_p4##y,z,c), I[261] = (T)(img)(_n5##x,_p4##y,z,c), I[262] = (T)(img)(_n6##x,_p4##y,z,c), I[263] = (T)(img)(_n7##x,_p4##y,z,c), I[264] = (T)(img)(_n8##x,_p4##y,z,c), I[265] = (T)(img)(_n9##x,_p4##y,z,c), I[266] = (T)(img)(_n10##x,_p4##y,z,c), I[267] = (T)(img)(_n11##x,_p4##y,z,c), I[268] = (T)(img)(_n12##x,_p4##y,z,c), I[269] = (T)(img)(_n13##x,_p4##y,z,c), \
I[270] = (T)(img)(_p13##x,_p3##y,z,c), I[271] = (T)(img)(_p12##x,_p3##y,z,c), I[272] = (T)(img)(_p11##x,_p3##y,z,c), I[273] = (T)(img)(_p10##x,_p3##y,z,c), I[274] = (T)(img)(_p9##x,_p3##y,z,c), I[275] = (T)(img)(_p8##x,_p3##y,z,c), I[276] = (T)(img)(_p7##x,_p3##y,z,c), I[277] = (T)(img)(_p6##x,_p3##y,z,c), I[278] = (T)(img)(_p5##x,_p3##y,z,c), I[279] = (T)(img)(_p4##x,_p3##y,z,c), I[280] = (T)(img)(_p3##x,_p3##y,z,c), I[281] = (T)(img)(_p2##x,_p3##y,z,c), I[282] = (T)(img)(_p1##x,_p3##y,z,c), I[283] = (T)(img)(x,_p3##y,z,c), I[284] = (T)(img)(_n1##x,_p3##y,z,c), I[285] = (T)(img)(_n2##x,_p3##y,z,c), I[286] = (T)(img)(_n3##x,_p3##y,z,c), I[287] = (T)(img)(_n4##x,_p3##y,z,c), I[288] = (T)(img)(_n5##x,_p3##y,z,c), I[289] = (T)(img)(_n6##x,_p3##y,z,c), I[290] = (T)(img)(_n7##x,_p3##y,z,c), I[291] = (T)(img)(_n8##x,_p3##y,z,c), I[292] = (T)(img)(_n9##x,_p3##y,z,c), I[293] = (T)(img)(_n10##x,_p3##y,z,c), I[294] = (T)(img)(_n11##x,_p3##y,z,c), I[295] = (T)(img)(_n12##x,_p3##y,z,c), I[296] = (T)(img)(_n13##x,_p3##y,z,c), \
I[297] = (T)(img)(_p13##x,_p2##y,z,c), I[298] = (T)(img)(_p12##x,_p2##y,z,c), I[299] = (T)(img)(_p11##x,_p2##y,z,c), I[300] = (T)(img)(_p10##x,_p2##y,z,c), I[301] = (T)(img)(_p9##x,_p2##y,z,c), I[302] = (T)(img)(_p8##x,_p2##y,z,c), I[303] = (T)(img)(_p7##x,_p2##y,z,c), I[304] = (T)(img)(_p6##x,_p2##y,z,c), I[305] = (T)(img)(_p5##x,_p2##y,z,c), I[306] = (T)(img)(_p4##x,_p2##y,z,c), I[307] = (T)(img)(_p3##x,_p2##y,z,c), I[308] = (T)(img)(_p2##x,_p2##y,z,c), I[309] = (T)(img)(_p1##x,_p2##y,z,c), I[310] = (T)(img)(x,_p2##y,z,c), I[311] = (T)(img)(_n1##x,_p2##y,z,c), I[312] = (T)(img)(_n2##x,_p2##y,z,c), I[313] = (T)(img)(_n3##x,_p2##y,z,c), I[314] = (T)(img)(_n4##x,_p2##y,z,c), I[315] = (T)(img)(_n5##x,_p2##y,z,c), I[316] = (T)(img)(_n6##x,_p2##y,z,c), I[317] = (T)(img)(_n7##x,_p2##y,z,c), I[318] = (T)(img)(_n8##x,_p2##y,z,c), I[319] = (T)(img)(_n9##x,_p2##y,z,c), I[320] = (T)(img)(_n10##x,_p2##y,z,c), I[321] = (T)(img)(_n11##x,_p2##y,z,c), I[322] = (T)(img)(_n12##x,_p2##y,z,c), I[323] = (T)(img)(_n13##x,_p2##y,z,c), \
I[324] = (T)(img)(_p13##x,_p1##y,z,c), I[325] = (T)(img)(_p12##x,_p1##y,z,c), I[326] = (T)(img)(_p11##x,_p1##y,z,c), I[327] = (T)(img)(_p10##x,_p1##y,z,c), I[328] = (T)(img)(_p9##x,_p1##y,z,c), I[329] = (T)(img)(_p8##x,_p1##y,z,c), I[330] = (T)(img)(_p7##x,_p1##y,z,c), I[331] = (T)(img)(_p6##x,_p1##y,z,c), I[332] = (T)(img)(_p5##x,_p1##y,z,c), I[333] = (T)(img)(_p4##x,_p1##y,z,c), I[334] = (T)(img)(_p3##x,_p1##y,z,c), I[335] = (T)(img)(_p2##x,_p1##y,z,c), I[336] = (T)(img)(_p1##x,_p1##y,z,c), I[337] = (T)(img)(x,_p1##y,z,c), I[338] = (T)(img)(_n1##x,_p1##y,z,c), I[339] = (T)(img)(_n2##x,_p1##y,z,c), I[340] = (T)(img)(_n3##x,_p1##y,z,c), I[341] = (T)(img)(_n4##x,_p1##y,z,c), I[342] = (T)(img)(_n5##x,_p1##y,z,c), I[343] = (T)(img)(_n6##x,_p1##y,z,c), I[344] = (T)(img)(_n7##x,_p1##y,z,c), I[345] = (T)(img)(_n8##x,_p1##y,z,c), I[346] = (T)(img)(_n9##x,_p1##y,z,c), I[347] = (T)(img)(_n10##x,_p1##y,z,c), I[348] = (T)(img)(_n11##x,_p1##y,z,c), I[349] = (T)(img)(_n12##x,_p1##y,z,c), I[350] = (T)(img)(_n13##x,_p1##y,z,c), \
I[351] = (T)(img)(_p13##x,y,z,c), I[352] = (T)(img)(_p12##x,y,z,c), I[353] = (T)(img)(_p11##x,y,z,c), I[354] = (T)(img)(_p10##x,y,z,c), I[355] = (T)(img)(_p9##x,y,z,c), I[356] = (T)(img)(_p8##x,y,z,c), I[357] = (T)(img)(_p7##x,y,z,c), I[358] = (T)(img)(_p6##x,y,z,c), I[359] = (T)(img)(_p5##x,y,z,c), I[360] = (T)(img)(_p4##x,y,z,c), I[361] = (T)(img)(_p3##x,y,z,c), I[362] = (T)(img)(_p2##x,y,z,c), I[363] = (T)(img)(_p1##x,y,z,c), I[364] = (T)(img)(x,y,z,c), I[365] = (T)(img)(_n1##x,y,z,c), I[366] = (T)(img)(_n2##x,y,z,c), I[367] = (T)(img)(_n3##x,y,z,c), I[368] = (T)(img)(_n4##x,y,z,c), I[369] = (T)(img)(_n5##x,y,z,c), I[370] = (T)(img)(_n6##x,y,z,c), I[371] = (T)(img)(_n7##x,y,z,c), I[372] = (T)(img)(_n8##x,y,z,c), I[373] = (T)(img)(_n9##x,y,z,c), I[374] = (T)(img)(_n10##x,y,z,c), I[375] = (T)(img)(_n11##x,y,z,c), I[376] = (T)(img)(_n12##x,y,z,c), I[377] = (T)(img)(_n13##x,y,z,c), \
I[378] = (T)(img)(_p13##x,_n1##y,z,c), I[379] = (T)(img)(_p12##x,_n1##y,z,c), I[380] = (T)(img)(_p11##x,_n1##y,z,c), I[381] = (T)(img)(_p10##x,_n1##y,z,c), I[382] = (T)(img)(_p9##x,_n1##y,z,c), I[383] = (T)(img)(_p8##x,_n1##y,z,c), I[384] = (T)(img)(_p7##x,_n1##y,z,c), I[385] = (T)(img)(_p6##x,_n1##y,z,c), I[386] = (T)(img)(_p5##x,_n1##y,z,c), I[387] = (T)(img)(_p4##x,_n1##y,z,c), I[388] = (T)(img)(_p3##x,_n1##y,z,c), I[389] = (T)(img)(_p2##x,_n1##y,z,c), I[390] = (T)(img)(_p1##x,_n1##y,z,c), I[391] = (T)(img)(x,_n1##y,z,c), I[392] = (T)(img)(_n1##x,_n1##y,z,c), I[393] = (T)(img)(_n2##x,_n1##y,z,c), I[394] = (T)(img)(_n3##x,_n1##y,z,c), I[395] = (T)(img)(_n4##x,_n1##y,z,c), I[396] = (T)(img)(_n5##x,_n1##y,z,c), I[397] = (T)(img)(_n6##x,_n1##y,z,c), I[398] = (T)(img)(_n7##x,_n1##y,z,c), I[399] = (T)(img)(_n8##x,_n1##y,z,c), I[400] = (T)(img)(_n9##x,_n1##y,z,c), I[401] = (T)(img)(_n10##x,_n1##y,z,c), I[402] = (T)(img)(_n11##x,_n1##y,z,c), I[403] = (T)(img)(_n12##x,_n1##y,z,c), I[404] = (T)(img)(_n13##x,_n1##y,z,c), \
I[405] = (T)(img)(_p13##x,_n2##y,z,c), I[406] = (T)(img)(_p12##x,_n2##y,z,c), I[407] = (T)(img)(_p11##x,_n2##y,z,c), I[408] = (T)(img)(_p10##x,_n2##y,z,c), I[409] = (T)(img)(_p9##x,_n2##y,z,c), I[410] = (T)(img)(_p8##x,_n2##y,z,c), I[411] = (T)(img)(_p7##x,_n2##y,z,c), I[412] = (T)(img)(_p6##x,_n2##y,z,c), I[413] = (T)(img)(_p5##x,_n2##y,z,c), I[414] = (T)(img)(_p4##x,_n2##y,z,c), I[415] = (T)(img)(_p3##x,_n2##y,z,c), I[416] = (T)(img)(_p2##x,_n2##y,z,c), I[417] = (T)(img)(_p1##x,_n2##y,z,c), I[418] = (T)(img)(x,_n2##y,z,c), I[419] = (T)(img)(_n1##x,_n2##y,z,c), I[420] = (T)(img)(_n2##x,_n2##y,z,c), I[421] = (T)(img)(_n3##x,_n2##y,z,c), I[422] = (T)(img)(_n4##x,_n2##y,z,c), I[423] = (T)(img)(_n5##x,_n2##y,z,c), I[424] = (T)(img)(_n6##x,_n2##y,z,c), I[425] = (T)(img)(_n7##x,_n2##y,z,c), I[426] = (T)(img)(_n8##x,_n2##y,z,c), I[427] = (T)(img)(_n9##x,_n2##y,z,c), I[428] = (T)(img)(_n10##x,_n2##y,z,c), I[429] = (T)(img)(_n11##x,_n2##y,z,c), I[430] = (T)(img)(_n12##x,_n2##y,z,c), I[431] = (T)(img)(_n13##x,_n2##y,z,c), \
I[432] = (T)(img)(_p13##x,_n3##y,z,c), I[433] = (T)(img)(_p12##x,_n3##y,z,c), I[434] = (T)(img)(_p11##x,_n3##y,z,c), I[435] = (T)(img)(_p10##x,_n3##y,z,c), I[436] = (T)(img)(_p9##x,_n3##y,z,c), I[437] = (T)(img)(_p8##x,_n3##y,z,c), I[438] = (T)(img)(_p7##x,_n3##y,z,c), I[439] = (T)(img)(_p6##x,_n3##y,z,c), I[440] = (T)(img)(_p5##x,_n3##y,z,c), I[441] = (T)(img)(_p4##x,_n3##y,z,c), I[442] = (T)(img)(_p3##x,_n3##y,z,c), I[443] = (T)(img)(_p2##x,_n3##y,z,c), I[444] = (T)(img)(_p1##x,_n3##y,z,c), I[445] = (T)(img)(x,_n3##y,z,c), I[446] = (T)(img)(_n1##x,_n3##y,z,c), I[447] = (T)(img)(_n2##x,_n3##y,z,c), I[448] = (T)(img)(_n3##x,_n3##y,z,c), I[449] = (T)(img)(_n4##x,_n3##y,z,c), I[450] = (T)(img)(_n5##x,_n3##y,z,c), I[451] = (T)(img)(_n6##x,_n3##y,z,c), I[452] = (T)(img)(_n7##x,_n3##y,z,c), I[453] = (T)(img)(_n8##x,_n3##y,z,c), I[454] = (T)(img)(_n9##x,_n3##y,z,c), I[455] = (T)(img)(_n10##x,_n3##y,z,c), I[456] = (T)(img)(_n11##x,_n3##y,z,c), I[457] = (T)(img)(_n12##x,_n3##y,z,c), I[458] = (T)(img)(_n13##x,_n3##y,z,c), \
I[459] = (T)(img)(_p13##x,_n4##y,z,c), I[460] = (T)(img)(_p12##x,_n4##y,z,c), I[461] = (T)(img)(_p11##x,_n4##y,z,c), I[462] = (T)(img)(_p10##x,_n4##y,z,c), I[463] = (T)(img)(_p9##x,_n4##y,z,c), I[464] = (T)(img)(_p8##x,_n4##y,z,c), I[465] = (T)(img)(_p7##x,_n4##y,z,c), I[466] = (T)(img)(_p6##x,_n4##y,z,c), I[467] = (T)(img)(_p5##x,_n4##y,z,c), I[468] = (T)(img)(_p4##x,_n4##y,z,c), I[469] = (T)(img)(_p3##x,_n4##y,z,c), I[470] = (T)(img)(_p2##x,_n4##y,z,c), I[471] = (T)(img)(_p1##x,_n4##y,z,c), I[472] = (T)(img)(x,_n4##y,z,c), I[473] = (T)(img)(_n1##x,_n4##y,z,c), I[474] = (T)(img)(_n2##x,_n4##y,z,c), I[475] = (T)(img)(_n3##x,_n4##y,z,c), I[476] = (T)(img)(_n4##x,_n4##y,z,c), I[477] = (T)(img)(_n5##x,_n4##y,z,c), I[478] = (T)(img)(_n6##x,_n4##y,z,c), I[479] = (T)(img)(_n7##x,_n4##y,z,c), I[480] = (T)(img)(_n8##x,_n4##y,z,c), I[481] = (T)(img)(_n9##x,_n4##y,z,c), I[482] = (T)(img)(_n10##x,_n4##y,z,c), I[483] = (T)(img)(_n11##x,_n4##y,z,c), I[484] = (T)(img)(_n12##x,_n4##y,z,c), I[485] = (T)(img)(_n13##x,_n4##y,z,c), \
I[486] = (T)(img)(_p13##x,_n5##y,z,c), I[487] = (T)(img)(_p12##x,_n5##y,z,c), I[488] = (T)(img)(_p11##x,_n5##y,z,c), I[489] = (T)(img)(_p10##x,_n5##y,z,c), I[490] = (T)(img)(_p9##x,_n5##y,z,c), I[491] = (T)(img)(_p8##x,_n5##y,z,c), I[492] = (T)(img)(_p7##x,_n5##y,z,c), I[493] = (T)(img)(_p6##x,_n5##y,z,c), I[494] = (T)(img)(_p5##x,_n5##y,z,c), I[495] = (T)(img)(_p4##x,_n5##y,z,c), I[496] = (T)(img)(_p3##x,_n5##y,z,c), I[497] = (T)(img)(_p2##x,_n5##y,z,c), I[498] = (T)(img)(_p1##x,_n5##y,z,c), I[499] = (T)(img)(x,_n5##y,z,c), I[500] = (T)(img)(_n1##x,_n5##y,z,c), I[501] = (T)(img)(_n2##x,_n5##y,z,c), I[502] = (T)(img)(_n3##x,_n5##y,z,c), I[503] = (T)(img)(_n4##x,_n5##y,z,c), I[504] = (T)(img)(_n5##x,_n5##y,z,c), I[505] = (T)(img)(_n6##x,_n5##y,z,c), I[506] = (T)(img)(_n7##x,_n5##y,z,c), I[507] = (T)(img)(_n8##x,_n5##y,z,c), I[508] = (T)(img)(_n9##x,_n5##y,z,c), I[509] = (T)(img)(_n10##x,_n5##y,z,c), I[510] = (T)(img)(_n11##x,_n5##y,z,c), I[511] = (T)(img)(_n12##x,_n5##y,z,c), I[512] = (T)(img)(_n13##x,_n5##y,z,c), \
I[513] = (T)(img)(_p13##x,_n6##y,z,c), I[514] = (T)(img)(_p12##x,_n6##y,z,c), I[515] = (T)(img)(_p11##x,_n6##y,z,c), I[516] = (T)(img)(_p10##x,_n6##y,z,c), I[517] = (T)(img)(_p9##x,_n6##y,z,c), I[518] = (T)(img)(_p8##x,_n6##y,z,c), I[519] = (T)(img)(_p7##x,_n6##y,z,c), I[520] = (T)(img)(_p6##x,_n6##y,z,c), I[521] = (T)(img)(_p5##x,_n6##y,z,c), I[522] = (T)(img)(_p4##x,_n6##y,z,c), I[523] = (T)(img)(_p3##x,_n6##y,z,c), I[524] = (T)(img)(_p2##x,_n6##y,z,c), I[525] = (T)(img)(_p1##x,_n6##y,z,c), I[526] = (T)(img)(x,_n6##y,z,c), I[527] = (T)(img)(_n1##x,_n6##y,z,c), I[528] = (T)(img)(_n2##x,_n6##y,z,c), I[529] = (T)(img)(_n3##x,_n6##y,z,c), I[530] = (T)(img)(_n4##x,_n6##y,z,c), I[531] = (T)(img)(_n5##x,_n6##y,z,c), I[532] = (T)(img)(_n6##x,_n6##y,z,c), I[533] = (T)(img)(_n7##x,_n6##y,z,c), I[534] = (T)(img)(_n8##x,_n6##y,z,c), I[535] = (T)(img)(_n9##x,_n6##y,z,c), I[536] = (T)(img)(_n10##x,_n6##y,z,c), I[537] = (T)(img)(_n11##x,_n6##y,z,c), I[538] = (T)(img)(_n12##x,_n6##y,z,c), I[539] = (T)(img)(_n13##x,_n6##y,z,c), \
I[540] = (T)(img)(_p13##x,_n7##y,z,c), I[541] = (T)(img)(_p12##x,_n7##y,z,c), I[542] = (T)(img)(_p11##x,_n7##y,z,c), I[543] = (T)(img)(_p10##x,_n7##y,z,c), I[544] = (T)(img)(_p9##x,_n7##y,z,c), I[545] = (T)(img)(_p8##x,_n7##y,z,c), I[546] = (T)(img)(_p7##x,_n7##y,z,c), I[547] = (T)(img)(_p6##x,_n7##y,z,c), I[548] = (T)(img)(_p5##x,_n7##y,z,c), I[549] = (T)(img)(_p4##x,_n7##y,z,c), I[550] = (T)(img)(_p3##x,_n7##y,z,c), I[551] = (T)(img)(_p2##x,_n7##y,z,c), I[552] = (T)(img)(_p1##x,_n7##y,z,c), I[553] = (T)(img)(x,_n7##y,z,c), I[554] = (T)(img)(_n1##x,_n7##y,z,c), I[555] = (T)(img)(_n2##x,_n7##y,z,c), I[556] = (T)(img)(_n3##x,_n7##y,z,c), I[557] = (T)(img)(_n4##x,_n7##y,z,c), I[558] = (T)(img)(_n5##x,_n7##y,z,c), I[559] = (T)(img)(_n6##x,_n7##y,z,c), I[560] = (T)(img)(_n7##x,_n7##y,z,c), I[561] = (T)(img)(_n8##x,_n7##y,z,c), I[562] = (T)(img)(_n9##x,_n7##y,z,c), I[563] = (T)(img)(_n10##x,_n7##y,z,c), I[564] = (T)(img)(_n11##x,_n7##y,z,c), I[565] = (T)(img)(_n12##x,_n7##y,z,c), I[566] = (T)(img)(_n13##x,_n7##y,z,c), \
I[567] = (T)(img)(_p13##x,_n8##y,z,c), I[568] = (T)(img)(_p12##x,_n8##y,z,c), I[569] = (T)(img)(_p11##x,_n8##y,z,c), I[570] = (T)(img)(_p10##x,_n8##y,z,c), I[571] = (T)(img)(_p9##x,_n8##y,z,c), I[572] = (T)(img)(_p8##x,_n8##y,z,c), I[573] = (T)(img)(_p7##x,_n8##y,z,c), I[574] = (T)(img)(_p6##x,_n8##y,z,c), I[575] = (T)(img)(_p5##x,_n8##y,z,c), I[576] = (T)(img)(_p4##x,_n8##y,z,c), I[577] = (T)(img)(_p3##x,_n8##y,z,c), I[578] = (T)(img)(_p2##x,_n8##y,z,c), I[579] = (T)(img)(_p1##x,_n8##y,z,c), I[580] = (T)(img)(x,_n8##y,z,c), I[581] = (T)(img)(_n1##x,_n8##y,z,c), I[582] = (T)(img)(_n2##x,_n8##y,z,c), I[583] = (T)(img)(_n3##x,_n8##y,z,c), I[584] = (T)(img)(_n4##x,_n8##y,z,c), I[585] = (T)(img)(_n5##x,_n8##y,z,c), I[586] = (T)(img)(_n6##x,_n8##y,z,c), I[587] = (T)(img)(_n7##x,_n8##y,z,c), I[588] = (T)(img)(_n8##x,_n8##y,z,c), I[589] = (T)(img)(_n9##x,_n8##y,z,c), I[590] = (T)(img)(_n10##x,_n8##y,z,c), I[591] = (T)(img)(_n11##x,_n8##y,z,c), I[592] = (T)(img)(_n12##x,_n8##y,z,c), I[593] = (T)(img)(_n13##x,_n8##y,z,c), \
I[594] = (T)(img)(_p13##x,_n9##y,z,c), I[595] = (T)(img)(_p12##x,_n9##y,z,c), I[596] = (T)(img)(_p11##x,_n9##y,z,c), I[597] = (T)(img)(_p10##x,_n9##y,z,c), I[598] = (T)(img)(_p9##x,_n9##y,z,c), I[599] = (T)(img)(_p8##x,_n9##y,z,c), I[600] = (T)(img)(_p7##x,_n9##y,z,c), I[601] = (T)(img)(_p6##x,_n9##y,z,c), I[602] = (T)(img)(_p5##x,_n9##y,z,c), I[603] = (T)(img)(_p4##x,_n9##y,z,c), I[604] = (T)(img)(_p3##x,_n9##y,z,c), I[605] = (T)(img)(_p2##x,_n9##y,z,c), I[606] = (T)(img)(_p1##x,_n9##y,z,c), I[607] = (T)(img)(x,_n9##y,z,c), I[608] = (T)(img)(_n1##x,_n9##y,z,c), I[609] = (T)(img)(_n2##x,_n9##y,z,c), I[610] = (T)(img)(_n3##x,_n9##y,z,c), I[611] = (T)(img)(_n4##x,_n9##y,z,c), I[612] = (T)(img)(_n5##x,_n9##y,z,c), I[613] = (T)(img)(_n6##x,_n9##y,z,c), I[614] = (T)(img)(_n7##x,_n9##y,z,c), I[615] = (T)(img)(_n8##x,_n9##y,z,c), I[616] = (T)(img)(_n9##x,_n9##y,z,c), I[617] = (T)(img)(_n10##x,_n9##y,z,c), I[618] = (T)(img)(_n11##x,_n9##y,z,c), I[619] = (T)(img)(_n12##x,_n9##y,z,c), I[620] = (T)(img)(_n13##x,_n9##y,z,c), \
I[621] = (T)(img)(_p13##x,_n10##y,z,c), I[622] = (T)(img)(_p12##x,_n10##y,z,c), I[623] = (T)(img)(_p11##x,_n10##y,z,c), I[624] = (T)(img)(_p10##x,_n10##y,z,c), I[625] = (T)(img)(_p9##x,_n10##y,z,c), I[626] = (T)(img)(_p8##x,_n10##y,z,c), I[627] = (T)(img)(_p7##x,_n10##y,z,c), I[628] = (T)(img)(_p6##x,_n10##y,z,c), I[629] = (T)(img)(_p5##x,_n10##y,z,c), I[630] = (T)(img)(_p4##x,_n10##y,z,c), I[631] = (T)(img)(_p3##x,_n10##y,z,c), I[632] = (T)(img)(_p2##x,_n10##y,z,c), I[633] = (T)(img)(_p1##x,_n10##y,z,c), I[634] = (T)(img)(x,_n10##y,z,c), I[635] = (T)(img)(_n1##x,_n10##y,z,c), I[636] = (T)(img)(_n2##x,_n10##y,z,c), I[637] = (T)(img)(_n3##x,_n10##y,z,c), I[638] = (T)(img)(_n4##x,_n10##y,z,c), I[639] = (T)(img)(_n5##x,_n10##y,z,c), I[640] = (T)(img)(_n6##x,_n10##y,z,c), I[641] = (T)(img)(_n7##x,_n10##y,z,c), I[642] = (T)(img)(_n8##x,_n10##y,z,c), I[643] = (T)(img)(_n9##x,_n10##y,z,c), I[644] = (T)(img)(_n10##x,_n10##y,z,c), I[645] = (T)(img)(_n11##x,_n10##y,z,c), I[646] = (T)(img)(_n12##x,_n10##y,z,c), I[647] = (T)(img)(_n13##x,_n10##y,z,c), \
I[648] = (T)(img)(_p13##x,_n11##y,z,c), I[649] = (T)(img)(_p12##x,_n11##y,z,c), I[650] = (T)(img)(_p11##x,_n11##y,z,c), I[651] = (T)(img)(_p10##x,_n11##y,z,c), I[652] = (T)(img)(_p9##x,_n11##y,z,c), I[653] = (T)(img)(_p8##x,_n11##y,z,c), I[654] = (T)(img)(_p7##x,_n11##y,z,c), I[655] = (T)(img)(_p6##x,_n11##y,z,c), I[656] = (T)(img)(_p5##x,_n11##y,z,c), I[657] = (T)(img)(_p4##x,_n11##y,z,c), I[658] = (T)(img)(_p3##x,_n11##y,z,c), I[659] = (T)(img)(_p2##x,_n11##y,z,c), I[660] = (T)(img)(_p1##x,_n11##y,z,c), I[661] = (T)(img)(x,_n11##y,z,c), I[662] = (T)(img)(_n1##x,_n11##y,z,c), I[663] = (T)(img)(_n2##x,_n11##y,z,c), I[664] = (T)(img)(_n3##x,_n11##y,z,c), I[665] = (T)(img)(_n4##x,_n11##y,z,c), I[666] = (T)(img)(_n5##x,_n11##y,z,c), I[667] = (T)(img)(_n6##x,_n11##y,z,c), I[668] = (T)(img)(_n7##x,_n11##y,z,c), I[669] = (T)(img)(_n8##x,_n11##y,z,c), I[670] = (T)(img)(_n9##x,_n11##y,z,c), I[671] = (T)(img)(_n10##x,_n11##y,z,c), I[672] = (T)(img)(_n11##x,_n11##y,z,c), I[673] = (T)(img)(_n12##x,_n11##y,z,c), I[674] = (T)(img)(_n13##x,_n11##y,z,c), \
I[675] = (T)(img)(_p13##x,_n12##y,z,c), I[676] = (T)(img)(_p12##x,_n12##y,z,c), I[677] = (T)(img)(_p11##x,_n12##y,z,c), I[678] = (T)(img)(_p10##x,_n12##y,z,c), I[679] = (T)(img)(_p9##x,_n12##y,z,c), I[680] = (T)(img)(_p8##x,_n12##y,z,c), I[681] = (T)(img)(_p7##x,_n12##y,z,c), I[682] = (T)(img)(_p6##x,_n12##y,z,c), I[683] = (T)(img)(_p5##x,_n12##y,z,c), I[684] = (T)(img)(_p4##x,_n12##y,z,c), I[685] = (T)(img)(_p3##x,_n12##y,z,c), I[686] = (T)(img)(_p2##x,_n12##y,z,c), I[687] = (T)(img)(_p1##x,_n12##y,z,c), I[688] = (T)(img)(x,_n12##y,z,c), I[689] = (T)(img)(_n1##x,_n12##y,z,c), I[690] = (T)(img)(_n2##x,_n12##y,z,c), I[691] = (T)(img)(_n3##x,_n12##y,z,c), I[692] = (T)(img)(_n4##x,_n12##y,z,c), I[693] = (T)(img)(_n5##x,_n12##y,z,c), I[694] = (T)(img)(_n6##x,_n12##y,z,c), I[695] = (T)(img)(_n7##x,_n12##y,z,c), I[696] = (T)(img)(_n8##x,_n12##y,z,c), I[697] = (T)(img)(_n9##x,_n12##y,z,c), I[698] = (T)(img)(_n10##x,_n12##y,z,c), I[699] = (T)(img)(_n11##x,_n12##y,z,c), I[700] = (T)(img)(_n12##x,_n12##y,z,c), I[701] = (T)(img)(_n13##x,_n12##y,z,c), \
I[702] = (T)(img)(_p13##x,_n13##y,z,c), I[703] = (T)(img)(_p12##x,_n13##y,z,c), I[704] = (T)(img)(_p11##x,_n13##y,z,c), I[705] = (T)(img)(_p10##x,_n13##y,z,c), I[706] = (T)(img)(_p9##x,_n13##y,z,c), I[707] = (T)(img)(_p8##x,_n13##y,z,c), I[708] = (T)(img)(_p7##x,_n13##y,z,c), I[709] = (T)(img)(_p6##x,_n13##y,z,c), I[710] = (T)(img)(_p5##x,_n13##y,z,c), I[711] = (T)(img)(_p4##x,_n13##y,z,c), I[712] = (T)(img)(_p3##x,_n13##y,z,c), I[713] = (T)(img)(_p2##x,_n13##y,z,c), I[714] = (T)(img)(_p1##x,_n13##y,z,c), I[715] = (T)(img)(x,_n13##y,z,c), I[716] = (T)(img)(_n1##x,_n13##y,z,c), I[717] = (T)(img)(_n2##x,_n13##y,z,c), I[718] = (T)(img)(_n3##x,_n13##y,z,c), I[719] = (T)(img)(_n4##x,_n13##y,z,c), I[720] = (T)(img)(_n5##x,_n13##y,z,c), I[721] = (T)(img)(_n6##x,_n13##y,z,c), I[722] = (T)(img)(_n7##x,_n13##y,z,c), I[723] = (T)(img)(_n8##x,_n13##y,z,c), I[724] = (T)(img)(_n9##x,_n13##y,z,c), I[725] = (T)(img)(_n10##x,_n13##y,z,c), I[726] = (T)(img)(_n11##x,_n13##y,z,c), I[727] = (T)(img)(_n12##x,_n13##y,z,c), I[728] = (T)(img)(_n13##x,_n13##y,z,c);
// Define 28x28 loop macros
//-------------------------
#define cimg_for28(bound,i) for (int i = 0, \
_p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14; \
_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
#define cimg_for28X(img,x) cimg_for28((img)._width,x)
#define cimg_for28Y(img,y) cimg_for28((img)._height,y)
#define cimg_for28Z(img,z) cimg_for28((img)._depth,z)
#define cimg_for28C(img,c) cimg_for28((img)._spectrum,c)
#define cimg_for28XY(img,x,y) cimg_for28Y(img,y) cimg_for28X(img,x)
#define cimg_for28XZ(img,x,z) cimg_for28Z(img,z) cimg_for28X(img,x)
#define cimg_for28XC(img,x,c) cimg_for28C(img,c) cimg_for28X(img,x)
#define cimg_for28YZ(img,y,z) cimg_for28Z(img,z) cimg_for28Y(img,y)
#define cimg_for28YC(img,y,c) cimg_for28C(img,c) cimg_for28Y(img,y)
#define cimg_for28ZC(img,z,c) cimg_for28C(img,c) cimg_for28Z(img,z)
#define cimg_for28XYZ(img,x,y,z) cimg_for28Z(img,z) cimg_for28XY(img,x,y)
#define cimg_for28XZC(img,x,z,c) cimg_for28C(img,c) cimg_for28XZ(img,x,z)
#define cimg_for28YZC(img,y,z,c) cimg_for28C(img,c) cimg_for28YZ(img,y,z)
#define cimg_for28XYZC(img,x,y,z,c) cimg_for28C(img,c) cimg_for28XYZ(img,x,y,z)
#define cimg_for_in28(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p13##i = i - 13<0?0:i - 13, \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14; \
i<=(int)(i1) && (_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
#define cimg_for_in28X(img,x0,x1,x) cimg_for_in28((img)._width,x0,x1,x)
#define cimg_for_in28Y(img,y0,y1,y) cimg_for_in28((img)._height,y0,y1,y)
#define cimg_for_in28Z(img,z0,z1,z) cimg_for_in28((img)._depth,z0,z1,z)
#define cimg_for_in28C(img,c0,c1,c) cimg_for_in28((img)._spectrum,c0,c1,c)
#define cimg_for_in28XY(img,x0,y0,x1,y1,x,y) cimg_for_in28Y(img,y0,y1,y) cimg_for_in28X(img,x0,x1,x)
#define cimg_for_in28XZ(img,x0,z0,x1,z1,x,z) cimg_for_in28Z(img,z0,z1,z) cimg_for_in28X(img,x0,x1,x)
#define cimg_for_in28XC(img,x0,c0,x1,c1,x,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28X(img,x0,x1,x)
#define cimg_for_in28YZ(img,y0,z0,y1,z1,y,z) cimg_for_in28Z(img,z0,z1,z) cimg_for_in28Y(img,y0,y1,y)
#define cimg_for_in28YC(img,y0,c0,y1,c1,y,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28Y(img,y0,y1,y)
#define cimg_for_in28ZC(img,z0,c0,z1,c1,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28Z(img,z0,z1,z)
#define cimg_for_in28XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in28Z(img,z0,z1,z) cimg_for_in28XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in28XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in28YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in28XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in28C(img,c0,c1,c) cimg_for_in28XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for28x28(img,x,y,z,c,I,T) \
cimg_for28((img)._height,y) for (int x = 0, \
_p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
_n14##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = (T)(img)(0,_p13##y,z,c)), \
(I[28] = I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = (T)(img)(0,_p12##y,z,c)), \
(I[56] = I[57] = I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = (T)(img)(0,_p11##y,z,c)), \
(I[84] = I[85] = I[86] = I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = (T)(img)(0,_p10##y,z,c)), \
(I[112] = I[113] = I[114] = I[115] = I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = (T)(img)(0,_p9##y,z,c)), \
(I[140] = I[141] = I[142] = I[143] = I[144] = I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = (T)(img)(0,_p8##y,z,c)), \
(I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = (T)(img)(0,_p7##y,z,c)), \
(I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = (T)(img)(0,_p6##y,z,c)), \
(I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = (T)(img)(0,_p5##y,z,c)), \
(I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = (T)(img)(0,_p4##y,z,c)), \
(I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = (T)(img)(0,_p3##y,z,c)), \
(I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = (T)(img)(0,_p2##y,z,c)), \
(I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = (T)(img)(0,_p1##y,z,c)), \
(I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = (T)(img)(0,y,z,c)), \
(I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = I[405] = (T)(img)(0,_n1##y,z,c)), \
(I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = I[432] = I[433] = (T)(img)(0,_n2##y,z,c)), \
(I[448] = I[449] = I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = (T)(img)(0,_n3##y,z,c)), \
(I[476] = I[477] = I[478] = I[479] = I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = (T)(img)(0,_n4##y,z,c)), \
(I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = (T)(img)(0,_n5##y,z,c)), \
(I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = I[540] = I[541] = I[542] = I[543] = I[544] = I[545] = (T)(img)(0,_n6##y,z,c)), \
(I[560] = I[561] = I[562] = I[563] = I[564] = I[565] = I[566] = I[567] = I[568] = I[569] = I[570] = I[571] = I[572] = I[573] = (T)(img)(0,_n7##y,z,c)), \
(I[588] = I[589] = I[590] = I[591] = I[592] = I[593] = I[594] = I[595] = I[596] = I[597] = I[598] = I[599] = I[600] = I[601] = (T)(img)(0,_n8##y,z,c)), \
(I[616] = I[617] = I[618] = I[619] = I[620] = I[621] = I[622] = I[623] = I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = (T)(img)(0,_n9##y,z,c)), \
(I[644] = I[645] = I[646] = I[647] = I[648] = I[649] = I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = (T)(img)(0,_n10##y,z,c)), \
(I[672] = I[673] = I[674] = I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = I[682] = I[683] = I[684] = I[685] = (T)(img)(0,_n11##y,z,c)), \
(I[700] = I[701] = I[702] = I[703] = I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = I[711] = I[712] = I[713] = (T)(img)(0,_n12##y,z,c)), \
(I[728] = I[729] = I[730] = I[731] = I[732] = I[733] = I[734] = I[735] = I[736] = I[737] = I[738] = I[739] = I[740] = I[741] = (T)(img)(0,_n13##y,z,c)), \
(I[756] = I[757] = I[758] = I[759] = I[760] = I[761] = I[762] = I[763] = I[764] = I[765] = I[766] = I[767] = I[768] = I[769] = (T)(img)(0,_n14##y,z,c)), \
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[42] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[70] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[98] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[126] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[154] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[182] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[210] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[238] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[266] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[294] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[322] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[350] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[378] = (T)(img)(_n1##x,y,z,c)), \
(I[406] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[434] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[462] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[490] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[518] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[546] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[574] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[602] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[630] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[658] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[686] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[714] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[742] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[770] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[43] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[71] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[99] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[127] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[155] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[183] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[211] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[239] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[267] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[295] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[323] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[351] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[379] = (T)(img)(_n2##x,y,z,c)), \
(I[407] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[435] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[463] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[491] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[519] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[547] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[575] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[603] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[631] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[659] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[687] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[715] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[743] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[771] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[44] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[72] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[100] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[128] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[156] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[184] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[212] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[240] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[268] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[296] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[324] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[352] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[380] = (T)(img)(_n3##x,y,z,c)), \
(I[408] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[436] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[464] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[492] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[520] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[548] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[576] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[604] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[632] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[660] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[688] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[716] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[744] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[772] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[45] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[73] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[101] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[129] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[157] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[185] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[213] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[241] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[269] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[297] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[325] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[353] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[381] = (T)(img)(_n4##x,y,z,c)), \
(I[409] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[437] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[465] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[493] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[521] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[549] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[577] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[605] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[633] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[661] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[689] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[717] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[745] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[773] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[46] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[74] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[102] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[130] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[158] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[186] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[214] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[242] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[270] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[298] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[326] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[354] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[382] = (T)(img)(_n5##x,y,z,c)), \
(I[410] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[438] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[466] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[494] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[522] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[550] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[578] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[606] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[634] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[662] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[690] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[718] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[746] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[774] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[47] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[75] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[103] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[131] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[159] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[187] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[215] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[243] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[271] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[299] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[327] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[355] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[383] = (T)(img)(_n6##x,y,z,c)), \
(I[411] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[439] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[467] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[495] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[523] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[551] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[579] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[607] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[635] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[663] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[691] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[719] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[747] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[775] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[48] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[76] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[104] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[132] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[160] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[188] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[216] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[244] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[272] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[300] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[328] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[356] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[384] = (T)(img)(_n7##x,y,z,c)), \
(I[412] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[440] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[468] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[496] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[524] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[552] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[580] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[608] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[636] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[664] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[692] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[720] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[748] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[776] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[49] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[77] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[105] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[133] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[161] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[189] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[217] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[245] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[273] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[301] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[329] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[357] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[385] = (T)(img)(_n8##x,y,z,c)), \
(I[413] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[441] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[469] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[497] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[525] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[553] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[581] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[609] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[637] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[665] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[693] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[721] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[749] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[777] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[50] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[78] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[106] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[134] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[162] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[190] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[218] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[246] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[274] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[302] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[330] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[358] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[386] = (T)(img)(_n9##x,y,z,c)), \
(I[414] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[442] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[470] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[498] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[526] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[554] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[582] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[610] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[638] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[666] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[694] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[722] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[750] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[778] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[51] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[79] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[107] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[135] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[163] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[191] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[219] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[247] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[275] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[303] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[331] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[359] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[387] = (T)(img)(_n10##x,y,z,c)), \
(I[415] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[443] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[471] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[499] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[527] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[555] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[583] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[611] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[639] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[667] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[695] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[723] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[751] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[779] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[52] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[80] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[108] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[136] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[164] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[192] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[220] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[248] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[276] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[304] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[332] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[360] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[388] = (T)(img)(_n11##x,y,z,c)), \
(I[416] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[444] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[472] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[500] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[528] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[556] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[584] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[612] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[640] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[668] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[696] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[724] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[752] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[780] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[53] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[81] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[109] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[137] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[165] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[193] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[221] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[249] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[277] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[305] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[333] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[361] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[389] = (T)(img)(_n12##x,y,z,c)), \
(I[417] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[445] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[473] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[501] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[529] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[557] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[585] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[613] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[641] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[669] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[697] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[725] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[753] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[781] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[54] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[82] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[110] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[138] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[166] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[194] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[222] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[250] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[278] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[306] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[334] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[362] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[390] = (T)(img)(_n13##x,y,z,c)), \
(I[418] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[446] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[474] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[502] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[530] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[558] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[586] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[614] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[642] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[670] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[698] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[726] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[754] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[782] = (T)(img)(_n13##x,_n14##y,z,c)), \
14>=((img)._width)?(img).width() - 1:14); \
(_n14##x<(img).width() && ( \
(I[27] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[55] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[83] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[111] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[139] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[167] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[195] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[223] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[251] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[279] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[307] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[335] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[363] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[391] = (T)(img)(_n14##x,y,z,c)), \
(I[419] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[447] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[475] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[503] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[531] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[559] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[587] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[615] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[643] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[671] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[699] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[727] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[755] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[783] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], \
I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], \
I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], \
I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], \
I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], \
I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], \
I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], \
I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], \
I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], \
I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], \
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
#define cimg_for_in28x28(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in28((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p13##x = x - 13<0?0:x - 13, \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
_n14##x = (int)( \
(I[0] = (T)(img)(_p13##x,_p13##y,z,c)), \
(I[28] = (T)(img)(_p13##x,_p12##y,z,c)), \
(I[56] = (T)(img)(_p13##x,_p11##y,z,c)), \
(I[84] = (T)(img)(_p13##x,_p10##y,z,c)), \
(I[112] = (T)(img)(_p13##x,_p9##y,z,c)), \
(I[140] = (T)(img)(_p13##x,_p8##y,z,c)), \
(I[168] = (T)(img)(_p13##x,_p7##y,z,c)), \
(I[196] = (T)(img)(_p13##x,_p6##y,z,c)), \
(I[224] = (T)(img)(_p13##x,_p5##y,z,c)), \
(I[252] = (T)(img)(_p13##x,_p4##y,z,c)), \
(I[280] = (T)(img)(_p13##x,_p3##y,z,c)), \
(I[308] = (T)(img)(_p13##x,_p2##y,z,c)), \
(I[336] = (T)(img)(_p13##x,_p1##y,z,c)), \
(I[364] = (T)(img)(_p13##x,y,z,c)), \
(I[392] = (T)(img)(_p13##x,_n1##y,z,c)), \
(I[420] = (T)(img)(_p13##x,_n2##y,z,c)), \
(I[448] = (T)(img)(_p13##x,_n3##y,z,c)), \
(I[476] = (T)(img)(_p13##x,_n4##y,z,c)), \
(I[504] = (T)(img)(_p13##x,_n5##y,z,c)), \
(I[532] = (T)(img)(_p13##x,_n6##y,z,c)), \
(I[560] = (T)(img)(_p13##x,_n7##y,z,c)), \
(I[588] = (T)(img)(_p13##x,_n8##y,z,c)), \
(I[616] = (T)(img)(_p13##x,_n9##y,z,c)), \
(I[644] = (T)(img)(_p13##x,_n10##y,z,c)), \
(I[672] = (T)(img)(_p13##x,_n11##y,z,c)), \
(I[700] = (T)(img)(_p13##x,_n12##y,z,c)), \
(I[728] = (T)(img)(_p13##x,_n13##y,z,c)), \
(I[756] = (T)(img)(_p13##x,_n14##y,z,c)), \
(I[1] = (T)(img)(_p12##x,_p13##y,z,c)), \
(I[29] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[57] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[85] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[113] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[141] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[169] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[197] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[225] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[253] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[281] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[309] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[337] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[365] = (T)(img)(_p12##x,y,z,c)), \
(I[393] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[421] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[449] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[477] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[505] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[533] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[561] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[589] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[617] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[645] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[673] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[701] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[729] = (T)(img)(_p12##x,_n13##y,z,c)), \
(I[757] = (T)(img)(_p12##x,_n14##y,z,c)), \
(I[2] = (T)(img)(_p11##x,_p13##y,z,c)), \
(I[30] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[58] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[86] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[114] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[142] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[170] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[198] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[226] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[254] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[282] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[310] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[338] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[366] = (T)(img)(_p11##x,y,z,c)), \
(I[394] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[422] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[450] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[478] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[506] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[534] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[562] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[590] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[618] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[646] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[674] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[702] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[730] = (T)(img)(_p11##x,_n13##y,z,c)), \
(I[758] = (T)(img)(_p11##x,_n14##y,z,c)), \
(I[3] = (T)(img)(_p10##x,_p13##y,z,c)), \
(I[31] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[59] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[87] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[115] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[143] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[171] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[199] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[227] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[255] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[283] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[311] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[339] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[367] = (T)(img)(_p10##x,y,z,c)), \
(I[395] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[423] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[451] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[479] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[507] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[535] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[563] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[591] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[619] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[647] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[675] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[703] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[731] = (T)(img)(_p10##x,_n13##y,z,c)), \
(I[759] = (T)(img)(_p10##x,_n14##y,z,c)), \
(I[4] = (T)(img)(_p9##x,_p13##y,z,c)), \
(I[32] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[60] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[88] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[116] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[144] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[172] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[200] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[228] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[256] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[284] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[312] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[340] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[368] = (T)(img)(_p9##x,y,z,c)), \
(I[396] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[424] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[452] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[480] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[508] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[536] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[564] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[592] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[620] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[648] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[676] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[704] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[732] = (T)(img)(_p9##x,_n13##y,z,c)), \
(I[760] = (T)(img)(_p9##x,_n14##y,z,c)), \
(I[5] = (T)(img)(_p8##x,_p13##y,z,c)), \
(I[33] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[61] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[89] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[117] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[145] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[173] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[201] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[229] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[257] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[285] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[313] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[341] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[369] = (T)(img)(_p8##x,y,z,c)), \
(I[397] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[425] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[453] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[481] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[509] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[537] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[565] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[593] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[621] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[649] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[677] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[705] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[733] = (T)(img)(_p8##x,_n13##y,z,c)), \
(I[761] = (T)(img)(_p8##x,_n14##y,z,c)), \
(I[6] = (T)(img)(_p7##x,_p13##y,z,c)), \
(I[34] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[62] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[90] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[118] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[146] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[174] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[202] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[230] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[258] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[286] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[314] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[342] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[370] = (T)(img)(_p7##x,y,z,c)), \
(I[398] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[426] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[454] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[482] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[510] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[538] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[566] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[594] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[622] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[650] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[678] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[706] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[734] = (T)(img)(_p7##x,_n13##y,z,c)), \
(I[762] = (T)(img)(_p7##x,_n14##y,z,c)), \
(I[7] = (T)(img)(_p6##x,_p13##y,z,c)), \
(I[35] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[63] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[91] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[119] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[147] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[175] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[203] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[231] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[259] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[287] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[315] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[343] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[371] = (T)(img)(_p6##x,y,z,c)), \
(I[399] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[427] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[455] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[483] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[511] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[539] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[567] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[595] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[623] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[651] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[679] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[707] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[735] = (T)(img)(_p6##x,_n13##y,z,c)), \
(I[763] = (T)(img)(_p6##x,_n14##y,z,c)), \
(I[8] = (T)(img)(_p5##x,_p13##y,z,c)), \
(I[36] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[64] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[92] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[120] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[148] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[176] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[204] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[232] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[260] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[288] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[316] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[344] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[372] = (T)(img)(_p5##x,y,z,c)), \
(I[400] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[428] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[456] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[484] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[512] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[540] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[568] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[596] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[624] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[652] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[680] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[708] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[736] = (T)(img)(_p5##x,_n13##y,z,c)), \
(I[764] = (T)(img)(_p5##x,_n14##y,z,c)), \
(I[9] = (T)(img)(_p4##x,_p13##y,z,c)), \
(I[37] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[65] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[93] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[121] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[149] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[177] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[205] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[233] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[261] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[289] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[317] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[345] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[373] = (T)(img)(_p4##x,y,z,c)), \
(I[401] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[429] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[457] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[485] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[513] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[541] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[569] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[597] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[625] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[653] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[681] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[709] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[737] = (T)(img)(_p4##x,_n13##y,z,c)), \
(I[765] = (T)(img)(_p4##x,_n14##y,z,c)), \
(I[10] = (T)(img)(_p3##x,_p13##y,z,c)), \
(I[38] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[66] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[94] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[122] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[150] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[178] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[206] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[234] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[262] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[290] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[318] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[346] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[374] = (T)(img)(_p3##x,y,z,c)), \
(I[402] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[430] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[458] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[486] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[514] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[542] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[570] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[598] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[626] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[654] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[682] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[710] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[738] = (T)(img)(_p3##x,_n13##y,z,c)), \
(I[766] = (T)(img)(_p3##x,_n14##y,z,c)), \
(I[11] = (T)(img)(_p2##x,_p13##y,z,c)), \
(I[39] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[67] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[95] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[123] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[151] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[179] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[207] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[235] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[263] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[291] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[319] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[347] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[375] = (T)(img)(_p2##x,y,z,c)), \
(I[403] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[431] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[459] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[487] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[515] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[543] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[571] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[599] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[627] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[655] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[683] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[711] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[739] = (T)(img)(_p2##x,_n13##y,z,c)), \
(I[767] = (T)(img)(_p2##x,_n14##y,z,c)), \
(I[12] = (T)(img)(_p1##x,_p13##y,z,c)), \
(I[40] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[68] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[96] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[124] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[152] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[180] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[208] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[236] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[264] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[292] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[320] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[348] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[376] = (T)(img)(_p1##x,y,z,c)), \
(I[404] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[432] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[460] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[488] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[516] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[544] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[572] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[600] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[628] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[656] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[684] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[712] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[740] = (T)(img)(_p1##x,_n13##y,z,c)), \
(I[768] = (T)(img)(_p1##x,_n14##y,z,c)), \
(I[13] = (T)(img)(x,_p13##y,z,c)), \
(I[41] = (T)(img)(x,_p12##y,z,c)), \
(I[69] = (T)(img)(x,_p11##y,z,c)), \
(I[97] = (T)(img)(x,_p10##y,z,c)), \
(I[125] = (T)(img)(x,_p9##y,z,c)), \
(I[153] = (T)(img)(x,_p8##y,z,c)), \
(I[181] = (T)(img)(x,_p7##y,z,c)), \
(I[209] = (T)(img)(x,_p6##y,z,c)), \
(I[237] = (T)(img)(x,_p5##y,z,c)), \
(I[265] = (T)(img)(x,_p4##y,z,c)), \
(I[293] = (T)(img)(x,_p3##y,z,c)), \
(I[321] = (T)(img)(x,_p2##y,z,c)), \
(I[349] = (T)(img)(x,_p1##y,z,c)), \
(I[377] = (T)(img)(x,y,z,c)), \
(I[405] = (T)(img)(x,_n1##y,z,c)), \
(I[433] = (T)(img)(x,_n2##y,z,c)), \
(I[461] = (T)(img)(x,_n3##y,z,c)), \
(I[489] = (T)(img)(x,_n4##y,z,c)), \
(I[517] = (T)(img)(x,_n5##y,z,c)), \
(I[545] = (T)(img)(x,_n6##y,z,c)), \
(I[573] = (T)(img)(x,_n7##y,z,c)), \
(I[601] = (T)(img)(x,_n8##y,z,c)), \
(I[629] = (T)(img)(x,_n9##y,z,c)), \
(I[657] = (T)(img)(x,_n10##y,z,c)), \
(I[685] = (T)(img)(x,_n11##y,z,c)), \
(I[713] = (T)(img)(x,_n12##y,z,c)), \
(I[741] = (T)(img)(x,_n13##y,z,c)), \
(I[769] = (T)(img)(x,_n14##y,z,c)), \
(I[14] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[42] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[70] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[98] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[126] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[154] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[182] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[210] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[238] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[266] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[294] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[322] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[350] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[378] = (T)(img)(_n1##x,y,z,c)), \
(I[406] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[434] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[462] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[490] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[518] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[546] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[574] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[602] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[630] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[658] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[686] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[714] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[742] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[770] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[15] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[43] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[71] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[99] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[127] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[155] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[183] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[211] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[239] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[267] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[295] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[323] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[351] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[379] = (T)(img)(_n2##x,y,z,c)), \
(I[407] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[435] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[463] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[491] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[519] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[547] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[575] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[603] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[631] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[659] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[687] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[715] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[743] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[771] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[16] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[44] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[72] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[100] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[128] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[156] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[184] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[212] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[240] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[268] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[296] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[324] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[352] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[380] = (T)(img)(_n3##x,y,z,c)), \
(I[408] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[436] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[464] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[492] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[520] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[548] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[576] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[604] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[632] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[660] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[688] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[716] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[744] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[772] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[17] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[45] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[73] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[101] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[129] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[157] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[185] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[213] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[241] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[269] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[297] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[325] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[353] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[381] = (T)(img)(_n4##x,y,z,c)), \
(I[409] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[437] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[465] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[493] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[521] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[549] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[577] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[605] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[633] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[661] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[689] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[717] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[745] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[773] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[18] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[46] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[74] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[102] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[130] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[158] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[186] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[214] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[242] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[270] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[298] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[326] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[354] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[382] = (T)(img)(_n5##x,y,z,c)), \
(I[410] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[438] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[466] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[494] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[522] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[550] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[578] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[606] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[634] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[662] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[690] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[718] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[746] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[774] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[19] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[47] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[75] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[103] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[131] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[159] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[187] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[215] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[243] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[271] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[299] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[327] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[355] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[383] = (T)(img)(_n6##x,y,z,c)), \
(I[411] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[439] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[467] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[495] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[523] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[551] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[579] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[607] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[635] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[663] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[691] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[719] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[747] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[775] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[20] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[48] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[76] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[104] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[132] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[160] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[188] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[216] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[244] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[272] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[300] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[328] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[356] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[384] = (T)(img)(_n7##x,y,z,c)), \
(I[412] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[440] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[468] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[496] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[524] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[552] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[580] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[608] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[636] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[664] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[692] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[720] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[748] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[776] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[21] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[49] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[77] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[105] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[133] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[161] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[189] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[217] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[245] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[273] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[301] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[329] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[357] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[385] = (T)(img)(_n8##x,y,z,c)), \
(I[413] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[441] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[469] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[497] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[525] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[553] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[581] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[609] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[637] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[665] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[693] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[721] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[749] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[777] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[22] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[50] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[78] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[106] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[134] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[162] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[190] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[218] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[246] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[274] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[302] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[330] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[358] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[386] = (T)(img)(_n9##x,y,z,c)), \
(I[414] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[442] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[470] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[498] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[526] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[554] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[582] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[610] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[638] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[666] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[694] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[722] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[750] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[778] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[23] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[51] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[79] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[107] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[135] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[163] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[191] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[219] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[247] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[275] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[303] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[331] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[359] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[387] = (T)(img)(_n10##x,y,z,c)), \
(I[415] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[443] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[471] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[499] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[527] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[555] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[583] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[611] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[639] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[667] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[695] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[723] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[751] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[779] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[24] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[52] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[80] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[108] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[136] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[164] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[192] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[220] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[248] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[276] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[304] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[332] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[360] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[388] = (T)(img)(_n11##x,y,z,c)), \
(I[416] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[444] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[472] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[500] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[528] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[556] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[584] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[612] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[640] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[668] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[696] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[724] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[752] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[780] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[25] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[53] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[81] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[109] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[137] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[165] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[193] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[221] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[249] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[277] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[305] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[333] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[361] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[389] = (T)(img)(_n12##x,y,z,c)), \
(I[417] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[445] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[473] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[501] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[529] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[557] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[585] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[613] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[641] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[669] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[697] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[725] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[753] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[781] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[26] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[54] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[82] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[110] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[138] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[166] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[194] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[222] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[250] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[278] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[306] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[334] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[362] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[390] = (T)(img)(_n13##x,y,z,c)), \
(I[418] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[446] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[474] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[502] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[530] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[558] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[586] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[614] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[642] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[670] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[698] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[726] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[754] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[782] = (T)(img)(_n13##x,_n14##y,z,c)), \
x + 14>=(img).width()?(img).width() - 1:x + 14); \
x<=(int)(x1) && ((_n14##x<(img).width() && ( \
(I[27] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[55] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[83] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[111] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[139] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[167] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[195] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[223] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[251] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[279] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[307] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[335] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[363] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[391] = (T)(img)(_n14##x,y,z,c)), \
(I[419] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[447] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[475] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[503] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[531] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[559] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[587] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[615] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[643] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[671] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[699] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[727] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[755] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[783] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], \
I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], \
I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], \
I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], \
I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], \
I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], \
I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], \
I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], \
I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], \
I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], \
I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], \
_p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
#define cimg_get28x28(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p13##x,_p13##y,z,c), I[1] = (T)(img)(_p12##x,_p13##y,z,c), I[2] = (T)(img)(_p11##x,_p13##y,z,c), I[3] = (T)(img)(_p10##x,_p13##y,z,c), I[4] = (T)(img)(_p9##x,_p13##y,z,c), I[5] = (T)(img)(_p8##x,_p13##y,z,c), I[6] = (T)(img)(_p7##x,_p13##y,z,c), I[7] = (T)(img)(_p6##x,_p13##y,z,c), I[8] = (T)(img)(_p5##x,_p13##y,z,c), I[9] = (T)(img)(_p4##x,_p13##y,z,c), I[10] = (T)(img)(_p3##x,_p13##y,z,c), I[11] = (T)(img)(_p2##x,_p13##y,z,c), I[12] = (T)(img)(_p1##x,_p13##y,z,c), I[13] = (T)(img)(x,_p13##y,z,c), I[14] = (T)(img)(_n1##x,_p13##y,z,c), I[15] = (T)(img)(_n2##x,_p13##y,z,c), I[16] = (T)(img)(_n3##x,_p13##y,z,c), I[17] = (T)(img)(_n4##x,_p13##y,z,c), I[18] = (T)(img)(_n5##x,_p13##y,z,c), I[19] = (T)(img)(_n6##x,_p13##y,z,c), I[20] = (T)(img)(_n7##x,_p13##y,z,c), I[21] = (T)(img)(_n8##x,_p13##y,z,c), I[22] = (T)(img)(_n9##x,_p13##y,z,c), I[23] = (T)(img)(_n10##x,_p13##y,z,c), I[24] = (T)(img)(_n11##x,_p13##y,z,c), I[25] = (T)(img)(_n12##x,_p13##y,z,c), I[26] = (T)(img)(_n13##x,_p13##y,z,c), I[27] = (T)(img)(_n14##x,_p13##y,z,c), \
I[28] = (T)(img)(_p13##x,_p12##y,z,c), I[29] = (T)(img)(_p12##x,_p12##y,z,c), I[30] = (T)(img)(_p11##x,_p12##y,z,c), I[31] = (T)(img)(_p10##x,_p12##y,z,c), I[32] = (T)(img)(_p9##x,_p12##y,z,c), I[33] = (T)(img)(_p8##x,_p12##y,z,c), I[34] = (T)(img)(_p7##x,_p12##y,z,c), I[35] = (T)(img)(_p6##x,_p12##y,z,c), I[36] = (T)(img)(_p5##x,_p12##y,z,c), I[37] = (T)(img)(_p4##x,_p12##y,z,c), I[38] = (T)(img)(_p3##x,_p12##y,z,c), I[39] = (T)(img)(_p2##x,_p12##y,z,c), I[40] = (T)(img)(_p1##x,_p12##y,z,c), I[41] = (T)(img)(x,_p12##y,z,c), I[42] = (T)(img)(_n1##x,_p12##y,z,c), I[43] = (T)(img)(_n2##x,_p12##y,z,c), I[44] = (T)(img)(_n3##x,_p12##y,z,c), I[45] = (T)(img)(_n4##x,_p12##y,z,c), I[46] = (T)(img)(_n5##x,_p12##y,z,c), I[47] = (T)(img)(_n6##x,_p12##y,z,c), I[48] = (T)(img)(_n7##x,_p12##y,z,c), I[49] = (T)(img)(_n8##x,_p12##y,z,c), I[50] = (T)(img)(_n9##x,_p12##y,z,c), I[51] = (T)(img)(_n10##x,_p12##y,z,c), I[52] = (T)(img)(_n11##x,_p12##y,z,c), I[53] = (T)(img)(_n12##x,_p12##y,z,c), I[54] = (T)(img)(_n13##x,_p12##y,z,c), I[55] = (T)(img)(_n14##x,_p12##y,z,c), \
I[56] = (T)(img)(_p13##x,_p11##y,z,c), I[57] = (T)(img)(_p12##x,_p11##y,z,c), I[58] = (T)(img)(_p11##x,_p11##y,z,c), I[59] = (T)(img)(_p10##x,_p11##y,z,c), I[60] = (T)(img)(_p9##x,_p11##y,z,c), I[61] = (T)(img)(_p8##x,_p11##y,z,c), I[62] = (T)(img)(_p7##x,_p11##y,z,c), I[63] = (T)(img)(_p6##x,_p11##y,z,c), I[64] = (T)(img)(_p5##x,_p11##y,z,c), I[65] = (T)(img)(_p4##x,_p11##y,z,c), I[66] = (T)(img)(_p3##x,_p11##y,z,c), I[67] = (T)(img)(_p2##x,_p11##y,z,c), I[68] = (T)(img)(_p1##x,_p11##y,z,c), I[69] = (T)(img)(x,_p11##y,z,c), I[70] = (T)(img)(_n1##x,_p11##y,z,c), I[71] = (T)(img)(_n2##x,_p11##y,z,c), I[72] = (T)(img)(_n3##x,_p11##y,z,c), I[73] = (T)(img)(_n4##x,_p11##y,z,c), I[74] = (T)(img)(_n5##x,_p11##y,z,c), I[75] = (T)(img)(_n6##x,_p11##y,z,c), I[76] = (T)(img)(_n7##x,_p11##y,z,c), I[77] = (T)(img)(_n8##x,_p11##y,z,c), I[78] = (T)(img)(_n9##x,_p11##y,z,c), I[79] = (T)(img)(_n10##x,_p11##y,z,c), I[80] = (T)(img)(_n11##x,_p11##y,z,c), I[81] = (T)(img)(_n12##x,_p11##y,z,c), I[82] = (T)(img)(_n13##x,_p11##y,z,c), I[83] = (T)(img)(_n14##x,_p11##y,z,c), \
I[84] = (T)(img)(_p13##x,_p10##y,z,c), I[85] = (T)(img)(_p12##x,_p10##y,z,c), I[86] = (T)(img)(_p11##x,_p10##y,z,c), I[87] = (T)(img)(_p10##x,_p10##y,z,c), I[88] = (T)(img)(_p9##x,_p10##y,z,c), I[89] = (T)(img)(_p8##x,_p10##y,z,c), I[90] = (T)(img)(_p7##x,_p10##y,z,c), I[91] = (T)(img)(_p6##x,_p10##y,z,c), I[92] = (T)(img)(_p5##x,_p10##y,z,c), I[93] = (T)(img)(_p4##x,_p10##y,z,c), I[94] = (T)(img)(_p3##x,_p10##y,z,c), I[95] = (T)(img)(_p2##x,_p10##y,z,c), I[96] = (T)(img)(_p1##x,_p10##y,z,c), I[97] = (T)(img)(x,_p10##y,z,c), I[98] = (T)(img)(_n1##x,_p10##y,z,c), I[99] = (T)(img)(_n2##x,_p10##y,z,c), I[100] = (T)(img)(_n3##x,_p10##y,z,c), I[101] = (T)(img)(_n4##x,_p10##y,z,c), I[102] = (T)(img)(_n5##x,_p10##y,z,c), I[103] = (T)(img)(_n6##x,_p10##y,z,c), I[104] = (T)(img)(_n7##x,_p10##y,z,c), I[105] = (T)(img)(_n8##x,_p10##y,z,c), I[106] = (T)(img)(_n9##x,_p10##y,z,c), I[107] = (T)(img)(_n10##x,_p10##y,z,c), I[108] = (T)(img)(_n11##x,_p10##y,z,c), I[109] = (T)(img)(_n12##x,_p10##y,z,c), I[110] = (T)(img)(_n13##x,_p10##y,z,c), I[111] = (T)(img)(_n14##x,_p10##y,z,c), \
I[112] = (T)(img)(_p13##x,_p9##y,z,c), I[113] = (T)(img)(_p12##x,_p9##y,z,c), I[114] = (T)(img)(_p11##x,_p9##y,z,c), I[115] = (T)(img)(_p10##x,_p9##y,z,c), I[116] = (T)(img)(_p9##x,_p9##y,z,c), I[117] = (T)(img)(_p8##x,_p9##y,z,c), I[118] = (T)(img)(_p7##x,_p9##y,z,c), I[119] = (T)(img)(_p6##x,_p9##y,z,c), I[120] = (T)(img)(_p5##x,_p9##y,z,c), I[121] = (T)(img)(_p4##x,_p9##y,z,c), I[122] = (T)(img)(_p3##x,_p9##y,z,c), I[123] = (T)(img)(_p2##x,_p9##y,z,c), I[124] = (T)(img)(_p1##x,_p9##y,z,c), I[125] = (T)(img)(x,_p9##y,z,c), I[126] = (T)(img)(_n1##x,_p9##y,z,c), I[127] = (T)(img)(_n2##x,_p9##y,z,c), I[128] = (T)(img)(_n3##x,_p9##y,z,c), I[129] = (T)(img)(_n4##x,_p9##y,z,c), I[130] = (T)(img)(_n5##x,_p9##y,z,c), I[131] = (T)(img)(_n6##x,_p9##y,z,c), I[132] = (T)(img)(_n7##x,_p9##y,z,c), I[133] = (T)(img)(_n8##x,_p9##y,z,c), I[134] = (T)(img)(_n9##x,_p9##y,z,c), I[135] = (T)(img)(_n10##x,_p9##y,z,c), I[136] = (T)(img)(_n11##x,_p9##y,z,c), I[137] = (T)(img)(_n12##x,_p9##y,z,c), I[138] = (T)(img)(_n13##x,_p9##y,z,c), I[139] = (T)(img)(_n14##x,_p9##y,z,c), \
I[140] = (T)(img)(_p13##x,_p8##y,z,c), I[141] = (T)(img)(_p12##x,_p8##y,z,c), I[142] = (T)(img)(_p11##x,_p8##y,z,c), I[143] = (T)(img)(_p10##x,_p8##y,z,c), I[144] = (T)(img)(_p9##x,_p8##y,z,c), I[145] = (T)(img)(_p8##x,_p8##y,z,c), I[146] = (T)(img)(_p7##x,_p8##y,z,c), I[147] = (T)(img)(_p6##x,_p8##y,z,c), I[148] = (T)(img)(_p5##x,_p8##y,z,c), I[149] = (T)(img)(_p4##x,_p8##y,z,c), I[150] = (T)(img)(_p3##x,_p8##y,z,c), I[151] = (T)(img)(_p2##x,_p8##y,z,c), I[152] = (T)(img)(_p1##x,_p8##y,z,c), I[153] = (T)(img)(x,_p8##y,z,c), I[154] = (T)(img)(_n1##x,_p8##y,z,c), I[155] = (T)(img)(_n2##x,_p8##y,z,c), I[156] = (T)(img)(_n3##x,_p8##y,z,c), I[157] = (T)(img)(_n4##x,_p8##y,z,c), I[158] = (T)(img)(_n5##x,_p8##y,z,c), I[159] = (T)(img)(_n6##x,_p8##y,z,c), I[160] = (T)(img)(_n7##x,_p8##y,z,c), I[161] = (T)(img)(_n8##x,_p8##y,z,c), I[162] = (T)(img)(_n9##x,_p8##y,z,c), I[163] = (T)(img)(_n10##x,_p8##y,z,c), I[164] = (T)(img)(_n11##x,_p8##y,z,c), I[165] = (T)(img)(_n12##x,_p8##y,z,c), I[166] = (T)(img)(_n13##x,_p8##y,z,c), I[167] = (T)(img)(_n14##x,_p8##y,z,c), \
I[168] = (T)(img)(_p13##x,_p7##y,z,c), I[169] = (T)(img)(_p12##x,_p7##y,z,c), I[170] = (T)(img)(_p11##x,_p7##y,z,c), I[171] = (T)(img)(_p10##x,_p7##y,z,c), I[172] = (T)(img)(_p9##x,_p7##y,z,c), I[173] = (T)(img)(_p8##x,_p7##y,z,c), I[174] = (T)(img)(_p7##x,_p7##y,z,c), I[175] = (T)(img)(_p6##x,_p7##y,z,c), I[176] = (T)(img)(_p5##x,_p7##y,z,c), I[177] = (T)(img)(_p4##x,_p7##y,z,c), I[178] = (T)(img)(_p3##x,_p7##y,z,c), I[179] = (T)(img)(_p2##x,_p7##y,z,c), I[180] = (T)(img)(_p1##x,_p7##y,z,c), I[181] = (T)(img)(x,_p7##y,z,c), I[182] = (T)(img)(_n1##x,_p7##y,z,c), I[183] = (T)(img)(_n2##x,_p7##y,z,c), I[184] = (T)(img)(_n3##x,_p7##y,z,c), I[185] = (T)(img)(_n4##x,_p7##y,z,c), I[186] = (T)(img)(_n5##x,_p7##y,z,c), I[187] = (T)(img)(_n6##x,_p7##y,z,c), I[188] = (T)(img)(_n7##x,_p7##y,z,c), I[189] = (T)(img)(_n8##x,_p7##y,z,c), I[190] = (T)(img)(_n9##x,_p7##y,z,c), I[191] = (T)(img)(_n10##x,_p7##y,z,c), I[192] = (T)(img)(_n11##x,_p7##y,z,c), I[193] = (T)(img)(_n12##x,_p7##y,z,c), I[194] = (T)(img)(_n13##x,_p7##y,z,c), I[195] = (T)(img)(_n14##x,_p7##y,z,c), \
I[196] = (T)(img)(_p13##x,_p6##y,z,c), I[197] = (T)(img)(_p12##x,_p6##y,z,c), I[198] = (T)(img)(_p11##x,_p6##y,z,c), I[199] = (T)(img)(_p10##x,_p6##y,z,c), I[200] = (T)(img)(_p9##x,_p6##y,z,c), I[201] = (T)(img)(_p8##x,_p6##y,z,c), I[202] = (T)(img)(_p7##x,_p6##y,z,c), I[203] = (T)(img)(_p6##x,_p6##y,z,c), I[204] = (T)(img)(_p5##x,_p6##y,z,c), I[205] = (T)(img)(_p4##x,_p6##y,z,c), I[206] = (T)(img)(_p3##x,_p6##y,z,c), I[207] = (T)(img)(_p2##x,_p6##y,z,c), I[208] = (T)(img)(_p1##x,_p6##y,z,c), I[209] = (T)(img)(x,_p6##y,z,c), I[210] = (T)(img)(_n1##x,_p6##y,z,c), I[211] = (T)(img)(_n2##x,_p6##y,z,c), I[212] = (T)(img)(_n3##x,_p6##y,z,c), I[213] = (T)(img)(_n4##x,_p6##y,z,c), I[214] = (T)(img)(_n5##x,_p6##y,z,c), I[215] = (T)(img)(_n6##x,_p6##y,z,c), I[216] = (T)(img)(_n7##x,_p6##y,z,c), I[217] = (T)(img)(_n8##x,_p6##y,z,c), I[218] = (T)(img)(_n9##x,_p6##y,z,c), I[219] = (T)(img)(_n10##x,_p6##y,z,c), I[220] = (T)(img)(_n11##x,_p6##y,z,c), I[221] = (T)(img)(_n12##x,_p6##y,z,c), I[222] = (T)(img)(_n13##x,_p6##y,z,c), I[223] = (T)(img)(_n14##x,_p6##y,z,c), \
I[224] = (T)(img)(_p13##x,_p5##y,z,c), I[225] = (T)(img)(_p12##x,_p5##y,z,c), I[226] = (T)(img)(_p11##x,_p5##y,z,c), I[227] = (T)(img)(_p10##x,_p5##y,z,c), I[228] = (T)(img)(_p9##x,_p5##y,z,c), I[229] = (T)(img)(_p8##x,_p5##y,z,c), I[230] = (T)(img)(_p7##x,_p5##y,z,c), I[231] = (T)(img)(_p6##x,_p5##y,z,c), I[232] = (T)(img)(_p5##x,_p5##y,z,c), I[233] = (T)(img)(_p4##x,_p5##y,z,c), I[234] = (T)(img)(_p3##x,_p5##y,z,c), I[235] = (T)(img)(_p2##x,_p5##y,z,c), I[236] = (T)(img)(_p1##x,_p5##y,z,c), I[237] = (T)(img)(x,_p5##y,z,c), I[238] = (T)(img)(_n1##x,_p5##y,z,c), I[239] = (T)(img)(_n2##x,_p5##y,z,c), I[240] = (T)(img)(_n3##x,_p5##y,z,c), I[241] = (T)(img)(_n4##x,_p5##y,z,c), I[242] = (T)(img)(_n5##x,_p5##y,z,c), I[243] = (T)(img)(_n6##x,_p5##y,z,c), I[244] = (T)(img)(_n7##x,_p5##y,z,c), I[245] = (T)(img)(_n8##x,_p5##y,z,c), I[246] = (T)(img)(_n9##x,_p5##y,z,c), I[247] = (T)(img)(_n10##x,_p5##y,z,c), I[248] = (T)(img)(_n11##x,_p5##y,z,c), I[249] = (T)(img)(_n12##x,_p5##y,z,c), I[250] = (T)(img)(_n13##x,_p5##y,z,c), I[251] = (T)(img)(_n14##x,_p5##y,z,c), \
I[252] = (T)(img)(_p13##x,_p4##y,z,c), I[253] = (T)(img)(_p12##x,_p4##y,z,c), I[254] = (T)(img)(_p11##x,_p4##y,z,c), I[255] = (T)(img)(_p10##x,_p4##y,z,c), I[256] = (T)(img)(_p9##x,_p4##y,z,c), I[257] = (T)(img)(_p8##x,_p4##y,z,c), I[258] = (T)(img)(_p7##x,_p4##y,z,c), I[259] = (T)(img)(_p6##x,_p4##y,z,c), I[260] = (T)(img)(_p5##x,_p4##y,z,c), I[261] = (T)(img)(_p4##x,_p4##y,z,c), I[262] = (T)(img)(_p3##x,_p4##y,z,c), I[263] = (T)(img)(_p2##x,_p4##y,z,c), I[264] = (T)(img)(_p1##x,_p4##y,z,c), I[265] = (T)(img)(x,_p4##y,z,c), I[266] = (T)(img)(_n1##x,_p4##y,z,c), I[267] = (T)(img)(_n2##x,_p4##y,z,c), I[268] = (T)(img)(_n3##x,_p4##y,z,c), I[269] = (T)(img)(_n4##x,_p4##y,z,c), I[270] = (T)(img)(_n5##x,_p4##y,z,c), I[271] = (T)(img)(_n6##x,_p4##y,z,c), I[272] = (T)(img)(_n7##x,_p4##y,z,c), I[273] = (T)(img)(_n8##x,_p4##y,z,c), I[274] = (T)(img)(_n9##x,_p4##y,z,c), I[275] = (T)(img)(_n10##x,_p4##y,z,c), I[276] = (T)(img)(_n11##x,_p4##y,z,c), I[277] = (T)(img)(_n12##x,_p4##y,z,c), I[278] = (T)(img)(_n13##x,_p4##y,z,c), I[279] = (T)(img)(_n14##x,_p4##y,z,c), \
I[280] = (T)(img)(_p13##x,_p3##y,z,c), I[281] = (T)(img)(_p12##x,_p3##y,z,c), I[282] = (T)(img)(_p11##x,_p3##y,z,c), I[283] = (T)(img)(_p10##x,_p3##y,z,c), I[284] = (T)(img)(_p9##x,_p3##y,z,c), I[285] = (T)(img)(_p8##x,_p3##y,z,c), I[286] = (T)(img)(_p7##x,_p3##y,z,c), I[287] = (T)(img)(_p6##x,_p3##y,z,c), I[288] = (T)(img)(_p5##x,_p3##y,z,c), I[289] = (T)(img)(_p4##x,_p3##y,z,c), I[290] = (T)(img)(_p3##x,_p3##y,z,c), I[291] = (T)(img)(_p2##x,_p3##y,z,c), I[292] = (T)(img)(_p1##x,_p3##y,z,c), I[293] = (T)(img)(x,_p3##y,z,c), I[294] = (T)(img)(_n1##x,_p3##y,z,c), I[295] = (T)(img)(_n2##x,_p3##y,z,c), I[296] = (T)(img)(_n3##x,_p3##y,z,c), I[297] = (T)(img)(_n4##x,_p3##y,z,c), I[298] = (T)(img)(_n5##x,_p3##y,z,c), I[299] = (T)(img)(_n6##x,_p3##y,z,c), I[300] = (T)(img)(_n7##x,_p3##y,z,c), I[301] = (T)(img)(_n8##x,_p3##y,z,c), I[302] = (T)(img)(_n9##x,_p3##y,z,c), I[303] = (T)(img)(_n10##x,_p3##y,z,c), I[304] = (T)(img)(_n11##x,_p3##y,z,c), I[305] = (T)(img)(_n12##x,_p3##y,z,c), I[306] = (T)(img)(_n13##x,_p3##y,z,c), I[307] = (T)(img)(_n14##x,_p3##y,z,c), \
I[308] = (T)(img)(_p13##x,_p2##y,z,c), I[309] = (T)(img)(_p12##x,_p2##y,z,c), I[310] = (T)(img)(_p11##x,_p2##y,z,c), I[311] = (T)(img)(_p10##x,_p2##y,z,c), I[312] = (T)(img)(_p9##x,_p2##y,z,c), I[313] = (T)(img)(_p8##x,_p2##y,z,c), I[314] = (T)(img)(_p7##x,_p2##y,z,c), I[315] = (T)(img)(_p6##x,_p2##y,z,c), I[316] = (T)(img)(_p5##x,_p2##y,z,c), I[317] = (T)(img)(_p4##x,_p2##y,z,c), I[318] = (T)(img)(_p3##x,_p2##y,z,c), I[319] = (T)(img)(_p2##x,_p2##y,z,c), I[320] = (T)(img)(_p1##x,_p2##y,z,c), I[321] = (T)(img)(x,_p2##y,z,c), I[322] = (T)(img)(_n1##x,_p2##y,z,c), I[323] = (T)(img)(_n2##x,_p2##y,z,c), I[324] = (T)(img)(_n3##x,_p2##y,z,c), I[325] = (T)(img)(_n4##x,_p2##y,z,c), I[326] = (T)(img)(_n5##x,_p2##y,z,c), I[327] = (T)(img)(_n6##x,_p2##y,z,c), I[328] = (T)(img)(_n7##x,_p2##y,z,c), I[329] = (T)(img)(_n8##x,_p2##y,z,c), I[330] = (T)(img)(_n9##x,_p2##y,z,c), I[331] = (T)(img)(_n10##x,_p2##y,z,c), I[332] = (T)(img)(_n11##x,_p2##y,z,c), I[333] = (T)(img)(_n12##x,_p2##y,z,c), I[334] = (T)(img)(_n13##x,_p2##y,z,c), I[335] = (T)(img)(_n14##x,_p2##y,z,c), \
I[336] = (T)(img)(_p13##x,_p1##y,z,c), I[337] = (T)(img)(_p12##x,_p1##y,z,c), I[338] = (T)(img)(_p11##x,_p1##y,z,c), I[339] = (T)(img)(_p10##x,_p1##y,z,c), I[340] = (T)(img)(_p9##x,_p1##y,z,c), I[341] = (T)(img)(_p8##x,_p1##y,z,c), I[342] = (T)(img)(_p7##x,_p1##y,z,c), I[343] = (T)(img)(_p6##x,_p1##y,z,c), I[344] = (T)(img)(_p5##x,_p1##y,z,c), I[345] = (T)(img)(_p4##x,_p1##y,z,c), I[346] = (T)(img)(_p3##x,_p1##y,z,c), I[347] = (T)(img)(_p2##x,_p1##y,z,c), I[348] = (T)(img)(_p1##x,_p1##y,z,c), I[349] = (T)(img)(x,_p1##y,z,c), I[350] = (T)(img)(_n1##x,_p1##y,z,c), I[351] = (T)(img)(_n2##x,_p1##y,z,c), I[352] = (T)(img)(_n3##x,_p1##y,z,c), I[353] = (T)(img)(_n4##x,_p1##y,z,c), I[354] = (T)(img)(_n5##x,_p1##y,z,c), I[355] = (T)(img)(_n6##x,_p1##y,z,c), I[356] = (T)(img)(_n7##x,_p1##y,z,c), I[357] = (T)(img)(_n8##x,_p1##y,z,c), I[358] = (T)(img)(_n9##x,_p1##y,z,c), I[359] = (T)(img)(_n10##x,_p1##y,z,c), I[360] = (T)(img)(_n11##x,_p1##y,z,c), I[361] = (T)(img)(_n12##x,_p1##y,z,c), I[362] = (T)(img)(_n13##x,_p1##y,z,c), I[363] = (T)(img)(_n14##x,_p1##y,z,c), \
I[364] = (T)(img)(_p13##x,y,z,c), I[365] = (T)(img)(_p12##x,y,z,c), I[366] = (T)(img)(_p11##x,y,z,c), I[367] = (T)(img)(_p10##x,y,z,c), I[368] = (T)(img)(_p9##x,y,z,c), I[369] = (T)(img)(_p8##x,y,z,c), I[370] = (T)(img)(_p7##x,y,z,c), I[371] = (T)(img)(_p6##x,y,z,c), I[372] = (T)(img)(_p5##x,y,z,c), I[373] = (T)(img)(_p4##x,y,z,c), I[374] = (T)(img)(_p3##x,y,z,c), I[375] = (T)(img)(_p2##x,y,z,c), I[376] = (T)(img)(_p1##x,y,z,c), I[377] = (T)(img)(x,y,z,c), I[378] = (T)(img)(_n1##x,y,z,c), I[379] = (T)(img)(_n2##x,y,z,c), I[380] = (T)(img)(_n3##x,y,z,c), I[381] = (T)(img)(_n4##x,y,z,c), I[382] = (T)(img)(_n5##x,y,z,c), I[383] = (T)(img)(_n6##x,y,z,c), I[384] = (T)(img)(_n7##x,y,z,c), I[385] = (T)(img)(_n8##x,y,z,c), I[386] = (T)(img)(_n9##x,y,z,c), I[387] = (T)(img)(_n10##x,y,z,c), I[388] = (T)(img)(_n11##x,y,z,c), I[389] = (T)(img)(_n12##x,y,z,c), I[390] = (T)(img)(_n13##x,y,z,c), I[391] = (T)(img)(_n14##x,y,z,c), \
I[392] = (T)(img)(_p13##x,_n1##y,z,c), I[393] = (T)(img)(_p12##x,_n1##y,z,c), I[394] = (T)(img)(_p11##x,_n1##y,z,c), I[395] = (T)(img)(_p10##x,_n1##y,z,c), I[396] = (T)(img)(_p9##x,_n1##y,z,c), I[397] = (T)(img)(_p8##x,_n1##y,z,c), I[398] = (T)(img)(_p7##x,_n1##y,z,c), I[399] = (T)(img)(_p6##x,_n1##y,z,c), I[400] = (T)(img)(_p5##x,_n1##y,z,c), I[401] = (T)(img)(_p4##x,_n1##y,z,c), I[402] = (T)(img)(_p3##x,_n1##y,z,c), I[403] = (T)(img)(_p2##x,_n1##y,z,c), I[404] = (T)(img)(_p1##x,_n1##y,z,c), I[405] = (T)(img)(x,_n1##y,z,c), I[406] = (T)(img)(_n1##x,_n1##y,z,c), I[407] = (T)(img)(_n2##x,_n1##y,z,c), I[408] = (T)(img)(_n3##x,_n1##y,z,c), I[409] = (T)(img)(_n4##x,_n1##y,z,c), I[410] = (T)(img)(_n5##x,_n1##y,z,c), I[411] = (T)(img)(_n6##x,_n1##y,z,c), I[412] = (T)(img)(_n7##x,_n1##y,z,c), I[413] = (T)(img)(_n8##x,_n1##y,z,c), I[414] = (T)(img)(_n9##x,_n1##y,z,c), I[415] = (T)(img)(_n10##x,_n1##y,z,c), I[416] = (T)(img)(_n11##x,_n1##y,z,c), I[417] = (T)(img)(_n12##x,_n1##y,z,c), I[418] = (T)(img)(_n13##x,_n1##y,z,c), I[419] = (T)(img)(_n14##x,_n1##y,z,c), \
I[420] = (T)(img)(_p13##x,_n2##y,z,c), I[421] = (T)(img)(_p12##x,_n2##y,z,c), I[422] = (T)(img)(_p11##x,_n2##y,z,c), I[423] = (T)(img)(_p10##x,_n2##y,z,c), I[424] = (T)(img)(_p9##x,_n2##y,z,c), I[425] = (T)(img)(_p8##x,_n2##y,z,c), I[426] = (T)(img)(_p7##x,_n2##y,z,c), I[427] = (T)(img)(_p6##x,_n2##y,z,c), I[428] = (T)(img)(_p5##x,_n2##y,z,c), I[429] = (T)(img)(_p4##x,_n2##y,z,c), I[430] = (T)(img)(_p3##x,_n2##y,z,c), I[431] = (T)(img)(_p2##x,_n2##y,z,c), I[432] = (T)(img)(_p1##x,_n2##y,z,c), I[433] = (T)(img)(x,_n2##y,z,c), I[434] = (T)(img)(_n1##x,_n2##y,z,c), I[435] = (T)(img)(_n2##x,_n2##y,z,c), I[436] = (T)(img)(_n3##x,_n2##y,z,c), I[437] = (T)(img)(_n4##x,_n2##y,z,c), I[438] = (T)(img)(_n5##x,_n2##y,z,c), I[439] = (T)(img)(_n6##x,_n2##y,z,c), I[440] = (T)(img)(_n7##x,_n2##y,z,c), I[441] = (T)(img)(_n8##x,_n2##y,z,c), I[442] = (T)(img)(_n9##x,_n2##y,z,c), I[443] = (T)(img)(_n10##x,_n2##y,z,c), I[444] = (T)(img)(_n11##x,_n2##y,z,c), I[445] = (T)(img)(_n12##x,_n2##y,z,c), I[446] = (T)(img)(_n13##x,_n2##y,z,c), I[447] = (T)(img)(_n14##x,_n2##y,z,c), \
I[448] = (T)(img)(_p13##x,_n3##y,z,c), I[449] = (T)(img)(_p12##x,_n3##y,z,c), I[450] = (T)(img)(_p11##x,_n3##y,z,c), I[451] = (T)(img)(_p10##x,_n3##y,z,c), I[452] = (T)(img)(_p9##x,_n3##y,z,c), I[453] = (T)(img)(_p8##x,_n3##y,z,c), I[454] = (T)(img)(_p7##x,_n3##y,z,c), I[455] = (T)(img)(_p6##x,_n3##y,z,c), I[456] = (T)(img)(_p5##x,_n3##y,z,c), I[457] = (T)(img)(_p4##x,_n3##y,z,c), I[458] = (T)(img)(_p3##x,_n3##y,z,c), I[459] = (T)(img)(_p2##x,_n3##y,z,c), I[460] = (T)(img)(_p1##x,_n3##y,z,c), I[461] = (T)(img)(x,_n3##y,z,c), I[462] = (T)(img)(_n1##x,_n3##y,z,c), I[463] = (T)(img)(_n2##x,_n3##y,z,c), I[464] = (T)(img)(_n3##x,_n3##y,z,c), I[465] = (T)(img)(_n4##x,_n3##y,z,c), I[466] = (T)(img)(_n5##x,_n3##y,z,c), I[467] = (T)(img)(_n6##x,_n3##y,z,c), I[468] = (T)(img)(_n7##x,_n3##y,z,c), I[469] = (T)(img)(_n8##x,_n3##y,z,c), I[470] = (T)(img)(_n9##x,_n3##y,z,c), I[471] = (T)(img)(_n10##x,_n3##y,z,c), I[472] = (T)(img)(_n11##x,_n3##y,z,c), I[473] = (T)(img)(_n12##x,_n3##y,z,c), I[474] = (T)(img)(_n13##x,_n3##y,z,c), I[475] = (T)(img)(_n14##x,_n3##y,z,c), \
I[476] = (T)(img)(_p13##x,_n4##y,z,c), I[477] = (T)(img)(_p12##x,_n4##y,z,c), I[478] = (T)(img)(_p11##x,_n4##y,z,c), I[479] = (T)(img)(_p10##x,_n4##y,z,c), I[480] = (T)(img)(_p9##x,_n4##y,z,c), I[481] = (T)(img)(_p8##x,_n4##y,z,c), I[482] = (T)(img)(_p7##x,_n4##y,z,c), I[483] = (T)(img)(_p6##x,_n4##y,z,c), I[484] = (T)(img)(_p5##x,_n4##y,z,c), I[485] = (T)(img)(_p4##x,_n4##y,z,c), I[486] = (T)(img)(_p3##x,_n4##y,z,c), I[487] = (T)(img)(_p2##x,_n4##y,z,c), I[488] = (T)(img)(_p1##x,_n4##y,z,c), I[489] = (T)(img)(x,_n4##y,z,c), I[490] = (T)(img)(_n1##x,_n4##y,z,c), I[491] = (T)(img)(_n2##x,_n4##y,z,c), I[492] = (T)(img)(_n3##x,_n4##y,z,c), I[493] = (T)(img)(_n4##x,_n4##y,z,c), I[494] = (T)(img)(_n5##x,_n4##y,z,c), I[495] = (T)(img)(_n6##x,_n4##y,z,c), I[496] = (T)(img)(_n7##x,_n4##y,z,c), I[497] = (T)(img)(_n8##x,_n4##y,z,c), I[498] = (T)(img)(_n9##x,_n4##y,z,c), I[499] = (T)(img)(_n10##x,_n4##y,z,c), I[500] = (T)(img)(_n11##x,_n4##y,z,c), I[501] = (T)(img)(_n12##x,_n4##y,z,c), I[502] = (T)(img)(_n13##x,_n4##y,z,c), I[503] = (T)(img)(_n14##x,_n4##y,z,c), \
I[504] = (T)(img)(_p13##x,_n5##y,z,c), I[505] = (T)(img)(_p12##x,_n5##y,z,c), I[506] = (T)(img)(_p11##x,_n5##y,z,c), I[507] = (T)(img)(_p10##x,_n5##y,z,c), I[508] = (T)(img)(_p9##x,_n5##y,z,c), I[509] = (T)(img)(_p8##x,_n5##y,z,c), I[510] = (T)(img)(_p7##x,_n5##y,z,c), I[511] = (T)(img)(_p6##x,_n5##y,z,c), I[512] = (T)(img)(_p5##x,_n5##y,z,c), I[513] = (T)(img)(_p4##x,_n5##y,z,c), I[514] = (T)(img)(_p3##x,_n5##y,z,c), I[515] = (T)(img)(_p2##x,_n5##y,z,c), I[516] = (T)(img)(_p1##x,_n5##y,z,c), I[517] = (T)(img)(x,_n5##y,z,c), I[518] = (T)(img)(_n1##x,_n5##y,z,c), I[519] = (T)(img)(_n2##x,_n5##y,z,c), I[520] = (T)(img)(_n3##x,_n5##y,z,c), I[521] = (T)(img)(_n4##x,_n5##y,z,c), I[522] = (T)(img)(_n5##x,_n5##y,z,c), I[523] = (T)(img)(_n6##x,_n5##y,z,c), I[524] = (T)(img)(_n7##x,_n5##y,z,c), I[525] = (T)(img)(_n8##x,_n5##y,z,c), I[526] = (T)(img)(_n9##x,_n5##y,z,c), I[527] = (T)(img)(_n10##x,_n5##y,z,c), I[528] = (T)(img)(_n11##x,_n5##y,z,c), I[529] = (T)(img)(_n12##x,_n5##y,z,c), I[530] = (T)(img)(_n13##x,_n5##y,z,c), I[531] = (T)(img)(_n14##x,_n5##y,z,c), \
I[532] = (T)(img)(_p13##x,_n6##y,z,c), I[533] = (T)(img)(_p12##x,_n6##y,z,c), I[534] = (T)(img)(_p11##x,_n6##y,z,c), I[535] = (T)(img)(_p10##x,_n6##y,z,c), I[536] = (T)(img)(_p9##x,_n6##y,z,c), I[537] = (T)(img)(_p8##x,_n6##y,z,c), I[538] = (T)(img)(_p7##x,_n6##y,z,c), I[539] = (T)(img)(_p6##x,_n6##y,z,c), I[540] = (T)(img)(_p5##x,_n6##y,z,c), I[541] = (T)(img)(_p4##x,_n6##y,z,c), I[542] = (T)(img)(_p3##x,_n6##y,z,c), I[543] = (T)(img)(_p2##x,_n6##y,z,c), I[544] = (T)(img)(_p1##x,_n6##y,z,c), I[545] = (T)(img)(x,_n6##y,z,c), I[546] = (T)(img)(_n1##x,_n6##y,z,c), I[547] = (T)(img)(_n2##x,_n6##y,z,c), I[548] = (T)(img)(_n3##x,_n6##y,z,c), I[549] = (T)(img)(_n4##x,_n6##y,z,c), I[550] = (T)(img)(_n5##x,_n6##y,z,c), I[551] = (T)(img)(_n6##x,_n6##y,z,c), I[552] = (T)(img)(_n7##x,_n6##y,z,c), I[553] = (T)(img)(_n8##x,_n6##y,z,c), I[554] = (T)(img)(_n9##x,_n6##y,z,c), I[555] = (T)(img)(_n10##x,_n6##y,z,c), I[556] = (T)(img)(_n11##x,_n6##y,z,c), I[557] = (T)(img)(_n12##x,_n6##y,z,c), I[558] = (T)(img)(_n13##x,_n6##y,z,c), I[559] = (T)(img)(_n14##x,_n6##y,z,c), \
I[560] = (T)(img)(_p13##x,_n7##y,z,c), I[561] = (T)(img)(_p12##x,_n7##y,z,c), I[562] = (T)(img)(_p11##x,_n7##y,z,c), I[563] = (T)(img)(_p10##x,_n7##y,z,c), I[564] = (T)(img)(_p9##x,_n7##y,z,c), I[565] = (T)(img)(_p8##x,_n7##y,z,c), I[566] = (T)(img)(_p7##x,_n7##y,z,c), I[567] = (T)(img)(_p6##x,_n7##y,z,c), I[568] = (T)(img)(_p5##x,_n7##y,z,c), I[569] = (T)(img)(_p4##x,_n7##y,z,c), I[570] = (T)(img)(_p3##x,_n7##y,z,c), I[571] = (T)(img)(_p2##x,_n7##y,z,c), I[572] = (T)(img)(_p1##x,_n7##y,z,c), I[573] = (T)(img)(x,_n7##y,z,c), I[574] = (T)(img)(_n1##x,_n7##y,z,c), I[575] = (T)(img)(_n2##x,_n7##y,z,c), I[576] = (T)(img)(_n3##x,_n7##y,z,c), I[577] = (T)(img)(_n4##x,_n7##y,z,c), I[578] = (T)(img)(_n5##x,_n7##y,z,c), I[579] = (T)(img)(_n6##x,_n7##y,z,c), I[580] = (T)(img)(_n7##x,_n7##y,z,c), I[581] = (T)(img)(_n8##x,_n7##y,z,c), I[582] = (T)(img)(_n9##x,_n7##y,z,c), I[583] = (T)(img)(_n10##x,_n7##y,z,c), I[584] = (T)(img)(_n11##x,_n7##y,z,c), I[585] = (T)(img)(_n12##x,_n7##y,z,c), I[586] = (T)(img)(_n13##x,_n7##y,z,c), I[587] = (T)(img)(_n14##x,_n7##y,z,c), \
I[588] = (T)(img)(_p13##x,_n8##y,z,c), I[589] = (T)(img)(_p12##x,_n8##y,z,c), I[590] = (T)(img)(_p11##x,_n8##y,z,c), I[591] = (T)(img)(_p10##x,_n8##y,z,c), I[592] = (T)(img)(_p9##x,_n8##y,z,c), I[593] = (T)(img)(_p8##x,_n8##y,z,c), I[594] = (T)(img)(_p7##x,_n8##y,z,c), I[595] = (T)(img)(_p6##x,_n8##y,z,c), I[596] = (T)(img)(_p5##x,_n8##y,z,c), I[597] = (T)(img)(_p4##x,_n8##y,z,c), I[598] = (T)(img)(_p3##x,_n8##y,z,c), I[599] = (T)(img)(_p2##x,_n8##y,z,c), I[600] = (T)(img)(_p1##x,_n8##y,z,c), I[601] = (T)(img)(x,_n8##y,z,c), I[602] = (T)(img)(_n1##x,_n8##y,z,c), I[603] = (T)(img)(_n2##x,_n8##y,z,c), I[604] = (T)(img)(_n3##x,_n8##y,z,c), I[605] = (T)(img)(_n4##x,_n8##y,z,c), I[606] = (T)(img)(_n5##x,_n8##y,z,c), I[607] = (T)(img)(_n6##x,_n8##y,z,c), I[608] = (T)(img)(_n7##x,_n8##y,z,c), I[609] = (T)(img)(_n8##x,_n8##y,z,c), I[610] = (T)(img)(_n9##x,_n8##y,z,c), I[611] = (T)(img)(_n10##x,_n8##y,z,c), I[612] = (T)(img)(_n11##x,_n8##y,z,c), I[613] = (T)(img)(_n12##x,_n8##y,z,c), I[614] = (T)(img)(_n13##x,_n8##y,z,c), I[615] = (T)(img)(_n14##x,_n8##y,z,c), \
I[616] = (T)(img)(_p13##x,_n9##y,z,c), I[617] = (T)(img)(_p12##x,_n9##y,z,c), I[618] = (T)(img)(_p11##x,_n9##y,z,c), I[619] = (T)(img)(_p10##x,_n9##y,z,c), I[620] = (T)(img)(_p9##x,_n9##y,z,c), I[621] = (T)(img)(_p8##x,_n9##y,z,c), I[622] = (T)(img)(_p7##x,_n9##y,z,c), I[623] = (T)(img)(_p6##x,_n9##y,z,c), I[624] = (T)(img)(_p5##x,_n9##y,z,c), I[625] = (T)(img)(_p4##x,_n9##y,z,c), I[626] = (T)(img)(_p3##x,_n9##y,z,c), I[627] = (T)(img)(_p2##x,_n9##y,z,c), I[628] = (T)(img)(_p1##x,_n9##y,z,c), I[629] = (T)(img)(x,_n9##y,z,c), I[630] = (T)(img)(_n1##x,_n9##y,z,c), I[631] = (T)(img)(_n2##x,_n9##y,z,c), I[632] = (T)(img)(_n3##x,_n9##y,z,c), I[633] = (T)(img)(_n4##x,_n9##y,z,c), I[634] = (T)(img)(_n5##x,_n9##y,z,c), I[635] = (T)(img)(_n6##x,_n9##y,z,c), I[636] = (T)(img)(_n7##x,_n9##y,z,c), I[637] = (T)(img)(_n8##x,_n9##y,z,c), I[638] = (T)(img)(_n9##x,_n9##y,z,c), I[639] = (T)(img)(_n10##x,_n9##y,z,c), I[640] = (T)(img)(_n11##x,_n9##y,z,c), I[641] = (T)(img)(_n12##x,_n9##y,z,c), I[642] = (T)(img)(_n13##x,_n9##y,z,c), I[643] = (T)(img)(_n14##x,_n9##y,z,c), \
I[644] = (T)(img)(_p13##x,_n10##y,z,c), I[645] = (T)(img)(_p12##x,_n10##y,z,c), I[646] = (T)(img)(_p11##x,_n10##y,z,c), I[647] = (T)(img)(_p10##x,_n10##y,z,c), I[648] = (T)(img)(_p9##x,_n10##y,z,c), I[649] = (T)(img)(_p8##x,_n10##y,z,c), I[650] = (T)(img)(_p7##x,_n10##y,z,c), I[651] = (T)(img)(_p6##x,_n10##y,z,c), I[652] = (T)(img)(_p5##x,_n10##y,z,c), I[653] = (T)(img)(_p4##x,_n10##y,z,c), I[654] = (T)(img)(_p3##x,_n10##y,z,c), I[655] = (T)(img)(_p2##x,_n10##y,z,c), I[656] = (T)(img)(_p1##x,_n10##y,z,c), I[657] = (T)(img)(x,_n10##y,z,c), I[658] = (T)(img)(_n1##x,_n10##y,z,c), I[659] = (T)(img)(_n2##x,_n10##y,z,c), I[660] = (T)(img)(_n3##x,_n10##y,z,c), I[661] = (T)(img)(_n4##x,_n10##y,z,c), I[662] = (T)(img)(_n5##x,_n10##y,z,c), I[663] = (T)(img)(_n6##x,_n10##y,z,c), I[664] = (T)(img)(_n7##x,_n10##y,z,c), I[665] = (T)(img)(_n8##x,_n10##y,z,c), I[666] = (T)(img)(_n9##x,_n10##y,z,c), I[667] = (T)(img)(_n10##x,_n10##y,z,c), I[668] = (T)(img)(_n11##x,_n10##y,z,c), I[669] = (T)(img)(_n12##x,_n10##y,z,c), I[670] = (T)(img)(_n13##x,_n10##y,z,c), I[671] = (T)(img)(_n14##x,_n10##y,z,c), \
I[672] = (T)(img)(_p13##x,_n11##y,z,c), I[673] = (T)(img)(_p12##x,_n11##y,z,c), I[674] = (T)(img)(_p11##x,_n11##y,z,c), I[675] = (T)(img)(_p10##x,_n11##y,z,c), I[676] = (T)(img)(_p9##x,_n11##y,z,c), I[677] = (T)(img)(_p8##x,_n11##y,z,c), I[678] = (T)(img)(_p7##x,_n11##y,z,c), I[679] = (T)(img)(_p6##x,_n11##y,z,c), I[680] = (T)(img)(_p5##x,_n11##y,z,c), I[681] = (T)(img)(_p4##x,_n11##y,z,c), I[682] = (T)(img)(_p3##x,_n11##y,z,c), I[683] = (T)(img)(_p2##x,_n11##y,z,c), I[684] = (T)(img)(_p1##x,_n11##y,z,c), I[685] = (T)(img)(x,_n11##y,z,c), I[686] = (T)(img)(_n1##x,_n11##y,z,c), I[687] = (T)(img)(_n2##x,_n11##y,z,c), I[688] = (T)(img)(_n3##x,_n11##y,z,c), I[689] = (T)(img)(_n4##x,_n11##y,z,c), I[690] = (T)(img)(_n5##x,_n11##y,z,c), I[691] = (T)(img)(_n6##x,_n11##y,z,c), I[692] = (T)(img)(_n7##x,_n11##y,z,c), I[693] = (T)(img)(_n8##x,_n11##y,z,c), I[694] = (T)(img)(_n9##x,_n11##y,z,c), I[695] = (T)(img)(_n10##x,_n11##y,z,c), I[696] = (T)(img)(_n11##x,_n11##y,z,c), I[697] = (T)(img)(_n12##x,_n11##y,z,c), I[698] = (T)(img)(_n13##x,_n11##y,z,c), I[699] = (T)(img)(_n14##x,_n11##y,z,c), \
I[700] = (T)(img)(_p13##x,_n12##y,z,c), I[701] = (T)(img)(_p12##x,_n12##y,z,c), I[702] = (T)(img)(_p11##x,_n12##y,z,c), I[703] = (T)(img)(_p10##x,_n12##y,z,c), I[704] = (T)(img)(_p9##x,_n12##y,z,c), I[705] = (T)(img)(_p8##x,_n12##y,z,c), I[706] = (T)(img)(_p7##x,_n12##y,z,c), I[707] = (T)(img)(_p6##x,_n12##y,z,c), I[708] = (T)(img)(_p5##x,_n12##y,z,c), I[709] = (T)(img)(_p4##x,_n12##y,z,c), I[710] = (T)(img)(_p3##x,_n12##y,z,c), I[711] = (T)(img)(_p2##x,_n12##y,z,c), I[712] = (T)(img)(_p1##x,_n12##y,z,c), I[713] = (T)(img)(x,_n12##y,z,c), I[714] = (T)(img)(_n1##x,_n12##y,z,c), I[715] = (T)(img)(_n2##x,_n12##y,z,c), I[716] = (T)(img)(_n3##x,_n12##y,z,c), I[717] = (T)(img)(_n4##x,_n12##y,z,c), I[718] = (T)(img)(_n5##x,_n12##y,z,c), I[719] = (T)(img)(_n6##x,_n12##y,z,c), I[720] = (T)(img)(_n7##x,_n12##y,z,c), I[721] = (T)(img)(_n8##x,_n12##y,z,c), I[722] = (T)(img)(_n9##x,_n12##y,z,c), I[723] = (T)(img)(_n10##x,_n12##y,z,c), I[724] = (T)(img)(_n11##x,_n12##y,z,c), I[725] = (T)(img)(_n12##x,_n12##y,z,c), I[726] = (T)(img)(_n13##x,_n12##y,z,c), I[727] = (T)(img)(_n14##x,_n12##y,z,c), \
I[728] = (T)(img)(_p13##x,_n13##y,z,c), I[729] = (T)(img)(_p12##x,_n13##y,z,c), I[730] = (T)(img)(_p11##x,_n13##y,z,c), I[731] = (T)(img)(_p10##x,_n13##y,z,c), I[732] = (T)(img)(_p9##x,_n13##y,z,c), I[733] = (T)(img)(_p8##x,_n13##y,z,c), I[734] = (T)(img)(_p7##x,_n13##y,z,c), I[735] = (T)(img)(_p6##x,_n13##y,z,c), I[736] = (T)(img)(_p5##x,_n13##y,z,c), I[737] = (T)(img)(_p4##x,_n13##y,z,c), I[738] = (T)(img)(_p3##x,_n13##y,z,c), I[739] = (T)(img)(_p2##x,_n13##y,z,c), I[740] = (T)(img)(_p1##x,_n13##y,z,c), I[741] = (T)(img)(x,_n13##y,z,c), I[742] = (T)(img)(_n1##x,_n13##y,z,c), I[743] = (T)(img)(_n2##x,_n13##y,z,c), I[744] = (T)(img)(_n3##x,_n13##y,z,c), I[745] = (T)(img)(_n4##x,_n13##y,z,c), I[746] = (T)(img)(_n5##x,_n13##y,z,c), I[747] = (T)(img)(_n6##x,_n13##y,z,c), I[748] = (T)(img)(_n7##x,_n13##y,z,c), I[749] = (T)(img)(_n8##x,_n13##y,z,c), I[750] = (T)(img)(_n9##x,_n13##y,z,c), I[751] = (T)(img)(_n10##x,_n13##y,z,c), I[752] = (T)(img)(_n11##x,_n13##y,z,c), I[753] = (T)(img)(_n12##x,_n13##y,z,c), I[754] = (T)(img)(_n13##x,_n13##y,z,c), I[755] = (T)(img)(_n14##x,_n13##y,z,c), \
I[756] = (T)(img)(_p13##x,_n14##y,z,c), I[757] = (T)(img)(_p12##x,_n14##y,z,c), I[758] = (T)(img)(_p11##x,_n14##y,z,c), I[759] = (T)(img)(_p10##x,_n14##y,z,c), I[760] = (T)(img)(_p9##x,_n14##y,z,c), I[761] = (T)(img)(_p8##x,_n14##y,z,c), I[762] = (T)(img)(_p7##x,_n14##y,z,c), I[763] = (T)(img)(_p6##x,_n14##y,z,c), I[764] = (T)(img)(_p5##x,_n14##y,z,c), I[765] = (T)(img)(_p4##x,_n14##y,z,c), I[766] = (T)(img)(_p3##x,_n14##y,z,c), I[767] = (T)(img)(_p2##x,_n14##y,z,c), I[768] = (T)(img)(_p1##x,_n14##y,z,c), I[769] = (T)(img)(x,_n14##y,z,c), I[770] = (T)(img)(_n1##x,_n14##y,z,c), I[771] = (T)(img)(_n2##x,_n14##y,z,c), I[772] = (T)(img)(_n3##x,_n14##y,z,c), I[773] = (T)(img)(_n4##x,_n14##y,z,c), I[774] = (T)(img)(_n5##x,_n14##y,z,c), I[775] = (T)(img)(_n6##x,_n14##y,z,c), I[776] = (T)(img)(_n7##x,_n14##y,z,c), I[777] = (T)(img)(_n8##x,_n14##y,z,c), I[778] = (T)(img)(_n9##x,_n14##y,z,c), I[779] = (T)(img)(_n10##x,_n14##y,z,c), I[780] = (T)(img)(_n11##x,_n14##y,z,c), I[781] = (T)(img)(_n12##x,_n14##y,z,c), I[782] = (T)(img)(_n13##x,_n14##y,z,c), I[783] = (T)(img)(_n14##x,_n14##y,z,c);
// Define 29x29 loop macros
//-------------------------
#define cimg_for29(bound,i) for (int i = 0, \
_p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14; \
_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
#define cimg_for29X(img,x) cimg_for29((img)._width,x)
#define cimg_for29Y(img,y) cimg_for29((img)._height,y)
#define cimg_for29Z(img,z) cimg_for29((img)._depth,z)
#define cimg_for29C(img,c) cimg_for29((img)._spectrum,c)
#define cimg_for29XY(img,x,y) cimg_for29Y(img,y) cimg_for29X(img,x)
#define cimg_for29XZ(img,x,z) cimg_for29Z(img,z) cimg_for29X(img,x)
#define cimg_for29XC(img,x,c) cimg_for29C(img,c) cimg_for29X(img,x)
#define cimg_for29YZ(img,y,z) cimg_for29Z(img,z) cimg_for29Y(img,y)
#define cimg_for29YC(img,y,c) cimg_for29C(img,c) cimg_for29Y(img,y)
#define cimg_for29ZC(img,z,c) cimg_for29C(img,c) cimg_for29Z(img,z)
#define cimg_for29XYZ(img,x,y,z) cimg_for29Z(img,z) cimg_for29XY(img,x,y)
#define cimg_for29XZC(img,x,z,c) cimg_for29C(img,c) cimg_for29XZ(img,x,z)
#define cimg_for29YZC(img,y,z,c) cimg_for29C(img,c) cimg_for29YZ(img,y,z)
#define cimg_for29XYZC(img,x,y,z,c) cimg_for29C(img,c) cimg_for29XYZ(img,x,y,z)
#define cimg_for_in29(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p14##i = i - 14<0?0:i - 14, \
_p13##i = i - 13<0?0:i - 13, \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14; \
i<=(int)(i1) && (_n14##i<(int)(bound) || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i)
#define cimg_for_in29X(img,x0,x1,x) cimg_for_in29((img)._width,x0,x1,x)
#define cimg_for_in29Y(img,y0,y1,y) cimg_for_in29((img)._height,y0,y1,y)
#define cimg_for_in29Z(img,z0,z1,z) cimg_for_in29((img)._depth,z0,z1,z)
#define cimg_for_in29C(img,c0,c1,c) cimg_for_in29((img)._spectrum,c0,c1,c)
#define cimg_for_in29XY(img,x0,y0,x1,y1,x,y) cimg_for_in29Y(img,y0,y1,y) cimg_for_in29X(img,x0,x1,x)
#define cimg_for_in29XZ(img,x0,z0,x1,z1,x,z) cimg_for_in29Z(img,z0,z1,z) cimg_for_in29X(img,x0,x1,x)
#define cimg_for_in29XC(img,x0,c0,x1,c1,x,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29X(img,x0,x1,x)
#define cimg_for_in29YZ(img,y0,z0,y1,z1,y,z) cimg_for_in29Z(img,z0,z1,z) cimg_for_in29Y(img,y0,y1,y)
#define cimg_for_in29YC(img,y0,c0,y1,c1,y,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29Y(img,y0,y1,y)
#define cimg_for_in29ZC(img,z0,c0,z1,c1,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29Z(img,z0,z1,z)
#define cimg_for_in29XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in29Z(img,z0,z1,z) cimg_for_in29XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in29XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in29YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in29XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in29C(img,c0,c1,c) cimg_for_in29XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for29x29(img,x,y,z,c,I,T) \
cimg_for29((img)._height,y) for (int x = 0, \
_p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
_n14##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = (T)(img)(0,_p14##y,z,c)), \
(I[29] = I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = (T)(img)(0,_p13##y,z,c)), \
(I[58] = I[59] = I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = (T)(img)(0,_p12##y,z,c)), \
(I[87] = I[88] = I[89] = I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = (T)(img)(0,_p11##y,z,c)), \
(I[116] = I[117] = I[118] = I[119] = I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = (T)(img)(0,_p10##y,z,c)), \
(I[145] = I[146] = I[147] = I[148] = I[149] = I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = (T)(img)(0,_p9##y,z,c)), \
(I[174] = I[175] = I[176] = I[177] = I[178] = I[179] = I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = (T)(img)(0,_p8##y,z,c)), \
(I[203] = I[204] = I[205] = I[206] = I[207] = I[208] = I[209] = I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = (T)(img)(0,_p7##y,z,c)), \
(I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = (T)(img)(0,_p6##y,z,c)), \
(I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = (T)(img)(0,_p5##y,z,c)), \
(I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = I[304] = (T)(img)(0,_p4##y,z,c)), \
(I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = (T)(img)(0,_p3##y,z,c)), \
(I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = (T)(img)(0,_p2##y,z,c)), \
(I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = (T)(img)(0,_p1##y,z,c)), \
(I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = I[419] = I[420] = (T)(img)(0,y,z,c)), \
(I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = (T)(img)(0,_n1##y,z,c)), \
(I[464] = I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = I[473] = I[474] = I[475] = I[476] = I[477] = I[478] = (T)(img)(0,_n2##y,z,c)), \
(I[493] = I[494] = I[495] = I[496] = I[497] = I[498] = I[499] = I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = I[507] = (T)(img)(0,_n3##y,z,c)), \
(I[522] = I[523] = I[524] = I[525] = I[526] = I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = (T)(img)(0,_n4##y,z,c)), \
(I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = I[564] = I[565] = (T)(img)(0,_n5##y,z,c)), \
(I[580] = I[581] = I[582] = I[583] = I[584] = I[585] = I[586] = I[587] = I[588] = I[589] = I[590] = I[591] = I[592] = I[593] = I[594] = (T)(img)(0,_n6##y,z,c)), \
(I[609] = I[610] = I[611] = I[612] = I[613] = I[614] = I[615] = I[616] = I[617] = I[618] = I[619] = I[620] = I[621] = I[622] = I[623] = (T)(img)(0,_n7##y,z,c)), \
(I[638] = I[639] = I[640] = I[641] = I[642] = I[643] = I[644] = I[645] = I[646] = I[647] = I[648] = I[649] = I[650] = I[651] = I[652] = (T)(img)(0,_n8##y,z,c)), \
(I[667] = I[668] = I[669] = I[670] = I[671] = I[672] = I[673] = I[674] = I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = (T)(img)(0,_n9##y,z,c)), \
(I[696] = I[697] = I[698] = I[699] = I[700] = I[701] = I[702] = I[703] = I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = (T)(img)(0,_n10##y,z,c)), \
(I[725] = I[726] = I[727] = I[728] = I[729] = I[730] = I[731] = I[732] = I[733] = I[734] = I[735] = I[736] = I[737] = I[738] = I[739] = (T)(img)(0,_n11##y,z,c)), \
(I[754] = I[755] = I[756] = I[757] = I[758] = I[759] = I[760] = I[761] = I[762] = I[763] = I[764] = I[765] = I[766] = I[767] = I[768] = (T)(img)(0,_n12##y,z,c)), \
(I[783] = I[784] = I[785] = I[786] = I[787] = I[788] = I[789] = I[790] = I[791] = I[792] = I[793] = I[794] = I[795] = I[796] = I[797] = (T)(img)(0,_n13##y,z,c)), \
(I[812] = I[813] = I[814] = I[815] = I[816] = I[817] = I[818] = I[819] = I[820] = I[821] = I[822] = I[823] = I[824] = I[825] = I[826] = (T)(img)(0,_n14##y,z,c)), \
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[44] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[73] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[102] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[131] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[160] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[189] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[218] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[247] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[276] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[305] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[334] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[363] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[392] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[421] = (T)(img)(_n1##x,y,z,c)), \
(I[450] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[479] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[508] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[537] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[566] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[595] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[624] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[653] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[682] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[711] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[740] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[769] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[798] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[827] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[45] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[74] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[103] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[132] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[161] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[190] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[219] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[248] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[277] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[306] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[335] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[364] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[393] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[422] = (T)(img)(_n2##x,y,z,c)), \
(I[451] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[480] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[509] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[538] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[567] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[596] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[625] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[654] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[683] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[712] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[741] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[770] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[799] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[828] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[46] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[75] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[104] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[133] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[162] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[191] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[220] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[249] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[278] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[307] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[336] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[365] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[394] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[423] = (T)(img)(_n3##x,y,z,c)), \
(I[452] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[481] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[510] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[539] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[568] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[597] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[626] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[655] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[684] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[713] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[742] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[771] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[800] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[829] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[47] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[76] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[105] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[134] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[163] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[192] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[221] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[250] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[279] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[308] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[337] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[366] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[395] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[424] = (T)(img)(_n4##x,y,z,c)), \
(I[453] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[482] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[511] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[540] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[569] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[598] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[627] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[656] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[685] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[714] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[743] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[772] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[801] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[830] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[48] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[77] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[106] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[135] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[164] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[193] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[222] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[251] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[280] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[309] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[338] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[367] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[396] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[425] = (T)(img)(_n5##x,y,z,c)), \
(I[454] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[483] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[512] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[541] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[570] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[599] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[628] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[657] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[686] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[715] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[744] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[773] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[802] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[831] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[49] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[78] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[107] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[136] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[165] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[194] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[223] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[252] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[281] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[310] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[339] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[368] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[397] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[426] = (T)(img)(_n6##x,y,z,c)), \
(I[455] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[484] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[513] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[542] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[571] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[600] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[629] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[658] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[687] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[716] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[745] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[774] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[803] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[832] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[50] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[79] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[108] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[137] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[166] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[195] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[224] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[253] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[282] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[311] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[340] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[369] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[398] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[427] = (T)(img)(_n7##x,y,z,c)), \
(I[456] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[485] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[514] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[543] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[572] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[601] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[630] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[659] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[688] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[717] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[746] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[775] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[804] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[833] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[51] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[80] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[109] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[138] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[167] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[196] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[225] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[254] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[283] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[312] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[341] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[370] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[399] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[428] = (T)(img)(_n8##x,y,z,c)), \
(I[457] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[486] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[515] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[544] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[573] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[602] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[631] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[660] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[689] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[718] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[747] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[776] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[805] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[834] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[52] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[81] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[110] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[139] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[168] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[197] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[226] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[255] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[284] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[313] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[342] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[371] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[400] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[429] = (T)(img)(_n9##x,y,z,c)), \
(I[458] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[487] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[516] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[545] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[574] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[603] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[632] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[661] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[690] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[719] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[748] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[777] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[806] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[835] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[53] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[82] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[111] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[140] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[169] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[198] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[227] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[256] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[285] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[314] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[343] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[372] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[401] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[430] = (T)(img)(_n10##x,y,z,c)), \
(I[459] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[488] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[517] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[546] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[575] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[604] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[633] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[662] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[691] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[720] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[749] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[778] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[807] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[836] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[54] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[83] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[112] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[141] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[170] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[199] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[228] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[257] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[286] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[315] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[344] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[373] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[402] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[431] = (T)(img)(_n11##x,y,z,c)), \
(I[460] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[489] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[518] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[547] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[576] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[605] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[634] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[663] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[692] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[721] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[750] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[779] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[808] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[837] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[55] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[84] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[113] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[142] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[171] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[200] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[229] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[258] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[287] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[316] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[345] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[374] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[403] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[432] = (T)(img)(_n12##x,y,z,c)), \
(I[461] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[490] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[519] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[548] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[577] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[606] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[635] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[664] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[693] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[722] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[751] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[780] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[809] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[838] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[56] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[85] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[114] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[143] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[172] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[201] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[230] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[259] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[288] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[317] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[346] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[375] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[404] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[433] = (T)(img)(_n13##x,y,z,c)), \
(I[462] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[491] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[520] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[549] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[578] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[607] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[636] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[665] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[694] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[723] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[752] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[781] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[810] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[839] = (T)(img)(_n13##x,_n14##y,z,c)), \
14>=((img)._width)?(img).width() - 1:14); \
(_n14##x<(img).width() && ( \
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[57] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[86] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[115] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[144] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[173] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[202] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[231] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[260] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[289] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[318] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[347] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[376] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[405] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[434] = (T)(img)(_n14##x,y,z,c)), \
(I[463] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[492] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[521] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[550] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[579] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[608] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[637] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[666] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[695] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[724] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[753] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[782] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[811] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[840] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], \
I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], \
I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], \
I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], \
I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], \
I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], \
I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], \
I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], \
I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], \
I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], \
I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], \
I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], \
I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], \
I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], \
I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], \
I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], \
I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], \
I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], \
I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], \
I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], \
I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], \
I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], \
I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], \
I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], \
I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], \
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
#define cimg_for_in29x29(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in29((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p14##x = x - 14<0?0:x - 14, \
_p13##x = x - 13<0?0:x - 13, \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
_n14##x = (int)( \
(I[0] = (T)(img)(_p14##x,_p14##y,z,c)), \
(I[29] = (T)(img)(_p14##x,_p13##y,z,c)), \
(I[58] = (T)(img)(_p14##x,_p12##y,z,c)), \
(I[87] = (T)(img)(_p14##x,_p11##y,z,c)), \
(I[116] = (T)(img)(_p14##x,_p10##y,z,c)), \
(I[145] = (T)(img)(_p14##x,_p9##y,z,c)), \
(I[174] = (T)(img)(_p14##x,_p8##y,z,c)), \
(I[203] = (T)(img)(_p14##x,_p7##y,z,c)), \
(I[232] = (T)(img)(_p14##x,_p6##y,z,c)), \
(I[261] = (T)(img)(_p14##x,_p5##y,z,c)), \
(I[290] = (T)(img)(_p14##x,_p4##y,z,c)), \
(I[319] = (T)(img)(_p14##x,_p3##y,z,c)), \
(I[348] = (T)(img)(_p14##x,_p2##y,z,c)), \
(I[377] = (T)(img)(_p14##x,_p1##y,z,c)), \
(I[406] = (T)(img)(_p14##x,y,z,c)), \
(I[435] = (T)(img)(_p14##x,_n1##y,z,c)), \
(I[464] = (T)(img)(_p14##x,_n2##y,z,c)), \
(I[493] = (T)(img)(_p14##x,_n3##y,z,c)), \
(I[522] = (T)(img)(_p14##x,_n4##y,z,c)), \
(I[551] = (T)(img)(_p14##x,_n5##y,z,c)), \
(I[580] = (T)(img)(_p14##x,_n6##y,z,c)), \
(I[609] = (T)(img)(_p14##x,_n7##y,z,c)), \
(I[638] = (T)(img)(_p14##x,_n8##y,z,c)), \
(I[667] = (T)(img)(_p14##x,_n9##y,z,c)), \
(I[696] = (T)(img)(_p14##x,_n10##y,z,c)), \
(I[725] = (T)(img)(_p14##x,_n11##y,z,c)), \
(I[754] = (T)(img)(_p14##x,_n12##y,z,c)), \
(I[783] = (T)(img)(_p14##x,_n13##y,z,c)), \
(I[812] = (T)(img)(_p14##x,_n14##y,z,c)), \
(I[1] = (T)(img)(_p13##x,_p14##y,z,c)), \
(I[30] = (T)(img)(_p13##x,_p13##y,z,c)), \
(I[59] = (T)(img)(_p13##x,_p12##y,z,c)), \
(I[88] = (T)(img)(_p13##x,_p11##y,z,c)), \
(I[117] = (T)(img)(_p13##x,_p10##y,z,c)), \
(I[146] = (T)(img)(_p13##x,_p9##y,z,c)), \
(I[175] = (T)(img)(_p13##x,_p8##y,z,c)), \
(I[204] = (T)(img)(_p13##x,_p7##y,z,c)), \
(I[233] = (T)(img)(_p13##x,_p6##y,z,c)), \
(I[262] = (T)(img)(_p13##x,_p5##y,z,c)), \
(I[291] = (T)(img)(_p13##x,_p4##y,z,c)), \
(I[320] = (T)(img)(_p13##x,_p3##y,z,c)), \
(I[349] = (T)(img)(_p13##x,_p2##y,z,c)), \
(I[378] = (T)(img)(_p13##x,_p1##y,z,c)), \
(I[407] = (T)(img)(_p13##x,y,z,c)), \
(I[436] = (T)(img)(_p13##x,_n1##y,z,c)), \
(I[465] = (T)(img)(_p13##x,_n2##y,z,c)), \
(I[494] = (T)(img)(_p13##x,_n3##y,z,c)), \
(I[523] = (T)(img)(_p13##x,_n4##y,z,c)), \
(I[552] = (T)(img)(_p13##x,_n5##y,z,c)), \
(I[581] = (T)(img)(_p13##x,_n6##y,z,c)), \
(I[610] = (T)(img)(_p13##x,_n7##y,z,c)), \
(I[639] = (T)(img)(_p13##x,_n8##y,z,c)), \
(I[668] = (T)(img)(_p13##x,_n9##y,z,c)), \
(I[697] = (T)(img)(_p13##x,_n10##y,z,c)), \
(I[726] = (T)(img)(_p13##x,_n11##y,z,c)), \
(I[755] = (T)(img)(_p13##x,_n12##y,z,c)), \
(I[784] = (T)(img)(_p13##x,_n13##y,z,c)), \
(I[813] = (T)(img)(_p13##x,_n14##y,z,c)), \
(I[2] = (T)(img)(_p12##x,_p14##y,z,c)), \
(I[31] = (T)(img)(_p12##x,_p13##y,z,c)), \
(I[60] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[89] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[118] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[147] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[176] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[205] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[234] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[263] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[292] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[321] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[350] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[379] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[408] = (T)(img)(_p12##x,y,z,c)), \
(I[437] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[466] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[495] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[524] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[553] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[582] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[611] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[640] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[669] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[698] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[727] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[756] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[785] = (T)(img)(_p12##x,_n13##y,z,c)), \
(I[814] = (T)(img)(_p12##x,_n14##y,z,c)), \
(I[3] = (T)(img)(_p11##x,_p14##y,z,c)), \
(I[32] = (T)(img)(_p11##x,_p13##y,z,c)), \
(I[61] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[90] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[119] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[148] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[177] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[206] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[235] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[264] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[293] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[322] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[351] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[380] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[409] = (T)(img)(_p11##x,y,z,c)), \
(I[438] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[467] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[496] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[525] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[554] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[583] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[612] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[641] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[670] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[699] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[728] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[757] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[786] = (T)(img)(_p11##x,_n13##y,z,c)), \
(I[815] = (T)(img)(_p11##x,_n14##y,z,c)), \
(I[4] = (T)(img)(_p10##x,_p14##y,z,c)), \
(I[33] = (T)(img)(_p10##x,_p13##y,z,c)), \
(I[62] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[91] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[120] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[149] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[178] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[207] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[236] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[265] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[294] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[323] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[352] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[381] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[410] = (T)(img)(_p10##x,y,z,c)), \
(I[439] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[468] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[497] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[526] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[555] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[584] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[613] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[642] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[671] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[700] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[729] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[758] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[787] = (T)(img)(_p10##x,_n13##y,z,c)), \
(I[816] = (T)(img)(_p10##x,_n14##y,z,c)), \
(I[5] = (T)(img)(_p9##x,_p14##y,z,c)), \
(I[34] = (T)(img)(_p9##x,_p13##y,z,c)), \
(I[63] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[92] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[121] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[150] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[179] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[208] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[237] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[266] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[295] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[324] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[353] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[382] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[411] = (T)(img)(_p9##x,y,z,c)), \
(I[440] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[469] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[498] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[527] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[556] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[585] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[614] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[643] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[672] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[701] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[730] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[759] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[788] = (T)(img)(_p9##x,_n13##y,z,c)), \
(I[817] = (T)(img)(_p9##x,_n14##y,z,c)), \
(I[6] = (T)(img)(_p8##x,_p14##y,z,c)), \
(I[35] = (T)(img)(_p8##x,_p13##y,z,c)), \
(I[64] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[93] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[122] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[151] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[180] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[209] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[238] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[267] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[296] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[325] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[354] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[383] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[412] = (T)(img)(_p8##x,y,z,c)), \
(I[441] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[470] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[499] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[528] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[557] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[586] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[615] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[644] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[673] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[702] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[731] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[760] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[789] = (T)(img)(_p8##x,_n13##y,z,c)), \
(I[818] = (T)(img)(_p8##x,_n14##y,z,c)), \
(I[7] = (T)(img)(_p7##x,_p14##y,z,c)), \
(I[36] = (T)(img)(_p7##x,_p13##y,z,c)), \
(I[65] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[94] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[123] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[152] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[181] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[210] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[239] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[268] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[297] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[326] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[355] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[384] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[413] = (T)(img)(_p7##x,y,z,c)), \
(I[442] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[471] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[500] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[529] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[558] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[587] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[616] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[645] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[674] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[703] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[732] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[761] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[790] = (T)(img)(_p7##x,_n13##y,z,c)), \
(I[819] = (T)(img)(_p7##x,_n14##y,z,c)), \
(I[8] = (T)(img)(_p6##x,_p14##y,z,c)), \
(I[37] = (T)(img)(_p6##x,_p13##y,z,c)), \
(I[66] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[95] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[124] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[153] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[182] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[211] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[240] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[269] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[298] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[327] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[356] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[385] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[414] = (T)(img)(_p6##x,y,z,c)), \
(I[443] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[472] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[501] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[530] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[559] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[588] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[617] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[646] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[675] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[704] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[733] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[762] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[791] = (T)(img)(_p6##x,_n13##y,z,c)), \
(I[820] = (T)(img)(_p6##x,_n14##y,z,c)), \
(I[9] = (T)(img)(_p5##x,_p14##y,z,c)), \
(I[38] = (T)(img)(_p5##x,_p13##y,z,c)), \
(I[67] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[96] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[125] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[154] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[183] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[212] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[241] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[270] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[299] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[328] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[357] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[386] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[415] = (T)(img)(_p5##x,y,z,c)), \
(I[444] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[473] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[502] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[531] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[560] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[589] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[618] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[647] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[676] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[705] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[734] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[763] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[792] = (T)(img)(_p5##x,_n13##y,z,c)), \
(I[821] = (T)(img)(_p5##x,_n14##y,z,c)), \
(I[10] = (T)(img)(_p4##x,_p14##y,z,c)), \
(I[39] = (T)(img)(_p4##x,_p13##y,z,c)), \
(I[68] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[97] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[126] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[155] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[184] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[213] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[242] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[271] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[300] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[329] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[358] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[387] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[416] = (T)(img)(_p4##x,y,z,c)), \
(I[445] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[474] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[503] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[532] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[561] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[590] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[619] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[648] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[677] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[706] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[735] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[764] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[793] = (T)(img)(_p4##x,_n13##y,z,c)), \
(I[822] = (T)(img)(_p4##x,_n14##y,z,c)), \
(I[11] = (T)(img)(_p3##x,_p14##y,z,c)), \
(I[40] = (T)(img)(_p3##x,_p13##y,z,c)), \
(I[69] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[98] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[127] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[156] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[185] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[214] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[243] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[272] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[301] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[330] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[359] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[388] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[417] = (T)(img)(_p3##x,y,z,c)), \
(I[446] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[475] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[504] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[533] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[562] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[591] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[620] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[649] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[678] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[707] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[736] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[765] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[794] = (T)(img)(_p3##x,_n13##y,z,c)), \
(I[823] = (T)(img)(_p3##x,_n14##y,z,c)), \
(I[12] = (T)(img)(_p2##x,_p14##y,z,c)), \
(I[41] = (T)(img)(_p2##x,_p13##y,z,c)), \
(I[70] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[99] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[128] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[157] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[186] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[215] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[244] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[273] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[302] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[331] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[360] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[389] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[418] = (T)(img)(_p2##x,y,z,c)), \
(I[447] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[476] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[505] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[534] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[563] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[592] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[621] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[650] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[679] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[708] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[737] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[766] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[795] = (T)(img)(_p2##x,_n13##y,z,c)), \
(I[824] = (T)(img)(_p2##x,_n14##y,z,c)), \
(I[13] = (T)(img)(_p1##x,_p14##y,z,c)), \
(I[42] = (T)(img)(_p1##x,_p13##y,z,c)), \
(I[71] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[100] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[129] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[158] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[187] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[216] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[245] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[274] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[303] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[332] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[361] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[390] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[419] = (T)(img)(_p1##x,y,z,c)), \
(I[448] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[477] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[506] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[535] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[564] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[593] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[622] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[651] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[680] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[709] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[738] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[767] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[796] = (T)(img)(_p1##x,_n13##y,z,c)), \
(I[825] = (T)(img)(_p1##x,_n14##y,z,c)), \
(I[14] = (T)(img)(x,_p14##y,z,c)), \
(I[43] = (T)(img)(x,_p13##y,z,c)), \
(I[72] = (T)(img)(x,_p12##y,z,c)), \
(I[101] = (T)(img)(x,_p11##y,z,c)), \
(I[130] = (T)(img)(x,_p10##y,z,c)), \
(I[159] = (T)(img)(x,_p9##y,z,c)), \
(I[188] = (T)(img)(x,_p8##y,z,c)), \
(I[217] = (T)(img)(x,_p7##y,z,c)), \
(I[246] = (T)(img)(x,_p6##y,z,c)), \
(I[275] = (T)(img)(x,_p5##y,z,c)), \
(I[304] = (T)(img)(x,_p4##y,z,c)), \
(I[333] = (T)(img)(x,_p3##y,z,c)), \
(I[362] = (T)(img)(x,_p2##y,z,c)), \
(I[391] = (T)(img)(x,_p1##y,z,c)), \
(I[420] = (T)(img)(x,y,z,c)), \
(I[449] = (T)(img)(x,_n1##y,z,c)), \
(I[478] = (T)(img)(x,_n2##y,z,c)), \
(I[507] = (T)(img)(x,_n3##y,z,c)), \
(I[536] = (T)(img)(x,_n4##y,z,c)), \
(I[565] = (T)(img)(x,_n5##y,z,c)), \
(I[594] = (T)(img)(x,_n6##y,z,c)), \
(I[623] = (T)(img)(x,_n7##y,z,c)), \
(I[652] = (T)(img)(x,_n8##y,z,c)), \
(I[681] = (T)(img)(x,_n9##y,z,c)), \
(I[710] = (T)(img)(x,_n10##y,z,c)), \
(I[739] = (T)(img)(x,_n11##y,z,c)), \
(I[768] = (T)(img)(x,_n12##y,z,c)), \
(I[797] = (T)(img)(x,_n13##y,z,c)), \
(I[826] = (T)(img)(x,_n14##y,z,c)), \
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[44] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[73] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[102] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[131] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[160] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[189] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[218] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[247] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[276] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[305] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[334] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[363] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[392] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[421] = (T)(img)(_n1##x,y,z,c)), \
(I[450] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[479] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[508] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[537] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[566] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[595] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[624] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[653] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[682] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[711] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[740] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[769] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[798] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[827] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[45] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[74] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[103] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[132] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[161] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[190] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[219] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[248] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[277] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[306] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[335] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[364] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[393] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[422] = (T)(img)(_n2##x,y,z,c)), \
(I[451] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[480] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[509] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[538] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[567] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[596] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[625] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[654] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[683] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[712] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[741] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[770] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[799] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[828] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[46] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[75] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[104] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[133] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[162] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[191] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[220] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[249] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[278] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[307] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[336] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[365] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[394] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[423] = (T)(img)(_n3##x,y,z,c)), \
(I[452] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[481] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[510] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[539] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[568] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[597] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[626] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[655] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[684] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[713] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[742] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[771] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[800] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[829] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[47] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[76] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[105] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[134] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[163] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[192] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[221] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[250] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[279] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[308] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[337] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[366] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[395] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[424] = (T)(img)(_n4##x,y,z,c)), \
(I[453] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[482] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[511] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[540] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[569] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[598] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[627] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[656] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[685] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[714] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[743] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[772] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[801] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[830] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[48] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[77] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[106] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[135] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[164] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[193] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[222] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[251] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[280] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[309] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[338] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[367] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[396] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[425] = (T)(img)(_n5##x,y,z,c)), \
(I[454] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[483] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[512] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[541] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[570] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[599] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[628] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[657] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[686] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[715] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[744] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[773] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[802] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[831] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[49] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[78] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[107] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[136] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[165] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[194] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[223] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[252] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[281] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[310] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[339] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[368] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[397] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[426] = (T)(img)(_n6##x,y,z,c)), \
(I[455] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[484] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[513] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[542] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[571] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[600] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[629] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[658] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[687] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[716] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[745] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[774] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[803] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[832] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[50] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[79] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[108] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[137] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[166] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[195] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[224] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[253] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[282] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[311] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[340] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[369] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[398] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[427] = (T)(img)(_n7##x,y,z,c)), \
(I[456] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[485] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[514] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[543] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[572] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[601] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[630] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[659] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[688] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[717] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[746] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[775] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[804] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[833] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[51] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[80] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[109] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[138] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[167] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[196] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[225] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[254] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[283] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[312] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[341] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[370] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[399] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[428] = (T)(img)(_n8##x,y,z,c)), \
(I[457] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[486] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[515] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[544] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[573] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[602] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[631] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[660] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[689] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[718] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[747] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[776] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[805] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[834] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[52] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[81] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[110] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[139] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[168] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[197] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[226] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[255] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[284] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[313] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[342] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[371] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[400] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[429] = (T)(img)(_n9##x,y,z,c)), \
(I[458] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[487] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[516] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[545] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[574] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[603] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[632] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[661] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[690] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[719] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[748] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[777] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[806] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[835] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[53] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[82] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[111] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[140] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[169] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[198] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[227] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[256] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[285] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[314] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[343] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[372] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[401] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[430] = (T)(img)(_n10##x,y,z,c)), \
(I[459] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[488] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[517] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[546] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[575] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[604] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[633] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[662] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[691] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[720] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[749] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[778] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[807] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[836] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[54] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[83] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[112] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[141] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[170] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[199] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[228] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[257] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[286] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[315] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[344] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[373] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[402] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[431] = (T)(img)(_n11##x,y,z,c)), \
(I[460] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[489] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[518] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[547] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[576] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[605] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[634] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[663] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[692] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[721] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[750] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[779] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[808] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[837] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[55] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[84] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[113] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[142] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[171] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[200] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[229] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[258] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[287] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[316] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[345] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[374] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[403] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[432] = (T)(img)(_n12##x,y,z,c)), \
(I[461] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[490] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[519] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[548] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[577] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[606] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[635] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[664] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[693] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[722] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[751] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[780] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[809] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[838] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[56] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[85] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[114] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[143] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[172] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[201] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[230] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[259] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[288] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[317] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[346] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[375] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[404] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[433] = (T)(img)(_n13##x,y,z,c)), \
(I[462] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[491] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[520] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[549] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[578] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[607] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[636] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[665] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[694] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[723] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[752] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[781] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[810] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[839] = (T)(img)(_n13##x,_n14##y,z,c)), \
x + 14>=(img).width()?(img).width() - 1:x + 14); \
x<=(int)(x1) && ((_n14##x<(img).width() && ( \
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[57] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[86] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[115] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[144] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[173] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[202] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[231] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[260] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[289] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[318] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[347] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[376] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[405] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[434] = (T)(img)(_n14##x,y,z,c)), \
(I[463] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[492] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[521] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[550] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[579] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[608] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[637] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[666] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[695] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[724] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[753] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[782] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[811] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[840] = (T)(img)(_n14##x,_n14##y,z,c)),1)) || \
_n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], \
I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], \
I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], \
I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], \
I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], \
I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], \
I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], \
I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], \
I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], \
I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], \
I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], \
I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], \
I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], \
I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], \
I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], \
I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], \
I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], \
I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], \
I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], \
I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], \
I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], \
I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], \
I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], \
I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], \
I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], \
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x)
#define cimg_get29x29(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p14##x,_p14##y,z,c), I[1] = (T)(img)(_p13##x,_p14##y,z,c), I[2] = (T)(img)(_p12##x,_p14##y,z,c), I[3] = (T)(img)(_p11##x,_p14##y,z,c), I[4] = (T)(img)(_p10##x,_p14##y,z,c), I[5] = (T)(img)(_p9##x,_p14##y,z,c), I[6] = (T)(img)(_p8##x,_p14##y,z,c), I[7] = (T)(img)(_p7##x,_p14##y,z,c), I[8] = (T)(img)(_p6##x,_p14##y,z,c), I[9] = (T)(img)(_p5##x,_p14##y,z,c), I[10] = (T)(img)(_p4##x,_p14##y,z,c), I[11] = (T)(img)(_p3##x,_p14##y,z,c), I[12] = (T)(img)(_p2##x,_p14##y,z,c), I[13] = (T)(img)(_p1##x,_p14##y,z,c), I[14] = (T)(img)(x,_p14##y,z,c), I[15] = (T)(img)(_n1##x,_p14##y,z,c), I[16] = (T)(img)(_n2##x,_p14##y,z,c), I[17] = (T)(img)(_n3##x,_p14##y,z,c), I[18] = (T)(img)(_n4##x,_p14##y,z,c), I[19] = (T)(img)(_n5##x,_p14##y,z,c), I[20] = (T)(img)(_n6##x,_p14##y,z,c), I[21] = (T)(img)(_n7##x,_p14##y,z,c), I[22] = (T)(img)(_n8##x,_p14##y,z,c), I[23] = (T)(img)(_n9##x,_p14##y,z,c), I[24] = (T)(img)(_n10##x,_p14##y,z,c), I[25] = (T)(img)(_n11##x,_p14##y,z,c), I[26] = (T)(img)(_n12##x,_p14##y,z,c), I[27] = (T)(img)(_n13##x,_p14##y,z,c), I[28] = (T)(img)(_n14##x,_p14##y,z,c), \
I[29] = (T)(img)(_p14##x,_p13##y,z,c), I[30] = (T)(img)(_p13##x,_p13##y,z,c), I[31] = (T)(img)(_p12##x,_p13##y,z,c), I[32] = (T)(img)(_p11##x,_p13##y,z,c), I[33] = (T)(img)(_p10##x,_p13##y,z,c), I[34] = (T)(img)(_p9##x,_p13##y,z,c), I[35] = (T)(img)(_p8##x,_p13##y,z,c), I[36] = (T)(img)(_p7##x,_p13##y,z,c), I[37] = (T)(img)(_p6##x,_p13##y,z,c), I[38] = (T)(img)(_p5##x,_p13##y,z,c), I[39] = (T)(img)(_p4##x,_p13##y,z,c), I[40] = (T)(img)(_p3##x,_p13##y,z,c), I[41] = (T)(img)(_p2##x,_p13##y,z,c), I[42] = (T)(img)(_p1##x,_p13##y,z,c), I[43] = (T)(img)(x,_p13##y,z,c), I[44] = (T)(img)(_n1##x,_p13##y,z,c), I[45] = (T)(img)(_n2##x,_p13##y,z,c), I[46] = (T)(img)(_n3##x,_p13##y,z,c), I[47] = (T)(img)(_n4##x,_p13##y,z,c), I[48] = (T)(img)(_n5##x,_p13##y,z,c), I[49] = (T)(img)(_n6##x,_p13##y,z,c), I[50] = (T)(img)(_n7##x,_p13##y,z,c), I[51] = (T)(img)(_n8##x,_p13##y,z,c), I[52] = (T)(img)(_n9##x,_p13##y,z,c), I[53] = (T)(img)(_n10##x,_p13##y,z,c), I[54] = (T)(img)(_n11##x,_p13##y,z,c), I[55] = (T)(img)(_n12##x,_p13##y,z,c), I[56] = (T)(img)(_n13##x,_p13##y,z,c), I[57] = (T)(img)(_n14##x,_p13##y,z,c), \
I[58] = (T)(img)(_p14##x,_p12##y,z,c), I[59] = (T)(img)(_p13##x,_p12##y,z,c), I[60] = (T)(img)(_p12##x,_p12##y,z,c), I[61] = (T)(img)(_p11##x,_p12##y,z,c), I[62] = (T)(img)(_p10##x,_p12##y,z,c), I[63] = (T)(img)(_p9##x,_p12##y,z,c), I[64] = (T)(img)(_p8##x,_p12##y,z,c), I[65] = (T)(img)(_p7##x,_p12##y,z,c), I[66] = (T)(img)(_p6##x,_p12##y,z,c), I[67] = (T)(img)(_p5##x,_p12##y,z,c), I[68] = (T)(img)(_p4##x,_p12##y,z,c), I[69] = (T)(img)(_p3##x,_p12##y,z,c), I[70] = (T)(img)(_p2##x,_p12##y,z,c), I[71] = (T)(img)(_p1##x,_p12##y,z,c), I[72] = (T)(img)(x,_p12##y,z,c), I[73] = (T)(img)(_n1##x,_p12##y,z,c), I[74] = (T)(img)(_n2##x,_p12##y,z,c), I[75] = (T)(img)(_n3##x,_p12##y,z,c), I[76] = (T)(img)(_n4##x,_p12##y,z,c), I[77] = (T)(img)(_n5##x,_p12##y,z,c), I[78] = (T)(img)(_n6##x,_p12##y,z,c), I[79] = (T)(img)(_n7##x,_p12##y,z,c), I[80] = (T)(img)(_n8##x,_p12##y,z,c), I[81] = (T)(img)(_n9##x,_p12##y,z,c), I[82] = (T)(img)(_n10##x,_p12##y,z,c), I[83] = (T)(img)(_n11##x,_p12##y,z,c), I[84] = (T)(img)(_n12##x,_p12##y,z,c), I[85] = (T)(img)(_n13##x,_p12##y,z,c), I[86] = (T)(img)(_n14##x,_p12##y,z,c), \
I[87] = (T)(img)(_p14##x,_p11##y,z,c), I[88] = (T)(img)(_p13##x,_p11##y,z,c), I[89] = (T)(img)(_p12##x,_p11##y,z,c), I[90] = (T)(img)(_p11##x,_p11##y,z,c), I[91] = (T)(img)(_p10##x,_p11##y,z,c), I[92] = (T)(img)(_p9##x,_p11##y,z,c), I[93] = (T)(img)(_p8##x,_p11##y,z,c), I[94] = (T)(img)(_p7##x,_p11##y,z,c), I[95] = (T)(img)(_p6##x,_p11##y,z,c), I[96] = (T)(img)(_p5##x,_p11##y,z,c), I[97] = (T)(img)(_p4##x,_p11##y,z,c), I[98] = (T)(img)(_p3##x,_p11##y,z,c), I[99] = (T)(img)(_p2##x,_p11##y,z,c), I[100] = (T)(img)(_p1##x,_p11##y,z,c), I[101] = (T)(img)(x,_p11##y,z,c), I[102] = (T)(img)(_n1##x,_p11##y,z,c), I[103] = (T)(img)(_n2##x,_p11##y,z,c), I[104] = (T)(img)(_n3##x,_p11##y,z,c), I[105] = (T)(img)(_n4##x,_p11##y,z,c), I[106] = (T)(img)(_n5##x,_p11##y,z,c), I[107] = (T)(img)(_n6##x,_p11##y,z,c), I[108] = (T)(img)(_n7##x,_p11##y,z,c), I[109] = (T)(img)(_n8##x,_p11##y,z,c), I[110] = (T)(img)(_n9##x,_p11##y,z,c), I[111] = (T)(img)(_n10##x,_p11##y,z,c), I[112] = (T)(img)(_n11##x,_p11##y,z,c), I[113] = (T)(img)(_n12##x,_p11##y,z,c), I[114] = (T)(img)(_n13##x,_p11##y,z,c), I[115] = (T)(img)(_n14##x,_p11##y,z,c), \
I[116] = (T)(img)(_p14##x,_p10##y,z,c), I[117] = (T)(img)(_p13##x,_p10##y,z,c), I[118] = (T)(img)(_p12##x,_p10##y,z,c), I[119] = (T)(img)(_p11##x,_p10##y,z,c), I[120] = (T)(img)(_p10##x,_p10##y,z,c), I[121] = (T)(img)(_p9##x,_p10##y,z,c), I[122] = (T)(img)(_p8##x,_p10##y,z,c), I[123] = (T)(img)(_p7##x,_p10##y,z,c), I[124] = (T)(img)(_p6##x,_p10##y,z,c), I[125] = (T)(img)(_p5##x,_p10##y,z,c), I[126] = (T)(img)(_p4##x,_p10##y,z,c), I[127] = (T)(img)(_p3##x,_p10##y,z,c), I[128] = (T)(img)(_p2##x,_p10##y,z,c), I[129] = (T)(img)(_p1##x,_p10##y,z,c), I[130] = (T)(img)(x,_p10##y,z,c), I[131] = (T)(img)(_n1##x,_p10##y,z,c), I[132] = (T)(img)(_n2##x,_p10##y,z,c), I[133] = (T)(img)(_n3##x,_p10##y,z,c), I[134] = (T)(img)(_n4##x,_p10##y,z,c), I[135] = (T)(img)(_n5##x,_p10##y,z,c), I[136] = (T)(img)(_n6##x,_p10##y,z,c), I[137] = (T)(img)(_n7##x,_p10##y,z,c), I[138] = (T)(img)(_n8##x,_p10##y,z,c), I[139] = (T)(img)(_n9##x,_p10##y,z,c), I[140] = (T)(img)(_n10##x,_p10##y,z,c), I[141] = (T)(img)(_n11##x,_p10##y,z,c), I[142] = (T)(img)(_n12##x,_p10##y,z,c), I[143] = (T)(img)(_n13##x,_p10##y,z,c), I[144] = (T)(img)(_n14##x,_p10##y,z,c), \
I[145] = (T)(img)(_p14##x,_p9##y,z,c), I[146] = (T)(img)(_p13##x,_p9##y,z,c), I[147] = (T)(img)(_p12##x,_p9##y,z,c), I[148] = (T)(img)(_p11##x,_p9##y,z,c), I[149] = (T)(img)(_p10##x,_p9##y,z,c), I[150] = (T)(img)(_p9##x,_p9##y,z,c), I[151] = (T)(img)(_p8##x,_p9##y,z,c), I[152] = (T)(img)(_p7##x,_p9##y,z,c), I[153] = (T)(img)(_p6##x,_p9##y,z,c), I[154] = (T)(img)(_p5##x,_p9##y,z,c), I[155] = (T)(img)(_p4##x,_p9##y,z,c), I[156] = (T)(img)(_p3##x,_p9##y,z,c), I[157] = (T)(img)(_p2##x,_p9##y,z,c), I[158] = (T)(img)(_p1##x,_p9##y,z,c), I[159] = (T)(img)(x,_p9##y,z,c), I[160] = (T)(img)(_n1##x,_p9##y,z,c), I[161] = (T)(img)(_n2##x,_p9##y,z,c), I[162] = (T)(img)(_n3##x,_p9##y,z,c), I[163] = (T)(img)(_n4##x,_p9##y,z,c), I[164] = (T)(img)(_n5##x,_p9##y,z,c), I[165] = (T)(img)(_n6##x,_p9##y,z,c), I[166] = (T)(img)(_n7##x,_p9##y,z,c), I[167] = (T)(img)(_n8##x,_p9##y,z,c), I[168] = (T)(img)(_n9##x,_p9##y,z,c), I[169] = (T)(img)(_n10##x,_p9##y,z,c), I[170] = (T)(img)(_n11##x,_p9##y,z,c), I[171] = (T)(img)(_n12##x,_p9##y,z,c), I[172] = (T)(img)(_n13##x,_p9##y,z,c), I[173] = (T)(img)(_n14##x,_p9##y,z,c), \
I[174] = (T)(img)(_p14##x,_p8##y,z,c), I[175] = (T)(img)(_p13##x,_p8##y,z,c), I[176] = (T)(img)(_p12##x,_p8##y,z,c), I[177] = (T)(img)(_p11##x,_p8##y,z,c), I[178] = (T)(img)(_p10##x,_p8##y,z,c), I[179] = (T)(img)(_p9##x,_p8##y,z,c), I[180] = (T)(img)(_p8##x,_p8##y,z,c), I[181] = (T)(img)(_p7##x,_p8##y,z,c), I[182] = (T)(img)(_p6##x,_p8##y,z,c), I[183] = (T)(img)(_p5##x,_p8##y,z,c), I[184] = (T)(img)(_p4##x,_p8##y,z,c), I[185] = (T)(img)(_p3##x,_p8##y,z,c), I[186] = (T)(img)(_p2##x,_p8##y,z,c), I[187] = (T)(img)(_p1##x,_p8##y,z,c), I[188] = (T)(img)(x,_p8##y,z,c), I[189] = (T)(img)(_n1##x,_p8##y,z,c), I[190] = (T)(img)(_n2##x,_p8##y,z,c), I[191] = (T)(img)(_n3##x,_p8##y,z,c), I[192] = (T)(img)(_n4##x,_p8##y,z,c), I[193] = (T)(img)(_n5##x,_p8##y,z,c), I[194] = (T)(img)(_n6##x,_p8##y,z,c), I[195] = (T)(img)(_n7##x,_p8##y,z,c), I[196] = (T)(img)(_n8##x,_p8##y,z,c), I[197] = (T)(img)(_n9##x,_p8##y,z,c), I[198] = (T)(img)(_n10##x,_p8##y,z,c), I[199] = (T)(img)(_n11##x,_p8##y,z,c), I[200] = (T)(img)(_n12##x,_p8##y,z,c), I[201] = (T)(img)(_n13##x,_p8##y,z,c), I[202] = (T)(img)(_n14##x,_p8##y,z,c), \
I[203] = (T)(img)(_p14##x,_p7##y,z,c), I[204] = (T)(img)(_p13##x,_p7##y,z,c), I[205] = (T)(img)(_p12##x,_p7##y,z,c), I[206] = (T)(img)(_p11##x,_p7##y,z,c), I[207] = (T)(img)(_p10##x,_p7##y,z,c), I[208] = (T)(img)(_p9##x,_p7##y,z,c), I[209] = (T)(img)(_p8##x,_p7##y,z,c), I[210] = (T)(img)(_p7##x,_p7##y,z,c), I[211] = (T)(img)(_p6##x,_p7##y,z,c), I[212] = (T)(img)(_p5##x,_p7##y,z,c), I[213] = (T)(img)(_p4##x,_p7##y,z,c), I[214] = (T)(img)(_p3##x,_p7##y,z,c), I[215] = (T)(img)(_p2##x,_p7##y,z,c), I[216] = (T)(img)(_p1##x,_p7##y,z,c), I[217] = (T)(img)(x,_p7##y,z,c), I[218] = (T)(img)(_n1##x,_p7##y,z,c), I[219] = (T)(img)(_n2##x,_p7##y,z,c), I[220] = (T)(img)(_n3##x,_p7##y,z,c), I[221] = (T)(img)(_n4##x,_p7##y,z,c), I[222] = (T)(img)(_n5##x,_p7##y,z,c), I[223] = (T)(img)(_n6##x,_p7##y,z,c), I[224] = (T)(img)(_n7##x,_p7##y,z,c), I[225] = (T)(img)(_n8##x,_p7##y,z,c), I[226] = (T)(img)(_n9##x,_p7##y,z,c), I[227] = (T)(img)(_n10##x,_p7##y,z,c), I[228] = (T)(img)(_n11##x,_p7##y,z,c), I[229] = (T)(img)(_n12##x,_p7##y,z,c), I[230] = (T)(img)(_n13##x,_p7##y,z,c), I[231] = (T)(img)(_n14##x,_p7##y,z,c), \
I[232] = (T)(img)(_p14##x,_p6##y,z,c), I[233] = (T)(img)(_p13##x,_p6##y,z,c), I[234] = (T)(img)(_p12##x,_p6##y,z,c), I[235] = (T)(img)(_p11##x,_p6##y,z,c), I[236] = (T)(img)(_p10##x,_p6##y,z,c), I[237] = (T)(img)(_p9##x,_p6##y,z,c), I[238] = (T)(img)(_p8##x,_p6##y,z,c), I[239] = (T)(img)(_p7##x,_p6##y,z,c), I[240] = (T)(img)(_p6##x,_p6##y,z,c), I[241] = (T)(img)(_p5##x,_p6##y,z,c), I[242] = (T)(img)(_p4##x,_p6##y,z,c), I[243] = (T)(img)(_p3##x,_p6##y,z,c), I[244] = (T)(img)(_p2##x,_p6##y,z,c), I[245] = (T)(img)(_p1##x,_p6##y,z,c), I[246] = (T)(img)(x,_p6##y,z,c), I[247] = (T)(img)(_n1##x,_p6##y,z,c), I[248] = (T)(img)(_n2##x,_p6##y,z,c), I[249] = (T)(img)(_n3##x,_p6##y,z,c), I[250] = (T)(img)(_n4##x,_p6##y,z,c), I[251] = (T)(img)(_n5##x,_p6##y,z,c), I[252] = (T)(img)(_n6##x,_p6##y,z,c), I[253] = (T)(img)(_n7##x,_p6##y,z,c), I[254] = (T)(img)(_n8##x,_p6##y,z,c), I[255] = (T)(img)(_n9##x,_p6##y,z,c), I[256] = (T)(img)(_n10##x,_p6##y,z,c), I[257] = (T)(img)(_n11##x,_p6##y,z,c), I[258] = (T)(img)(_n12##x,_p6##y,z,c), I[259] = (T)(img)(_n13##x,_p6##y,z,c), I[260] = (T)(img)(_n14##x,_p6##y,z,c), \
I[261] = (T)(img)(_p14##x,_p5##y,z,c), I[262] = (T)(img)(_p13##x,_p5##y,z,c), I[263] = (T)(img)(_p12##x,_p5##y,z,c), I[264] = (T)(img)(_p11##x,_p5##y,z,c), I[265] = (T)(img)(_p10##x,_p5##y,z,c), I[266] = (T)(img)(_p9##x,_p5##y,z,c), I[267] = (T)(img)(_p8##x,_p5##y,z,c), I[268] = (T)(img)(_p7##x,_p5##y,z,c), I[269] = (T)(img)(_p6##x,_p5##y,z,c), I[270] = (T)(img)(_p5##x,_p5##y,z,c), I[271] = (T)(img)(_p4##x,_p5##y,z,c), I[272] = (T)(img)(_p3##x,_p5##y,z,c), I[273] = (T)(img)(_p2##x,_p5##y,z,c), I[274] = (T)(img)(_p1##x,_p5##y,z,c), I[275] = (T)(img)(x,_p5##y,z,c), I[276] = (T)(img)(_n1##x,_p5##y,z,c), I[277] = (T)(img)(_n2##x,_p5##y,z,c), I[278] = (T)(img)(_n3##x,_p5##y,z,c), I[279] = (T)(img)(_n4##x,_p5##y,z,c), I[280] = (T)(img)(_n5##x,_p5##y,z,c), I[281] = (T)(img)(_n6##x,_p5##y,z,c), I[282] = (T)(img)(_n7##x,_p5##y,z,c), I[283] = (T)(img)(_n8##x,_p5##y,z,c), I[284] = (T)(img)(_n9##x,_p5##y,z,c), I[285] = (T)(img)(_n10##x,_p5##y,z,c), I[286] = (T)(img)(_n11##x,_p5##y,z,c), I[287] = (T)(img)(_n12##x,_p5##y,z,c), I[288] = (T)(img)(_n13##x,_p5##y,z,c), I[289] = (T)(img)(_n14##x,_p5##y,z,c), \
I[290] = (T)(img)(_p14##x,_p4##y,z,c), I[291] = (T)(img)(_p13##x,_p4##y,z,c), I[292] = (T)(img)(_p12##x,_p4##y,z,c), I[293] = (T)(img)(_p11##x,_p4##y,z,c), I[294] = (T)(img)(_p10##x,_p4##y,z,c), I[295] = (T)(img)(_p9##x,_p4##y,z,c), I[296] = (T)(img)(_p8##x,_p4##y,z,c), I[297] = (T)(img)(_p7##x,_p4##y,z,c), I[298] = (T)(img)(_p6##x,_p4##y,z,c), I[299] = (T)(img)(_p5##x,_p4##y,z,c), I[300] = (T)(img)(_p4##x,_p4##y,z,c), I[301] = (T)(img)(_p3##x,_p4##y,z,c), I[302] = (T)(img)(_p2##x,_p4##y,z,c), I[303] = (T)(img)(_p1##x,_p4##y,z,c), I[304] = (T)(img)(x,_p4##y,z,c), I[305] = (T)(img)(_n1##x,_p4##y,z,c), I[306] = (T)(img)(_n2##x,_p4##y,z,c), I[307] = (T)(img)(_n3##x,_p4##y,z,c), I[308] = (T)(img)(_n4##x,_p4##y,z,c), I[309] = (T)(img)(_n5##x,_p4##y,z,c), I[310] = (T)(img)(_n6##x,_p4##y,z,c), I[311] = (T)(img)(_n7##x,_p4##y,z,c), I[312] = (T)(img)(_n8##x,_p4##y,z,c), I[313] = (T)(img)(_n9##x,_p4##y,z,c), I[314] = (T)(img)(_n10##x,_p4##y,z,c), I[315] = (T)(img)(_n11##x,_p4##y,z,c), I[316] = (T)(img)(_n12##x,_p4##y,z,c), I[317] = (T)(img)(_n13##x,_p4##y,z,c), I[318] = (T)(img)(_n14##x,_p4##y,z,c), \
I[319] = (T)(img)(_p14##x,_p3##y,z,c), I[320] = (T)(img)(_p13##x,_p3##y,z,c), I[321] = (T)(img)(_p12##x,_p3##y,z,c), I[322] = (T)(img)(_p11##x,_p3##y,z,c), I[323] = (T)(img)(_p10##x,_p3##y,z,c), I[324] = (T)(img)(_p9##x,_p3##y,z,c), I[325] = (T)(img)(_p8##x,_p3##y,z,c), I[326] = (T)(img)(_p7##x,_p3##y,z,c), I[327] = (T)(img)(_p6##x,_p3##y,z,c), I[328] = (T)(img)(_p5##x,_p3##y,z,c), I[329] = (T)(img)(_p4##x,_p3##y,z,c), I[330] = (T)(img)(_p3##x,_p3##y,z,c), I[331] = (T)(img)(_p2##x,_p3##y,z,c), I[332] = (T)(img)(_p1##x,_p3##y,z,c), I[333] = (T)(img)(x,_p3##y,z,c), I[334] = (T)(img)(_n1##x,_p3##y,z,c), I[335] = (T)(img)(_n2##x,_p3##y,z,c), I[336] = (T)(img)(_n3##x,_p3##y,z,c), I[337] = (T)(img)(_n4##x,_p3##y,z,c), I[338] = (T)(img)(_n5##x,_p3##y,z,c), I[339] = (T)(img)(_n6##x,_p3##y,z,c), I[340] = (T)(img)(_n7##x,_p3##y,z,c), I[341] = (T)(img)(_n8##x,_p3##y,z,c), I[342] = (T)(img)(_n9##x,_p3##y,z,c), I[343] = (T)(img)(_n10##x,_p3##y,z,c), I[344] = (T)(img)(_n11##x,_p3##y,z,c), I[345] = (T)(img)(_n12##x,_p3##y,z,c), I[346] = (T)(img)(_n13##x,_p3##y,z,c), I[347] = (T)(img)(_n14##x,_p3##y,z,c), \
I[348] = (T)(img)(_p14##x,_p2##y,z,c), I[349] = (T)(img)(_p13##x,_p2##y,z,c), I[350] = (T)(img)(_p12##x,_p2##y,z,c), I[351] = (T)(img)(_p11##x,_p2##y,z,c), I[352] = (T)(img)(_p10##x,_p2##y,z,c), I[353] = (T)(img)(_p9##x,_p2##y,z,c), I[354] = (T)(img)(_p8##x,_p2##y,z,c), I[355] = (T)(img)(_p7##x,_p2##y,z,c), I[356] = (T)(img)(_p6##x,_p2##y,z,c), I[357] = (T)(img)(_p5##x,_p2##y,z,c), I[358] = (T)(img)(_p4##x,_p2##y,z,c), I[359] = (T)(img)(_p3##x,_p2##y,z,c), I[360] = (T)(img)(_p2##x,_p2##y,z,c), I[361] = (T)(img)(_p1##x,_p2##y,z,c), I[362] = (T)(img)(x,_p2##y,z,c), I[363] = (T)(img)(_n1##x,_p2##y,z,c), I[364] = (T)(img)(_n2##x,_p2##y,z,c), I[365] = (T)(img)(_n3##x,_p2##y,z,c), I[366] = (T)(img)(_n4##x,_p2##y,z,c), I[367] = (T)(img)(_n5##x,_p2##y,z,c), I[368] = (T)(img)(_n6##x,_p2##y,z,c), I[369] = (T)(img)(_n7##x,_p2##y,z,c), I[370] = (T)(img)(_n8##x,_p2##y,z,c), I[371] = (T)(img)(_n9##x,_p2##y,z,c), I[372] = (T)(img)(_n10##x,_p2##y,z,c), I[373] = (T)(img)(_n11##x,_p2##y,z,c), I[374] = (T)(img)(_n12##x,_p2##y,z,c), I[375] = (T)(img)(_n13##x,_p2##y,z,c), I[376] = (T)(img)(_n14##x,_p2##y,z,c), \
I[377] = (T)(img)(_p14##x,_p1##y,z,c), I[378] = (T)(img)(_p13##x,_p1##y,z,c), I[379] = (T)(img)(_p12##x,_p1##y,z,c), I[380] = (T)(img)(_p11##x,_p1##y,z,c), I[381] = (T)(img)(_p10##x,_p1##y,z,c), I[382] = (T)(img)(_p9##x,_p1##y,z,c), I[383] = (T)(img)(_p8##x,_p1##y,z,c), I[384] = (T)(img)(_p7##x,_p1##y,z,c), I[385] = (T)(img)(_p6##x,_p1##y,z,c), I[386] = (T)(img)(_p5##x,_p1##y,z,c), I[387] = (T)(img)(_p4##x,_p1##y,z,c), I[388] = (T)(img)(_p3##x,_p1##y,z,c), I[389] = (T)(img)(_p2##x,_p1##y,z,c), I[390] = (T)(img)(_p1##x,_p1##y,z,c), I[391] = (T)(img)(x,_p1##y,z,c), I[392] = (T)(img)(_n1##x,_p1##y,z,c), I[393] = (T)(img)(_n2##x,_p1##y,z,c), I[394] = (T)(img)(_n3##x,_p1##y,z,c), I[395] = (T)(img)(_n4##x,_p1##y,z,c), I[396] = (T)(img)(_n5##x,_p1##y,z,c), I[397] = (T)(img)(_n6##x,_p1##y,z,c), I[398] = (T)(img)(_n7##x,_p1##y,z,c), I[399] = (T)(img)(_n8##x,_p1##y,z,c), I[400] = (T)(img)(_n9##x,_p1##y,z,c), I[401] = (T)(img)(_n10##x,_p1##y,z,c), I[402] = (T)(img)(_n11##x,_p1##y,z,c), I[403] = (T)(img)(_n12##x,_p1##y,z,c), I[404] = (T)(img)(_n13##x,_p1##y,z,c), I[405] = (T)(img)(_n14##x,_p1##y,z,c), \
I[406] = (T)(img)(_p14##x,y,z,c), I[407] = (T)(img)(_p13##x,y,z,c), I[408] = (T)(img)(_p12##x,y,z,c), I[409] = (T)(img)(_p11##x,y,z,c), I[410] = (T)(img)(_p10##x,y,z,c), I[411] = (T)(img)(_p9##x,y,z,c), I[412] = (T)(img)(_p8##x,y,z,c), I[413] = (T)(img)(_p7##x,y,z,c), I[414] = (T)(img)(_p6##x,y,z,c), I[415] = (T)(img)(_p5##x,y,z,c), I[416] = (T)(img)(_p4##x,y,z,c), I[417] = (T)(img)(_p3##x,y,z,c), I[418] = (T)(img)(_p2##x,y,z,c), I[419] = (T)(img)(_p1##x,y,z,c), I[420] = (T)(img)(x,y,z,c), I[421] = (T)(img)(_n1##x,y,z,c), I[422] = (T)(img)(_n2##x,y,z,c), I[423] = (T)(img)(_n3##x,y,z,c), I[424] = (T)(img)(_n4##x,y,z,c), I[425] = (T)(img)(_n5##x,y,z,c), I[426] = (T)(img)(_n6##x,y,z,c), I[427] = (T)(img)(_n7##x,y,z,c), I[428] = (T)(img)(_n8##x,y,z,c), I[429] = (T)(img)(_n9##x,y,z,c), I[430] = (T)(img)(_n10##x,y,z,c), I[431] = (T)(img)(_n11##x,y,z,c), I[432] = (T)(img)(_n12##x,y,z,c), I[433] = (T)(img)(_n13##x,y,z,c), I[434] = (T)(img)(_n14##x,y,z,c), \
I[435] = (T)(img)(_p14##x,_n1##y,z,c), I[436] = (T)(img)(_p13##x,_n1##y,z,c), I[437] = (T)(img)(_p12##x,_n1##y,z,c), I[438] = (T)(img)(_p11##x,_n1##y,z,c), I[439] = (T)(img)(_p10##x,_n1##y,z,c), I[440] = (T)(img)(_p9##x,_n1##y,z,c), I[441] = (T)(img)(_p8##x,_n1##y,z,c), I[442] = (T)(img)(_p7##x,_n1##y,z,c), I[443] = (T)(img)(_p6##x,_n1##y,z,c), I[444] = (T)(img)(_p5##x,_n1##y,z,c), I[445] = (T)(img)(_p4##x,_n1##y,z,c), I[446] = (T)(img)(_p3##x,_n1##y,z,c), I[447] = (T)(img)(_p2##x,_n1##y,z,c), I[448] = (T)(img)(_p1##x,_n1##y,z,c), I[449] = (T)(img)(x,_n1##y,z,c), I[450] = (T)(img)(_n1##x,_n1##y,z,c), I[451] = (T)(img)(_n2##x,_n1##y,z,c), I[452] = (T)(img)(_n3##x,_n1##y,z,c), I[453] = (T)(img)(_n4##x,_n1##y,z,c), I[454] = (T)(img)(_n5##x,_n1##y,z,c), I[455] = (T)(img)(_n6##x,_n1##y,z,c), I[456] = (T)(img)(_n7##x,_n1##y,z,c), I[457] = (T)(img)(_n8##x,_n1##y,z,c), I[458] = (T)(img)(_n9##x,_n1##y,z,c), I[459] = (T)(img)(_n10##x,_n1##y,z,c), I[460] = (T)(img)(_n11##x,_n1##y,z,c), I[461] = (T)(img)(_n12##x,_n1##y,z,c), I[462] = (T)(img)(_n13##x,_n1##y,z,c), I[463] = (T)(img)(_n14##x,_n1##y,z,c), \
I[464] = (T)(img)(_p14##x,_n2##y,z,c), I[465] = (T)(img)(_p13##x,_n2##y,z,c), I[466] = (T)(img)(_p12##x,_n2##y,z,c), I[467] = (T)(img)(_p11##x,_n2##y,z,c), I[468] = (T)(img)(_p10##x,_n2##y,z,c), I[469] = (T)(img)(_p9##x,_n2##y,z,c), I[470] = (T)(img)(_p8##x,_n2##y,z,c), I[471] = (T)(img)(_p7##x,_n2##y,z,c), I[472] = (T)(img)(_p6##x,_n2##y,z,c), I[473] = (T)(img)(_p5##x,_n2##y,z,c), I[474] = (T)(img)(_p4##x,_n2##y,z,c), I[475] = (T)(img)(_p3##x,_n2##y,z,c), I[476] = (T)(img)(_p2##x,_n2##y,z,c), I[477] = (T)(img)(_p1##x,_n2##y,z,c), I[478] = (T)(img)(x,_n2##y,z,c), I[479] = (T)(img)(_n1##x,_n2##y,z,c), I[480] = (T)(img)(_n2##x,_n2##y,z,c), I[481] = (T)(img)(_n3##x,_n2##y,z,c), I[482] = (T)(img)(_n4##x,_n2##y,z,c), I[483] = (T)(img)(_n5##x,_n2##y,z,c), I[484] = (T)(img)(_n6##x,_n2##y,z,c), I[485] = (T)(img)(_n7##x,_n2##y,z,c), I[486] = (T)(img)(_n8##x,_n2##y,z,c), I[487] = (T)(img)(_n9##x,_n2##y,z,c), I[488] = (T)(img)(_n10##x,_n2##y,z,c), I[489] = (T)(img)(_n11##x,_n2##y,z,c), I[490] = (T)(img)(_n12##x,_n2##y,z,c), I[491] = (T)(img)(_n13##x,_n2##y,z,c), I[492] = (T)(img)(_n14##x,_n2##y,z,c), \
I[493] = (T)(img)(_p14##x,_n3##y,z,c), I[494] = (T)(img)(_p13##x,_n3##y,z,c), I[495] = (T)(img)(_p12##x,_n3##y,z,c), I[496] = (T)(img)(_p11##x,_n3##y,z,c), I[497] = (T)(img)(_p10##x,_n3##y,z,c), I[498] = (T)(img)(_p9##x,_n3##y,z,c), I[499] = (T)(img)(_p8##x,_n3##y,z,c), I[500] = (T)(img)(_p7##x,_n3##y,z,c), I[501] = (T)(img)(_p6##x,_n3##y,z,c), I[502] = (T)(img)(_p5##x,_n3##y,z,c), I[503] = (T)(img)(_p4##x,_n3##y,z,c), I[504] = (T)(img)(_p3##x,_n3##y,z,c), I[505] = (T)(img)(_p2##x,_n3##y,z,c), I[506] = (T)(img)(_p1##x,_n3##y,z,c), I[507] = (T)(img)(x,_n3##y,z,c), I[508] = (T)(img)(_n1##x,_n3##y,z,c), I[509] = (T)(img)(_n2##x,_n3##y,z,c), I[510] = (T)(img)(_n3##x,_n3##y,z,c), I[511] = (T)(img)(_n4##x,_n3##y,z,c), I[512] = (T)(img)(_n5##x,_n3##y,z,c), I[513] = (T)(img)(_n6##x,_n3##y,z,c), I[514] = (T)(img)(_n7##x,_n3##y,z,c), I[515] = (T)(img)(_n8##x,_n3##y,z,c), I[516] = (T)(img)(_n9##x,_n3##y,z,c), I[517] = (T)(img)(_n10##x,_n3##y,z,c), I[518] = (T)(img)(_n11##x,_n3##y,z,c), I[519] = (T)(img)(_n12##x,_n3##y,z,c), I[520] = (T)(img)(_n13##x,_n3##y,z,c), I[521] = (T)(img)(_n14##x,_n3##y,z,c), \
I[522] = (T)(img)(_p14##x,_n4##y,z,c), I[523] = (T)(img)(_p13##x,_n4##y,z,c), I[524] = (T)(img)(_p12##x,_n4##y,z,c), I[525] = (T)(img)(_p11##x,_n4##y,z,c), I[526] = (T)(img)(_p10##x,_n4##y,z,c), I[527] = (T)(img)(_p9##x,_n4##y,z,c), I[528] = (T)(img)(_p8##x,_n4##y,z,c), I[529] = (T)(img)(_p7##x,_n4##y,z,c), I[530] = (T)(img)(_p6##x,_n4##y,z,c), I[531] = (T)(img)(_p5##x,_n4##y,z,c), I[532] = (T)(img)(_p4##x,_n4##y,z,c), I[533] = (T)(img)(_p3##x,_n4##y,z,c), I[534] = (T)(img)(_p2##x,_n4##y,z,c), I[535] = (T)(img)(_p1##x,_n4##y,z,c), I[536] = (T)(img)(x,_n4##y,z,c), I[537] = (T)(img)(_n1##x,_n4##y,z,c), I[538] = (T)(img)(_n2##x,_n4##y,z,c), I[539] = (T)(img)(_n3##x,_n4##y,z,c), I[540] = (T)(img)(_n4##x,_n4##y,z,c), I[541] = (T)(img)(_n5##x,_n4##y,z,c), I[542] = (T)(img)(_n6##x,_n4##y,z,c), I[543] = (T)(img)(_n7##x,_n4##y,z,c), I[544] = (T)(img)(_n8##x,_n4##y,z,c), I[545] = (T)(img)(_n9##x,_n4##y,z,c), I[546] = (T)(img)(_n10##x,_n4##y,z,c), I[547] = (T)(img)(_n11##x,_n4##y,z,c), I[548] = (T)(img)(_n12##x,_n4##y,z,c), I[549] = (T)(img)(_n13##x,_n4##y,z,c), I[550] = (T)(img)(_n14##x,_n4##y,z,c), \
I[551] = (T)(img)(_p14##x,_n5##y,z,c), I[552] = (T)(img)(_p13##x,_n5##y,z,c), I[553] = (T)(img)(_p12##x,_n5##y,z,c), I[554] = (T)(img)(_p11##x,_n5##y,z,c), I[555] = (T)(img)(_p10##x,_n5##y,z,c), I[556] = (T)(img)(_p9##x,_n5##y,z,c), I[557] = (T)(img)(_p8##x,_n5##y,z,c), I[558] = (T)(img)(_p7##x,_n5##y,z,c), I[559] = (T)(img)(_p6##x,_n5##y,z,c), I[560] = (T)(img)(_p5##x,_n5##y,z,c), I[561] = (T)(img)(_p4##x,_n5##y,z,c), I[562] = (T)(img)(_p3##x,_n5##y,z,c), I[563] = (T)(img)(_p2##x,_n5##y,z,c), I[564] = (T)(img)(_p1##x,_n5##y,z,c), I[565] = (T)(img)(x,_n5##y,z,c), I[566] = (T)(img)(_n1##x,_n5##y,z,c), I[567] = (T)(img)(_n2##x,_n5##y,z,c), I[568] = (T)(img)(_n3##x,_n5##y,z,c), I[569] = (T)(img)(_n4##x,_n5##y,z,c), I[570] = (T)(img)(_n5##x,_n5##y,z,c), I[571] = (T)(img)(_n6##x,_n5##y,z,c), I[572] = (T)(img)(_n7##x,_n5##y,z,c), I[573] = (T)(img)(_n8##x,_n5##y,z,c), I[574] = (T)(img)(_n9##x,_n5##y,z,c), I[575] = (T)(img)(_n10##x,_n5##y,z,c), I[576] = (T)(img)(_n11##x,_n5##y,z,c), I[577] = (T)(img)(_n12##x,_n5##y,z,c), I[578] = (T)(img)(_n13##x,_n5##y,z,c), I[579] = (T)(img)(_n14##x,_n5##y,z,c), \
I[580] = (T)(img)(_p14##x,_n6##y,z,c), I[581] = (T)(img)(_p13##x,_n6##y,z,c), I[582] = (T)(img)(_p12##x,_n6##y,z,c), I[583] = (T)(img)(_p11##x,_n6##y,z,c), I[584] = (T)(img)(_p10##x,_n6##y,z,c), I[585] = (T)(img)(_p9##x,_n6##y,z,c), I[586] = (T)(img)(_p8##x,_n6##y,z,c), I[587] = (T)(img)(_p7##x,_n6##y,z,c), I[588] = (T)(img)(_p6##x,_n6##y,z,c), I[589] = (T)(img)(_p5##x,_n6##y,z,c), I[590] = (T)(img)(_p4##x,_n6##y,z,c), I[591] = (T)(img)(_p3##x,_n6##y,z,c), I[592] = (T)(img)(_p2##x,_n6##y,z,c), I[593] = (T)(img)(_p1##x,_n6##y,z,c), I[594] = (T)(img)(x,_n6##y,z,c), I[595] = (T)(img)(_n1##x,_n6##y,z,c), I[596] = (T)(img)(_n2##x,_n6##y,z,c), I[597] = (T)(img)(_n3##x,_n6##y,z,c), I[598] = (T)(img)(_n4##x,_n6##y,z,c), I[599] = (T)(img)(_n5##x,_n6##y,z,c), I[600] = (T)(img)(_n6##x,_n6##y,z,c), I[601] = (T)(img)(_n7##x,_n6##y,z,c), I[602] = (T)(img)(_n8##x,_n6##y,z,c), I[603] = (T)(img)(_n9##x,_n6##y,z,c), I[604] = (T)(img)(_n10##x,_n6##y,z,c), I[605] = (T)(img)(_n11##x,_n6##y,z,c), I[606] = (T)(img)(_n12##x,_n6##y,z,c), I[607] = (T)(img)(_n13##x,_n6##y,z,c), I[608] = (T)(img)(_n14##x,_n6##y,z,c), \
I[609] = (T)(img)(_p14##x,_n7##y,z,c), I[610] = (T)(img)(_p13##x,_n7##y,z,c), I[611] = (T)(img)(_p12##x,_n7##y,z,c), I[612] = (T)(img)(_p11##x,_n7##y,z,c), I[613] = (T)(img)(_p10##x,_n7##y,z,c), I[614] = (T)(img)(_p9##x,_n7##y,z,c), I[615] = (T)(img)(_p8##x,_n7##y,z,c), I[616] = (T)(img)(_p7##x,_n7##y,z,c), I[617] = (T)(img)(_p6##x,_n7##y,z,c), I[618] = (T)(img)(_p5##x,_n7##y,z,c), I[619] = (T)(img)(_p4##x,_n7##y,z,c), I[620] = (T)(img)(_p3##x,_n7##y,z,c), I[621] = (T)(img)(_p2##x,_n7##y,z,c), I[622] = (T)(img)(_p1##x,_n7##y,z,c), I[623] = (T)(img)(x,_n7##y,z,c), I[624] = (T)(img)(_n1##x,_n7##y,z,c), I[625] = (T)(img)(_n2##x,_n7##y,z,c), I[626] = (T)(img)(_n3##x,_n7##y,z,c), I[627] = (T)(img)(_n4##x,_n7##y,z,c), I[628] = (T)(img)(_n5##x,_n7##y,z,c), I[629] = (T)(img)(_n6##x,_n7##y,z,c), I[630] = (T)(img)(_n7##x,_n7##y,z,c), I[631] = (T)(img)(_n8##x,_n7##y,z,c), I[632] = (T)(img)(_n9##x,_n7##y,z,c), I[633] = (T)(img)(_n10##x,_n7##y,z,c), I[634] = (T)(img)(_n11##x,_n7##y,z,c), I[635] = (T)(img)(_n12##x,_n7##y,z,c), I[636] = (T)(img)(_n13##x,_n7##y,z,c), I[637] = (T)(img)(_n14##x,_n7##y,z,c), \
I[638] = (T)(img)(_p14##x,_n8##y,z,c), I[639] = (T)(img)(_p13##x,_n8##y,z,c), I[640] = (T)(img)(_p12##x,_n8##y,z,c), I[641] = (T)(img)(_p11##x,_n8##y,z,c), I[642] = (T)(img)(_p10##x,_n8##y,z,c), I[643] = (T)(img)(_p9##x,_n8##y,z,c), I[644] = (T)(img)(_p8##x,_n8##y,z,c), I[645] = (T)(img)(_p7##x,_n8##y,z,c), I[646] = (T)(img)(_p6##x,_n8##y,z,c), I[647] = (T)(img)(_p5##x,_n8##y,z,c), I[648] = (T)(img)(_p4##x,_n8##y,z,c), I[649] = (T)(img)(_p3##x,_n8##y,z,c), I[650] = (T)(img)(_p2##x,_n8##y,z,c), I[651] = (T)(img)(_p1##x,_n8##y,z,c), I[652] = (T)(img)(x,_n8##y,z,c), I[653] = (T)(img)(_n1##x,_n8##y,z,c), I[654] = (T)(img)(_n2##x,_n8##y,z,c), I[655] = (T)(img)(_n3##x,_n8##y,z,c), I[656] = (T)(img)(_n4##x,_n8##y,z,c), I[657] = (T)(img)(_n5##x,_n8##y,z,c), I[658] = (T)(img)(_n6##x,_n8##y,z,c), I[659] = (T)(img)(_n7##x,_n8##y,z,c), I[660] = (T)(img)(_n8##x,_n8##y,z,c), I[661] = (T)(img)(_n9##x,_n8##y,z,c), I[662] = (T)(img)(_n10##x,_n8##y,z,c), I[663] = (T)(img)(_n11##x,_n8##y,z,c), I[664] = (T)(img)(_n12##x,_n8##y,z,c), I[665] = (T)(img)(_n13##x,_n8##y,z,c), I[666] = (T)(img)(_n14##x,_n8##y,z,c), \
I[667] = (T)(img)(_p14##x,_n9##y,z,c), I[668] = (T)(img)(_p13##x,_n9##y,z,c), I[669] = (T)(img)(_p12##x,_n9##y,z,c), I[670] = (T)(img)(_p11##x,_n9##y,z,c), I[671] = (T)(img)(_p10##x,_n9##y,z,c), I[672] = (T)(img)(_p9##x,_n9##y,z,c), I[673] = (T)(img)(_p8##x,_n9##y,z,c), I[674] = (T)(img)(_p7##x,_n9##y,z,c), I[675] = (T)(img)(_p6##x,_n9##y,z,c), I[676] = (T)(img)(_p5##x,_n9##y,z,c), I[677] = (T)(img)(_p4##x,_n9##y,z,c), I[678] = (T)(img)(_p3##x,_n9##y,z,c), I[679] = (T)(img)(_p2##x,_n9##y,z,c), I[680] = (T)(img)(_p1##x,_n9##y,z,c), I[681] = (T)(img)(x,_n9##y,z,c), I[682] = (T)(img)(_n1##x,_n9##y,z,c), I[683] = (T)(img)(_n2##x,_n9##y,z,c), I[684] = (T)(img)(_n3##x,_n9##y,z,c), I[685] = (T)(img)(_n4##x,_n9##y,z,c), I[686] = (T)(img)(_n5##x,_n9##y,z,c), I[687] = (T)(img)(_n6##x,_n9##y,z,c), I[688] = (T)(img)(_n7##x,_n9##y,z,c), I[689] = (T)(img)(_n8##x,_n9##y,z,c), I[690] = (T)(img)(_n9##x,_n9##y,z,c), I[691] = (T)(img)(_n10##x,_n9##y,z,c), I[692] = (T)(img)(_n11##x,_n9##y,z,c), I[693] = (T)(img)(_n12##x,_n9##y,z,c), I[694] = (T)(img)(_n13##x,_n9##y,z,c), I[695] = (T)(img)(_n14##x,_n9##y,z,c), \
I[696] = (T)(img)(_p14##x,_n10##y,z,c), I[697] = (T)(img)(_p13##x,_n10##y,z,c), I[698] = (T)(img)(_p12##x,_n10##y,z,c), I[699] = (T)(img)(_p11##x,_n10##y,z,c), I[700] = (T)(img)(_p10##x,_n10##y,z,c), I[701] = (T)(img)(_p9##x,_n10##y,z,c), I[702] = (T)(img)(_p8##x,_n10##y,z,c), I[703] = (T)(img)(_p7##x,_n10##y,z,c), I[704] = (T)(img)(_p6##x,_n10##y,z,c), I[705] = (T)(img)(_p5##x,_n10##y,z,c), I[706] = (T)(img)(_p4##x,_n10##y,z,c), I[707] = (T)(img)(_p3##x,_n10##y,z,c), I[708] = (T)(img)(_p2##x,_n10##y,z,c), I[709] = (T)(img)(_p1##x,_n10##y,z,c), I[710] = (T)(img)(x,_n10##y,z,c), I[711] = (T)(img)(_n1##x,_n10##y,z,c), I[712] = (T)(img)(_n2##x,_n10##y,z,c), I[713] = (T)(img)(_n3##x,_n10##y,z,c), I[714] = (T)(img)(_n4##x,_n10##y,z,c), I[715] = (T)(img)(_n5##x,_n10##y,z,c), I[716] = (T)(img)(_n6##x,_n10##y,z,c), I[717] = (T)(img)(_n7##x,_n10##y,z,c), I[718] = (T)(img)(_n8##x,_n10##y,z,c), I[719] = (T)(img)(_n9##x,_n10##y,z,c), I[720] = (T)(img)(_n10##x,_n10##y,z,c), I[721] = (T)(img)(_n11##x,_n10##y,z,c), I[722] = (T)(img)(_n12##x,_n10##y,z,c), I[723] = (T)(img)(_n13##x,_n10##y,z,c), I[724] = (T)(img)(_n14##x,_n10##y,z,c), \
I[725] = (T)(img)(_p14##x,_n11##y,z,c), I[726] = (T)(img)(_p13##x,_n11##y,z,c), I[727] = (T)(img)(_p12##x,_n11##y,z,c), I[728] = (T)(img)(_p11##x,_n11##y,z,c), I[729] = (T)(img)(_p10##x,_n11##y,z,c), I[730] = (T)(img)(_p9##x,_n11##y,z,c), I[731] = (T)(img)(_p8##x,_n11##y,z,c), I[732] = (T)(img)(_p7##x,_n11##y,z,c), I[733] = (T)(img)(_p6##x,_n11##y,z,c), I[734] = (T)(img)(_p5##x,_n11##y,z,c), I[735] = (T)(img)(_p4##x,_n11##y,z,c), I[736] = (T)(img)(_p3##x,_n11##y,z,c), I[737] = (T)(img)(_p2##x,_n11##y,z,c), I[738] = (T)(img)(_p1##x,_n11##y,z,c), I[739] = (T)(img)(x,_n11##y,z,c), I[740] = (T)(img)(_n1##x,_n11##y,z,c), I[741] = (T)(img)(_n2##x,_n11##y,z,c), I[742] = (T)(img)(_n3##x,_n11##y,z,c), I[743] = (T)(img)(_n4##x,_n11##y,z,c), I[744] = (T)(img)(_n5##x,_n11##y,z,c), I[745] = (T)(img)(_n6##x,_n11##y,z,c), I[746] = (T)(img)(_n7##x,_n11##y,z,c), I[747] = (T)(img)(_n8##x,_n11##y,z,c), I[748] = (T)(img)(_n9##x,_n11##y,z,c), I[749] = (T)(img)(_n10##x,_n11##y,z,c), I[750] = (T)(img)(_n11##x,_n11##y,z,c), I[751] = (T)(img)(_n12##x,_n11##y,z,c), I[752] = (T)(img)(_n13##x,_n11##y,z,c), I[753] = (T)(img)(_n14##x,_n11##y,z,c), \
I[754] = (T)(img)(_p14##x,_n12##y,z,c), I[755] = (T)(img)(_p13##x,_n12##y,z,c), I[756] = (T)(img)(_p12##x,_n12##y,z,c), I[757] = (T)(img)(_p11##x,_n12##y,z,c), I[758] = (T)(img)(_p10##x,_n12##y,z,c), I[759] = (T)(img)(_p9##x,_n12##y,z,c), I[760] = (T)(img)(_p8##x,_n12##y,z,c), I[761] = (T)(img)(_p7##x,_n12##y,z,c), I[762] = (T)(img)(_p6##x,_n12##y,z,c), I[763] = (T)(img)(_p5##x,_n12##y,z,c), I[764] = (T)(img)(_p4##x,_n12##y,z,c), I[765] = (T)(img)(_p3##x,_n12##y,z,c), I[766] = (T)(img)(_p2##x,_n12##y,z,c), I[767] = (T)(img)(_p1##x,_n12##y,z,c), I[768] = (T)(img)(x,_n12##y,z,c), I[769] = (T)(img)(_n1##x,_n12##y,z,c), I[770] = (T)(img)(_n2##x,_n12##y,z,c), I[771] = (T)(img)(_n3##x,_n12##y,z,c), I[772] = (T)(img)(_n4##x,_n12##y,z,c), I[773] = (T)(img)(_n5##x,_n12##y,z,c), I[774] = (T)(img)(_n6##x,_n12##y,z,c), I[775] = (T)(img)(_n7##x,_n12##y,z,c), I[776] = (T)(img)(_n8##x,_n12##y,z,c), I[777] = (T)(img)(_n9##x,_n12##y,z,c), I[778] = (T)(img)(_n10##x,_n12##y,z,c), I[779] = (T)(img)(_n11##x,_n12##y,z,c), I[780] = (T)(img)(_n12##x,_n12##y,z,c), I[781] = (T)(img)(_n13##x,_n12##y,z,c), I[782] = (T)(img)(_n14##x,_n12##y,z,c), \
I[783] = (T)(img)(_p14##x,_n13##y,z,c), I[784] = (T)(img)(_p13##x,_n13##y,z,c), I[785] = (T)(img)(_p12##x,_n13##y,z,c), I[786] = (T)(img)(_p11##x,_n13##y,z,c), I[787] = (T)(img)(_p10##x,_n13##y,z,c), I[788] = (T)(img)(_p9##x,_n13##y,z,c), I[789] = (T)(img)(_p8##x,_n13##y,z,c), I[790] = (T)(img)(_p7##x,_n13##y,z,c), I[791] = (T)(img)(_p6##x,_n13##y,z,c), I[792] = (T)(img)(_p5##x,_n13##y,z,c), I[793] = (T)(img)(_p4##x,_n13##y,z,c), I[794] = (T)(img)(_p3##x,_n13##y,z,c), I[795] = (T)(img)(_p2##x,_n13##y,z,c), I[796] = (T)(img)(_p1##x,_n13##y,z,c), I[797] = (T)(img)(x,_n13##y,z,c), I[798] = (T)(img)(_n1##x,_n13##y,z,c), I[799] = (T)(img)(_n2##x,_n13##y,z,c), I[800] = (T)(img)(_n3##x,_n13##y,z,c), I[801] = (T)(img)(_n4##x,_n13##y,z,c), I[802] = (T)(img)(_n5##x,_n13##y,z,c), I[803] = (T)(img)(_n6##x,_n13##y,z,c), I[804] = (T)(img)(_n7##x,_n13##y,z,c), I[805] = (T)(img)(_n8##x,_n13##y,z,c), I[806] = (T)(img)(_n9##x,_n13##y,z,c), I[807] = (T)(img)(_n10##x,_n13##y,z,c), I[808] = (T)(img)(_n11##x,_n13##y,z,c), I[809] = (T)(img)(_n12##x,_n13##y,z,c), I[810] = (T)(img)(_n13##x,_n13##y,z,c), I[811] = (T)(img)(_n14##x,_n13##y,z,c), \
I[812] = (T)(img)(_p14##x,_n14##y,z,c), I[813] = (T)(img)(_p13##x,_n14##y,z,c), I[814] = (T)(img)(_p12##x,_n14##y,z,c), I[815] = (T)(img)(_p11##x,_n14##y,z,c), I[816] = (T)(img)(_p10##x,_n14##y,z,c), I[817] = (T)(img)(_p9##x,_n14##y,z,c), I[818] = (T)(img)(_p8##x,_n14##y,z,c), I[819] = (T)(img)(_p7##x,_n14##y,z,c), I[820] = (T)(img)(_p6##x,_n14##y,z,c), I[821] = (T)(img)(_p5##x,_n14##y,z,c), I[822] = (T)(img)(_p4##x,_n14##y,z,c), I[823] = (T)(img)(_p3##x,_n14##y,z,c), I[824] = (T)(img)(_p2##x,_n14##y,z,c), I[825] = (T)(img)(_p1##x,_n14##y,z,c), I[826] = (T)(img)(x,_n14##y,z,c), I[827] = (T)(img)(_n1##x,_n14##y,z,c), I[828] = (T)(img)(_n2##x,_n14##y,z,c), I[829] = (T)(img)(_n3##x,_n14##y,z,c), I[830] = (T)(img)(_n4##x,_n14##y,z,c), I[831] = (T)(img)(_n5##x,_n14##y,z,c), I[832] = (T)(img)(_n6##x,_n14##y,z,c), I[833] = (T)(img)(_n7##x,_n14##y,z,c), I[834] = (T)(img)(_n8##x,_n14##y,z,c), I[835] = (T)(img)(_n9##x,_n14##y,z,c), I[836] = (T)(img)(_n10##x,_n14##y,z,c), I[837] = (T)(img)(_n11##x,_n14##y,z,c), I[838] = (T)(img)(_n12##x,_n14##y,z,c), I[839] = (T)(img)(_n13##x,_n14##y,z,c), I[840] = (T)(img)(_n14##x,_n14##y,z,c);
// Define 30x30 loop macros
//-------------------------
#define cimg_for30(bound,i) for (int i = 0, \
_p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14, \
_n15##i = 15>=(int)(bound)?(int)(bound) - 1:15; \
_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
#define cimg_for30X(img,x) cimg_for30((img)._width,x)
#define cimg_for30Y(img,y) cimg_for30((img)._height,y)
#define cimg_for30Z(img,z) cimg_for30((img)._depth,z)
#define cimg_for30C(img,c) cimg_for30((img)._spectrum,c)
#define cimg_for30XY(img,x,y) cimg_for30Y(img,y) cimg_for30X(img,x)
#define cimg_for30XZ(img,x,z) cimg_for30Z(img,z) cimg_for30X(img,x)
#define cimg_for30XC(img,x,c) cimg_for30C(img,c) cimg_for30X(img,x)
#define cimg_for30YZ(img,y,z) cimg_for30Z(img,z) cimg_for30Y(img,y)
#define cimg_for30YC(img,y,c) cimg_for30C(img,c) cimg_for30Y(img,y)
#define cimg_for30ZC(img,z,c) cimg_for30C(img,c) cimg_for30Z(img,z)
#define cimg_for30XYZ(img,x,y,z) cimg_for30Z(img,z) cimg_for30XY(img,x,y)
#define cimg_for30XZC(img,x,z,c) cimg_for30C(img,c) cimg_for30XZ(img,x,z)
#define cimg_for30YZC(img,y,z,c) cimg_for30C(img,c) cimg_for30YZ(img,y,z)
#define cimg_for30XYZC(img,x,y,z,c) cimg_for30C(img,c) cimg_for30XYZ(img,x,y,z)
#define cimg_for_in30(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p14##i = i - 14<0?0:i - 14, \
_p13##i = i - 13<0?0:i - 13, \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14, \
_n15##i = i + 15>=(int)(bound)?(int)(bound) - 1:i + 15; \
i<=(int)(i1) && (_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
#define cimg_for_in30X(img,x0,x1,x) cimg_for_in30((img)._width,x0,x1,x)
#define cimg_for_in30Y(img,y0,y1,y) cimg_for_in30((img)._height,y0,y1,y)
#define cimg_for_in30Z(img,z0,z1,z) cimg_for_in30((img)._depth,z0,z1,z)
#define cimg_for_in30C(img,c0,c1,c) cimg_for_in30((img)._spectrum,c0,c1,c)
#define cimg_for_in30XY(img,x0,y0,x1,y1,x,y) cimg_for_in30Y(img,y0,y1,y) cimg_for_in30X(img,x0,x1,x)
#define cimg_for_in30XZ(img,x0,z0,x1,z1,x,z) cimg_for_in30Z(img,z0,z1,z) cimg_for_in30X(img,x0,x1,x)
#define cimg_for_in30XC(img,x0,c0,x1,c1,x,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30X(img,x0,x1,x)
#define cimg_for_in30YZ(img,y0,z0,y1,z1,y,z) cimg_for_in30Z(img,z0,z1,z) cimg_for_in30Y(img,y0,y1,y)
#define cimg_for_in30YC(img,y0,c0,y1,c1,y,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30Y(img,y0,y1,y)
#define cimg_for_in30ZC(img,z0,c0,z1,c1,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30Z(img,z0,z1,z)
#define cimg_for_in30XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in30Z(img,z0,z1,z) cimg_for_in30XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in30XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in30YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in30XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in30C(img,c0,c1,c) cimg_for_in30XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for30x30(img,x,y,z,c,I,T) \
cimg_for30((img)._height,y) for (int x = 0, \
_p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
_n14##x = 14>=((img)._width)?(img).width() - 1:14, \
_n15##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = (T)(img)(0,_p14##y,z,c)), \
(I[30] = I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = (T)(img)(0,_p13##y,z,c)), \
(I[60] = I[61] = I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = (T)(img)(0,_p12##y,z,c)), \
(I[90] = I[91] = I[92] = I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = (T)(img)(0,_p11##y,z,c)), \
(I[120] = I[121] = I[122] = I[123] = I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = (T)(img)(0,_p10##y,z,c)), \
(I[150] = I[151] = I[152] = I[153] = I[154] = I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = (T)(img)(0,_p9##y,z,c)), \
(I[180] = I[181] = I[182] = I[183] = I[184] = I[185] = I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = (T)(img)(0,_p8##y,z,c)), \
(I[210] = I[211] = I[212] = I[213] = I[214] = I[215] = I[216] = I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = (T)(img)(0,_p7##y,z,c)), \
(I[240] = I[241] = I[242] = I[243] = I[244] = I[245] = I[246] = I[247] = I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = (T)(img)(0,_p6##y,z,c)), \
(I[270] = I[271] = I[272] = I[273] = I[274] = I[275] = I[276] = I[277] = I[278] = I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = (T)(img)(0,_p5##y,z,c)), \
(I[300] = I[301] = I[302] = I[303] = I[304] = I[305] = I[306] = I[307] = I[308] = I[309] = I[310] = I[311] = I[312] = I[313] = I[314] = (T)(img)(0,_p4##y,z,c)), \
(I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = I[336] = I[337] = I[338] = I[339] = I[340] = I[341] = I[342] = I[343] = I[344] = (T)(img)(0,_p3##y,z,c)), \
(I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = I[368] = I[369] = I[370] = I[371] = I[372] = I[373] = I[374] = (T)(img)(0,_p2##y,z,c)), \
(I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = I[400] = I[401] = I[402] = I[403] = I[404] = (T)(img)(0,_p1##y,z,c)), \
(I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = I[432] = I[433] = I[434] = (T)(img)(0,y,z,c)), \
(I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = I[464] = (T)(img)(0,_n1##y,z,c)), \
(I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = (T)(img)(0,_n2##y,z,c)), \
(I[510] = I[511] = I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = I[518] = I[519] = I[520] = I[521] = I[522] = I[523] = I[524] = (T)(img)(0,_n3##y,z,c)), \
(I[540] = I[541] = I[542] = I[543] = I[544] = I[545] = I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = I[554] = (T)(img)(0,_n4##y,z,c)), \
(I[570] = I[571] = I[572] = I[573] = I[574] = I[575] = I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = (T)(img)(0,_n5##y,z,c)), \
(I[600] = I[601] = I[602] = I[603] = I[604] = I[605] = I[606] = I[607] = I[608] = I[609] = I[610] = I[611] = I[612] = I[613] = I[614] = (T)(img)(0,_n6##y,z,c)), \
(I[630] = I[631] = I[632] = I[633] = I[634] = I[635] = I[636] = I[637] = I[638] = I[639] = I[640] = I[641] = I[642] = I[643] = I[644] = (T)(img)(0,_n7##y,z,c)), \
(I[660] = I[661] = I[662] = I[663] = I[664] = I[665] = I[666] = I[667] = I[668] = I[669] = I[670] = I[671] = I[672] = I[673] = I[674] = (T)(img)(0,_n8##y,z,c)), \
(I[690] = I[691] = I[692] = I[693] = I[694] = I[695] = I[696] = I[697] = I[698] = I[699] = I[700] = I[701] = I[702] = I[703] = I[704] = (T)(img)(0,_n9##y,z,c)), \
(I[720] = I[721] = I[722] = I[723] = I[724] = I[725] = I[726] = I[727] = I[728] = I[729] = I[730] = I[731] = I[732] = I[733] = I[734] = (T)(img)(0,_n10##y,z,c)), \
(I[750] = I[751] = I[752] = I[753] = I[754] = I[755] = I[756] = I[757] = I[758] = I[759] = I[760] = I[761] = I[762] = I[763] = I[764] = (T)(img)(0,_n11##y,z,c)), \
(I[780] = I[781] = I[782] = I[783] = I[784] = I[785] = I[786] = I[787] = I[788] = I[789] = I[790] = I[791] = I[792] = I[793] = I[794] = (T)(img)(0,_n12##y,z,c)), \
(I[810] = I[811] = I[812] = I[813] = I[814] = I[815] = I[816] = I[817] = I[818] = I[819] = I[820] = I[821] = I[822] = I[823] = I[824] = (T)(img)(0,_n13##y,z,c)), \
(I[840] = I[841] = I[842] = I[843] = I[844] = I[845] = I[846] = I[847] = I[848] = I[849] = I[850] = I[851] = I[852] = I[853] = I[854] = (T)(img)(0,_n14##y,z,c)), \
(I[870] = I[871] = I[872] = I[873] = I[874] = I[875] = I[876] = I[877] = I[878] = I[879] = I[880] = I[881] = I[882] = I[883] = I[884] = (T)(img)(0,_n15##y,z,c)), \
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[45] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[75] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[135] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[165] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[195] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[225] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[255] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[285] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[315] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[345] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[375] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[405] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[435] = (T)(img)(_n1##x,y,z,c)), \
(I[465] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[495] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[525] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[555] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[585] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[615] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[645] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[675] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[705] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[735] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[765] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[795] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[825] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[855] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[885] = (T)(img)(_n1##x,_n15##y,z,c)), \
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[46] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[76] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[136] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[166] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[196] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[226] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[256] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[286] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[316] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[346] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[376] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[406] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[436] = (T)(img)(_n2##x,y,z,c)), \
(I[466] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[496] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[526] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[556] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[586] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[616] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[646] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[676] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[706] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[736] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[766] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[796] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[826] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[856] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[886] = (T)(img)(_n2##x,_n15##y,z,c)), \
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[47] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[77] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[137] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[167] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[197] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[227] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[257] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[287] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[317] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[347] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[377] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[407] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[437] = (T)(img)(_n3##x,y,z,c)), \
(I[467] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[497] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[527] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[557] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[587] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[617] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[647] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[677] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[707] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[737] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[767] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[797] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[827] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[857] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[887] = (T)(img)(_n3##x,_n15##y,z,c)), \
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[48] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[78] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[108] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[138] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[168] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[198] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[228] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[258] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[288] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[318] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[348] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[378] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[408] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[438] = (T)(img)(_n4##x,y,z,c)), \
(I[468] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[498] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[528] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[558] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[588] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[618] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[648] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[678] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[708] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[738] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[768] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[798] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[828] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[858] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[888] = (T)(img)(_n4##x,_n15##y,z,c)), \
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[49] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[79] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[109] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[139] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[169] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[199] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[229] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[259] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[289] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[319] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[349] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[379] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[409] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[439] = (T)(img)(_n5##x,y,z,c)), \
(I[469] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[499] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[529] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[559] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[589] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[619] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[649] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[679] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[709] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[739] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[769] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[799] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[829] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[859] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[889] = (T)(img)(_n5##x,_n15##y,z,c)), \
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[50] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[80] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[110] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[140] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[170] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[200] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[230] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[260] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[290] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[320] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[350] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[380] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[410] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[440] = (T)(img)(_n6##x,y,z,c)), \
(I[470] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[500] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[530] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[560] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[590] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[620] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[650] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[680] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[710] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[740] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[770] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[800] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[830] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[860] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[890] = (T)(img)(_n6##x,_n15##y,z,c)), \
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[51] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[81] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[111] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[141] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[171] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[201] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[231] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[261] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[291] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[321] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[351] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[381] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[411] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[441] = (T)(img)(_n7##x,y,z,c)), \
(I[471] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[501] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[531] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[561] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[591] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[621] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[651] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[681] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[711] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[741] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[771] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[801] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[831] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[861] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[891] = (T)(img)(_n7##x,_n15##y,z,c)), \
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[52] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[82] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[112] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[142] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[172] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[202] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[232] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[262] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[292] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[322] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[352] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[382] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[412] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[442] = (T)(img)(_n8##x,y,z,c)), \
(I[472] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[502] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[532] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[562] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[592] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[622] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[652] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[682] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[712] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[742] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[772] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[802] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[832] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[862] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[892] = (T)(img)(_n8##x,_n15##y,z,c)), \
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[53] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[83] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[113] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[143] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[173] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[203] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[233] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[263] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[293] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[323] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[353] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[383] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[413] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[443] = (T)(img)(_n9##x,y,z,c)), \
(I[473] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[503] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[533] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[563] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[593] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[623] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[653] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[683] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[713] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[743] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[773] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[803] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[833] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[863] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[893] = (T)(img)(_n9##x,_n15##y,z,c)), \
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[54] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[84] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[114] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[144] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[174] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[204] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[234] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[264] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[294] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[324] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[354] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[384] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[414] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[444] = (T)(img)(_n10##x,y,z,c)), \
(I[474] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[504] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[534] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[564] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[594] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[624] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[654] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[684] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[714] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[744] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[774] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[804] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[834] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[864] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[894] = (T)(img)(_n10##x,_n15##y,z,c)), \
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[55] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[85] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[115] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[145] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[175] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[205] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[235] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[265] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[295] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[325] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[355] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[385] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[415] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[445] = (T)(img)(_n11##x,y,z,c)), \
(I[475] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[505] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[535] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[565] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[595] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[625] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[655] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[685] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[715] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[745] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[775] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[805] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[835] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[865] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[895] = (T)(img)(_n11##x,_n15##y,z,c)), \
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[56] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[86] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[116] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[146] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[176] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[206] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[236] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[266] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[296] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[326] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[356] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[386] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[416] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[446] = (T)(img)(_n12##x,y,z,c)), \
(I[476] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[506] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[536] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[566] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[596] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[626] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[656] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[686] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[716] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[746] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[776] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[806] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[836] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[866] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[896] = (T)(img)(_n12##x,_n15##y,z,c)), \
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[57] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[87] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[117] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[147] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[177] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[207] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[237] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[267] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[297] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[327] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[357] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[387] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[417] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[447] = (T)(img)(_n13##x,y,z,c)), \
(I[477] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[507] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[537] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[567] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[597] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[627] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[657] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[687] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[717] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[747] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[777] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[807] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[837] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[867] = (T)(img)(_n13##x,_n14##y,z,c)), \
(I[897] = (T)(img)(_n13##x,_n15##y,z,c)), \
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[58] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[88] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[118] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[148] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[178] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[208] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[238] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[268] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[298] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[328] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[358] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[388] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[418] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[448] = (T)(img)(_n14##x,y,z,c)), \
(I[478] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[508] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[538] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[568] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[598] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[628] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[658] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[688] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[718] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[748] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[778] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[808] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[838] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[868] = (T)(img)(_n14##x,_n14##y,z,c)), \
(I[898] = (T)(img)(_n14##x,_n15##y,z,c)), \
15>=((img)._width)?(img).width() - 1:15); \
(_n15##x<(img).width() && ( \
(I[29] = (T)(img)(_n15##x,_p14##y,z,c)), \
(I[59] = (T)(img)(_n15##x,_p13##y,z,c)), \
(I[89] = (T)(img)(_n15##x,_p12##y,z,c)), \
(I[119] = (T)(img)(_n15##x,_p11##y,z,c)), \
(I[149] = (T)(img)(_n15##x,_p10##y,z,c)), \
(I[179] = (T)(img)(_n15##x,_p9##y,z,c)), \
(I[209] = (T)(img)(_n15##x,_p8##y,z,c)), \
(I[239] = (T)(img)(_n15##x,_p7##y,z,c)), \
(I[269] = (T)(img)(_n15##x,_p6##y,z,c)), \
(I[299] = (T)(img)(_n15##x,_p5##y,z,c)), \
(I[329] = (T)(img)(_n15##x,_p4##y,z,c)), \
(I[359] = (T)(img)(_n15##x,_p3##y,z,c)), \
(I[389] = (T)(img)(_n15##x,_p2##y,z,c)), \
(I[419] = (T)(img)(_n15##x,_p1##y,z,c)), \
(I[449] = (T)(img)(_n15##x,y,z,c)), \
(I[479] = (T)(img)(_n15##x,_n1##y,z,c)), \
(I[509] = (T)(img)(_n15##x,_n2##y,z,c)), \
(I[539] = (T)(img)(_n15##x,_n3##y,z,c)), \
(I[569] = (T)(img)(_n15##x,_n4##y,z,c)), \
(I[599] = (T)(img)(_n15##x,_n5##y,z,c)), \
(I[629] = (T)(img)(_n15##x,_n6##y,z,c)), \
(I[659] = (T)(img)(_n15##x,_n7##y,z,c)), \
(I[689] = (T)(img)(_n15##x,_n8##y,z,c)), \
(I[719] = (T)(img)(_n15##x,_n9##y,z,c)), \
(I[749] = (T)(img)(_n15##x,_n10##y,z,c)), \
(I[779] = (T)(img)(_n15##x,_n11##y,z,c)), \
(I[809] = (T)(img)(_n15##x,_n12##y,z,c)), \
(I[839] = (T)(img)(_n15##x,_n13##y,z,c)), \
(I[869] = (T)(img)(_n15##x,_n14##y,z,c)), \
(I[899] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], \
I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], \
I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], \
I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], \
I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], \
I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], \
I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], \
I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], \
I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], \
I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], \
I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], \
I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], I[898] = I[899], \
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
#define cimg_for_in30x30(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in30((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p14##x = x - 14<0?0:x - 14, \
_p13##x = x - 13<0?0:x - 13, \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
_n14##x = x + 14>=(img).width()?(img).width() - 1:x + 14, \
_n15##x = (int)( \
(I[0] = (T)(img)(_p14##x,_p14##y,z,c)), \
(I[30] = (T)(img)(_p14##x,_p13##y,z,c)), \
(I[60] = (T)(img)(_p14##x,_p12##y,z,c)), \
(I[90] = (T)(img)(_p14##x,_p11##y,z,c)), \
(I[120] = (T)(img)(_p14##x,_p10##y,z,c)), \
(I[150] = (T)(img)(_p14##x,_p9##y,z,c)), \
(I[180] = (T)(img)(_p14##x,_p8##y,z,c)), \
(I[210] = (T)(img)(_p14##x,_p7##y,z,c)), \
(I[240] = (T)(img)(_p14##x,_p6##y,z,c)), \
(I[270] = (T)(img)(_p14##x,_p5##y,z,c)), \
(I[300] = (T)(img)(_p14##x,_p4##y,z,c)), \
(I[330] = (T)(img)(_p14##x,_p3##y,z,c)), \
(I[360] = (T)(img)(_p14##x,_p2##y,z,c)), \
(I[390] = (T)(img)(_p14##x,_p1##y,z,c)), \
(I[420] = (T)(img)(_p14##x,y,z,c)), \
(I[450] = (T)(img)(_p14##x,_n1##y,z,c)), \
(I[480] = (T)(img)(_p14##x,_n2##y,z,c)), \
(I[510] = (T)(img)(_p14##x,_n3##y,z,c)), \
(I[540] = (T)(img)(_p14##x,_n4##y,z,c)), \
(I[570] = (T)(img)(_p14##x,_n5##y,z,c)), \
(I[600] = (T)(img)(_p14##x,_n6##y,z,c)), \
(I[630] = (T)(img)(_p14##x,_n7##y,z,c)), \
(I[660] = (T)(img)(_p14##x,_n8##y,z,c)), \
(I[690] = (T)(img)(_p14##x,_n9##y,z,c)), \
(I[720] = (T)(img)(_p14##x,_n10##y,z,c)), \
(I[750] = (T)(img)(_p14##x,_n11##y,z,c)), \
(I[780] = (T)(img)(_p14##x,_n12##y,z,c)), \
(I[810] = (T)(img)(_p14##x,_n13##y,z,c)), \
(I[840] = (T)(img)(_p14##x,_n14##y,z,c)), \
(I[870] = (T)(img)(_p14##x,_n15##y,z,c)), \
(I[1] = (T)(img)(_p13##x,_p14##y,z,c)), \
(I[31] = (T)(img)(_p13##x,_p13##y,z,c)), \
(I[61] = (T)(img)(_p13##x,_p12##y,z,c)), \
(I[91] = (T)(img)(_p13##x,_p11##y,z,c)), \
(I[121] = (T)(img)(_p13##x,_p10##y,z,c)), \
(I[151] = (T)(img)(_p13##x,_p9##y,z,c)), \
(I[181] = (T)(img)(_p13##x,_p8##y,z,c)), \
(I[211] = (T)(img)(_p13##x,_p7##y,z,c)), \
(I[241] = (T)(img)(_p13##x,_p6##y,z,c)), \
(I[271] = (T)(img)(_p13##x,_p5##y,z,c)), \
(I[301] = (T)(img)(_p13##x,_p4##y,z,c)), \
(I[331] = (T)(img)(_p13##x,_p3##y,z,c)), \
(I[361] = (T)(img)(_p13##x,_p2##y,z,c)), \
(I[391] = (T)(img)(_p13##x,_p1##y,z,c)), \
(I[421] = (T)(img)(_p13##x,y,z,c)), \
(I[451] = (T)(img)(_p13##x,_n1##y,z,c)), \
(I[481] = (T)(img)(_p13##x,_n2##y,z,c)), \
(I[511] = (T)(img)(_p13##x,_n3##y,z,c)), \
(I[541] = (T)(img)(_p13##x,_n4##y,z,c)), \
(I[571] = (T)(img)(_p13##x,_n5##y,z,c)), \
(I[601] = (T)(img)(_p13##x,_n6##y,z,c)), \
(I[631] = (T)(img)(_p13##x,_n7##y,z,c)), \
(I[661] = (T)(img)(_p13##x,_n8##y,z,c)), \
(I[691] = (T)(img)(_p13##x,_n9##y,z,c)), \
(I[721] = (T)(img)(_p13##x,_n10##y,z,c)), \
(I[751] = (T)(img)(_p13##x,_n11##y,z,c)), \
(I[781] = (T)(img)(_p13##x,_n12##y,z,c)), \
(I[811] = (T)(img)(_p13##x,_n13##y,z,c)), \
(I[841] = (T)(img)(_p13##x,_n14##y,z,c)), \
(I[871] = (T)(img)(_p13##x,_n15##y,z,c)), \
(I[2] = (T)(img)(_p12##x,_p14##y,z,c)), \
(I[32] = (T)(img)(_p12##x,_p13##y,z,c)), \
(I[62] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[92] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[122] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[152] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[182] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[212] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[242] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[272] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[302] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[332] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[362] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[392] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[422] = (T)(img)(_p12##x,y,z,c)), \
(I[452] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[482] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[512] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[542] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[572] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[602] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[632] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[662] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[692] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[722] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[752] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[782] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[812] = (T)(img)(_p12##x,_n13##y,z,c)), \
(I[842] = (T)(img)(_p12##x,_n14##y,z,c)), \
(I[872] = (T)(img)(_p12##x,_n15##y,z,c)), \
(I[3] = (T)(img)(_p11##x,_p14##y,z,c)), \
(I[33] = (T)(img)(_p11##x,_p13##y,z,c)), \
(I[63] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[93] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[123] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[153] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[183] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[213] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[243] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[273] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[303] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[333] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[363] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[393] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[423] = (T)(img)(_p11##x,y,z,c)), \
(I[453] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[483] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[513] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[543] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[573] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[603] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[633] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[663] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[693] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[723] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[753] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[783] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[813] = (T)(img)(_p11##x,_n13##y,z,c)), \
(I[843] = (T)(img)(_p11##x,_n14##y,z,c)), \
(I[873] = (T)(img)(_p11##x,_n15##y,z,c)), \
(I[4] = (T)(img)(_p10##x,_p14##y,z,c)), \
(I[34] = (T)(img)(_p10##x,_p13##y,z,c)), \
(I[64] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[94] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[124] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[154] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[184] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[214] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[244] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[274] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[304] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[334] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[364] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[394] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[424] = (T)(img)(_p10##x,y,z,c)), \
(I[454] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[484] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[514] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[544] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[574] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[604] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[634] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[664] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[694] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[724] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[754] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[784] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[814] = (T)(img)(_p10##x,_n13##y,z,c)), \
(I[844] = (T)(img)(_p10##x,_n14##y,z,c)), \
(I[874] = (T)(img)(_p10##x,_n15##y,z,c)), \
(I[5] = (T)(img)(_p9##x,_p14##y,z,c)), \
(I[35] = (T)(img)(_p9##x,_p13##y,z,c)), \
(I[65] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[95] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[125] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[155] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[185] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[215] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[245] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[275] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[305] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[335] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[365] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[395] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[425] = (T)(img)(_p9##x,y,z,c)), \
(I[455] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[485] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[515] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[545] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[575] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[605] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[635] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[665] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[695] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[725] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[755] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[785] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[815] = (T)(img)(_p9##x,_n13##y,z,c)), \
(I[845] = (T)(img)(_p9##x,_n14##y,z,c)), \
(I[875] = (T)(img)(_p9##x,_n15##y,z,c)), \
(I[6] = (T)(img)(_p8##x,_p14##y,z,c)), \
(I[36] = (T)(img)(_p8##x,_p13##y,z,c)), \
(I[66] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[96] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[126] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[156] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[186] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[216] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[246] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[276] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[306] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[336] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[366] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[396] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[426] = (T)(img)(_p8##x,y,z,c)), \
(I[456] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[486] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[516] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[546] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[576] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[606] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[636] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[666] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[696] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[726] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[756] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[786] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[816] = (T)(img)(_p8##x,_n13##y,z,c)), \
(I[846] = (T)(img)(_p8##x,_n14##y,z,c)), \
(I[876] = (T)(img)(_p8##x,_n15##y,z,c)), \
(I[7] = (T)(img)(_p7##x,_p14##y,z,c)), \
(I[37] = (T)(img)(_p7##x,_p13##y,z,c)), \
(I[67] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[97] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[127] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[157] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[187] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[217] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[247] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[277] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[307] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[337] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[367] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[397] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[427] = (T)(img)(_p7##x,y,z,c)), \
(I[457] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[487] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[517] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[547] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[577] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[607] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[637] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[667] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[697] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[727] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[757] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[787] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[817] = (T)(img)(_p7##x,_n13##y,z,c)), \
(I[847] = (T)(img)(_p7##x,_n14##y,z,c)), \
(I[877] = (T)(img)(_p7##x,_n15##y,z,c)), \
(I[8] = (T)(img)(_p6##x,_p14##y,z,c)), \
(I[38] = (T)(img)(_p6##x,_p13##y,z,c)), \
(I[68] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[98] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[128] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[158] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[188] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[218] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[248] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[278] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[308] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[338] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[368] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[398] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[428] = (T)(img)(_p6##x,y,z,c)), \
(I[458] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[488] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[518] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[548] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[578] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[608] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[638] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[668] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[698] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[728] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[758] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[788] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[818] = (T)(img)(_p6##x,_n13##y,z,c)), \
(I[848] = (T)(img)(_p6##x,_n14##y,z,c)), \
(I[878] = (T)(img)(_p6##x,_n15##y,z,c)), \
(I[9] = (T)(img)(_p5##x,_p14##y,z,c)), \
(I[39] = (T)(img)(_p5##x,_p13##y,z,c)), \
(I[69] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[99] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[129] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[159] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[189] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[219] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[249] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[279] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[309] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[339] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[369] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[399] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[429] = (T)(img)(_p5##x,y,z,c)), \
(I[459] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[489] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[519] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[549] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[579] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[609] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[639] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[669] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[699] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[729] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[759] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[789] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[819] = (T)(img)(_p5##x,_n13##y,z,c)), \
(I[849] = (T)(img)(_p5##x,_n14##y,z,c)), \
(I[879] = (T)(img)(_p5##x,_n15##y,z,c)), \
(I[10] = (T)(img)(_p4##x,_p14##y,z,c)), \
(I[40] = (T)(img)(_p4##x,_p13##y,z,c)), \
(I[70] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[100] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[130] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[160] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[190] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[220] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[250] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[280] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[310] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[340] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[370] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[400] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[430] = (T)(img)(_p4##x,y,z,c)), \
(I[460] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[490] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[520] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[550] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[580] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[610] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[640] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[670] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[700] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[730] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[760] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[790] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[820] = (T)(img)(_p4##x,_n13##y,z,c)), \
(I[850] = (T)(img)(_p4##x,_n14##y,z,c)), \
(I[880] = (T)(img)(_p4##x,_n15##y,z,c)), \
(I[11] = (T)(img)(_p3##x,_p14##y,z,c)), \
(I[41] = (T)(img)(_p3##x,_p13##y,z,c)), \
(I[71] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[101] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[131] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[161] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[191] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[221] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[251] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[281] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[311] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[341] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[371] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[401] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[431] = (T)(img)(_p3##x,y,z,c)), \
(I[461] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[491] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[521] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[551] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[581] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[611] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[641] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[671] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[701] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[731] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[761] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[791] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[821] = (T)(img)(_p3##x,_n13##y,z,c)), \
(I[851] = (T)(img)(_p3##x,_n14##y,z,c)), \
(I[881] = (T)(img)(_p3##x,_n15##y,z,c)), \
(I[12] = (T)(img)(_p2##x,_p14##y,z,c)), \
(I[42] = (T)(img)(_p2##x,_p13##y,z,c)), \
(I[72] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[102] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[132] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[162] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[192] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[222] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[252] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[282] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[312] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[342] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[372] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[402] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[432] = (T)(img)(_p2##x,y,z,c)), \
(I[462] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[492] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[522] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[552] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[582] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[612] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[642] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[672] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[702] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[732] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[762] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[792] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[822] = (T)(img)(_p2##x,_n13##y,z,c)), \
(I[852] = (T)(img)(_p2##x,_n14##y,z,c)), \
(I[882] = (T)(img)(_p2##x,_n15##y,z,c)), \
(I[13] = (T)(img)(_p1##x,_p14##y,z,c)), \
(I[43] = (T)(img)(_p1##x,_p13##y,z,c)), \
(I[73] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[103] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[133] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[163] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[193] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[223] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[253] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[283] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[313] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[343] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[373] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[403] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[433] = (T)(img)(_p1##x,y,z,c)), \
(I[463] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[493] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[523] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[553] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[583] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[613] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[643] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[673] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[703] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[733] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[763] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[793] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[823] = (T)(img)(_p1##x,_n13##y,z,c)), \
(I[853] = (T)(img)(_p1##x,_n14##y,z,c)), \
(I[883] = (T)(img)(_p1##x,_n15##y,z,c)), \
(I[14] = (T)(img)(x,_p14##y,z,c)), \
(I[44] = (T)(img)(x,_p13##y,z,c)), \
(I[74] = (T)(img)(x,_p12##y,z,c)), \
(I[104] = (T)(img)(x,_p11##y,z,c)), \
(I[134] = (T)(img)(x,_p10##y,z,c)), \
(I[164] = (T)(img)(x,_p9##y,z,c)), \
(I[194] = (T)(img)(x,_p8##y,z,c)), \
(I[224] = (T)(img)(x,_p7##y,z,c)), \
(I[254] = (T)(img)(x,_p6##y,z,c)), \
(I[284] = (T)(img)(x,_p5##y,z,c)), \
(I[314] = (T)(img)(x,_p4##y,z,c)), \
(I[344] = (T)(img)(x,_p3##y,z,c)), \
(I[374] = (T)(img)(x,_p2##y,z,c)), \
(I[404] = (T)(img)(x,_p1##y,z,c)), \
(I[434] = (T)(img)(x,y,z,c)), \
(I[464] = (T)(img)(x,_n1##y,z,c)), \
(I[494] = (T)(img)(x,_n2##y,z,c)), \
(I[524] = (T)(img)(x,_n3##y,z,c)), \
(I[554] = (T)(img)(x,_n4##y,z,c)), \
(I[584] = (T)(img)(x,_n5##y,z,c)), \
(I[614] = (T)(img)(x,_n6##y,z,c)), \
(I[644] = (T)(img)(x,_n7##y,z,c)), \
(I[674] = (T)(img)(x,_n8##y,z,c)), \
(I[704] = (T)(img)(x,_n9##y,z,c)), \
(I[734] = (T)(img)(x,_n10##y,z,c)), \
(I[764] = (T)(img)(x,_n11##y,z,c)), \
(I[794] = (T)(img)(x,_n12##y,z,c)), \
(I[824] = (T)(img)(x,_n13##y,z,c)), \
(I[854] = (T)(img)(x,_n14##y,z,c)), \
(I[884] = (T)(img)(x,_n15##y,z,c)), \
(I[15] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[45] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[75] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[135] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[165] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[195] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[225] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[255] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[285] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[315] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[345] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[375] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[405] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[435] = (T)(img)(_n1##x,y,z,c)), \
(I[465] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[495] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[525] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[555] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[585] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[615] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[645] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[675] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[705] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[735] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[765] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[795] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[825] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[855] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[885] = (T)(img)(_n1##x,_n15##y,z,c)), \
(I[16] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[46] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[76] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[136] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[166] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[196] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[226] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[256] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[286] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[316] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[346] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[376] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[406] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[436] = (T)(img)(_n2##x,y,z,c)), \
(I[466] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[496] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[526] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[556] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[586] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[616] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[646] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[676] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[706] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[736] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[766] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[796] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[826] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[856] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[886] = (T)(img)(_n2##x,_n15##y,z,c)), \
(I[17] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[47] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[77] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[137] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[167] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[197] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[227] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[257] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[287] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[317] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[347] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[377] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[407] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[437] = (T)(img)(_n3##x,y,z,c)), \
(I[467] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[497] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[527] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[557] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[587] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[617] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[647] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[677] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[707] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[737] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[767] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[797] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[827] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[857] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[887] = (T)(img)(_n3##x,_n15##y,z,c)), \
(I[18] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[48] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[78] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[108] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[138] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[168] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[198] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[228] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[258] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[288] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[318] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[348] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[378] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[408] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[438] = (T)(img)(_n4##x,y,z,c)), \
(I[468] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[498] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[528] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[558] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[588] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[618] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[648] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[678] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[708] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[738] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[768] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[798] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[828] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[858] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[888] = (T)(img)(_n4##x,_n15##y,z,c)), \
(I[19] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[49] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[79] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[109] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[139] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[169] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[199] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[229] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[259] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[289] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[319] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[349] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[379] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[409] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[439] = (T)(img)(_n5##x,y,z,c)), \
(I[469] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[499] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[529] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[559] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[589] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[619] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[649] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[679] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[709] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[739] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[769] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[799] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[829] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[859] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[889] = (T)(img)(_n5##x,_n15##y,z,c)), \
(I[20] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[50] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[80] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[110] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[140] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[170] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[200] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[230] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[260] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[290] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[320] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[350] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[380] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[410] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[440] = (T)(img)(_n6##x,y,z,c)), \
(I[470] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[500] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[530] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[560] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[590] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[620] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[650] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[680] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[710] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[740] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[770] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[800] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[830] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[860] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[890] = (T)(img)(_n6##x,_n15##y,z,c)), \
(I[21] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[51] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[81] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[111] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[141] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[171] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[201] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[231] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[261] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[291] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[321] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[351] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[381] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[411] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[441] = (T)(img)(_n7##x,y,z,c)), \
(I[471] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[501] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[531] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[561] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[591] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[621] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[651] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[681] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[711] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[741] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[771] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[801] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[831] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[861] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[891] = (T)(img)(_n7##x,_n15##y,z,c)), \
(I[22] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[52] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[82] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[112] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[142] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[172] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[202] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[232] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[262] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[292] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[322] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[352] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[382] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[412] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[442] = (T)(img)(_n8##x,y,z,c)), \
(I[472] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[502] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[532] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[562] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[592] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[622] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[652] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[682] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[712] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[742] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[772] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[802] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[832] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[862] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[892] = (T)(img)(_n8##x,_n15##y,z,c)), \
(I[23] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[53] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[83] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[113] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[143] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[173] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[203] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[233] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[263] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[293] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[323] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[353] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[383] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[413] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[443] = (T)(img)(_n9##x,y,z,c)), \
(I[473] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[503] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[533] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[563] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[593] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[623] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[653] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[683] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[713] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[743] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[773] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[803] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[833] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[863] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[893] = (T)(img)(_n9##x,_n15##y,z,c)), \
(I[24] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[54] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[84] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[114] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[144] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[174] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[204] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[234] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[264] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[294] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[324] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[354] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[384] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[414] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[444] = (T)(img)(_n10##x,y,z,c)), \
(I[474] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[504] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[534] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[564] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[594] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[624] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[654] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[684] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[714] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[744] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[774] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[804] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[834] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[864] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[894] = (T)(img)(_n10##x,_n15##y,z,c)), \
(I[25] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[55] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[85] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[115] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[145] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[175] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[205] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[235] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[265] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[295] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[325] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[355] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[385] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[415] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[445] = (T)(img)(_n11##x,y,z,c)), \
(I[475] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[505] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[535] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[565] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[595] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[625] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[655] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[685] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[715] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[745] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[775] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[805] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[835] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[865] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[895] = (T)(img)(_n11##x,_n15##y,z,c)), \
(I[26] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[56] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[86] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[116] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[146] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[176] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[206] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[236] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[266] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[296] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[326] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[356] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[386] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[416] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[446] = (T)(img)(_n12##x,y,z,c)), \
(I[476] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[506] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[536] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[566] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[596] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[626] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[656] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[686] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[716] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[746] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[776] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[806] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[836] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[866] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[896] = (T)(img)(_n12##x,_n15##y,z,c)), \
(I[27] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[57] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[87] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[117] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[147] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[177] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[207] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[237] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[267] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[297] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[327] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[357] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[387] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[417] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[447] = (T)(img)(_n13##x,y,z,c)), \
(I[477] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[507] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[537] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[567] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[597] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[627] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[657] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[687] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[717] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[747] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[777] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[807] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[837] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[867] = (T)(img)(_n13##x,_n14##y,z,c)), \
(I[897] = (T)(img)(_n13##x,_n15##y,z,c)), \
(I[28] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[58] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[88] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[118] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[148] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[178] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[208] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[238] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[268] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[298] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[328] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[358] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[388] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[418] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[448] = (T)(img)(_n14##x,y,z,c)), \
(I[478] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[508] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[538] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[568] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[598] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[628] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[658] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[688] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[718] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[748] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[778] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[808] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[838] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[868] = (T)(img)(_n14##x,_n14##y,z,c)), \
(I[898] = (T)(img)(_n14##x,_n15##y,z,c)), \
x + 15>=(img).width()?(img).width() - 1:x + 15); \
x<=(int)(x1) && ((_n15##x<(img).width() && ( \
(I[29] = (T)(img)(_n15##x,_p14##y,z,c)), \
(I[59] = (T)(img)(_n15##x,_p13##y,z,c)), \
(I[89] = (T)(img)(_n15##x,_p12##y,z,c)), \
(I[119] = (T)(img)(_n15##x,_p11##y,z,c)), \
(I[149] = (T)(img)(_n15##x,_p10##y,z,c)), \
(I[179] = (T)(img)(_n15##x,_p9##y,z,c)), \
(I[209] = (T)(img)(_n15##x,_p8##y,z,c)), \
(I[239] = (T)(img)(_n15##x,_p7##y,z,c)), \
(I[269] = (T)(img)(_n15##x,_p6##y,z,c)), \
(I[299] = (T)(img)(_n15##x,_p5##y,z,c)), \
(I[329] = (T)(img)(_n15##x,_p4##y,z,c)), \
(I[359] = (T)(img)(_n15##x,_p3##y,z,c)), \
(I[389] = (T)(img)(_n15##x,_p2##y,z,c)), \
(I[419] = (T)(img)(_n15##x,_p1##y,z,c)), \
(I[449] = (T)(img)(_n15##x,y,z,c)), \
(I[479] = (T)(img)(_n15##x,_n1##y,z,c)), \
(I[509] = (T)(img)(_n15##x,_n2##y,z,c)), \
(I[539] = (T)(img)(_n15##x,_n3##y,z,c)), \
(I[569] = (T)(img)(_n15##x,_n4##y,z,c)), \
(I[599] = (T)(img)(_n15##x,_n5##y,z,c)), \
(I[629] = (T)(img)(_n15##x,_n6##y,z,c)), \
(I[659] = (T)(img)(_n15##x,_n7##y,z,c)), \
(I[689] = (T)(img)(_n15##x,_n8##y,z,c)), \
(I[719] = (T)(img)(_n15##x,_n9##y,z,c)), \
(I[749] = (T)(img)(_n15##x,_n10##y,z,c)), \
(I[779] = (T)(img)(_n15##x,_n11##y,z,c)), \
(I[809] = (T)(img)(_n15##x,_n12##y,z,c)), \
(I[839] = (T)(img)(_n15##x,_n13##y,z,c)), \
(I[869] = (T)(img)(_n15##x,_n14##y,z,c)), \
(I[899] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], \
I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], \
I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], \
I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], \
I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], \
I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], \
I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], \
I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], \
I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], \
I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], \
I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], \
I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], \
I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], \
I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], \
I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], \
I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], \
I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], \
I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], \
I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], \
I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], I[898] = I[899], \
_p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
#define cimg_get30x30(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p14##x,_p14##y,z,c), I[1] = (T)(img)(_p13##x,_p14##y,z,c), I[2] = (T)(img)(_p12##x,_p14##y,z,c), I[3] = (T)(img)(_p11##x,_p14##y,z,c), I[4] = (T)(img)(_p10##x,_p14##y,z,c), I[5] = (T)(img)(_p9##x,_p14##y,z,c), I[6] = (T)(img)(_p8##x,_p14##y,z,c), I[7] = (T)(img)(_p7##x,_p14##y,z,c), I[8] = (T)(img)(_p6##x,_p14##y,z,c), I[9] = (T)(img)(_p5##x,_p14##y,z,c), I[10] = (T)(img)(_p4##x,_p14##y,z,c), I[11] = (T)(img)(_p3##x,_p14##y,z,c), I[12] = (T)(img)(_p2##x,_p14##y,z,c), I[13] = (T)(img)(_p1##x,_p14##y,z,c), I[14] = (T)(img)(x,_p14##y,z,c), I[15] = (T)(img)(_n1##x,_p14##y,z,c), I[16] = (T)(img)(_n2##x,_p14##y,z,c), I[17] = (T)(img)(_n3##x,_p14##y,z,c), I[18] = (T)(img)(_n4##x,_p14##y,z,c), I[19] = (T)(img)(_n5##x,_p14##y,z,c), I[20] = (T)(img)(_n6##x,_p14##y,z,c), I[21] = (T)(img)(_n7##x,_p14##y,z,c), I[22] = (T)(img)(_n8##x,_p14##y,z,c), I[23] = (T)(img)(_n9##x,_p14##y,z,c), I[24] = (T)(img)(_n10##x,_p14##y,z,c), I[25] = (T)(img)(_n11##x,_p14##y,z,c), I[26] = (T)(img)(_n12##x,_p14##y,z,c), I[27] = (T)(img)(_n13##x,_p14##y,z,c), I[28] = (T)(img)(_n14##x,_p14##y,z,c), I[29] = (T)(img)(_n15##x,_p14##y,z,c), \
I[30] = (T)(img)(_p14##x,_p13##y,z,c), I[31] = (T)(img)(_p13##x,_p13##y,z,c), I[32] = (T)(img)(_p12##x,_p13##y,z,c), I[33] = (T)(img)(_p11##x,_p13##y,z,c), I[34] = (T)(img)(_p10##x,_p13##y,z,c), I[35] = (T)(img)(_p9##x,_p13##y,z,c), I[36] = (T)(img)(_p8##x,_p13##y,z,c), I[37] = (T)(img)(_p7##x,_p13##y,z,c), I[38] = (T)(img)(_p6##x,_p13##y,z,c), I[39] = (T)(img)(_p5##x,_p13##y,z,c), I[40] = (T)(img)(_p4##x,_p13##y,z,c), I[41] = (T)(img)(_p3##x,_p13##y,z,c), I[42] = (T)(img)(_p2##x,_p13##y,z,c), I[43] = (T)(img)(_p1##x,_p13##y,z,c), I[44] = (T)(img)(x,_p13##y,z,c), I[45] = (T)(img)(_n1##x,_p13##y,z,c), I[46] = (T)(img)(_n2##x,_p13##y,z,c), I[47] = (T)(img)(_n3##x,_p13##y,z,c), I[48] = (T)(img)(_n4##x,_p13##y,z,c), I[49] = (T)(img)(_n5##x,_p13##y,z,c), I[50] = (T)(img)(_n6##x,_p13##y,z,c), I[51] = (T)(img)(_n7##x,_p13##y,z,c), I[52] = (T)(img)(_n8##x,_p13##y,z,c), I[53] = (T)(img)(_n9##x,_p13##y,z,c), I[54] = (T)(img)(_n10##x,_p13##y,z,c), I[55] = (T)(img)(_n11##x,_p13##y,z,c), I[56] = (T)(img)(_n12##x,_p13##y,z,c), I[57] = (T)(img)(_n13##x,_p13##y,z,c), I[58] = (T)(img)(_n14##x,_p13##y,z,c), I[59] = (T)(img)(_n15##x,_p13##y,z,c), \
I[60] = (T)(img)(_p14##x,_p12##y,z,c), I[61] = (T)(img)(_p13##x,_p12##y,z,c), I[62] = (T)(img)(_p12##x,_p12##y,z,c), I[63] = (T)(img)(_p11##x,_p12##y,z,c), I[64] = (T)(img)(_p10##x,_p12##y,z,c), I[65] = (T)(img)(_p9##x,_p12##y,z,c), I[66] = (T)(img)(_p8##x,_p12##y,z,c), I[67] = (T)(img)(_p7##x,_p12##y,z,c), I[68] = (T)(img)(_p6##x,_p12##y,z,c), I[69] = (T)(img)(_p5##x,_p12##y,z,c), I[70] = (T)(img)(_p4##x,_p12##y,z,c), I[71] = (T)(img)(_p3##x,_p12##y,z,c), I[72] = (T)(img)(_p2##x,_p12##y,z,c), I[73] = (T)(img)(_p1##x,_p12##y,z,c), I[74] = (T)(img)(x,_p12##y,z,c), I[75] = (T)(img)(_n1##x,_p12##y,z,c), I[76] = (T)(img)(_n2##x,_p12##y,z,c), I[77] = (T)(img)(_n3##x,_p12##y,z,c), I[78] = (T)(img)(_n4##x,_p12##y,z,c), I[79] = (T)(img)(_n5##x,_p12##y,z,c), I[80] = (T)(img)(_n6##x,_p12##y,z,c), I[81] = (T)(img)(_n7##x,_p12##y,z,c), I[82] = (T)(img)(_n8##x,_p12##y,z,c), I[83] = (T)(img)(_n9##x,_p12##y,z,c), I[84] = (T)(img)(_n10##x,_p12##y,z,c), I[85] = (T)(img)(_n11##x,_p12##y,z,c), I[86] = (T)(img)(_n12##x,_p12##y,z,c), I[87] = (T)(img)(_n13##x,_p12##y,z,c), I[88] = (T)(img)(_n14##x,_p12##y,z,c), I[89] = (T)(img)(_n15##x,_p12##y,z,c), \
I[90] = (T)(img)(_p14##x,_p11##y,z,c), I[91] = (T)(img)(_p13##x,_p11##y,z,c), I[92] = (T)(img)(_p12##x,_p11##y,z,c), I[93] = (T)(img)(_p11##x,_p11##y,z,c), I[94] = (T)(img)(_p10##x,_p11##y,z,c), I[95] = (T)(img)(_p9##x,_p11##y,z,c), I[96] = (T)(img)(_p8##x,_p11##y,z,c), I[97] = (T)(img)(_p7##x,_p11##y,z,c), I[98] = (T)(img)(_p6##x,_p11##y,z,c), I[99] = (T)(img)(_p5##x,_p11##y,z,c), I[100] = (T)(img)(_p4##x,_p11##y,z,c), I[101] = (T)(img)(_p3##x,_p11##y,z,c), I[102] = (T)(img)(_p2##x,_p11##y,z,c), I[103] = (T)(img)(_p1##x,_p11##y,z,c), I[104] = (T)(img)(x,_p11##y,z,c), I[105] = (T)(img)(_n1##x,_p11##y,z,c), I[106] = (T)(img)(_n2##x,_p11##y,z,c), I[107] = (T)(img)(_n3##x,_p11##y,z,c), I[108] = (T)(img)(_n4##x,_p11##y,z,c), I[109] = (T)(img)(_n5##x,_p11##y,z,c), I[110] = (T)(img)(_n6##x,_p11##y,z,c), I[111] = (T)(img)(_n7##x,_p11##y,z,c), I[112] = (T)(img)(_n8##x,_p11##y,z,c), I[113] = (T)(img)(_n9##x,_p11##y,z,c), I[114] = (T)(img)(_n10##x,_p11##y,z,c), I[115] = (T)(img)(_n11##x,_p11##y,z,c), I[116] = (T)(img)(_n12##x,_p11##y,z,c), I[117] = (T)(img)(_n13##x,_p11##y,z,c), I[118] = (T)(img)(_n14##x,_p11##y,z,c), I[119] = (T)(img)(_n15##x,_p11##y,z,c), \
I[120] = (T)(img)(_p14##x,_p10##y,z,c), I[121] = (T)(img)(_p13##x,_p10##y,z,c), I[122] = (T)(img)(_p12##x,_p10##y,z,c), I[123] = (T)(img)(_p11##x,_p10##y,z,c), I[124] = (T)(img)(_p10##x,_p10##y,z,c), I[125] = (T)(img)(_p9##x,_p10##y,z,c), I[126] = (T)(img)(_p8##x,_p10##y,z,c), I[127] = (T)(img)(_p7##x,_p10##y,z,c), I[128] = (T)(img)(_p6##x,_p10##y,z,c), I[129] = (T)(img)(_p5##x,_p10##y,z,c), I[130] = (T)(img)(_p4##x,_p10##y,z,c), I[131] = (T)(img)(_p3##x,_p10##y,z,c), I[132] = (T)(img)(_p2##x,_p10##y,z,c), I[133] = (T)(img)(_p1##x,_p10##y,z,c), I[134] = (T)(img)(x,_p10##y,z,c), I[135] = (T)(img)(_n1##x,_p10##y,z,c), I[136] = (T)(img)(_n2##x,_p10##y,z,c), I[137] = (T)(img)(_n3##x,_p10##y,z,c), I[138] = (T)(img)(_n4##x,_p10##y,z,c), I[139] = (T)(img)(_n5##x,_p10##y,z,c), I[140] = (T)(img)(_n6##x,_p10##y,z,c), I[141] = (T)(img)(_n7##x,_p10##y,z,c), I[142] = (T)(img)(_n8##x,_p10##y,z,c), I[143] = (T)(img)(_n9##x,_p10##y,z,c), I[144] = (T)(img)(_n10##x,_p10##y,z,c), I[145] = (T)(img)(_n11##x,_p10##y,z,c), I[146] = (T)(img)(_n12##x,_p10##y,z,c), I[147] = (T)(img)(_n13##x,_p10##y,z,c), I[148] = (T)(img)(_n14##x,_p10##y,z,c), I[149] = (T)(img)(_n15##x,_p10##y,z,c), \
I[150] = (T)(img)(_p14##x,_p9##y,z,c), I[151] = (T)(img)(_p13##x,_p9##y,z,c), I[152] = (T)(img)(_p12##x,_p9##y,z,c), I[153] = (T)(img)(_p11##x,_p9##y,z,c), I[154] = (T)(img)(_p10##x,_p9##y,z,c), I[155] = (T)(img)(_p9##x,_p9##y,z,c), I[156] = (T)(img)(_p8##x,_p9##y,z,c), I[157] = (T)(img)(_p7##x,_p9##y,z,c), I[158] = (T)(img)(_p6##x,_p9##y,z,c), I[159] = (T)(img)(_p5##x,_p9##y,z,c), I[160] = (T)(img)(_p4##x,_p9##y,z,c), I[161] = (T)(img)(_p3##x,_p9##y,z,c), I[162] = (T)(img)(_p2##x,_p9##y,z,c), I[163] = (T)(img)(_p1##x,_p9##y,z,c), I[164] = (T)(img)(x,_p9##y,z,c), I[165] = (T)(img)(_n1##x,_p9##y,z,c), I[166] = (T)(img)(_n2##x,_p9##y,z,c), I[167] = (T)(img)(_n3##x,_p9##y,z,c), I[168] = (T)(img)(_n4##x,_p9##y,z,c), I[169] = (T)(img)(_n5##x,_p9##y,z,c), I[170] = (T)(img)(_n6##x,_p9##y,z,c), I[171] = (T)(img)(_n7##x,_p9##y,z,c), I[172] = (T)(img)(_n8##x,_p9##y,z,c), I[173] = (T)(img)(_n9##x,_p9##y,z,c), I[174] = (T)(img)(_n10##x,_p9##y,z,c), I[175] = (T)(img)(_n11##x,_p9##y,z,c), I[176] = (T)(img)(_n12##x,_p9##y,z,c), I[177] = (T)(img)(_n13##x,_p9##y,z,c), I[178] = (T)(img)(_n14##x,_p9##y,z,c), I[179] = (T)(img)(_n15##x,_p9##y,z,c), \
I[180] = (T)(img)(_p14##x,_p8##y,z,c), I[181] = (T)(img)(_p13##x,_p8##y,z,c), I[182] = (T)(img)(_p12##x,_p8##y,z,c), I[183] = (T)(img)(_p11##x,_p8##y,z,c), I[184] = (T)(img)(_p10##x,_p8##y,z,c), I[185] = (T)(img)(_p9##x,_p8##y,z,c), I[186] = (T)(img)(_p8##x,_p8##y,z,c), I[187] = (T)(img)(_p7##x,_p8##y,z,c), I[188] = (T)(img)(_p6##x,_p8##y,z,c), I[189] = (T)(img)(_p5##x,_p8##y,z,c), I[190] = (T)(img)(_p4##x,_p8##y,z,c), I[191] = (T)(img)(_p3##x,_p8##y,z,c), I[192] = (T)(img)(_p2##x,_p8##y,z,c), I[193] = (T)(img)(_p1##x,_p8##y,z,c), I[194] = (T)(img)(x,_p8##y,z,c), I[195] = (T)(img)(_n1##x,_p8##y,z,c), I[196] = (T)(img)(_n2##x,_p8##y,z,c), I[197] = (T)(img)(_n3##x,_p8##y,z,c), I[198] = (T)(img)(_n4##x,_p8##y,z,c), I[199] = (T)(img)(_n5##x,_p8##y,z,c), I[200] = (T)(img)(_n6##x,_p8##y,z,c), I[201] = (T)(img)(_n7##x,_p8##y,z,c), I[202] = (T)(img)(_n8##x,_p8##y,z,c), I[203] = (T)(img)(_n9##x,_p8##y,z,c), I[204] = (T)(img)(_n10##x,_p8##y,z,c), I[205] = (T)(img)(_n11##x,_p8##y,z,c), I[206] = (T)(img)(_n12##x,_p8##y,z,c), I[207] = (T)(img)(_n13##x,_p8##y,z,c), I[208] = (T)(img)(_n14##x,_p8##y,z,c), I[209] = (T)(img)(_n15##x,_p8##y,z,c), \
I[210] = (T)(img)(_p14##x,_p7##y,z,c), I[211] = (T)(img)(_p13##x,_p7##y,z,c), I[212] = (T)(img)(_p12##x,_p7##y,z,c), I[213] = (T)(img)(_p11##x,_p7##y,z,c), I[214] = (T)(img)(_p10##x,_p7##y,z,c), I[215] = (T)(img)(_p9##x,_p7##y,z,c), I[216] = (T)(img)(_p8##x,_p7##y,z,c), I[217] = (T)(img)(_p7##x,_p7##y,z,c), I[218] = (T)(img)(_p6##x,_p7##y,z,c), I[219] = (T)(img)(_p5##x,_p7##y,z,c), I[220] = (T)(img)(_p4##x,_p7##y,z,c), I[221] = (T)(img)(_p3##x,_p7##y,z,c), I[222] = (T)(img)(_p2##x,_p7##y,z,c), I[223] = (T)(img)(_p1##x,_p7##y,z,c), I[224] = (T)(img)(x,_p7##y,z,c), I[225] = (T)(img)(_n1##x,_p7##y,z,c), I[226] = (T)(img)(_n2##x,_p7##y,z,c), I[227] = (T)(img)(_n3##x,_p7##y,z,c), I[228] = (T)(img)(_n4##x,_p7##y,z,c), I[229] = (T)(img)(_n5##x,_p7##y,z,c), I[230] = (T)(img)(_n6##x,_p7##y,z,c), I[231] = (T)(img)(_n7##x,_p7##y,z,c), I[232] = (T)(img)(_n8##x,_p7##y,z,c), I[233] = (T)(img)(_n9##x,_p7##y,z,c), I[234] = (T)(img)(_n10##x,_p7##y,z,c), I[235] = (T)(img)(_n11##x,_p7##y,z,c), I[236] = (T)(img)(_n12##x,_p7##y,z,c), I[237] = (T)(img)(_n13##x,_p7##y,z,c), I[238] = (T)(img)(_n14##x,_p7##y,z,c), I[239] = (T)(img)(_n15##x,_p7##y,z,c), \
I[240] = (T)(img)(_p14##x,_p6##y,z,c), I[241] = (T)(img)(_p13##x,_p6##y,z,c), I[242] = (T)(img)(_p12##x,_p6##y,z,c), I[243] = (T)(img)(_p11##x,_p6##y,z,c), I[244] = (T)(img)(_p10##x,_p6##y,z,c), I[245] = (T)(img)(_p9##x,_p6##y,z,c), I[246] = (T)(img)(_p8##x,_p6##y,z,c), I[247] = (T)(img)(_p7##x,_p6##y,z,c), I[248] = (T)(img)(_p6##x,_p6##y,z,c), I[249] = (T)(img)(_p5##x,_p6##y,z,c), I[250] = (T)(img)(_p4##x,_p6##y,z,c), I[251] = (T)(img)(_p3##x,_p6##y,z,c), I[252] = (T)(img)(_p2##x,_p6##y,z,c), I[253] = (T)(img)(_p1##x,_p6##y,z,c), I[254] = (T)(img)(x,_p6##y,z,c), I[255] = (T)(img)(_n1##x,_p6##y,z,c), I[256] = (T)(img)(_n2##x,_p6##y,z,c), I[257] = (T)(img)(_n3##x,_p6##y,z,c), I[258] = (T)(img)(_n4##x,_p6##y,z,c), I[259] = (T)(img)(_n5##x,_p6##y,z,c), I[260] = (T)(img)(_n6##x,_p6##y,z,c), I[261] = (T)(img)(_n7##x,_p6##y,z,c), I[262] = (T)(img)(_n8##x,_p6##y,z,c), I[263] = (T)(img)(_n9##x,_p6##y,z,c), I[264] = (T)(img)(_n10##x,_p6##y,z,c), I[265] = (T)(img)(_n11##x,_p6##y,z,c), I[266] = (T)(img)(_n12##x,_p6##y,z,c), I[267] = (T)(img)(_n13##x,_p6##y,z,c), I[268] = (T)(img)(_n14##x,_p6##y,z,c), I[269] = (T)(img)(_n15##x,_p6##y,z,c), \
I[270] = (T)(img)(_p14##x,_p5##y,z,c), I[271] = (T)(img)(_p13##x,_p5##y,z,c), I[272] = (T)(img)(_p12##x,_p5##y,z,c), I[273] = (T)(img)(_p11##x,_p5##y,z,c), I[274] = (T)(img)(_p10##x,_p5##y,z,c), I[275] = (T)(img)(_p9##x,_p5##y,z,c), I[276] = (T)(img)(_p8##x,_p5##y,z,c), I[277] = (T)(img)(_p7##x,_p5##y,z,c), I[278] = (T)(img)(_p6##x,_p5##y,z,c), I[279] = (T)(img)(_p5##x,_p5##y,z,c), I[280] = (T)(img)(_p4##x,_p5##y,z,c), I[281] = (T)(img)(_p3##x,_p5##y,z,c), I[282] = (T)(img)(_p2##x,_p5##y,z,c), I[283] = (T)(img)(_p1##x,_p5##y,z,c), I[284] = (T)(img)(x,_p5##y,z,c), I[285] = (T)(img)(_n1##x,_p5##y,z,c), I[286] = (T)(img)(_n2##x,_p5##y,z,c), I[287] = (T)(img)(_n3##x,_p5##y,z,c), I[288] = (T)(img)(_n4##x,_p5##y,z,c), I[289] = (T)(img)(_n5##x,_p5##y,z,c), I[290] = (T)(img)(_n6##x,_p5##y,z,c), I[291] = (T)(img)(_n7##x,_p5##y,z,c), I[292] = (T)(img)(_n8##x,_p5##y,z,c), I[293] = (T)(img)(_n9##x,_p5##y,z,c), I[294] = (T)(img)(_n10##x,_p5##y,z,c), I[295] = (T)(img)(_n11##x,_p5##y,z,c), I[296] = (T)(img)(_n12##x,_p5##y,z,c), I[297] = (T)(img)(_n13##x,_p5##y,z,c), I[298] = (T)(img)(_n14##x,_p5##y,z,c), I[299] = (T)(img)(_n15##x,_p5##y,z,c), \
I[300] = (T)(img)(_p14##x,_p4##y,z,c), I[301] = (T)(img)(_p13##x,_p4##y,z,c), I[302] = (T)(img)(_p12##x,_p4##y,z,c), I[303] = (T)(img)(_p11##x,_p4##y,z,c), I[304] = (T)(img)(_p10##x,_p4##y,z,c), I[305] = (T)(img)(_p9##x,_p4##y,z,c), I[306] = (T)(img)(_p8##x,_p4##y,z,c), I[307] = (T)(img)(_p7##x,_p4##y,z,c), I[308] = (T)(img)(_p6##x,_p4##y,z,c), I[309] = (T)(img)(_p5##x,_p4##y,z,c), I[310] = (T)(img)(_p4##x,_p4##y,z,c), I[311] = (T)(img)(_p3##x,_p4##y,z,c), I[312] = (T)(img)(_p2##x,_p4##y,z,c), I[313] = (T)(img)(_p1##x,_p4##y,z,c), I[314] = (T)(img)(x,_p4##y,z,c), I[315] = (T)(img)(_n1##x,_p4##y,z,c), I[316] = (T)(img)(_n2##x,_p4##y,z,c), I[317] = (T)(img)(_n3##x,_p4##y,z,c), I[318] = (T)(img)(_n4##x,_p4##y,z,c), I[319] = (T)(img)(_n5##x,_p4##y,z,c), I[320] = (T)(img)(_n6##x,_p4##y,z,c), I[321] = (T)(img)(_n7##x,_p4##y,z,c), I[322] = (T)(img)(_n8##x,_p4##y,z,c), I[323] = (T)(img)(_n9##x,_p4##y,z,c), I[324] = (T)(img)(_n10##x,_p4##y,z,c), I[325] = (T)(img)(_n11##x,_p4##y,z,c), I[326] = (T)(img)(_n12##x,_p4##y,z,c), I[327] = (T)(img)(_n13##x,_p4##y,z,c), I[328] = (T)(img)(_n14##x,_p4##y,z,c), I[329] = (T)(img)(_n15##x,_p4##y,z,c), \
I[330] = (T)(img)(_p14##x,_p3##y,z,c), I[331] = (T)(img)(_p13##x,_p3##y,z,c), I[332] = (T)(img)(_p12##x,_p3##y,z,c), I[333] = (T)(img)(_p11##x,_p3##y,z,c), I[334] = (T)(img)(_p10##x,_p3##y,z,c), I[335] = (T)(img)(_p9##x,_p3##y,z,c), I[336] = (T)(img)(_p8##x,_p3##y,z,c), I[337] = (T)(img)(_p7##x,_p3##y,z,c), I[338] = (T)(img)(_p6##x,_p3##y,z,c), I[339] = (T)(img)(_p5##x,_p3##y,z,c), I[340] = (T)(img)(_p4##x,_p3##y,z,c), I[341] = (T)(img)(_p3##x,_p3##y,z,c), I[342] = (T)(img)(_p2##x,_p3##y,z,c), I[343] = (T)(img)(_p1##x,_p3##y,z,c), I[344] = (T)(img)(x,_p3##y,z,c), I[345] = (T)(img)(_n1##x,_p3##y,z,c), I[346] = (T)(img)(_n2##x,_p3##y,z,c), I[347] = (T)(img)(_n3##x,_p3##y,z,c), I[348] = (T)(img)(_n4##x,_p3##y,z,c), I[349] = (T)(img)(_n5##x,_p3##y,z,c), I[350] = (T)(img)(_n6##x,_p3##y,z,c), I[351] = (T)(img)(_n7##x,_p3##y,z,c), I[352] = (T)(img)(_n8##x,_p3##y,z,c), I[353] = (T)(img)(_n9##x,_p3##y,z,c), I[354] = (T)(img)(_n10##x,_p3##y,z,c), I[355] = (T)(img)(_n11##x,_p3##y,z,c), I[356] = (T)(img)(_n12##x,_p3##y,z,c), I[357] = (T)(img)(_n13##x,_p3##y,z,c), I[358] = (T)(img)(_n14##x,_p3##y,z,c), I[359] = (T)(img)(_n15##x,_p3##y,z,c), \
I[360] = (T)(img)(_p14##x,_p2##y,z,c), I[361] = (T)(img)(_p13##x,_p2##y,z,c), I[362] = (T)(img)(_p12##x,_p2##y,z,c), I[363] = (T)(img)(_p11##x,_p2##y,z,c), I[364] = (T)(img)(_p10##x,_p2##y,z,c), I[365] = (T)(img)(_p9##x,_p2##y,z,c), I[366] = (T)(img)(_p8##x,_p2##y,z,c), I[367] = (T)(img)(_p7##x,_p2##y,z,c), I[368] = (T)(img)(_p6##x,_p2##y,z,c), I[369] = (T)(img)(_p5##x,_p2##y,z,c), I[370] = (T)(img)(_p4##x,_p2##y,z,c), I[371] = (T)(img)(_p3##x,_p2##y,z,c), I[372] = (T)(img)(_p2##x,_p2##y,z,c), I[373] = (T)(img)(_p1##x,_p2##y,z,c), I[374] = (T)(img)(x,_p2##y,z,c), I[375] = (T)(img)(_n1##x,_p2##y,z,c), I[376] = (T)(img)(_n2##x,_p2##y,z,c), I[377] = (T)(img)(_n3##x,_p2##y,z,c), I[378] = (T)(img)(_n4##x,_p2##y,z,c), I[379] = (T)(img)(_n5##x,_p2##y,z,c), I[380] = (T)(img)(_n6##x,_p2##y,z,c), I[381] = (T)(img)(_n7##x,_p2##y,z,c), I[382] = (T)(img)(_n8##x,_p2##y,z,c), I[383] = (T)(img)(_n9##x,_p2##y,z,c), I[384] = (T)(img)(_n10##x,_p2##y,z,c), I[385] = (T)(img)(_n11##x,_p2##y,z,c), I[386] = (T)(img)(_n12##x,_p2##y,z,c), I[387] = (T)(img)(_n13##x,_p2##y,z,c), I[388] = (T)(img)(_n14##x,_p2##y,z,c), I[389] = (T)(img)(_n15##x,_p2##y,z,c), \
I[390] = (T)(img)(_p14##x,_p1##y,z,c), I[391] = (T)(img)(_p13##x,_p1##y,z,c), I[392] = (T)(img)(_p12##x,_p1##y,z,c), I[393] = (T)(img)(_p11##x,_p1##y,z,c), I[394] = (T)(img)(_p10##x,_p1##y,z,c), I[395] = (T)(img)(_p9##x,_p1##y,z,c), I[396] = (T)(img)(_p8##x,_p1##y,z,c), I[397] = (T)(img)(_p7##x,_p1##y,z,c), I[398] = (T)(img)(_p6##x,_p1##y,z,c), I[399] = (T)(img)(_p5##x,_p1##y,z,c), I[400] = (T)(img)(_p4##x,_p1##y,z,c), I[401] = (T)(img)(_p3##x,_p1##y,z,c), I[402] = (T)(img)(_p2##x,_p1##y,z,c), I[403] = (T)(img)(_p1##x,_p1##y,z,c), I[404] = (T)(img)(x,_p1##y,z,c), I[405] = (T)(img)(_n1##x,_p1##y,z,c), I[406] = (T)(img)(_n2##x,_p1##y,z,c), I[407] = (T)(img)(_n3##x,_p1##y,z,c), I[408] = (T)(img)(_n4##x,_p1##y,z,c), I[409] = (T)(img)(_n5##x,_p1##y,z,c), I[410] = (T)(img)(_n6##x,_p1##y,z,c), I[411] = (T)(img)(_n7##x,_p1##y,z,c), I[412] = (T)(img)(_n8##x,_p1##y,z,c), I[413] = (T)(img)(_n9##x,_p1##y,z,c), I[414] = (T)(img)(_n10##x,_p1##y,z,c), I[415] = (T)(img)(_n11##x,_p1##y,z,c), I[416] = (T)(img)(_n12##x,_p1##y,z,c), I[417] = (T)(img)(_n13##x,_p1##y,z,c), I[418] = (T)(img)(_n14##x,_p1##y,z,c), I[419] = (T)(img)(_n15##x,_p1##y,z,c), \
I[420] = (T)(img)(_p14##x,y,z,c), I[421] = (T)(img)(_p13##x,y,z,c), I[422] = (T)(img)(_p12##x,y,z,c), I[423] = (T)(img)(_p11##x,y,z,c), I[424] = (T)(img)(_p10##x,y,z,c), I[425] = (T)(img)(_p9##x,y,z,c), I[426] = (T)(img)(_p8##x,y,z,c), I[427] = (T)(img)(_p7##x,y,z,c), I[428] = (T)(img)(_p6##x,y,z,c), I[429] = (T)(img)(_p5##x,y,z,c), I[430] = (T)(img)(_p4##x,y,z,c), I[431] = (T)(img)(_p3##x,y,z,c), I[432] = (T)(img)(_p2##x,y,z,c), I[433] = (T)(img)(_p1##x,y,z,c), I[434] = (T)(img)(x,y,z,c), I[435] = (T)(img)(_n1##x,y,z,c), I[436] = (T)(img)(_n2##x,y,z,c), I[437] = (T)(img)(_n3##x,y,z,c), I[438] = (T)(img)(_n4##x,y,z,c), I[439] = (T)(img)(_n5##x,y,z,c), I[440] = (T)(img)(_n6##x,y,z,c), I[441] = (T)(img)(_n7##x,y,z,c), I[442] = (T)(img)(_n8##x,y,z,c), I[443] = (T)(img)(_n9##x,y,z,c), I[444] = (T)(img)(_n10##x,y,z,c), I[445] = (T)(img)(_n11##x,y,z,c), I[446] = (T)(img)(_n12##x,y,z,c), I[447] = (T)(img)(_n13##x,y,z,c), I[448] = (T)(img)(_n14##x,y,z,c), I[449] = (T)(img)(_n15##x,y,z,c), \
I[450] = (T)(img)(_p14##x,_n1##y,z,c), I[451] = (T)(img)(_p13##x,_n1##y,z,c), I[452] = (T)(img)(_p12##x,_n1##y,z,c), I[453] = (T)(img)(_p11##x,_n1##y,z,c), I[454] = (T)(img)(_p10##x,_n1##y,z,c), I[455] = (T)(img)(_p9##x,_n1##y,z,c), I[456] = (T)(img)(_p8##x,_n1##y,z,c), I[457] = (T)(img)(_p7##x,_n1##y,z,c), I[458] = (T)(img)(_p6##x,_n1##y,z,c), I[459] = (T)(img)(_p5##x,_n1##y,z,c), I[460] = (T)(img)(_p4##x,_n1##y,z,c), I[461] = (T)(img)(_p3##x,_n1##y,z,c), I[462] = (T)(img)(_p2##x,_n1##y,z,c), I[463] = (T)(img)(_p1##x,_n1##y,z,c), I[464] = (T)(img)(x,_n1##y,z,c), I[465] = (T)(img)(_n1##x,_n1##y,z,c), I[466] = (T)(img)(_n2##x,_n1##y,z,c), I[467] = (T)(img)(_n3##x,_n1##y,z,c), I[468] = (T)(img)(_n4##x,_n1##y,z,c), I[469] = (T)(img)(_n5##x,_n1##y,z,c), I[470] = (T)(img)(_n6##x,_n1##y,z,c), I[471] = (T)(img)(_n7##x,_n1##y,z,c), I[472] = (T)(img)(_n8##x,_n1##y,z,c), I[473] = (T)(img)(_n9##x,_n1##y,z,c), I[474] = (T)(img)(_n10##x,_n1##y,z,c), I[475] = (T)(img)(_n11##x,_n1##y,z,c), I[476] = (T)(img)(_n12##x,_n1##y,z,c), I[477] = (T)(img)(_n13##x,_n1##y,z,c), I[478] = (T)(img)(_n14##x,_n1##y,z,c), I[479] = (T)(img)(_n15##x,_n1##y,z,c), \
I[480] = (T)(img)(_p14##x,_n2##y,z,c), I[481] = (T)(img)(_p13##x,_n2##y,z,c), I[482] = (T)(img)(_p12##x,_n2##y,z,c), I[483] = (T)(img)(_p11##x,_n2##y,z,c), I[484] = (T)(img)(_p10##x,_n2##y,z,c), I[485] = (T)(img)(_p9##x,_n2##y,z,c), I[486] = (T)(img)(_p8##x,_n2##y,z,c), I[487] = (T)(img)(_p7##x,_n2##y,z,c), I[488] = (T)(img)(_p6##x,_n2##y,z,c), I[489] = (T)(img)(_p5##x,_n2##y,z,c), I[490] = (T)(img)(_p4##x,_n2##y,z,c), I[491] = (T)(img)(_p3##x,_n2##y,z,c), I[492] = (T)(img)(_p2##x,_n2##y,z,c), I[493] = (T)(img)(_p1##x,_n2##y,z,c), I[494] = (T)(img)(x,_n2##y,z,c), I[495] = (T)(img)(_n1##x,_n2##y,z,c), I[496] = (T)(img)(_n2##x,_n2##y,z,c), I[497] = (T)(img)(_n3##x,_n2##y,z,c), I[498] = (T)(img)(_n4##x,_n2##y,z,c), I[499] = (T)(img)(_n5##x,_n2##y,z,c), I[500] = (T)(img)(_n6##x,_n2##y,z,c), I[501] = (T)(img)(_n7##x,_n2##y,z,c), I[502] = (T)(img)(_n8##x,_n2##y,z,c), I[503] = (T)(img)(_n9##x,_n2##y,z,c), I[504] = (T)(img)(_n10##x,_n2##y,z,c), I[505] = (T)(img)(_n11##x,_n2##y,z,c), I[506] = (T)(img)(_n12##x,_n2##y,z,c), I[507] = (T)(img)(_n13##x,_n2##y,z,c), I[508] = (T)(img)(_n14##x,_n2##y,z,c), I[509] = (T)(img)(_n15##x,_n2##y,z,c), \
I[510] = (T)(img)(_p14##x,_n3##y,z,c), I[511] = (T)(img)(_p13##x,_n3##y,z,c), I[512] = (T)(img)(_p12##x,_n3##y,z,c), I[513] = (T)(img)(_p11##x,_n3##y,z,c), I[514] = (T)(img)(_p10##x,_n3##y,z,c), I[515] = (T)(img)(_p9##x,_n3##y,z,c), I[516] = (T)(img)(_p8##x,_n3##y,z,c), I[517] = (T)(img)(_p7##x,_n3##y,z,c), I[518] = (T)(img)(_p6##x,_n3##y,z,c), I[519] = (T)(img)(_p5##x,_n3##y,z,c), I[520] = (T)(img)(_p4##x,_n3##y,z,c), I[521] = (T)(img)(_p3##x,_n3##y,z,c), I[522] = (T)(img)(_p2##x,_n3##y,z,c), I[523] = (T)(img)(_p1##x,_n3##y,z,c), I[524] = (T)(img)(x,_n3##y,z,c), I[525] = (T)(img)(_n1##x,_n3##y,z,c), I[526] = (T)(img)(_n2##x,_n3##y,z,c), I[527] = (T)(img)(_n3##x,_n3##y,z,c), I[528] = (T)(img)(_n4##x,_n3##y,z,c), I[529] = (T)(img)(_n5##x,_n3##y,z,c), I[530] = (T)(img)(_n6##x,_n3##y,z,c), I[531] = (T)(img)(_n7##x,_n3##y,z,c), I[532] = (T)(img)(_n8##x,_n3##y,z,c), I[533] = (T)(img)(_n9##x,_n3##y,z,c), I[534] = (T)(img)(_n10##x,_n3##y,z,c), I[535] = (T)(img)(_n11##x,_n3##y,z,c), I[536] = (T)(img)(_n12##x,_n3##y,z,c), I[537] = (T)(img)(_n13##x,_n3##y,z,c), I[538] = (T)(img)(_n14##x,_n3##y,z,c), I[539] = (T)(img)(_n15##x,_n3##y,z,c), \
I[540] = (T)(img)(_p14##x,_n4##y,z,c), I[541] = (T)(img)(_p13##x,_n4##y,z,c), I[542] = (T)(img)(_p12##x,_n4##y,z,c), I[543] = (T)(img)(_p11##x,_n4##y,z,c), I[544] = (T)(img)(_p10##x,_n4##y,z,c), I[545] = (T)(img)(_p9##x,_n4##y,z,c), I[546] = (T)(img)(_p8##x,_n4##y,z,c), I[547] = (T)(img)(_p7##x,_n4##y,z,c), I[548] = (T)(img)(_p6##x,_n4##y,z,c), I[549] = (T)(img)(_p5##x,_n4##y,z,c), I[550] = (T)(img)(_p4##x,_n4##y,z,c), I[551] = (T)(img)(_p3##x,_n4##y,z,c), I[552] = (T)(img)(_p2##x,_n4##y,z,c), I[553] = (T)(img)(_p1##x,_n4##y,z,c), I[554] = (T)(img)(x,_n4##y,z,c), I[555] = (T)(img)(_n1##x,_n4##y,z,c), I[556] = (T)(img)(_n2##x,_n4##y,z,c), I[557] = (T)(img)(_n3##x,_n4##y,z,c), I[558] = (T)(img)(_n4##x,_n4##y,z,c), I[559] = (T)(img)(_n5##x,_n4##y,z,c), I[560] = (T)(img)(_n6##x,_n4##y,z,c), I[561] = (T)(img)(_n7##x,_n4##y,z,c), I[562] = (T)(img)(_n8##x,_n4##y,z,c), I[563] = (T)(img)(_n9##x,_n4##y,z,c), I[564] = (T)(img)(_n10##x,_n4##y,z,c), I[565] = (T)(img)(_n11##x,_n4##y,z,c), I[566] = (T)(img)(_n12##x,_n4##y,z,c), I[567] = (T)(img)(_n13##x,_n4##y,z,c), I[568] = (T)(img)(_n14##x,_n4##y,z,c), I[569] = (T)(img)(_n15##x,_n4##y,z,c), \
I[570] = (T)(img)(_p14##x,_n5##y,z,c), I[571] = (T)(img)(_p13##x,_n5##y,z,c), I[572] = (T)(img)(_p12##x,_n5##y,z,c), I[573] = (T)(img)(_p11##x,_n5##y,z,c), I[574] = (T)(img)(_p10##x,_n5##y,z,c), I[575] = (T)(img)(_p9##x,_n5##y,z,c), I[576] = (T)(img)(_p8##x,_n5##y,z,c), I[577] = (T)(img)(_p7##x,_n5##y,z,c), I[578] = (T)(img)(_p6##x,_n5##y,z,c), I[579] = (T)(img)(_p5##x,_n5##y,z,c), I[580] = (T)(img)(_p4##x,_n5##y,z,c), I[581] = (T)(img)(_p3##x,_n5##y,z,c), I[582] = (T)(img)(_p2##x,_n5##y,z,c), I[583] = (T)(img)(_p1##x,_n5##y,z,c), I[584] = (T)(img)(x,_n5##y,z,c), I[585] = (T)(img)(_n1##x,_n5##y,z,c), I[586] = (T)(img)(_n2##x,_n5##y,z,c), I[587] = (T)(img)(_n3##x,_n5##y,z,c), I[588] = (T)(img)(_n4##x,_n5##y,z,c), I[589] = (T)(img)(_n5##x,_n5##y,z,c), I[590] = (T)(img)(_n6##x,_n5##y,z,c), I[591] = (T)(img)(_n7##x,_n5##y,z,c), I[592] = (T)(img)(_n8##x,_n5##y,z,c), I[593] = (T)(img)(_n9##x,_n5##y,z,c), I[594] = (T)(img)(_n10##x,_n5##y,z,c), I[595] = (T)(img)(_n11##x,_n5##y,z,c), I[596] = (T)(img)(_n12##x,_n5##y,z,c), I[597] = (T)(img)(_n13##x,_n5##y,z,c), I[598] = (T)(img)(_n14##x,_n5##y,z,c), I[599] = (T)(img)(_n15##x,_n5##y,z,c), \
I[600] = (T)(img)(_p14##x,_n6##y,z,c), I[601] = (T)(img)(_p13##x,_n6##y,z,c), I[602] = (T)(img)(_p12##x,_n6##y,z,c), I[603] = (T)(img)(_p11##x,_n6##y,z,c), I[604] = (T)(img)(_p10##x,_n6##y,z,c), I[605] = (T)(img)(_p9##x,_n6##y,z,c), I[606] = (T)(img)(_p8##x,_n6##y,z,c), I[607] = (T)(img)(_p7##x,_n6##y,z,c), I[608] = (T)(img)(_p6##x,_n6##y,z,c), I[609] = (T)(img)(_p5##x,_n6##y,z,c), I[610] = (T)(img)(_p4##x,_n6##y,z,c), I[611] = (T)(img)(_p3##x,_n6##y,z,c), I[612] = (T)(img)(_p2##x,_n6##y,z,c), I[613] = (T)(img)(_p1##x,_n6##y,z,c), I[614] = (T)(img)(x,_n6##y,z,c), I[615] = (T)(img)(_n1##x,_n6##y,z,c), I[616] = (T)(img)(_n2##x,_n6##y,z,c), I[617] = (T)(img)(_n3##x,_n6##y,z,c), I[618] = (T)(img)(_n4##x,_n6##y,z,c), I[619] = (T)(img)(_n5##x,_n6##y,z,c), I[620] = (T)(img)(_n6##x,_n6##y,z,c), I[621] = (T)(img)(_n7##x,_n6##y,z,c), I[622] = (T)(img)(_n8##x,_n6##y,z,c), I[623] = (T)(img)(_n9##x,_n6##y,z,c), I[624] = (T)(img)(_n10##x,_n6##y,z,c), I[625] = (T)(img)(_n11##x,_n6##y,z,c), I[626] = (T)(img)(_n12##x,_n6##y,z,c), I[627] = (T)(img)(_n13##x,_n6##y,z,c), I[628] = (T)(img)(_n14##x,_n6##y,z,c), I[629] = (T)(img)(_n15##x,_n6##y,z,c), \
I[630] = (T)(img)(_p14##x,_n7##y,z,c), I[631] = (T)(img)(_p13##x,_n7##y,z,c), I[632] = (T)(img)(_p12##x,_n7##y,z,c), I[633] = (T)(img)(_p11##x,_n7##y,z,c), I[634] = (T)(img)(_p10##x,_n7##y,z,c), I[635] = (T)(img)(_p9##x,_n7##y,z,c), I[636] = (T)(img)(_p8##x,_n7##y,z,c), I[637] = (T)(img)(_p7##x,_n7##y,z,c), I[638] = (T)(img)(_p6##x,_n7##y,z,c), I[639] = (T)(img)(_p5##x,_n7##y,z,c), I[640] = (T)(img)(_p4##x,_n7##y,z,c), I[641] = (T)(img)(_p3##x,_n7##y,z,c), I[642] = (T)(img)(_p2##x,_n7##y,z,c), I[643] = (T)(img)(_p1##x,_n7##y,z,c), I[644] = (T)(img)(x,_n7##y,z,c), I[645] = (T)(img)(_n1##x,_n7##y,z,c), I[646] = (T)(img)(_n2##x,_n7##y,z,c), I[647] = (T)(img)(_n3##x,_n7##y,z,c), I[648] = (T)(img)(_n4##x,_n7##y,z,c), I[649] = (T)(img)(_n5##x,_n7##y,z,c), I[650] = (T)(img)(_n6##x,_n7##y,z,c), I[651] = (T)(img)(_n7##x,_n7##y,z,c), I[652] = (T)(img)(_n8##x,_n7##y,z,c), I[653] = (T)(img)(_n9##x,_n7##y,z,c), I[654] = (T)(img)(_n10##x,_n7##y,z,c), I[655] = (T)(img)(_n11##x,_n7##y,z,c), I[656] = (T)(img)(_n12##x,_n7##y,z,c), I[657] = (T)(img)(_n13##x,_n7##y,z,c), I[658] = (T)(img)(_n14##x,_n7##y,z,c), I[659] = (T)(img)(_n15##x,_n7##y,z,c), \
I[660] = (T)(img)(_p14##x,_n8##y,z,c), I[661] = (T)(img)(_p13##x,_n8##y,z,c), I[662] = (T)(img)(_p12##x,_n8##y,z,c), I[663] = (T)(img)(_p11##x,_n8##y,z,c), I[664] = (T)(img)(_p10##x,_n8##y,z,c), I[665] = (T)(img)(_p9##x,_n8##y,z,c), I[666] = (T)(img)(_p8##x,_n8##y,z,c), I[667] = (T)(img)(_p7##x,_n8##y,z,c), I[668] = (T)(img)(_p6##x,_n8##y,z,c), I[669] = (T)(img)(_p5##x,_n8##y,z,c), I[670] = (T)(img)(_p4##x,_n8##y,z,c), I[671] = (T)(img)(_p3##x,_n8##y,z,c), I[672] = (T)(img)(_p2##x,_n8##y,z,c), I[673] = (T)(img)(_p1##x,_n8##y,z,c), I[674] = (T)(img)(x,_n8##y,z,c), I[675] = (T)(img)(_n1##x,_n8##y,z,c), I[676] = (T)(img)(_n2##x,_n8##y,z,c), I[677] = (T)(img)(_n3##x,_n8##y,z,c), I[678] = (T)(img)(_n4##x,_n8##y,z,c), I[679] = (T)(img)(_n5##x,_n8##y,z,c), I[680] = (T)(img)(_n6##x,_n8##y,z,c), I[681] = (T)(img)(_n7##x,_n8##y,z,c), I[682] = (T)(img)(_n8##x,_n8##y,z,c), I[683] = (T)(img)(_n9##x,_n8##y,z,c), I[684] = (T)(img)(_n10##x,_n8##y,z,c), I[685] = (T)(img)(_n11##x,_n8##y,z,c), I[686] = (T)(img)(_n12##x,_n8##y,z,c), I[687] = (T)(img)(_n13##x,_n8##y,z,c), I[688] = (T)(img)(_n14##x,_n8##y,z,c), I[689] = (T)(img)(_n15##x,_n8##y,z,c), \
I[690] = (T)(img)(_p14##x,_n9##y,z,c), I[691] = (T)(img)(_p13##x,_n9##y,z,c), I[692] = (T)(img)(_p12##x,_n9##y,z,c), I[693] = (T)(img)(_p11##x,_n9##y,z,c), I[694] = (T)(img)(_p10##x,_n9##y,z,c), I[695] = (T)(img)(_p9##x,_n9##y,z,c), I[696] = (T)(img)(_p8##x,_n9##y,z,c), I[697] = (T)(img)(_p7##x,_n9##y,z,c), I[698] = (T)(img)(_p6##x,_n9##y,z,c), I[699] = (T)(img)(_p5##x,_n9##y,z,c), I[700] = (T)(img)(_p4##x,_n9##y,z,c), I[701] = (T)(img)(_p3##x,_n9##y,z,c), I[702] = (T)(img)(_p2##x,_n9##y,z,c), I[703] = (T)(img)(_p1##x,_n9##y,z,c), I[704] = (T)(img)(x,_n9##y,z,c), I[705] = (T)(img)(_n1##x,_n9##y,z,c), I[706] = (T)(img)(_n2##x,_n9##y,z,c), I[707] = (T)(img)(_n3##x,_n9##y,z,c), I[708] = (T)(img)(_n4##x,_n9##y,z,c), I[709] = (T)(img)(_n5##x,_n9##y,z,c), I[710] = (T)(img)(_n6##x,_n9##y,z,c), I[711] = (T)(img)(_n7##x,_n9##y,z,c), I[712] = (T)(img)(_n8##x,_n9##y,z,c), I[713] = (T)(img)(_n9##x,_n9##y,z,c), I[714] = (T)(img)(_n10##x,_n9##y,z,c), I[715] = (T)(img)(_n11##x,_n9##y,z,c), I[716] = (T)(img)(_n12##x,_n9##y,z,c), I[717] = (T)(img)(_n13##x,_n9##y,z,c), I[718] = (T)(img)(_n14##x,_n9##y,z,c), I[719] = (T)(img)(_n15##x,_n9##y,z,c), \
I[720] = (T)(img)(_p14##x,_n10##y,z,c), I[721] = (T)(img)(_p13##x,_n10##y,z,c), I[722] = (T)(img)(_p12##x,_n10##y,z,c), I[723] = (T)(img)(_p11##x,_n10##y,z,c), I[724] = (T)(img)(_p10##x,_n10##y,z,c), I[725] = (T)(img)(_p9##x,_n10##y,z,c), I[726] = (T)(img)(_p8##x,_n10##y,z,c), I[727] = (T)(img)(_p7##x,_n10##y,z,c), I[728] = (T)(img)(_p6##x,_n10##y,z,c), I[729] = (T)(img)(_p5##x,_n10##y,z,c), I[730] = (T)(img)(_p4##x,_n10##y,z,c), I[731] = (T)(img)(_p3##x,_n10##y,z,c), I[732] = (T)(img)(_p2##x,_n10##y,z,c), I[733] = (T)(img)(_p1##x,_n10##y,z,c), I[734] = (T)(img)(x,_n10##y,z,c), I[735] = (T)(img)(_n1##x,_n10##y,z,c), I[736] = (T)(img)(_n2##x,_n10##y,z,c), I[737] = (T)(img)(_n3##x,_n10##y,z,c), I[738] = (T)(img)(_n4##x,_n10##y,z,c), I[739] = (T)(img)(_n5##x,_n10##y,z,c), I[740] = (T)(img)(_n6##x,_n10##y,z,c), I[741] = (T)(img)(_n7##x,_n10##y,z,c), I[742] = (T)(img)(_n8##x,_n10##y,z,c), I[743] = (T)(img)(_n9##x,_n10##y,z,c), I[744] = (T)(img)(_n10##x,_n10##y,z,c), I[745] = (T)(img)(_n11##x,_n10##y,z,c), I[746] = (T)(img)(_n12##x,_n10##y,z,c), I[747] = (T)(img)(_n13##x,_n10##y,z,c), I[748] = (T)(img)(_n14##x,_n10##y,z,c), I[749] = (T)(img)(_n15##x,_n10##y,z,c), \
I[750] = (T)(img)(_p14##x,_n11##y,z,c), I[751] = (T)(img)(_p13##x,_n11##y,z,c), I[752] = (T)(img)(_p12##x,_n11##y,z,c), I[753] = (T)(img)(_p11##x,_n11##y,z,c), I[754] = (T)(img)(_p10##x,_n11##y,z,c), I[755] = (T)(img)(_p9##x,_n11##y,z,c), I[756] = (T)(img)(_p8##x,_n11##y,z,c), I[757] = (T)(img)(_p7##x,_n11##y,z,c), I[758] = (T)(img)(_p6##x,_n11##y,z,c), I[759] = (T)(img)(_p5##x,_n11##y,z,c), I[760] = (T)(img)(_p4##x,_n11##y,z,c), I[761] = (T)(img)(_p3##x,_n11##y,z,c), I[762] = (T)(img)(_p2##x,_n11##y,z,c), I[763] = (T)(img)(_p1##x,_n11##y,z,c), I[764] = (T)(img)(x,_n11##y,z,c), I[765] = (T)(img)(_n1##x,_n11##y,z,c), I[766] = (T)(img)(_n2##x,_n11##y,z,c), I[767] = (T)(img)(_n3##x,_n11##y,z,c), I[768] = (T)(img)(_n4##x,_n11##y,z,c), I[769] = (T)(img)(_n5##x,_n11##y,z,c), I[770] = (T)(img)(_n6##x,_n11##y,z,c), I[771] = (T)(img)(_n7##x,_n11##y,z,c), I[772] = (T)(img)(_n8##x,_n11##y,z,c), I[773] = (T)(img)(_n9##x,_n11##y,z,c), I[774] = (T)(img)(_n10##x,_n11##y,z,c), I[775] = (T)(img)(_n11##x,_n11##y,z,c), I[776] = (T)(img)(_n12##x,_n11##y,z,c), I[777] = (T)(img)(_n13##x,_n11##y,z,c), I[778] = (T)(img)(_n14##x,_n11##y,z,c), I[779] = (T)(img)(_n15##x,_n11##y,z,c), \
I[780] = (T)(img)(_p14##x,_n12##y,z,c), I[781] = (T)(img)(_p13##x,_n12##y,z,c), I[782] = (T)(img)(_p12##x,_n12##y,z,c), I[783] = (T)(img)(_p11##x,_n12##y,z,c), I[784] = (T)(img)(_p10##x,_n12##y,z,c), I[785] = (T)(img)(_p9##x,_n12##y,z,c), I[786] = (T)(img)(_p8##x,_n12##y,z,c), I[787] = (T)(img)(_p7##x,_n12##y,z,c), I[788] = (T)(img)(_p6##x,_n12##y,z,c), I[789] = (T)(img)(_p5##x,_n12##y,z,c), I[790] = (T)(img)(_p4##x,_n12##y,z,c), I[791] = (T)(img)(_p3##x,_n12##y,z,c), I[792] = (T)(img)(_p2##x,_n12##y,z,c), I[793] = (T)(img)(_p1##x,_n12##y,z,c), I[794] = (T)(img)(x,_n12##y,z,c), I[795] = (T)(img)(_n1##x,_n12##y,z,c), I[796] = (T)(img)(_n2##x,_n12##y,z,c), I[797] = (T)(img)(_n3##x,_n12##y,z,c), I[798] = (T)(img)(_n4##x,_n12##y,z,c), I[799] = (T)(img)(_n5##x,_n12##y,z,c), I[800] = (T)(img)(_n6##x,_n12##y,z,c), I[801] = (T)(img)(_n7##x,_n12##y,z,c), I[802] = (T)(img)(_n8##x,_n12##y,z,c), I[803] = (T)(img)(_n9##x,_n12##y,z,c), I[804] = (T)(img)(_n10##x,_n12##y,z,c), I[805] = (T)(img)(_n11##x,_n12##y,z,c), I[806] = (T)(img)(_n12##x,_n12##y,z,c), I[807] = (T)(img)(_n13##x,_n12##y,z,c), I[808] = (T)(img)(_n14##x,_n12##y,z,c), I[809] = (T)(img)(_n15##x,_n12##y,z,c), \
I[810] = (T)(img)(_p14##x,_n13##y,z,c), I[811] = (T)(img)(_p13##x,_n13##y,z,c), I[812] = (T)(img)(_p12##x,_n13##y,z,c), I[813] = (T)(img)(_p11##x,_n13##y,z,c), I[814] = (T)(img)(_p10##x,_n13##y,z,c), I[815] = (T)(img)(_p9##x,_n13##y,z,c), I[816] = (T)(img)(_p8##x,_n13##y,z,c), I[817] = (T)(img)(_p7##x,_n13##y,z,c), I[818] = (T)(img)(_p6##x,_n13##y,z,c), I[819] = (T)(img)(_p5##x,_n13##y,z,c), I[820] = (T)(img)(_p4##x,_n13##y,z,c), I[821] = (T)(img)(_p3##x,_n13##y,z,c), I[822] = (T)(img)(_p2##x,_n13##y,z,c), I[823] = (T)(img)(_p1##x,_n13##y,z,c), I[824] = (T)(img)(x,_n13##y,z,c), I[825] = (T)(img)(_n1##x,_n13##y,z,c), I[826] = (T)(img)(_n2##x,_n13##y,z,c), I[827] = (T)(img)(_n3##x,_n13##y,z,c), I[828] = (T)(img)(_n4##x,_n13##y,z,c), I[829] = (T)(img)(_n5##x,_n13##y,z,c), I[830] = (T)(img)(_n6##x,_n13##y,z,c), I[831] = (T)(img)(_n7##x,_n13##y,z,c), I[832] = (T)(img)(_n8##x,_n13##y,z,c), I[833] = (T)(img)(_n9##x,_n13##y,z,c), I[834] = (T)(img)(_n10##x,_n13##y,z,c), I[835] = (T)(img)(_n11##x,_n13##y,z,c), I[836] = (T)(img)(_n12##x,_n13##y,z,c), I[837] = (T)(img)(_n13##x,_n13##y,z,c), I[838] = (T)(img)(_n14##x,_n13##y,z,c), I[839] = (T)(img)(_n15##x,_n13##y,z,c), \
I[840] = (T)(img)(_p14##x,_n14##y,z,c), I[841] = (T)(img)(_p13##x,_n14##y,z,c), I[842] = (T)(img)(_p12##x,_n14##y,z,c), I[843] = (T)(img)(_p11##x,_n14##y,z,c), I[844] = (T)(img)(_p10##x,_n14##y,z,c), I[845] = (T)(img)(_p9##x,_n14##y,z,c), I[846] = (T)(img)(_p8##x,_n14##y,z,c), I[847] = (T)(img)(_p7##x,_n14##y,z,c), I[848] = (T)(img)(_p6##x,_n14##y,z,c), I[849] = (T)(img)(_p5##x,_n14##y,z,c), I[850] = (T)(img)(_p4##x,_n14##y,z,c), I[851] = (T)(img)(_p3##x,_n14##y,z,c), I[852] = (T)(img)(_p2##x,_n14##y,z,c), I[853] = (T)(img)(_p1##x,_n14##y,z,c), I[854] = (T)(img)(x,_n14##y,z,c), I[855] = (T)(img)(_n1##x,_n14##y,z,c), I[856] = (T)(img)(_n2##x,_n14##y,z,c), I[857] = (T)(img)(_n3##x,_n14##y,z,c), I[858] = (T)(img)(_n4##x,_n14##y,z,c), I[859] = (T)(img)(_n5##x,_n14##y,z,c), I[860] = (T)(img)(_n6##x,_n14##y,z,c), I[861] = (T)(img)(_n7##x,_n14##y,z,c), I[862] = (T)(img)(_n8##x,_n14##y,z,c), I[863] = (T)(img)(_n9##x,_n14##y,z,c), I[864] = (T)(img)(_n10##x,_n14##y,z,c), I[865] = (T)(img)(_n11##x,_n14##y,z,c), I[866] = (T)(img)(_n12##x,_n14##y,z,c), I[867] = (T)(img)(_n13##x,_n14##y,z,c), I[868] = (T)(img)(_n14##x,_n14##y,z,c), I[869] = (T)(img)(_n15##x,_n14##y,z,c), \
I[870] = (T)(img)(_p14##x,_n15##y,z,c), I[871] = (T)(img)(_p13##x,_n15##y,z,c), I[872] = (T)(img)(_p12##x,_n15##y,z,c), I[873] = (T)(img)(_p11##x,_n15##y,z,c), I[874] = (T)(img)(_p10##x,_n15##y,z,c), I[875] = (T)(img)(_p9##x,_n15##y,z,c), I[876] = (T)(img)(_p8##x,_n15##y,z,c), I[877] = (T)(img)(_p7##x,_n15##y,z,c), I[878] = (T)(img)(_p6##x,_n15##y,z,c), I[879] = (T)(img)(_p5##x,_n15##y,z,c), I[880] = (T)(img)(_p4##x,_n15##y,z,c), I[881] = (T)(img)(_p3##x,_n15##y,z,c), I[882] = (T)(img)(_p2##x,_n15##y,z,c), I[883] = (T)(img)(_p1##x,_n15##y,z,c), I[884] = (T)(img)(x,_n15##y,z,c), I[885] = (T)(img)(_n1##x,_n15##y,z,c), I[886] = (T)(img)(_n2##x,_n15##y,z,c), I[887] = (T)(img)(_n3##x,_n15##y,z,c), I[888] = (T)(img)(_n4##x,_n15##y,z,c), I[889] = (T)(img)(_n5##x,_n15##y,z,c), I[890] = (T)(img)(_n6##x,_n15##y,z,c), I[891] = (T)(img)(_n7##x,_n15##y,z,c), I[892] = (T)(img)(_n8##x,_n15##y,z,c), I[893] = (T)(img)(_n9##x,_n15##y,z,c), I[894] = (T)(img)(_n10##x,_n15##y,z,c), I[895] = (T)(img)(_n11##x,_n15##y,z,c), I[896] = (T)(img)(_n12##x,_n15##y,z,c), I[897] = (T)(img)(_n13##x,_n15##y,z,c), I[898] = (T)(img)(_n14##x,_n15##y,z,c), I[899] = (T)(img)(_n15##x,_n15##y,z,c);
// Define 31x31 loop macros
//-------------------------
#define cimg_for31(bound,i) for (int i = 0, \
_p15##i = 0, _p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14, \
_n15##i = 15>=(int)(bound)?(int)(bound) - 1:15; \
_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
#define cimg_for31X(img,x) cimg_for31((img)._width,x)
#define cimg_for31Y(img,y) cimg_for31((img)._height,y)
#define cimg_for31Z(img,z) cimg_for31((img)._depth,z)
#define cimg_for31C(img,c) cimg_for31((img)._spectrum,c)
#define cimg_for31XY(img,x,y) cimg_for31Y(img,y) cimg_for31X(img,x)
#define cimg_for31XZ(img,x,z) cimg_for31Z(img,z) cimg_for31X(img,x)
#define cimg_for31XC(img,x,c) cimg_for31C(img,c) cimg_for31X(img,x)
#define cimg_for31YZ(img,y,z) cimg_for31Z(img,z) cimg_for31Y(img,y)
#define cimg_for31YC(img,y,c) cimg_for31C(img,c) cimg_for31Y(img,y)
#define cimg_for31ZC(img,z,c) cimg_for31C(img,c) cimg_for31Z(img,z)
#define cimg_for31XYZ(img,x,y,z) cimg_for31Z(img,z) cimg_for31XY(img,x,y)
#define cimg_for31XZC(img,x,z,c) cimg_for31C(img,c) cimg_for31XZ(img,x,z)
#define cimg_for31YZC(img,y,z,c) cimg_for31C(img,c) cimg_for31YZ(img,y,z)
#define cimg_for31XYZC(img,x,y,z,c) cimg_for31C(img,c) cimg_for31XYZ(img,x,y,z)
#define cimg_for_in31(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p15##i = i - 15<0?0:i - 15, \
_p14##i = i - 14<0?0:i - 14, \
_p13##i = i - 13<0?0:i - 13, \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14, \
_n15##i = i + 15>=(int)(bound)?(int)(bound) - 1:i + 15; \
i<=(int)(i1) && (_n15##i<(int)(bound) || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i)
#define cimg_for_in31X(img,x0,x1,x) cimg_for_in31((img)._width,x0,x1,x)
#define cimg_for_in31Y(img,y0,y1,y) cimg_for_in31((img)._height,y0,y1,y)
#define cimg_for_in31Z(img,z0,z1,z) cimg_for_in31((img)._depth,z0,z1,z)
#define cimg_for_in31C(img,c0,c1,c) cimg_for_in31((img)._spectrum,c0,c1,c)
#define cimg_for_in31XY(img,x0,y0,x1,y1,x,y) cimg_for_in31Y(img,y0,y1,y) cimg_for_in31X(img,x0,x1,x)
#define cimg_for_in31XZ(img,x0,z0,x1,z1,x,z) cimg_for_in31Z(img,z0,z1,z) cimg_for_in31X(img,x0,x1,x)
#define cimg_for_in31XC(img,x0,c0,x1,c1,x,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31X(img,x0,x1,x)
#define cimg_for_in31YZ(img,y0,z0,y1,z1,y,z) cimg_for_in31Z(img,z0,z1,z) cimg_for_in31Y(img,y0,y1,y)
#define cimg_for_in31YC(img,y0,c0,y1,c1,y,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31Y(img,y0,y1,y)
#define cimg_for_in31ZC(img,z0,c0,z1,c1,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31Z(img,z0,z1,z)
#define cimg_for_in31XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in31Z(img,z0,z1,z) cimg_for_in31XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in31XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in31YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in31XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in31C(img,c0,c1,c) cimg_for_in31XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for31x31(img,x,y,z,c,I,T) \
cimg_for31((img)._height,y) for (int x = 0, \
_p15##x = 0, _p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
_n14##x = 14>=((img)._width)?(img).width() - 1:14, \
_n15##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = I[15] = (T)(img)(0,_p15##y,z,c)), \
(I[31] = I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = (T)(img)(0,_p14##y,z,c)), \
(I[62] = I[63] = I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = (T)(img)(0,_p13##y,z,c)), \
(I[93] = I[94] = I[95] = I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = (T)(img)(0,_p12##y,z,c)), \
(I[124] = I[125] = I[126] = I[127] = I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = (T)(img)(0,_p11##y,z,c)), \
(I[155] = I[156] = I[157] = I[158] = I[159] = I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = (T)(img)(0,_p10##y,z,c)), \
(I[186] = I[187] = I[188] = I[189] = I[190] = I[191] = I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = (T)(img)(0,_p9##y,z,c)), \
(I[217] = I[218] = I[219] = I[220] = I[221] = I[222] = I[223] = I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = (T)(img)(0,_p8##y,z,c)), \
(I[248] = I[249] = I[250] = I[251] = I[252] = I[253] = I[254] = I[255] = I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = (T)(img)(0,_p7##y,z,c)), \
(I[279] = I[280] = I[281] = I[282] = I[283] = I[284] = I[285] = I[286] = I[287] = I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = (T)(img)(0,_p6##y,z,c)), \
(I[310] = I[311] = I[312] = I[313] = I[314] = I[315] = I[316] = I[317] = I[318] = I[319] = I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = (T)(img)(0,_p5##y,z,c)), \
(I[341] = I[342] = I[343] = I[344] = I[345] = I[346] = I[347] = I[348] = I[349] = I[350] = I[351] = I[352] = I[353] = I[354] = I[355] = I[356] = (T)(img)(0,_p4##y,z,c)), \
(I[372] = I[373] = I[374] = I[375] = I[376] = I[377] = I[378] = I[379] = I[380] = I[381] = I[382] = I[383] = I[384] = I[385] = I[386] = I[387] = (T)(img)(0,_p3##y,z,c)), \
(I[403] = I[404] = I[405] = I[406] = I[407] = I[408] = I[409] = I[410] = I[411] = I[412] = I[413] = I[414] = I[415] = I[416] = I[417] = I[418] = (T)(img)(0,_p2##y,z,c)), \
(I[434] = I[435] = I[436] = I[437] = I[438] = I[439] = I[440] = I[441] = I[442] = I[443] = I[444] = I[445] = I[446] = I[447] = I[448] = I[449] = (T)(img)(0,_p1##y,z,c)), \
(I[465] = I[466] = I[467] = I[468] = I[469] = I[470] = I[471] = I[472] = I[473] = I[474] = I[475] = I[476] = I[477] = I[478] = I[479] = I[480] = (T)(img)(0,y,z,c)), \
(I[496] = I[497] = I[498] = I[499] = I[500] = I[501] = I[502] = I[503] = I[504] = I[505] = I[506] = I[507] = I[508] = I[509] = I[510] = I[511] = (T)(img)(0,_n1##y,z,c)), \
(I[527] = I[528] = I[529] = I[530] = I[531] = I[532] = I[533] = I[534] = I[535] = I[536] = I[537] = I[538] = I[539] = I[540] = I[541] = I[542] = (T)(img)(0,_n2##y,z,c)), \
(I[558] = I[559] = I[560] = I[561] = I[562] = I[563] = I[564] = I[565] = I[566] = I[567] = I[568] = I[569] = I[570] = I[571] = I[572] = I[573] = (T)(img)(0,_n3##y,z,c)), \
(I[589] = I[590] = I[591] = I[592] = I[593] = I[594] = I[595] = I[596] = I[597] = I[598] = I[599] = I[600] = I[601] = I[602] = I[603] = I[604] = (T)(img)(0,_n4##y,z,c)), \
(I[620] = I[621] = I[622] = I[623] = I[624] = I[625] = I[626] = I[627] = I[628] = I[629] = I[630] = I[631] = I[632] = I[633] = I[634] = I[635] = (T)(img)(0,_n5##y,z,c)), \
(I[651] = I[652] = I[653] = I[654] = I[655] = I[656] = I[657] = I[658] = I[659] = I[660] = I[661] = I[662] = I[663] = I[664] = I[665] = I[666] = (T)(img)(0,_n6##y,z,c)), \
(I[682] = I[683] = I[684] = I[685] = I[686] = I[687] = I[688] = I[689] = I[690] = I[691] = I[692] = I[693] = I[694] = I[695] = I[696] = I[697] = (T)(img)(0,_n7##y,z,c)), \
(I[713] = I[714] = I[715] = I[716] = I[717] = I[718] = I[719] = I[720] = I[721] = I[722] = I[723] = I[724] = I[725] = I[726] = I[727] = I[728] = (T)(img)(0,_n8##y,z,c)), \
(I[744] = I[745] = I[746] = I[747] = I[748] = I[749] = I[750] = I[751] = I[752] = I[753] = I[754] = I[755] = I[756] = I[757] = I[758] = I[759] = (T)(img)(0,_n9##y,z,c)), \
(I[775] = I[776] = I[777] = I[778] = I[779] = I[780] = I[781] = I[782] = I[783] = I[784] = I[785] = I[786] = I[787] = I[788] = I[789] = I[790] = (T)(img)(0,_n10##y,z,c)), \
(I[806] = I[807] = I[808] = I[809] = I[810] = I[811] = I[812] = I[813] = I[814] = I[815] = I[816] = I[817] = I[818] = I[819] = I[820] = I[821] = (T)(img)(0,_n11##y,z,c)), \
(I[837] = I[838] = I[839] = I[840] = I[841] = I[842] = I[843] = I[844] = I[845] = I[846] = I[847] = I[848] = I[849] = I[850] = I[851] = I[852] = (T)(img)(0,_n12##y,z,c)), \
(I[868] = I[869] = I[870] = I[871] = I[872] = I[873] = I[874] = I[875] = I[876] = I[877] = I[878] = I[879] = I[880] = I[881] = I[882] = I[883] = (T)(img)(0,_n13##y,z,c)), \
(I[899] = I[900] = I[901] = I[902] = I[903] = I[904] = I[905] = I[906] = I[907] = I[908] = I[909] = I[910] = I[911] = I[912] = I[913] = I[914] = (T)(img)(0,_n14##y,z,c)), \
(I[930] = I[931] = I[932] = I[933] = I[934] = I[935] = I[936] = I[937] = I[938] = I[939] = I[940] = I[941] = I[942] = I[943] = I[944] = I[945] = (T)(img)(0,_n15##y,z,c)), \
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
(I[47] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[78] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[109] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[140] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[171] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[202] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[233] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[264] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[295] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[326] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[357] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[388] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[419] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[450] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[481] = (T)(img)(_n1##x,y,z,c)), \
(I[512] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[543] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[574] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[605] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[636] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[667] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[698] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[729] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[760] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[791] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[822] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[853] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[884] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[915] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[946] = (T)(img)(_n1##x,_n15##y,z,c)), \
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
(I[48] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[79] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[110] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[141] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[172] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[203] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[234] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[265] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[296] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[327] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[358] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[389] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[420] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[451] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[482] = (T)(img)(_n2##x,y,z,c)), \
(I[513] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[544] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[575] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[606] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[637] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[668] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[699] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[730] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[761] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[792] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[823] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[854] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[885] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[916] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[947] = (T)(img)(_n2##x,_n15##y,z,c)), \
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
(I[49] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[80] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[111] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[142] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[173] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[204] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[235] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[266] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[297] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[328] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[359] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[390] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[421] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[452] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[483] = (T)(img)(_n3##x,y,z,c)), \
(I[514] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[545] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[576] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[607] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[638] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[669] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[700] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[731] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[762] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[793] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[824] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[855] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[886] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[917] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[948] = (T)(img)(_n3##x,_n15##y,z,c)), \
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
(I[50] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[81] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[112] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[143] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[174] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[205] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[236] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[267] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[298] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[329] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[360] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[391] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[422] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[453] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[484] = (T)(img)(_n4##x,y,z,c)), \
(I[515] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[546] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[577] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[608] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[639] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[670] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[701] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[732] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[763] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[794] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[825] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[856] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[887] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[918] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[949] = (T)(img)(_n4##x,_n15##y,z,c)), \
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
(I[51] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[82] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[113] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[144] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[175] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[206] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[237] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[268] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[299] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[330] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[361] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[392] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[423] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[454] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[485] = (T)(img)(_n5##x,y,z,c)), \
(I[516] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[547] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[578] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[609] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[640] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[671] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[702] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[733] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[764] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[795] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[826] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[857] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[888] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[919] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[950] = (T)(img)(_n5##x,_n15##y,z,c)), \
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
(I[52] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[83] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[114] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[145] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[176] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[207] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[238] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[269] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[300] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[331] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[362] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[393] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[424] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[455] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[486] = (T)(img)(_n6##x,y,z,c)), \
(I[517] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[548] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[579] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[610] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[641] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[672] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[703] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[734] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[765] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[796] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[827] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[858] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[889] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[920] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[951] = (T)(img)(_n6##x,_n15##y,z,c)), \
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
(I[53] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[84] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[115] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[146] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[177] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[208] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[239] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[270] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[301] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[332] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[363] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[394] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[425] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[456] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[487] = (T)(img)(_n7##x,y,z,c)), \
(I[518] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[549] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[580] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[611] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[642] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[673] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[704] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[735] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[766] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[797] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[828] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[859] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[890] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[921] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[952] = (T)(img)(_n7##x,_n15##y,z,c)), \
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
(I[54] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[85] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[116] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[147] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[178] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[209] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[240] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[271] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[302] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[333] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[364] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[395] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[426] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[457] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[488] = (T)(img)(_n8##x,y,z,c)), \
(I[519] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[550] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[581] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[612] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[643] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[674] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[705] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[736] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[767] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[798] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[829] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[860] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[891] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[922] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[953] = (T)(img)(_n8##x,_n15##y,z,c)), \
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
(I[55] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[86] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[117] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[148] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[179] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[210] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[241] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[272] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[303] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[334] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[365] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[396] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[427] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[458] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[489] = (T)(img)(_n9##x,y,z,c)), \
(I[520] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[551] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[582] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[613] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[644] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[675] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[706] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[737] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[768] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[799] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[830] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[861] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[892] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[923] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[954] = (T)(img)(_n9##x,_n15##y,z,c)), \
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
(I[56] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[87] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[118] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[149] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[180] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[211] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[242] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[273] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[304] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[335] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[366] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[397] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[428] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[459] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[490] = (T)(img)(_n10##x,y,z,c)), \
(I[521] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[552] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[583] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[614] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[645] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[676] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[707] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[738] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[769] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[800] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[831] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[862] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[893] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[924] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[955] = (T)(img)(_n10##x,_n15##y,z,c)), \
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
(I[57] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[88] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[119] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[150] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[181] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[212] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[243] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[274] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[305] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[336] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[367] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[398] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[429] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[460] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[491] = (T)(img)(_n11##x,y,z,c)), \
(I[522] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[553] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[584] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[615] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[646] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[677] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[708] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[739] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[770] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[801] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[832] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[863] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[894] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[925] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[956] = (T)(img)(_n11##x,_n15##y,z,c)), \
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
(I[58] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[89] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[120] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[151] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[182] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[213] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[244] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[275] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[306] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[337] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[368] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[399] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[430] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[461] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[492] = (T)(img)(_n12##x,y,z,c)), \
(I[523] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[554] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[585] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[616] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[647] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[678] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[709] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[740] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[771] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[802] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[833] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[864] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[895] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[926] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[957] = (T)(img)(_n12##x,_n15##y,z,c)), \
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
(I[59] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[90] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[121] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[152] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[183] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[214] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[245] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[276] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[307] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[338] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[369] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[400] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[431] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[462] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[493] = (T)(img)(_n13##x,y,z,c)), \
(I[524] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[555] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[586] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[617] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[648] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[679] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[710] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[741] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[772] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[803] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[834] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[865] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[896] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[927] = (T)(img)(_n13##x,_n14##y,z,c)), \
(I[958] = (T)(img)(_n13##x,_n15##y,z,c)), \
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
(I[60] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[91] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[122] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[153] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[184] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[215] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[246] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[277] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[308] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[339] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[370] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[401] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[432] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[463] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[494] = (T)(img)(_n14##x,y,z,c)), \
(I[525] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[556] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[587] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[618] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[649] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[680] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[711] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[742] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[773] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[804] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[835] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[866] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[897] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[928] = (T)(img)(_n14##x,_n14##y,z,c)), \
(I[959] = (T)(img)(_n14##x,_n15##y,z,c)), \
15>=((img)._width)?(img).width() - 1:15); \
(_n15##x<(img).width() && ( \
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
(I[61] = (T)(img)(_n15##x,_p14##y,z,c)), \
(I[92] = (T)(img)(_n15##x,_p13##y,z,c)), \
(I[123] = (T)(img)(_n15##x,_p12##y,z,c)), \
(I[154] = (T)(img)(_n15##x,_p11##y,z,c)), \
(I[185] = (T)(img)(_n15##x,_p10##y,z,c)), \
(I[216] = (T)(img)(_n15##x,_p9##y,z,c)), \
(I[247] = (T)(img)(_n15##x,_p8##y,z,c)), \
(I[278] = (T)(img)(_n15##x,_p7##y,z,c)), \
(I[309] = (T)(img)(_n15##x,_p6##y,z,c)), \
(I[340] = (T)(img)(_n15##x,_p5##y,z,c)), \
(I[371] = (T)(img)(_n15##x,_p4##y,z,c)), \
(I[402] = (T)(img)(_n15##x,_p3##y,z,c)), \
(I[433] = (T)(img)(_n15##x,_p2##y,z,c)), \
(I[464] = (T)(img)(_n15##x,_p1##y,z,c)), \
(I[495] = (T)(img)(_n15##x,y,z,c)), \
(I[526] = (T)(img)(_n15##x,_n1##y,z,c)), \
(I[557] = (T)(img)(_n15##x,_n2##y,z,c)), \
(I[588] = (T)(img)(_n15##x,_n3##y,z,c)), \
(I[619] = (T)(img)(_n15##x,_n4##y,z,c)), \
(I[650] = (T)(img)(_n15##x,_n5##y,z,c)), \
(I[681] = (T)(img)(_n15##x,_n6##y,z,c)), \
(I[712] = (T)(img)(_n15##x,_n7##y,z,c)), \
(I[743] = (T)(img)(_n15##x,_n8##y,z,c)), \
(I[774] = (T)(img)(_n15##x,_n9##y,z,c)), \
(I[805] = (T)(img)(_n15##x,_n10##y,z,c)), \
(I[836] = (T)(img)(_n15##x,_n11##y,z,c)), \
(I[867] = (T)(img)(_n15##x,_n12##y,z,c)), \
(I[898] = (T)(img)(_n15##x,_n13##y,z,c)), \
(I[929] = (T)(img)(_n15##x,_n14##y,z,c)), \
(I[960] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], \
I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], \
I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], \
I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], \
I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], \
I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], \
I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], \
I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], \
I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], \
I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], \
I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], \
I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], \
I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], \
I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], \
I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], \
I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], \
I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], \
I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], \
I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], \
I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], \
I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], \
I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], \
I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], \
I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], \
I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], \
I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], I[927] = I[928], I[928] = I[929], \
I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], I[959] = I[960], \
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
#define cimg_for_in31x31(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in31((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p15##x = x - 15<0?0:x - 15, \
_p14##x = x - 14<0?0:x - 14, \
_p13##x = x - 13<0?0:x - 13, \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
_n14##x = x + 14>=(img).width()?(img).width() - 1:x + 14, \
_n15##x = (int)( \
(I[0] = (T)(img)(_p15##x,_p15##y,z,c)), \
(I[31] = (T)(img)(_p15##x,_p14##y,z,c)), \
(I[62] = (T)(img)(_p15##x,_p13##y,z,c)), \
(I[93] = (T)(img)(_p15##x,_p12##y,z,c)), \
(I[124] = (T)(img)(_p15##x,_p11##y,z,c)), \
(I[155] = (T)(img)(_p15##x,_p10##y,z,c)), \
(I[186] = (T)(img)(_p15##x,_p9##y,z,c)), \
(I[217] = (T)(img)(_p15##x,_p8##y,z,c)), \
(I[248] = (T)(img)(_p15##x,_p7##y,z,c)), \
(I[279] = (T)(img)(_p15##x,_p6##y,z,c)), \
(I[310] = (T)(img)(_p15##x,_p5##y,z,c)), \
(I[341] = (T)(img)(_p15##x,_p4##y,z,c)), \
(I[372] = (T)(img)(_p15##x,_p3##y,z,c)), \
(I[403] = (T)(img)(_p15##x,_p2##y,z,c)), \
(I[434] = (T)(img)(_p15##x,_p1##y,z,c)), \
(I[465] = (T)(img)(_p15##x,y,z,c)), \
(I[496] = (T)(img)(_p15##x,_n1##y,z,c)), \
(I[527] = (T)(img)(_p15##x,_n2##y,z,c)), \
(I[558] = (T)(img)(_p15##x,_n3##y,z,c)), \
(I[589] = (T)(img)(_p15##x,_n4##y,z,c)), \
(I[620] = (T)(img)(_p15##x,_n5##y,z,c)), \
(I[651] = (T)(img)(_p15##x,_n6##y,z,c)), \
(I[682] = (T)(img)(_p15##x,_n7##y,z,c)), \
(I[713] = (T)(img)(_p15##x,_n8##y,z,c)), \
(I[744] = (T)(img)(_p15##x,_n9##y,z,c)), \
(I[775] = (T)(img)(_p15##x,_n10##y,z,c)), \
(I[806] = (T)(img)(_p15##x,_n11##y,z,c)), \
(I[837] = (T)(img)(_p15##x,_n12##y,z,c)), \
(I[868] = (T)(img)(_p15##x,_n13##y,z,c)), \
(I[899] = (T)(img)(_p15##x,_n14##y,z,c)), \
(I[930] = (T)(img)(_p15##x,_n15##y,z,c)), \
(I[1] = (T)(img)(_p14##x,_p15##y,z,c)), \
(I[32] = (T)(img)(_p14##x,_p14##y,z,c)), \
(I[63] = (T)(img)(_p14##x,_p13##y,z,c)), \
(I[94] = (T)(img)(_p14##x,_p12##y,z,c)), \
(I[125] = (T)(img)(_p14##x,_p11##y,z,c)), \
(I[156] = (T)(img)(_p14##x,_p10##y,z,c)), \
(I[187] = (T)(img)(_p14##x,_p9##y,z,c)), \
(I[218] = (T)(img)(_p14##x,_p8##y,z,c)), \
(I[249] = (T)(img)(_p14##x,_p7##y,z,c)), \
(I[280] = (T)(img)(_p14##x,_p6##y,z,c)), \
(I[311] = (T)(img)(_p14##x,_p5##y,z,c)), \
(I[342] = (T)(img)(_p14##x,_p4##y,z,c)), \
(I[373] = (T)(img)(_p14##x,_p3##y,z,c)), \
(I[404] = (T)(img)(_p14##x,_p2##y,z,c)), \
(I[435] = (T)(img)(_p14##x,_p1##y,z,c)), \
(I[466] = (T)(img)(_p14##x,y,z,c)), \
(I[497] = (T)(img)(_p14##x,_n1##y,z,c)), \
(I[528] = (T)(img)(_p14##x,_n2##y,z,c)), \
(I[559] = (T)(img)(_p14##x,_n3##y,z,c)), \
(I[590] = (T)(img)(_p14##x,_n4##y,z,c)), \
(I[621] = (T)(img)(_p14##x,_n5##y,z,c)), \
(I[652] = (T)(img)(_p14##x,_n6##y,z,c)), \
(I[683] = (T)(img)(_p14##x,_n7##y,z,c)), \
(I[714] = (T)(img)(_p14##x,_n8##y,z,c)), \
(I[745] = (T)(img)(_p14##x,_n9##y,z,c)), \
(I[776] = (T)(img)(_p14##x,_n10##y,z,c)), \
(I[807] = (T)(img)(_p14##x,_n11##y,z,c)), \
(I[838] = (T)(img)(_p14##x,_n12##y,z,c)), \
(I[869] = (T)(img)(_p14##x,_n13##y,z,c)), \
(I[900] = (T)(img)(_p14##x,_n14##y,z,c)), \
(I[931] = (T)(img)(_p14##x,_n15##y,z,c)), \
(I[2] = (T)(img)(_p13##x,_p15##y,z,c)), \
(I[33] = (T)(img)(_p13##x,_p14##y,z,c)), \
(I[64] = (T)(img)(_p13##x,_p13##y,z,c)), \
(I[95] = (T)(img)(_p13##x,_p12##y,z,c)), \
(I[126] = (T)(img)(_p13##x,_p11##y,z,c)), \
(I[157] = (T)(img)(_p13##x,_p10##y,z,c)), \
(I[188] = (T)(img)(_p13##x,_p9##y,z,c)), \
(I[219] = (T)(img)(_p13##x,_p8##y,z,c)), \
(I[250] = (T)(img)(_p13##x,_p7##y,z,c)), \
(I[281] = (T)(img)(_p13##x,_p6##y,z,c)), \
(I[312] = (T)(img)(_p13##x,_p5##y,z,c)), \
(I[343] = (T)(img)(_p13##x,_p4##y,z,c)), \
(I[374] = (T)(img)(_p13##x,_p3##y,z,c)), \
(I[405] = (T)(img)(_p13##x,_p2##y,z,c)), \
(I[436] = (T)(img)(_p13##x,_p1##y,z,c)), \
(I[467] = (T)(img)(_p13##x,y,z,c)), \
(I[498] = (T)(img)(_p13##x,_n1##y,z,c)), \
(I[529] = (T)(img)(_p13##x,_n2##y,z,c)), \
(I[560] = (T)(img)(_p13##x,_n3##y,z,c)), \
(I[591] = (T)(img)(_p13##x,_n4##y,z,c)), \
(I[622] = (T)(img)(_p13##x,_n5##y,z,c)), \
(I[653] = (T)(img)(_p13##x,_n6##y,z,c)), \
(I[684] = (T)(img)(_p13##x,_n7##y,z,c)), \
(I[715] = (T)(img)(_p13##x,_n8##y,z,c)), \
(I[746] = (T)(img)(_p13##x,_n9##y,z,c)), \
(I[777] = (T)(img)(_p13##x,_n10##y,z,c)), \
(I[808] = (T)(img)(_p13##x,_n11##y,z,c)), \
(I[839] = (T)(img)(_p13##x,_n12##y,z,c)), \
(I[870] = (T)(img)(_p13##x,_n13##y,z,c)), \
(I[901] = (T)(img)(_p13##x,_n14##y,z,c)), \
(I[932] = (T)(img)(_p13##x,_n15##y,z,c)), \
(I[3] = (T)(img)(_p12##x,_p15##y,z,c)), \
(I[34] = (T)(img)(_p12##x,_p14##y,z,c)), \
(I[65] = (T)(img)(_p12##x,_p13##y,z,c)), \
(I[96] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[127] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[158] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[189] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[220] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[251] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[282] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[313] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[344] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[375] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[406] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[437] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[468] = (T)(img)(_p12##x,y,z,c)), \
(I[499] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[530] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[561] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[592] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[623] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[654] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[685] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[716] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[747] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[778] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[809] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[840] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[871] = (T)(img)(_p12##x,_n13##y,z,c)), \
(I[902] = (T)(img)(_p12##x,_n14##y,z,c)), \
(I[933] = (T)(img)(_p12##x,_n15##y,z,c)), \
(I[4] = (T)(img)(_p11##x,_p15##y,z,c)), \
(I[35] = (T)(img)(_p11##x,_p14##y,z,c)), \
(I[66] = (T)(img)(_p11##x,_p13##y,z,c)), \
(I[97] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[128] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[159] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[190] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[221] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[252] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[283] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[314] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[345] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[376] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[407] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[438] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[469] = (T)(img)(_p11##x,y,z,c)), \
(I[500] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[531] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[562] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[593] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[624] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[655] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[686] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[717] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[748] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[779] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[810] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[841] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[872] = (T)(img)(_p11##x,_n13##y,z,c)), \
(I[903] = (T)(img)(_p11##x,_n14##y,z,c)), \
(I[934] = (T)(img)(_p11##x,_n15##y,z,c)), \
(I[5] = (T)(img)(_p10##x,_p15##y,z,c)), \
(I[36] = (T)(img)(_p10##x,_p14##y,z,c)), \
(I[67] = (T)(img)(_p10##x,_p13##y,z,c)), \
(I[98] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[129] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[160] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[191] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[222] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[253] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[284] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[315] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[346] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[377] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[408] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[439] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[470] = (T)(img)(_p10##x,y,z,c)), \
(I[501] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[532] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[563] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[594] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[625] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[656] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[687] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[718] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[749] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[780] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[811] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[842] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[873] = (T)(img)(_p10##x,_n13##y,z,c)), \
(I[904] = (T)(img)(_p10##x,_n14##y,z,c)), \
(I[935] = (T)(img)(_p10##x,_n15##y,z,c)), \
(I[6] = (T)(img)(_p9##x,_p15##y,z,c)), \
(I[37] = (T)(img)(_p9##x,_p14##y,z,c)), \
(I[68] = (T)(img)(_p9##x,_p13##y,z,c)), \
(I[99] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[130] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[161] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[192] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[223] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[254] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[285] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[316] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[347] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[378] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[409] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[440] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[471] = (T)(img)(_p9##x,y,z,c)), \
(I[502] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[533] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[564] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[595] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[626] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[657] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[688] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[719] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[750] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[781] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[812] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[843] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[874] = (T)(img)(_p9##x,_n13##y,z,c)), \
(I[905] = (T)(img)(_p9##x,_n14##y,z,c)), \
(I[936] = (T)(img)(_p9##x,_n15##y,z,c)), \
(I[7] = (T)(img)(_p8##x,_p15##y,z,c)), \
(I[38] = (T)(img)(_p8##x,_p14##y,z,c)), \
(I[69] = (T)(img)(_p8##x,_p13##y,z,c)), \
(I[100] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[131] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[162] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[193] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[224] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[255] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[286] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[317] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[348] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[379] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[410] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[441] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[472] = (T)(img)(_p8##x,y,z,c)), \
(I[503] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[534] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[565] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[596] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[627] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[658] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[689] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[720] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[751] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[782] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[813] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[844] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[875] = (T)(img)(_p8##x,_n13##y,z,c)), \
(I[906] = (T)(img)(_p8##x,_n14##y,z,c)), \
(I[937] = (T)(img)(_p8##x,_n15##y,z,c)), \
(I[8] = (T)(img)(_p7##x,_p15##y,z,c)), \
(I[39] = (T)(img)(_p7##x,_p14##y,z,c)), \
(I[70] = (T)(img)(_p7##x,_p13##y,z,c)), \
(I[101] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[132] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[163] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[194] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[225] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[256] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[287] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[318] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[349] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[380] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[411] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[442] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[473] = (T)(img)(_p7##x,y,z,c)), \
(I[504] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[535] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[566] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[597] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[628] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[659] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[690] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[721] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[752] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[783] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[814] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[845] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[876] = (T)(img)(_p7##x,_n13##y,z,c)), \
(I[907] = (T)(img)(_p7##x,_n14##y,z,c)), \
(I[938] = (T)(img)(_p7##x,_n15##y,z,c)), \
(I[9] = (T)(img)(_p6##x,_p15##y,z,c)), \
(I[40] = (T)(img)(_p6##x,_p14##y,z,c)), \
(I[71] = (T)(img)(_p6##x,_p13##y,z,c)), \
(I[102] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[133] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[164] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[195] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[226] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[257] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[288] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[319] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[350] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[381] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[412] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[443] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[474] = (T)(img)(_p6##x,y,z,c)), \
(I[505] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[536] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[567] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[598] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[629] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[660] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[691] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[722] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[753] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[784] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[815] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[846] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[877] = (T)(img)(_p6##x,_n13##y,z,c)), \
(I[908] = (T)(img)(_p6##x,_n14##y,z,c)), \
(I[939] = (T)(img)(_p6##x,_n15##y,z,c)), \
(I[10] = (T)(img)(_p5##x,_p15##y,z,c)), \
(I[41] = (T)(img)(_p5##x,_p14##y,z,c)), \
(I[72] = (T)(img)(_p5##x,_p13##y,z,c)), \
(I[103] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[134] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[165] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[196] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[227] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[258] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[289] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[320] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[351] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[382] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[413] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[444] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[475] = (T)(img)(_p5##x,y,z,c)), \
(I[506] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[537] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[568] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[599] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[630] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[661] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[692] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[723] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[754] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[785] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[816] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[847] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[878] = (T)(img)(_p5##x,_n13##y,z,c)), \
(I[909] = (T)(img)(_p5##x,_n14##y,z,c)), \
(I[940] = (T)(img)(_p5##x,_n15##y,z,c)), \
(I[11] = (T)(img)(_p4##x,_p15##y,z,c)), \
(I[42] = (T)(img)(_p4##x,_p14##y,z,c)), \
(I[73] = (T)(img)(_p4##x,_p13##y,z,c)), \
(I[104] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[135] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[166] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[197] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[228] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[259] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[290] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[321] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[352] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[383] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[414] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[445] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[476] = (T)(img)(_p4##x,y,z,c)), \
(I[507] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[538] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[569] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[600] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[631] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[662] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[693] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[724] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[755] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[786] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[817] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[848] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[879] = (T)(img)(_p4##x,_n13##y,z,c)), \
(I[910] = (T)(img)(_p4##x,_n14##y,z,c)), \
(I[941] = (T)(img)(_p4##x,_n15##y,z,c)), \
(I[12] = (T)(img)(_p3##x,_p15##y,z,c)), \
(I[43] = (T)(img)(_p3##x,_p14##y,z,c)), \
(I[74] = (T)(img)(_p3##x,_p13##y,z,c)), \
(I[105] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[136] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[167] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[198] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[229] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[260] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[291] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[322] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[353] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[384] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[415] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[446] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[477] = (T)(img)(_p3##x,y,z,c)), \
(I[508] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[539] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[570] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[601] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[632] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[663] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[694] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[725] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[756] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[787] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[818] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[849] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[880] = (T)(img)(_p3##x,_n13##y,z,c)), \
(I[911] = (T)(img)(_p3##x,_n14##y,z,c)), \
(I[942] = (T)(img)(_p3##x,_n15##y,z,c)), \
(I[13] = (T)(img)(_p2##x,_p15##y,z,c)), \
(I[44] = (T)(img)(_p2##x,_p14##y,z,c)), \
(I[75] = (T)(img)(_p2##x,_p13##y,z,c)), \
(I[106] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[137] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[168] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[199] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[230] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[261] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[292] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[323] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[354] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[385] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[416] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[447] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[478] = (T)(img)(_p2##x,y,z,c)), \
(I[509] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[540] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[571] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[602] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[633] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[664] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[695] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[726] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[757] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[788] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[819] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[850] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[881] = (T)(img)(_p2##x,_n13##y,z,c)), \
(I[912] = (T)(img)(_p2##x,_n14##y,z,c)), \
(I[943] = (T)(img)(_p2##x,_n15##y,z,c)), \
(I[14] = (T)(img)(_p1##x,_p15##y,z,c)), \
(I[45] = (T)(img)(_p1##x,_p14##y,z,c)), \
(I[76] = (T)(img)(_p1##x,_p13##y,z,c)), \
(I[107] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[138] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[169] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[200] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[231] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[262] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[293] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[324] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[355] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[386] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[417] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[448] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[479] = (T)(img)(_p1##x,y,z,c)), \
(I[510] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[541] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[572] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[603] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[634] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[665] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[696] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[727] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[758] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[789] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[820] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[851] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[882] = (T)(img)(_p1##x,_n13##y,z,c)), \
(I[913] = (T)(img)(_p1##x,_n14##y,z,c)), \
(I[944] = (T)(img)(_p1##x,_n15##y,z,c)), \
(I[15] = (T)(img)(x,_p15##y,z,c)), \
(I[46] = (T)(img)(x,_p14##y,z,c)), \
(I[77] = (T)(img)(x,_p13##y,z,c)), \
(I[108] = (T)(img)(x,_p12##y,z,c)), \
(I[139] = (T)(img)(x,_p11##y,z,c)), \
(I[170] = (T)(img)(x,_p10##y,z,c)), \
(I[201] = (T)(img)(x,_p9##y,z,c)), \
(I[232] = (T)(img)(x,_p8##y,z,c)), \
(I[263] = (T)(img)(x,_p7##y,z,c)), \
(I[294] = (T)(img)(x,_p6##y,z,c)), \
(I[325] = (T)(img)(x,_p5##y,z,c)), \
(I[356] = (T)(img)(x,_p4##y,z,c)), \
(I[387] = (T)(img)(x,_p3##y,z,c)), \
(I[418] = (T)(img)(x,_p2##y,z,c)), \
(I[449] = (T)(img)(x,_p1##y,z,c)), \
(I[480] = (T)(img)(x,y,z,c)), \
(I[511] = (T)(img)(x,_n1##y,z,c)), \
(I[542] = (T)(img)(x,_n2##y,z,c)), \
(I[573] = (T)(img)(x,_n3##y,z,c)), \
(I[604] = (T)(img)(x,_n4##y,z,c)), \
(I[635] = (T)(img)(x,_n5##y,z,c)), \
(I[666] = (T)(img)(x,_n6##y,z,c)), \
(I[697] = (T)(img)(x,_n7##y,z,c)), \
(I[728] = (T)(img)(x,_n8##y,z,c)), \
(I[759] = (T)(img)(x,_n9##y,z,c)), \
(I[790] = (T)(img)(x,_n10##y,z,c)), \
(I[821] = (T)(img)(x,_n11##y,z,c)), \
(I[852] = (T)(img)(x,_n12##y,z,c)), \
(I[883] = (T)(img)(x,_n13##y,z,c)), \
(I[914] = (T)(img)(x,_n14##y,z,c)), \
(I[945] = (T)(img)(x,_n15##y,z,c)), \
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
(I[47] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[78] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[109] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[140] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[171] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[202] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[233] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[264] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[295] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[326] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[357] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[388] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[419] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[450] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[481] = (T)(img)(_n1##x,y,z,c)), \
(I[512] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[543] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[574] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[605] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[636] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[667] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[698] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[729] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[760] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[791] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[822] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[853] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[884] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[915] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[946] = (T)(img)(_n1##x,_n15##y,z,c)), \
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
(I[48] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[79] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[110] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[141] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[172] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[203] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[234] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[265] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[296] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[327] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[358] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[389] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[420] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[451] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[482] = (T)(img)(_n2##x,y,z,c)), \
(I[513] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[544] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[575] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[606] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[637] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[668] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[699] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[730] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[761] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[792] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[823] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[854] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[885] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[916] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[947] = (T)(img)(_n2##x,_n15##y,z,c)), \
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
(I[49] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[80] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[111] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[142] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[173] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[204] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[235] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[266] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[297] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[328] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[359] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[390] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[421] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[452] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[483] = (T)(img)(_n3##x,y,z,c)), \
(I[514] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[545] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[576] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[607] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[638] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[669] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[700] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[731] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[762] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[793] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[824] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[855] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[886] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[917] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[948] = (T)(img)(_n3##x,_n15##y,z,c)), \
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
(I[50] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[81] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[112] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[143] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[174] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[205] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[236] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[267] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[298] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[329] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[360] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[391] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[422] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[453] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[484] = (T)(img)(_n4##x,y,z,c)), \
(I[515] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[546] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[577] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[608] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[639] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[670] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[701] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[732] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[763] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[794] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[825] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[856] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[887] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[918] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[949] = (T)(img)(_n4##x,_n15##y,z,c)), \
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
(I[51] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[82] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[113] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[144] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[175] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[206] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[237] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[268] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[299] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[330] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[361] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[392] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[423] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[454] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[485] = (T)(img)(_n5##x,y,z,c)), \
(I[516] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[547] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[578] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[609] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[640] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[671] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[702] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[733] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[764] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[795] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[826] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[857] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[888] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[919] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[950] = (T)(img)(_n5##x,_n15##y,z,c)), \
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
(I[52] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[83] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[114] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[145] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[176] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[207] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[238] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[269] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[300] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[331] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[362] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[393] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[424] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[455] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[486] = (T)(img)(_n6##x,y,z,c)), \
(I[517] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[548] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[579] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[610] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[641] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[672] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[703] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[734] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[765] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[796] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[827] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[858] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[889] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[920] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[951] = (T)(img)(_n6##x,_n15##y,z,c)), \
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
(I[53] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[84] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[115] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[146] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[177] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[208] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[239] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[270] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[301] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[332] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[363] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[394] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[425] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[456] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[487] = (T)(img)(_n7##x,y,z,c)), \
(I[518] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[549] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[580] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[611] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[642] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[673] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[704] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[735] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[766] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[797] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[828] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[859] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[890] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[921] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[952] = (T)(img)(_n7##x,_n15##y,z,c)), \
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
(I[54] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[85] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[116] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[147] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[178] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[209] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[240] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[271] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[302] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[333] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[364] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[395] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[426] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[457] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[488] = (T)(img)(_n8##x,y,z,c)), \
(I[519] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[550] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[581] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[612] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[643] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[674] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[705] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[736] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[767] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[798] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[829] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[860] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[891] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[922] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[953] = (T)(img)(_n8##x,_n15##y,z,c)), \
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
(I[55] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[86] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[117] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[148] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[179] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[210] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[241] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[272] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[303] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[334] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[365] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[396] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[427] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[458] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[489] = (T)(img)(_n9##x,y,z,c)), \
(I[520] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[551] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[582] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[613] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[644] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[675] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[706] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[737] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[768] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[799] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[830] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[861] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[892] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[923] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[954] = (T)(img)(_n9##x,_n15##y,z,c)), \
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
(I[56] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[87] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[118] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[149] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[180] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[211] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[242] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[273] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[304] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[335] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[366] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[397] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[428] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[459] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[490] = (T)(img)(_n10##x,y,z,c)), \
(I[521] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[552] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[583] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[614] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[645] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[676] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[707] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[738] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[769] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[800] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[831] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[862] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[893] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[924] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[955] = (T)(img)(_n10##x,_n15##y,z,c)), \
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
(I[57] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[88] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[119] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[150] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[181] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[212] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[243] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[274] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[305] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[336] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[367] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[398] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[429] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[460] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[491] = (T)(img)(_n11##x,y,z,c)), \
(I[522] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[553] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[584] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[615] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[646] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[677] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[708] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[739] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[770] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[801] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[832] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[863] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[894] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[925] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[956] = (T)(img)(_n11##x,_n15##y,z,c)), \
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
(I[58] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[89] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[120] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[151] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[182] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[213] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[244] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[275] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[306] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[337] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[368] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[399] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[430] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[461] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[492] = (T)(img)(_n12##x,y,z,c)), \
(I[523] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[554] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[585] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[616] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[647] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[678] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[709] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[740] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[771] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[802] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[833] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[864] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[895] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[926] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[957] = (T)(img)(_n12##x,_n15##y,z,c)), \
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
(I[59] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[90] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[121] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[152] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[183] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[214] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[245] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[276] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[307] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[338] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[369] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[400] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[431] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[462] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[493] = (T)(img)(_n13##x,y,z,c)), \
(I[524] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[555] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[586] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[617] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[648] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[679] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[710] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[741] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[772] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[803] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[834] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[865] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[896] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[927] = (T)(img)(_n13##x,_n14##y,z,c)), \
(I[958] = (T)(img)(_n13##x,_n15##y,z,c)), \
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
(I[60] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[91] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[122] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[153] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[184] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[215] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[246] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[277] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[308] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[339] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[370] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[401] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[432] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[463] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[494] = (T)(img)(_n14##x,y,z,c)), \
(I[525] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[556] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[587] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[618] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[649] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[680] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[711] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[742] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[773] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[804] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[835] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[866] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[897] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[928] = (T)(img)(_n14##x,_n14##y,z,c)), \
(I[959] = (T)(img)(_n14##x,_n15##y,z,c)), \
x + 15>=(img).width()?(img).width() - 1:x + 15); \
x<=(int)(x1) && ((_n15##x<(img).width() && ( \
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
(I[61] = (T)(img)(_n15##x,_p14##y,z,c)), \
(I[92] = (T)(img)(_n15##x,_p13##y,z,c)), \
(I[123] = (T)(img)(_n15##x,_p12##y,z,c)), \
(I[154] = (T)(img)(_n15##x,_p11##y,z,c)), \
(I[185] = (T)(img)(_n15##x,_p10##y,z,c)), \
(I[216] = (T)(img)(_n15##x,_p9##y,z,c)), \
(I[247] = (T)(img)(_n15##x,_p8##y,z,c)), \
(I[278] = (T)(img)(_n15##x,_p7##y,z,c)), \
(I[309] = (T)(img)(_n15##x,_p6##y,z,c)), \
(I[340] = (T)(img)(_n15##x,_p5##y,z,c)), \
(I[371] = (T)(img)(_n15##x,_p4##y,z,c)), \
(I[402] = (T)(img)(_n15##x,_p3##y,z,c)), \
(I[433] = (T)(img)(_n15##x,_p2##y,z,c)), \
(I[464] = (T)(img)(_n15##x,_p1##y,z,c)), \
(I[495] = (T)(img)(_n15##x,y,z,c)), \
(I[526] = (T)(img)(_n15##x,_n1##y,z,c)), \
(I[557] = (T)(img)(_n15##x,_n2##y,z,c)), \
(I[588] = (T)(img)(_n15##x,_n3##y,z,c)), \
(I[619] = (T)(img)(_n15##x,_n4##y,z,c)), \
(I[650] = (T)(img)(_n15##x,_n5##y,z,c)), \
(I[681] = (T)(img)(_n15##x,_n6##y,z,c)), \
(I[712] = (T)(img)(_n15##x,_n7##y,z,c)), \
(I[743] = (T)(img)(_n15##x,_n8##y,z,c)), \
(I[774] = (T)(img)(_n15##x,_n9##y,z,c)), \
(I[805] = (T)(img)(_n15##x,_n10##y,z,c)), \
(I[836] = (T)(img)(_n15##x,_n11##y,z,c)), \
(I[867] = (T)(img)(_n15##x,_n12##y,z,c)), \
(I[898] = (T)(img)(_n15##x,_n13##y,z,c)), \
(I[929] = (T)(img)(_n15##x,_n14##y,z,c)), \
(I[960] = (T)(img)(_n15##x,_n15##y,z,c)),1)) || \
_n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], \
I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], \
I[62] = I[63], I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], \
I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], \
I[124] = I[125], I[125] = I[126], I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], \
I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], I[223] = I[224], I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], \
I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], \
I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], \
I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], I[351] = I[352], I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], \
I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], I[383] = I[384], I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], \
I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], I[415] = I[416], I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], \
I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], I[447] = I[448], I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], \
I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], I[479] = I[480], I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], I[511] = I[512], I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], \
I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], I[543] = I[544], I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], \
I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], I[575] = I[576], I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], \
I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], I[607] = I[608], I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], \
I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], I[639] = I[640], I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], \
I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], I[671] = I[672], I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], \
I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], I[703] = I[704], I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], \
I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], I[735] = I[736], I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], \
I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], I[767] = I[768], I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], \
I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], I[799] = I[800], I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], \
I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], I[831] = I[832], I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], \
I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], I[863] = I[864], I[864] = I[865], I[865] = I[866], I[866] = I[867], \
I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], I[895] = I[896], I[896] = I[897], I[897] = I[898], \
I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], I[927] = I[928], I[928] = I[929], \
I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], I[959] = I[960], \
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x)
#define cimg_get31x31(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p15##x,_p15##y,z,c), I[1] = (T)(img)(_p14##x,_p15##y,z,c), I[2] = (T)(img)(_p13##x,_p15##y,z,c), I[3] = (T)(img)(_p12##x,_p15##y,z,c), I[4] = (T)(img)(_p11##x,_p15##y,z,c), I[5] = (T)(img)(_p10##x,_p15##y,z,c), I[6] = (T)(img)(_p9##x,_p15##y,z,c), I[7] = (T)(img)(_p8##x,_p15##y,z,c), I[8] = (T)(img)(_p7##x,_p15##y,z,c), I[9] = (T)(img)(_p6##x,_p15##y,z,c), I[10] = (T)(img)(_p5##x,_p15##y,z,c), I[11] = (T)(img)(_p4##x,_p15##y,z,c), I[12] = (T)(img)(_p3##x,_p15##y,z,c), I[13] = (T)(img)(_p2##x,_p15##y,z,c), I[14] = (T)(img)(_p1##x,_p15##y,z,c), I[15] = (T)(img)(x,_p15##y,z,c), I[16] = (T)(img)(_n1##x,_p15##y,z,c), I[17] = (T)(img)(_n2##x,_p15##y,z,c), I[18] = (T)(img)(_n3##x,_p15##y,z,c), I[19] = (T)(img)(_n4##x,_p15##y,z,c), I[20] = (T)(img)(_n5##x,_p15##y,z,c), I[21] = (T)(img)(_n6##x,_p15##y,z,c), I[22] = (T)(img)(_n7##x,_p15##y,z,c), I[23] = (T)(img)(_n8##x,_p15##y,z,c), I[24] = (T)(img)(_n9##x,_p15##y,z,c), I[25] = (T)(img)(_n10##x,_p15##y,z,c), I[26] = (T)(img)(_n11##x,_p15##y,z,c), I[27] = (T)(img)(_n12##x,_p15##y,z,c), I[28] = (T)(img)(_n13##x,_p15##y,z,c), I[29] = (T)(img)(_n14##x,_p15##y,z,c), I[30] = (T)(img)(_n15##x,_p15##y,z,c), \
I[31] = (T)(img)(_p15##x,_p14##y,z,c), I[32] = (T)(img)(_p14##x,_p14##y,z,c), I[33] = (T)(img)(_p13##x,_p14##y,z,c), I[34] = (T)(img)(_p12##x,_p14##y,z,c), I[35] = (T)(img)(_p11##x,_p14##y,z,c), I[36] = (T)(img)(_p10##x,_p14##y,z,c), I[37] = (T)(img)(_p9##x,_p14##y,z,c), I[38] = (T)(img)(_p8##x,_p14##y,z,c), I[39] = (T)(img)(_p7##x,_p14##y,z,c), I[40] = (T)(img)(_p6##x,_p14##y,z,c), I[41] = (T)(img)(_p5##x,_p14##y,z,c), I[42] = (T)(img)(_p4##x,_p14##y,z,c), I[43] = (T)(img)(_p3##x,_p14##y,z,c), I[44] = (T)(img)(_p2##x,_p14##y,z,c), I[45] = (T)(img)(_p1##x,_p14##y,z,c), I[46] = (T)(img)(x,_p14##y,z,c), I[47] = (T)(img)(_n1##x,_p14##y,z,c), I[48] = (T)(img)(_n2##x,_p14##y,z,c), I[49] = (T)(img)(_n3##x,_p14##y,z,c), I[50] = (T)(img)(_n4##x,_p14##y,z,c), I[51] = (T)(img)(_n5##x,_p14##y,z,c), I[52] = (T)(img)(_n6##x,_p14##y,z,c), I[53] = (T)(img)(_n7##x,_p14##y,z,c), I[54] = (T)(img)(_n8##x,_p14##y,z,c), I[55] = (T)(img)(_n9##x,_p14##y,z,c), I[56] = (T)(img)(_n10##x,_p14##y,z,c), I[57] = (T)(img)(_n11##x,_p14##y,z,c), I[58] = (T)(img)(_n12##x,_p14##y,z,c), I[59] = (T)(img)(_n13##x,_p14##y,z,c), I[60] = (T)(img)(_n14##x,_p14##y,z,c), I[61] = (T)(img)(_n15##x,_p14##y,z,c), \
I[62] = (T)(img)(_p15##x,_p13##y,z,c), I[63] = (T)(img)(_p14##x,_p13##y,z,c), I[64] = (T)(img)(_p13##x,_p13##y,z,c), I[65] = (T)(img)(_p12##x,_p13##y,z,c), I[66] = (T)(img)(_p11##x,_p13##y,z,c), I[67] = (T)(img)(_p10##x,_p13##y,z,c), I[68] = (T)(img)(_p9##x,_p13##y,z,c), I[69] = (T)(img)(_p8##x,_p13##y,z,c), I[70] = (T)(img)(_p7##x,_p13##y,z,c), I[71] = (T)(img)(_p6##x,_p13##y,z,c), I[72] = (T)(img)(_p5##x,_p13##y,z,c), I[73] = (T)(img)(_p4##x,_p13##y,z,c), I[74] = (T)(img)(_p3##x,_p13##y,z,c), I[75] = (T)(img)(_p2##x,_p13##y,z,c), I[76] = (T)(img)(_p1##x,_p13##y,z,c), I[77] = (T)(img)(x,_p13##y,z,c), I[78] = (T)(img)(_n1##x,_p13##y,z,c), I[79] = (T)(img)(_n2##x,_p13##y,z,c), I[80] = (T)(img)(_n3##x,_p13##y,z,c), I[81] = (T)(img)(_n4##x,_p13##y,z,c), I[82] = (T)(img)(_n5##x,_p13##y,z,c), I[83] = (T)(img)(_n6##x,_p13##y,z,c), I[84] = (T)(img)(_n7##x,_p13##y,z,c), I[85] = (T)(img)(_n8##x,_p13##y,z,c), I[86] = (T)(img)(_n9##x,_p13##y,z,c), I[87] = (T)(img)(_n10##x,_p13##y,z,c), I[88] = (T)(img)(_n11##x,_p13##y,z,c), I[89] = (T)(img)(_n12##x,_p13##y,z,c), I[90] = (T)(img)(_n13##x,_p13##y,z,c), I[91] = (T)(img)(_n14##x,_p13##y,z,c), I[92] = (T)(img)(_n15##x,_p13##y,z,c), \
I[93] = (T)(img)(_p15##x,_p12##y,z,c), I[94] = (T)(img)(_p14##x,_p12##y,z,c), I[95] = (T)(img)(_p13##x,_p12##y,z,c), I[96] = (T)(img)(_p12##x,_p12##y,z,c), I[97] = (T)(img)(_p11##x,_p12##y,z,c), I[98] = (T)(img)(_p10##x,_p12##y,z,c), I[99] = (T)(img)(_p9##x,_p12##y,z,c), I[100] = (T)(img)(_p8##x,_p12##y,z,c), I[101] = (T)(img)(_p7##x,_p12##y,z,c), I[102] = (T)(img)(_p6##x,_p12##y,z,c), I[103] = (T)(img)(_p5##x,_p12##y,z,c), I[104] = (T)(img)(_p4##x,_p12##y,z,c), I[105] = (T)(img)(_p3##x,_p12##y,z,c), I[106] = (T)(img)(_p2##x,_p12##y,z,c), I[107] = (T)(img)(_p1##x,_p12##y,z,c), I[108] = (T)(img)(x,_p12##y,z,c), I[109] = (T)(img)(_n1##x,_p12##y,z,c), I[110] = (T)(img)(_n2##x,_p12##y,z,c), I[111] = (T)(img)(_n3##x,_p12##y,z,c), I[112] = (T)(img)(_n4##x,_p12##y,z,c), I[113] = (T)(img)(_n5##x,_p12##y,z,c), I[114] = (T)(img)(_n6##x,_p12##y,z,c), I[115] = (T)(img)(_n7##x,_p12##y,z,c), I[116] = (T)(img)(_n8##x,_p12##y,z,c), I[117] = (T)(img)(_n9##x,_p12##y,z,c), I[118] = (T)(img)(_n10##x,_p12##y,z,c), I[119] = (T)(img)(_n11##x,_p12##y,z,c), I[120] = (T)(img)(_n12##x,_p12##y,z,c), I[121] = (T)(img)(_n13##x,_p12##y,z,c), I[122] = (T)(img)(_n14##x,_p12##y,z,c), I[123] = (T)(img)(_n15##x,_p12##y,z,c), \
I[124] = (T)(img)(_p15##x,_p11##y,z,c), I[125] = (T)(img)(_p14##x,_p11##y,z,c), I[126] = (T)(img)(_p13##x,_p11##y,z,c), I[127] = (T)(img)(_p12##x,_p11##y,z,c), I[128] = (T)(img)(_p11##x,_p11##y,z,c), I[129] = (T)(img)(_p10##x,_p11##y,z,c), I[130] = (T)(img)(_p9##x,_p11##y,z,c), I[131] = (T)(img)(_p8##x,_p11##y,z,c), I[132] = (T)(img)(_p7##x,_p11##y,z,c), I[133] = (T)(img)(_p6##x,_p11##y,z,c), I[134] = (T)(img)(_p5##x,_p11##y,z,c), I[135] = (T)(img)(_p4##x,_p11##y,z,c), I[136] = (T)(img)(_p3##x,_p11##y,z,c), I[137] = (T)(img)(_p2##x,_p11##y,z,c), I[138] = (T)(img)(_p1##x,_p11##y,z,c), I[139] = (T)(img)(x,_p11##y,z,c), I[140] = (T)(img)(_n1##x,_p11##y,z,c), I[141] = (T)(img)(_n2##x,_p11##y,z,c), I[142] = (T)(img)(_n3##x,_p11##y,z,c), I[143] = (T)(img)(_n4##x,_p11##y,z,c), I[144] = (T)(img)(_n5##x,_p11##y,z,c), I[145] = (T)(img)(_n6##x,_p11##y,z,c), I[146] = (T)(img)(_n7##x,_p11##y,z,c), I[147] = (T)(img)(_n8##x,_p11##y,z,c), I[148] = (T)(img)(_n9##x,_p11##y,z,c), I[149] = (T)(img)(_n10##x,_p11##y,z,c), I[150] = (T)(img)(_n11##x,_p11##y,z,c), I[151] = (T)(img)(_n12##x,_p11##y,z,c), I[152] = (T)(img)(_n13##x,_p11##y,z,c), I[153] = (T)(img)(_n14##x,_p11##y,z,c), I[154] = (T)(img)(_n15##x,_p11##y,z,c), \
I[155] = (T)(img)(_p15##x,_p10##y,z,c), I[156] = (T)(img)(_p14##x,_p10##y,z,c), I[157] = (T)(img)(_p13##x,_p10##y,z,c), I[158] = (T)(img)(_p12##x,_p10##y,z,c), I[159] = (T)(img)(_p11##x,_p10##y,z,c), I[160] = (T)(img)(_p10##x,_p10##y,z,c), I[161] = (T)(img)(_p9##x,_p10##y,z,c), I[162] = (T)(img)(_p8##x,_p10##y,z,c), I[163] = (T)(img)(_p7##x,_p10##y,z,c), I[164] = (T)(img)(_p6##x,_p10##y,z,c), I[165] = (T)(img)(_p5##x,_p10##y,z,c), I[166] = (T)(img)(_p4##x,_p10##y,z,c), I[167] = (T)(img)(_p3##x,_p10##y,z,c), I[168] = (T)(img)(_p2##x,_p10##y,z,c), I[169] = (T)(img)(_p1##x,_p10##y,z,c), I[170] = (T)(img)(x,_p10##y,z,c), I[171] = (T)(img)(_n1##x,_p10##y,z,c), I[172] = (T)(img)(_n2##x,_p10##y,z,c), I[173] = (T)(img)(_n3##x,_p10##y,z,c), I[174] = (T)(img)(_n4##x,_p10##y,z,c), I[175] = (T)(img)(_n5##x,_p10##y,z,c), I[176] = (T)(img)(_n6##x,_p10##y,z,c), I[177] = (T)(img)(_n7##x,_p10##y,z,c), I[178] = (T)(img)(_n8##x,_p10##y,z,c), I[179] = (T)(img)(_n9##x,_p10##y,z,c), I[180] = (T)(img)(_n10##x,_p10##y,z,c), I[181] = (T)(img)(_n11##x,_p10##y,z,c), I[182] = (T)(img)(_n12##x,_p10##y,z,c), I[183] = (T)(img)(_n13##x,_p10##y,z,c), I[184] = (T)(img)(_n14##x,_p10##y,z,c), I[185] = (T)(img)(_n15##x,_p10##y,z,c), \
I[186] = (T)(img)(_p15##x,_p9##y,z,c), I[187] = (T)(img)(_p14##x,_p9##y,z,c), I[188] = (T)(img)(_p13##x,_p9##y,z,c), I[189] = (T)(img)(_p12##x,_p9##y,z,c), I[190] = (T)(img)(_p11##x,_p9##y,z,c), I[191] = (T)(img)(_p10##x,_p9##y,z,c), I[192] = (T)(img)(_p9##x,_p9##y,z,c), I[193] = (T)(img)(_p8##x,_p9##y,z,c), I[194] = (T)(img)(_p7##x,_p9##y,z,c), I[195] = (T)(img)(_p6##x,_p9##y,z,c), I[196] = (T)(img)(_p5##x,_p9##y,z,c), I[197] = (T)(img)(_p4##x,_p9##y,z,c), I[198] = (T)(img)(_p3##x,_p9##y,z,c), I[199] = (T)(img)(_p2##x,_p9##y,z,c), I[200] = (T)(img)(_p1##x,_p9##y,z,c), I[201] = (T)(img)(x,_p9##y,z,c), I[202] = (T)(img)(_n1##x,_p9##y,z,c), I[203] = (T)(img)(_n2##x,_p9##y,z,c), I[204] = (T)(img)(_n3##x,_p9##y,z,c), I[205] = (T)(img)(_n4##x,_p9##y,z,c), I[206] = (T)(img)(_n5##x,_p9##y,z,c), I[207] = (T)(img)(_n6##x,_p9##y,z,c), I[208] = (T)(img)(_n7##x,_p9##y,z,c), I[209] = (T)(img)(_n8##x,_p9##y,z,c), I[210] = (T)(img)(_n9##x,_p9##y,z,c), I[211] = (T)(img)(_n10##x,_p9##y,z,c), I[212] = (T)(img)(_n11##x,_p9##y,z,c), I[213] = (T)(img)(_n12##x,_p9##y,z,c), I[214] = (T)(img)(_n13##x,_p9##y,z,c), I[215] = (T)(img)(_n14##x,_p9##y,z,c), I[216] = (T)(img)(_n15##x,_p9##y,z,c), \
I[217] = (T)(img)(_p15##x,_p8##y,z,c), I[218] = (T)(img)(_p14##x,_p8##y,z,c), I[219] = (T)(img)(_p13##x,_p8##y,z,c), I[220] = (T)(img)(_p12##x,_p8##y,z,c), I[221] = (T)(img)(_p11##x,_p8##y,z,c), I[222] = (T)(img)(_p10##x,_p8##y,z,c), I[223] = (T)(img)(_p9##x,_p8##y,z,c), I[224] = (T)(img)(_p8##x,_p8##y,z,c), I[225] = (T)(img)(_p7##x,_p8##y,z,c), I[226] = (T)(img)(_p6##x,_p8##y,z,c), I[227] = (T)(img)(_p5##x,_p8##y,z,c), I[228] = (T)(img)(_p4##x,_p8##y,z,c), I[229] = (T)(img)(_p3##x,_p8##y,z,c), I[230] = (T)(img)(_p2##x,_p8##y,z,c), I[231] = (T)(img)(_p1##x,_p8##y,z,c), I[232] = (T)(img)(x,_p8##y,z,c), I[233] = (T)(img)(_n1##x,_p8##y,z,c), I[234] = (T)(img)(_n2##x,_p8##y,z,c), I[235] = (T)(img)(_n3##x,_p8##y,z,c), I[236] = (T)(img)(_n4##x,_p8##y,z,c), I[237] = (T)(img)(_n5##x,_p8##y,z,c), I[238] = (T)(img)(_n6##x,_p8##y,z,c), I[239] = (T)(img)(_n7##x,_p8##y,z,c), I[240] = (T)(img)(_n8##x,_p8##y,z,c), I[241] = (T)(img)(_n9##x,_p8##y,z,c), I[242] = (T)(img)(_n10##x,_p8##y,z,c), I[243] = (T)(img)(_n11##x,_p8##y,z,c), I[244] = (T)(img)(_n12##x,_p8##y,z,c), I[245] = (T)(img)(_n13##x,_p8##y,z,c), I[246] = (T)(img)(_n14##x,_p8##y,z,c), I[247] = (T)(img)(_n15##x,_p8##y,z,c), \
I[248] = (T)(img)(_p15##x,_p7##y,z,c), I[249] = (T)(img)(_p14##x,_p7##y,z,c), I[250] = (T)(img)(_p13##x,_p7##y,z,c), I[251] = (T)(img)(_p12##x,_p7##y,z,c), I[252] = (T)(img)(_p11##x,_p7##y,z,c), I[253] = (T)(img)(_p10##x,_p7##y,z,c), I[254] = (T)(img)(_p9##x,_p7##y,z,c), I[255] = (T)(img)(_p8##x,_p7##y,z,c), I[256] = (T)(img)(_p7##x,_p7##y,z,c), I[257] = (T)(img)(_p6##x,_p7##y,z,c), I[258] = (T)(img)(_p5##x,_p7##y,z,c), I[259] = (T)(img)(_p4##x,_p7##y,z,c), I[260] = (T)(img)(_p3##x,_p7##y,z,c), I[261] = (T)(img)(_p2##x,_p7##y,z,c), I[262] = (T)(img)(_p1##x,_p7##y,z,c), I[263] = (T)(img)(x,_p7##y,z,c), I[264] = (T)(img)(_n1##x,_p7##y,z,c), I[265] = (T)(img)(_n2##x,_p7##y,z,c), I[266] = (T)(img)(_n3##x,_p7##y,z,c), I[267] = (T)(img)(_n4##x,_p7##y,z,c), I[268] = (T)(img)(_n5##x,_p7##y,z,c), I[269] = (T)(img)(_n6##x,_p7##y,z,c), I[270] = (T)(img)(_n7##x,_p7##y,z,c), I[271] = (T)(img)(_n8##x,_p7##y,z,c), I[272] = (T)(img)(_n9##x,_p7##y,z,c), I[273] = (T)(img)(_n10##x,_p7##y,z,c), I[274] = (T)(img)(_n11##x,_p7##y,z,c), I[275] = (T)(img)(_n12##x,_p7##y,z,c), I[276] = (T)(img)(_n13##x,_p7##y,z,c), I[277] = (T)(img)(_n14##x,_p7##y,z,c), I[278] = (T)(img)(_n15##x,_p7##y,z,c), \
I[279] = (T)(img)(_p15##x,_p6##y,z,c), I[280] = (T)(img)(_p14##x,_p6##y,z,c), I[281] = (T)(img)(_p13##x,_p6##y,z,c), I[282] = (T)(img)(_p12##x,_p6##y,z,c), I[283] = (T)(img)(_p11##x,_p6##y,z,c), I[284] = (T)(img)(_p10##x,_p6##y,z,c), I[285] = (T)(img)(_p9##x,_p6##y,z,c), I[286] = (T)(img)(_p8##x,_p6##y,z,c), I[287] = (T)(img)(_p7##x,_p6##y,z,c), I[288] = (T)(img)(_p6##x,_p6##y,z,c), I[289] = (T)(img)(_p5##x,_p6##y,z,c), I[290] = (T)(img)(_p4##x,_p6##y,z,c), I[291] = (T)(img)(_p3##x,_p6##y,z,c), I[292] = (T)(img)(_p2##x,_p6##y,z,c), I[293] = (T)(img)(_p1##x,_p6##y,z,c), I[294] = (T)(img)(x,_p6##y,z,c), I[295] = (T)(img)(_n1##x,_p6##y,z,c), I[296] = (T)(img)(_n2##x,_p6##y,z,c), I[297] = (T)(img)(_n3##x,_p6##y,z,c), I[298] = (T)(img)(_n4##x,_p6##y,z,c), I[299] = (T)(img)(_n5##x,_p6##y,z,c), I[300] = (T)(img)(_n6##x,_p6##y,z,c), I[301] = (T)(img)(_n7##x,_p6##y,z,c), I[302] = (T)(img)(_n8##x,_p6##y,z,c), I[303] = (T)(img)(_n9##x,_p6##y,z,c), I[304] = (T)(img)(_n10##x,_p6##y,z,c), I[305] = (T)(img)(_n11##x,_p6##y,z,c), I[306] = (T)(img)(_n12##x,_p6##y,z,c), I[307] = (T)(img)(_n13##x,_p6##y,z,c), I[308] = (T)(img)(_n14##x,_p6##y,z,c), I[309] = (T)(img)(_n15##x,_p6##y,z,c), \
I[310] = (T)(img)(_p15##x,_p5##y,z,c), I[311] = (T)(img)(_p14##x,_p5##y,z,c), I[312] = (T)(img)(_p13##x,_p5##y,z,c), I[313] = (T)(img)(_p12##x,_p5##y,z,c), I[314] = (T)(img)(_p11##x,_p5##y,z,c), I[315] = (T)(img)(_p10##x,_p5##y,z,c), I[316] = (T)(img)(_p9##x,_p5##y,z,c), I[317] = (T)(img)(_p8##x,_p5##y,z,c), I[318] = (T)(img)(_p7##x,_p5##y,z,c), I[319] = (T)(img)(_p6##x,_p5##y,z,c), I[320] = (T)(img)(_p5##x,_p5##y,z,c), I[321] = (T)(img)(_p4##x,_p5##y,z,c), I[322] = (T)(img)(_p3##x,_p5##y,z,c), I[323] = (T)(img)(_p2##x,_p5##y,z,c), I[324] = (T)(img)(_p1##x,_p5##y,z,c), I[325] = (T)(img)(x,_p5##y,z,c), I[326] = (T)(img)(_n1##x,_p5##y,z,c), I[327] = (T)(img)(_n2##x,_p5##y,z,c), I[328] = (T)(img)(_n3##x,_p5##y,z,c), I[329] = (T)(img)(_n4##x,_p5##y,z,c), I[330] = (T)(img)(_n5##x,_p5##y,z,c), I[331] = (T)(img)(_n6##x,_p5##y,z,c), I[332] = (T)(img)(_n7##x,_p5##y,z,c), I[333] = (T)(img)(_n8##x,_p5##y,z,c), I[334] = (T)(img)(_n9##x,_p5##y,z,c), I[335] = (T)(img)(_n10##x,_p5##y,z,c), I[336] = (T)(img)(_n11##x,_p5##y,z,c), I[337] = (T)(img)(_n12##x,_p5##y,z,c), I[338] = (T)(img)(_n13##x,_p5##y,z,c), I[339] = (T)(img)(_n14##x,_p5##y,z,c), I[340] = (T)(img)(_n15##x,_p5##y,z,c), \
I[341] = (T)(img)(_p15##x,_p4##y,z,c), I[342] = (T)(img)(_p14##x,_p4##y,z,c), I[343] = (T)(img)(_p13##x,_p4##y,z,c), I[344] = (T)(img)(_p12##x,_p4##y,z,c), I[345] = (T)(img)(_p11##x,_p4##y,z,c), I[346] = (T)(img)(_p10##x,_p4##y,z,c), I[347] = (T)(img)(_p9##x,_p4##y,z,c), I[348] = (T)(img)(_p8##x,_p4##y,z,c), I[349] = (T)(img)(_p7##x,_p4##y,z,c), I[350] = (T)(img)(_p6##x,_p4##y,z,c), I[351] = (T)(img)(_p5##x,_p4##y,z,c), I[352] = (T)(img)(_p4##x,_p4##y,z,c), I[353] = (T)(img)(_p3##x,_p4##y,z,c), I[354] = (T)(img)(_p2##x,_p4##y,z,c), I[355] = (T)(img)(_p1##x,_p4##y,z,c), I[356] = (T)(img)(x,_p4##y,z,c), I[357] = (T)(img)(_n1##x,_p4##y,z,c), I[358] = (T)(img)(_n2##x,_p4##y,z,c), I[359] = (T)(img)(_n3##x,_p4##y,z,c), I[360] = (T)(img)(_n4##x,_p4##y,z,c), I[361] = (T)(img)(_n5##x,_p4##y,z,c), I[362] = (T)(img)(_n6##x,_p4##y,z,c), I[363] = (T)(img)(_n7##x,_p4##y,z,c), I[364] = (T)(img)(_n8##x,_p4##y,z,c), I[365] = (T)(img)(_n9##x,_p4##y,z,c), I[366] = (T)(img)(_n10##x,_p4##y,z,c), I[367] = (T)(img)(_n11##x,_p4##y,z,c), I[368] = (T)(img)(_n12##x,_p4##y,z,c), I[369] = (T)(img)(_n13##x,_p4##y,z,c), I[370] = (T)(img)(_n14##x,_p4##y,z,c), I[371] = (T)(img)(_n15##x,_p4##y,z,c), \
I[372] = (T)(img)(_p15##x,_p3##y,z,c), I[373] = (T)(img)(_p14##x,_p3##y,z,c), I[374] = (T)(img)(_p13##x,_p3##y,z,c), I[375] = (T)(img)(_p12##x,_p3##y,z,c), I[376] = (T)(img)(_p11##x,_p3##y,z,c), I[377] = (T)(img)(_p10##x,_p3##y,z,c), I[378] = (T)(img)(_p9##x,_p3##y,z,c), I[379] = (T)(img)(_p8##x,_p3##y,z,c), I[380] = (T)(img)(_p7##x,_p3##y,z,c), I[381] = (T)(img)(_p6##x,_p3##y,z,c), I[382] = (T)(img)(_p5##x,_p3##y,z,c), I[383] = (T)(img)(_p4##x,_p3##y,z,c), I[384] = (T)(img)(_p3##x,_p3##y,z,c), I[385] = (T)(img)(_p2##x,_p3##y,z,c), I[386] = (T)(img)(_p1##x,_p3##y,z,c), I[387] = (T)(img)(x,_p3##y,z,c), I[388] = (T)(img)(_n1##x,_p3##y,z,c), I[389] = (T)(img)(_n2##x,_p3##y,z,c), I[390] = (T)(img)(_n3##x,_p3##y,z,c), I[391] = (T)(img)(_n4##x,_p3##y,z,c), I[392] = (T)(img)(_n5##x,_p3##y,z,c), I[393] = (T)(img)(_n6##x,_p3##y,z,c), I[394] = (T)(img)(_n7##x,_p3##y,z,c), I[395] = (T)(img)(_n8##x,_p3##y,z,c), I[396] = (T)(img)(_n9##x,_p3##y,z,c), I[397] = (T)(img)(_n10##x,_p3##y,z,c), I[398] = (T)(img)(_n11##x,_p3##y,z,c), I[399] = (T)(img)(_n12##x,_p3##y,z,c), I[400] = (T)(img)(_n13##x,_p3##y,z,c), I[401] = (T)(img)(_n14##x,_p3##y,z,c), I[402] = (T)(img)(_n15##x,_p3##y,z,c), \
I[403] = (T)(img)(_p15##x,_p2##y,z,c), I[404] = (T)(img)(_p14##x,_p2##y,z,c), I[405] = (T)(img)(_p13##x,_p2##y,z,c), I[406] = (T)(img)(_p12##x,_p2##y,z,c), I[407] = (T)(img)(_p11##x,_p2##y,z,c), I[408] = (T)(img)(_p10##x,_p2##y,z,c), I[409] = (T)(img)(_p9##x,_p2##y,z,c), I[410] = (T)(img)(_p8##x,_p2##y,z,c), I[411] = (T)(img)(_p7##x,_p2##y,z,c), I[412] = (T)(img)(_p6##x,_p2##y,z,c), I[413] = (T)(img)(_p5##x,_p2##y,z,c), I[414] = (T)(img)(_p4##x,_p2##y,z,c), I[415] = (T)(img)(_p3##x,_p2##y,z,c), I[416] = (T)(img)(_p2##x,_p2##y,z,c), I[417] = (T)(img)(_p1##x,_p2##y,z,c), I[418] = (T)(img)(x,_p2##y,z,c), I[419] = (T)(img)(_n1##x,_p2##y,z,c), I[420] = (T)(img)(_n2##x,_p2##y,z,c), I[421] = (T)(img)(_n3##x,_p2##y,z,c), I[422] = (T)(img)(_n4##x,_p2##y,z,c), I[423] = (T)(img)(_n5##x,_p2##y,z,c), I[424] = (T)(img)(_n6##x,_p2##y,z,c), I[425] = (T)(img)(_n7##x,_p2##y,z,c), I[426] = (T)(img)(_n8##x,_p2##y,z,c), I[427] = (T)(img)(_n9##x,_p2##y,z,c), I[428] = (T)(img)(_n10##x,_p2##y,z,c), I[429] = (T)(img)(_n11##x,_p2##y,z,c), I[430] = (T)(img)(_n12##x,_p2##y,z,c), I[431] = (T)(img)(_n13##x,_p2##y,z,c), I[432] = (T)(img)(_n14##x,_p2##y,z,c), I[433] = (T)(img)(_n15##x,_p2##y,z,c), \
I[434] = (T)(img)(_p15##x,_p1##y,z,c), I[435] = (T)(img)(_p14##x,_p1##y,z,c), I[436] = (T)(img)(_p13##x,_p1##y,z,c), I[437] = (T)(img)(_p12##x,_p1##y,z,c), I[438] = (T)(img)(_p11##x,_p1##y,z,c), I[439] = (T)(img)(_p10##x,_p1##y,z,c), I[440] = (T)(img)(_p9##x,_p1##y,z,c), I[441] = (T)(img)(_p8##x,_p1##y,z,c), I[442] = (T)(img)(_p7##x,_p1##y,z,c), I[443] = (T)(img)(_p6##x,_p1##y,z,c), I[444] = (T)(img)(_p5##x,_p1##y,z,c), I[445] = (T)(img)(_p4##x,_p1##y,z,c), I[446] = (T)(img)(_p3##x,_p1##y,z,c), I[447] = (T)(img)(_p2##x,_p1##y,z,c), I[448] = (T)(img)(_p1##x,_p1##y,z,c), I[449] = (T)(img)(x,_p1##y,z,c), I[450] = (T)(img)(_n1##x,_p1##y,z,c), I[451] = (T)(img)(_n2##x,_p1##y,z,c), I[452] = (T)(img)(_n3##x,_p1##y,z,c), I[453] = (T)(img)(_n4##x,_p1##y,z,c), I[454] = (T)(img)(_n5##x,_p1##y,z,c), I[455] = (T)(img)(_n6##x,_p1##y,z,c), I[456] = (T)(img)(_n7##x,_p1##y,z,c), I[457] = (T)(img)(_n8##x,_p1##y,z,c), I[458] = (T)(img)(_n9##x,_p1##y,z,c), I[459] = (T)(img)(_n10##x,_p1##y,z,c), I[460] = (T)(img)(_n11##x,_p1##y,z,c), I[461] = (T)(img)(_n12##x,_p1##y,z,c), I[462] = (T)(img)(_n13##x,_p1##y,z,c), I[463] = (T)(img)(_n14##x,_p1##y,z,c), I[464] = (T)(img)(_n15##x,_p1##y,z,c), \
I[465] = (T)(img)(_p15##x,y,z,c), I[466] = (T)(img)(_p14##x,y,z,c), I[467] = (T)(img)(_p13##x,y,z,c), I[468] = (T)(img)(_p12##x,y,z,c), I[469] = (T)(img)(_p11##x,y,z,c), I[470] = (T)(img)(_p10##x,y,z,c), I[471] = (T)(img)(_p9##x,y,z,c), I[472] = (T)(img)(_p8##x,y,z,c), I[473] = (T)(img)(_p7##x,y,z,c), I[474] = (T)(img)(_p6##x,y,z,c), I[475] = (T)(img)(_p5##x,y,z,c), I[476] = (T)(img)(_p4##x,y,z,c), I[477] = (T)(img)(_p3##x,y,z,c), I[478] = (T)(img)(_p2##x,y,z,c), I[479] = (T)(img)(_p1##x,y,z,c), I[480] = (T)(img)(x,y,z,c), I[481] = (T)(img)(_n1##x,y,z,c), I[482] = (T)(img)(_n2##x,y,z,c), I[483] = (T)(img)(_n3##x,y,z,c), I[484] = (T)(img)(_n4##x,y,z,c), I[485] = (T)(img)(_n5##x,y,z,c), I[486] = (T)(img)(_n6##x,y,z,c), I[487] = (T)(img)(_n7##x,y,z,c), I[488] = (T)(img)(_n8##x,y,z,c), I[489] = (T)(img)(_n9##x,y,z,c), I[490] = (T)(img)(_n10##x,y,z,c), I[491] = (T)(img)(_n11##x,y,z,c), I[492] = (T)(img)(_n12##x,y,z,c), I[493] = (T)(img)(_n13##x,y,z,c), I[494] = (T)(img)(_n14##x,y,z,c), I[495] = (T)(img)(_n15##x,y,z,c), \
I[496] = (T)(img)(_p15##x,_n1##y,z,c), I[497] = (T)(img)(_p14##x,_n1##y,z,c), I[498] = (T)(img)(_p13##x,_n1##y,z,c), I[499] = (T)(img)(_p12##x,_n1##y,z,c), I[500] = (T)(img)(_p11##x,_n1##y,z,c), I[501] = (T)(img)(_p10##x,_n1##y,z,c), I[502] = (T)(img)(_p9##x,_n1##y,z,c), I[503] = (T)(img)(_p8##x,_n1##y,z,c), I[504] = (T)(img)(_p7##x,_n1##y,z,c), I[505] = (T)(img)(_p6##x,_n1##y,z,c), I[506] = (T)(img)(_p5##x,_n1##y,z,c), I[507] = (T)(img)(_p4##x,_n1##y,z,c), I[508] = (T)(img)(_p3##x,_n1##y,z,c), I[509] = (T)(img)(_p2##x,_n1##y,z,c), I[510] = (T)(img)(_p1##x,_n1##y,z,c), I[511] = (T)(img)(x,_n1##y,z,c), I[512] = (T)(img)(_n1##x,_n1##y,z,c), I[513] = (T)(img)(_n2##x,_n1##y,z,c), I[514] = (T)(img)(_n3##x,_n1##y,z,c), I[515] = (T)(img)(_n4##x,_n1##y,z,c), I[516] = (T)(img)(_n5##x,_n1##y,z,c), I[517] = (T)(img)(_n6##x,_n1##y,z,c), I[518] = (T)(img)(_n7##x,_n1##y,z,c), I[519] = (T)(img)(_n8##x,_n1##y,z,c), I[520] = (T)(img)(_n9##x,_n1##y,z,c), I[521] = (T)(img)(_n10##x,_n1##y,z,c), I[522] = (T)(img)(_n11##x,_n1##y,z,c), I[523] = (T)(img)(_n12##x,_n1##y,z,c), I[524] = (T)(img)(_n13##x,_n1##y,z,c), I[525] = (T)(img)(_n14##x,_n1##y,z,c), I[526] = (T)(img)(_n15##x,_n1##y,z,c), \
I[527] = (T)(img)(_p15##x,_n2##y,z,c), I[528] = (T)(img)(_p14##x,_n2##y,z,c), I[529] = (T)(img)(_p13##x,_n2##y,z,c), I[530] = (T)(img)(_p12##x,_n2##y,z,c), I[531] = (T)(img)(_p11##x,_n2##y,z,c), I[532] = (T)(img)(_p10##x,_n2##y,z,c), I[533] = (T)(img)(_p9##x,_n2##y,z,c), I[534] = (T)(img)(_p8##x,_n2##y,z,c), I[535] = (T)(img)(_p7##x,_n2##y,z,c), I[536] = (T)(img)(_p6##x,_n2##y,z,c), I[537] = (T)(img)(_p5##x,_n2##y,z,c), I[538] = (T)(img)(_p4##x,_n2##y,z,c), I[539] = (T)(img)(_p3##x,_n2##y,z,c), I[540] = (T)(img)(_p2##x,_n2##y,z,c), I[541] = (T)(img)(_p1##x,_n2##y,z,c), I[542] = (T)(img)(x,_n2##y,z,c), I[543] = (T)(img)(_n1##x,_n2##y,z,c), I[544] = (T)(img)(_n2##x,_n2##y,z,c), I[545] = (T)(img)(_n3##x,_n2##y,z,c), I[546] = (T)(img)(_n4##x,_n2##y,z,c), I[547] = (T)(img)(_n5##x,_n2##y,z,c), I[548] = (T)(img)(_n6##x,_n2##y,z,c), I[549] = (T)(img)(_n7##x,_n2##y,z,c), I[550] = (T)(img)(_n8##x,_n2##y,z,c), I[551] = (T)(img)(_n9##x,_n2##y,z,c), I[552] = (T)(img)(_n10##x,_n2##y,z,c), I[553] = (T)(img)(_n11##x,_n2##y,z,c), I[554] = (T)(img)(_n12##x,_n2##y,z,c), I[555] = (T)(img)(_n13##x,_n2##y,z,c), I[556] = (T)(img)(_n14##x,_n2##y,z,c), I[557] = (T)(img)(_n15##x,_n2##y,z,c), \
I[558] = (T)(img)(_p15##x,_n3##y,z,c), I[559] = (T)(img)(_p14##x,_n3##y,z,c), I[560] = (T)(img)(_p13##x,_n3##y,z,c), I[561] = (T)(img)(_p12##x,_n3##y,z,c), I[562] = (T)(img)(_p11##x,_n3##y,z,c), I[563] = (T)(img)(_p10##x,_n3##y,z,c), I[564] = (T)(img)(_p9##x,_n3##y,z,c), I[565] = (T)(img)(_p8##x,_n3##y,z,c), I[566] = (T)(img)(_p7##x,_n3##y,z,c), I[567] = (T)(img)(_p6##x,_n3##y,z,c), I[568] = (T)(img)(_p5##x,_n3##y,z,c), I[569] = (T)(img)(_p4##x,_n3##y,z,c), I[570] = (T)(img)(_p3##x,_n3##y,z,c), I[571] = (T)(img)(_p2##x,_n3##y,z,c), I[572] = (T)(img)(_p1##x,_n3##y,z,c), I[573] = (T)(img)(x,_n3##y,z,c), I[574] = (T)(img)(_n1##x,_n3##y,z,c), I[575] = (T)(img)(_n2##x,_n3##y,z,c), I[576] = (T)(img)(_n3##x,_n3##y,z,c), I[577] = (T)(img)(_n4##x,_n3##y,z,c), I[578] = (T)(img)(_n5##x,_n3##y,z,c), I[579] = (T)(img)(_n6##x,_n3##y,z,c), I[580] = (T)(img)(_n7##x,_n3##y,z,c), I[581] = (T)(img)(_n8##x,_n3##y,z,c), I[582] = (T)(img)(_n9##x,_n3##y,z,c), I[583] = (T)(img)(_n10##x,_n3##y,z,c), I[584] = (T)(img)(_n11##x,_n3##y,z,c), I[585] = (T)(img)(_n12##x,_n3##y,z,c), I[586] = (T)(img)(_n13##x,_n3##y,z,c), I[587] = (T)(img)(_n14##x,_n3##y,z,c), I[588] = (T)(img)(_n15##x,_n3##y,z,c), \
I[589] = (T)(img)(_p15##x,_n4##y,z,c), I[590] = (T)(img)(_p14##x,_n4##y,z,c), I[591] = (T)(img)(_p13##x,_n4##y,z,c), I[592] = (T)(img)(_p12##x,_n4##y,z,c), I[593] = (T)(img)(_p11##x,_n4##y,z,c), I[594] = (T)(img)(_p10##x,_n4##y,z,c), I[595] = (T)(img)(_p9##x,_n4##y,z,c), I[596] = (T)(img)(_p8##x,_n4##y,z,c), I[597] = (T)(img)(_p7##x,_n4##y,z,c), I[598] = (T)(img)(_p6##x,_n4##y,z,c), I[599] = (T)(img)(_p5##x,_n4##y,z,c), I[600] = (T)(img)(_p4##x,_n4##y,z,c), I[601] = (T)(img)(_p3##x,_n4##y,z,c), I[602] = (T)(img)(_p2##x,_n4##y,z,c), I[603] = (T)(img)(_p1##x,_n4##y,z,c), I[604] = (T)(img)(x,_n4##y,z,c), I[605] = (T)(img)(_n1##x,_n4##y,z,c), I[606] = (T)(img)(_n2##x,_n4##y,z,c), I[607] = (T)(img)(_n3##x,_n4##y,z,c), I[608] = (T)(img)(_n4##x,_n4##y,z,c), I[609] = (T)(img)(_n5##x,_n4##y,z,c), I[610] = (T)(img)(_n6##x,_n4##y,z,c), I[611] = (T)(img)(_n7##x,_n4##y,z,c), I[612] = (T)(img)(_n8##x,_n4##y,z,c), I[613] = (T)(img)(_n9##x,_n4##y,z,c), I[614] = (T)(img)(_n10##x,_n4##y,z,c), I[615] = (T)(img)(_n11##x,_n4##y,z,c), I[616] = (T)(img)(_n12##x,_n4##y,z,c), I[617] = (T)(img)(_n13##x,_n4##y,z,c), I[618] = (T)(img)(_n14##x,_n4##y,z,c), I[619] = (T)(img)(_n15##x,_n4##y,z,c), \
I[620] = (T)(img)(_p15##x,_n5##y,z,c), I[621] = (T)(img)(_p14##x,_n5##y,z,c), I[622] = (T)(img)(_p13##x,_n5##y,z,c), I[623] = (T)(img)(_p12##x,_n5##y,z,c), I[624] = (T)(img)(_p11##x,_n5##y,z,c), I[625] = (T)(img)(_p10##x,_n5##y,z,c), I[626] = (T)(img)(_p9##x,_n5##y,z,c), I[627] = (T)(img)(_p8##x,_n5##y,z,c), I[628] = (T)(img)(_p7##x,_n5##y,z,c), I[629] = (T)(img)(_p6##x,_n5##y,z,c), I[630] = (T)(img)(_p5##x,_n5##y,z,c), I[631] = (T)(img)(_p4##x,_n5##y,z,c), I[632] = (T)(img)(_p3##x,_n5##y,z,c), I[633] = (T)(img)(_p2##x,_n5##y,z,c), I[634] = (T)(img)(_p1##x,_n5##y,z,c), I[635] = (T)(img)(x,_n5##y,z,c), I[636] = (T)(img)(_n1##x,_n5##y,z,c), I[637] = (T)(img)(_n2##x,_n5##y,z,c), I[638] = (T)(img)(_n3##x,_n5##y,z,c), I[639] = (T)(img)(_n4##x,_n5##y,z,c), I[640] = (T)(img)(_n5##x,_n5##y,z,c), I[641] = (T)(img)(_n6##x,_n5##y,z,c), I[642] = (T)(img)(_n7##x,_n5##y,z,c), I[643] = (T)(img)(_n8##x,_n5##y,z,c), I[644] = (T)(img)(_n9##x,_n5##y,z,c), I[645] = (T)(img)(_n10##x,_n5##y,z,c), I[646] = (T)(img)(_n11##x,_n5##y,z,c), I[647] = (T)(img)(_n12##x,_n5##y,z,c), I[648] = (T)(img)(_n13##x,_n5##y,z,c), I[649] = (T)(img)(_n14##x,_n5##y,z,c), I[650] = (T)(img)(_n15##x,_n5##y,z,c), \
I[651] = (T)(img)(_p15##x,_n6##y,z,c), I[652] = (T)(img)(_p14##x,_n6##y,z,c), I[653] = (T)(img)(_p13##x,_n6##y,z,c), I[654] = (T)(img)(_p12##x,_n6##y,z,c), I[655] = (T)(img)(_p11##x,_n6##y,z,c), I[656] = (T)(img)(_p10##x,_n6##y,z,c), I[657] = (T)(img)(_p9##x,_n6##y,z,c), I[658] = (T)(img)(_p8##x,_n6##y,z,c), I[659] = (T)(img)(_p7##x,_n6##y,z,c), I[660] = (T)(img)(_p6##x,_n6##y,z,c), I[661] = (T)(img)(_p5##x,_n6##y,z,c), I[662] = (T)(img)(_p4##x,_n6##y,z,c), I[663] = (T)(img)(_p3##x,_n6##y,z,c), I[664] = (T)(img)(_p2##x,_n6##y,z,c), I[665] = (T)(img)(_p1##x,_n6##y,z,c), I[666] = (T)(img)(x,_n6##y,z,c), I[667] = (T)(img)(_n1##x,_n6##y,z,c), I[668] = (T)(img)(_n2##x,_n6##y,z,c), I[669] = (T)(img)(_n3##x,_n6##y,z,c), I[670] = (T)(img)(_n4##x,_n6##y,z,c), I[671] = (T)(img)(_n5##x,_n6##y,z,c), I[672] = (T)(img)(_n6##x,_n6##y,z,c), I[673] = (T)(img)(_n7##x,_n6##y,z,c), I[674] = (T)(img)(_n8##x,_n6##y,z,c), I[675] = (T)(img)(_n9##x,_n6##y,z,c), I[676] = (T)(img)(_n10##x,_n6##y,z,c), I[677] = (T)(img)(_n11##x,_n6##y,z,c), I[678] = (T)(img)(_n12##x,_n6##y,z,c), I[679] = (T)(img)(_n13##x,_n6##y,z,c), I[680] = (T)(img)(_n14##x,_n6##y,z,c), I[681] = (T)(img)(_n15##x,_n6##y,z,c), \
I[682] = (T)(img)(_p15##x,_n7##y,z,c), I[683] = (T)(img)(_p14##x,_n7##y,z,c), I[684] = (T)(img)(_p13##x,_n7##y,z,c), I[685] = (T)(img)(_p12##x,_n7##y,z,c), I[686] = (T)(img)(_p11##x,_n7##y,z,c), I[687] = (T)(img)(_p10##x,_n7##y,z,c), I[688] = (T)(img)(_p9##x,_n7##y,z,c), I[689] = (T)(img)(_p8##x,_n7##y,z,c), I[690] = (T)(img)(_p7##x,_n7##y,z,c), I[691] = (T)(img)(_p6##x,_n7##y,z,c), I[692] = (T)(img)(_p5##x,_n7##y,z,c), I[693] = (T)(img)(_p4##x,_n7##y,z,c), I[694] = (T)(img)(_p3##x,_n7##y,z,c), I[695] = (T)(img)(_p2##x,_n7##y,z,c), I[696] = (T)(img)(_p1##x,_n7##y,z,c), I[697] = (T)(img)(x,_n7##y,z,c), I[698] = (T)(img)(_n1##x,_n7##y,z,c), I[699] = (T)(img)(_n2##x,_n7##y,z,c), I[700] = (T)(img)(_n3##x,_n7##y,z,c), I[701] = (T)(img)(_n4##x,_n7##y,z,c), I[702] = (T)(img)(_n5##x,_n7##y,z,c), I[703] = (T)(img)(_n6##x,_n7##y,z,c), I[704] = (T)(img)(_n7##x,_n7##y,z,c), I[705] = (T)(img)(_n8##x,_n7##y,z,c), I[706] = (T)(img)(_n9##x,_n7##y,z,c), I[707] = (T)(img)(_n10##x,_n7##y,z,c), I[708] = (T)(img)(_n11##x,_n7##y,z,c), I[709] = (T)(img)(_n12##x,_n7##y,z,c), I[710] = (T)(img)(_n13##x,_n7##y,z,c), I[711] = (T)(img)(_n14##x,_n7##y,z,c), I[712] = (T)(img)(_n15##x,_n7##y,z,c), \
I[713] = (T)(img)(_p15##x,_n8##y,z,c), I[714] = (T)(img)(_p14##x,_n8##y,z,c), I[715] = (T)(img)(_p13##x,_n8##y,z,c), I[716] = (T)(img)(_p12##x,_n8##y,z,c), I[717] = (T)(img)(_p11##x,_n8##y,z,c), I[718] = (T)(img)(_p10##x,_n8##y,z,c), I[719] = (T)(img)(_p9##x,_n8##y,z,c), I[720] = (T)(img)(_p8##x,_n8##y,z,c), I[721] = (T)(img)(_p7##x,_n8##y,z,c), I[722] = (T)(img)(_p6##x,_n8##y,z,c), I[723] = (T)(img)(_p5##x,_n8##y,z,c), I[724] = (T)(img)(_p4##x,_n8##y,z,c), I[725] = (T)(img)(_p3##x,_n8##y,z,c), I[726] = (T)(img)(_p2##x,_n8##y,z,c), I[727] = (T)(img)(_p1##x,_n8##y,z,c), I[728] = (T)(img)(x,_n8##y,z,c), I[729] = (T)(img)(_n1##x,_n8##y,z,c), I[730] = (T)(img)(_n2##x,_n8##y,z,c), I[731] = (T)(img)(_n3##x,_n8##y,z,c), I[732] = (T)(img)(_n4##x,_n8##y,z,c), I[733] = (T)(img)(_n5##x,_n8##y,z,c), I[734] = (T)(img)(_n6##x,_n8##y,z,c), I[735] = (T)(img)(_n7##x,_n8##y,z,c), I[736] = (T)(img)(_n8##x,_n8##y,z,c), I[737] = (T)(img)(_n9##x,_n8##y,z,c), I[738] = (T)(img)(_n10##x,_n8##y,z,c), I[739] = (T)(img)(_n11##x,_n8##y,z,c), I[740] = (T)(img)(_n12##x,_n8##y,z,c), I[741] = (T)(img)(_n13##x,_n8##y,z,c), I[742] = (T)(img)(_n14##x,_n8##y,z,c), I[743] = (T)(img)(_n15##x,_n8##y,z,c), \
I[744] = (T)(img)(_p15##x,_n9##y,z,c), I[745] = (T)(img)(_p14##x,_n9##y,z,c), I[746] = (T)(img)(_p13##x,_n9##y,z,c), I[747] = (T)(img)(_p12##x,_n9##y,z,c), I[748] = (T)(img)(_p11##x,_n9##y,z,c), I[749] = (T)(img)(_p10##x,_n9##y,z,c), I[750] = (T)(img)(_p9##x,_n9##y,z,c), I[751] = (T)(img)(_p8##x,_n9##y,z,c), I[752] = (T)(img)(_p7##x,_n9##y,z,c), I[753] = (T)(img)(_p6##x,_n9##y,z,c), I[754] = (T)(img)(_p5##x,_n9##y,z,c), I[755] = (T)(img)(_p4##x,_n9##y,z,c), I[756] = (T)(img)(_p3##x,_n9##y,z,c), I[757] = (T)(img)(_p2##x,_n9##y,z,c), I[758] = (T)(img)(_p1##x,_n9##y,z,c), I[759] = (T)(img)(x,_n9##y,z,c), I[760] = (T)(img)(_n1##x,_n9##y,z,c), I[761] = (T)(img)(_n2##x,_n9##y,z,c), I[762] = (T)(img)(_n3##x,_n9##y,z,c), I[763] = (T)(img)(_n4##x,_n9##y,z,c), I[764] = (T)(img)(_n5##x,_n9##y,z,c), I[765] = (T)(img)(_n6##x,_n9##y,z,c), I[766] = (T)(img)(_n7##x,_n9##y,z,c), I[767] = (T)(img)(_n8##x,_n9##y,z,c), I[768] = (T)(img)(_n9##x,_n9##y,z,c), I[769] = (T)(img)(_n10##x,_n9##y,z,c), I[770] = (T)(img)(_n11##x,_n9##y,z,c), I[771] = (T)(img)(_n12##x,_n9##y,z,c), I[772] = (T)(img)(_n13##x,_n9##y,z,c), I[773] = (T)(img)(_n14##x,_n9##y,z,c), I[774] = (T)(img)(_n15##x,_n9##y,z,c), \
I[775] = (T)(img)(_p15##x,_n10##y,z,c), I[776] = (T)(img)(_p14##x,_n10##y,z,c), I[777] = (T)(img)(_p13##x,_n10##y,z,c), I[778] = (T)(img)(_p12##x,_n10##y,z,c), I[779] = (T)(img)(_p11##x,_n10##y,z,c), I[780] = (T)(img)(_p10##x,_n10##y,z,c), I[781] = (T)(img)(_p9##x,_n10##y,z,c), I[782] = (T)(img)(_p8##x,_n10##y,z,c), I[783] = (T)(img)(_p7##x,_n10##y,z,c), I[784] = (T)(img)(_p6##x,_n10##y,z,c), I[785] = (T)(img)(_p5##x,_n10##y,z,c), I[786] = (T)(img)(_p4##x,_n10##y,z,c), I[787] = (T)(img)(_p3##x,_n10##y,z,c), I[788] = (T)(img)(_p2##x,_n10##y,z,c), I[789] = (T)(img)(_p1##x,_n10##y,z,c), I[790] = (T)(img)(x,_n10##y,z,c), I[791] = (T)(img)(_n1##x,_n10##y,z,c), I[792] = (T)(img)(_n2##x,_n10##y,z,c), I[793] = (T)(img)(_n3##x,_n10##y,z,c), I[794] = (T)(img)(_n4##x,_n10##y,z,c), I[795] = (T)(img)(_n5##x,_n10##y,z,c), I[796] = (T)(img)(_n6##x,_n10##y,z,c), I[797] = (T)(img)(_n7##x,_n10##y,z,c), I[798] = (T)(img)(_n8##x,_n10##y,z,c), I[799] = (T)(img)(_n9##x,_n10##y,z,c), I[800] = (T)(img)(_n10##x,_n10##y,z,c), I[801] = (T)(img)(_n11##x,_n10##y,z,c), I[802] = (T)(img)(_n12##x,_n10##y,z,c), I[803] = (T)(img)(_n13##x,_n10##y,z,c), I[804] = (T)(img)(_n14##x,_n10##y,z,c), I[805] = (T)(img)(_n15##x,_n10##y,z,c), \
I[806] = (T)(img)(_p15##x,_n11##y,z,c), I[807] = (T)(img)(_p14##x,_n11##y,z,c), I[808] = (T)(img)(_p13##x,_n11##y,z,c), I[809] = (T)(img)(_p12##x,_n11##y,z,c), I[810] = (T)(img)(_p11##x,_n11##y,z,c), I[811] = (T)(img)(_p10##x,_n11##y,z,c), I[812] = (T)(img)(_p9##x,_n11##y,z,c), I[813] = (T)(img)(_p8##x,_n11##y,z,c), I[814] = (T)(img)(_p7##x,_n11##y,z,c), I[815] = (T)(img)(_p6##x,_n11##y,z,c), I[816] = (T)(img)(_p5##x,_n11##y,z,c), I[817] = (T)(img)(_p4##x,_n11##y,z,c), I[818] = (T)(img)(_p3##x,_n11##y,z,c), I[819] = (T)(img)(_p2##x,_n11##y,z,c), I[820] = (T)(img)(_p1##x,_n11##y,z,c), I[821] = (T)(img)(x,_n11##y,z,c), I[822] = (T)(img)(_n1##x,_n11##y,z,c), I[823] = (T)(img)(_n2##x,_n11##y,z,c), I[824] = (T)(img)(_n3##x,_n11##y,z,c), I[825] = (T)(img)(_n4##x,_n11##y,z,c), I[826] = (T)(img)(_n5##x,_n11##y,z,c), I[827] = (T)(img)(_n6##x,_n11##y,z,c), I[828] = (T)(img)(_n7##x,_n11##y,z,c), I[829] = (T)(img)(_n8##x,_n11##y,z,c), I[830] = (T)(img)(_n9##x,_n11##y,z,c), I[831] = (T)(img)(_n10##x,_n11##y,z,c), I[832] = (T)(img)(_n11##x,_n11##y,z,c), I[833] = (T)(img)(_n12##x,_n11##y,z,c), I[834] = (T)(img)(_n13##x,_n11##y,z,c), I[835] = (T)(img)(_n14##x,_n11##y,z,c), I[836] = (T)(img)(_n15##x,_n11##y,z,c), \
I[837] = (T)(img)(_p15##x,_n12##y,z,c), I[838] = (T)(img)(_p14##x,_n12##y,z,c), I[839] = (T)(img)(_p13##x,_n12##y,z,c), I[840] = (T)(img)(_p12##x,_n12##y,z,c), I[841] = (T)(img)(_p11##x,_n12##y,z,c), I[842] = (T)(img)(_p10##x,_n12##y,z,c), I[843] = (T)(img)(_p9##x,_n12##y,z,c), I[844] = (T)(img)(_p8##x,_n12##y,z,c), I[845] = (T)(img)(_p7##x,_n12##y,z,c), I[846] = (T)(img)(_p6##x,_n12##y,z,c), I[847] = (T)(img)(_p5##x,_n12##y,z,c), I[848] = (T)(img)(_p4##x,_n12##y,z,c), I[849] = (T)(img)(_p3##x,_n12##y,z,c), I[850] = (T)(img)(_p2##x,_n12##y,z,c), I[851] = (T)(img)(_p1##x,_n12##y,z,c), I[852] = (T)(img)(x,_n12##y,z,c), I[853] = (T)(img)(_n1##x,_n12##y,z,c), I[854] = (T)(img)(_n2##x,_n12##y,z,c), I[855] = (T)(img)(_n3##x,_n12##y,z,c), I[856] = (T)(img)(_n4##x,_n12##y,z,c), I[857] = (T)(img)(_n5##x,_n12##y,z,c), I[858] = (T)(img)(_n6##x,_n12##y,z,c), I[859] = (T)(img)(_n7##x,_n12##y,z,c), I[860] = (T)(img)(_n8##x,_n12##y,z,c), I[861] = (T)(img)(_n9##x,_n12##y,z,c), I[862] = (T)(img)(_n10##x,_n12##y,z,c), I[863] = (T)(img)(_n11##x,_n12##y,z,c), I[864] = (T)(img)(_n12##x,_n12##y,z,c), I[865] = (T)(img)(_n13##x,_n12##y,z,c), I[866] = (T)(img)(_n14##x,_n12##y,z,c), I[867] = (T)(img)(_n15##x,_n12##y,z,c), \
I[868] = (T)(img)(_p15##x,_n13##y,z,c), I[869] = (T)(img)(_p14##x,_n13##y,z,c), I[870] = (T)(img)(_p13##x,_n13##y,z,c), I[871] = (T)(img)(_p12##x,_n13##y,z,c), I[872] = (T)(img)(_p11##x,_n13##y,z,c), I[873] = (T)(img)(_p10##x,_n13##y,z,c), I[874] = (T)(img)(_p9##x,_n13##y,z,c), I[875] = (T)(img)(_p8##x,_n13##y,z,c), I[876] = (T)(img)(_p7##x,_n13##y,z,c), I[877] = (T)(img)(_p6##x,_n13##y,z,c), I[878] = (T)(img)(_p5##x,_n13##y,z,c), I[879] = (T)(img)(_p4##x,_n13##y,z,c), I[880] = (T)(img)(_p3##x,_n13##y,z,c), I[881] = (T)(img)(_p2##x,_n13##y,z,c), I[882] = (T)(img)(_p1##x,_n13##y,z,c), I[883] = (T)(img)(x,_n13##y,z,c), I[884] = (T)(img)(_n1##x,_n13##y,z,c), I[885] = (T)(img)(_n2##x,_n13##y,z,c), I[886] = (T)(img)(_n3##x,_n13##y,z,c), I[887] = (T)(img)(_n4##x,_n13##y,z,c), I[888] = (T)(img)(_n5##x,_n13##y,z,c), I[889] = (T)(img)(_n6##x,_n13##y,z,c), I[890] = (T)(img)(_n7##x,_n13##y,z,c), I[891] = (T)(img)(_n8##x,_n13##y,z,c), I[892] = (T)(img)(_n9##x,_n13##y,z,c), I[893] = (T)(img)(_n10##x,_n13##y,z,c), I[894] = (T)(img)(_n11##x,_n13##y,z,c), I[895] = (T)(img)(_n12##x,_n13##y,z,c), I[896] = (T)(img)(_n13##x,_n13##y,z,c), I[897] = (T)(img)(_n14##x,_n13##y,z,c), I[898] = (T)(img)(_n15##x,_n13##y,z,c), \
I[899] = (T)(img)(_p15##x,_n14##y,z,c), I[900] = (T)(img)(_p14##x,_n14##y,z,c), I[901] = (T)(img)(_p13##x,_n14##y,z,c), I[902] = (T)(img)(_p12##x,_n14##y,z,c), I[903] = (T)(img)(_p11##x,_n14##y,z,c), I[904] = (T)(img)(_p10##x,_n14##y,z,c), I[905] = (T)(img)(_p9##x,_n14##y,z,c), I[906] = (T)(img)(_p8##x,_n14##y,z,c), I[907] = (T)(img)(_p7##x,_n14##y,z,c), I[908] = (T)(img)(_p6##x,_n14##y,z,c), I[909] = (T)(img)(_p5##x,_n14##y,z,c), I[910] = (T)(img)(_p4##x,_n14##y,z,c), I[911] = (T)(img)(_p3##x,_n14##y,z,c), I[912] = (T)(img)(_p2##x,_n14##y,z,c), I[913] = (T)(img)(_p1##x,_n14##y,z,c), I[914] = (T)(img)(x,_n14##y,z,c), I[915] = (T)(img)(_n1##x,_n14##y,z,c), I[916] = (T)(img)(_n2##x,_n14##y,z,c), I[917] = (T)(img)(_n3##x,_n14##y,z,c), I[918] = (T)(img)(_n4##x,_n14##y,z,c), I[919] = (T)(img)(_n5##x,_n14##y,z,c), I[920] = (T)(img)(_n6##x,_n14##y,z,c), I[921] = (T)(img)(_n7##x,_n14##y,z,c), I[922] = (T)(img)(_n8##x,_n14##y,z,c), I[923] = (T)(img)(_n9##x,_n14##y,z,c), I[924] = (T)(img)(_n10##x,_n14##y,z,c), I[925] = (T)(img)(_n11##x,_n14##y,z,c), I[926] = (T)(img)(_n12##x,_n14##y,z,c), I[927] = (T)(img)(_n13##x,_n14##y,z,c), I[928] = (T)(img)(_n14##x,_n14##y,z,c), I[929] = (T)(img)(_n15##x,_n14##y,z,c), \
I[930] = (T)(img)(_p15##x,_n15##y,z,c), I[931] = (T)(img)(_p14##x,_n15##y,z,c), I[932] = (T)(img)(_p13##x,_n15##y,z,c), I[933] = (T)(img)(_p12##x,_n15##y,z,c), I[934] = (T)(img)(_p11##x,_n15##y,z,c), I[935] = (T)(img)(_p10##x,_n15##y,z,c), I[936] = (T)(img)(_p9##x,_n15##y,z,c), I[937] = (T)(img)(_p8##x,_n15##y,z,c), I[938] = (T)(img)(_p7##x,_n15##y,z,c), I[939] = (T)(img)(_p6##x,_n15##y,z,c), I[940] = (T)(img)(_p5##x,_n15##y,z,c), I[941] = (T)(img)(_p4##x,_n15##y,z,c), I[942] = (T)(img)(_p3##x,_n15##y,z,c), I[943] = (T)(img)(_p2##x,_n15##y,z,c), I[944] = (T)(img)(_p1##x,_n15##y,z,c), I[945] = (T)(img)(x,_n15##y,z,c), I[946] = (T)(img)(_n1##x,_n15##y,z,c), I[947] = (T)(img)(_n2##x,_n15##y,z,c), I[948] = (T)(img)(_n3##x,_n15##y,z,c), I[949] = (T)(img)(_n4##x,_n15##y,z,c), I[950] = (T)(img)(_n5##x,_n15##y,z,c), I[951] = (T)(img)(_n6##x,_n15##y,z,c), I[952] = (T)(img)(_n7##x,_n15##y,z,c), I[953] = (T)(img)(_n8##x,_n15##y,z,c), I[954] = (T)(img)(_n9##x,_n15##y,z,c), I[955] = (T)(img)(_n10##x,_n15##y,z,c), I[956] = (T)(img)(_n11##x,_n15##y,z,c), I[957] = (T)(img)(_n12##x,_n15##y,z,c), I[958] = (T)(img)(_n13##x,_n15##y,z,c), I[959] = (T)(img)(_n14##x,_n15##y,z,c), I[960] = (T)(img)(_n15##x,_n15##y,z,c);
// Define 32x32 loop macros
//-------------------------
#define cimg_for32(bound,i) for (int i = 0, \
_p15##i = 0, _p14##i = 0, _p13##i = 0, _p12##i = 0, _p11##i = 0, _p10##i = 0, _p9##i = 0, _p8##i = 0, _p7##i = 0, _p6##i = 0, _p5##i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \
_n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \
_n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \
_n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \
_n4##i = 4>=(int)(bound)?(int)(bound) - 1:4, \
_n5##i = 5>=(int)(bound)?(int)(bound) - 1:5, \
_n6##i = 6>=(int)(bound)?(int)(bound) - 1:6, \
_n7##i = 7>=(int)(bound)?(int)(bound) - 1:7, \
_n8##i = 8>=(int)(bound)?(int)(bound) - 1:8, \
_n9##i = 9>=(int)(bound)?(int)(bound) - 1:9, \
_n10##i = 10>=(int)(bound)?(int)(bound) - 1:10, \
_n11##i = 11>=(int)(bound)?(int)(bound) - 1:11, \
_n12##i = 12>=(int)(bound)?(int)(bound) - 1:12, \
_n13##i = 13>=(int)(bound)?(int)(bound) - 1:13, \
_n14##i = 14>=(int)(bound)?(int)(bound) - 1:14, \
_n15##i = 15>=(int)(bound)?(int)(bound) - 1:15, \
_n16##i = 16>=(int)(bound)?(int)(bound) - 1:16; \
_n16##i<(int)(bound) || _n15##i==--_n16##i || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n16##i = _n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i); \
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i, ++_n16##i)
#define cimg_for32X(img,x) cimg_for32((img)._width,x)
#define cimg_for32Y(img,y) cimg_for32((img)._height,y)
#define cimg_for32Z(img,z) cimg_for32((img)._depth,z)
#define cimg_for32C(img,c) cimg_for32((img)._spectrum,c)
#define cimg_for32XY(img,x,y) cimg_for32Y(img,y) cimg_for32X(img,x)
#define cimg_for32XZ(img,x,z) cimg_for32Z(img,z) cimg_for32X(img,x)
#define cimg_for32XC(img,x,c) cimg_for32C(img,c) cimg_for32X(img,x)
#define cimg_for32YZ(img,y,z) cimg_for32Z(img,z) cimg_for32Y(img,y)
#define cimg_for32YC(img,y,c) cimg_for32C(img,c) cimg_for32Y(img,y)
#define cimg_for32ZC(img,z,c) cimg_for32C(img,c) cimg_for32Z(img,z)
#define cimg_for32XYZ(img,x,y,z) cimg_for32Z(img,z) cimg_for32XY(img,x,y)
#define cimg_for32XZC(img,x,z,c) cimg_for32C(img,c) cimg_for32XZ(img,x,z)
#define cimg_for32YZC(img,y,z,c) cimg_for32C(img,c) cimg_for32YZ(img,y,z)
#define cimg_for32XYZC(img,x,y,z,c) cimg_for32C(img,c) cimg_for32XYZ(img,x,y,z)
#define cimg_for_in32(bound,i0,i1,i) for (int i = (int)(i0)<0?0:(int)(i0), \
_p15##i = i - 15<0?0:i - 15, \
_p14##i = i - 14<0?0:i - 14, \
_p13##i = i - 13<0?0:i - 13, \
_p12##i = i - 12<0?0:i - 12, \
_p11##i = i - 11<0?0:i - 11, \
_p10##i = i - 10<0?0:i - 10, \
_p9##i = i - 9<0?0:i - 9, \
_p8##i = i - 8<0?0:i - 8, \
_p7##i = i - 7<0?0:i - 7, \
_p6##i = i - 6<0?0:i - 6, \
_p5##i = i - 5<0?0:i - 5, \
_p4##i = i - 4<0?0:i - 4, \
_p3##i = i - 3<0?0:i - 3, \
_p2##i = i - 2<0?0:i - 2, \
_p1##i = i - 1<0?0:i - 1, \
_n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \
_n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \
_n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \
_n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4, \
_n5##i = i + 5>=(int)(bound)?(int)(bound) - 1:i + 5, \
_n6##i = i + 6>=(int)(bound)?(int)(bound) - 1:i + 6, \
_n7##i = i + 7>=(int)(bound)?(int)(bound) - 1:i + 7, \
_n8##i = i + 8>=(int)(bound)?(int)(bound) - 1:i + 8, \
_n9##i = i + 9>=(int)(bound)?(int)(bound) - 1:i + 9, \
_n10##i = i + 10>=(int)(bound)?(int)(bound) - 1:i + 10, \
_n11##i = i + 11>=(int)(bound)?(int)(bound) - 1:i + 11, \
_n12##i = i + 12>=(int)(bound)?(int)(bound) - 1:i + 12, \
_n13##i = i + 13>=(int)(bound)?(int)(bound) - 1:i + 13, \
_n14##i = i + 14>=(int)(bound)?(int)(bound) - 1:i + 14, \
_n15##i = i + 15>=(int)(bound)?(int)(bound) - 1:i + 15, \
_n16##i = i + 16>=(int)(bound)?(int)(bound) - 1:i + 16; \
i<=(int)(i1) && (_n16##i<(int)(bound) || _n15##i==--_n16##i || _n14##i==--_n15##i || _n13##i==--_n14##i || _n12##i==--_n13##i || _n11##i==--_n12##i || _n10##i==--_n11##i || _n9##i==--_n10##i || _n8##i==--_n9##i || _n7##i==--_n8##i || _n6##i==--_n7##i || _n5##i==--_n6##i || _n4##i==--_n5##i || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \
i==(_n16##i = _n15##i = _n14##i = _n13##i = _n12##i = _n11##i = _n10##i = _n9##i = _n8##i = _n7##i = _n6##i = _n5##i = _n4##i = _n3##i = _n2##i = --_n1##i)); \
_p15##i = _p14##i, _p14##i = _p13##i, _p13##i = _p12##i, _p12##i = _p11##i, _p11##i = _p10##i, _p10##i = _p9##i, _p9##i = _p8##i, _p8##i = _p7##i, _p7##i = _p6##i, _p6##i = _p5##i, _p5##i = _p4##i, _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, \
++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i, ++_n5##i, ++_n6##i, ++_n7##i, ++_n8##i, ++_n9##i, ++_n10##i, ++_n11##i, ++_n12##i, ++_n13##i, ++_n14##i, ++_n15##i, ++_n16##i)
#define cimg_for_in32X(img,x0,x1,x) cimg_for_in32((img)._width,x0,x1,x)
#define cimg_for_in32Y(img,y0,y1,y) cimg_for_in32((img)._height,y0,y1,y)
#define cimg_for_in32Z(img,z0,z1,z) cimg_for_in32((img)._depth,z0,z1,z)
#define cimg_for_in32C(img,c0,c1,c) cimg_for_in32((img)._spectrum,c0,c1,c)
#define cimg_for_in32XY(img,x0,y0,x1,y1,x,y) cimg_for_in32Y(img,y0,y1,y) cimg_for_in32X(img,x0,x1,x)
#define cimg_for_in32XZ(img,x0,z0,x1,z1,x,z) cimg_for_in32Z(img,z0,z1,z) cimg_for_in32X(img,x0,x1,x)
#define cimg_for_in32XC(img,x0,c0,x1,c1,x,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32X(img,x0,x1,x)
#define cimg_for_in32YZ(img,y0,z0,y1,z1,y,z) cimg_for_in32Z(img,z0,z1,z) cimg_for_in32Y(img,y0,y1,y)
#define cimg_for_in32YC(img,y0,c0,y1,c1,y,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32Y(img,y0,y1,y)
#define cimg_for_in32ZC(img,z0,c0,z1,c1,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32Z(img,z0,z1,z)
#define cimg_for_in32XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in32Z(img,z0,z1,z) cimg_for_in32XY(img,x0,y0,x1,y1,x,y)
#define cimg_for_in32XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32XZ(img,x0,y0,x1,y1,x,z)
#define cimg_for_in32YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32YZ(img,y0,z0,y1,z1,y,z)
#define cimg_for_in32XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) cimg_for_in32C(img,c0,c1,c) cimg_for_in32XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z)
#define cimg_for32x32(img,x,y,z,c,I,T) \
cimg_for32((img)._height,y) for (int x = 0, \
_p15##x = 0, _p14##x = 0, _p13##x = 0, _p12##x = 0, _p11##x = 0, _p10##x = 0, _p9##x = 0, _p8##x = 0, _p7##x = 0, _p6##x = 0, _p5##x = 0, _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = 4>=((img)._width)?(img).width() - 1:4, \
_n5##x = 5>=((img)._width)?(img).width() - 1:5, \
_n6##x = 6>=((img)._width)?(img).width() - 1:6, \
_n7##x = 7>=((img)._width)?(img).width() - 1:7, \
_n8##x = 8>=((img)._width)?(img).width() - 1:8, \
_n9##x = 9>=((img)._width)?(img).width() - 1:9, \
_n10##x = 10>=((img)._width)?(img).width() - 1:10, \
_n11##x = 11>=((img)._width)?(img).width() - 1:11, \
_n12##x = 12>=((img)._width)?(img).width() - 1:12, \
_n13##x = 13>=((img)._width)?(img).width() - 1:13, \
_n14##x = 14>=((img)._width)?(img).width() - 1:14, \
_n15##x = 15>=((img)._width)?(img).width() - 1:15, \
_n16##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = I[4] = I[5] = I[6] = I[7] = I[8] = I[9] = I[10] = I[11] = I[12] = I[13] = I[14] = I[15] = (T)(img)(0,_p15##y,z,c)), \
(I[32] = I[33] = I[34] = I[35] = I[36] = I[37] = I[38] = I[39] = I[40] = I[41] = I[42] = I[43] = I[44] = I[45] = I[46] = I[47] = (T)(img)(0,_p14##y,z,c)), \
(I[64] = I[65] = I[66] = I[67] = I[68] = I[69] = I[70] = I[71] = I[72] = I[73] = I[74] = I[75] = I[76] = I[77] = I[78] = I[79] = (T)(img)(0,_p13##y,z,c)), \
(I[96] = I[97] = I[98] = I[99] = I[100] = I[101] = I[102] = I[103] = I[104] = I[105] = I[106] = I[107] = I[108] = I[109] = I[110] = I[111] = (T)(img)(0,_p12##y,z,c)), \
(I[128] = I[129] = I[130] = I[131] = I[132] = I[133] = I[134] = I[135] = I[136] = I[137] = I[138] = I[139] = I[140] = I[141] = I[142] = I[143] = (T)(img)(0,_p11##y,z,c)), \
(I[160] = I[161] = I[162] = I[163] = I[164] = I[165] = I[166] = I[167] = I[168] = I[169] = I[170] = I[171] = I[172] = I[173] = I[174] = I[175] = (T)(img)(0,_p10##y,z,c)), \
(I[192] = I[193] = I[194] = I[195] = I[196] = I[197] = I[198] = I[199] = I[200] = I[201] = I[202] = I[203] = I[204] = I[205] = I[206] = I[207] = (T)(img)(0,_p9##y,z,c)), \
(I[224] = I[225] = I[226] = I[227] = I[228] = I[229] = I[230] = I[231] = I[232] = I[233] = I[234] = I[235] = I[236] = I[237] = I[238] = I[239] = (T)(img)(0,_p8##y,z,c)), \
(I[256] = I[257] = I[258] = I[259] = I[260] = I[261] = I[262] = I[263] = I[264] = I[265] = I[266] = I[267] = I[268] = I[269] = I[270] = I[271] = (T)(img)(0,_p7##y,z,c)), \
(I[288] = I[289] = I[290] = I[291] = I[292] = I[293] = I[294] = I[295] = I[296] = I[297] = I[298] = I[299] = I[300] = I[301] = I[302] = I[303] = (T)(img)(0,_p6##y,z,c)), \
(I[320] = I[321] = I[322] = I[323] = I[324] = I[325] = I[326] = I[327] = I[328] = I[329] = I[330] = I[331] = I[332] = I[333] = I[334] = I[335] = (T)(img)(0,_p5##y,z,c)), \
(I[352] = I[353] = I[354] = I[355] = I[356] = I[357] = I[358] = I[359] = I[360] = I[361] = I[362] = I[363] = I[364] = I[365] = I[366] = I[367] = (T)(img)(0,_p4##y,z,c)), \
(I[384] = I[385] = I[386] = I[387] = I[388] = I[389] = I[390] = I[391] = I[392] = I[393] = I[394] = I[395] = I[396] = I[397] = I[398] = I[399] = (T)(img)(0,_p3##y,z,c)), \
(I[416] = I[417] = I[418] = I[419] = I[420] = I[421] = I[422] = I[423] = I[424] = I[425] = I[426] = I[427] = I[428] = I[429] = I[430] = I[431] = (T)(img)(0,_p2##y,z,c)), \
(I[448] = I[449] = I[450] = I[451] = I[452] = I[453] = I[454] = I[455] = I[456] = I[457] = I[458] = I[459] = I[460] = I[461] = I[462] = I[463] = (T)(img)(0,_p1##y,z,c)), \
(I[480] = I[481] = I[482] = I[483] = I[484] = I[485] = I[486] = I[487] = I[488] = I[489] = I[490] = I[491] = I[492] = I[493] = I[494] = I[495] = (T)(img)(0,y,z,c)), \
(I[512] = I[513] = I[514] = I[515] = I[516] = I[517] = I[518] = I[519] = I[520] = I[521] = I[522] = I[523] = I[524] = I[525] = I[526] = I[527] = (T)(img)(0,_n1##y,z,c)), \
(I[544] = I[545] = I[546] = I[547] = I[548] = I[549] = I[550] = I[551] = I[552] = I[553] = I[554] = I[555] = I[556] = I[557] = I[558] = I[559] = (T)(img)(0,_n2##y,z,c)), \
(I[576] = I[577] = I[578] = I[579] = I[580] = I[581] = I[582] = I[583] = I[584] = I[585] = I[586] = I[587] = I[588] = I[589] = I[590] = I[591] = (T)(img)(0,_n3##y,z,c)), \
(I[608] = I[609] = I[610] = I[611] = I[612] = I[613] = I[614] = I[615] = I[616] = I[617] = I[618] = I[619] = I[620] = I[621] = I[622] = I[623] = (T)(img)(0,_n4##y,z,c)), \
(I[640] = I[641] = I[642] = I[643] = I[644] = I[645] = I[646] = I[647] = I[648] = I[649] = I[650] = I[651] = I[652] = I[653] = I[654] = I[655] = (T)(img)(0,_n5##y,z,c)), \
(I[672] = I[673] = I[674] = I[675] = I[676] = I[677] = I[678] = I[679] = I[680] = I[681] = I[682] = I[683] = I[684] = I[685] = I[686] = I[687] = (T)(img)(0,_n6##y,z,c)), \
(I[704] = I[705] = I[706] = I[707] = I[708] = I[709] = I[710] = I[711] = I[712] = I[713] = I[714] = I[715] = I[716] = I[717] = I[718] = I[719] = (T)(img)(0,_n7##y,z,c)), \
(I[736] = I[737] = I[738] = I[739] = I[740] = I[741] = I[742] = I[743] = I[744] = I[745] = I[746] = I[747] = I[748] = I[749] = I[750] = I[751] = (T)(img)(0,_n8##y,z,c)), \
(I[768] = I[769] = I[770] = I[771] = I[772] = I[773] = I[774] = I[775] = I[776] = I[777] = I[778] = I[779] = I[780] = I[781] = I[782] = I[783] = (T)(img)(0,_n9##y,z,c)), \
(I[800] = I[801] = I[802] = I[803] = I[804] = I[805] = I[806] = I[807] = I[808] = I[809] = I[810] = I[811] = I[812] = I[813] = I[814] = I[815] = (T)(img)(0,_n10##y,z,c)), \
(I[832] = I[833] = I[834] = I[835] = I[836] = I[837] = I[838] = I[839] = I[840] = I[841] = I[842] = I[843] = I[844] = I[845] = I[846] = I[847] = (T)(img)(0,_n11##y,z,c)), \
(I[864] = I[865] = I[866] = I[867] = I[868] = I[869] = I[870] = I[871] = I[872] = I[873] = I[874] = I[875] = I[876] = I[877] = I[878] = I[879] = (T)(img)(0,_n12##y,z,c)), \
(I[896] = I[897] = I[898] = I[899] = I[900] = I[901] = I[902] = I[903] = I[904] = I[905] = I[906] = I[907] = I[908] = I[909] = I[910] = I[911] = (T)(img)(0,_n13##y,z,c)), \
(I[928] = I[929] = I[930] = I[931] = I[932] = I[933] = I[934] = I[935] = I[936] = I[937] = I[938] = I[939] = I[940] = I[941] = I[942] = I[943] = (T)(img)(0,_n14##y,z,c)), \
(I[960] = I[961] = I[962] = I[963] = I[964] = I[965] = I[966] = I[967] = I[968] = I[969] = I[970] = I[971] = I[972] = I[973] = I[974] = I[975] = (T)(img)(0,_n15##y,z,c)), \
(I[992] = I[993] = I[994] = I[995] = I[996] = I[997] = I[998] = I[999] = I[1000] = I[1001] = I[1002] = I[1003] = I[1004] = I[1005] = I[1006] = I[1007] = (T)(img)(0,_n16##y,z,c)), \
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
(I[48] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[80] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[112] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[144] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[176] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[208] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[240] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[272] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[304] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[336] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[368] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[400] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[432] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[464] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[496] = (T)(img)(_n1##x,y,z,c)), \
(I[528] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[560] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[592] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[624] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[656] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[688] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[720] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[752] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[784] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[816] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[848] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[880] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[912] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[944] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[976] = (T)(img)(_n1##x,_n15##y,z,c)), \
(I[1008] = (T)(img)(_n1##x,_n16##y,z,c)), \
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
(I[49] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[81] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[113] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[145] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[177] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[209] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[241] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[273] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[305] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[337] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[369] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[401] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[433] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[465] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[497] = (T)(img)(_n2##x,y,z,c)), \
(I[529] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[561] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[593] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[625] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[657] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[689] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[721] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[753] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[785] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[817] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[849] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[881] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[913] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[945] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[977] = (T)(img)(_n2##x,_n15##y,z,c)), \
(I[1009] = (T)(img)(_n2##x,_n16##y,z,c)), \
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
(I[50] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[82] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[114] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[146] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[178] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[210] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[242] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[274] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[306] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[338] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[370] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[402] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[434] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[466] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[498] = (T)(img)(_n3##x,y,z,c)), \
(I[530] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[562] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[594] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[626] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[658] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[690] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[722] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[754] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[786] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[818] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[850] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[882] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[914] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[946] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[978] = (T)(img)(_n3##x,_n15##y,z,c)), \
(I[1010] = (T)(img)(_n3##x,_n16##y,z,c)), \
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
(I[51] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[83] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[115] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[147] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[179] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[211] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[243] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[275] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[307] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[339] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[371] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[403] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[435] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[467] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[499] = (T)(img)(_n4##x,y,z,c)), \
(I[531] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[563] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[595] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[627] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[659] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[691] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[723] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[755] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[787] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[819] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[851] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[883] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[915] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[947] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[979] = (T)(img)(_n4##x,_n15##y,z,c)), \
(I[1011] = (T)(img)(_n4##x,_n16##y,z,c)), \
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
(I[52] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[84] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[116] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[148] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[180] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[212] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[244] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[276] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[308] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[340] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[372] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[404] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[436] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[468] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[500] = (T)(img)(_n5##x,y,z,c)), \
(I[532] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[564] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[596] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[628] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[660] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[692] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[724] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[756] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[788] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[820] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[852] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[884] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[916] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[948] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[980] = (T)(img)(_n5##x,_n15##y,z,c)), \
(I[1012] = (T)(img)(_n5##x,_n16##y,z,c)), \
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
(I[53] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[85] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[117] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[149] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[181] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[213] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[245] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[277] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[309] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[341] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[373] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[405] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[437] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[469] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[501] = (T)(img)(_n6##x,y,z,c)), \
(I[533] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[565] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[597] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[629] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[661] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[693] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[725] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[757] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[789] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[821] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[853] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[885] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[917] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[949] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[981] = (T)(img)(_n6##x,_n15##y,z,c)), \
(I[1013] = (T)(img)(_n6##x,_n16##y,z,c)), \
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
(I[54] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[86] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[118] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[150] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[182] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[214] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[246] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[278] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[310] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[342] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[374] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[406] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[438] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[470] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[502] = (T)(img)(_n7##x,y,z,c)), \
(I[534] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[566] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[598] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[630] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[662] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[694] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[726] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[758] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[790] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[822] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[854] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[886] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[918] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[950] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[982] = (T)(img)(_n7##x,_n15##y,z,c)), \
(I[1014] = (T)(img)(_n7##x,_n16##y,z,c)), \
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
(I[55] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[87] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[119] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[151] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[183] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[215] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[247] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[279] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[311] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[343] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[375] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[407] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[439] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[471] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[503] = (T)(img)(_n8##x,y,z,c)), \
(I[535] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[567] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[599] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[631] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[663] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[695] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[727] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[759] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[791] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[823] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[855] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[887] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[919] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[951] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[983] = (T)(img)(_n8##x,_n15##y,z,c)), \
(I[1015] = (T)(img)(_n8##x,_n16##y,z,c)), \
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
(I[56] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[88] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[120] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[152] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[184] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[216] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[248] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[280] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[312] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[344] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[376] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[408] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[440] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[472] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[504] = (T)(img)(_n9##x,y,z,c)), \
(I[536] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[568] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[600] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[632] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[664] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[696] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[728] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[760] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[792] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[824] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[856] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[888] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[920] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[952] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[984] = (T)(img)(_n9##x,_n15##y,z,c)), \
(I[1016] = (T)(img)(_n9##x,_n16##y,z,c)), \
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
(I[57] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[89] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[121] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[153] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[185] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[217] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[249] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[281] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[313] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[345] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[377] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[409] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[441] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[473] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[505] = (T)(img)(_n10##x,y,z,c)), \
(I[537] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[569] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[601] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[633] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[665] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[697] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[729] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[761] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[793] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[825] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[857] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[889] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[921] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[953] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[985] = (T)(img)(_n10##x,_n15##y,z,c)), \
(I[1017] = (T)(img)(_n10##x,_n16##y,z,c)), \
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
(I[58] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[90] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[122] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[154] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[186] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[218] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[250] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[282] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[314] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[346] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[378] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[410] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[442] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[474] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[506] = (T)(img)(_n11##x,y,z,c)), \
(I[538] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[570] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[602] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[634] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[666] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[698] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[730] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[762] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[794] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[826] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[858] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[890] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[922] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[954] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[986] = (T)(img)(_n11##x,_n15##y,z,c)), \
(I[1018] = (T)(img)(_n11##x,_n16##y,z,c)), \
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
(I[59] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[91] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[123] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[155] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[187] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[219] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[251] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[283] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[315] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[347] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[379] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[411] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[443] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[475] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[507] = (T)(img)(_n12##x,y,z,c)), \
(I[539] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[571] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[603] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[635] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[667] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[699] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[731] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[763] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[795] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[827] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[859] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[891] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[923] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[955] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[987] = (T)(img)(_n12##x,_n15##y,z,c)), \
(I[1019] = (T)(img)(_n12##x,_n16##y,z,c)), \
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
(I[60] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[92] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[124] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[156] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[188] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[220] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[252] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[284] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[316] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[348] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[380] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[412] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[444] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[476] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[508] = (T)(img)(_n13##x,y,z,c)), \
(I[540] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[572] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[604] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[636] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[668] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[700] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[732] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[764] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[796] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[828] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[860] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[892] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[924] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[956] = (T)(img)(_n13##x,_n14##y,z,c)), \
(I[988] = (T)(img)(_n13##x,_n15##y,z,c)), \
(I[1020] = (T)(img)(_n13##x,_n16##y,z,c)), \
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
(I[61] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[93] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[125] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[157] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[189] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[221] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[253] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[285] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[317] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[349] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[381] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[413] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[445] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[477] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[509] = (T)(img)(_n14##x,y,z,c)), \
(I[541] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[573] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[605] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[637] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[669] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[701] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[733] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[765] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[797] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[829] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[861] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[893] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[925] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[957] = (T)(img)(_n14##x,_n14##y,z,c)), \
(I[989] = (T)(img)(_n14##x,_n15##y,z,c)), \
(I[1021] = (T)(img)(_n14##x,_n16##y,z,c)), \
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
(I[62] = (T)(img)(_n15##x,_p14##y,z,c)), \
(I[94] = (T)(img)(_n15##x,_p13##y,z,c)), \
(I[126] = (T)(img)(_n15##x,_p12##y,z,c)), \
(I[158] = (T)(img)(_n15##x,_p11##y,z,c)), \
(I[190] = (T)(img)(_n15##x,_p10##y,z,c)), \
(I[222] = (T)(img)(_n15##x,_p9##y,z,c)), \
(I[254] = (T)(img)(_n15##x,_p8##y,z,c)), \
(I[286] = (T)(img)(_n15##x,_p7##y,z,c)), \
(I[318] = (T)(img)(_n15##x,_p6##y,z,c)), \
(I[350] = (T)(img)(_n15##x,_p5##y,z,c)), \
(I[382] = (T)(img)(_n15##x,_p4##y,z,c)), \
(I[414] = (T)(img)(_n15##x,_p3##y,z,c)), \
(I[446] = (T)(img)(_n15##x,_p2##y,z,c)), \
(I[478] = (T)(img)(_n15##x,_p1##y,z,c)), \
(I[510] = (T)(img)(_n15##x,y,z,c)), \
(I[542] = (T)(img)(_n15##x,_n1##y,z,c)), \
(I[574] = (T)(img)(_n15##x,_n2##y,z,c)), \
(I[606] = (T)(img)(_n15##x,_n3##y,z,c)), \
(I[638] = (T)(img)(_n15##x,_n4##y,z,c)), \
(I[670] = (T)(img)(_n15##x,_n5##y,z,c)), \
(I[702] = (T)(img)(_n15##x,_n6##y,z,c)), \
(I[734] = (T)(img)(_n15##x,_n7##y,z,c)), \
(I[766] = (T)(img)(_n15##x,_n8##y,z,c)), \
(I[798] = (T)(img)(_n15##x,_n9##y,z,c)), \
(I[830] = (T)(img)(_n15##x,_n10##y,z,c)), \
(I[862] = (T)(img)(_n15##x,_n11##y,z,c)), \
(I[894] = (T)(img)(_n15##x,_n12##y,z,c)), \
(I[926] = (T)(img)(_n15##x,_n13##y,z,c)), \
(I[958] = (T)(img)(_n15##x,_n14##y,z,c)), \
(I[990] = (T)(img)(_n15##x,_n15##y,z,c)), \
(I[1022] = (T)(img)(_n15##x,_n16##y,z,c)), \
16>=((img)._width)?(img).width() - 1:16); \
(_n16##x<(img).width() && ( \
(I[31] = (T)(img)(_n16##x,_p15##y,z,c)), \
(I[63] = (T)(img)(_n16##x,_p14##y,z,c)), \
(I[95] = (T)(img)(_n16##x,_p13##y,z,c)), \
(I[127] = (T)(img)(_n16##x,_p12##y,z,c)), \
(I[159] = (T)(img)(_n16##x,_p11##y,z,c)), \
(I[191] = (T)(img)(_n16##x,_p10##y,z,c)), \
(I[223] = (T)(img)(_n16##x,_p9##y,z,c)), \
(I[255] = (T)(img)(_n16##x,_p8##y,z,c)), \
(I[287] = (T)(img)(_n16##x,_p7##y,z,c)), \
(I[319] = (T)(img)(_n16##x,_p6##y,z,c)), \
(I[351] = (T)(img)(_n16##x,_p5##y,z,c)), \
(I[383] = (T)(img)(_n16##x,_p4##y,z,c)), \
(I[415] = (T)(img)(_n16##x,_p3##y,z,c)), \
(I[447] = (T)(img)(_n16##x,_p2##y,z,c)), \
(I[479] = (T)(img)(_n16##x,_p1##y,z,c)), \
(I[511] = (T)(img)(_n16##x,y,z,c)), \
(I[543] = (T)(img)(_n16##x,_n1##y,z,c)), \
(I[575] = (T)(img)(_n16##x,_n2##y,z,c)), \
(I[607] = (T)(img)(_n16##x,_n3##y,z,c)), \
(I[639] = (T)(img)(_n16##x,_n4##y,z,c)), \
(I[671] = (T)(img)(_n16##x,_n5##y,z,c)), \
(I[703] = (T)(img)(_n16##x,_n6##y,z,c)), \
(I[735] = (T)(img)(_n16##x,_n7##y,z,c)), \
(I[767] = (T)(img)(_n16##x,_n8##y,z,c)), \
(I[799] = (T)(img)(_n16##x,_n9##y,z,c)), \
(I[831] = (T)(img)(_n16##x,_n10##y,z,c)), \
(I[863] = (T)(img)(_n16##x,_n11##y,z,c)), \
(I[895] = (T)(img)(_n16##x,_n12##y,z,c)), \
(I[927] = (T)(img)(_n16##x,_n13##y,z,c)), \
(I[959] = (T)(img)(_n16##x,_n14##y,z,c)), \
(I[991] = (T)(img)(_n16##x,_n15##y,z,c)), \
(I[1023] = (T)(img)(_n16##x,_n16##y,z,c)),1)) || \
_n15##x==--_n16##x || _n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n16##x = _n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], \
I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], \
I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], \
I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], \
I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], \
I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], \
I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], \
I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], \
I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], \
I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], \
I[896] = I[897], I[897] = I[898], I[898] = I[899], I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], \
I[928] = I[929], I[929] = I[930], I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], \
I[960] = I[961], I[961] = I[962], I[962] = I[963], I[963] = I[964], I[964] = I[965], I[965] = I[966], I[966] = I[967], I[967] = I[968], I[968] = I[969], I[969] = I[970], I[970] = I[971], I[971] = I[972], I[972] = I[973], I[973] = I[974], I[974] = I[975], I[975] = I[976], I[976] = I[977], I[977] = I[978], I[978] = I[979], I[979] = I[980], I[980] = I[981], I[981] = I[982], I[982] = I[983], I[983] = I[984], I[984] = I[985], I[985] = I[986], I[986] = I[987], I[987] = I[988], I[988] = I[989], I[989] = I[990], I[990] = I[991], \
I[992] = I[993], I[993] = I[994], I[994] = I[995], I[995] = I[996], I[996] = I[997], I[997] = I[998], I[998] = I[999], I[999] = I[1000], I[1000] = I[1001], I[1001] = I[1002], I[1002] = I[1003], I[1003] = I[1004], I[1004] = I[1005], I[1005] = I[1006], I[1006] = I[1007], I[1007] = I[1008], I[1008] = I[1009], I[1009] = I[1010], I[1010] = I[1011], I[1011] = I[1012], I[1012] = I[1013], I[1013] = I[1014], I[1014] = I[1015], I[1015] = I[1016], I[1016] = I[1017], I[1017] = I[1018], I[1018] = I[1019], I[1019] = I[1020], I[1020] = I[1021], I[1021] = I[1022], I[1022] = I[1023], \
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x, ++_n16##x)
#define cimg_for_in32x32(img,x0,y0,x1,y1,x,y,z,c,I,T) \
cimg_for_in32((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p15##x = x - 15<0?0:x - 15, \
_p14##x = x - 14<0?0:x - 14, \
_p13##x = x - 13<0?0:x - 13, \
_p12##x = x - 12<0?0:x - 12, \
_p11##x = x - 11<0?0:x - 11, \
_p10##x = x - 10<0?0:x - 10, \
_p9##x = x - 9<0?0:x - 9, \
_p8##x = x - 8<0?0:x - 8, \
_p7##x = x - 7<0?0:x - 7, \
_p6##x = x - 6<0?0:x - 6, \
_p5##x = x - 5<0?0:x - 5, \
_p4##x = x - 4<0?0:x - 4, \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = x + 4>=(img).width()?(img).width() - 1:x + 4, \
_n5##x = x + 5>=(img).width()?(img).width() - 1:x + 5, \
_n6##x = x + 6>=(img).width()?(img).width() - 1:x + 6, \
_n7##x = x + 7>=(img).width()?(img).width() - 1:x + 7, \
_n8##x = x + 8>=(img).width()?(img).width() - 1:x + 8, \
_n9##x = x + 9>=(img).width()?(img).width() - 1:x + 9, \
_n10##x = x + 10>=(img).width()?(img).width() - 1:x + 10, \
_n11##x = x + 11>=(img).width()?(img).width() - 1:x + 11, \
_n12##x = x + 12>=(img).width()?(img).width() - 1:x + 12, \
_n13##x = x + 13>=(img).width()?(img).width() - 1:x + 13, \
_n14##x = x + 14>=(img).width()?(img).width() - 1:x + 14, \
_n15##x = x + 15>=(img).width()?(img).width() - 1:x + 15, \
_n16##x = (int)( \
(I[0] = (T)(img)(_p15##x,_p15##y,z,c)), \
(I[32] = (T)(img)(_p15##x,_p14##y,z,c)), \
(I[64] = (T)(img)(_p15##x,_p13##y,z,c)), \
(I[96] = (T)(img)(_p15##x,_p12##y,z,c)), \
(I[128] = (T)(img)(_p15##x,_p11##y,z,c)), \
(I[160] = (T)(img)(_p15##x,_p10##y,z,c)), \
(I[192] = (T)(img)(_p15##x,_p9##y,z,c)), \
(I[224] = (T)(img)(_p15##x,_p8##y,z,c)), \
(I[256] = (T)(img)(_p15##x,_p7##y,z,c)), \
(I[288] = (T)(img)(_p15##x,_p6##y,z,c)), \
(I[320] = (T)(img)(_p15##x,_p5##y,z,c)), \
(I[352] = (T)(img)(_p15##x,_p4##y,z,c)), \
(I[384] = (T)(img)(_p15##x,_p3##y,z,c)), \
(I[416] = (T)(img)(_p15##x,_p2##y,z,c)), \
(I[448] = (T)(img)(_p15##x,_p1##y,z,c)), \
(I[480] = (T)(img)(_p15##x,y,z,c)), \
(I[512] = (T)(img)(_p15##x,_n1##y,z,c)), \
(I[544] = (T)(img)(_p15##x,_n2##y,z,c)), \
(I[576] = (T)(img)(_p15##x,_n3##y,z,c)), \
(I[608] = (T)(img)(_p15##x,_n4##y,z,c)), \
(I[640] = (T)(img)(_p15##x,_n5##y,z,c)), \
(I[672] = (T)(img)(_p15##x,_n6##y,z,c)), \
(I[704] = (T)(img)(_p15##x,_n7##y,z,c)), \
(I[736] = (T)(img)(_p15##x,_n8##y,z,c)), \
(I[768] = (T)(img)(_p15##x,_n9##y,z,c)), \
(I[800] = (T)(img)(_p15##x,_n10##y,z,c)), \
(I[832] = (T)(img)(_p15##x,_n11##y,z,c)), \
(I[864] = (T)(img)(_p15##x,_n12##y,z,c)), \
(I[896] = (T)(img)(_p15##x,_n13##y,z,c)), \
(I[928] = (T)(img)(_p15##x,_n14##y,z,c)), \
(I[960] = (T)(img)(_p15##x,_n15##y,z,c)), \
(I[992] = (T)(img)(_p15##x,_n16##y,z,c)), \
(I[1] = (T)(img)(_p14##x,_p15##y,z,c)), \
(I[33] = (T)(img)(_p14##x,_p14##y,z,c)), \
(I[65] = (T)(img)(_p14##x,_p13##y,z,c)), \
(I[97] = (T)(img)(_p14##x,_p12##y,z,c)), \
(I[129] = (T)(img)(_p14##x,_p11##y,z,c)), \
(I[161] = (T)(img)(_p14##x,_p10##y,z,c)), \
(I[193] = (T)(img)(_p14##x,_p9##y,z,c)), \
(I[225] = (T)(img)(_p14##x,_p8##y,z,c)), \
(I[257] = (T)(img)(_p14##x,_p7##y,z,c)), \
(I[289] = (T)(img)(_p14##x,_p6##y,z,c)), \
(I[321] = (T)(img)(_p14##x,_p5##y,z,c)), \
(I[353] = (T)(img)(_p14##x,_p4##y,z,c)), \
(I[385] = (T)(img)(_p14##x,_p3##y,z,c)), \
(I[417] = (T)(img)(_p14##x,_p2##y,z,c)), \
(I[449] = (T)(img)(_p14##x,_p1##y,z,c)), \
(I[481] = (T)(img)(_p14##x,y,z,c)), \
(I[513] = (T)(img)(_p14##x,_n1##y,z,c)), \
(I[545] = (T)(img)(_p14##x,_n2##y,z,c)), \
(I[577] = (T)(img)(_p14##x,_n3##y,z,c)), \
(I[609] = (T)(img)(_p14##x,_n4##y,z,c)), \
(I[641] = (T)(img)(_p14##x,_n5##y,z,c)), \
(I[673] = (T)(img)(_p14##x,_n6##y,z,c)), \
(I[705] = (T)(img)(_p14##x,_n7##y,z,c)), \
(I[737] = (T)(img)(_p14##x,_n8##y,z,c)), \
(I[769] = (T)(img)(_p14##x,_n9##y,z,c)), \
(I[801] = (T)(img)(_p14##x,_n10##y,z,c)), \
(I[833] = (T)(img)(_p14##x,_n11##y,z,c)), \
(I[865] = (T)(img)(_p14##x,_n12##y,z,c)), \
(I[897] = (T)(img)(_p14##x,_n13##y,z,c)), \
(I[929] = (T)(img)(_p14##x,_n14##y,z,c)), \
(I[961] = (T)(img)(_p14##x,_n15##y,z,c)), \
(I[993] = (T)(img)(_p14##x,_n16##y,z,c)), \
(I[2] = (T)(img)(_p13##x,_p15##y,z,c)), \
(I[34] = (T)(img)(_p13##x,_p14##y,z,c)), \
(I[66] = (T)(img)(_p13##x,_p13##y,z,c)), \
(I[98] = (T)(img)(_p13##x,_p12##y,z,c)), \
(I[130] = (T)(img)(_p13##x,_p11##y,z,c)), \
(I[162] = (T)(img)(_p13##x,_p10##y,z,c)), \
(I[194] = (T)(img)(_p13##x,_p9##y,z,c)), \
(I[226] = (T)(img)(_p13##x,_p8##y,z,c)), \
(I[258] = (T)(img)(_p13##x,_p7##y,z,c)), \
(I[290] = (T)(img)(_p13##x,_p6##y,z,c)), \
(I[322] = (T)(img)(_p13##x,_p5##y,z,c)), \
(I[354] = (T)(img)(_p13##x,_p4##y,z,c)), \
(I[386] = (T)(img)(_p13##x,_p3##y,z,c)), \
(I[418] = (T)(img)(_p13##x,_p2##y,z,c)), \
(I[450] = (T)(img)(_p13##x,_p1##y,z,c)), \
(I[482] = (T)(img)(_p13##x,y,z,c)), \
(I[514] = (T)(img)(_p13##x,_n1##y,z,c)), \
(I[546] = (T)(img)(_p13##x,_n2##y,z,c)), \
(I[578] = (T)(img)(_p13##x,_n3##y,z,c)), \
(I[610] = (T)(img)(_p13##x,_n4##y,z,c)), \
(I[642] = (T)(img)(_p13##x,_n5##y,z,c)), \
(I[674] = (T)(img)(_p13##x,_n6##y,z,c)), \
(I[706] = (T)(img)(_p13##x,_n7##y,z,c)), \
(I[738] = (T)(img)(_p13##x,_n8##y,z,c)), \
(I[770] = (T)(img)(_p13##x,_n9##y,z,c)), \
(I[802] = (T)(img)(_p13##x,_n10##y,z,c)), \
(I[834] = (T)(img)(_p13##x,_n11##y,z,c)), \
(I[866] = (T)(img)(_p13##x,_n12##y,z,c)), \
(I[898] = (T)(img)(_p13##x,_n13##y,z,c)), \
(I[930] = (T)(img)(_p13##x,_n14##y,z,c)), \
(I[962] = (T)(img)(_p13##x,_n15##y,z,c)), \
(I[994] = (T)(img)(_p13##x,_n16##y,z,c)), \
(I[3] = (T)(img)(_p12##x,_p15##y,z,c)), \
(I[35] = (T)(img)(_p12##x,_p14##y,z,c)), \
(I[67] = (T)(img)(_p12##x,_p13##y,z,c)), \
(I[99] = (T)(img)(_p12##x,_p12##y,z,c)), \
(I[131] = (T)(img)(_p12##x,_p11##y,z,c)), \
(I[163] = (T)(img)(_p12##x,_p10##y,z,c)), \
(I[195] = (T)(img)(_p12##x,_p9##y,z,c)), \
(I[227] = (T)(img)(_p12##x,_p8##y,z,c)), \
(I[259] = (T)(img)(_p12##x,_p7##y,z,c)), \
(I[291] = (T)(img)(_p12##x,_p6##y,z,c)), \
(I[323] = (T)(img)(_p12##x,_p5##y,z,c)), \
(I[355] = (T)(img)(_p12##x,_p4##y,z,c)), \
(I[387] = (T)(img)(_p12##x,_p3##y,z,c)), \
(I[419] = (T)(img)(_p12##x,_p2##y,z,c)), \
(I[451] = (T)(img)(_p12##x,_p1##y,z,c)), \
(I[483] = (T)(img)(_p12##x,y,z,c)), \
(I[515] = (T)(img)(_p12##x,_n1##y,z,c)), \
(I[547] = (T)(img)(_p12##x,_n2##y,z,c)), \
(I[579] = (T)(img)(_p12##x,_n3##y,z,c)), \
(I[611] = (T)(img)(_p12##x,_n4##y,z,c)), \
(I[643] = (T)(img)(_p12##x,_n5##y,z,c)), \
(I[675] = (T)(img)(_p12##x,_n6##y,z,c)), \
(I[707] = (T)(img)(_p12##x,_n7##y,z,c)), \
(I[739] = (T)(img)(_p12##x,_n8##y,z,c)), \
(I[771] = (T)(img)(_p12##x,_n9##y,z,c)), \
(I[803] = (T)(img)(_p12##x,_n10##y,z,c)), \
(I[835] = (T)(img)(_p12##x,_n11##y,z,c)), \
(I[867] = (T)(img)(_p12##x,_n12##y,z,c)), \
(I[899] = (T)(img)(_p12##x,_n13##y,z,c)), \
(I[931] = (T)(img)(_p12##x,_n14##y,z,c)), \
(I[963] = (T)(img)(_p12##x,_n15##y,z,c)), \
(I[995] = (T)(img)(_p12##x,_n16##y,z,c)), \
(I[4] = (T)(img)(_p11##x,_p15##y,z,c)), \
(I[36] = (T)(img)(_p11##x,_p14##y,z,c)), \
(I[68] = (T)(img)(_p11##x,_p13##y,z,c)), \
(I[100] = (T)(img)(_p11##x,_p12##y,z,c)), \
(I[132] = (T)(img)(_p11##x,_p11##y,z,c)), \
(I[164] = (T)(img)(_p11##x,_p10##y,z,c)), \
(I[196] = (T)(img)(_p11##x,_p9##y,z,c)), \
(I[228] = (T)(img)(_p11##x,_p8##y,z,c)), \
(I[260] = (T)(img)(_p11##x,_p7##y,z,c)), \
(I[292] = (T)(img)(_p11##x,_p6##y,z,c)), \
(I[324] = (T)(img)(_p11##x,_p5##y,z,c)), \
(I[356] = (T)(img)(_p11##x,_p4##y,z,c)), \
(I[388] = (T)(img)(_p11##x,_p3##y,z,c)), \
(I[420] = (T)(img)(_p11##x,_p2##y,z,c)), \
(I[452] = (T)(img)(_p11##x,_p1##y,z,c)), \
(I[484] = (T)(img)(_p11##x,y,z,c)), \
(I[516] = (T)(img)(_p11##x,_n1##y,z,c)), \
(I[548] = (T)(img)(_p11##x,_n2##y,z,c)), \
(I[580] = (T)(img)(_p11##x,_n3##y,z,c)), \
(I[612] = (T)(img)(_p11##x,_n4##y,z,c)), \
(I[644] = (T)(img)(_p11##x,_n5##y,z,c)), \
(I[676] = (T)(img)(_p11##x,_n6##y,z,c)), \
(I[708] = (T)(img)(_p11##x,_n7##y,z,c)), \
(I[740] = (T)(img)(_p11##x,_n8##y,z,c)), \
(I[772] = (T)(img)(_p11##x,_n9##y,z,c)), \
(I[804] = (T)(img)(_p11##x,_n10##y,z,c)), \
(I[836] = (T)(img)(_p11##x,_n11##y,z,c)), \
(I[868] = (T)(img)(_p11##x,_n12##y,z,c)), \
(I[900] = (T)(img)(_p11##x,_n13##y,z,c)), \
(I[932] = (T)(img)(_p11##x,_n14##y,z,c)), \
(I[964] = (T)(img)(_p11##x,_n15##y,z,c)), \
(I[996] = (T)(img)(_p11##x,_n16##y,z,c)), \
(I[5] = (T)(img)(_p10##x,_p15##y,z,c)), \
(I[37] = (T)(img)(_p10##x,_p14##y,z,c)), \
(I[69] = (T)(img)(_p10##x,_p13##y,z,c)), \
(I[101] = (T)(img)(_p10##x,_p12##y,z,c)), \
(I[133] = (T)(img)(_p10##x,_p11##y,z,c)), \
(I[165] = (T)(img)(_p10##x,_p10##y,z,c)), \
(I[197] = (T)(img)(_p10##x,_p9##y,z,c)), \
(I[229] = (T)(img)(_p10##x,_p8##y,z,c)), \
(I[261] = (T)(img)(_p10##x,_p7##y,z,c)), \
(I[293] = (T)(img)(_p10##x,_p6##y,z,c)), \
(I[325] = (T)(img)(_p10##x,_p5##y,z,c)), \
(I[357] = (T)(img)(_p10##x,_p4##y,z,c)), \
(I[389] = (T)(img)(_p10##x,_p3##y,z,c)), \
(I[421] = (T)(img)(_p10##x,_p2##y,z,c)), \
(I[453] = (T)(img)(_p10##x,_p1##y,z,c)), \
(I[485] = (T)(img)(_p10##x,y,z,c)), \
(I[517] = (T)(img)(_p10##x,_n1##y,z,c)), \
(I[549] = (T)(img)(_p10##x,_n2##y,z,c)), \
(I[581] = (T)(img)(_p10##x,_n3##y,z,c)), \
(I[613] = (T)(img)(_p10##x,_n4##y,z,c)), \
(I[645] = (T)(img)(_p10##x,_n5##y,z,c)), \
(I[677] = (T)(img)(_p10##x,_n6##y,z,c)), \
(I[709] = (T)(img)(_p10##x,_n7##y,z,c)), \
(I[741] = (T)(img)(_p10##x,_n8##y,z,c)), \
(I[773] = (T)(img)(_p10##x,_n9##y,z,c)), \
(I[805] = (T)(img)(_p10##x,_n10##y,z,c)), \
(I[837] = (T)(img)(_p10##x,_n11##y,z,c)), \
(I[869] = (T)(img)(_p10##x,_n12##y,z,c)), \
(I[901] = (T)(img)(_p10##x,_n13##y,z,c)), \
(I[933] = (T)(img)(_p10##x,_n14##y,z,c)), \
(I[965] = (T)(img)(_p10##x,_n15##y,z,c)), \
(I[997] = (T)(img)(_p10##x,_n16##y,z,c)), \
(I[6] = (T)(img)(_p9##x,_p15##y,z,c)), \
(I[38] = (T)(img)(_p9##x,_p14##y,z,c)), \
(I[70] = (T)(img)(_p9##x,_p13##y,z,c)), \
(I[102] = (T)(img)(_p9##x,_p12##y,z,c)), \
(I[134] = (T)(img)(_p9##x,_p11##y,z,c)), \
(I[166] = (T)(img)(_p9##x,_p10##y,z,c)), \
(I[198] = (T)(img)(_p9##x,_p9##y,z,c)), \
(I[230] = (T)(img)(_p9##x,_p8##y,z,c)), \
(I[262] = (T)(img)(_p9##x,_p7##y,z,c)), \
(I[294] = (T)(img)(_p9##x,_p6##y,z,c)), \
(I[326] = (T)(img)(_p9##x,_p5##y,z,c)), \
(I[358] = (T)(img)(_p9##x,_p4##y,z,c)), \
(I[390] = (T)(img)(_p9##x,_p3##y,z,c)), \
(I[422] = (T)(img)(_p9##x,_p2##y,z,c)), \
(I[454] = (T)(img)(_p9##x,_p1##y,z,c)), \
(I[486] = (T)(img)(_p9##x,y,z,c)), \
(I[518] = (T)(img)(_p9##x,_n1##y,z,c)), \
(I[550] = (T)(img)(_p9##x,_n2##y,z,c)), \
(I[582] = (T)(img)(_p9##x,_n3##y,z,c)), \
(I[614] = (T)(img)(_p9##x,_n4##y,z,c)), \
(I[646] = (T)(img)(_p9##x,_n5##y,z,c)), \
(I[678] = (T)(img)(_p9##x,_n6##y,z,c)), \
(I[710] = (T)(img)(_p9##x,_n7##y,z,c)), \
(I[742] = (T)(img)(_p9##x,_n8##y,z,c)), \
(I[774] = (T)(img)(_p9##x,_n9##y,z,c)), \
(I[806] = (T)(img)(_p9##x,_n10##y,z,c)), \
(I[838] = (T)(img)(_p9##x,_n11##y,z,c)), \
(I[870] = (T)(img)(_p9##x,_n12##y,z,c)), \
(I[902] = (T)(img)(_p9##x,_n13##y,z,c)), \
(I[934] = (T)(img)(_p9##x,_n14##y,z,c)), \
(I[966] = (T)(img)(_p9##x,_n15##y,z,c)), \
(I[998] = (T)(img)(_p9##x,_n16##y,z,c)), \
(I[7] = (T)(img)(_p8##x,_p15##y,z,c)), \
(I[39] = (T)(img)(_p8##x,_p14##y,z,c)), \
(I[71] = (T)(img)(_p8##x,_p13##y,z,c)), \
(I[103] = (T)(img)(_p8##x,_p12##y,z,c)), \
(I[135] = (T)(img)(_p8##x,_p11##y,z,c)), \
(I[167] = (T)(img)(_p8##x,_p10##y,z,c)), \
(I[199] = (T)(img)(_p8##x,_p9##y,z,c)), \
(I[231] = (T)(img)(_p8##x,_p8##y,z,c)), \
(I[263] = (T)(img)(_p8##x,_p7##y,z,c)), \
(I[295] = (T)(img)(_p8##x,_p6##y,z,c)), \
(I[327] = (T)(img)(_p8##x,_p5##y,z,c)), \
(I[359] = (T)(img)(_p8##x,_p4##y,z,c)), \
(I[391] = (T)(img)(_p8##x,_p3##y,z,c)), \
(I[423] = (T)(img)(_p8##x,_p2##y,z,c)), \
(I[455] = (T)(img)(_p8##x,_p1##y,z,c)), \
(I[487] = (T)(img)(_p8##x,y,z,c)), \
(I[519] = (T)(img)(_p8##x,_n1##y,z,c)), \
(I[551] = (T)(img)(_p8##x,_n2##y,z,c)), \
(I[583] = (T)(img)(_p8##x,_n3##y,z,c)), \
(I[615] = (T)(img)(_p8##x,_n4##y,z,c)), \
(I[647] = (T)(img)(_p8##x,_n5##y,z,c)), \
(I[679] = (T)(img)(_p8##x,_n6##y,z,c)), \
(I[711] = (T)(img)(_p8##x,_n7##y,z,c)), \
(I[743] = (T)(img)(_p8##x,_n8##y,z,c)), \
(I[775] = (T)(img)(_p8##x,_n9##y,z,c)), \
(I[807] = (T)(img)(_p8##x,_n10##y,z,c)), \
(I[839] = (T)(img)(_p8##x,_n11##y,z,c)), \
(I[871] = (T)(img)(_p8##x,_n12##y,z,c)), \
(I[903] = (T)(img)(_p8##x,_n13##y,z,c)), \
(I[935] = (T)(img)(_p8##x,_n14##y,z,c)), \
(I[967] = (T)(img)(_p8##x,_n15##y,z,c)), \
(I[999] = (T)(img)(_p8##x,_n16##y,z,c)), \
(I[8] = (T)(img)(_p7##x,_p15##y,z,c)), \
(I[40] = (T)(img)(_p7##x,_p14##y,z,c)), \
(I[72] = (T)(img)(_p7##x,_p13##y,z,c)), \
(I[104] = (T)(img)(_p7##x,_p12##y,z,c)), \
(I[136] = (T)(img)(_p7##x,_p11##y,z,c)), \
(I[168] = (T)(img)(_p7##x,_p10##y,z,c)), \
(I[200] = (T)(img)(_p7##x,_p9##y,z,c)), \
(I[232] = (T)(img)(_p7##x,_p8##y,z,c)), \
(I[264] = (T)(img)(_p7##x,_p7##y,z,c)), \
(I[296] = (T)(img)(_p7##x,_p6##y,z,c)), \
(I[328] = (T)(img)(_p7##x,_p5##y,z,c)), \
(I[360] = (T)(img)(_p7##x,_p4##y,z,c)), \
(I[392] = (T)(img)(_p7##x,_p3##y,z,c)), \
(I[424] = (T)(img)(_p7##x,_p2##y,z,c)), \
(I[456] = (T)(img)(_p7##x,_p1##y,z,c)), \
(I[488] = (T)(img)(_p7##x,y,z,c)), \
(I[520] = (T)(img)(_p7##x,_n1##y,z,c)), \
(I[552] = (T)(img)(_p7##x,_n2##y,z,c)), \
(I[584] = (T)(img)(_p7##x,_n3##y,z,c)), \
(I[616] = (T)(img)(_p7##x,_n4##y,z,c)), \
(I[648] = (T)(img)(_p7##x,_n5##y,z,c)), \
(I[680] = (T)(img)(_p7##x,_n6##y,z,c)), \
(I[712] = (T)(img)(_p7##x,_n7##y,z,c)), \
(I[744] = (T)(img)(_p7##x,_n8##y,z,c)), \
(I[776] = (T)(img)(_p7##x,_n9##y,z,c)), \
(I[808] = (T)(img)(_p7##x,_n10##y,z,c)), \
(I[840] = (T)(img)(_p7##x,_n11##y,z,c)), \
(I[872] = (T)(img)(_p7##x,_n12##y,z,c)), \
(I[904] = (T)(img)(_p7##x,_n13##y,z,c)), \
(I[936] = (T)(img)(_p7##x,_n14##y,z,c)), \
(I[968] = (T)(img)(_p7##x,_n15##y,z,c)), \
(I[1000] = (T)(img)(_p7##x,_n16##y,z,c)), \
(I[9] = (T)(img)(_p6##x,_p15##y,z,c)), \
(I[41] = (T)(img)(_p6##x,_p14##y,z,c)), \
(I[73] = (T)(img)(_p6##x,_p13##y,z,c)), \
(I[105] = (T)(img)(_p6##x,_p12##y,z,c)), \
(I[137] = (T)(img)(_p6##x,_p11##y,z,c)), \
(I[169] = (T)(img)(_p6##x,_p10##y,z,c)), \
(I[201] = (T)(img)(_p6##x,_p9##y,z,c)), \
(I[233] = (T)(img)(_p6##x,_p8##y,z,c)), \
(I[265] = (T)(img)(_p6##x,_p7##y,z,c)), \
(I[297] = (T)(img)(_p6##x,_p6##y,z,c)), \
(I[329] = (T)(img)(_p6##x,_p5##y,z,c)), \
(I[361] = (T)(img)(_p6##x,_p4##y,z,c)), \
(I[393] = (T)(img)(_p6##x,_p3##y,z,c)), \
(I[425] = (T)(img)(_p6##x,_p2##y,z,c)), \
(I[457] = (T)(img)(_p6##x,_p1##y,z,c)), \
(I[489] = (T)(img)(_p6##x,y,z,c)), \
(I[521] = (T)(img)(_p6##x,_n1##y,z,c)), \
(I[553] = (T)(img)(_p6##x,_n2##y,z,c)), \
(I[585] = (T)(img)(_p6##x,_n3##y,z,c)), \
(I[617] = (T)(img)(_p6##x,_n4##y,z,c)), \
(I[649] = (T)(img)(_p6##x,_n5##y,z,c)), \
(I[681] = (T)(img)(_p6##x,_n6##y,z,c)), \
(I[713] = (T)(img)(_p6##x,_n7##y,z,c)), \
(I[745] = (T)(img)(_p6##x,_n8##y,z,c)), \
(I[777] = (T)(img)(_p6##x,_n9##y,z,c)), \
(I[809] = (T)(img)(_p6##x,_n10##y,z,c)), \
(I[841] = (T)(img)(_p6##x,_n11##y,z,c)), \
(I[873] = (T)(img)(_p6##x,_n12##y,z,c)), \
(I[905] = (T)(img)(_p6##x,_n13##y,z,c)), \
(I[937] = (T)(img)(_p6##x,_n14##y,z,c)), \
(I[969] = (T)(img)(_p6##x,_n15##y,z,c)), \
(I[1001] = (T)(img)(_p6##x,_n16##y,z,c)), \
(I[10] = (T)(img)(_p5##x,_p15##y,z,c)), \
(I[42] = (T)(img)(_p5##x,_p14##y,z,c)), \
(I[74] = (T)(img)(_p5##x,_p13##y,z,c)), \
(I[106] = (T)(img)(_p5##x,_p12##y,z,c)), \
(I[138] = (T)(img)(_p5##x,_p11##y,z,c)), \
(I[170] = (T)(img)(_p5##x,_p10##y,z,c)), \
(I[202] = (T)(img)(_p5##x,_p9##y,z,c)), \
(I[234] = (T)(img)(_p5##x,_p8##y,z,c)), \
(I[266] = (T)(img)(_p5##x,_p7##y,z,c)), \
(I[298] = (T)(img)(_p5##x,_p6##y,z,c)), \
(I[330] = (T)(img)(_p5##x,_p5##y,z,c)), \
(I[362] = (T)(img)(_p5##x,_p4##y,z,c)), \
(I[394] = (T)(img)(_p5##x,_p3##y,z,c)), \
(I[426] = (T)(img)(_p5##x,_p2##y,z,c)), \
(I[458] = (T)(img)(_p5##x,_p1##y,z,c)), \
(I[490] = (T)(img)(_p5##x,y,z,c)), \
(I[522] = (T)(img)(_p5##x,_n1##y,z,c)), \
(I[554] = (T)(img)(_p5##x,_n2##y,z,c)), \
(I[586] = (T)(img)(_p5##x,_n3##y,z,c)), \
(I[618] = (T)(img)(_p5##x,_n4##y,z,c)), \
(I[650] = (T)(img)(_p5##x,_n5##y,z,c)), \
(I[682] = (T)(img)(_p5##x,_n6##y,z,c)), \
(I[714] = (T)(img)(_p5##x,_n7##y,z,c)), \
(I[746] = (T)(img)(_p5##x,_n8##y,z,c)), \
(I[778] = (T)(img)(_p5##x,_n9##y,z,c)), \
(I[810] = (T)(img)(_p5##x,_n10##y,z,c)), \
(I[842] = (T)(img)(_p5##x,_n11##y,z,c)), \
(I[874] = (T)(img)(_p5##x,_n12##y,z,c)), \
(I[906] = (T)(img)(_p5##x,_n13##y,z,c)), \
(I[938] = (T)(img)(_p5##x,_n14##y,z,c)), \
(I[970] = (T)(img)(_p5##x,_n15##y,z,c)), \
(I[1002] = (T)(img)(_p5##x,_n16##y,z,c)), \
(I[11] = (T)(img)(_p4##x,_p15##y,z,c)), \
(I[43] = (T)(img)(_p4##x,_p14##y,z,c)), \
(I[75] = (T)(img)(_p4##x,_p13##y,z,c)), \
(I[107] = (T)(img)(_p4##x,_p12##y,z,c)), \
(I[139] = (T)(img)(_p4##x,_p11##y,z,c)), \
(I[171] = (T)(img)(_p4##x,_p10##y,z,c)), \
(I[203] = (T)(img)(_p4##x,_p9##y,z,c)), \
(I[235] = (T)(img)(_p4##x,_p8##y,z,c)), \
(I[267] = (T)(img)(_p4##x,_p7##y,z,c)), \
(I[299] = (T)(img)(_p4##x,_p6##y,z,c)), \
(I[331] = (T)(img)(_p4##x,_p5##y,z,c)), \
(I[363] = (T)(img)(_p4##x,_p4##y,z,c)), \
(I[395] = (T)(img)(_p4##x,_p3##y,z,c)), \
(I[427] = (T)(img)(_p4##x,_p2##y,z,c)), \
(I[459] = (T)(img)(_p4##x,_p1##y,z,c)), \
(I[491] = (T)(img)(_p4##x,y,z,c)), \
(I[523] = (T)(img)(_p4##x,_n1##y,z,c)), \
(I[555] = (T)(img)(_p4##x,_n2##y,z,c)), \
(I[587] = (T)(img)(_p4##x,_n3##y,z,c)), \
(I[619] = (T)(img)(_p4##x,_n4##y,z,c)), \
(I[651] = (T)(img)(_p4##x,_n5##y,z,c)), \
(I[683] = (T)(img)(_p4##x,_n6##y,z,c)), \
(I[715] = (T)(img)(_p4##x,_n7##y,z,c)), \
(I[747] = (T)(img)(_p4##x,_n8##y,z,c)), \
(I[779] = (T)(img)(_p4##x,_n9##y,z,c)), \
(I[811] = (T)(img)(_p4##x,_n10##y,z,c)), \
(I[843] = (T)(img)(_p4##x,_n11##y,z,c)), \
(I[875] = (T)(img)(_p4##x,_n12##y,z,c)), \
(I[907] = (T)(img)(_p4##x,_n13##y,z,c)), \
(I[939] = (T)(img)(_p4##x,_n14##y,z,c)), \
(I[971] = (T)(img)(_p4##x,_n15##y,z,c)), \
(I[1003] = (T)(img)(_p4##x,_n16##y,z,c)), \
(I[12] = (T)(img)(_p3##x,_p15##y,z,c)), \
(I[44] = (T)(img)(_p3##x,_p14##y,z,c)), \
(I[76] = (T)(img)(_p3##x,_p13##y,z,c)), \
(I[108] = (T)(img)(_p3##x,_p12##y,z,c)), \
(I[140] = (T)(img)(_p3##x,_p11##y,z,c)), \
(I[172] = (T)(img)(_p3##x,_p10##y,z,c)), \
(I[204] = (T)(img)(_p3##x,_p9##y,z,c)), \
(I[236] = (T)(img)(_p3##x,_p8##y,z,c)), \
(I[268] = (T)(img)(_p3##x,_p7##y,z,c)), \
(I[300] = (T)(img)(_p3##x,_p6##y,z,c)), \
(I[332] = (T)(img)(_p3##x,_p5##y,z,c)), \
(I[364] = (T)(img)(_p3##x,_p4##y,z,c)), \
(I[396] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[428] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[460] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[492] = (T)(img)(_p3##x,y,z,c)), \
(I[524] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[556] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[588] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[620] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[652] = (T)(img)(_p3##x,_n5##y,z,c)), \
(I[684] = (T)(img)(_p3##x,_n6##y,z,c)), \
(I[716] = (T)(img)(_p3##x,_n7##y,z,c)), \
(I[748] = (T)(img)(_p3##x,_n8##y,z,c)), \
(I[780] = (T)(img)(_p3##x,_n9##y,z,c)), \
(I[812] = (T)(img)(_p3##x,_n10##y,z,c)), \
(I[844] = (T)(img)(_p3##x,_n11##y,z,c)), \
(I[876] = (T)(img)(_p3##x,_n12##y,z,c)), \
(I[908] = (T)(img)(_p3##x,_n13##y,z,c)), \
(I[940] = (T)(img)(_p3##x,_n14##y,z,c)), \
(I[972] = (T)(img)(_p3##x,_n15##y,z,c)), \
(I[1004] = (T)(img)(_p3##x,_n16##y,z,c)), \
(I[13] = (T)(img)(_p2##x,_p15##y,z,c)), \
(I[45] = (T)(img)(_p2##x,_p14##y,z,c)), \
(I[77] = (T)(img)(_p2##x,_p13##y,z,c)), \
(I[109] = (T)(img)(_p2##x,_p12##y,z,c)), \
(I[141] = (T)(img)(_p2##x,_p11##y,z,c)), \
(I[173] = (T)(img)(_p2##x,_p10##y,z,c)), \
(I[205] = (T)(img)(_p2##x,_p9##y,z,c)), \
(I[237] = (T)(img)(_p2##x,_p8##y,z,c)), \
(I[269] = (T)(img)(_p2##x,_p7##y,z,c)), \
(I[301] = (T)(img)(_p2##x,_p6##y,z,c)), \
(I[333] = (T)(img)(_p2##x,_p5##y,z,c)), \
(I[365] = (T)(img)(_p2##x,_p4##y,z,c)), \
(I[397] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[429] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[461] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[493] = (T)(img)(_p2##x,y,z,c)), \
(I[525] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[557] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[589] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[621] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[653] = (T)(img)(_p2##x,_n5##y,z,c)), \
(I[685] = (T)(img)(_p2##x,_n6##y,z,c)), \
(I[717] = (T)(img)(_p2##x,_n7##y,z,c)), \
(I[749] = (T)(img)(_p2##x,_n8##y,z,c)), \
(I[781] = (T)(img)(_p2##x,_n9##y,z,c)), \
(I[813] = (T)(img)(_p2##x,_n10##y,z,c)), \
(I[845] = (T)(img)(_p2##x,_n11##y,z,c)), \
(I[877] = (T)(img)(_p2##x,_n12##y,z,c)), \
(I[909] = (T)(img)(_p2##x,_n13##y,z,c)), \
(I[941] = (T)(img)(_p2##x,_n14##y,z,c)), \
(I[973] = (T)(img)(_p2##x,_n15##y,z,c)), \
(I[1005] = (T)(img)(_p2##x,_n16##y,z,c)), \
(I[14] = (T)(img)(_p1##x,_p15##y,z,c)), \
(I[46] = (T)(img)(_p1##x,_p14##y,z,c)), \
(I[78] = (T)(img)(_p1##x,_p13##y,z,c)), \
(I[110] = (T)(img)(_p1##x,_p12##y,z,c)), \
(I[142] = (T)(img)(_p1##x,_p11##y,z,c)), \
(I[174] = (T)(img)(_p1##x,_p10##y,z,c)), \
(I[206] = (T)(img)(_p1##x,_p9##y,z,c)), \
(I[238] = (T)(img)(_p1##x,_p8##y,z,c)), \
(I[270] = (T)(img)(_p1##x,_p7##y,z,c)), \
(I[302] = (T)(img)(_p1##x,_p6##y,z,c)), \
(I[334] = (T)(img)(_p1##x,_p5##y,z,c)), \
(I[366] = (T)(img)(_p1##x,_p4##y,z,c)), \
(I[398] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[430] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[462] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[494] = (T)(img)(_p1##x,y,z,c)), \
(I[526] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[558] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[590] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[622] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[654] = (T)(img)(_p1##x,_n5##y,z,c)), \
(I[686] = (T)(img)(_p1##x,_n6##y,z,c)), \
(I[718] = (T)(img)(_p1##x,_n7##y,z,c)), \
(I[750] = (T)(img)(_p1##x,_n8##y,z,c)), \
(I[782] = (T)(img)(_p1##x,_n9##y,z,c)), \
(I[814] = (T)(img)(_p1##x,_n10##y,z,c)), \
(I[846] = (T)(img)(_p1##x,_n11##y,z,c)), \
(I[878] = (T)(img)(_p1##x,_n12##y,z,c)), \
(I[910] = (T)(img)(_p1##x,_n13##y,z,c)), \
(I[942] = (T)(img)(_p1##x,_n14##y,z,c)), \
(I[974] = (T)(img)(_p1##x,_n15##y,z,c)), \
(I[1006] = (T)(img)(_p1##x,_n16##y,z,c)), \
(I[15] = (T)(img)(x,_p15##y,z,c)), \
(I[47] = (T)(img)(x,_p14##y,z,c)), \
(I[79] = (T)(img)(x,_p13##y,z,c)), \
(I[111] = (T)(img)(x,_p12##y,z,c)), \
(I[143] = (T)(img)(x,_p11##y,z,c)), \
(I[175] = (T)(img)(x,_p10##y,z,c)), \
(I[207] = (T)(img)(x,_p9##y,z,c)), \
(I[239] = (T)(img)(x,_p8##y,z,c)), \
(I[271] = (T)(img)(x,_p7##y,z,c)), \
(I[303] = (T)(img)(x,_p6##y,z,c)), \
(I[335] = (T)(img)(x,_p5##y,z,c)), \
(I[367] = (T)(img)(x,_p4##y,z,c)), \
(I[399] = (T)(img)(x,_p3##y,z,c)), \
(I[431] = (T)(img)(x,_p2##y,z,c)), \
(I[463] = (T)(img)(x,_p1##y,z,c)), \
(I[495] = (T)(img)(x,y,z,c)), \
(I[527] = (T)(img)(x,_n1##y,z,c)), \
(I[559] = (T)(img)(x,_n2##y,z,c)), \
(I[591] = (T)(img)(x,_n3##y,z,c)), \
(I[623] = (T)(img)(x,_n4##y,z,c)), \
(I[655] = (T)(img)(x,_n5##y,z,c)), \
(I[687] = (T)(img)(x,_n6##y,z,c)), \
(I[719] = (T)(img)(x,_n7##y,z,c)), \
(I[751] = (T)(img)(x,_n8##y,z,c)), \
(I[783] = (T)(img)(x,_n9##y,z,c)), \
(I[815] = (T)(img)(x,_n10##y,z,c)), \
(I[847] = (T)(img)(x,_n11##y,z,c)), \
(I[879] = (T)(img)(x,_n12##y,z,c)), \
(I[911] = (T)(img)(x,_n13##y,z,c)), \
(I[943] = (T)(img)(x,_n14##y,z,c)), \
(I[975] = (T)(img)(x,_n15##y,z,c)), \
(I[1007] = (T)(img)(x,_n16##y,z,c)), \
(I[16] = (T)(img)(_n1##x,_p15##y,z,c)), \
(I[48] = (T)(img)(_n1##x,_p14##y,z,c)), \
(I[80] = (T)(img)(_n1##x,_p13##y,z,c)), \
(I[112] = (T)(img)(_n1##x,_p12##y,z,c)), \
(I[144] = (T)(img)(_n1##x,_p11##y,z,c)), \
(I[176] = (T)(img)(_n1##x,_p10##y,z,c)), \
(I[208] = (T)(img)(_n1##x,_p9##y,z,c)), \
(I[240] = (T)(img)(_n1##x,_p8##y,z,c)), \
(I[272] = (T)(img)(_n1##x,_p7##y,z,c)), \
(I[304] = (T)(img)(_n1##x,_p6##y,z,c)), \
(I[336] = (T)(img)(_n1##x,_p5##y,z,c)), \
(I[368] = (T)(img)(_n1##x,_p4##y,z,c)), \
(I[400] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[432] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[464] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[496] = (T)(img)(_n1##x,y,z,c)), \
(I[528] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[560] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[592] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[624] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[656] = (T)(img)(_n1##x,_n5##y,z,c)), \
(I[688] = (T)(img)(_n1##x,_n6##y,z,c)), \
(I[720] = (T)(img)(_n1##x,_n7##y,z,c)), \
(I[752] = (T)(img)(_n1##x,_n8##y,z,c)), \
(I[784] = (T)(img)(_n1##x,_n9##y,z,c)), \
(I[816] = (T)(img)(_n1##x,_n10##y,z,c)), \
(I[848] = (T)(img)(_n1##x,_n11##y,z,c)), \
(I[880] = (T)(img)(_n1##x,_n12##y,z,c)), \
(I[912] = (T)(img)(_n1##x,_n13##y,z,c)), \
(I[944] = (T)(img)(_n1##x,_n14##y,z,c)), \
(I[976] = (T)(img)(_n1##x,_n15##y,z,c)), \
(I[1008] = (T)(img)(_n1##x,_n16##y,z,c)), \
(I[17] = (T)(img)(_n2##x,_p15##y,z,c)), \
(I[49] = (T)(img)(_n2##x,_p14##y,z,c)), \
(I[81] = (T)(img)(_n2##x,_p13##y,z,c)), \
(I[113] = (T)(img)(_n2##x,_p12##y,z,c)), \
(I[145] = (T)(img)(_n2##x,_p11##y,z,c)), \
(I[177] = (T)(img)(_n2##x,_p10##y,z,c)), \
(I[209] = (T)(img)(_n2##x,_p9##y,z,c)), \
(I[241] = (T)(img)(_n2##x,_p8##y,z,c)), \
(I[273] = (T)(img)(_n2##x,_p7##y,z,c)), \
(I[305] = (T)(img)(_n2##x,_p6##y,z,c)), \
(I[337] = (T)(img)(_n2##x,_p5##y,z,c)), \
(I[369] = (T)(img)(_n2##x,_p4##y,z,c)), \
(I[401] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[433] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[465] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[497] = (T)(img)(_n2##x,y,z,c)), \
(I[529] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[561] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[593] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[625] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[657] = (T)(img)(_n2##x,_n5##y,z,c)), \
(I[689] = (T)(img)(_n2##x,_n6##y,z,c)), \
(I[721] = (T)(img)(_n2##x,_n7##y,z,c)), \
(I[753] = (T)(img)(_n2##x,_n8##y,z,c)), \
(I[785] = (T)(img)(_n2##x,_n9##y,z,c)), \
(I[817] = (T)(img)(_n2##x,_n10##y,z,c)), \
(I[849] = (T)(img)(_n2##x,_n11##y,z,c)), \
(I[881] = (T)(img)(_n2##x,_n12##y,z,c)), \
(I[913] = (T)(img)(_n2##x,_n13##y,z,c)), \
(I[945] = (T)(img)(_n2##x,_n14##y,z,c)), \
(I[977] = (T)(img)(_n2##x,_n15##y,z,c)), \
(I[1009] = (T)(img)(_n2##x,_n16##y,z,c)), \
(I[18] = (T)(img)(_n3##x,_p15##y,z,c)), \
(I[50] = (T)(img)(_n3##x,_p14##y,z,c)), \
(I[82] = (T)(img)(_n3##x,_p13##y,z,c)), \
(I[114] = (T)(img)(_n3##x,_p12##y,z,c)), \
(I[146] = (T)(img)(_n3##x,_p11##y,z,c)), \
(I[178] = (T)(img)(_n3##x,_p10##y,z,c)), \
(I[210] = (T)(img)(_n3##x,_p9##y,z,c)), \
(I[242] = (T)(img)(_n3##x,_p8##y,z,c)), \
(I[274] = (T)(img)(_n3##x,_p7##y,z,c)), \
(I[306] = (T)(img)(_n3##x,_p6##y,z,c)), \
(I[338] = (T)(img)(_n3##x,_p5##y,z,c)), \
(I[370] = (T)(img)(_n3##x,_p4##y,z,c)), \
(I[402] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[434] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[466] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[498] = (T)(img)(_n3##x,y,z,c)), \
(I[530] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[562] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[594] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[626] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[658] = (T)(img)(_n3##x,_n5##y,z,c)), \
(I[690] = (T)(img)(_n3##x,_n6##y,z,c)), \
(I[722] = (T)(img)(_n3##x,_n7##y,z,c)), \
(I[754] = (T)(img)(_n3##x,_n8##y,z,c)), \
(I[786] = (T)(img)(_n3##x,_n9##y,z,c)), \
(I[818] = (T)(img)(_n3##x,_n10##y,z,c)), \
(I[850] = (T)(img)(_n3##x,_n11##y,z,c)), \
(I[882] = (T)(img)(_n3##x,_n12##y,z,c)), \
(I[914] = (T)(img)(_n3##x,_n13##y,z,c)), \
(I[946] = (T)(img)(_n3##x,_n14##y,z,c)), \
(I[978] = (T)(img)(_n3##x,_n15##y,z,c)), \
(I[1010] = (T)(img)(_n3##x,_n16##y,z,c)), \
(I[19] = (T)(img)(_n4##x,_p15##y,z,c)), \
(I[51] = (T)(img)(_n4##x,_p14##y,z,c)), \
(I[83] = (T)(img)(_n4##x,_p13##y,z,c)), \
(I[115] = (T)(img)(_n4##x,_p12##y,z,c)), \
(I[147] = (T)(img)(_n4##x,_p11##y,z,c)), \
(I[179] = (T)(img)(_n4##x,_p10##y,z,c)), \
(I[211] = (T)(img)(_n4##x,_p9##y,z,c)), \
(I[243] = (T)(img)(_n4##x,_p8##y,z,c)), \
(I[275] = (T)(img)(_n4##x,_p7##y,z,c)), \
(I[307] = (T)(img)(_n4##x,_p6##y,z,c)), \
(I[339] = (T)(img)(_n4##x,_p5##y,z,c)), \
(I[371] = (T)(img)(_n4##x,_p4##y,z,c)), \
(I[403] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[435] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[467] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[499] = (T)(img)(_n4##x,y,z,c)), \
(I[531] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[563] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[595] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[627] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[659] = (T)(img)(_n4##x,_n5##y,z,c)), \
(I[691] = (T)(img)(_n4##x,_n6##y,z,c)), \
(I[723] = (T)(img)(_n4##x,_n7##y,z,c)), \
(I[755] = (T)(img)(_n4##x,_n8##y,z,c)), \
(I[787] = (T)(img)(_n4##x,_n9##y,z,c)), \
(I[819] = (T)(img)(_n4##x,_n10##y,z,c)), \
(I[851] = (T)(img)(_n4##x,_n11##y,z,c)), \
(I[883] = (T)(img)(_n4##x,_n12##y,z,c)), \
(I[915] = (T)(img)(_n4##x,_n13##y,z,c)), \
(I[947] = (T)(img)(_n4##x,_n14##y,z,c)), \
(I[979] = (T)(img)(_n4##x,_n15##y,z,c)), \
(I[1011] = (T)(img)(_n4##x,_n16##y,z,c)), \
(I[20] = (T)(img)(_n5##x,_p15##y,z,c)), \
(I[52] = (T)(img)(_n5##x,_p14##y,z,c)), \
(I[84] = (T)(img)(_n5##x,_p13##y,z,c)), \
(I[116] = (T)(img)(_n5##x,_p12##y,z,c)), \
(I[148] = (T)(img)(_n5##x,_p11##y,z,c)), \
(I[180] = (T)(img)(_n5##x,_p10##y,z,c)), \
(I[212] = (T)(img)(_n5##x,_p9##y,z,c)), \
(I[244] = (T)(img)(_n5##x,_p8##y,z,c)), \
(I[276] = (T)(img)(_n5##x,_p7##y,z,c)), \
(I[308] = (T)(img)(_n5##x,_p6##y,z,c)), \
(I[340] = (T)(img)(_n5##x,_p5##y,z,c)), \
(I[372] = (T)(img)(_n5##x,_p4##y,z,c)), \
(I[404] = (T)(img)(_n5##x,_p3##y,z,c)), \
(I[436] = (T)(img)(_n5##x,_p2##y,z,c)), \
(I[468] = (T)(img)(_n5##x,_p1##y,z,c)), \
(I[500] = (T)(img)(_n5##x,y,z,c)), \
(I[532] = (T)(img)(_n5##x,_n1##y,z,c)), \
(I[564] = (T)(img)(_n5##x,_n2##y,z,c)), \
(I[596] = (T)(img)(_n5##x,_n3##y,z,c)), \
(I[628] = (T)(img)(_n5##x,_n4##y,z,c)), \
(I[660] = (T)(img)(_n5##x,_n5##y,z,c)), \
(I[692] = (T)(img)(_n5##x,_n6##y,z,c)), \
(I[724] = (T)(img)(_n5##x,_n7##y,z,c)), \
(I[756] = (T)(img)(_n5##x,_n8##y,z,c)), \
(I[788] = (T)(img)(_n5##x,_n9##y,z,c)), \
(I[820] = (T)(img)(_n5##x,_n10##y,z,c)), \
(I[852] = (T)(img)(_n5##x,_n11##y,z,c)), \
(I[884] = (T)(img)(_n5##x,_n12##y,z,c)), \
(I[916] = (T)(img)(_n5##x,_n13##y,z,c)), \
(I[948] = (T)(img)(_n5##x,_n14##y,z,c)), \
(I[980] = (T)(img)(_n5##x,_n15##y,z,c)), \
(I[1012] = (T)(img)(_n5##x,_n16##y,z,c)), \
(I[21] = (T)(img)(_n6##x,_p15##y,z,c)), \
(I[53] = (T)(img)(_n6##x,_p14##y,z,c)), \
(I[85] = (T)(img)(_n6##x,_p13##y,z,c)), \
(I[117] = (T)(img)(_n6##x,_p12##y,z,c)), \
(I[149] = (T)(img)(_n6##x,_p11##y,z,c)), \
(I[181] = (T)(img)(_n6##x,_p10##y,z,c)), \
(I[213] = (T)(img)(_n6##x,_p9##y,z,c)), \
(I[245] = (T)(img)(_n6##x,_p8##y,z,c)), \
(I[277] = (T)(img)(_n6##x,_p7##y,z,c)), \
(I[309] = (T)(img)(_n6##x,_p6##y,z,c)), \
(I[341] = (T)(img)(_n6##x,_p5##y,z,c)), \
(I[373] = (T)(img)(_n6##x,_p4##y,z,c)), \
(I[405] = (T)(img)(_n6##x,_p3##y,z,c)), \
(I[437] = (T)(img)(_n6##x,_p2##y,z,c)), \
(I[469] = (T)(img)(_n6##x,_p1##y,z,c)), \
(I[501] = (T)(img)(_n6##x,y,z,c)), \
(I[533] = (T)(img)(_n6##x,_n1##y,z,c)), \
(I[565] = (T)(img)(_n6##x,_n2##y,z,c)), \
(I[597] = (T)(img)(_n6##x,_n3##y,z,c)), \
(I[629] = (T)(img)(_n6##x,_n4##y,z,c)), \
(I[661] = (T)(img)(_n6##x,_n5##y,z,c)), \
(I[693] = (T)(img)(_n6##x,_n6##y,z,c)), \
(I[725] = (T)(img)(_n6##x,_n7##y,z,c)), \
(I[757] = (T)(img)(_n6##x,_n8##y,z,c)), \
(I[789] = (T)(img)(_n6##x,_n9##y,z,c)), \
(I[821] = (T)(img)(_n6##x,_n10##y,z,c)), \
(I[853] = (T)(img)(_n6##x,_n11##y,z,c)), \
(I[885] = (T)(img)(_n6##x,_n12##y,z,c)), \
(I[917] = (T)(img)(_n6##x,_n13##y,z,c)), \
(I[949] = (T)(img)(_n6##x,_n14##y,z,c)), \
(I[981] = (T)(img)(_n6##x,_n15##y,z,c)), \
(I[1013] = (T)(img)(_n6##x,_n16##y,z,c)), \
(I[22] = (T)(img)(_n7##x,_p15##y,z,c)), \
(I[54] = (T)(img)(_n7##x,_p14##y,z,c)), \
(I[86] = (T)(img)(_n7##x,_p13##y,z,c)), \
(I[118] = (T)(img)(_n7##x,_p12##y,z,c)), \
(I[150] = (T)(img)(_n7##x,_p11##y,z,c)), \
(I[182] = (T)(img)(_n7##x,_p10##y,z,c)), \
(I[214] = (T)(img)(_n7##x,_p9##y,z,c)), \
(I[246] = (T)(img)(_n7##x,_p8##y,z,c)), \
(I[278] = (T)(img)(_n7##x,_p7##y,z,c)), \
(I[310] = (T)(img)(_n7##x,_p6##y,z,c)), \
(I[342] = (T)(img)(_n7##x,_p5##y,z,c)), \
(I[374] = (T)(img)(_n7##x,_p4##y,z,c)), \
(I[406] = (T)(img)(_n7##x,_p3##y,z,c)), \
(I[438] = (T)(img)(_n7##x,_p2##y,z,c)), \
(I[470] = (T)(img)(_n7##x,_p1##y,z,c)), \
(I[502] = (T)(img)(_n7##x,y,z,c)), \
(I[534] = (T)(img)(_n7##x,_n1##y,z,c)), \
(I[566] = (T)(img)(_n7##x,_n2##y,z,c)), \
(I[598] = (T)(img)(_n7##x,_n3##y,z,c)), \
(I[630] = (T)(img)(_n7##x,_n4##y,z,c)), \
(I[662] = (T)(img)(_n7##x,_n5##y,z,c)), \
(I[694] = (T)(img)(_n7##x,_n6##y,z,c)), \
(I[726] = (T)(img)(_n7##x,_n7##y,z,c)), \
(I[758] = (T)(img)(_n7##x,_n8##y,z,c)), \
(I[790] = (T)(img)(_n7##x,_n9##y,z,c)), \
(I[822] = (T)(img)(_n7##x,_n10##y,z,c)), \
(I[854] = (T)(img)(_n7##x,_n11##y,z,c)), \
(I[886] = (T)(img)(_n7##x,_n12##y,z,c)), \
(I[918] = (T)(img)(_n7##x,_n13##y,z,c)), \
(I[950] = (T)(img)(_n7##x,_n14##y,z,c)), \
(I[982] = (T)(img)(_n7##x,_n15##y,z,c)), \
(I[1014] = (T)(img)(_n7##x,_n16##y,z,c)), \
(I[23] = (T)(img)(_n8##x,_p15##y,z,c)), \
(I[55] = (T)(img)(_n8##x,_p14##y,z,c)), \
(I[87] = (T)(img)(_n8##x,_p13##y,z,c)), \
(I[119] = (T)(img)(_n8##x,_p12##y,z,c)), \
(I[151] = (T)(img)(_n8##x,_p11##y,z,c)), \
(I[183] = (T)(img)(_n8##x,_p10##y,z,c)), \
(I[215] = (T)(img)(_n8##x,_p9##y,z,c)), \
(I[247] = (T)(img)(_n8##x,_p8##y,z,c)), \
(I[279] = (T)(img)(_n8##x,_p7##y,z,c)), \
(I[311] = (T)(img)(_n8##x,_p6##y,z,c)), \
(I[343] = (T)(img)(_n8##x,_p5##y,z,c)), \
(I[375] = (T)(img)(_n8##x,_p4##y,z,c)), \
(I[407] = (T)(img)(_n8##x,_p3##y,z,c)), \
(I[439] = (T)(img)(_n8##x,_p2##y,z,c)), \
(I[471] = (T)(img)(_n8##x,_p1##y,z,c)), \
(I[503] = (T)(img)(_n8##x,y,z,c)), \
(I[535] = (T)(img)(_n8##x,_n1##y,z,c)), \
(I[567] = (T)(img)(_n8##x,_n2##y,z,c)), \
(I[599] = (T)(img)(_n8##x,_n3##y,z,c)), \
(I[631] = (T)(img)(_n8##x,_n4##y,z,c)), \
(I[663] = (T)(img)(_n8##x,_n5##y,z,c)), \
(I[695] = (T)(img)(_n8##x,_n6##y,z,c)), \
(I[727] = (T)(img)(_n8##x,_n7##y,z,c)), \
(I[759] = (T)(img)(_n8##x,_n8##y,z,c)), \
(I[791] = (T)(img)(_n8##x,_n9##y,z,c)), \
(I[823] = (T)(img)(_n8##x,_n10##y,z,c)), \
(I[855] = (T)(img)(_n8##x,_n11##y,z,c)), \
(I[887] = (T)(img)(_n8##x,_n12##y,z,c)), \
(I[919] = (T)(img)(_n8##x,_n13##y,z,c)), \
(I[951] = (T)(img)(_n8##x,_n14##y,z,c)), \
(I[983] = (T)(img)(_n8##x,_n15##y,z,c)), \
(I[1015] = (T)(img)(_n8##x,_n16##y,z,c)), \
(I[24] = (T)(img)(_n9##x,_p15##y,z,c)), \
(I[56] = (T)(img)(_n9##x,_p14##y,z,c)), \
(I[88] = (T)(img)(_n9##x,_p13##y,z,c)), \
(I[120] = (T)(img)(_n9##x,_p12##y,z,c)), \
(I[152] = (T)(img)(_n9##x,_p11##y,z,c)), \
(I[184] = (T)(img)(_n9##x,_p10##y,z,c)), \
(I[216] = (T)(img)(_n9##x,_p9##y,z,c)), \
(I[248] = (T)(img)(_n9##x,_p8##y,z,c)), \
(I[280] = (T)(img)(_n9##x,_p7##y,z,c)), \
(I[312] = (T)(img)(_n9##x,_p6##y,z,c)), \
(I[344] = (T)(img)(_n9##x,_p5##y,z,c)), \
(I[376] = (T)(img)(_n9##x,_p4##y,z,c)), \
(I[408] = (T)(img)(_n9##x,_p3##y,z,c)), \
(I[440] = (T)(img)(_n9##x,_p2##y,z,c)), \
(I[472] = (T)(img)(_n9##x,_p1##y,z,c)), \
(I[504] = (T)(img)(_n9##x,y,z,c)), \
(I[536] = (T)(img)(_n9##x,_n1##y,z,c)), \
(I[568] = (T)(img)(_n9##x,_n2##y,z,c)), \
(I[600] = (T)(img)(_n9##x,_n3##y,z,c)), \
(I[632] = (T)(img)(_n9##x,_n4##y,z,c)), \
(I[664] = (T)(img)(_n9##x,_n5##y,z,c)), \
(I[696] = (T)(img)(_n9##x,_n6##y,z,c)), \
(I[728] = (T)(img)(_n9##x,_n7##y,z,c)), \
(I[760] = (T)(img)(_n9##x,_n8##y,z,c)), \
(I[792] = (T)(img)(_n9##x,_n9##y,z,c)), \
(I[824] = (T)(img)(_n9##x,_n10##y,z,c)), \
(I[856] = (T)(img)(_n9##x,_n11##y,z,c)), \
(I[888] = (T)(img)(_n9##x,_n12##y,z,c)), \
(I[920] = (T)(img)(_n9##x,_n13##y,z,c)), \
(I[952] = (T)(img)(_n9##x,_n14##y,z,c)), \
(I[984] = (T)(img)(_n9##x,_n15##y,z,c)), \
(I[1016] = (T)(img)(_n9##x,_n16##y,z,c)), \
(I[25] = (T)(img)(_n10##x,_p15##y,z,c)), \
(I[57] = (T)(img)(_n10##x,_p14##y,z,c)), \
(I[89] = (T)(img)(_n10##x,_p13##y,z,c)), \
(I[121] = (T)(img)(_n10##x,_p12##y,z,c)), \
(I[153] = (T)(img)(_n10##x,_p11##y,z,c)), \
(I[185] = (T)(img)(_n10##x,_p10##y,z,c)), \
(I[217] = (T)(img)(_n10##x,_p9##y,z,c)), \
(I[249] = (T)(img)(_n10##x,_p8##y,z,c)), \
(I[281] = (T)(img)(_n10##x,_p7##y,z,c)), \
(I[313] = (T)(img)(_n10##x,_p6##y,z,c)), \
(I[345] = (T)(img)(_n10##x,_p5##y,z,c)), \
(I[377] = (T)(img)(_n10##x,_p4##y,z,c)), \
(I[409] = (T)(img)(_n10##x,_p3##y,z,c)), \
(I[441] = (T)(img)(_n10##x,_p2##y,z,c)), \
(I[473] = (T)(img)(_n10##x,_p1##y,z,c)), \
(I[505] = (T)(img)(_n10##x,y,z,c)), \
(I[537] = (T)(img)(_n10##x,_n1##y,z,c)), \
(I[569] = (T)(img)(_n10##x,_n2##y,z,c)), \
(I[601] = (T)(img)(_n10##x,_n3##y,z,c)), \
(I[633] = (T)(img)(_n10##x,_n4##y,z,c)), \
(I[665] = (T)(img)(_n10##x,_n5##y,z,c)), \
(I[697] = (T)(img)(_n10##x,_n6##y,z,c)), \
(I[729] = (T)(img)(_n10##x,_n7##y,z,c)), \
(I[761] = (T)(img)(_n10##x,_n8##y,z,c)), \
(I[793] = (T)(img)(_n10##x,_n9##y,z,c)), \
(I[825] = (T)(img)(_n10##x,_n10##y,z,c)), \
(I[857] = (T)(img)(_n10##x,_n11##y,z,c)), \
(I[889] = (T)(img)(_n10##x,_n12##y,z,c)), \
(I[921] = (T)(img)(_n10##x,_n13##y,z,c)), \
(I[953] = (T)(img)(_n10##x,_n14##y,z,c)), \
(I[985] = (T)(img)(_n10##x,_n15##y,z,c)), \
(I[1017] = (T)(img)(_n10##x,_n16##y,z,c)), \
(I[26] = (T)(img)(_n11##x,_p15##y,z,c)), \
(I[58] = (T)(img)(_n11##x,_p14##y,z,c)), \
(I[90] = (T)(img)(_n11##x,_p13##y,z,c)), \
(I[122] = (T)(img)(_n11##x,_p12##y,z,c)), \
(I[154] = (T)(img)(_n11##x,_p11##y,z,c)), \
(I[186] = (T)(img)(_n11##x,_p10##y,z,c)), \
(I[218] = (T)(img)(_n11##x,_p9##y,z,c)), \
(I[250] = (T)(img)(_n11##x,_p8##y,z,c)), \
(I[282] = (T)(img)(_n11##x,_p7##y,z,c)), \
(I[314] = (T)(img)(_n11##x,_p6##y,z,c)), \
(I[346] = (T)(img)(_n11##x,_p5##y,z,c)), \
(I[378] = (T)(img)(_n11##x,_p4##y,z,c)), \
(I[410] = (T)(img)(_n11##x,_p3##y,z,c)), \
(I[442] = (T)(img)(_n11##x,_p2##y,z,c)), \
(I[474] = (T)(img)(_n11##x,_p1##y,z,c)), \
(I[506] = (T)(img)(_n11##x,y,z,c)), \
(I[538] = (T)(img)(_n11##x,_n1##y,z,c)), \
(I[570] = (T)(img)(_n11##x,_n2##y,z,c)), \
(I[602] = (T)(img)(_n11##x,_n3##y,z,c)), \
(I[634] = (T)(img)(_n11##x,_n4##y,z,c)), \
(I[666] = (T)(img)(_n11##x,_n5##y,z,c)), \
(I[698] = (T)(img)(_n11##x,_n6##y,z,c)), \
(I[730] = (T)(img)(_n11##x,_n7##y,z,c)), \
(I[762] = (T)(img)(_n11##x,_n8##y,z,c)), \
(I[794] = (T)(img)(_n11##x,_n9##y,z,c)), \
(I[826] = (T)(img)(_n11##x,_n10##y,z,c)), \
(I[858] = (T)(img)(_n11##x,_n11##y,z,c)), \
(I[890] = (T)(img)(_n11##x,_n12##y,z,c)), \
(I[922] = (T)(img)(_n11##x,_n13##y,z,c)), \
(I[954] = (T)(img)(_n11##x,_n14##y,z,c)), \
(I[986] = (T)(img)(_n11##x,_n15##y,z,c)), \
(I[1018] = (T)(img)(_n11##x,_n16##y,z,c)), \
(I[27] = (T)(img)(_n12##x,_p15##y,z,c)), \
(I[59] = (T)(img)(_n12##x,_p14##y,z,c)), \
(I[91] = (T)(img)(_n12##x,_p13##y,z,c)), \
(I[123] = (T)(img)(_n12##x,_p12##y,z,c)), \
(I[155] = (T)(img)(_n12##x,_p11##y,z,c)), \
(I[187] = (T)(img)(_n12##x,_p10##y,z,c)), \
(I[219] = (T)(img)(_n12##x,_p9##y,z,c)), \
(I[251] = (T)(img)(_n12##x,_p8##y,z,c)), \
(I[283] = (T)(img)(_n12##x,_p7##y,z,c)), \
(I[315] = (T)(img)(_n12##x,_p6##y,z,c)), \
(I[347] = (T)(img)(_n12##x,_p5##y,z,c)), \
(I[379] = (T)(img)(_n12##x,_p4##y,z,c)), \
(I[411] = (T)(img)(_n12##x,_p3##y,z,c)), \
(I[443] = (T)(img)(_n12##x,_p2##y,z,c)), \
(I[475] = (T)(img)(_n12##x,_p1##y,z,c)), \
(I[507] = (T)(img)(_n12##x,y,z,c)), \
(I[539] = (T)(img)(_n12##x,_n1##y,z,c)), \
(I[571] = (T)(img)(_n12##x,_n2##y,z,c)), \
(I[603] = (T)(img)(_n12##x,_n3##y,z,c)), \
(I[635] = (T)(img)(_n12##x,_n4##y,z,c)), \
(I[667] = (T)(img)(_n12##x,_n5##y,z,c)), \
(I[699] = (T)(img)(_n12##x,_n6##y,z,c)), \
(I[731] = (T)(img)(_n12##x,_n7##y,z,c)), \
(I[763] = (T)(img)(_n12##x,_n8##y,z,c)), \
(I[795] = (T)(img)(_n12##x,_n9##y,z,c)), \
(I[827] = (T)(img)(_n12##x,_n10##y,z,c)), \
(I[859] = (T)(img)(_n12##x,_n11##y,z,c)), \
(I[891] = (T)(img)(_n12##x,_n12##y,z,c)), \
(I[923] = (T)(img)(_n12##x,_n13##y,z,c)), \
(I[955] = (T)(img)(_n12##x,_n14##y,z,c)), \
(I[987] = (T)(img)(_n12##x,_n15##y,z,c)), \
(I[1019] = (T)(img)(_n12##x,_n16##y,z,c)), \
(I[28] = (T)(img)(_n13##x,_p15##y,z,c)), \
(I[60] = (T)(img)(_n13##x,_p14##y,z,c)), \
(I[92] = (T)(img)(_n13##x,_p13##y,z,c)), \
(I[124] = (T)(img)(_n13##x,_p12##y,z,c)), \
(I[156] = (T)(img)(_n13##x,_p11##y,z,c)), \
(I[188] = (T)(img)(_n13##x,_p10##y,z,c)), \
(I[220] = (T)(img)(_n13##x,_p9##y,z,c)), \
(I[252] = (T)(img)(_n13##x,_p8##y,z,c)), \
(I[284] = (T)(img)(_n13##x,_p7##y,z,c)), \
(I[316] = (T)(img)(_n13##x,_p6##y,z,c)), \
(I[348] = (T)(img)(_n13##x,_p5##y,z,c)), \
(I[380] = (T)(img)(_n13##x,_p4##y,z,c)), \
(I[412] = (T)(img)(_n13##x,_p3##y,z,c)), \
(I[444] = (T)(img)(_n13##x,_p2##y,z,c)), \
(I[476] = (T)(img)(_n13##x,_p1##y,z,c)), \
(I[508] = (T)(img)(_n13##x,y,z,c)), \
(I[540] = (T)(img)(_n13##x,_n1##y,z,c)), \
(I[572] = (T)(img)(_n13##x,_n2##y,z,c)), \
(I[604] = (T)(img)(_n13##x,_n3##y,z,c)), \
(I[636] = (T)(img)(_n13##x,_n4##y,z,c)), \
(I[668] = (T)(img)(_n13##x,_n5##y,z,c)), \
(I[700] = (T)(img)(_n13##x,_n6##y,z,c)), \
(I[732] = (T)(img)(_n13##x,_n7##y,z,c)), \
(I[764] = (T)(img)(_n13##x,_n8##y,z,c)), \
(I[796] = (T)(img)(_n13##x,_n9##y,z,c)), \
(I[828] = (T)(img)(_n13##x,_n10##y,z,c)), \
(I[860] = (T)(img)(_n13##x,_n11##y,z,c)), \
(I[892] = (T)(img)(_n13##x,_n12##y,z,c)), \
(I[924] = (T)(img)(_n13##x,_n13##y,z,c)), \
(I[956] = (T)(img)(_n13##x,_n14##y,z,c)), \
(I[988] = (T)(img)(_n13##x,_n15##y,z,c)), \
(I[1020] = (T)(img)(_n13##x,_n16##y,z,c)), \
(I[29] = (T)(img)(_n14##x,_p15##y,z,c)), \
(I[61] = (T)(img)(_n14##x,_p14##y,z,c)), \
(I[93] = (T)(img)(_n14##x,_p13##y,z,c)), \
(I[125] = (T)(img)(_n14##x,_p12##y,z,c)), \
(I[157] = (T)(img)(_n14##x,_p11##y,z,c)), \
(I[189] = (T)(img)(_n14##x,_p10##y,z,c)), \
(I[221] = (T)(img)(_n14##x,_p9##y,z,c)), \
(I[253] = (T)(img)(_n14##x,_p8##y,z,c)), \
(I[285] = (T)(img)(_n14##x,_p7##y,z,c)), \
(I[317] = (T)(img)(_n14##x,_p6##y,z,c)), \
(I[349] = (T)(img)(_n14##x,_p5##y,z,c)), \
(I[381] = (T)(img)(_n14##x,_p4##y,z,c)), \
(I[413] = (T)(img)(_n14##x,_p3##y,z,c)), \
(I[445] = (T)(img)(_n14##x,_p2##y,z,c)), \
(I[477] = (T)(img)(_n14##x,_p1##y,z,c)), \
(I[509] = (T)(img)(_n14##x,y,z,c)), \
(I[541] = (T)(img)(_n14##x,_n1##y,z,c)), \
(I[573] = (T)(img)(_n14##x,_n2##y,z,c)), \
(I[605] = (T)(img)(_n14##x,_n3##y,z,c)), \
(I[637] = (T)(img)(_n14##x,_n4##y,z,c)), \
(I[669] = (T)(img)(_n14##x,_n5##y,z,c)), \
(I[701] = (T)(img)(_n14##x,_n6##y,z,c)), \
(I[733] = (T)(img)(_n14##x,_n7##y,z,c)), \
(I[765] = (T)(img)(_n14##x,_n8##y,z,c)), \
(I[797] = (T)(img)(_n14##x,_n9##y,z,c)), \
(I[829] = (T)(img)(_n14##x,_n10##y,z,c)), \
(I[861] = (T)(img)(_n14##x,_n11##y,z,c)), \
(I[893] = (T)(img)(_n14##x,_n12##y,z,c)), \
(I[925] = (T)(img)(_n14##x,_n13##y,z,c)), \
(I[957] = (T)(img)(_n14##x,_n14##y,z,c)), \
(I[989] = (T)(img)(_n14##x,_n15##y,z,c)), \
(I[1021] = (T)(img)(_n14##x,_n16##y,z,c)), \
(I[30] = (T)(img)(_n15##x,_p15##y,z,c)), \
(I[62] = (T)(img)(_n15##x,_p14##y,z,c)), \
(I[94] = (T)(img)(_n15##x,_p13##y,z,c)), \
(I[126] = (T)(img)(_n15##x,_p12##y,z,c)), \
(I[158] = (T)(img)(_n15##x,_p11##y,z,c)), \
(I[190] = (T)(img)(_n15##x,_p10##y,z,c)), \
(I[222] = (T)(img)(_n15##x,_p9##y,z,c)), \
(I[254] = (T)(img)(_n15##x,_p8##y,z,c)), \
(I[286] = (T)(img)(_n15##x,_p7##y,z,c)), \
(I[318] = (T)(img)(_n15##x,_p6##y,z,c)), \
(I[350] = (T)(img)(_n15##x,_p5##y,z,c)), \
(I[382] = (T)(img)(_n15##x,_p4##y,z,c)), \
(I[414] = (T)(img)(_n15##x,_p3##y,z,c)), \
(I[446] = (T)(img)(_n15##x,_p2##y,z,c)), \
(I[478] = (T)(img)(_n15##x,_p1##y,z,c)), \
(I[510] = (T)(img)(_n15##x,y,z,c)), \
(I[542] = (T)(img)(_n15##x,_n1##y,z,c)), \
(I[574] = (T)(img)(_n15##x,_n2##y,z,c)), \
(I[606] = (T)(img)(_n15##x,_n3##y,z,c)), \
(I[638] = (T)(img)(_n15##x,_n4##y,z,c)), \
(I[670] = (T)(img)(_n15##x,_n5##y,z,c)), \
(I[702] = (T)(img)(_n15##x,_n6##y,z,c)), \
(I[734] = (T)(img)(_n15##x,_n7##y,z,c)), \
(I[766] = (T)(img)(_n15##x,_n8##y,z,c)), \
(I[798] = (T)(img)(_n15##x,_n9##y,z,c)), \
(I[830] = (T)(img)(_n15##x,_n10##y,z,c)), \
(I[862] = (T)(img)(_n15##x,_n11##y,z,c)), \
(I[894] = (T)(img)(_n15##x,_n12##y,z,c)), \
(I[926] = (T)(img)(_n15##x,_n13##y,z,c)), \
(I[958] = (T)(img)(_n15##x,_n14##y,z,c)), \
(I[990] = (T)(img)(_n15##x,_n15##y,z,c)), \
(I[1022] = (T)(img)(_n15##x,_n16##y,z,c)), \
x + 16>=(img).width()?(img).width() - 1:x + 16); \
x<=(int)(x1) && ((_n16##x<(img).width() && ( \
(I[31] = (T)(img)(_n16##x,_p15##y,z,c)), \
(I[63] = (T)(img)(_n16##x,_p14##y,z,c)), \
(I[95] = (T)(img)(_n16##x,_p13##y,z,c)), \
(I[127] = (T)(img)(_n16##x,_p12##y,z,c)), \
(I[159] = (T)(img)(_n16##x,_p11##y,z,c)), \
(I[191] = (T)(img)(_n16##x,_p10##y,z,c)), \
(I[223] = (T)(img)(_n16##x,_p9##y,z,c)), \
(I[255] = (T)(img)(_n16##x,_p8##y,z,c)), \
(I[287] = (T)(img)(_n16##x,_p7##y,z,c)), \
(I[319] = (T)(img)(_n16##x,_p6##y,z,c)), \
(I[351] = (T)(img)(_n16##x,_p5##y,z,c)), \
(I[383] = (T)(img)(_n16##x,_p4##y,z,c)), \
(I[415] = (T)(img)(_n16##x,_p3##y,z,c)), \
(I[447] = (T)(img)(_n16##x,_p2##y,z,c)), \
(I[479] = (T)(img)(_n16##x,_p1##y,z,c)), \
(I[511] = (T)(img)(_n16##x,y,z,c)), \
(I[543] = (T)(img)(_n16##x,_n1##y,z,c)), \
(I[575] = (T)(img)(_n16##x,_n2##y,z,c)), \
(I[607] = (T)(img)(_n16##x,_n3##y,z,c)), \
(I[639] = (T)(img)(_n16##x,_n4##y,z,c)), \
(I[671] = (T)(img)(_n16##x,_n5##y,z,c)), \
(I[703] = (T)(img)(_n16##x,_n6##y,z,c)), \
(I[735] = (T)(img)(_n16##x,_n7##y,z,c)), \
(I[767] = (T)(img)(_n16##x,_n8##y,z,c)), \
(I[799] = (T)(img)(_n16##x,_n9##y,z,c)), \
(I[831] = (T)(img)(_n16##x,_n10##y,z,c)), \
(I[863] = (T)(img)(_n16##x,_n11##y,z,c)), \
(I[895] = (T)(img)(_n16##x,_n12##y,z,c)), \
(I[927] = (T)(img)(_n16##x,_n13##y,z,c)), \
(I[959] = (T)(img)(_n16##x,_n14##y,z,c)), \
(I[991] = (T)(img)(_n16##x,_n15##y,z,c)), \
(I[1023] = (T)(img)(_n16##x,_n16##y,z,c)),1)) || \
_n15##x==--_n16##x || _n14##x==--_n15##x || _n13##x==--_n14##x || _n12##x==--_n13##x || _n11##x==--_n12##x || _n10##x==--_n11##x || _n9##x==--_n10##x || _n8##x==--_n9##x || _n7##x==--_n8##x || _n6##x==--_n7##x || _n5##x==--_n6##x || _n4##x==--_n5##x || _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n16##x = _n15##x = _n14##x = _n13##x = _n12##x = _n11##x = _n10##x = _n9##x = _n8##x = _n7##x = _n6##x = _n5##x = _n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], I[167] = I[168], I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], I[279] = I[280], I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], I[335] = I[336], I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], I[343] = I[344], I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], I[359] = I[360], I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], I[367] = I[368], I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], I[375] = I[376], I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], I[391] = I[392], I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], I[399] = I[400], I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], I[407] = I[408], I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], I[423] = I[424], I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], I[431] = I[432], I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], I[439] = I[440], I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], I[455] = I[456], I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], I[463] = I[464], I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], I[471] = I[472], I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], I[487] = I[488], I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], I[495] = I[496], I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], I[503] = I[504], I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
I[512] = I[513], I[513] = I[514], I[514] = I[515], I[515] = I[516], I[516] = I[517], I[517] = I[518], I[518] = I[519], I[519] = I[520], I[520] = I[521], I[521] = I[522], I[522] = I[523], I[523] = I[524], I[524] = I[525], I[525] = I[526], I[526] = I[527], I[527] = I[528], I[528] = I[529], I[529] = I[530], I[530] = I[531], I[531] = I[532], I[532] = I[533], I[533] = I[534], I[534] = I[535], I[535] = I[536], I[536] = I[537], I[537] = I[538], I[538] = I[539], I[539] = I[540], I[540] = I[541], I[541] = I[542], I[542] = I[543], \
I[544] = I[545], I[545] = I[546], I[546] = I[547], I[547] = I[548], I[548] = I[549], I[549] = I[550], I[550] = I[551], I[551] = I[552], I[552] = I[553], I[553] = I[554], I[554] = I[555], I[555] = I[556], I[556] = I[557], I[557] = I[558], I[558] = I[559], I[559] = I[560], I[560] = I[561], I[561] = I[562], I[562] = I[563], I[563] = I[564], I[564] = I[565], I[565] = I[566], I[566] = I[567], I[567] = I[568], I[568] = I[569], I[569] = I[570], I[570] = I[571], I[571] = I[572], I[572] = I[573], I[573] = I[574], I[574] = I[575], \
I[576] = I[577], I[577] = I[578], I[578] = I[579], I[579] = I[580], I[580] = I[581], I[581] = I[582], I[582] = I[583], I[583] = I[584], I[584] = I[585], I[585] = I[586], I[586] = I[587], I[587] = I[588], I[588] = I[589], I[589] = I[590], I[590] = I[591], I[591] = I[592], I[592] = I[593], I[593] = I[594], I[594] = I[595], I[595] = I[596], I[596] = I[597], I[597] = I[598], I[598] = I[599], I[599] = I[600], I[600] = I[601], I[601] = I[602], I[602] = I[603], I[603] = I[604], I[604] = I[605], I[605] = I[606], I[606] = I[607], \
I[608] = I[609], I[609] = I[610], I[610] = I[611], I[611] = I[612], I[612] = I[613], I[613] = I[614], I[614] = I[615], I[615] = I[616], I[616] = I[617], I[617] = I[618], I[618] = I[619], I[619] = I[620], I[620] = I[621], I[621] = I[622], I[622] = I[623], I[623] = I[624], I[624] = I[625], I[625] = I[626], I[626] = I[627], I[627] = I[628], I[628] = I[629], I[629] = I[630], I[630] = I[631], I[631] = I[632], I[632] = I[633], I[633] = I[634], I[634] = I[635], I[635] = I[636], I[636] = I[637], I[637] = I[638], I[638] = I[639], \
I[640] = I[641], I[641] = I[642], I[642] = I[643], I[643] = I[644], I[644] = I[645], I[645] = I[646], I[646] = I[647], I[647] = I[648], I[648] = I[649], I[649] = I[650], I[650] = I[651], I[651] = I[652], I[652] = I[653], I[653] = I[654], I[654] = I[655], I[655] = I[656], I[656] = I[657], I[657] = I[658], I[658] = I[659], I[659] = I[660], I[660] = I[661], I[661] = I[662], I[662] = I[663], I[663] = I[664], I[664] = I[665], I[665] = I[666], I[666] = I[667], I[667] = I[668], I[668] = I[669], I[669] = I[670], I[670] = I[671], \
I[672] = I[673], I[673] = I[674], I[674] = I[675], I[675] = I[676], I[676] = I[677], I[677] = I[678], I[678] = I[679], I[679] = I[680], I[680] = I[681], I[681] = I[682], I[682] = I[683], I[683] = I[684], I[684] = I[685], I[685] = I[686], I[686] = I[687], I[687] = I[688], I[688] = I[689], I[689] = I[690], I[690] = I[691], I[691] = I[692], I[692] = I[693], I[693] = I[694], I[694] = I[695], I[695] = I[696], I[696] = I[697], I[697] = I[698], I[698] = I[699], I[699] = I[700], I[700] = I[701], I[701] = I[702], I[702] = I[703], \
I[704] = I[705], I[705] = I[706], I[706] = I[707], I[707] = I[708], I[708] = I[709], I[709] = I[710], I[710] = I[711], I[711] = I[712], I[712] = I[713], I[713] = I[714], I[714] = I[715], I[715] = I[716], I[716] = I[717], I[717] = I[718], I[718] = I[719], I[719] = I[720], I[720] = I[721], I[721] = I[722], I[722] = I[723], I[723] = I[724], I[724] = I[725], I[725] = I[726], I[726] = I[727], I[727] = I[728], I[728] = I[729], I[729] = I[730], I[730] = I[731], I[731] = I[732], I[732] = I[733], I[733] = I[734], I[734] = I[735], \
I[736] = I[737], I[737] = I[738], I[738] = I[739], I[739] = I[740], I[740] = I[741], I[741] = I[742], I[742] = I[743], I[743] = I[744], I[744] = I[745], I[745] = I[746], I[746] = I[747], I[747] = I[748], I[748] = I[749], I[749] = I[750], I[750] = I[751], I[751] = I[752], I[752] = I[753], I[753] = I[754], I[754] = I[755], I[755] = I[756], I[756] = I[757], I[757] = I[758], I[758] = I[759], I[759] = I[760], I[760] = I[761], I[761] = I[762], I[762] = I[763], I[763] = I[764], I[764] = I[765], I[765] = I[766], I[766] = I[767], \
I[768] = I[769], I[769] = I[770], I[770] = I[771], I[771] = I[772], I[772] = I[773], I[773] = I[774], I[774] = I[775], I[775] = I[776], I[776] = I[777], I[777] = I[778], I[778] = I[779], I[779] = I[780], I[780] = I[781], I[781] = I[782], I[782] = I[783], I[783] = I[784], I[784] = I[785], I[785] = I[786], I[786] = I[787], I[787] = I[788], I[788] = I[789], I[789] = I[790], I[790] = I[791], I[791] = I[792], I[792] = I[793], I[793] = I[794], I[794] = I[795], I[795] = I[796], I[796] = I[797], I[797] = I[798], I[798] = I[799], \
I[800] = I[801], I[801] = I[802], I[802] = I[803], I[803] = I[804], I[804] = I[805], I[805] = I[806], I[806] = I[807], I[807] = I[808], I[808] = I[809], I[809] = I[810], I[810] = I[811], I[811] = I[812], I[812] = I[813], I[813] = I[814], I[814] = I[815], I[815] = I[816], I[816] = I[817], I[817] = I[818], I[818] = I[819], I[819] = I[820], I[820] = I[821], I[821] = I[822], I[822] = I[823], I[823] = I[824], I[824] = I[825], I[825] = I[826], I[826] = I[827], I[827] = I[828], I[828] = I[829], I[829] = I[830], I[830] = I[831], \
I[832] = I[833], I[833] = I[834], I[834] = I[835], I[835] = I[836], I[836] = I[837], I[837] = I[838], I[838] = I[839], I[839] = I[840], I[840] = I[841], I[841] = I[842], I[842] = I[843], I[843] = I[844], I[844] = I[845], I[845] = I[846], I[846] = I[847], I[847] = I[848], I[848] = I[849], I[849] = I[850], I[850] = I[851], I[851] = I[852], I[852] = I[853], I[853] = I[854], I[854] = I[855], I[855] = I[856], I[856] = I[857], I[857] = I[858], I[858] = I[859], I[859] = I[860], I[860] = I[861], I[861] = I[862], I[862] = I[863], \
I[864] = I[865], I[865] = I[866], I[866] = I[867], I[867] = I[868], I[868] = I[869], I[869] = I[870], I[870] = I[871], I[871] = I[872], I[872] = I[873], I[873] = I[874], I[874] = I[875], I[875] = I[876], I[876] = I[877], I[877] = I[878], I[878] = I[879], I[879] = I[880], I[880] = I[881], I[881] = I[882], I[882] = I[883], I[883] = I[884], I[884] = I[885], I[885] = I[886], I[886] = I[887], I[887] = I[888], I[888] = I[889], I[889] = I[890], I[890] = I[891], I[891] = I[892], I[892] = I[893], I[893] = I[894], I[894] = I[895], \
I[896] = I[897], I[897] = I[898], I[898] = I[899], I[899] = I[900], I[900] = I[901], I[901] = I[902], I[902] = I[903], I[903] = I[904], I[904] = I[905], I[905] = I[906], I[906] = I[907], I[907] = I[908], I[908] = I[909], I[909] = I[910], I[910] = I[911], I[911] = I[912], I[912] = I[913], I[913] = I[914], I[914] = I[915], I[915] = I[916], I[916] = I[917], I[917] = I[918], I[918] = I[919], I[919] = I[920], I[920] = I[921], I[921] = I[922], I[922] = I[923], I[923] = I[924], I[924] = I[925], I[925] = I[926], I[926] = I[927], \
I[928] = I[929], I[929] = I[930], I[930] = I[931], I[931] = I[932], I[932] = I[933], I[933] = I[934], I[934] = I[935], I[935] = I[936], I[936] = I[937], I[937] = I[938], I[938] = I[939], I[939] = I[940], I[940] = I[941], I[941] = I[942], I[942] = I[943], I[943] = I[944], I[944] = I[945], I[945] = I[946], I[946] = I[947], I[947] = I[948], I[948] = I[949], I[949] = I[950], I[950] = I[951], I[951] = I[952], I[952] = I[953], I[953] = I[954], I[954] = I[955], I[955] = I[956], I[956] = I[957], I[957] = I[958], I[958] = I[959], \
I[960] = I[961], I[961] = I[962], I[962] = I[963], I[963] = I[964], I[964] = I[965], I[965] = I[966], I[966] = I[967], I[967] = I[968], I[968] = I[969], I[969] = I[970], I[970] = I[971], I[971] = I[972], I[972] = I[973], I[973] = I[974], I[974] = I[975], I[975] = I[976], I[976] = I[977], I[977] = I[978], I[978] = I[979], I[979] = I[980], I[980] = I[981], I[981] = I[982], I[982] = I[983], I[983] = I[984], I[984] = I[985], I[985] = I[986], I[986] = I[987], I[987] = I[988], I[988] = I[989], I[989] = I[990], I[990] = I[991], \
I[992] = I[993], I[993] = I[994], I[994] = I[995], I[995] = I[996], I[996] = I[997], I[997] = I[998], I[998] = I[999], I[999] = I[1000], I[1000] = I[1001], I[1001] = I[1002], I[1002] = I[1003], I[1003] = I[1004], I[1004] = I[1005], I[1005] = I[1006], I[1006] = I[1007], I[1007] = I[1008], I[1008] = I[1009], I[1009] = I[1010], I[1010] = I[1011], I[1011] = I[1012], I[1012] = I[1013], I[1013] = I[1014], I[1014] = I[1015], I[1015] = I[1016], I[1016] = I[1017], I[1017] = I[1018], I[1018] = I[1019], I[1019] = I[1020], I[1020] = I[1021], I[1021] = I[1022], I[1022] = I[1023], \
_p15##x = _p14##x, _p14##x = _p13##x, _p13##x = _p12##x, _p12##x = _p11##x, _p11##x = _p10##x, _p10##x = _p9##x, _p9##x = _p8##x, _p8##x = _p7##x, _p7##x = _p6##x, _p6##x = _p5##x, _p5##x = _p4##x, _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x, ++_n5##x, ++_n6##x, ++_n7##x, ++_n8##x, ++_n9##x, ++_n10##x, ++_n11##x, ++_n12##x, ++_n13##x, ++_n14##x, ++_n15##x, ++_n16##x)
#define cimg_get32x32(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p15##x,_p15##y,z,c), I[1] = (T)(img)(_p14##x,_p15##y,z,c), I[2] = (T)(img)(_p13##x,_p15##y,z,c), I[3] = (T)(img)(_p12##x,_p15##y,z,c), I[4] = (T)(img)(_p11##x,_p15##y,z,c), I[5] = (T)(img)(_p10##x,_p15##y,z,c), I[6] = (T)(img)(_p9##x,_p15##y,z,c), I[7] = (T)(img)(_p8##x,_p15##y,z,c), I[8] = (T)(img)(_p7##x,_p15##y,z,c), I[9] = (T)(img)(_p6##x,_p15##y,z,c), I[10] = (T)(img)(_p5##x,_p15##y,z,c), I[11] = (T)(img)(_p4##x,_p15##y,z,c), I[12] = (T)(img)(_p3##x,_p15##y,z,c), I[13] = (T)(img)(_p2##x,_p15##y,z,c), I[14] = (T)(img)(_p1##x,_p15##y,z,c), I[15] = (T)(img)(x,_p15##y,z,c), I[16] = (T)(img)(_n1##x,_p15##y,z,c), I[17] = (T)(img)(_n2##x,_p15##y,z,c), I[18] = (T)(img)(_n3##x,_p15##y,z,c), I[19] = (T)(img)(_n4##x,_p15##y,z,c), I[20] = (T)(img)(_n5##x,_p15##y,z,c), I[21] = (T)(img)(_n6##x,_p15##y,z,c), I[22] = (T)(img)(_n7##x,_p15##y,z,c), I[23] = (T)(img)(_n8##x,_p15##y,z,c), I[24] = (T)(img)(_n9##x,_p15##y,z,c), I[25] = (T)(img)(_n10##x,_p15##y,z,c), I[26] = (T)(img)(_n11##x,_p15##y,z,c), I[27] = (T)(img)(_n12##x,_p15##y,z,c), I[28] = (T)(img)(_n13##x,_p15##y,z,c), I[29] = (T)(img)(_n14##x,_p15##y,z,c), I[30] = (T)(img)(_n15##x,_p15##y,z,c), I[31] = (T)(img)(_n16##x,_p15##y,z,c), \
I[32] = (T)(img)(_p15##x,_p14##y,z,c), I[33] = (T)(img)(_p14##x,_p14##y,z,c), I[34] = (T)(img)(_p13##x,_p14##y,z,c), I[35] = (T)(img)(_p12##x,_p14##y,z,c), I[36] = (T)(img)(_p11##x,_p14##y,z,c), I[37] = (T)(img)(_p10##x,_p14##y,z,c), I[38] = (T)(img)(_p9##x,_p14##y,z,c), I[39] = (T)(img)(_p8##x,_p14##y,z,c), I[40] = (T)(img)(_p7##x,_p14##y,z,c), I[41] = (T)(img)(_p6##x,_p14##y,z,c), I[42] = (T)(img)(_p5##x,_p14##y,z,c), I[43] = (T)(img)(_p4##x,_p14##y,z,c), I[44] = (T)(img)(_p3##x,_p14##y,z,c), I[45] = (T)(img)(_p2##x,_p14##y,z,c), I[46] = (T)(img)(_p1##x,_p14##y,z,c), I[47] = (T)(img)(x,_p14##y,z,c), I[48] = (T)(img)(_n1##x,_p14##y,z,c), I[49] = (T)(img)(_n2##x,_p14##y,z,c), I[50] = (T)(img)(_n3##x,_p14##y,z,c), I[51] = (T)(img)(_n4##x,_p14##y,z,c), I[52] = (T)(img)(_n5##x,_p14##y,z,c), I[53] = (T)(img)(_n6##x,_p14##y,z,c), I[54] = (T)(img)(_n7##x,_p14##y,z,c), I[55] = (T)(img)(_n8##x,_p14##y,z,c), I[56] = (T)(img)(_n9##x,_p14##y,z,c), I[57] = (T)(img)(_n10##x,_p14##y,z,c), I[58] = (T)(img)(_n11##x,_p14##y,z,c), I[59] = (T)(img)(_n12##x,_p14##y,z,c), I[60] = (T)(img)(_n13##x,_p14##y,z,c), I[61] = (T)(img)(_n14##x,_p14##y,z,c), I[62] = (T)(img)(_n15##x,_p14##y,z,c), I[63] = (T)(img)(_n16##x,_p14##y,z,c), \
I[64] = (T)(img)(_p15##x,_p13##y,z,c), I[65] = (T)(img)(_p14##x,_p13##y,z,c), I[66] = (T)(img)(_p13##x,_p13##y,z,c), I[67] = (T)(img)(_p12##x,_p13##y,z,c), I[68] = (T)(img)(_p11##x,_p13##y,z,c), I[69] = (T)(img)(_p10##x,_p13##y,z,c), I[70] = (T)(img)(_p9##x,_p13##y,z,c), I[71] = (T)(img)(_p8##x,_p13##y,z,c), I[72] = (T)(img)(_p7##x,_p13##y,z,c), I[73] = (T)(img)(_p6##x,_p13##y,z,c), I[74] = (T)(img)(_p5##x,_p13##y,z,c), I[75] = (T)(img)(_p4##x,_p13##y,z,c), I[76] = (T)(img)(_p3##x,_p13##y,z,c), I[77] = (T)(img)(_p2##x,_p13##y,z,c), I[78] = (T)(img)(_p1##x,_p13##y,z,c), I[79] = (T)(img)(x,_p13##y,z,c), I[80] = (T)(img)(_n1##x,_p13##y,z,c), I[81] = (T)(img)(_n2##x,_p13##y,z,c), I[82] = (T)(img)(_n3##x,_p13##y,z,c), I[83] = (T)(img)(_n4##x,_p13##y,z,c), I[84] = (T)(img)(_n5##x,_p13##y,z,c), I[85] = (T)(img)(_n6##x,_p13##y,z,c), I[86] = (T)(img)(_n7##x,_p13##y,z,c), I[87] = (T)(img)(_n8##x,_p13##y,z,c), I[88] = (T)(img)(_n9##x,_p13##y,z,c), I[89] = (T)(img)(_n10##x,_p13##y,z,c), I[90] = (T)(img)(_n11##x,_p13##y,z,c), I[91] = (T)(img)(_n12##x,_p13##y,z,c), I[92] = (T)(img)(_n13##x,_p13##y,z,c), I[93] = (T)(img)(_n14##x,_p13##y,z,c), I[94] = (T)(img)(_n15##x,_p13##y,z,c), I[95] = (T)(img)(_n16##x,_p13##y,z,c), \
I[96] = (T)(img)(_p15##x,_p12##y,z,c), I[97] = (T)(img)(_p14##x,_p12##y,z,c), I[98] = (T)(img)(_p13##x,_p12##y,z,c), I[99] = (T)(img)(_p12##x,_p12##y,z,c), I[100] = (T)(img)(_p11##x,_p12##y,z,c), I[101] = (T)(img)(_p10##x,_p12##y,z,c), I[102] = (T)(img)(_p9##x,_p12##y,z,c), I[103] = (T)(img)(_p8##x,_p12##y,z,c), I[104] = (T)(img)(_p7##x,_p12##y,z,c), I[105] = (T)(img)(_p6##x,_p12##y,z,c), I[106] = (T)(img)(_p5##x,_p12##y,z,c), I[107] = (T)(img)(_p4##x,_p12##y,z,c), I[108] = (T)(img)(_p3##x,_p12##y,z,c), I[109] = (T)(img)(_p2##x,_p12##y,z,c), I[110] = (T)(img)(_p1##x,_p12##y,z,c), I[111] = (T)(img)(x,_p12##y,z,c), I[112] = (T)(img)(_n1##x,_p12##y,z,c), I[113] = (T)(img)(_n2##x,_p12##y,z,c), I[114] = (T)(img)(_n3##x,_p12##y,z,c), I[115] = (T)(img)(_n4##x,_p12##y,z,c), I[116] = (T)(img)(_n5##x,_p12##y,z,c), I[117] = (T)(img)(_n6##x,_p12##y,z,c), I[118] = (T)(img)(_n7##x,_p12##y,z,c), I[119] = (T)(img)(_n8##x,_p12##y,z,c), I[120] = (T)(img)(_n9##x,_p12##y,z,c), I[121] = (T)(img)(_n10##x,_p12##y,z,c), I[122] = (T)(img)(_n11##x,_p12##y,z,c), I[123] = (T)(img)(_n12##x,_p12##y,z,c), I[124] = (T)(img)(_n13##x,_p12##y,z,c), I[125] = (T)(img)(_n14##x,_p12##y,z,c), I[126] = (T)(img)(_n15##x,_p12##y,z,c), I[127] = (T)(img)(_n16##x,_p12##y,z,c), \
I[128] = (T)(img)(_p15##x,_p11##y,z,c), I[129] = (T)(img)(_p14##x,_p11##y,z,c), I[130] = (T)(img)(_p13##x,_p11##y,z,c), I[131] = (T)(img)(_p12##x,_p11##y,z,c), I[132] = (T)(img)(_p11##x,_p11##y,z,c), I[133] = (T)(img)(_p10##x,_p11##y,z,c), I[134] = (T)(img)(_p9##x,_p11##y,z,c), I[135] = (T)(img)(_p8##x,_p11##y,z,c), I[136] = (T)(img)(_p7##x,_p11##y,z,c), I[137] = (T)(img)(_p6##x,_p11##y,z,c), I[138] = (T)(img)(_p5##x,_p11##y,z,c), I[139] = (T)(img)(_p4##x,_p11##y,z,c), I[140] = (T)(img)(_p3##x,_p11##y,z,c), I[141] = (T)(img)(_p2##x,_p11##y,z,c), I[142] = (T)(img)(_p1##x,_p11##y,z,c), I[143] = (T)(img)(x,_p11##y,z,c), I[144] = (T)(img)(_n1##x,_p11##y,z,c), I[145] = (T)(img)(_n2##x,_p11##y,z,c), I[146] = (T)(img)(_n3##x,_p11##y,z,c), I[147] = (T)(img)(_n4##x,_p11##y,z,c), I[148] = (T)(img)(_n5##x,_p11##y,z,c), I[149] = (T)(img)(_n6##x,_p11##y,z,c), I[150] = (T)(img)(_n7##x,_p11##y,z,c), I[151] = (T)(img)(_n8##x,_p11##y,z,c), I[152] = (T)(img)(_n9##x,_p11##y,z,c), I[153] = (T)(img)(_n10##x,_p11##y,z,c), I[154] = (T)(img)(_n11##x,_p11##y,z,c), I[155] = (T)(img)(_n12##x,_p11##y,z,c), I[156] = (T)(img)(_n13##x,_p11##y,z,c), I[157] = (T)(img)(_n14##x,_p11##y,z,c), I[158] = (T)(img)(_n15##x,_p11##y,z,c), I[159] = (T)(img)(_n16##x,_p11##y,z,c), \
I[160] = (T)(img)(_p15##x,_p10##y,z,c), I[161] = (T)(img)(_p14##x,_p10##y,z,c), I[162] = (T)(img)(_p13##x,_p10##y,z,c), I[163] = (T)(img)(_p12##x,_p10##y,z,c), I[164] = (T)(img)(_p11##x,_p10##y,z,c), I[165] = (T)(img)(_p10##x,_p10##y,z,c), I[166] = (T)(img)(_p9##x,_p10##y,z,c), I[167] = (T)(img)(_p8##x,_p10##y,z,c), I[168] = (T)(img)(_p7##x,_p10##y,z,c), I[169] = (T)(img)(_p6##x,_p10##y,z,c), I[170] = (T)(img)(_p5##x,_p10##y,z,c), I[171] = (T)(img)(_p4##x,_p10##y,z,c), I[172] = (T)(img)(_p3##x,_p10##y,z,c), I[173] = (T)(img)(_p2##x,_p10##y,z,c), I[174] = (T)(img)(_p1##x,_p10##y,z,c), I[175] = (T)(img)(x,_p10##y,z,c), I[176] = (T)(img)(_n1##x,_p10##y,z,c), I[177] = (T)(img)(_n2##x,_p10##y,z,c), I[178] = (T)(img)(_n3##x,_p10##y,z,c), I[179] = (T)(img)(_n4##x,_p10##y,z,c), I[180] = (T)(img)(_n5##x,_p10##y,z,c), I[181] = (T)(img)(_n6##x,_p10##y,z,c), I[182] = (T)(img)(_n7##x,_p10##y,z,c), I[183] = (T)(img)(_n8##x,_p10##y,z,c), I[184] = (T)(img)(_n9##x,_p10##y,z,c), I[185] = (T)(img)(_n10##x,_p10##y,z,c), I[186] = (T)(img)(_n11##x,_p10##y,z,c), I[187] = (T)(img)(_n12##x,_p10##y,z,c), I[188] = (T)(img)(_n13##x,_p10##y,z,c), I[189] = (T)(img)(_n14##x,_p10##y,z,c), I[190] = (T)(img)(_n15##x,_p10##y,z,c), I[191] = (T)(img)(_n16##x,_p10##y,z,c), \
I[192] = (T)(img)(_p15##x,_p9##y,z,c), I[193] = (T)(img)(_p14##x,_p9##y,z,c), I[194] = (T)(img)(_p13##x,_p9##y,z,c), I[195] = (T)(img)(_p12##x,_p9##y,z,c), I[196] = (T)(img)(_p11##x,_p9##y,z,c), I[197] = (T)(img)(_p10##x,_p9##y,z,c), I[198] = (T)(img)(_p9##x,_p9##y,z,c), I[199] = (T)(img)(_p8##x,_p9##y,z,c), I[200] = (T)(img)(_p7##x,_p9##y,z,c), I[201] = (T)(img)(_p6##x,_p9##y,z,c), I[202] = (T)(img)(_p5##x,_p9##y,z,c), I[203] = (T)(img)(_p4##x,_p9##y,z,c), I[204] = (T)(img)(_p3##x,_p9##y,z,c), I[205] = (T)(img)(_p2##x,_p9##y,z,c), I[206] = (T)(img)(_p1##x,_p9##y,z,c), I[207] = (T)(img)(x,_p9##y,z,c), I[208] = (T)(img)(_n1##x,_p9##y,z,c), I[209] = (T)(img)(_n2##x,_p9##y,z,c), I[210] = (T)(img)(_n3##x,_p9##y,z,c), I[211] = (T)(img)(_n4##x,_p9##y,z,c), I[212] = (T)(img)(_n5##x,_p9##y,z,c), I[213] = (T)(img)(_n6##x,_p9##y,z,c), I[214] = (T)(img)(_n7##x,_p9##y,z,c), I[215] = (T)(img)(_n8##x,_p9##y,z,c), I[216] = (T)(img)(_n9##x,_p9##y,z,c), I[217] = (T)(img)(_n10##x,_p9##y,z,c), I[218] = (T)(img)(_n11##x,_p9##y,z,c), I[219] = (T)(img)(_n12##x,_p9##y,z,c), I[220] = (T)(img)(_n13##x,_p9##y,z,c), I[221] = (T)(img)(_n14##x,_p9##y,z,c), I[222] = (T)(img)(_n15##x,_p9##y,z,c), I[223] = (T)(img)(_n16##x,_p9##y,z,c), \
I[224] = (T)(img)(_p15##x,_p8##y,z,c), I[225] = (T)(img)(_p14##x,_p8##y,z,c), I[226] = (T)(img)(_p13##x,_p8##y,z,c), I[227] = (T)(img)(_p12##x,_p8##y,z,c), I[228] = (T)(img)(_p11##x,_p8##y,z,c), I[229] = (T)(img)(_p10##x,_p8##y,z,c), I[230] = (T)(img)(_p9##x,_p8##y,z,c), I[231] = (T)(img)(_p8##x,_p8##y,z,c), I[232] = (T)(img)(_p7##x,_p8##y,z,c), I[233] = (T)(img)(_p6##x,_p8##y,z,c), I[234] = (T)(img)(_p5##x,_p8##y,z,c), I[235] = (T)(img)(_p4##x,_p8##y,z,c), I[236] = (T)(img)(_p3##x,_p8##y,z,c), I[237] = (T)(img)(_p2##x,_p8##y,z,c), I[238] = (T)(img)(_p1##x,_p8##y,z,c), I[239] = (T)(img)(x,_p8##y,z,c), I[240] = (T)(img)(_n1##x,_p8##y,z,c), I[241] = (T)(img)(_n2##x,_p8##y,z,c), I[242] = (T)(img)(_n3##x,_p8##y,z,c), I[243] = (T)(img)(_n4##x,_p8##y,z,c), I[244] = (T)(img)(_n5##x,_p8##y,z,c), I[245] = (T)(img)(_n6##x,_p8##y,z,c), I[246] = (T)(img)(_n7##x,_p8##y,z,c), I[247] = (T)(img)(_n8##x,_p8##y,z,c), I[248] = (T)(img)(_n9##x,_p8##y,z,c), I[249] = (T)(img)(_n10##x,_p8##y,z,c), I[250] = (T)(img)(_n11##x,_p8##y,z,c), I[251] = (T)(img)(_n12##x,_p8##y,z,c), I[252] = (T)(img)(_n13##x,_p8##y,z,c), I[253] = (T)(img)(_n14##x,_p8##y,z,c), I[254] = (T)(img)(_n15##x,_p8##y,z,c), I[255] = (T)(img)(_n16##x,_p8##y,z,c), \
I[256] = (T)(img)(_p15##x,_p7##y,z,c), I[257] = (T)(img)(_p14##x,_p7##y,z,c), I[258] = (T)(img)(_p13##x,_p7##y,z,c), I[259] = (T)(img)(_p12##x,_p7##y,z,c), I[260] = (T)(img)(_p11##x,_p7##y,z,c), I[261] = (T)(img)(_p10##x,_p7##y,z,c), I[262] = (T)(img)(_p9##x,_p7##y,z,c), I[263] = (T)(img)(_p8##x,_p7##y,z,c), I[264] = (T)(img)(_p7##x,_p7##y,z,c), I[265] = (T)(img)(_p6##x,_p7##y,z,c), I[266] = (T)(img)(_p5##x,_p7##y,z,c), I[267] = (T)(img)(_p4##x,_p7##y,z,c), I[268] = (T)(img)(_p3##x,_p7##y,z,c), I[269] = (T)(img)(_p2##x,_p7##y,z,c), I[270] = (T)(img)(_p1##x,_p7##y,z,c), I[271] = (T)(img)(x,_p7##y,z,c), I[272] = (T)(img)(_n1##x,_p7##y,z,c), I[273] = (T)(img)(_n2##x,_p7##y,z,c), I[274] = (T)(img)(_n3##x,_p7##y,z,c), I[275] = (T)(img)(_n4##x,_p7##y,z,c), I[276] = (T)(img)(_n5##x,_p7##y,z,c), I[277] = (T)(img)(_n6##x,_p7##y,z,c), I[278] = (T)(img)(_n7##x,_p7##y,z,c), I[279] = (T)(img)(_n8##x,_p7##y,z,c), I[280] = (T)(img)(_n9##x,_p7##y,z,c), I[281] = (T)(img)(_n10##x,_p7##y,z,c), I[282] = (T)(img)(_n11##x,_p7##y,z,c), I[283] = (T)(img)(_n12##x,_p7##y,z,c), I[284] = (T)(img)(_n13##x,_p7##y,z,c), I[285] = (T)(img)(_n14##x,_p7##y,z,c), I[286] = (T)(img)(_n15##x,_p7##y,z,c), I[287] = (T)(img)(_n16##x,_p7##y,z,c), \
I[288] = (T)(img)(_p15##x,_p6##y,z,c), I[289] = (T)(img)(_p14##x,_p6##y,z,c), I[290] = (T)(img)(_p13##x,_p6##y,z,c), I[291] = (T)(img)(_p12##x,_p6##y,z,c), I[292] = (T)(img)(_p11##x,_p6##y,z,c), I[293] = (T)(img)(_p10##x,_p6##y,z,c), I[294] = (T)(img)(_p9##x,_p6##y,z,c), I[295] = (T)(img)(_p8##x,_p6##y,z,c), I[296] = (T)(img)(_p7##x,_p6##y,z,c), I[297] = (T)(img)(_p6##x,_p6##y,z,c), I[298] = (T)(img)(_p5##x,_p6##y,z,c), I[299] = (T)(img)(_p4##x,_p6##y,z,c), I[300] = (T)(img)(_p3##x,_p6##y,z,c), I[301] = (T)(img)(_p2##x,_p6##y,z,c), I[302] = (T)(img)(_p1##x,_p6##y,z,c), I[303] = (T)(img)(x,_p6##y,z,c), I[304] = (T)(img)(_n1##x,_p6##y,z,c), I[305] = (T)(img)(_n2##x,_p6##y,z,c), I[306] = (T)(img)(_n3##x,_p6##y,z,c), I[307] = (T)(img)(_n4##x,_p6##y,z,c), I[308] = (T)(img)(_n5##x,_p6##y,z,c), I[309] = (T)(img)(_n6##x,_p6##y,z,c), I[310] = (T)(img)(_n7##x,_p6##y,z,c), I[311] = (T)(img)(_n8##x,_p6##y,z,c), I[312] = (T)(img)(_n9##x,_p6##y,z,c), I[313] = (T)(img)(_n10##x,_p6##y,z,c), I[314] = (T)(img)(_n11##x,_p6##y,z,c), I[315] = (T)(img)(_n12##x,_p6##y,z,c), I[316] = (T)(img)(_n13##x,_p6##y,z,c), I[317] = (T)(img)(_n14##x,_p6##y,z,c), I[318] = (T)(img)(_n15##x,_p6##y,z,c), I[319] = (T)(img)(_n16##x,_p6##y,z,c), \
I[320] = (T)(img)(_p15##x,_p5##y,z,c), I[321] = (T)(img)(_p14##x,_p5##y,z,c), I[322] = (T)(img)(_p13##x,_p5##y,z,c), I[323] = (T)(img)(_p12##x,_p5##y,z,c), I[324] = (T)(img)(_p11##x,_p5##y,z,c), I[325] = (T)(img)(_p10##x,_p5##y,z,c), I[326] = (T)(img)(_p9##x,_p5##y,z,c), I[327] = (T)(img)(_p8##x,_p5##y,z,c), I[328] = (T)(img)(_p7##x,_p5##y,z,c), I[329] = (T)(img)(_p6##x,_p5##y,z,c), I[330] = (T)(img)(_p5##x,_p5##y,z,c), I[331] = (T)(img)(_p4##x,_p5##y,z,c), I[332] = (T)(img)(_p3##x,_p5##y,z,c), I[333] = (T)(img)(_p2##x,_p5##y,z,c), I[334] = (T)(img)(_p1##x,_p5##y,z,c), I[335] = (T)(img)(x,_p5##y,z,c), I[336] = (T)(img)(_n1##x,_p5##y,z,c), I[337] = (T)(img)(_n2##x,_p5##y,z,c), I[338] = (T)(img)(_n3##x,_p5##y,z,c), I[339] = (T)(img)(_n4##x,_p5##y,z,c), I[340] = (T)(img)(_n5##x,_p5##y,z,c), I[341] = (T)(img)(_n6##x,_p5##y,z,c), I[342] = (T)(img)(_n7##x,_p5##y,z,c), I[343] = (T)(img)(_n8##x,_p5##y,z,c), I[344] = (T)(img)(_n9##x,_p5##y,z,c), I[345] = (T)(img)(_n10##x,_p5##y,z,c), I[346] = (T)(img)(_n11##x,_p5##y,z,c), I[347] = (T)(img)(_n12##x,_p5##y,z,c), I[348] = (T)(img)(_n13##x,_p5##y,z,c), I[349] = (T)(img)(_n14##x,_p5##y,z,c), I[350] = (T)(img)(_n15##x,_p5##y,z,c), I[351] = (T)(img)(_n16##x,_p5##y,z,c), \
I[352] = (T)(img)(_p15##x,_p4##y,z,c), I[353] = (T)(img)(_p14##x,_p4##y,z,c), I[354] = (T)(img)(_p13##x,_p4##y,z,c), I[355] = (T)(img)(_p12##x,_p4##y,z,c), I[356] = (T)(img)(_p11##x,_p4##y,z,c), I[357] = (T)(img)(_p10##x,_p4##y,z,c), I[358] = (T)(img)(_p9##x,_p4##y,z,c), I[359] = (T)(img)(_p8##x,_p4##y,z,c), I[360] = (T)(img)(_p7##x,_p4##y,z,c), I[361] = (T)(img)(_p6##x,_p4##y,z,c), I[362] = (T)(img)(_p5##x,_p4##y,z,c), I[363] = (T)(img)(_p4##x,_p4##y,z,c), I[364] = (T)(img)(_p3##x,_p4##y,z,c), I[365] = (T)(img)(_p2##x,_p4##y,z,c), I[366] = (T)(img)(_p1##x,_p4##y,z,c), I[367] = (T)(img)(x,_p4##y,z,c), I[368] = (T)(img)(_n1##x,_p4##y,z,c), I[369] = (T)(img)(_n2##x,_p4##y,z,c), I[370] = (T)(img)(_n3##x,_p4##y,z,c), I[371] = (T)(img)(_n4##x,_p4##y,z,c), I[372] = (T)(img)(_n5##x,_p4##y,z,c), I[373] = (T)(img)(_n6##x,_p4##y,z,c), I[374] = (T)(img)(_n7##x,_p4##y,z,c), I[375] = (T)(img)(_n8##x,_p4##y,z,c), I[376] = (T)(img)(_n9##x,_p4##y,z,c), I[377] = (T)(img)(_n10##x,_p4##y,z,c), I[378] = (T)(img)(_n11##x,_p4##y,z,c), I[379] = (T)(img)(_n12##x,_p4##y,z,c), I[380] = (T)(img)(_n13##x,_p4##y,z,c), I[381] = (T)(img)(_n14##x,_p4##y,z,c), I[382] = (T)(img)(_n15##x,_p4##y,z,c), I[383] = (T)(img)(_n16##x,_p4##y,z,c), \
I[384] = (T)(img)(_p15##x,_p3##y,z,c), I[385] = (T)(img)(_p14##x,_p3##y,z,c), I[386] = (T)(img)(_p13##x,_p3##y,z,c), I[387] = (T)(img)(_p12##x,_p3##y,z,c), I[388] = (T)(img)(_p11##x,_p3##y,z,c), I[389] = (T)(img)(_p10##x,_p3##y,z,c), I[390] = (T)(img)(_p9##x,_p3##y,z,c), I[391] = (T)(img)(_p8##x,_p3##y,z,c), I[392] = (T)(img)(_p7##x,_p3##y,z,c), I[393] = (T)(img)(_p6##x,_p3##y,z,c), I[394] = (T)(img)(_p5##x,_p3##y,z,c), I[395] = (T)(img)(_p4##x,_p3##y,z,c), I[396] = (T)(img)(_p3##x,_p3##y,z,c), I[397] = (T)(img)(_p2##x,_p3##y,z,c), I[398] = (T)(img)(_p1##x,_p3##y,z,c), I[399] = (T)(img)(x,_p3##y,z,c), I[400] = (T)(img)(_n1##x,_p3##y,z,c), I[401] = (T)(img)(_n2##x,_p3##y,z,c), I[402] = (T)(img)(_n3##x,_p3##y,z,c), I[403] = (T)(img)(_n4##x,_p3##y,z,c), I[404] = (T)(img)(_n5##x,_p3##y,z,c), I[405] = (T)(img)(_n6##x,_p3##y,z,c), I[406] = (T)(img)(_n7##x,_p3##y,z,c), I[407] = (T)(img)(_n8##x,_p3##y,z,c), I[408] = (T)(img)(_n9##x,_p3##y,z,c), I[409] = (T)(img)(_n10##x,_p3##y,z,c), I[410] = (T)(img)(_n11##x,_p3##y,z,c), I[411] = (T)(img)(_n12##x,_p3##y,z,c), I[412] = (T)(img)(_n13##x,_p3##y,z,c), I[413] = (T)(img)(_n14##x,_p3##y,z,c), I[414] = (T)(img)(_n15##x,_p3##y,z,c), I[415] = (T)(img)(_n16##x,_p3##y,z,c), \
I[416] = (T)(img)(_p15##x,_p2##y,z,c), I[417] = (T)(img)(_p14##x,_p2##y,z,c), I[418] = (T)(img)(_p13##x,_p2##y,z,c), I[419] = (T)(img)(_p12##x,_p2##y,z,c), I[420] = (T)(img)(_p11##x,_p2##y,z,c), I[421] = (T)(img)(_p10##x,_p2##y,z,c), I[422] = (T)(img)(_p9##x,_p2##y,z,c), I[423] = (T)(img)(_p8##x,_p2##y,z,c), I[424] = (T)(img)(_p7##x,_p2##y,z,c), I[425] = (T)(img)(_p6##x,_p2##y,z,c), I[426] = (T)(img)(_p5##x,_p2##y,z,c), I[427] = (T)(img)(_p4##x,_p2##y,z,c), I[428] = (T)(img)(_p3##x,_p2##y,z,c), I[429] = (T)(img)(_p2##x,_p2##y,z,c), I[430] = (T)(img)(_p1##x,_p2##y,z,c), I[431] = (T)(img)(x,_p2##y,z,c), I[432] = (T)(img)(_n1##x,_p2##y,z,c), I[433] = (T)(img)(_n2##x,_p2##y,z,c), I[434] = (T)(img)(_n3##x,_p2##y,z,c), I[435] = (T)(img)(_n4##x,_p2##y,z,c), I[436] = (T)(img)(_n5##x,_p2##y,z,c), I[437] = (T)(img)(_n6##x,_p2##y,z,c), I[438] = (T)(img)(_n7##x,_p2##y,z,c), I[439] = (T)(img)(_n8##x,_p2##y,z,c), I[440] = (T)(img)(_n9##x,_p2##y,z,c), I[441] = (T)(img)(_n10##x,_p2##y,z,c), I[442] = (T)(img)(_n11##x,_p2##y,z,c), I[443] = (T)(img)(_n12##x,_p2##y,z,c), I[444] = (T)(img)(_n13##x,_p2##y,z,c), I[445] = (T)(img)(_n14##x,_p2##y,z,c), I[446] = (T)(img)(_n15##x,_p2##y,z,c), I[447] = (T)(img)(_n16##x,_p2##y,z,c), \
I[448] = (T)(img)(_p15##x,_p1##y,z,c), I[449] = (T)(img)(_p14##x,_p1##y,z,c), I[450] = (T)(img)(_p13##x,_p1##y,z,c), I[451] = (T)(img)(_p12##x,_p1##y,z,c), I[452] = (T)(img)(_p11##x,_p1##y,z,c), I[453] = (T)(img)(_p10##x,_p1##y,z,c), I[454] = (T)(img)(_p9##x,_p1##y,z,c), I[455] = (T)(img)(_p8##x,_p1##y,z,c), I[456] = (T)(img)(_p7##x,_p1##y,z,c), I[457] = (T)(img)(_p6##x,_p1##y,z,c), I[458] = (T)(img)(_p5##x,_p1##y,z,c), I[459] = (T)(img)(_p4##x,_p1##y,z,c), I[460] = (T)(img)(_p3##x,_p1##y,z,c), I[461] = (T)(img)(_p2##x,_p1##y,z,c), I[462] = (T)(img)(_p1##x,_p1##y,z,c), I[463] = (T)(img)(x,_p1##y,z,c), I[464] = (T)(img)(_n1##x,_p1##y,z,c), I[465] = (T)(img)(_n2##x,_p1##y,z,c), I[466] = (T)(img)(_n3##x,_p1##y,z,c), I[467] = (T)(img)(_n4##x,_p1##y,z,c), I[468] = (T)(img)(_n5##x,_p1##y,z,c), I[469] = (T)(img)(_n6##x,_p1##y,z,c), I[470] = (T)(img)(_n7##x,_p1##y,z,c), I[471] = (T)(img)(_n8##x,_p1##y,z,c), I[472] = (T)(img)(_n9##x,_p1##y,z,c), I[473] = (T)(img)(_n10##x,_p1##y,z,c), I[474] = (T)(img)(_n11##x,_p1##y,z,c), I[475] = (T)(img)(_n12##x,_p1##y,z,c), I[476] = (T)(img)(_n13##x,_p1##y,z,c), I[477] = (T)(img)(_n14##x,_p1##y,z,c), I[478] = (T)(img)(_n15##x,_p1##y,z,c), I[479] = (T)(img)(_n16##x,_p1##y,z,c), \
I[480] = (T)(img)(_p15##x,y,z,c), I[481] = (T)(img)(_p14##x,y,z,c), I[482] = (T)(img)(_p13##x,y,z,c), I[483] = (T)(img)(_p12##x,y,z,c), I[484] = (T)(img)(_p11##x,y,z,c), I[485] = (T)(img)(_p10##x,y,z,c), I[486] = (T)(img)(_p9##x,y,z,c), I[487] = (T)(img)(_p8##x,y,z,c), I[488] = (T)(img)(_p7##x,y,z,c), I[489] = (T)(img)(_p6##x,y,z,c), I[490] = (T)(img)(_p5##x,y,z,c), I[491] = (T)(img)(_p4##x,y,z,c), I[492] = (T)(img)(_p3##x,y,z,c), I[493] = (T)(img)(_p2##x,y,z,c), I[494] = (T)(img)(_p1##x,y,z,c), I[495] = (T)(img)(x,y,z,c), I[496] = (T)(img)(_n1##x,y,z,c), I[497] = (T)(img)(_n2##x,y,z,c), I[498] = (T)(img)(_n3##x,y,z,c), I[499] = (T)(img)(_n4##x,y,z,c), I[500] = (T)(img)(_n5##x,y,z,c), I[501] = (T)(img)(_n6##x,y,z,c), I[502] = (T)(img)(_n7##x,y,z,c), I[503] = (T)(img)(_n8##x,y,z,c), I[504] = (T)(img)(_n9##x,y,z,c), I[505] = (T)(img)(_n10##x,y,z,c), I[506] = (T)(img)(_n11##x,y,z,c), I[507] = (T)(img)(_n12##x,y,z,c), I[508] = (T)(img)(_n13##x,y,z,c), I[509] = (T)(img)(_n14##x,y,z,c), I[510] = (T)(img)(_n15##x,y,z,c), I[511] = (T)(img)(_n16##x,y,z,c), \
I[512] = (T)(img)(_p15##x,_n1##y,z,c), I[513] = (T)(img)(_p14##x,_n1##y,z,c), I[514] = (T)(img)(_p13##x,_n1##y,z,c), I[515] = (T)(img)(_p12##x,_n1##y,z,c), I[516] = (T)(img)(_p11##x,_n1##y,z,c), I[517] = (T)(img)(_p10##x,_n1##y,z,c), I[518] = (T)(img)(_p9##x,_n1##y,z,c), I[519] = (T)(img)(_p8##x,_n1##y,z,c), I[520] = (T)(img)(_p7##x,_n1##y,z,c), I[521] = (T)(img)(_p6##x,_n1##y,z,c), I[522] = (T)(img)(_p5##x,_n1##y,z,c), I[523] = (T)(img)(_p4##x,_n1##y,z,c), I[524] = (T)(img)(_p3##x,_n1##y,z,c), I[525] = (T)(img)(_p2##x,_n1##y,z,c), I[526] = (T)(img)(_p1##x,_n1##y,z,c), I[527] = (T)(img)(x,_n1##y,z,c), I[528] = (T)(img)(_n1##x,_n1##y,z,c), I[529] = (T)(img)(_n2##x,_n1##y,z,c), I[530] = (T)(img)(_n3##x,_n1##y,z,c), I[531] = (T)(img)(_n4##x,_n1##y,z,c), I[532] = (T)(img)(_n5##x,_n1##y,z,c), I[533] = (T)(img)(_n6##x,_n1##y,z,c), I[534] = (T)(img)(_n7##x,_n1##y,z,c), I[535] = (T)(img)(_n8##x,_n1##y,z,c), I[536] = (T)(img)(_n9##x,_n1##y,z,c), I[537] = (T)(img)(_n10##x,_n1##y,z,c), I[538] = (T)(img)(_n11##x,_n1##y,z,c), I[539] = (T)(img)(_n12##x,_n1##y,z,c), I[540] = (T)(img)(_n13##x,_n1##y,z,c), I[541] = (T)(img)(_n14##x,_n1##y,z,c), I[542] = (T)(img)(_n15##x,_n1##y,z,c), I[543] = (T)(img)(_n16##x,_n1##y,z,c), \
I[544] = (T)(img)(_p15##x,_n2##y,z,c), I[545] = (T)(img)(_p14##x,_n2##y,z,c), I[546] = (T)(img)(_p13##x,_n2##y,z,c), I[547] = (T)(img)(_p12##x,_n2##y,z,c), I[548] = (T)(img)(_p11##x,_n2##y,z,c), I[549] = (T)(img)(_p10##x,_n2##y,z,c), I[550] = (T)(img)(_p9##x,_n2##y,z,c), I[551] = (T)(img)(_p8##x,_n2##y,z,c), I[552] = (T)(img)(_p7##x,_n2##y,z,c), I[553] = (T)(img)(_p6##x,_n2##y,z,c), I[554] = (T)(img)(_p5##x,_n2##y,z,c), I[555] = (T)(img)(_p4##x,_n2##y,z,c), I[556] = (T)(img)(_p3##x,_n2##y,z,c), I[557] = (T)(img)(_p2##x,_n2##y,z,c), I[558] = (T)(img)(_p1##x,_n2##y,z,c), I[559] = (T)(img)(x,_n2##y,z,c), I[560] = (T)(img)(_n1##x,_n2##y,z,c), I[561] = (T)(img)(_n2##x,_n2##y,z,c), I[562] = (T)(img)(_n3##x,_n2##y,z,c), I[563] = (T)(img)(_n4##x,_n2##y,z,c), I[564] = (T)(img)(_n5##x,_n2##y,z,c), I[565] = (T)(img)(_n6##x,_n2##y,z,c), I[566] = (T)(img)(_n7##x,_n2##y,z,c), I[567] = (T)(img)(_n8##x,_n2##y,z,c), I[568] = (T)(img)(_n9##x,_n2##y,z,c), I[569] = (T)(img)(_n10##x,_n2##y,z,c), I[570] = (T)(img)(_n11##x,_n2##y,z,c), I[571] = (T)(img)(_n12##x,_n2##y,z,c), I[572] = (T)(img)(_n13##x,_n2##y,z,c), I[573] = (T)(img)(_n14##x,_n2##y,z,c), I[574] = (T)(img)(_n15##x,_n2##y,z,c), I[575] = (T)(img)(_n16##x,_n2##y,z,c), \
I[576] = (T)(img)(_p15##x,_n3##y,z,c), I[577] = (T)(img)(_p14##x,_n3##y,z,c), I[578] = (T)(img)(_p13##x,_n3##y,z,c), I[579] = (T)(img)(_p12##x,_n3##y,z,c), I[580] = (T)(img)(_p11##x,_n3##y,z,c), I[581] = (T)(img)(_p10##x,_n3##y,z,c), I[582] = (T)(img)(_p9##x,_n3##y,z,c), I[583] = (T)(img)(_p8##x,_n3##y,z,c), I[584] = (T)(img)(_p7##x,_n3##y,z,c), I[585] = (T)(img)(_p6##x,_n3##y,z,c), I[586] = (T)(img)(_p5##x,_n3##y,z,c), I[587] = (T)(img)(_p4##x,_n3##y,z,c), I[588] = (T)(img)(_p3##x,_n3##y,z,c), I[589] = (T)(img)(_p2##x,_n3##y,z,c), I[590] = (T)(img)(_p1##x,_n3##y,z,c), I[591] = (T)(img)(x,_n3##y,z,c), I[592] = (T)(img)(_n1##x,_n3##y,z,c), I[593] = (T)(img)(_n2##x,_n3##y,z,c), I[594] = (T)(img)(_n3##x,_n3##y,z,c), I[595] = (T)(img)(_n4##x,_n3##y,z,c), I[596] = (T)(img)(_n5##x,_n3##y,z,c), I[597] = (T)(img)(_n6##x,_n3##y,z,c), I[598] = (T)(img)(_n7##x,_n3##y,z,c), I[599] = (T)(img)(_n8##x,_n3##y,z,c), I[600] = (T)(img)(_n9##x,_n3##y,z,c), I[601] = (T)(img)(_n10##x,_n3##y,z,c), I[602] = (T)(img)(_n11##x,_n3##y,z,c), I[603] = (T)(img)(_n12##x,_n3##y,z,c), I[604] = (T)(img)(_n13##x,_n3##y,z,c), I[605] = (T)(img)(_n14##x,_n3##y,z,c), I[606] = (T)(img)(_n15##x,_n3##y,z,c), I[607] = (T)(img)(_n16##x,_n3##y,z,c), \
I[608] = (T)(img)(_p15##x,_n4##y,z,c), I[609] = (T)(img)(_p14##x,_n4##y,z,c), I[610] = (T)(img)(_p13##x,_n4##y,z,c), I[611] = (T)(img)(_p12##x,_n4##y,z,c), I[612] = (T)(img)(_p11##x,_n4##y,z,c), I[613] = (T)(img)(_p10##x,_n4##y,z,c), I[614] = (T)(img)(_p9##x,_n4##y,z,c), I[615] = (T)(img)(_p8##x,_n4##y,z,c), I[616] = (T)(img)(_p7##x,_n4##y,z,c), I[617] = (T)(img)(_p6##x,_n4##y,z,c), I[618] = (T)(img)(_p5##x,_n4##y,z,c), I[619] = (T)(img)(_p4##x,_n4##y,z,c), I[620] = (T)(img)(_p3##x,_n4##y,z,c), I[621] = (T)(img)(_p2##x,_n4##y,z,c), I[622] = (T)(img)(_p1##x,_n4##y,z,c), I[623] = (T)(img)(x,_n4##y,z,c), I[624] = (T)(img)(_n1##x,_n4##y,z,c), I[625] = (T)(img)(_n2##x,_n4##y,z,c), I[626] = (T)(img)(_n3##x,_n4##y,z,c), I[627] = (T)(img)(_n4##x,_n4##y,z,c), I[628] = (T)(img)(_n5##x,_n4##y,z,c), I[629] = (T)(img)(_n6##x,_n4##y,z,c), I[630] = (T)(img)(_n7##x,_n4##y,z,c), I[631] = (T)(img)(_n8##x,_n4##y,z,c), I[632] = (T)(img)(_n9##x,_n4##y,z,c), I[633] = (T)(img)(_n10##x,_n4##y,z,c), I[634] = (T)(img)(_n11##x,_n4##y,z,c), I[635] = (T)(img)(_n12##x,_n4##y,z,c), I[636] = (T)(img)(_n13##x,_n4##y,z,c), I[637] = (T)(img)(_n14##x,_n4##y,z,c), I[638] = (T)(img)(_n15##x,_n4##y,z,c), I[639] = (T)(img)(_n16##x,_n4##y,z,c), \
I[640] = (T)(img)(_p15##x,_n5##y,z,c), I[641] = (T)(img)(_p14##x,_n5##y,z,c), I[642] = (T)(img)(_p13##x,_n5##y,z,c), I[643] = (T)(img)(_p12##x,_n5##y,z,c), I[644] = (T)(img)(_p11##x,_n5##y,z,c), I[645] = (T)(img)(_p10##x,_n5##y,z,c), I[646] = (T)(img)(_p9##x,_n5##y,z,c), I[647] = (T)(img)(_p8##x,_n5##y,z,c), I[648] = (T)(img)(_p7##x,_n5##y,z,c), I[649] = (T)(img)(_p6##x,_n5##y,z,c), I[650] = (T)(img)(_p5##x,_n5##y,z,c), I[651] = (T)(img)(_p4##x,_n5##y,z,c), I[652] = (T)(img)(_p3##x,_n5##y,z,c), I[653] = (T)(img)(_p2##x,_n5##y,z,c), I[654] = (T)(img)(_p1##x,_n5##y,z,c), I[655] = (T)(img)(x,_n5##y,z,c), I[656] = (T)(img)(_n1##x,_n5##y,z,c), I[657] = (T)(img)(_n2##x,_n5##y,z,c), I[658] = (T)(img)(_n3##x,_n5##y,z,c), I[659] = (T)(img)(_n4##x,_n5##y,z,c), I[660] = (T)(img)(_n5##x,_n5##y,z,c), I[661] = (T)(img)(_n6##x,_n5##y,z,c), I[662] = (T)(img)(_n7##x,_n5##y,z,c), I[663] = (T)(img)(_n8##x,_n5##y,z,c), I[664] = (T)(img)(_n9##x,_n5##y,z,c), I[665] = (T)(img)(_n10##x,_n5##y,z,c), I[666] = (T)(img)(_n11##x,_n5##y,z,c), I[667] = (T)(img)(_n12##x,_n5##y,z,c), I[668] = (T)(img)(_n13##x,_n5##y,z,c), I[669] = (T)(img)(_n14##x,_n5##y,z,c), I[670] = (T)(img)(_n15##x,_n5##y,z,c), I[671] = (T)(img)(_n16##x,_n5##y,z,c), \
I[672] = (T)(img)(_p15##x,_n6##y,z,c), I[673] = (T)(img)(_p14##x,_n6##y,z,c), I[674] = (T)(img)(_p13##x,_n6##y,z,c), I[675] = (T)(img)(_p12##x,_n6##y,z,c), I[676] = (T)(img)(_p11##x,_n6##y,z,c), I[677] = (T)(img)(_p10##x,_n6##y,z,c), I[678] = (T)(img)(_p9##x,_n6##y,z,c), I[679] = (T)(img)(_p8##x,_n6##y,z,c), I[680] = (T)(img)(_p7##x,_n6##y,z,c), I[681] = (T)(img)(_p6##x,_n6##y,z,c), I[682] = (T)(img)(_p5##x,_n6##y,z,c), I[683] = (T)(img)(_p4##x,_n6##y,z,c), I[684] = (T)(img)(_p3##x,_n6##y,z,c), I[685] = (T)(img)(_p2##x,_n6##y,z,c), I[686] = (T)(img)(_p1##x,_n6##y,z,c), I[687] = (T)(img)(x,_n6##y,z,c), I[688] = (T)(img)(_n1##x,_n6##y,z,c), I[689] = (T)(img)(_n2##x,_n6##y,z,c), I[690] = (T)(img)(_n3##x,_n6##y,z,c), I[691] = (T)(img)(_n4##x,_n6##y,z,c), I[692] = (T)(img)(_n5##x,_n6##y,z,c), I[693] = (T)(img)(_n6##x,_n6##y,z,c), I[694] = (T)(img)(_n7##x,_n6##y,z,c), I[695] = (T)(img)(_n8##x,_n6##y,z,c), I[696] = (T)(img)(_n9##x,_n6##y,z,c), I[697] = (T)(img)(_n10##x,_n6##y,z,c), I[698] = (T)(img)(_n11##x,_n6##y,z,c), I[699] = (T)(img)(_n12##x,_n6##y,z,c), I[700] = (T)(img)(_n13##x,_n6##y,z,c), I[701] = (T)(img)(_n14##x,_n6##y,z,c), I[702] = (T)(img)(_n15##x,_n6##y,z,c), I[703] = (T)(img)(_n16##x,_n6##y,z,c), \
I[704] = (T)(img)(_p15##x,_n7##y,z,c), I[705] = (T)(img)(_p14##x,_n7##y,z,c), I[706] = (T)(img)(_p13##x,_n7##y,z,c), I[707] = (T)(img)(_p12##x,_n7##y,z,c), I[708] = (T)(img)(_p11##x,_n7##y,z,c), I[709] = (T)(img)(_p10##x,_n7##y,z,c), I[710] = (T)(img)(_p9##x,_n7##y,z,c), I[711] = (T)(img)(_p8##x,_n7##y,z,c), I[712] = (T)(img)(_p7##x,_n7##y,z,c), I[713] = (T)(img)(_p6##x,_n7##y,z,c), I[714] = (T)(img)(_p5##x,_n7##y,z,c), I[715] = (T)(img)(_p4##x,_n7##y,z,c), I[716] = (T)(img)(_p3##x,_n7##y,z,c), I[717] = (T)(img)(_p2##x,_n7##y,z,c), I[718] = (T)(img)(_p1##x,_n7##y,z,c), I[719] = (T)(img)(x,_n7##y,z,c), I[720] = (T)(img)(_n1##x,_n7##y,z,c), I[721] = (T)(img)(_n2##x,_n7##y,z,c), I[722] = (T)(img)(_n3##x,_n7##y,z,c), I[723] = (T)(img)(_n4##x,_n7##y,z,c), I[724] = (T)(img)(_n5##x,_n7##y,z,c), I[725] = (T)(img)(_n6##x,_n7##y,z,c), I[726] = (T)(img)(_n7##x,_n7##y,z,c), I[727] = (T)(img)(_n8##x,_n7##y,z,c), I[728] = (T)(img)(_n9##x,_n7##y,z,c), I[729] = (T)(img)(_n10##x,_n7##y,z,c), I[730] = (T)(img)(_n11##x,_n7##y,z,c), I[731] = (T)(img)(_n12##x,_n7##y,z,c), I[732] = (T)(img)(_n13##x,_n7##y,z,c), I[733] = (T)(img)(_n14##x,_n7##y,z,c), I[734] = (T)(img)(_n15##x,_n7##y,z,c), I[735] = (T)(img)(_n16##x,_n7##y,z,c), \
I[736] = (T)(img)(_p15##x,_n8##y,z,c), I[737] = (T)(img)(_p14##x,_n8##y,z,c), I[738] = (T)(img)(_p13##x,_n8##y,z,c), I[739] = (T)(img)(_p12##x,_n8##y,z,c), I[740] = (T)(img)(_p11##x,_n8##y,z,c), I[741] = (T)(img)(_p10##x,_n8##y,z,c), I[742] = (T)(img)(_p9##x,_n8##y,z,c), I[743] = (T)(img)(_p8##x,_n8##y,z,c), I[744] = (T)(img)(_p7##x,_n8##y,z,c), I[745] = (T)(img)(_p6##x,_n8##y,z,c), I[746] = (T)(img)(_p5##x,_n8##y,z,c), I[747] = (T)(img)(_p4##x,_n8##y,z,c), I[748] = (T)(img)(_p3##x,_n8##y,z,c), I[749] = (T)(img)(_p2##x,_n8##y,z,c), I[750] = (T)(img)(_p1##x,_n8##y,z,c), I[751] = (T)(img)(x,_n8##y,z,c), I[752] = (T)(img)(_n1##x,_n8##y,z,c), I[753] = (T)(img)(_n2##x,_n8##y,z,c), I[754] = (T)(img)(_n3##x,_n8##y,z,c), I[755] = (T)(img)(_n4##x,_n8##y,z,c), I[756] = (T)(img)(_n5##x,_n8##y,z,c), I[757] = (T)(img)(_n6##x,_n8##y,z,c), I[758] = (T)(img)(_n7##x,_n8##y,z,c), I[759] = (T)(img)(_n8##x,_n8##y,z,c), I[760] = (T)(img)(_n9##x,_n8##y,z,c), I[761] = (T)(img)(_n10##x,_n8##y,z,c), I[762] = (T)(img)(_n11##x,_n8##y,z,c), I[763] = (T)(img)(_n12##x,_n8##y,z,c), I[764] = (T)(img)(_n13##x,_n8##y,z,c), I[765] = (T)(img)(_n14##x,_n8##y,z,c), I[766] = (T)(img)(_n15##x,_n8##y,z,c), I[767] = (T)(img)(_n16##x,_n8##y,z,c), \
I[768] = (T)(img)(_p15##x,_n9##y,z,c), I[769] = (T)(img)(_p14##x,_n9##y,z,c), I[770] = (T)(img)(_p13##x,_n9##y,z,c), I[771] = (T)(img)(_p12##x,_n9##y,z,c), I[772] = (T)(img)(_p11##x,_n9##y,z,c), I[773] = (T)(img)(_p10##x,_n9##y,z,c), I[774] = (T)(img)(_p9##x,_n9##y,z,c), I[775] = (T)(img)(_p8##x,_n9##y,z,c), I[776] = (T)(img)(_p7##x,_n9##y,z,c), I[777] = (T)(img)(_p6##x,_n9##y,z,c), I[778] = (T)(img)(_p5##x,_n9##y,z,c), I[779] = (T)(img)(_p4##x,_n9##y,z,c), I[780] = (T)(img)(_p3##x,_n9##y,z,c), I[781] = (T)(img)(_p2##x,_n9##y,z,c), I[782] = (T)(img)(_p1##x,_n9##y,z,c), I[783] = (T)(img)(x,_n9##y,z,c), I[784] = (T)(img)(_n1##x,_n9##y,z,c), I[785] = (T)(img)(_n2##x,_n9##y,z,c), I[786] = (T)(img)(_n3##x,_n9##y,z,c), I[787] = (T)(img)(_n4##x,_n9##y,z,c), I[788] = (T)(img)(_n5##x,_n9##y,z,c), I[789] = (T)(img)(_n6##x,_n9##y,z,c), I[790] = (T)(img)(_n7##x,_n9##y,z,c), I[791] = (T)(img)(_n8##x,_n9##y,z,c), I[792] = (T)(img)(_n9##x,_n9##y,z,c), I[793] = (T)(img)(_n10##x,_n9##y,z,c), I[794] = (T)(img)(_n11##x,_n9##y,z,c), I[795] = (T)(img)(_n12##x,_n9##y,z,c), I[796] = (T)(img)(_n13##x,_n9##y,z,c), I[797] = (T)(img)(_n14##x,_n9##y,z,c), I[798] = (T)(img)(_n15##x,_n9##y,z,c), I[799] = (T)(img)(_n16##x,_n9##y,z,c), \
I[800] = (T)(img)(_p15##x,_n10##y,z,c), I[801] = (T)(img)(_p14##x,_n10##y,z,c), I[802] = (T)(img)(_p13##x,_n10##y,z,c), I[803] = (T)(img)(_p12##x,_n10##y,z,c), I[804] = (T)(img)(_p11##x,_n10##y,z,c), I[805] = (T)(img)(_p10##x,_n10##y,z,c), I[806] = (T)(img)(_p9##x,_n10##y,z,c), I[807] = (T)(img)(_p8##x,_n10##y,z,c), I[808] = (T)(img)(_p7##x,_n10##y,z,c), I[809] = (T)(img)(_p6##x,_n10##y,z,c), I[810] = (T)(img)(_p5##x,_n10##y,z,c), I[811] = (T)(img)(_p4##x,_n10##y,z,c), I[812] = (T)(img)(_p3##x,_n10##y,z,c), I[813] = (T)(img)(_p2##x,_n10##y,z,c), I[814] = (T)(img)(_p1##x,_n10##y,z,c), I[815] = (T)(img)(x,_n10##y,z,c), I[816] = (T)(img)(_n1##x,_n10##y,z,c), I[817] = (T)(img)(_n2##x,_n10##y,z,c), I[818] = (T)(img)(_n3##x,_n10##y,z,c), I[819] = (T)(img)(_n4##x,_n10##y,z,c), I[820] = (T)(img)(_n5##x,_n10##y,z,c), I[821] = (T)(img)(_n6##x,_n10##y,z,c), I[822] = (T)(img)(_n7##x,_n10##y,z,c), I[823] = (T)(img)(_n8##x,_n10##y,z,c), I[824] = (T)(img)(_n9##x,_n10##y,z,c), I[825] = (T)(img)(_n10##x,_n10##y,z,c), I[826] = (T)(img)(_n11##x,_n10##y,z,c), I[827] = (T)(img)(_n12##x,_n10##y,z,c), I[828] = (T)(img)(_n13##x,_n10##y,z,c), I[829] = (T)(img)(_n14##x,_n10##y,z,c), I[830] = (T)(img)(_n15##x,_n10##y,z,c), I[831] = (T)(img)(_n16##x,_n10##y,z,c), \
I[832] = (T)(img)(_p15##x,_n11##y,z,c), I[833] = (T)(img)(_p14##x,_n11##y,z,c), I[834] = (T)(img)(_p13##x,_n11##y,z,c), I[835] = (T)(img)(_p12##x,_n11##y,z,c), I[836] = (T)(img)(_p11##x,_n11##y,z,c), I[837] = (T)(img)(_p10##x,_n11##y,z,c), I[838] = (T)(img)(_p9##x,_n11##y,z,c), I[839] = (T)(img)(_p8##x,_n11##y,z,c), I[840] = (T)(img)(_p7##x,_n11##y,z,c), I[841] = (T)(img)(_p6##x,_n11##y,z,c), I[842] = (T)(img)(_p5##x,_n11##y,z,c), I[843] = (T)(img)(_p4##x,_n11##y,z,c), I[844] = (T)(img)(_p3##x,_n11##y,z,c), I[845] = (T)(img)(_p2##x,_n11##y,z,c), I[846] = (T)(img)(_p1##x,_n11##y,z,c), I[847] = (T)(img)(x,_n11##y,z,c), I[848] = (T)(img)(_n1##x,_n11##y,z,c), I[849] = (T)(img)(_n2##x,_n11##y,z,c), I[850] = (T)(img)(_n3##x,_n11##y,z,c), I[851] = (T)(img)(_n4##x,_n11##y,z,c), I[852] = (T)(img)(_n5##x,_n11##y,z,c), I[853] = (T)(img)(_n6##x,_n11##y,z,c), I[854] = (T)(img)(_n7##x,_n11##y,z,c), I[855] = (T)(img)(_n8##x,_n11##y,z,c), I[856] = (T)(img)(_n9##x,_n11##y,z,c), I[857] = (T)(img)(_n10##x,_n11##y,z,c), I[858] = (T)(img)(_n11##x,_n11##y,z,c), I[859] = (T)(img)(_n12##x,_n11##y,z,c), I[860] = (T)(img)(_n13##x,_n11##y,z,c), I[861] = (T)(img)(_n14##x,_n11##y,z,c), I[862] = (T)(img)(_n15##x,_n11##y,z,c), I[863] = (T)(img)(_n16##x,_n11##y,z,c), \
I[864] = (T)(img)(_p15##x,_n12##y,z,c), I[865] = (T)(img)(_p14##x,_n12##y,z,c), I[866] = (T)(img)(_p13##x,_n12##y,z,c), I[867] = (T)(img)(_p12##x,_n12##y,z,c), I[868] = (T)(img)(_p11##x,_n12##y,z,c), I[869] = (T)(img)(_p10##x,_n12##y,z,c), I[870] = (T)(img)(_p9##x,_n12##y,z,c), I[871] = (T)(img)(_p8##x,_n12##y,z,c), I[872] = (T)(img)(_p7##x,_n12##y,z,c), I[873] = (T)(img)(_p6##x,_n12##y,z,c), I[874] = (T)(img)(_p5##x,_n12##y,z,c), I[875] = (T)(img)(_p4##x,_n12##y,z,c), I[876] = (T)(img)(_p3##x,_n12##y,z,c), I[877] = (T)(img)(_p2##x,_n12##y,z,c), I[878] = (T)(img)(_p1##x,_n12##y,z,c), I[879] = (T)(img)(x,_n12##y,z,c), I[880] = (T)(img)(_n1##x,_n12##y,z,c), I[881] = (T)(img)(_n2##x,_n12##y,z,c), I[882] = (T)(img)(_n3##x,_n12##y,z,c), I[883] = (T)(img)(_n4##x,_n12##y,z,c), I[884] = (T)(img)(_n5##x,_n12##y,z,c), I[885] = (T)(img)(_n6##x,_n12##y,z,c), I[886] = (T)(img)(_n7##x,_n12##y,z,c), I[887] = (T)(img)(_n8##x,_n12##y,z,c), I[888] = (T)(img)(_n9##x,_n12##y,z,c), I[889] = (T)(img)(_n10##x,_n12##y,z,c), I[890] = (T)(img)(_n11##x,_n12##y,z,c), I[891] = (T)(img)(_n12##x,_n12##y,z,c), I[892] = (T)(img)(_n13##x,_n12##y,z,c), I[893] = (T)(img)(_n14##x,_n12##y,z,c), I[894] = (T)(img)(_n15##x,_n12##y,z,c), I[895] = (T)(img)(_n16##x,_n12##y,z,c), \
I[896] = (T)(img)(_p15##x,_n13##y,z,c), I[897] = (T)(img)(_p14##x,_n13##y,z,c), I[898] = (T)(img)(_p13##x,_n13##y,z,c), I[899] = (T)(img)(_p12##x,_n13##y,z,c), I[900] = (T)(img)(_p11##x,_n13##y,z,c), I[901] = (T)(img)(_p10##x,_n13##y,z,c), I[902] = (T)(img)(_p9##x,_n13##y,z,c), I[903] = (T)(img)(_p8##x,_n13##y,z,c), I[904] = (T)(img)(_p7##x,_n13##y,z,c), I[905] = (T)(img)(_p6##x,_n13##y,z,c), I[906] = (T)(img)(_p5##x,_n13##y,z,c), I[907] = (T)(img)(_p4##x,_n13##y,z,c), I[908] = (T)(img)(_p3##x,_n13##y,z,c), I[909] = (T)(img)(_p2##x,_n13##y,z,c), I[910] = (T)(img)(_p1##x,_n13##y,z,c), I[911] = (T)(img)(x,_n13##y,z,c), I[912] = (T)(img)(_n1##x,_n13##y,z,c), I[913] = (T)(img)(_n2##x,_n13##y,z,c), I[914] = (T)(img)(_n3##x,_n13##y,z,c), I[915] = (T)(img)(_n4##x,_n13##y,z,c), I[916] = (T)(img)(_n5##x,_n13##y,z,c), I[917] = (T)(img)(_n6##x,_n13##y,z,c), I[918] = (T)(img)(_n7##x,_n13##y,z,c), I[919] = (T)(img)(_n8##x,_n13##y,z,c), I[920] = (T)(img)(_n9##x,_n13##y,z,c), I[921] = (T)(img)(_n10##x,_n13##y,z,c), I[922] = (T)(img)(_n11##x,_n13##y,z,c), I[923] = (T)(img)(_n12##x,_n13##y,z,c), I[924] = (T)(img)(_n13##x,_n13##y,z,c), I[925] = (T)(img)(_n14##x,_n13##y,z,c), I[926] = (T)(img)(_n15##x,_n13##y,z,c), I[927] = (T)(img)(_n16##x,_n13##y,z,c), \
I[928] = (T)(img)(_p15##x,_n14##y,z,c), I[929] = (T)(img)(_p14##x,_n14##y,z,c), I[930] = (T)(img)(_p13##x,_n14##y,z,c), I[931] = (T)(img)(_p12##x,_n14##y,z,c), I[932] = (T)(img)(_p11##x,_n14##y,z,c), I[933] = (T)(img)(_p10##x,_n14##y,z,c), I[934] = (T)(img)(_p9##x,_n14##y,z,c), I[935] = (T)(img)(_p8##x,_n14##y,z,c), I[936] = (T)(img)(_p7##x,_n14##y,z,c), I[937] = (T)(img)(_p6##x,_n14##y,z,c), I[938] = (T)(img)(_p5##x,_n14##y,z,c), I[939] = (T)(img)(_p4##x,_n14##y,z,c), I[940] = (T)(img)(_p3##x,_n14##y,z,c), I[941] = (T)(img)(_p2##x,_n14##y,z,c), I[942] = (T)(img)(_p1##x,_n14##y,z,c), I[943] = (T)(img)(x,_n14##y,z,c), I[944] = (T)(img)(_n1##x,_n14##y,z,c), I[945] = (T)(img)(_n2##x,_n14##y,z,c), I[946] = (T)(img)(_n3##x,_n14##y,z,c), I[947] = (T)(img)(_n4##x,_n14##y,z,c), I[948] = (T)(img)(_n5##x,_n14##y,z,c), I[949] = (T)(img)(_n6##x,_n14##y,z,c), I[950] = (T)(img)(_n7##x,_n14##y,z,c), I[951] = (T)(img)(_n8##x,_n14##y,z,c), I[952] = (T)(img)(_n9##x,_n14##y,z,c), I[953] = (T)(img)(_n10##x,_n14##y,z,c), I[954] = (T)(img)(_n11##x,_n14##y,z,c), I[955] = (T)(img)(_n12##x,_n14##y,z,c), I[956] = (T)(img)(_n13##x,_n14##y,z,c), I[957] = (T)(img)(_n14##x,_n14##y,z,c), I[958] = (T)(img)(_n15##x,_n14##y,z,c), I[959] = (T)(img)(_n16##x,_n14##y,z,c), \
I[960] = (T)(img)(_p15##x,_n15##y,z,c), I[961] = (T)(img)(_p14##x,_n15##y,z,c), I[962] = (T)(img)(_p13##x,_n15##y,z,c), I[963] = (T)(img)(_p12##x,_n15##y,z,c), I[964] = (T)(img)(_p11##x,_n15##y,z,c), I[965] = (T)(img)(_p10##x,_n15##y,z,c), I[966] = (T)(img)(_p9##x,_n15##y,z,c), I[967] = (T)(img)(_p8##x,_n15##y,z,c), I[968] = (T)(img)(_p7##x,_n15##y,z,c), I[969] = (T)(img)(_p6##x,_n15##y,z,c), I[970] = (T)(img)(_p5##x,_n15##y,z,c), I[971] = (T)(img)(_p4##x,_n15##y,z,c), I[972] = (T)(img)(_p3##x,_n15##y,z,c), I[973] = (T)(img)(_p2##x,_n15##y,z,c), I[974] = (T)(img)(_p1##x,_n15##y,z,c), I[975] = (T)(img)(x,_n15##y,z,c), I[976] = (T)(img)(_n1##x,_n15##y,z,c), I[977] = (T)(img)(_n2##x,_n15##y,z,c), I[978] = (T)(img)(_n3##x,_n15##y,z,c), I[979] = (T)(img)(_n4##x,_n15##y,z,c), I[980] = (T)(img)(_n5##x,_n15##y,z,c), I[981] = (T)(img)(_n6##x,_n15##y,z,c), I[982] = (T)(img)(_n7##x,_n15##y,z,c), I[983] = (T)(img)(_n8##x,_n15##y,z,c), I[984] = (T)(img)(_n9##x,_n15##y,z,c), I[985] = (T)(img)(_n10##x,_n15##y,z,c), I[986] = (T)(img)(_n11##x,_n15##y,z,c), I[987] = (T)(img)(_n12##x,_n15##y,z,c), I[988] = (T)(img)(_n13##x,_n15##y,z,c), I[989] = (T)(img)(_n14##x,_n15##y,z,c), I[990] = (T)(img)(_n15##x,_n15##y,z,c), I[991] = (T)(img)(_n16##x,_n15##y,z,c), \
I[992] = (T)(img)(_p15##x,_n16##y,z,c), I[993] = (T)(img)(_p14##x,_n16##y,z,c), I[994] = (T)(img)(_p13##x,_n16##y,z,c), I[995] = (T)(img)(_p12##x,_n16##y,z,c), I[996] = (T)(img)(_p11##x,_n16##y,z,c), I[997] = (T)(img)(_p10##x,_n16##y,z,c), I[998] = (T)(img)(_p9##x,_n16##y,z,c), I[999] = (T)(img)(_p8##x,_n16##y,z,c), I[1000] = (T)(img)(_p7##x,_n16##y,z,c), I[1001] = (T)(img)(_p6##x,_n16##y,z,c), I[1002] = (T)(img)(_p5##x,_n16##y,z,c), I[1003] = (T)(img)(_p4##x,_n16##y,z,c), I[1004] = (T)(img)(_p3##x,_n16##y,z,c), I[1005] = (T)(img)(_p2##x,_n16##y,z,c), I[1006] = (T)(img)(_p1##x,_n16##y,z,c), I[1007] = (T)(img)(x,_n16##y,z,c), I[1008] = (T)(img)(_n1##x,_n16##y,z,c), I[1009] = (T)(img)(_n2##x,_n16##y,z,c), I[1010] = (T)(img)(_n3##x,_n16##y,z,c), I[1011] = (T)(img)(_n4##x,_n16##y,z,c), I[1012] = (T)(img)(_n5##x,_n16##y,z,c), I[1013] = (T)(img)(_n6##x,_n16##y,z,c), I[1014] = (T)(img)(_n7##x,_n16##y,z,c), I[1015] = (T)(img)(_n8##x,_n16##y,z,c), I[1016] = (T)(img)(_n9##x,_n16##y,z,c), I[1017] = (T)(img)(_n10##x,_n16##y,z,c), I[1018] = (T)(img)(_n11##x,_n16##y,z,c), I[1019] = (T)(img)(_n12##x,_n16##y,z,c), I[1020] = (T)(img)(_n13##x,_n16##y,z,c), I[1021] = (T)(img)(_n14##x,_n16##y,z,c), I[1022] = (T)(img)(_n15##x,_n16##y,z,c), I[1023] = (T)(img)(_n16##x,_n16##y,z,c);
// Define 4x4x4 loop macros
//----------------------------
#define cimg_for4x4x4(img,x,y,z,c,I,T) \
cimg_for4((img)._depth,z) cimg_for4((img)._height,y) for (int x = 0, \
_p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = (int)( \
(I[0] = I[1] = (T)(img)(0,_p1##y,_p1##z,c)), \
(I[4] = I[5] = (T)(img)(0,y,_p1##z,c)), \
(I[8] = I[9] = (T)(img)(0,_n1##y,_p1##z,c)), \
(I[12] = I[13] = (T)(img)(0,_n2##y,_p1##z,c)), \
(I[16] = I[17] = (T)(img)(0,_p1##y,z,c)), \
(I[20] = I[21] = (T)(img)(0,y,z,c)), \
(I[24] = I[25] = (T)(img)(0,_n1##y,z,c)), \
(I[28] = I[29] = (T)(img)(0,_n2##y,z,c)), \
(I[32] = I[33] = (T)(img)(0,_p1##y,_n1##z,c)), \
(I[36] = I[37] = (T)(img)(0,y,_n1##z,c)), \
(I[40] = I[41] = (T)(img)(0,_n1##y,_n1##z,c)), \
(I[44] = I[45] = (T)(img)(0,_n2##y,_n1##z,c)), \
(I[48] = I[49] = (T)(img)(0,_p1##y,_n2##z,c)), \
(I[52] = I[53] = (T)(img)(0,y,_n2##z,c)), \
(I[56] = I[57] = (T)(img)(0,_n1##y,_n2##z,c)), \
(I[60] = I[61] = (T)(img)(0,_n2##y,_n2##z,c)), \
(I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[6] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[10] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[14] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[22] = (T)(img)(_n1##x,y,z,c)), \
(I[26] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[30] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[34] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[38] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[42] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[46] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[50] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[54] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[58] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[62] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
2>=((img)._width)?(img).width() - 1:2); \
(_n2##x<(img).width() && ( \
(I[3] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[7] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[11] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[15] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[23] = (T)(img)(_n2##x,y,z,c)), \
(I[27] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[31] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[35] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[39] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[43] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[47] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[51] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[55] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[59] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[63] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
_n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], \
I[4] = I[5], I[5] = I[6], I[6] = I[7], \
I[8] = I[9], I[9] = I[10], I[10] = I[11], \
I[12] = I[13], I[13] = I[14], I[14] = I[15], \
I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], \
I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], \
I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], \
_p1##x = x++, ++_n1##x, ++_n2##x)
#define cimg_for_in4x4x4(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
cimg_for_in4((img)._depth,z0,z1,z) cimg_for_in4((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = (int)( \
(I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
(I[4] = (T)(img)(_p1##x,y,_p1##z,c)), \
(I[8] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
(I[12] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
(I[16] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[20] = (T)(img)(_p1##x,y,z,c)), \
(I[24] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[28] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[32] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
(I[36] = (T)(img)(_p1##x,y,_n1##z,c)), \
(I[40] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
(I[44] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
(I[48] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
(I[52] = (T)(img)(_p1##x,y,_n2##z,c)), \
(I[56] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
(I[60] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
(I[1] = (T)(img)(x,_p1##y,_p1##z,c)), \
(I[5] = (T)(img)(x,y,_p1##z,c)), \
(I[9] = (T)(img)(x,_n1##y,_p1##z,c)), \
(I[13] = (T)(img)(x,_n2##y,_p1##z,c)), \
(I[17] = (T)(img)(x,_p1##y,z,c)), \
(I[21] = (T)(img)(x,y,z,c)), \
(I[25] = (T)(img)(x,_n1##y,z,c)), \
(I[29] = (T)(img)(x,_n2##y,z,c)), \
(I[33] = (T)(img)(x,_p1##y,_n1##z,c)), \
(I[37] = (T)(img)(x,y,_n1##z,c)), \
(I[41] = (T)(img)(x,_n1##y,_n1##z,c)), \
(I[45] = (T)(img)(x,_n2##y,_n1##z,c)), \
(I[49] = (T)(img)(x,_p1##y,_n2##z,c)), \
(I[53] = (T)(img)(x,y,_n2##z,c)), \
(I[57] = (T)(img)(x,_n1##y,_n2##z,c)), \
(I[61] = (T)(img)(x,_n2##y,_n2##z,c)), \
(I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[6] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[10] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[14] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[22] = (T)(img)(_n1##x,y,z,c)), \
(I[26] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[30] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[34] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[38] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[42] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[46] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[50] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[54] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[58] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[62] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
x + 2>=(img).width()?(img).width() - 1:x + 2); \
x<=(int)(x1) && ((_n2##x<(img).width() && ( \
(I[3] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[7] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[11] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[15] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[23] = (T)(img)(_n2##x,y,z,c)), \
(I[27] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[31] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[35] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[39] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[43] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[47] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[51] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[55] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[59] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[63] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
_n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], \
I[4] = I[5], I[5] = I[6], I[6] = I[7], \
I[8] = I[9], I[9] = I[10], I[10] = I[11], \
I[12] = I[13], I[13] = I[14], I[14] = I[15], \
I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], \
I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], \
I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], \
_p1##x = x++, ++_n1##x, ++_n2##x)
#define cimg_get4x4x4(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[1] = (T)(img)(x,_p1##y,_p1##z,c), I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[3] = (T)(img)(_n2##x,_p1##y,_p1##z,c), \
I[4] = (T)(img)(_p1##x,y,_p1##z,c), I[5] = (T)(img)(x,y,_p1##z,c), I[6] = (T)(img)(_n1##x,y,_p1##z,c), I[7] = (T)(img)(_n2##x,y,_p1##z,c), \
I[8] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[9] = (T)(img)(x,_n1##y,_p1##z,c), I[10] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[11] = (T)(img)(_n2##x,_n1##y,_p1##z,c), \
I[12] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[13] = (T)(img)(x,_n2##y,_p1##z,c), I[14] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[15] = (T)(img)(_n2##x,_n2##y,_p1##z,c), \
I[16] = (T)(img)(_p1##x,_p1##y,z,c), I[17] = (T)(img)(x,_p1##y,z,c), I[18] = (T)(img)(_n1##x,_p1##y,z,c), I[19] = (T)(img)(_n2##x,_p1##y,z,c), \
I[20] = (T)(img)(_p1##x,y,z,c), I[21] = (T)(img)(x,y,z,c), I[22] = (T)(img)(_n1##x,y,z,c), I[23] = (T)(img)(_n2##x,y,z,c), \
I[24] = (T)(img)(_p1##x,_n1##y,z,c), I[25] = (T)(img)(x,_n1##y,z,c), I[26] = (T)(img)(_n1##x,_n1##y,z,c), I[27] = (T)(img)(_n2##x,_n1##y,z,c), \
I[28] = (T)(img)(_p1##x,_n2##y,z,c), I[29] = (T)(img)(x,_n2##y,z,c), I[30] = (T)(img)(_n1##x,_n2##y,z,c), I[31] = (T)(img)(_n2##x,_n2##y,z,c), \
I[32] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[33] = (T)(img)(x,_p1##y,_n1##z,c), I[34] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[35] = (T)(img)(_n2##x,_p1##y,_n1##z,c), \
I[36] = (T)(img)(_p1##x,y,_n1##z,c), I[37] = (T)(img)(x,y,_n1##z,c), I[38] = (T)(img)(_n1##x,y,_n1##z,c), I[39] = (T)(img)(_n2##x,y,_n1##z,c), \
I[40] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[41] = (T)(img)(x,_n1##y,_n1##z,c), I[42] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[43] = (T)(img)(_n2##x,_n1##y,_n1##z,c), \
I[44] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[45] = (T)(img)(x,_n2##y,_n1##z,c), I[46] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[47] = (T)(img)(_n2##x,_n2##y,_n1##z,c), \
I[48] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[49] = (T)(img)(x,_p1##y,_n2##z,c), I[50] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[51] = (T)(img)(_n2##x,_p1##y,_n2##z,c), \
I[52] = (T)(img)(_p1##x,y,_n2##z,c), I[53] = (T)(img)(x,y,_n2##z,c), I[54] = (T)(img)(_n1##x,y,_n2##z,c), I[55] = (T)(img)(_n2##x,y,_n2##z,c), \
I[56] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[57] = (T)(img)(x,_n1##y,_n2##z,c), I[58] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[59] = (T)(img)(_n2##x,_n1##y,_n2##z,c), \
I[60] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[61] = (T)(img)(x,_n2##y,_n2##z,c), I[62] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[63] = (T)(img)(_n2##x,_n2##y,_n2##z,c);
// Define 5x5x5 loop macros
//----------------------------
#define cimg_for5x5x5(img,x,y,z,c,I,T) \
cimg_for5((img)._depth,z) cimg_for5((img)._height,y) for (int x = 0, \
_p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = (int)( \
(I[0] = I[1] = I[2] = (T)(img)(0,_p2##y,_p2##z,c)), \
(I[5] = I[6] = I[7] = (T)(img)(0,_p1##y,_p2##z,c)), \
(I[10] = I[11] = I[12] = (T)(img)(0,y,_p2##z,c)), \
(I[15] = I[16] = I[17] = (T)(img)(0,_n1##y,_p2##z,c)), \
(I[20] = I[21] = I[22] = (T)(img)(0,_n2##y,_p2##z,c)), \
(I[25] = I[26] = I[27] = (T)(img)(0,_p2##y,_p1##z,c)), \
(I[30] = I[31] = I[32] = (T)(img)(0,_p1##y,_p1##z,c)), \
(I[35] = I[36] = I[37] = (T)(img)(0,y,_p1##z,c)), \
(I[40] = I[41] = I[42] = (T)(img)(0,_n1##y,_p1##z,c)), \
(I[45] = I[46] = I[47] = (T)(img)(0,_n2##y,_p1##z,c)), \
(I[50] = I[51] = I[52] = (T)(img)(0,_p2##y,z,c)), \
(I[55] = I[56] = I[57] = (T)(img)(0,_p1##y,z,c)), \
(I[60] = I[61] = I[62] = (T)(img)(0,y,z,c)), \
(I[65] = I[66] = I[67] = (T)(img)(0,_n1##y,z,c)), \
(I[70] = I[71] = I[72] = (T)(img)(0,_n2##y,z,c)), \
(I[75] = I[76] = I[77] = (T)(img)(0,_p2##y,_n1##z,c)), \
(I[80] = I[81] = I[82] = (T)(img)(0,_p1##y,_n1##z,c)), \
(I[85] = I[86] = I[87] = (T)(img)(0,y,_n1##z,c)), \
(I[90] = I[91] = I[92] = (T)(img)(0,_n1##y,_n1##z,c)), \
(I[95] = I[96] = I[97] = (T)(img)(0,_n2##y,_n1##z,c)), \
(I[100] = I[101] = I[102] = (T)(img)(0,_p2##y,_n2##z,c)), \
(I[105] = I[106] = I[107] = (T)(img)(0,_p1##y,_n2##z,c)), \
(I[110] = I[111] = I[112] = (T)(img)(0,y,_n2##z,c)), \
(I[115] = I[116] = I[117] = (T)(img)(0,_n1##y,_n2##z,c)), \
(I[120] = I[121] = I[122] = (T)(img)(0,_n2##y,_n2##z,c)), \
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[8] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[13] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[18] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[23] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[28] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[33] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[38] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[43] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[48] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[53] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[58] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[63] = (T)(img)(_n1##x,y,z,c)), \
(I[68] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[73] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[78] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[83] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[88] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[93] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[98] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[103] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[108] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[113] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[118] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[123] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
2>=((img)._width)?(img).width() - 1:2); \
(_n2##x<(img).width() && ( \
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[9] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[14] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[19] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[24] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[29] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[34] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[39] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[44] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[49] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[54] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[59] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[64] = (T)(img)(_n2##x,y,z,c)), \
(I[69] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[74] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[79] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[84] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[89] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[94] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[99] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[104] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[109] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[114] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[119] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[124] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
_n1##x==--_n2##x || x==(_n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
#define cimg_for_in5x5x5(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
cimg_for_in5((img)._depth,z0,z1,z) cimg_for_in5((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = (int)( \
(I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
(I[5] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
(I[10] = (T)(img)(_p2##x,y,_p2##z,c)), \
(I[15] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
(I[20] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
(I[25] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
(I[30] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
(I[35] = (T)(img)(_p2##x,y,_p1##z,c)), \
(I[40] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
(I[45] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
(I[50] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[55] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[60] = (T)(img)(_p2##x,y,z,c)), \
(I[65] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[70] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[75] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
(I[80] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
(I[85] = (T)(img)(_p2##x,y,_n1##z,c)), \
(I[90] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
(I[95] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
(I[100] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
(I[105] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
(I[110] = (T)(img)(_p2##x,y,_n2##z,c)), \
(I[115] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
(I[120] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
(I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
(I[6] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
(I[11] = (T)(img)(_p1##x,y,_p2##z,c)), \
(I[16] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
(I[21] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
(I[26] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
(I[31] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
(I[36] = (T)(img)(_p1##x,y,_p1##z,c)), \
(I[41] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
(I[46] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
(I[51] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[56] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[61] = (T)(img)(_p1##x,y,z,c)), \
(I[66] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[71] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[76] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
(I[81] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
(I[86] = (T)(img)(_p1##x,y,_n1##z,c)), \
(I[91] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
(I[96] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
(I[101] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
(I[106] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
(I[111] = (T)(img)(_p1##x,y,_n2##z,c)), \
(I[116] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
(I[121] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
(I[2] = (T)(img)(x,_p2##y,_p2##z,c)), \
(I[7] = (T)(img)(x,_p1##y,_p2##z,c)), \
(I[12] = (T)(img)(x,y,_p2##z,c)), \
(I[17] = (T)(img)(x,_n1##y,_p2##z,c)), \
(I[22] = (T)(img)(x,_n2##y,_p2##z,c)), \
(I[27] = (T)(img)(x,_p2##y,_p1##z,c)), \
(I[32] = (T)(img)(x,_p1##y,_p1##z,c)), \
(I[37] = (T)(img)(x,y,_p1##z,c)), \
(I[42] = (T)(img)(x,_n1##y,_p1##z,c)), \
(I[47] = (T)(img)(x,_n2##y,_p1##z,c)), \
(I[52] = (T)(img)(x,_p2##y,z,c)), \
(I[57] = (T)(img)(x,_p1##y,z,c)), \
(I[62] = (T)(img)(x,y,z,c)), \
(I[67] = (T)(img)(x,_n1##y,z,c)), \
(I[72] = (T)(img)(x,_n2##y,z,c)), \
(I[77] = (T)(img)(x,_p2##y,_n1##z,c)), \
(I[82] = (T)(img)(x,_p1##y,_n1##z,c)), \
(I[87] = (T)(img)(x,y,_n1##z,c)), \
(I[92] = (T)(img)(x,_n1##y,_n1##z,c)), \
(I[97] = (T)(img)(x,_n2##y,_n1##z,c)), \
(I[102] = (T)(img)(x,_p2##y,_n2##z,c)), \
(I[107] = (T)(img)(x,_p1##y,_n2##z,c)), \
(I[112] = (T)(img)(x,y,_n2##z,c)), \
(I[117] = (T)(img)(x,_n1##y,_n2##z,c)), \
(I[122] = (T)(img)(x,_n2##y,_n2##z,c)), \
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[8] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[13] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[18] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[23] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[28] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[33] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[38] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[43] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[48] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[53] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[58] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[63] = (T)(img)(_n1##x,y,z,c)), \
(I[68] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[73] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[78] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[83] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[88] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[93] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[98] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[103] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[108] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[113] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[118] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[123] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
x + 2>=(img).width()?(img).width() - 1:x + 2); \
x<=(int)(x1) && ((_n2##x<(img).width() && ( \
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[9] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[14] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[19] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[24] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[29] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[34] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[39] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[44] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[49] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[54] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[59] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[64] = (T)(img)(_n2##x,y,z,c)), \
(I[69] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[74] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[79] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[84] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[89] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[94] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[99] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[104] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[109] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[114] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[119] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[124] = (T)(img)(_n2##x,_n2##y,_n2##z,c)),1)) || \
_n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \
I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \
I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \
I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \
I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \
I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], \
I[45] = I[46], I[46] = I[47], I[47] = I[48], I[48] = I[49], \
I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], \
I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], \
I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], \
I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], \
I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], \
I[95] = I[96], I[96] = I[97], I[97] = I[98], I[98] = I[99], \
I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], \
I[110] = I[111], I[111] = I[112], I[112] = I[113], I[113] = I[114], \
I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], \
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x)
#define cimg_get5x5x5(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[2] = (T)(img)(x,_p2##y,_p2##z,c), I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c), \
I[5] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[6] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[7] = (T)(img)(x,_p1##y,_p2##z,c), I[8] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[9] = (T)(img)(_n2##x,_p1##y,_p2##z,c), \
I[10] = (T)(img)(_p2##x,y,_p2##z,c), I[11] = (T)(img)(_p1##x,y,_p2##z,c), I[12] = (T)(img)(x,y,_p2##z,c), I[13] = (T)(img)(_n1##x,y,_p2##z,c), I[14] = (T)(img)(_n2##x,y,_p2##z,c), \
I[15] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[16] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[17] = (T)(img)(x,_n1##y,_p2##z,c), I[18] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[19] = (T)(img)(_n2##x,_n1##y,_p2##z,c), \
I[20] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[21] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[22] = (T)(img)(x,_n2##y,_p2##z,c), I[23] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[24] = (T)(img)(_n2##x,_n2##y,_p2##z,c), \
I[25] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[26] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[27] = (T)(img)(x,_p2##y,_p1##z,c), I[28] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[29] = (T)(img)(_n2##x,_p2##y,_p1##z,c), \
I[30] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[31] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[32] = (T)(img)(x,_p1##y,_p1##z,c), I[33] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[34] = (T)(img)(_n2##x,_p1##y,_p1##z,c), \
I[35] = (T)(img)(_p2##x,y,_p1##z,c), I[36] = (T)(img)(_p1##x,y,_p1##z,c), I[37] = (T)(img)(x,y,_p1##z,c), I[38] = (T)(img)(_n1##x,y,_p1##z,c), I[39] = (T)(img)(_n2##x,y,_p1##z,c), \
I[40] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[41] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[42] = (T)(img)(x,_n1##y,_p1##z,c), I[43] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[44] = (T)(img)(_n2##x,_n1##y,_p1##z,c), \
I[45] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[46] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[47] = (T)(img)(x,_n2##y,_p1##z,c), I[48] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[49] = (T)(img)(_n2##x,_n2##y,_p1##z,c), \
I[50] = (T)(img)(_p2##x,_p2##y,z,c), I[51] = (T)(img)(_p1##x,_p2##y,z,c), I[52] = (T)(img)(x,_p2##y,z,c), I[53] = (T)(img)(_n1##x,_p2##y,z,c), I[54] = (T)(img)(_n2##x,_p2##y,z,c), \
I[55] = (T)(img)(_p2##x,_p1##y,z,c), I[56] = (T)(img)(_p1##x,_p1##y,z,c), I[57] = (T)(img)(x,_p1##y,z,c), I[58] = (T)(img)(_n1##x,_p1##y,z,c), I[59] = (T)(img)(_n2##x,_p1##y,z,c), \
I[60] = (T)(img)(_p2##x,y,z,c), I[61] = (T)(img)(_p1##x,y,z,c), I[62] = (T)(img)(x,y,z,c), I[63] = (T)(img)(_n1##x,y,z,c), I[64] = (T)(img)(_n2##x,y,z,c), \
I[65] = (T)(img)(_p2##x,_n1##y,z,c), I[66] = (T)(img)(_p1##x,_n1##y,z,c), I[67] = (T)(img)(x,_n1##y,z,c), I[68] = (T)(img)(_n1##x,_n1##y,z,c), I[69] = (T)(img)(_n2##x,_n1##y,z,c), \
I[70] = (T)(img)(_p2##x,_n2##y,z,c), I[71] = (T)(img)(_p1##x,_n2##y,z,c), I[72] = (T)(img)(x,_n2##y,z,c), I[73] = (T)(img)(_n1##x,_n2##y,z,c), I[74] = (T)(img)(_n2##x,_n2##y,z,c), \
I[75] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[76] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[77] = (T)(img)(x,_p2##y,_n1##z,c), I[78] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[79] = (T)(img)(_n2##x,_p2##y,_n1##z,c), \
I[80] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[81] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[82] = (T)(img)(x,_p1##y,_n1##z,c), I[83] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[84] = (T)(img)(_n2##x,_p1##y,_n1##z,c), \
I[85] = (T)(img)(_p2##x,y,_n1##z,c), I[86] = (T)(img)(_p1##x,y,_n1##z,c), I[87] = (T)(img)(x,y,_n1##z,c), I[88] = (T)(img)(_n1##x,y,_n1##z,c), I[89] = (T)(img)(_n2##x,y,_n1##z,c), \
I[90] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[91] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[92] = (T)(img)(x,_n1##y,_n1##z,c), I[93] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[94] = (T)(img)(_n2##x,_n1##y,_n1##z,c), \
I[95] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[96] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[97] = (T)(img)(x,_n2##y,_n1##z,c), I[98] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[99] = (T)(img)(_n2##x,_n2##y,_n1##z,c), \
I[100] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[101] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[102] = (T)(img)(x,_p2##y,_n2##z,c), I[103] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[104] = (T)(img)(_n2##x,_p2##y,_n2##z,c), \
I[105] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[106] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[107] = (T)(img)(x,_p1##y,_n2##z,c), I[108] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[109] = (T)(img)(_n2##x,_p1##y,_n2##z,c), \
I[110] = (T)(img)(_p2##x,y,_n2##z,c), I[111] = (T)(img)(_p1##x,y,_n2##z,c), I[112] = (T)(img)(x,y,_n2##z,c), I[113] = (T)(img)(_n1##x,y,_n2##z,c), I[114] = (T)(img)(_n2##x,y,_n2##z,c), \
I[115] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[116] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[117] = (T)(img)(x,_n1##y,_n2##z,c), I[118] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[119] = (T)(img)(_n2##x,_n1##y,_n2##z,c), \
I[120] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[121] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[122] = (T)(img)(x,_n2##y,_n2##z,c), I[123] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[124] = (T)(img)(_n2##x,_n2##y,_n2##z,c);
// Define 6x6x6 loop macros
//----------------------------
#define cimg_for6x6x6(img,x,y,z,c,I,T) \
cimg_for6((img)._depth,z) cimg_for6((img)._height,y) for (int x = 0, \
_p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = (int)( \
(I[0] = I[1] = I[2] = (T)(img)(0,_p2##y,_p2##z,c)), \
(I[6] = I[7] = I[8] = (T)(img)(0,_p1##y,_p2##z,c)), \
(I[12] = I[13] = I[14] = (T)(img)(0,y,_p2##z,c)), \
(I[18] = I[19] = I[20] = (T)(img)(0,_n1##y,_p2##z,c)), \
(I[24] = I[25] = I[26] = (T)(img)(0,_n2##y,_p2##z,c)), \
(I[30] = I[31] = I[32] = (T)(img)(0,_n3##y,_p2##z,c)), \
(I[36] = I[37] = I[38] = (T)(img)(0,_p2##y,_p1##z,c)), \
(I[42] = I[43] = I[44] = (T)(img)(0,_p1##y,_p1##z,c)), \
(I[48] = I[49] = I[50] = (T)(img)(0,y,_p1##z,c)), \
(I[54] = I[55] = I[56] = (T)(img)(0,_n1##y,_p1##z,c)), \
(I[60] = I[61] = I[62] = (T)(img)(0,_n2##y,_p1##z,c)), \
(I[66] = I[67] = I[68] = (T)(img)(0,_n3##y,_p1##z,c)), \
(I[72] = I[73] = I[74] = (T)(img)(0,_p2##y,z,c)), \
(I[78] = I[79] = I[80] = (T)(img)(0,_p1##y,z,c)), \
(I[84] = I[85] = I[86] = (T)(img)(0,y,z,c)), \
(I[90] = I[91] = I[92] = (T)(img)(0,_n1##y,z,c)), \
(I[96] = I[97] = I[98] = (T)(img)(0,_n2##y,z,c)), \
(I[102] = I[103] = I[104] = (T)(img)(0,_n3##y,z,c)), \
(I[108] = I[109] = I[110] = (T)(img)(0,_p2##y,_n1##z,c)), \
(I[114] = I[115] = I[116] = (T)(img)(0,_p1##y,_n1##z,c)), \
(I[120] = I[121] = I[122] = (T)(img)(0,y,_n1##z,c)), \
(I[126] = I[127] = I[128] = (T)(img)(0,_n1##y,_n1##z,c)), \
(I[132] = I[133] = I[134] = (T)(img)(0,_n2##y,_n1##z,c)), \
(I[138] = I[139] = I[140] = (T)(img)(0,_n3##y,_n1##z,c)), \
(I[144] = I[145] = I[146] = (T)(img)(0,_p2##y,_n2##z,c)), \
(I[150] = I[151] = I[152] = (T)(img)(0,_p1##y,_n2##z,c)), \
(I[156] = I[157] = I[158] = (T)(img)(0,y,_n2##z,c)), \
(I[162] = I[163] = I[164] = (T)(img)(0,_n1##y,_n2##z,c)), \
(I[168] = I[169] = I[170] = (T)(img)(0,_n2##y,_n2##z,c)), \
(I[174] = I[175] = I[176] = (T)(img)(0,_n3##y,_n2##z,c)), \
(I[180] = I[181] = I[182] = (T)(img)(0,_p2##y,_n3##z,c)), \
(I[186] = I[187] = I[188] = (T)(img)(0,_p1##y,_n3##z,c)), \
(I[192] = I[193] = I[194] = (T)(img)(0,y,_n3##z,c)), \
(I[198] = I[199] = I[200] = (T)(img)(0,_n1##y,_n3##z,c)), \
(I[204] = I[205] = I[206] = (T)(img)(0,_n2##y,_n3##z,c)), \
(I[210] = I[211] = I[212] = (T)(img)(0,_n3##y,_n3##z,c)), \
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[9] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[15] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[21] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[27] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[33] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
(I[39] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[45] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[51] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[57] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[63] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[69] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
(I[75] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[81] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[87] = (T)(img)(_n1##x,y,z,c)), \
(I[93] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[99] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[111] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[117] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[123] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[129] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[135] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[141] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
(I[147] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[153] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[159] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[165] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[171] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
(I[177] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
(I[183] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
(I[189] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
(I[195] = (T)(img)(_n1##x,y,_n3##z,c)), \
(I[201] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
(I[207] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
(I[213] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[10] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[16] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[22] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[28] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[34] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
(I[40] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[46] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[52] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[58] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[64] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[70] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
(I[76] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[82] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[88] = (T)(img)(_n2##x,y,z,c)), \
(I[94] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[100] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[112] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[118] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[124] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[130] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[136] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[142] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
(I[148] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[154] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[160] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[166] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[172] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
(I[178] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
(I[184] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
(I[190] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
(I[196] = (T)(img)(_n2##x,y,_n3##z,c)), \
(I[202] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
(I[208] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
(I[214] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
3>=((img)._width)?(img).width() - 1:3); \
(_n3##x<(img).width() && ( \
(I[5] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
(I[11] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
(I[17] = (T)(img)(_n3##x,y,_p2##z,c)), \
(I[23] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
(I[29] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
(I[35] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
(I[41] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
(I[47] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
(I[53] = (T)(img)(_n3##x,y,_p1##z,c)), \
(I[59] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
(I[65] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
(I[71] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
(I[77] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[83] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[89] = (T)(img)(_n3##x,y,z,c)), \
(I[95] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[101] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[113] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
(I[119] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
(I[125] = (T)(img)(_n3##x,y,_n1##z,c)), \
(I[131] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
(I[137] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
(I[143] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
(I[149] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
(I[155] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
(I[161] = (T)(img)(_n3##x,y,_n2##z,c)), \
(I[167] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
(I[173] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
(I[179] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
(I[185] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
(I[191] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
(I[197] = (T)(img)(_n3##x,y,_n3##z,c)), \
(I[203] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
(I[209] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
(I[215] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
#define cimg_for_in6x6x6(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
cimg_for_in6((img)._depth,z0,z1,z) cimg_for_in6((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = (int)( \
(I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
(I[6] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
(I[12] = (T)(img)(_p2##x,y,_p2##z,c)), \
(I[18] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
(I[24] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
(I[30] = (T)(img)(_p2##x,_n3##y,_p2##z,c)), \
(I[36] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
(I[42] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
(I[48] = (T)(img)(_p2##x,y,_p1##z,c)), \
(I[54] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
(I[60] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
(I[66] = (T)(img)(_p2##x,_n3##y,_p1##z,c)), \
(I[72] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[78] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[84] = (T)(img)(_p2##x,y,z,c)), \
(I[90] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[96] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[102] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[108] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
(I[114] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
(I[120] = (T)(img)(_p2##x,y,_n1##z,c)), \
(I[126] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
(I[132] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
(I[138] = (T)(img)(_p2##x,_n3##y,_n1##z,c)), \
(I[144] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
(I[150] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
(I[156] = (T)(img)(_p2##x,y,_n2##z,c)), \
(I[162] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
(I[168] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
(I[174] = (T)(img)(_p2##x,_n3##y,_n2##z,c)), \
(I[180] = (T)(img)(_p2##x,_p2##y,_n3##z,c)), \
(I[186] = (T)(img)(_p2##x,_p1##y,_n3##z,c)), \
(I[192] = (T)(img)(_p2##x,y,_n3##z,c)), \
(I[198] = (T)(img)(_p2##x,_n1##y,_n3##z,c)), \
(I[204] = (T)(img)(_p2##x,_n2##y,_n3##z,c)), \
(I[210] = (T)(img)(_p2##x,_n3##y,_n3##z,c)), \
(I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
(I[7] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
(I[13] = (T)(img)(_p1##x,y,_p2##z,c)), \
(I[19] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
(I[25] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
(I[31] = (T)(img)(_p1##x,_n3##y,_p2##z,c)), \
(I[37] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
(I[43] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
(I[49] = (T)(img)(_p1##x,y,_p1##z,c)), \
(I[55] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
(I[61] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
(I[67] = (T)(img)(_p1##x,_n3##y,_p1##z,c)), \
(I[73] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[79] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[85] = (T)(img)(_p1##x,y,z,c)), \
(I[91] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[97] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[103] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[109] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
(I[115] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
(I[121] = (T)(img)(_p1##x,y,_n1##z,c)), \
(I[127] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
(I[133] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
(I[139] = (T)(img)(_p1##x,_n3##y,_n1##z,c)), \
(I[145] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
(I[151] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
(I[157] = (T)(img)(_p1##x,y,_n2##z,c)), \
(I[163] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
(I[169] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
(I[175] = (T)(img)(_p1##x,_n3##y,_n2##z,c)), \
(I[181] = (T)(img)(_p1##x,_p2##y,_n3##z,c)), \
(I[187] = (T)(img)(_p1##x,_p1##y,_n3##z,c)), \
(I[193] = (T)(img)(_p1##x,y,_n3##z,c)), \
(I[199] = (T)(img)(_p1##x,_n1##y,_n3##z,c)), \
(I[205] = (T)(img)(_p1##x,_n2##y,_n3##z,c)), \
(I[211] = (T)(img)(_p1##x,_n3##y,_n3##z,c)), \
(I[2] = (T)(img)(x,_p2##y,_p2##z,c)), \
(I[8] = (T)(img)(x,_p1##y,_p2##z,c)), \
(I[14] = (T)(img)(x,y,_p2##z,c)), \
(I[20] = (T)(img)(x,_n1##y,_p2##z,c)), \
(I[26] = (T)(img)(x,_n2##y,_p2##z,c)), \
(I[32] = (T)(img)(x,_n3##y,_p2##z,c)), \
(I[38] = (T)(img)(x,_p2##y,_p1##z,c)), \
(I[44] = (T)(img)(x,_p1##y,_p1##z,c)), \
(I[50] = (T)(img)(x,y,_p1##z,c)), \
(I[56] = (T)(img)(x,_n1##y,_p1##z,c)), \
(I[62] = (T)(img)(x,_n2##y,_p1##z,c)), \
(I[68] = (T)(img)(x,_n3##y,_p1##z,c)), \
(I[74] = (T)(img)(x,_p2##y,z,c)), \
(I[80] = (T)(img)(x,_p1##y,z,c)), \
(I[86] = (T)(img)(x,y,z,c)), \
(I[92] = (T)(img)(x,_n1##y,z,c)), \
(I[98] = (T)(img)(x,_n2##y,z,c)), \
(I[104] = (T)(img)(x,_n3##y,z,c)), \
(I[110] = (T)(img)(x,_p2##y,_n1##z,c)), \
(I[116] = (T)(img)(x,_p1##y,_n1##z,c)), \
(I[122] = (T)(img)(x,y,_n1##z,c)), \
(I[128] = (T)(img)(x,_n1##y,_n1##z,c)), \
(I[134] = (T)(img)(x,_n2##y,_n1##z,c)), \
(I[140] = (T)(img)(x,_n3##y,_n1##z,c)), \
(I[146] = (T)(img)(x,_p2##y,_n2##z,c)), \
(I[152] = (T)(img)(x,_p1##y,_n2##z,c)), \
(I[158] = (T)(img)(x,y,_n2##z,c)), \
(I[164] = (T)(img)(x,_n1##y,_n2##z,c)), \
(I[170] = (T)(img)(x,_n2##y,_n2##z,c)), \
(I[176] = (T)(img)(x,_n3##y,_n2##z,c)), \
(I[182] = (T)(img)(x,_p2##y,_n3##z,c)), \
(I[188] = (T)(img)(x,_p1##y,_n3##z,c)), \
(I[194] = (T)(img)(x,y,_n3##z,c)), \
(I[200] = (T)(img)(x,_n1##y,_n3##z,c)), \
(I[206] = (T)(img)(x,_n2##y,_n3##z,c)), \
(I[212] = (T)(img)(x,_n3##y,_n3##z,c)), \
(I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[9] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[15] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[21] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[27] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[33] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
(I[39] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[45] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[51] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[57] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[63] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[69] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
(I[75] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[81] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[87] = (T)(img)(_n1##x,y,z,c)), \
(I[93] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[99] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[105] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[111] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[117] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[123] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[129] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[135] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[141] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
(I[147] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[153] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[159] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[165] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[171] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
(I[177] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
(I[183] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
(I[189] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
(I[195] = (T)(img)(_n1##x,y,_n3##z,c)), \
(I[201] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
(I[207] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
(I[213] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
(I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[10] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[16] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[22] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[28] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[34] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
(I[40] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[46] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[52] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[58] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[64] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[70] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
(I[76] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[82] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[88] = (T)(img)(_n2##x,y,z,c)), \
(I[94] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[100] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[106] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[112] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[118] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[124] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[130] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[136] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[142] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
(I[148] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[154] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[160] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[166] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[172] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
(I[178] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
(I[184] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
(I[190] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
(I[196] = (T)(img)(_n2##x,y,_n3##z,c)), \
(I[202] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
(I[208] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
(I[214] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
x + 3>=(img).width()?(img).width() - 1:x + 3); \
x<=(int)(x1) && ((_n3##x<(img).width() && ( \
(I[5] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
(I[11] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
(I[17] = (T)(img)(_n3##x,y,_p2##z,c)), \
(I[23] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
(I[29] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
(I[35] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
(I[41] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
(I[47] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
(I[53] = (T)(img)(_n3##x,y,_p1##z,c)), \
(I[59] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
(I[65] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
(I[71] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
(I[77] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[83] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[89] = (T)(img)(_n3##x,y,z,c)), \
(I[95] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[101] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[107] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[113] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
(I[119] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
(I[125] = (T)(img)(_n3##x,y,_n1##z,c)), \
(I[131] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
(I[137] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
(I[143] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
(I[149] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
(I[155] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
(I[161] = (T)(img)(_n3##x,y,_n2##z,c)), \
(I[167] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
(I[173] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
(I[179] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
(I[185] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
(I[191] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
(I[197] = (T)(img)(_n3##x,y,_n3##z,c)), \
(I[203] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
(I[209] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
(I[215] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \
I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \
I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \
I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \
I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \
I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], \
I[54] = I[55], I[55] = I[56], I[56] = I[57], I[57] = I[58], I[58] = I[59], \
I[60] = I[61], I[61] = I[62], I[62] = I[63], I[63] = I[64], I[64] = I[65], \
I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], \
I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], \
I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], \
I[102] = I[103], I[103] = I[104], I[104] = I[105], I[105] = I[106], I[106] = I[107], \
I[108] = I[109], I[109] = I[110], I[110] = I[111], I[111] = I[112], I[112] = I[113], \
I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], \
I[132] = I[133], I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], \
I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], \
I[150] = I[151], I[151] = I[152], I[152] = I[153], I[153] = I[154], I[154] = I[155], \
I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], I[160] = I[161], \
I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], \
I[174] = I[175], I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], \
I[180] = I[181], I[181] = I[182], I[182] = I[183], I[183] = I[184], I[184] = I[185], \
I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], \
I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], I[202] = I[203], \
I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
_p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
#define cimg_get6x6x6(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[1] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[2] = (T)(img)(x,_p2##y,_p2##z,c), I[3] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[4] = (T)(img)(_n2##x,_p2##y,_p2##z,c), I[5] = (T)(img)(_n3##x,_p2##y,_p2##z,c), \
I[6] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[7] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[8] = (T)(img)(x,_p1##y,_p2##z,c), I[9] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[10] = (T)(img)(_n2##x,_p1##y,_p2##z,c), I[11] = (T)(img)(_n3##x,_p1##y,_p2##z,c), \
I[12] = (T)(img)(_p2##x,y,_p2##z,c), I[13] = (T)(img)(_p1##x,y,_p2##z,c), I[14] = (T)(img)(x,y,_p2##z,c), I[15] = (T)(img)(_n1##x,y,_p2##z,c), I[16] = (T)(img)(_n2##x,y,_p2##z,c), I[17] = (T)(img)(_n3##x,y,_p2##z,c), \
I[18] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[19] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[20] = (T)(img)(x,_n1##y,_p2##z,c), I[21] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[22] = (T)(img)(_n2##x,_n1##y,_p2##z,c), I[23] = (T)(img)(_n3##x,_n1##y,_p2##z,c), \
I[24] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[25] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[26] = (T)(img)(x,_n2##y,_p2##z,c), I[27] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[28] = (T)(img)(_n2##x,_n2##y,_p2##z,c), I[29] = (T)(img)(_n3##x,_n2##y,_p2##z,c), \
I[30] = (T)(img)(_p2##x,_n3##y,_p2##z,c), I[31] = (T)(img)(_p1##x,_n3##y,_p2##z,c), I[32] = (T)(img)(x,_n3##y,_p2##z,c), I[33] = (T)(img)(_n1##x,_n3##y,_p2##z,c), I[34] = (T)(img)(_n2##x,_n3##y,_p2##z,c), I[35] = (T)(img)(_n3##x,_n3##y,_p2##z,c), \
I[36] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[37] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[38] = (T)(img)(x,_p2##y,_p1##z,c), I[39] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[40] = (T)(img)(_n2##x,_p2##y,_p1##z,c), I[41] = (T)(img)(_n3##x,_p2##y,_p1##z,c), \
I[42] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[43] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[44] = (T)(img)(x,_p1##y,_p1##z,c), I[45] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[46] = (T)(img)(_n2##x,_p1##y,_p1##z,c), I[47] = (T)(img)(_n3##x,_p1##y,_p1##z,c), \
I[48] = (T)(img)(_p2##x,y,_p1##z,c), I[49] = (T)(img)(_p1##x,y,_p1##z,c), I[50] = (T)(img)(x,y,_p1##z,c), I[51] = (T)(img)(_n1##x,y,_p1##z,c), I[52] = (T)(img)(_n2##x,y,_p1##z,c), I[53] = (T)(img)(_n3##x,y,_p1##z,c), \
I[54] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[55] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[56] = (T)(img)(x,_n1##y,_p1##z,c), I[57] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[58] = (T)(img)(_n2##x,_n1##y,_p1##z,c), I[59] = (T)(img)(_n3##x,_n1##y,_p1##z,c), \
I[60] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[61] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[62] = (T)(img)(x,_n2##y,_p1##z,c), I[63] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[64] = (T)(img)(_n2##x,_n2##y,_p1##z,c), I[65] = (T)(img)(_n3##x,_n2##y,_p1##z,c), \
I[66] = (T)(img)(_p2##x,_n3##y,_p1##z,c), I[67] = (T)(img)(_p1##x,_n3##y,_p1##z,c), I[68] = (T)(img)(x,_n3##y,_p1##z,c), I[69] = (T)(img)(_n1##x,_n3##y,_p1##z,c), I[70] = (T)(img)(_n2##x,_n3##y,_p1##z,c), I[71] = (T)(img)(_n3##x,_n3##y,_p1##z,c), \
I[72] = (T)(img)(_p2##x,_p2##y,z,c), I[73] = (T)(img)(_p1##x,_p2##y,z,c), I[74] = (T)(img)(x,_p2##y,z,c), I[75] = (T)(img)(_n1##x,_p2##y,z,c), I[76] = (T)(img)(_n2##x,_p2##y,z,c), I[77] = (T)(img)(_n3##x,_p2##y,z,c), \
I[78] = (T)(img)(_p2##x,_p1##y,z,c), I[79] = (T)(img)(_p1##x,_p1##y,z,c), I[80] = (T)(img)(x,_p1##y,z,c), I[81] = (T)(img)(_n1##x,_p1##y,z,c), I[82] = (T)(img)(_n2##x,_p1##y,z,c), I[83] = (T)(img)(_n3##x,_p1##y,z,c), \
I[84] = (T)(img)(_p2##x,y,z,c), I[85] = (T)(img)(_p1##x,y,z,c), I[86] = (T)(img)(x,y,z,c), I[87] = (T)(img)(_n1##x,y,z,c), I[88] = (T)(img)(_n2##x,y,z,c), I[89] = (T)(img)(_n3##x,y,z,c), \
I[90] = (T)(img)(_p2##x,_n1##y,z,c), I[91] = (T)(img)(_p1##x,_n1##y,z,c), I[92] = (T)(img)(x,_n1##y,z,c), I[93] = (T)(img)(_n1##x,_n1##y,z,c), I[94] = (T)(img)(_n2##x,_n1##y,z,c), I[95] = (T)(img)(_n3##x,_n1##y,z,c), \
I[96] = (T)(img)(_p2##x,_n2##y,z,c), I[97] = (T)(img)(_p1##x,_n2##y,z,c), I[98] = (T)(img)(x,_n2##y,z,c), I[99] = (T)(img)(_n1##x,_n2##y,z,c), I[100] = (T)(img)(_n2##x,_n2##y,z,c), I[101] = (T)(img)(_n3##x,_n2##y,z,c), \
I[102] = (T)(img)(_p2##x,_n3##y,z,c), I[103] = (T)(img)(_p1##x,_n3##y,z,c), I[104] = (T)(img)(x,_n3##y,z,c), I[105] = (T)(img)(_n1##x,_n3##y,z,c), I[106] = (T)(img)(_n2##x,_n3##y,z,c), I[107] = (T)(img)(_n3##x,_n3##y,z,c), \
I[108] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[109] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[110] = (T)(img)(x,_p2##y,_n1##z,c), I[111] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[112] = (T)(img)(_n2##x,_p2##y,_n1##z,c), I[113] = (T)(img)(_n3##x,_p2##y,_n1##z,c), \
I[114] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[115] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[116] = (T)(img)(x,_p1##y,_n1##z,c), I[117] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[118] = (T)(img)(_n2##x,_p1##y,_n1##z,c), I[119] = (T)(img)(_n3##x,_p1##y,_n1##z,c), \
I[120] = (T)(img)(_p2##x,y,_n1##z,c), I[121] = (T)(img)(_p1##x,y,_n1##z,c), I[122] = (T)(img)(x,y,_n1##z,c), I[123] = (T)(img)(_n1##x,y,_n1##z,c), I[124] = (T)(img)(_n2##x,y,_n1##z,c), I[125] = (T)(img)(_n3##x,y,_n1##z,c), \
I[126] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[127] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[128] = (T)(img)(x,_n1##y,_n1##z,c), I[129] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[130] = (T)(img)(_n2##x,_n1##y,_n1##z,c), I[131] = (T)(img)(_n3##x,_n1##y,_n1##z,c), \
I[132] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[133] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[134] = (T)(img)(x,_n2##y,_n1##z,c), I[135] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[136] = (T)(img)(_n2##x,_n2##y,_n1##z,c), I[137] = (T)(img)(_n3##x,_n2##y,_n1##z,c), \
I[138] = (T)(img)(_p2##x,_n3##y,_n1##z,c), I[139] = (T)(img)(_p1##x,_n3##y,_n1##z,c), I[140] = (T)(img)(x,_n3##y,_n1##z,c), I[141] = (T)(img)(_n1##x,_n3##y,_n1##z,c), I[142] = (T)(img)(_n2##x,_n3##y,_n1##z,c), I[143] = (T)(img)(_n3##x,_n3##y,_n1##z,c), \
I[144] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[145] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[146] = (T)(img)(x,_p2##y,_n2##z,c), I[147] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[148] = (T)(img)(_n2##x,_p2##y,_n2##z,c), I[149] = (T)(img)(_n3##x,_p2##y,_n2##z,c), \
I[150] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[151] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[152] = (T)(img)(x,_p1##y,_n2##z,c), I[153] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[154] = (T)(img)(_n2##x,_p1##y,_n2##z,c), I[155] = (T)(img)(_n3##x,_p1##y,_n2##z,c), \
I[156] = (T)(img)(_p2##x,y,_n2##z,c), I[157] = (T)(img)(_p1##x,y,_n2##z,c), I[158] = (T)(img)(x,y,_n2##z,c), I[159] = (T)(img)(_n1##x,y,_n2##z,c), I[160] = (T)(img)(_n2##x,y,_n2##z,c), I[161] = (T)(img)(_n3##x,y,_n2##z,c), \
I[162] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[163] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[164] = (T)(img)(x,_n1##y,_n2##z,c), I[165] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[166] = (T)(img)(_n2##x,_n1##y,_n2##z,c), I[167] = (T)(img)(_n3##x,_n1##y,_n2##z,c), \
I[168] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[169] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[170] = (T)(img)(x,_n2##y,_n2##z,c), I[171] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[172] = (T)(img)(_n2##x,_n2##y,_n2##z,c), I[173] = (T)(img)(_n3##x,_n2##y,_n2##z,c), \
I[174] = (T)(img)(_p2##x,_n3##y,_n2##z,c), I[175] = (T)(img)(_p1##x,_n3##y,_n2##z,c), I[176] = (T)(img)(x,_n3##y,_n2##z,c), I[177] = (T)(img)(_n1##x,_n3##y,_n2##z,c), I[178] = (T)(img)(_n2##x,_n3##y,_n2##z,c), I[179] = (T)(img)(_n3##x,_n3##y,_n2##z,c), \
I[180] = (T)(img)(_p2##x,_p2##y,_n3##z,c), I[181] = (T)(img)(_p1##x,_p2##y,_n3##z,c), I[182] = (T)(img)(x,_p2##y,_n3##z,c), I[183] = (T)(img)(_n1##x,_p2##y,_n3##z,c), I[184] = (T)(img)(_n2##x,_p2##y,_n3##z,c), I[185] = (T)(img)(_n3##x,_p2##y,_n3##z,c), \
I[186] = (T)(img)(_p2##x,_p1##y,_n3##z,c), I[187] = (T)(img)(_p1##x,_p1##y,_n3##z,c), I[188] = (T)(img)(x,_p1##y,_n3##z,c), I[189] = (T)(img)(_n1##x,_p1##y,_n3##z,c), I[190] = (T)(img)(_n2##x,_p1##y,_n3##z,c), I[191] = (T)(img)(_n3##x,_p1##y,_n3##z,c), \
I[192] = (T)(img)(_p2##x,y,_n3##z,c), I[193] = (T)(img)(_p1##x,y,_n3##z,c), I[194] = (T)(img)(x,y,_n3##z,c), I[195] = (T)(img)(_n1##x,y,_n3##z,c), I[196] = (T)(img)(_n2##x,y,_n3##z,c), I[197] = (T)(img)(_n3##x,y,_n3##z,c), \
I[198] = (T)(img)(_p2##x,_n1##y,_n3##z,c), I[199] = (T)(img)(_p1##x,_n1##y,_n3##z,c), I[200] = (T)(img)(x,_n1##y,_n3##z,c), I[201] = (T)(img)(_n1##x,_n1##y,_n3##z,c), I[202] = (T)(img)(_n2##x,_n1##y,_n3##z,c), I[203] = (T)(img)(_n3##x,_n1##y,_n3##z,c), \
I[204] = (T)(img)(_p2##x,_n2##y,_n3##z,c), I[205] = (T)(img)(_p1##x,_n2##y,_n3##z,c), I[206] = (T)(img)(x,_n2##y,_n3##z,c), I[207] = (T)(img)(_n1##x,_n2##y,_n3##z,c), I[208] = (T)(img)(_n2##x,_n2##y,_n3##z,c), I[209] = (T)(img)(_n3##x,_n2##y,_n3##z,c), \
I[210] = (T)(img)(_p2##x,_n3##y,_n3##z,c), I[211] = (T)(img)(_p1##x,_n3##y,_n3##z,c), I[212] = (T)(img)(x,_n3##y,_n3##z,c), I[213] = (T)(img)(_n1##x,_n3##y,_n3##z,c), I[214] = (T)(img)(_n2##x,_n3##y,_n3##z,c), I[215] = (T)(img)(_n3##x,_n3##y,_n3##z,c);
// Define 7x7x7 loop macros
//----------------------------
#define cimg_for7x7x7(img,x,y,z,c,I,T) \
cimg_for7((img)._depth,z) cimg_for7((img)._height,y) for (int x = 0, \
_p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = (T)(img)(0,_p3##y,_p3##z,c)), \
(I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p2##y,_p3##z,c)), \
(I[14] = I[15] = I[16] = I[17] = (T)(img)(0,_p1##y,_p3##z,c)), \
(I[21] = I[22] = I[23] = I[24] = (T)(img)(0,y,_p3##z,c)), \
(I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_n1##y,_p3##z,c)), \
(I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_n2##y,_p3##z,c)), \
(I[42] = I[43] = I[44] = I[45] = (T)(img)(0,_n3##y,_p3##z,c)), \
(I[49] = I[50] = I[51] = I[52] = (T)(img)(0,_p3##y,_p2##z,c)), \
(I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_p2##y,_p2##z,c)), \
(I[63] = I[64] = I[65] = I[66] = (T)(img)(0,_p1##y,_p2##z,c)), \
(I[70] = I[71] = I[72] = I[73] = (T)(img)(0,y,_p2##z,c)), \
(I[77] = I[78] = I[79] = I[80] = (T)(img)(0,_n1##y,_p2##z,c)), \
(I[84] = I[85] = I[86] = I[87] = (T)(img)(0,_n2##y,_p2##z,c)), \
(I[91] = I[92] = I[93] = I[94] = (T)(img)(0,_n3##y,_p2##z,c)), \
(I[98] = I[99] = I[100] = I[101] = (T)(img)(0,_p3##y,_p1##z,c)), \
(I[105] = I[106] = I[107] = I[108] = (T)(img)(0,_p2##y,_p1##z,c)), \
(I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_p1##y,_p1##z,c)), \
(I[119] = I[120] = I[121] = I[122] = (T)(img)(0,y,_p1##z,c)), \
(I[126] = I[127] = I[128] = I[129] = (T)(img)(0,_n1##y,_p1##z,c)), \
(I[133] = I[134] = I[135] = I[136] = (T)(img)(0,_n2##y,_p1##z,c)), \
(I[140] = I[141] = I[142] = I[143] = (T)(img)(0,_n3##y,_p1##z,c)), \
(I[147] = I[148] = I[149] = I[150] = (T)(img)(0,_p3##y,z,c)), \
(I[154] = I[155] = I[156] = I[157] = (T)(img)(0,_p2##y,z,c)), \
(I[161] = I[162] = I[163] = I[164] = (T)(img)(0,_p1##y,z,c)), \
(I[168] = I[169] = I[170] = I[171] = (T)(img)(0,y,z,c)), \
(I[175] = I[176] = I[177] = I[178] = (T)(img)(0,_n1##y,z,c)), \
(I[182] = I[183] = I[184] = I[185] = (T)(img)(0,_n2##y,z,c)), \
(I[189] = I[190] = I[191] = I[192] = (T)(img)(0,_n3##y,z,c)), \
(I[196] = I[197] = I[198] = I[199] = (T)(img)(0,_p3##y,_n1##z,c)), \
(I[203] = I[204] = I[205] = I[206] = (T)(img)(0,_p2##y,_n1##z,c)), \
(I[210] = I[211] = I[212] = I[213] = (T)(img)(0,_p1##y,_n1##z,c)), \
(I[217] = I[218] = I[219] = I[220] = (T)(img)(0,y,_n1##z,c)), \
(I[224] = I[225] = I[226] = I[227] = (T)(img)(0,_n1##y,_n1##z,c)), \
(I[231] = I[232] = I[233] = I[234] = (T)(img)(0,_n2##y,_n1##z,c)), \
(I[238] = I[239] = I[240] = I[241] = (T)(img)(0,_n3##y,_n1##z,c)), \
(I[245] = I[246] = I[247] = I[248] = (T)(img)(0,_p3##y,_n2##z,c)), \
(I[252] = I[253] = I[254] = I[255] = (T)(img)(0,_p2##y,_n2##z,c)), \
(I[259] = I[260] = I[261] = I[262] = (T)(img)(0,_p1##y,_n2##z,c)), \
(I[266] = I[267] = I[268] = I[269] = (T)(img)(0,y,_n2##z,c)), \
(I[273] = I[274] = I[275] = I[276] = (T)(img)(0,_n1##y,_n2##z,c)), \
(I[280] = I[281] = I[282] = I[283] = (T)(img)(0,_n2##y,_n2##z,c)), \
(I[287] = I[288] = I[289] = I[290] = (T)(img)(0,_n3##y,_n2##z,c)), \
(I[294] = I[295] = I[296] = I[297] = (T)(img)(0,_p3##y,_n3##z,c)), \
(I[301] = I[302] = I[303] = I[304] = (T)(img)(0,_p2##y,_n3##z,c)), \
(I[308] = I[309] = I[310] = I[311] = (T)(img)(0,_p1##y,_n3##z,c)), \
(I[315] = I[316] = I[317] = I[318] = (T)(img)(0,y,_n3##z,c)), \
(I[322] = I[323] = I[324] = I[325] = (T)(img)(0,_n1##y,_n3##z,c)), \
(I[329] = I[330] = I[331] = I[332] = (T)(img)(0,_n2##y,_n3##z,c)), \
(I[336] = I[337] = I[338] = I[339] = (T)(img)(0,_n3##y,_n3##z,c)), \
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
(I[11] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
(I[18] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
(I[25] = (T)(img)(_n1##x,y,_p3##z,c)), \
(I[32] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
(I[39] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
(I[46] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
(I[53] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
(I[60] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[67] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[74] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[81] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[88] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[95] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
(I[102] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
(I[109] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[116] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[123] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[130] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[137] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[144] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
(I[151] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[158] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[165] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[172] = (T)(img)(_n1##x,y,z,c)), \
(I[179] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[186] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[193] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[200] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
(I[207] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[214] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[221] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[228] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[235] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[242] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
(I[249] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
(I[256] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[263] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[270] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[277] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[284] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
(I[291] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
(I[298] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
(I[305] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
(I[312] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
(I[319] = (T)(img)(_n1##x,y,_n3##z,c)), \
(I[326] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
(I[333] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
(I[340] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
(I[12] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
(I[19] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
(I[26] = (T)(img)(_n2##x,y,_p3##z,c)), \
(I[33] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
(I[40] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
(I[47] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
(I[54] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
(I[61] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[68] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[75] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[82] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[89] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[96] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
(I[103] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
(I[110] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[117] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[124] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[131] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[138] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[145] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
(I[152] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[159] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[166] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[173] = (T)(img)(_n2##x,y,z,c)), \
(I[180] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[187] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[194] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[201] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
(I[208] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[215] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[222] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[229] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[236] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[243] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
(I[250] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
(I[257] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[264] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[271] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[278] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[285] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
(I[292] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
(I[299] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
(I[306] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
(I[313] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
(I[320] = (T)(img)(_n2##x,y,_n3##z,c)), \
(I[327] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
(I[334] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
(I[341] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
3>=((img)._width)?(img).width() - 1:3); \
(_n3##x<(img).width() && ( \
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
(I[13] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
(I[20] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
(I[27] = (T)(img)(_n3##x,y,_p3##z,c)), \
(I[34] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
(I[41] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
(I[48] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
(I[55] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
(I[62] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
(I[69] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
(I[76] = (T)(img)(_n3##x,y,_p2##z,c)), \
(I[83] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
(I[90] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
(I[97] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
(I[104] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
(I[111] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
(I[118] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
(I[125] = (T)(img)(_n3##x,y,_p1##z,c)), \
(I[132] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
(I[139] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
(I[146] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
(I[153] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[160] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[167] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[174] = (T)(img)(_n3##x,y,z,c)), \
(I[181] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[188] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[195] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[202] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
(I[209] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
(I[216] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
(I[223] = (T)(img)(_n3##x,y,_n1##z,c)), \
(I[230] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
(I[237] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
(I[244] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
(I[251] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
(I[258] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
(I[265] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
(I[272] = (T)(img)(_n3##x,y,_n2##z,c)), \
(I[279] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
(I[286] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
(I[293] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
(I[300] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
(I[307] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
(I[314] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
(I[321] = (T)(img)(_n3##x,y,_n3##z,c)), \
(I[328] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
(I[335] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
(I[342] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \
I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \
I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \
I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \
I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \
I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
#define cimg_for_in7x7x7(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
cimg_for_in7((img)._depth,z0,z1,z) cimg_for_in7((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = (int)( \
(I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c)), \
(I[7] = (T)(img)(_p3##x,_p2##y,_p3##z,c)), \
(I[14] = (T)(img)(_p3##x,_p1##y,_p3##z,c)), \
(I[21] = (T)(img)(_p3##x,y,_p3##z,c)), \
(I[28] = (T)(img)(_p3##x,_n1##y,_p3##z,c)), \
(I[35] = (T)(img)(_p3##x,_n2##y,_p3##z,c)), \
(I[42] = (T)(img)(_p3##x,_n3##y,_p3##z,c)), \
(I[49] = (T)(img)(_p3##x,_p3##y,_p2##z,c)), \
(I[56] = (T)(img)(_p3##x,_p2##y,_p2##z,c)), \
(I[63] = (T)(img)(_p3##x,_p1##y,_p2##z,c)), \
(I[70] = (T)(img)(_p3##x,y,_p2##z,c)), \
(I[77] = (T)(img)(_p3##x,_n1##y,_p2##z,c)), \
(I[84] = (T)(img)(_p3##x,_n2##y,_p2##z,c)), \
(I[91] = (T)(img)(_p3##x,_n3##y,_p2##z,c)), \
(I[98] = (T)(img)(_p3##x,_p3##y,_p1##z,c)), \
(I[105] = (T)(img)(_p3##x,_p2##y,_p1##z,c)), \
(I[112] = (T)(img)(_p3##x,_p1##y,_p1##z,c)), \
(I[119] = (T)(img)(_p3##x,y,_p1##z,c)), \
(I[126] = (T)(img)(_p3##x,_n1##y,_p1##z,c)), \
(I[133] = (T)(img)(_p3##x,_n2##y,_p1##z,c)), \
(I[140] = (T)(img)(_p3##x,_n3##y,_p1##z,c)), \
(I[147] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[154] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[161] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[168] = (T)(img)(_p3##x,y,z,c)), \
(I[175] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[182] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[189] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[196] = (T)(img)(_p3##x,_p3##y,_n1##z,c)), \
(I[203] = (T)(img)(_p3##x,_p2##y,_n1##z,c)), \
(I[210] = (T)(img)(_p3##x,_p1##y,_n1##z,c)), \
(I[217] = (T)(img)(_p3##x,y,_n1##z,c)), \
(I[224] = (T)(img)(_p3##x,_n1##y,_n1##z,c)), \
(I[231] = (T)(img)(_p3##x,_n2##y,_n1##z,c)), \
(I[238] = (T)(img)(_p3##x,_n3##y,_n1##z,c)), \
(I[245] = (T)(img)(_p3##x,_p3##y,_n2##z,c)), \
(I[252] = (T)(img)(_p3##x,_p2##y,_n2##z,c)), \
(I[259] = (T)(img)(_p3##x,_p1##y,_n2##z,c)), \
(I[266] = (T)(img)(_p3##x,y,_n2##z,c)), \
(I[273] = (T)(img)(_p3##x,_n1##y,_n2##z,c)), \
(I[280] = (T)(img)(_p3##x,_n2##y,_n2##z,c)), \
(I[287] = (T)(img)(_p3##x,_n3##y,_n2##z,c)), \
(I[294] = (T)(img)(_p3##x,_p3##y,_n3##z,c)), \
(I[301] = (T)(img)(_p3##x,_p2##y,_n3##z,c)), \
(I[308] = (T)(img)(_p3##x,_p1##y,_n3##z,c)), \
(I[315] = (T)(img)(_p3##x,y,_n3##z,c)), \
(I[322] = (T)(img)(_p3##x,_n1##y,_n3##z,c)), \
(I[329] = (T)(img)(_p3##x,_n2##y,_n3##z,c)), \
(I[336] = (T)(img)(_p3##x,_n3##y,_n3##z,c)), \
(I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c)), \
(I[8] = (T)(img)(_p2##x,_p2##y,_p3##z,c)), \
(I[15] = (T)(img)(_p2##x,_p1##y,_p3##z,c)), \
(I[22] = (T)(img)(_p2##x,y,_p3##z,c)), \
(I[29] = (T)(img)(_p2##x,_n1##y,_p3##z,c)), \
(I[36] = (T)(img)(_p2##x,_n2##y,_p3##z,c)), \
(I[43] = (T)(img)(_p2##x,_n3##y,_p3##z,c)), \
(I[50] = (T)(img)(_p2##x,_p3##y,_p2##z,c)), \
(I[57] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
(I[64] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
(I[71] = (T)(img)(_p2##x,y,_p2##z,c)), \
(I[78] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
(I[85] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
(I[92] = (T)(img)(_p2##x,_n3##y,_p2##z,c)), \
(I[99] = (T)(img)(_p2##x,_p3##y,_p1##z,c)), \
(I[106] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
(I[113] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
(I[120] = (T)(img)(_p2##x,y,_p1##z,c)), \
(I[127] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
(I[134] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
(I[141] = (T)(img)(_p2##x,_n3##y,_p1##z,c)), \
(I[148] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[155] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[162] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[169] = (T)(img)(_p2##x,y,z,c)), \
(I[176] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[183] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[190] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[197] = (T)(img)(_p2##x,_p3##y,_n1##z,c)), \
(I[204] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
(I[211] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
(I[218] = (T)(img)(_p2##x,y,_n1##z,c)), \
(I[225] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
(I[232] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
(I[239] = (T)(img)(_p2##x,_n3##y,_n1##z,c)), \
(I[246] = (T)(img)(_p2##x,_p3##y,_n2##z,c)), \
(I[253] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
(I[260] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
(I[267] = (T)(img)(_p2##x,y,_n2##z,c)), \
(I[274] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
(I[281] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
(I[288] = (T)(img)(_p2##x,_n3##y,_n2##z,c)), \
(I[295] = (T)(img)(_p2##x,_p3##y,_n3##z,c)), \
(I[302] = (T)(img)(_p2##x,_p2##y,_n3##z,c)), \
(I[309] = (T)(img)(_p2##x,_p1##y,_n3##z,c)), \
(I[316] = (T)(img)(_p2##x,y,_n3##z,c)), \
(I[323] = (T)(img)(_p2##x,_n1##y,_n3##z,c)), \
(I[330] = (T)(img)(_p2##x,_n2##y,_n3##z,c)), \
(I[337] = (T)(img)(_p2##x,_n3##y,_n3##z,c)), \
(I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c)), \
(I[9] = (T)(img)(_p1##x,_p2##y,_p3##z,c)), \
(I[16] = (T)(img)(_p1##x,_p1##y,_p3##z,c)), \
(I[23] = (T)(img)(_p1##x,y,_p3##z,c)), \
(I[30] = (T)(img)(_p1##x,_n1##y,_p3##z,c)), \
(I[37] = (T)(img)(_p1##x,_n2##y,_p3##z,c)), \
(I[44] = (T)(img)(_p1##x,_n3##y,_p3##z,c)), \
(I[51] = (T)(img)(_p1##x,_p3##y,_p2##z,c)), \
(I[58] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
(I[65] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
(I[72] = (T)(img)(_p1##x,y,_p2##z,c)), \
(I[79] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
(I[86] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
(I[93] = (T)(img)(_p1##x,_n3##y,_p2##z,c)), \
(I[100] = (T)(img)(_p1##x,_p3##y,_p1##z,c)), \
(I[107] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
(I[114] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
(I[121] = (T)(img)(_p1##x,y,_p1##z,c)), \
(I[128] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
(I[135] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
(I[142] = (T)(img)(_p1##x,_n3##y,_p1##z,c)), \
(I[149] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[156] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[163] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[170] = (T)(img)(_p1##x,y,z,c)), \
(I[177] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[184] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[191] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[198] = (T)(img)(_p1##x,_p3##y,_n1##z,c)), \
(I[205] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
(I[212] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
(I[219] = (T)(img)(_p1##x,y,_n1##z,c)), \
(I[226] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
(I[233] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
(I[240] = (T)(img)(_p1##x,_n3##y,_n1##z,c)), \
(I[247] = (T)(img)(_p1##x,_p3##y,_n2##z,c)), \
(I[254] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
(I[261] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
(I[268] = (T)(img)(_p1##x,y,_n2##z,c)), \
(I[275] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
(I[282] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
(I[289] = (T)(img)(_p1##x,_n3##y,_n2##z,c)), \
(I[296] = (T)(img)(_p1##x,_p3##y,_n3##z,c)), \
(I[303] = (T)(img)(_p1##x,_p2##y,_n3##z,c)), \
(I[310] = (T)(img)(_p1##x,_p1##y,_n3##z,c)), \
(I[317] = (T)(img)(_p1##x,y,_n3##z,c)), \
(I[324] = (T)(img)(_p1##x,_n1##y,_n3##z,c)), \
(I[331] = (T)(img)(_p1##x,_n2##y,_n3##z,c)), \
(I[338] = (T)(img)(_p1##x,_n3##y,_n3##z,c)), \
(I[3] = (T)(img)(x,_p3##y,_p3##z,c)), \
(I[10] = (T)(img)(x,_p2##y,_p3##z,c)), \
(I[17] = (T)(img)(x,_p1##y,_p3##z,c)), \
(I[24] = (T)(img)(x,y,_p3##z,c)), \
(I[31] = (T)(img)(x,_n1##y,_p3##z,c)), \
(I[38] = (T)(img)(x,_n2##y,_p3##z,c)), \
(I[45] = (T)(img)(x,_n3##y,_p3##z,c)), \
(I[52] = (T)(img)(x,_p3##y,_p2##z,c)), \
(I[59] = (T)(img)(x,_p2##y,_p2##z,c)), \
(I[66] = (T)(img)(x,_p1##y,_p2##z,c)), \
(I[73] = (T)(img)(x,y,_p2##z,c)), \
(I[80] = (T)(img)(x,_n1##y,_p2##z,c)), \
(I[87] = (T)(img)(x,_n2##y,_p2##z,c)), \
(I[94] = (T)(img)(x,_n3##y,_p2##z,c)), \
(I[101] = (T)(img)(x,_p3##y,_p1##z,c)), \
(I[108] = (T)(img)(x,_p2##y,_p1##z,c)), \
(I[115] = (T)(img)(x,_p1##y,_p1##z,c)), \
(I[122] = (T)(img)(x,y,_p1##z,c)), \
(I[129] = (T)(img)(x,_n1##y,_p1##z,c)), \
(I[136] = (T)(img)(x,_n2##y,_p1##z,c)), \
(I[143] = (T)(img)(x,_n3##y,_p1##z,c)), \
(I[150] = (T)(img)(x,_p3##y,z,c)), \
(I[157] = (T)(img)(x,_p2##y,z,c)), \
(I[164] = (T)(img)(x,_p1##y,z,c)), \
(I[171] = (T)(img)(x,y,z,c)), \
(I[178] = (T)(img)(x,_n1##y,z,c)), \
(I[185] = (T)(img)(x,_n2##y,z,c)), \
(I[192] = (T)(img)(x,_n3##y,z,c)), \
(I[199] = (T)(img)(x,_p3##y,_n1##z,c)), \
(I[206] = (T)(img)(x,_p2##y,_n1##z,c)), \
(I[213] = (T)(img)(x,_p1##y,_n1##z,c)), \
(I[220] = (T)(img)(x,y,_n1##z,c)), \
(I[227] = (T)(img)(x,_n1##y,_n1##z,c)), \
(I[234] = (T)(img)(x,_n2##y,_n1##z,c)), \
(I[241] = (T)(img)(x,_n3##y,_n1##z,c)), \
(I[248] = (T)(img)(x,_p3##y,_n2##z,c)), \
(I[255] = (T)(img)(x,_p2##y,_n2##z,c)), \
(I[262] = (T)(img)(x,_p1##y,_n2##z,c)), \
(I[269] = (T)(img)(x,y,_n2##z,c)), \
(I[276] = (T)(img)(x,_n1##y,_n2##z,c)), \
(I[283] = (T)(img)(x,_n2##y,_n2##z,c)), \
(I[290] = (T)(img)(x,_n3##y,_n2##z,c)), \
(I[297] = (T)(img)(x,_p3##y,_n3##z,c)), \
(I[304] = (T)(img)(x,_p2##y,_n3##z,c)), \
(I[311] = (T)(img)(x,_p1##y,_n3##z,c)), \
(I[318] = (T)(img)(x,y,_n3##z,c)), \
(I[325] = (T)(img)(x,_n1##y,_n3##z,c)), \
(I[332] = (T)(img)(x,_n2##y,_n3##z,c)), \
(I[339] = (T)(img)(x,_n3##y,_n3##z,c)), \
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
(I[11] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
(I[18] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
(I[25] = (T)(img)(_n1##x,y,_p3##z,c)), \
(I[32] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
(I[39] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
(I[46] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
(I[53] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
(I[60] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[67] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[74] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[81] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[88] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[95] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
(I[102] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
(I[109] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[116] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[123] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[130] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[137] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[144] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
(I[151] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[158] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[165] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[172] = (T)(img)(_n1##x,y,z,c)), \
(I[179] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[186] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[193] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[200] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
(I[207] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[214] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[221] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[228] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[235] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[242] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
(I[249] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
(I[256] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[263] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[270] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[277] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[284] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
(I[291] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
(I[298] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
(I[305] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
(I[312] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
(I[319] = (T)(img)(_n1##x,y,_n3##z,c)), \
(I[326] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
(I[333] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
(I[340] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
(I[12] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
(I[19] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
(I[26] = (T)(img)(_n2##x,y,_p3##z,c)), \
(I[33] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
(I[40] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
(I[47] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
(I[54] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
(I[61] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[68] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[75] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[82] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[89] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[96] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
(I[103] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
(I[110] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[117] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[124] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[131] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[138] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[145] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
(I[152] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[159] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[166] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[173] = (T)(img)(_n2##x,y,z,c)), \
(I[180] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[187] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[194] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[201] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
(I[208] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[215] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[222] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[229] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[236] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[243] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
(I[250] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
(I[257] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[264] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[271] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[278] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[285] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
(I[292] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
(I[299] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
(I[306] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
(I[313] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
(I[320] = (T)(img)(_n2##x,y,_n3##z,c)), \
(I[327] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
(I[334] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
(I[341] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
x + 3>=(img).width()?(img).width() - 1:x + 3); \
x<=(int)(x1) && ((_n3##x<(img).width() && ( \
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
(I[13] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
(I[20] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
(I[27] = (T)(img)(_n3##x,y,_p3##z,c)), \
(I[34] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
(I[41] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
(I[48] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
(I[55] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
(I[62] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
(I[69] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
(I[76] = (T)(img)(_n3##x,y,_p2##z,c)), \
(I[83] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
(I[90] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
(I[97] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
(I[104] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
(I[111] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
(I[118] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
(I[125] = (T)(img)(_n3##x,y,_p1##z,c)), \
(I[132] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
(I[139] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
(I[146] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
(I[153] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[160] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[167] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[174] = (T)(img)(_n3##x,y,z,c)), \
(I[181] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[188] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[195] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[202] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
(I[209] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
(I[216] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
(I[223] = (T)(img)(_n3##x,y,_n1##z,c)), \
(I[230] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
(I[237] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
(I[244] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
(I[251] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
(I[258] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
(I[265] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
(I[272] = (T)(img)(_n3##x,y,_n2##z,c)), \
(I[279] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
(I[286] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
(I[293] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
(I[300] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
(I[307] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
(I[314] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
(I[321] = (T)(img)(_n3##x,y,_n3##z,c)), \
(I[328] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
(I[335] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
(I[342] = (T)(img)(_n3##x,_n3##y,_n3##z,c)),1)) || \
_n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \
I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \
I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \
I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \
I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \
I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \
I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \
I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], \
I[63] = I[64], I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], \
I[70] = I[71], I[71] = I[72], I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], \
I[77] = I[78], I[78] = I[79], I[79] = I[80], I[80] = I[81], I[81] = I[82], I[82] = I[83], \
I[84] = I[85], I[85] = I[86], I[86] = I[87], I[87] = I[88], I[88] = I[89], I[89] = I[90], \
I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], I[95] = I[96], I[96] = I[97], \
I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], I[103] = I[104], \
I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], \
I[119] = I[120], I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], \
I[126] = I[127], I[127] = I[128], I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], \
I[133] = I[134], I[134] = I[135], I[135] = I[136], I[136] = I[137], I[137] = I[138], I[138] = I[139], \
I[140] = I[141], I[141] = I[142], I[142] = I[143], I[143] = I[144], I[144] = I[145], I[145] = I[146], \
I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], I[151] = I[152], I[152] = I[153], \
I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], I[159] = I[160], \
I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], \
I[175] = I[176], I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], \
I[182] = I[183], I[183] = I[184], I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], \
I[189] = I[190], I[190] = I[191], I[191] = I[192], I[192] = I[193], I[193] = I[194], I[194] = I[195], \
I[196] = I[197], I[197] = I[198], I[198] = I[199], I[199] = I[200], I[200] = I[201], I[201] = I[202], \
I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], I[207] = I[208], I[208] = I[209], \
I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], I[215] = I[216], \
I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], \
I[231] = I[232], I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], \
I[238] = I[239], I[239] = I[240], I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], \
I[245] = I[246], I[246] = I[247], I[247] = I[248], I[248] = I[249], I[249] = I[250], I[250] = I[251], \
I[252] = I[253], I[253] = I[254], I[254] = I[255], I[255] = I[256], I[256] = I[257], I[257] = I[258], \
I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], I[263] = I[264], I[264] = I[265], \
I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], I[271] = I[272], \
I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], \
I[287] = I[288], I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], \
I[294] = I[295], I[295] = I[296], I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], \
I[301] = I[302], I[302] = I[303], I[303] = I[304], I[304] = I[305], I[305] = I[306], I[306] = I[307], \
I[308] = I[309], I[309] = I[310], I[310] = I[311], I[311] = I[312], I[312] = I[313], I[313] = I[314], \
I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], I[319] = I[320], I[320] = I[321], \
I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], I[327] = I[328], \
I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], \
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x)
#define cimg_get7x7x7(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c), I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c), I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c), I[3] = (T)(img)(x,_p3##y,_p3##z,c), I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c), I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c), I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c), \
I[7] = (T)(img)(_p3##x,_p2##y,_p3##z,c), I[8] = (T)(img)(_p2##x,_p2##y,_p3##z,c), I[9] = (T)(img)(_p1##x,_p2##y,_p3##z,c), I[10] = (T)(img)(x,_p2##y,_p3##z,c), I[11] = (T)(img)(_n1##x,_p2##y,_p3##z,c), I[12] = (T)(img)(_n2##x,_p2##y,_p3##z,c), I[13] = (T)(img)(_n3##x,_p2##y,_p3##z,c), \
I[14] = (T)(img)(_p3##x,_p1##y,_p3##z,c), I[15] = (T)(img)(_p2##x,_p1##y,_p3##z,c), I[16] = (T)(img)(_p1##x,_p1##y,_p3##z,c), I[17] = (T)(img)(x,_p1##y,_p3##z,c), I[18] = (T)(img)(_n1##x,_p1##y,_p3##z,c), I[19] = (T)(img)(_n2##x,_p1##y,_p3##z,c), I[20] = (T)(img)(_n3##x,_p1##y,_p3##z,c), \
I[21] = (T)(img)(_p3##x,y,_p3##z,c), I[22] = (T)(img)(_p2##x,y,_p3##z,c), I[23] = (T)(img)(_p1##x,y,_p3##z,c), I[24] = (T)(img)(x,y,_p3##z,c), I[25] = (T)(img)(_n1##x,y,_p3##z,c), I[26] = (T)(img)(_n2##x,y,_p3##z,c), I[27] = (T)(img)(_n3##x,y,_p3##z,c), \
I[28] = (T)(img)(_p3##x,_n1##y,_p3##z,c), I[29] = (T)(img)(_p2##x,_n1##y,_p3##z,c), I[30] = (T)(img)(_p1##x,_n1##y,_p3##z,c), I[31] = (T)(img)(x,_n1##y,_p3##z,c), I[32] = (T)(img)(_n1##x,_n1##y,_p3##z,c), I[33] = (T)(img)(_n2##x,_n1##y,_p3##z,c), I[34] = (T)(img)(_n3##x,_n1##y,_p3##z,c), \
I[35] = (T)(img)(_p3##x,_n2##y,_p3##z,c), I[36] = (T)(img)(_p2##x,_n2##y,_p3##z,c), I[37] = (T)(img)(_p1##x,_n2##y,_p3##z,c), I[38] = (T)(img)(x,_n2##y,_p3##z,c), I[39] = (T)(img)(_n1##x,_n2##y,_p3##z,c), I[40] = (T)(img)(_n2##x,_n2##y,_p3##z,c), I[41] = (T)(img)(_n3##x,_n2##y,_p3##z,c), \
I[42] = (T)(img)(_p3##x,_n3##y,_p3##z,c), I[43] = (T)(img)(_p2##x,_n3##y,_p3##z,c), I[44] = (T)(img)(_p1##x,_n3##y,_p3##z,c), I[45] = (T)(img)(x,_n3##y,_p3##z,c), I[46] = (T)(img)(_n1##x,_n3##y,_p3##z,c), I[47] = (T)(img)(_n2##x,_n3##y,_p3##z,c), I[48] = (T)(img)(_n3##x,_n3##y,_p3##z,c), \
I[49] = (T)(img)(_p3##x,_p3##y,_p2##z,c), I[50] = (T)(img)(_p2##x,_p3##y,_p2##z,c), I[51] = (T)(img)(_p1##x,_p3##y,_p2##z,c), I[52] = (T)(img)(x,_p3##y,_p2##z,c), I[53] = (T)(img)(_n1##x,_p3##y,_p2##z,c), I[54] = (T)(img)(_n2##x,_p3##y,_p2##z,c), I[55] = (T)(img)(_n3##x,_p3##y,_p2##z,c), \
I[56] = (T)(img)(_p3##x,_p2##y,_p2##z,c), I[57] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[58] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[59] = (T)(img)(x,_p2##y,_p2##z,c), I[60] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[61] = (T)(img)(_n2##x,_p2##y,_p2##z,c), I[62] = (T)(img)(_n3##x,_p2##y,_p2##z,c), \
I[63] = (T)(img)(_p3##x,_p1##y,_p2##z,c), I[64] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[65] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[66] = (T)(img)(x,_p1##y,_p2##z,c), I[67] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[68] = (T)(img)(_n2##x,_p1##y,_p2##z,c), I[69] = (T)(img)(_n3##x,_p1##y,_p2##z,c), \
I[70] = (T)(img)(_p3##x,y,_p2##z,c), I[71] = (T)(img)(_p2##x,y,_p2##z,c), I[72] = (T)(img)(_p1##x,y,_p2##z,c), I[73] = (T)(img)(x,y,_p2##z,c), I[74] = (T)(img)(_n1##x,y,_p2##z,c), I[75] = (T)(img)(_n2##x,y,_p2##z,c), I[76] = (T)(img)(_n3##x,y,_p2##z,c), \
I[77] = (T)(img)(_p3##x,_n1##y,_p2##z,c), I[78] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[79] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[80] = (T)(img)(x,_n1##y,_p2##z,c), I[81] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[82] = (T)(img)(_n2##x,_n1##y,_p2##z,c), I[83] = (T)(img)(_n3##x,_n1##y,_p2##z,c), \
I[84] = (T)(img)(_p3##x,_n2##y,_p2##z,c), I[85] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[86] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[87] = (T)(img)(x,_n2##y,_p2##z,c), I[88] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[89] = (T)(img)(_n2##x,_n2##y,_p2##z,c), I[90] = (T)(img)(_n3##x,_n2##y,_p2##z,c), \
I[91] = (T)(img)(_p3##x,_n3##y,_p2##z,c), I[92] = (T)(img)(_p2##x,_n3##y,_p2##z,c), I[93] = (T)(img)(_p1##x,_n3##y,_p2##z,c), I[94] = (T)(img)(x,_n3##y,_p2##z,c), I[95] = (T)(img)(_n1##x,_n3##y,_p2##z,c), I[96] = (T)(img)(_n2##x,_n3##y,_p2##z,c), I[97] = (T)(img)(_n3##x,_n3##y,_p2##z,c), \
I[98] = (T)(img)(_p3##x,_p3##y,_p1##z,c), I[99] = (T)(img)(_p2##x,_p3##y,_p1##z,c), I[100] = (T)(img)(_p1##x,_p3##y,_p1##z,c), I[101] = (T)(img)(x,_p3##y,_p1##z,c), I[102] = (T)(img)(_n1##x,_p3##y,_p1##z,c), I[103] = (T)(img)(_n2##x,_p3##y,_p1##z,c), I[104] = (T)(img)(_n3##x,_p3##y,_p1##z,c), \
I[105] = (T)(img)(_p3##x,_p2##y,_p1##z,c), I[106] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[107] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[108] = (T)(img)(x,_p2##y,_p1##z,c), I[109] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[110] = (T)(img)(_n2##x,_p2##y,_p1##z,c), I[111] = (T)(img)(_n3##x,_p2##y,_p1##z,c), \
I[112] = (T)(img)(_p3##x,_p1##y,_p1##z,c), I[113] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[114] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[115] = (T)(img)(x,_p1##y,_p1##z,c), I[116] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[117] = (T)(img)(_n2##x,_p1##y,_p1##z,c), I[118] = (T)(img)(_n3##x,_p1##y,_p1##z,c), \
I[119] = (T)(img)(_p3##x,y,_p1##z,c), I[120] = (T)(img)(_p2##x,y,_p1##z,c), I[121] = (T)(img)(_p1##x,y,_p1##z,c), I[122] = (T)(img)(x,y,_p1##z,c), I[123] = (T)(img)(_n1##x,y,_p1##z,c), I[124] = (T)(img)(_n2##x,y,_p1##z,c), I[125] = (T)(img)(_n3##x,y,_p1##z,c), \
I[126] = (T)(img)(_p3##x,_n1##y,_p1##z,c), I[127] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[128] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[129] = (T)(img)(x,_n1##y,_p1##z,c), I[130] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[131] = (T)(img)(_n2##x,_n1##y,_p1##z,c), I[132] = (T)(img)(_n3##x,_n1##y,_p1##z,c), \
I[133] = (T)(img)(_p3##x,_n2##y,_p1##z,c), I[134] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[135] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[136] = (T)(img)(x,_n2##y,_p1##z,c), I[137] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[138] = (T)(img)(_n2##x,_n2##y,_p1##z,c), I[139] = (T)(img)(_n3##x,_n2##y,_p1##z,c), \
I[140] = (T)(img)(_p3##x,_n3##y,_p1##z,c), I[141] = (T)(img)(_p2##x,_n3##y,_p1##z,c), I[142] = (T)(img)(_p1##x,_n3##y,_p1##z,c), I[143] = (T)(img)(x,_n3##y,_p1##z,c), I[144] = (T)(img)(_n1##x,_n3##y,_p1##z,c), I[145] = (T)(img)(_n2##x,_n3##y,_p1##z,c), I[146] = (T)(img)(_n3##x,_n3##y,_p1##z,c), \
I[147] = (T)(img)(_p3##x,_p3##y,z,c), I[148] = (T)(img)(_p2##x,_p3##y,z,c), I[149] = (T)(img)(_p1##x,_p3##y,z,c), I[150] = (T)(img)(x,_p3##y,z,c), I[151] = (T)(img)(_n1##x,_p3##y,z,c), I[152] = (T)(img)(_n2##x,_p3##y,z,c), I[153] = (T)(img)(_n3##x,_p3##y,z,c), \
I[154] = (T)(img)(_p3##x,_p2##y,z,c), I[155] = (T)(img)(_p2##x,_p2##y,z,c), I[156] = (T)(img)(_p1##x,_p2##y,z,c), I[157] = (T)(img)(x,_p2##y,z,c), I[158] = (T)(img)(_n1##x,_p2##y,z,c), I[159] = (T)(img)(_n2##x,_p2##y,z,c), I[160] = (T)(img)(_n3##x,_p2##y,z,c), \
I[161] = (T)(img)(_p3##x,_p1##y,z,c), I[162] = (T)(img)(_p2##x,_p1##y,z,c), I[163] = (T)(img)(_p1##x,_p1##y,z,c), I[164] = (T)(img)(x,_p1##y,z,c), I[165] = (T)(img)(_n1##x,_p1##y,z,c), I[166] = (T)(img)(_n2##x,_p1##y,z,c), I[167] = (T)(img)(_n3##x,_p1##y,z,c), \
I[168] = (T)(img)(_p3##x,y,z,c), I[169] = (T)(img)(_p2##x,y,z,c), I[170] = (T)(img)(_p1##x,y,z,c), I[171] = (T)(img)(x,y,z,c), I[172] = (T)(img)(_n1##x,y,z,c), I[173] = (T)(img)(_n2##x,y,z,c), I[174] = (T)(img)(_n3##x,y,z,c), \
I[175] = (T)(img)(_p3##x,_n1##y,z,c), I[176] = (T)(img)(_p2##x,_n1##y,z,c), I[177] = (T)(img)(_p1##x,_n1##y,z,c), I[178] = (T)(img)(x,_n1##y,z,c), I[179] = (T)(img)(_n1##x,_n1##y,z,c), I[180] = (T)(img)(_n2##x,_n1##y,z,c), I[181] = (T)(img)(_n3##x,_n1##y,z,c), \
I[182] = (T)(img)(_p3##x,_n2##y,z,c), I[183] = (T)(img)(_p2##x,_n2##y,z,c), I[184] = (T)(img)(_p1##x,_n2##y,z,c), I[185] = (T)(img)(x,_n2##y,z,c), I[186] = (T)(img)(_n1##x,_n2##y,z,c), I[187] = (T)(img)(_n2##x,_n2##y,z,c), I[188] = (T)(img)(_n3##x,_n2##y,z,c), \
I[189] = (T)(img)(_p3##x,_n3##y,z,c), I[190] = (T)(img)(_p2##x,_n3##y,z,c), I[191] = (T)(img)(_p1##x,_n3##y,z,c), I[192] = (T)(img)(x,_n3##y,z,c), I[193] = (T)(img)(_n1##x,_n3##y,z,c), I[194] = (T)(img)(_n2##x,_n3##y,z,c), I[195] = (T)(img)(_n3##x,_n3##y,z,c), \
I[196] = (T)(img)(_p3##x,_p3##y,_n1##z,c), I[197] = (T)(img)(_p2##x,_p3##y,_n1##z,c), I[198] = (T)(img)(_p1##x,_p3##y,_n1##z,c), I[199] = (T)(img)(x,_p3##y,_n1##z,c), I[200] = (T)(img)(_n1##x,_p3##y,_n1##z,c), I[201] = (T)(img)(_n2##x,_p3##y,_n1##z,c), I[202] = (T)(img)(_n3##x,_p3##y,_n1##z,c), \
I[203] = (T)(img)(_p3##x,_p2##y,_n1##z,c), I[204] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[205] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[206] = (T)(img)(x,_p2##y,_n1##z,c), I[207] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[208] = (T)(img)(_n2##x,_p2##y,_n1##z,c), I[209] = (T)(img)(_n3##x,_p2##y,_n1##z,c), \
I[210] = (T)(img)(_p3##x,_p1##y,_n1##z,c), I[211] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[212] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[213] = (T)(img)(x,_p1##y,_n1##z,c), I[214] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[215] = (T)(img)(_n2##x,_p1##y,_n1##z,c), I[216] = (T)(img)(_n3##x,_p1##y,_n1##z,c), \
I[217] = (T)(img)(_p3##x,y,_n1##z,c), I[218] = (T)(img)(_p2##x,y,_n1##z,c), I[219] = (T)(img)(_p1##x,y,_n1##z,c), I[220] = (T)(img)(x,y,_n1##z,c), I[221] = (T)(img)(_n1##x,y,_n1##z,c), I[222] = (T)(img)(_n2##x,y,_n1##z,c), I[223] = (T)(img)(_n3##x,y,_n1##z,c), \
I[224] = (T)(img)(_p3##x,_n1##y,_n1##z,c), I[225] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[226] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[227] = (T)(img)(x,_n1##y,_n1##z,c), I[228] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[229] = (T)(img)(_n2##x,_n1##y,_n1##z,c), I[230] = (T)(img)(_n3##x,_n1##y,_n1##z,c), \
I[231] = (T)(img)(_p3##x,_n2##y,_n1##z,c), I[232] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[233] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[234] = (T)(img)(x,_n2##y,_n1##z,c), I[235] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[236] = (T)(img)(_n2##x,_n2##y,_n1##z,c), I[237] = (T)(img)(_n3##x,_n2##y,_n1##z,c), \
I[238] = (T)(img)(_p3##x,_n3##y,_n1##z,c), I[239] = (T)(img)(_p2##x,_n3##y,_n1##z,c), I[240] = (T)(img)(_p1##x,_n3##y,_n1##z,c), I[241] = (T)(img)(x,_n3##y,_n1##z,c), I[242] = (T)(img)(_n1##x,_n3##y,_n1##z,c), I[243] = (T)(img)(_n2##x,_n3##y,_n1##z,c), I[244] = (T)(img)(_n3##x,_n3##y,_n1##z,c), \
I[245] = (T)(img)(_p3##x,_p3##y,_n2##z,c), I[246] = (T)(img)(_p2##x,_p3##y,_n2##z,c), I[247] = (T)(img)(_p1##x,_p3##y,_n2##z,c), I[248] = (T)(img)(x,_p3##y,_n2##z,c), I[249] = (T)(img)(_n1##x,_p3##y,_n2##z,c), I[250] = (T)(img)(_n2##x,_p3##y,_n2##z,c), I[251] = (T)(img)(_n3##x,_p3##y,_n2##z,c), \
I[252] = (T)(img)(_p3##x,_p2##y,_n2##z,c), I[253] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[254] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[255] = (T)(img)(x,_p2##y,_n2##z,c), I[256] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[257] = (T)(img)(_n2##x,_p2##y,_n2##z,c), I[258] = (T)(img)(_n3##x,_p2##y,_n2##z,c), \
I[259] = (T)(img)(_p3##x,_p1##y,_n2##z,c), I[260] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[261] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[262] = (T)(img)(x,_p1##y,_n2##z,c), I[263] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[264] = (T)(img)(_n2##x,_p1##y,_n2##z,c), I[265] = (T)(img)(_n3##x,_p1##y,_n2##z,c), \
I[266] = (T)(img)(_p3##x,y,_n2##z,c), I[267] = (T)(img)(_p2##x,y,_n2##z,c), I[268] = (T)(img)(_p1##x,y,_n2##z,c), I[269] = (T)(img)(x,y,_n2##z,c), I[270] = (T)(img)(_n1##x,y,_n2##z,c), I[271] = (T)(img)(_n2##x,y,_n2##z,c), I[272] = (T)(img)(_n3##x,y,_n2##z,c), \
I[273] = (T)(img)(_p3##x,_n1##y,_n2##z,c), I[274] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[275] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[276] = (T)(img)(x,_n1##y,_n2##z,c), I[277] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[278] = (T)(img)(_n2##x,_n1##y,_n2##z,c), I[279] = (T)(img)(_n3##x,_n1##y,_n2##z,c), \
I[280] = (T)(img)(_p3##x,_n2##y,_n2##z,c), I[281] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[282] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[283] = (T)(img)(x,_n2##y,_n2##z,c), I[284] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[285] = (T)(img)(_n2##x,_n2##y,_n2##z,c), I[286] = (T)(img)(_n3##x,_n2##y,_n2##z,c), \
I[287] = (T)(img)(_p3##x,_n3##y,_n2##z,c), I[288] = (T)(img)(_p2##x,_n3##y,_n2##z,c), I[289] = (T)(img)(_p1##x,_n3##y,_n2##z,c), I[290] = (T)(img)(x,_n3##y,_n2##z,c), I[291] = (T)(img)(_n1##x,_n3##y,_n2##z,c), I[292] = (T)(img)(_n2##x,_n3##y,_n2##z,c), I[293] = (T)(img)(_n3##x,_n3##y,_n2##z,c), \
I[294] = (T)(img)(_p3##x,_p3##y,_n3##z,c), I[295] = (T)(img)(_p2##x,_p3##y,_n3##z,c), I[296] = (T)(img)(_p1##x,_p3##y,_n3##z,c), I[297] = (T)(img)(x,_p3##y,_n3##z,c), I[298] = (T)(img)(_n1##x,_p3##y,_n3##z,c), I[299] = (T)(img)(_n2##x,_p3##y,_n3##z,c), I[300] = (T)(img)(_n3##x,_p3##y,_n3##z,c), \
I[301] = (T)(img)(_p3##x,_p2##y,_n3##z,c), I[302] = (T)(img)(_p2##x,_p2##y,_n3##z,c), I[303] = (T)(img)(_p1##x,_p2##y,_n3##z,c), I[304] = (T)(img)(x,_p2##y,_n3##z,c), I[305] = (T)(img)(_n1##x,_p2##y,_n3##z,c), I[306] = (T)(img)(_n2##x,_p2##y,_n3##z,c), I[307] = (T)(img)(_n3##x,_p2##y,_n3##z,c), \
I[308] = (T)(img)(_p3##x,_p1##y,_n3##z,c), I[309] = (T)(img)(_p2##x,_p1##y,_n3##z,c), I[310] = (T)(img)(_p1##x,_p1##y,_n3##z,c), I[311] = (T)(img)(x,_p1##y,_n3##z,c), I[312] = (T)(img)(_n1##x,_p1##y,_n3##z,c), I[313] = (T)(img)(_n2##x,_p1##y,_n3##z,c), I[314] = (T)(img)(_n3##x,_p1##y,_n3##z,c), \
I[315] = (T)(img)(_p3##x,y,_n3##z,c), I[316] = (T)(img)(_p2##x,y,_n3##z,c), I[317] = (T)(img)(_p1##x,y,_n3##z,c), I[318] = (T)(img)(x,y,_n3##z,c), I[319] = (T)(img)(_n1##x,y,_n3##z,c), I[320] = (T)(img)(_n2##x,y,_n3##z,c), I[321] = (T)(img)(_n3##x,y,_n3##z,c), \
I[322] = (T)(img)(_p3##x,_n1##y,_n3##z,c), I[323] = (T)(img)(_p2##x,_n1##y,_n3##z,c), I[324] = (T)(img)(_p1##x,_n1##y,_n3##z,c), I[325] = (T)(img)(x,_n1##y,_n3##z,c), I[326] = (T)(img)(_n1##x,_n1##y,_n3##z,c), I[327] = (T)(img)(_n2##x,_n1##y,_n3##z,c), I[328] = (T)(img)(_n3##x,_n1##y,_n3##z,c), \
I[329] = (T)(img)(_p3##x,_n2##y,_n3##z,c), I[330] = (T)(img)(_p2##x,_n2##y,_n3##z,c), I[331] = (T)(img)(_p1##x,_n2##y,_n3##z,c), I[332] = (T)(img)(x,_n2##y,_n3##z,c), I[333] = (T)(img)(_n1##x,_n2##y,_n3##z,c), I[334] = (T)(img)(_n2##x,_n2##y,_n3##z,c), I[335] = (T)(img)(_n3##x,_n2##y,_n3##z,c), \
I[336] = (T)(img)(_p3##x,_n3##y,_n3##z,c), I[337] = (T)(img)(_p2##x,_n3##y,_n3##z,c), I[338] = (T)(img)(_p1##x,_n3##y,_n3##z,c), I[339] = (T)(img)(x,_n3##y,_n3##z,c), I[340] = (T)(img)(_n1##x,_n3##y,_n3##z,c), I[341] = (T)(img)(_n2##x,_n3##y,_n3##z,c), I[342] = (T)(img)(_n3##x,_n3##y,_n3##z,c);
// Define 8x8x8 loop macros
//----------------------------
#define cimg_for8x8x8(img,x,y,z,c,I,T) \
cimg_for8((img)._depth,z) cimg_for8((img)._height,y) for (int x = 0, \
_p3##x = 0, _p2##x = 0, _p1##x = 0, \
_n1##x = 1>=((img)._width)?(img).width() - 1:1, \
_n2##x = 2>=((img)._width)?(img).width() - 1:2, \
_n3##x = 3>=((img)._width)?(img).width() - 1:3, \
_n4##x = (int)( \
(I[0] = I[1] = I[2] = I[3] = (T)(img)(0,_p3##y,_p3##z,c)), \
(I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p2##y,_p3##z,c)), \
(I[16] = I[17] = I[18] = I[19] = (T)(img)(0,_p1##y,_p3##z,c)), \
(I[24] = I[25] = I[26] = I[27] = (T)(img)(0,y,_p3##z,c)), \
(I[32] = I[33] = I[34] = I[35] = (T)(img)(0,_n1##y,_p3##z,c)), \
(I[40] = I[41] = I[42] = I[43] = (T)(img)(0,_n2##y,_p3##z,c)), \
(I[48] = I[49] = I[50] = I[51] = (T)(img)(0,_n3##y,_p3##z,c)), \
(I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_n4##y,_p3##z,c)), \
(I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_p3##y,_p2##z,c)), \
(I[72] = I[73] = I[74] = I[75] = (T)(img)(0,_p2##y,_p2##z,c)), \
(I[80] = I[81] = I[82] = I[83] = (T)(img)(0,_p1##y,_p2##z,c)), \
(I[88] = I[89] = I[90] = I[91] = (T)(img)(0,y,_p2##z,c)), \
(I[96] = I[97] = I[98] = I[99] = (T)(img)(0,_n1##y,_p2##z,c)), \
(I[104] = I[105] = I[106] = I[107] = (T)(img)(0,_n2##y,_p2##z,c)), \
(I[112] = I[113] = I[114] = I[115] = (T)(img)(0,_n3##y,_p2##z,c)), \
(I[120] = I[121] = I[122] = I[123] = (T)(img)(0,_n4##y,_p2##z,c)), \
(I[128] = I[129] = I[130] = I[131] = (T)(img)(0,_p3##y,_p1##z,c)), \
(I[136] = I[137] = I[138] = I[139] = (T)(img)(0,_p2##y,_p1##z,c)), \
(I[144] = I[145] = I[146] = I[147] = (T)(img)(0,_p1##y,_p1##z,c)), \
(I[152] = I[153] = I[154] = I[155] = (T)(img)(0,y,_p1##z,c)), \
(I[160] = I[161] = I[162] = I[163] = (T)(img)(0,_n1##y,_p1##z,c)), \
(I[168] = I[169] = I[170] = I[171] = (T)(img)(0,_n2##y,_p1##z,c)), \
(I[176] = I[177] = I[178] = I[179] = (T)(img)(0,_n3##y,_p1##z,c)), \
(I[184] = I[185] = I[186] = I[187] = (T)(img)(0,_n4##y,_p1##z,c)), \
(I[192] = I[193] = I[194] = I[195] = (T)(img)(0,_p3##y,z,c)), \
(I[200] = I[201] = I[202] = I[203] = (T)(img)(0,_p2##y,z,c)), \
(I[208] = I[209] = I[210] = I[211] = (T)(img)(0,_p1##y,z,c)), \
(I[216] = I[217] = I[218] = I[219] = (T)(img)(0,y,z,c)), \
(I[224] = I[225] = I[226] = I[227] = (T)(img)(0,_n1##y,z,c)), \
(I[232] = I[233] = I[234] = I[235] = (T)(img)(0,_n2##y,z,c)), \
(I[240] = I[241] = I[242] = I[243] = (T)(img)(0,_n3##y,z,c)), \
(I[248] = I[249] = I[250] = I[251] = (T)(img)(0,_n4##y,z,c)), \
(I[256] = I[257] = I[258] = I[259] = (T)(img)(0,_p3##y,_n1##z,c)), \
(I[264] = I[265] = I[266] = I[267] = (T)(img)(0,_p2##y,_n1##z,c)), \
(I[272] = I[273] = I[274] = I[275] = (T)(img)(0,_p1##y,_n1##z,c)), \
(I[280] = I[281] = I[282] = I[283] = (T)(img)(0,y,_n1##z,c)), \
(I[288] = I[289] = I[290] = I[291] = (T)(img)(0,_n1##y,_n1##z,c)), \
(I[296] = I[297] = I[298] = I[299] = (T)(img)(0,_n2##y,_n1##z,c)), \
(I[304] = I[305] = I[306] = I[307] = (T)(img)(0,_n3##y,_n1##z,c)), \
(I[312] = I[313] = I[314] = I[315] = (T)(img)(0,_n4##y,_n1##z,c)), \
(I[320] = I[321] = I[322] = I[323] = (T)(img)(0,_p3##y,_n2##z,c)), \
(I[328] = I[329] = I[330] = I[331] = (T)(img)(0,_p2##y,_n2##z,c)), \
(I[336] = I[337] = I[338] = I[339] = (T)(img)(0,_p1##y,_n2##z,c)), \
(I[344] = I[345] = I[346] = I[347] = (T)(img)(0,y,_n2##z,c)), \
(I[352] = I[353] = I[354] = I[355] = (T)(img)(0,_n1##y,_n2##z,c)), \
(I[360] = I[361] = I[362] = I[363] = (T)(img)(0,_n2##y,_n2##z,c)), \
(I[368] = I[369] = I[370] = I[371] = (T)(img)(0,_n3##y,_n2##z,c)), \
(I[376] = I[377] = I[378] = I[379] = (T)(img)(0,_n4##y,_n2##z,c)), \
(I[384] = I[385] = I[386] = I[387] = (T)(img)(0,_p3##y,_n3##z,c)), \
(I[392] = I[393] = I[394] = I[395] = (T)(img)(0,_p2##y,_n3##z,c)), \
(I[400] = I[401] = I[402] = I[403] = (T)(img)(0,_p1##y,_n3##z,c)), \
(I[408] = I[409] = I[410] = I[411] = (T)(img)(0,y,_n3##z,c)), \
(I[416] = I[417] = I[418] = I[419] = (T)(img)(0,_n1##y,_n3##z,c)), \
(I[424] = I[425] = I[426] = I[427] = (T)(img)(0,_n2##y,_n3##z,c)), \
(I[432] = I[433] = I[434] = I[435] = (T)(img)(0,_n3##y,_n3##z,c)), \
(I[440] = I[441] = I[442] = I[443] = (T)(img)(0,_n4##y,_n3##z,c)), \
(I[448] = I[449] = I[450] = I[451] = (T)(img)(0,_p3##y,_n4##z,c)), \
(I[456] = I[457] = I[458] = I[459] = (T)(img)(0,_p2##y,_n4##z,c)), \
(I[464] = I[465] = I[466] = I[467] = (T)(img)(0,_p1##y,_n4##z,c)), \
(I[472] = I[473] = I[474] = I[475] = (T)(img)(0,y,_n4##z,c)), \
(I[480] = I[481] = I[482] = I[483] = (T)(img)(0,_n1##y,_n4##z,c)), \
(I[488] = I[489] = I[490] = I[491] = (T)(img)(0,_n2##y,_n4##z,c)), \
(I[496] = I[497] = I[498] = I[499] = (T)(img)(0,_n3##y,_n4##z,c)), \
(I[504] = I[505] = I[506] = I[507] = (T)(img)(0,_n4##y,_n4##z,c)), \
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
(I[12] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
(I[20] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
(I[28] = (T)(img)(_n1##x,y,_p3##z,c)), \
(I[36] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
(I[44] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
(I[52] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
(I[60] = (T)(img)(_n1##x,_n4##y,_p3##z,c)), \
(I[68] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
(I[76] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[84] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[92] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[100] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[108] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[116] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
(I[124] = (T)(img)(_n1##x,_n4##y,_p2##z,c)), \
(I[132] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
(I[140] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[148] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[156] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[164] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[172] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[180] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
(I[188] = (T)(img)(_n1##x,_n4##y,_p1##z,c)), \
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[204] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[212] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[220] = (T)(img)(_n1##x,y,z,c)), \
(I[228] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[236] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[244] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[252] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[260] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
(I[268] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[276] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[284] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[292] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[300] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[308] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
(I[316] = (T)(img)(_n1##x,_n4##y,_n1##z,c)), \
(I[324] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
(I[332] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[340] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[348] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[356] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[364] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
(I[372] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
(I[380] = (T)(img)(_n1##x,_n4##y,_n2##z,c)), \
(I[388] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
(I[396] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
(I[404] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
(I[412] = (T)(img)(_n1##x,y,_n3##z,c)), \
(I[420] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
(I[428] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
(I[436] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
(I[444] = (T)(img)(_n1##x,_n4##y,_n3##z,c)), \
(I[452] = (T)(img)(_n1##x,_p3##y,_n4##z,c)), \
(I[460] = (T)(img)(_n1##x,_p2##y,_n4##z,c)), \
(I[468] = (T)(img)(_n1##x,_p1##y,_n4##z,c)), \
(I[476] = (T)(img)(_n1##x,y,_n4##z,c)), \
(I[484] = (T)(img)(_n1##x,_n1##y,_n4##z,c)), \
(I[492] = (T)(img)(_n1##x,_n2##y,_n4##z,c)), \
(I[500] = (T)(img)(_n1##x,_n3##y,_n4##z,c)), \
(I[508] = (T)(img)(_n1##x,_n4##y,_n4##z,c)), \
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
(I[13] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
(I[21] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
(I[29] = (T)(img)(_n2##x,y,_p3##z,c)), \
(I[37] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
(I[45] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
(I[53] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
(I[61] = (T)(img)(_n2##x,_n4##y,_p3##z,c)), \
(I[69] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
(I[77] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[85] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[93] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[101] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[109] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[117] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
(I[125] = (T)(img)(_n2##x,_n4##y,_p2##z,c)), \
(I[133] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
(I[141] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[149] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[157] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[165] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[173] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[181] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
(I[189] = (T)(img)(_n2##x,_n4##y,_p1##z,c)), \
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[205] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[213] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[221] = (T)(img)(_n2##x,y,z,c)), \
(I[229] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[237] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[245] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[253] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[261] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
(I[269] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[277] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[285] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[293] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[301] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[309] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
(I[317] = (T)(img)(_n2##x,_n4##y,_n1##z,c)), \
(I[325] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
(I[333] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[341] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[349] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[357] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[365] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
(I[373] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
(I[381] = (T)(img)(_n2##x,_n4##y,_n2##z,c)), \
(I[389] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
(I[397] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
(I[405] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
(I[413] = (T)(img)(_n2##x,y,_n3##z,c)), \
(I[421] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
(I[429] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
(I[437] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
(I[445] = (T)(img)(_n2##x,_n4##y,_n3##z,c)), \
(I[453] = (T)(img)(_n2##x,_p3##y,_n4##z,c)), \
(I[461] = (T)(img)(_n2##x,_p2##y,_n4##z,c)), \
(I[469] = (T)(img)(_n2##x,_p1##y,_n4##z,c)), \
(I[477] = (T)(img)(_n2##x,y,_n4##z,c)), \
(I[485] = (T)(img)(_n2##x,_n1##y,_n4##z,c)), \
(I[493] = (T)(img)(_n2##x,_n2##y,_n4##z,c)), \
(I[501] = (T)(img)(_n2##x,_n3##y,_n4##z,c)), \
(I[509] = (T)(img)(_n2##x,_n4##y,_n4##z,c)), \
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
(I[14] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
(I[22] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
(I[30] = (T)(img)(_n3##x,y,_p3##z,c)), \
(I[38] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
(I[46] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
(I[54] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
(I[62] = (T)(img)(_n3##x,_n4##y,_p3##z,c)), \
(I[70] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
(I[78] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
(I[86] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
(I[94] = (T)(img)(_n3##x,y,_p2##z,c)), \
(I[102] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
(I[110] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
(I[118] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
(I[126] = (T)(img)(_n3##x,_n4##y,_p2##z,c)), \
(I[134] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
(I[142] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
(I[150] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
(I[158] = (T)(img)(_n3##x,y,_p1##z,c)), \
(I[166] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
(I[174] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
(I[182] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
(I[190] = (T)(img)(_n3##x,_n4##y,_p1##z,c)), \
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[206] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[214] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[222] = (T)(img)(_n3##x,y,z,c)), \
(I[230] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[238] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[246] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[254] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[262] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
(I[270] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
(I[278] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
(I[286] = (T)(img)(_n3##x,y,_n1##z,c)), \
(I[294] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
(I[302] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
(I[310] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
(I[318] = (T)(img)(_n3##x,_n4##y,_n1##z,c)), \
(I[326] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
(I[334] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
(I[342] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
(I[350] = (T)(img)(_n3##x,y,_n2##z,c)), \
(I[358] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
(I[366] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
(I[374] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
(I[382] = (T)(img)(_n3##x,_n4##y,_n2##z,c)), \
(I[390] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
(I[398] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
(I[406] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
(I[414] = (T)(img)(_n3##x,y,_n3##z,c)), \
(I[422] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
(I[430] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
(I[438] = (T)(img)(_n3##x,_n3##y,_n3##z,c)), \
(I[446] = (T)(img)(_n3##x,_n4##y,_n3##z,c)), \
(I[454] = (T)(img)(_n3##x,_p3##y,_n4##z,c)), \
(I[462] = (T)(img)(_n3##x,_p2##y,_n4##z,c)), \
(I[470] = (T)(img)(_n3##x,_p1##y,_n4##z,c)), \
(I[478] = (T)(img)(_n3##x,y,_n4##z,c)), \
(I[486] = (T)(img)(_n3##x,_n1##y,_n4##z,c)), \
(I[494] = (T)(img)(_n3##x,_n2##y,_n4##z,c)), \
(I[502] = (T)(img)(_n3##x,_n3##y,_n4##z,c)), \
(I[510] = (T)(img)(_n3##x,_n4##y,_n4##z,c)), \
4>=((img)._width)?(img).width() - 1:4); \
(_n4##x<(img).width() && ( \
(I[7] = (T)(img)(_n4##x,_p3##y,_p3##z,c)), \
(I[15] = (T)(img)(_n4##x,_p2##y,_p3##z,c)), \
(I[23] = (T)(img)(_n4##x,_p1##y,_p3##z,c)), \
(I[31] = (T)(img)(_n4##x,y,_p3##z,c)), \
(I[39] = (T)(img)(_n4##x,_n1##y,_p3##z,c)), \
(I[47] = (T)(img)(_n4##x,_n2##y,_p3##z,c)), \
(I[55] = (T)(img)(_n4##x,_n3##y,_p3##z,c)), \
(I[63] = (T)(img)(_n4##x,_n4##y,_p3##z,c)), \
(I[71] = (T)(img)(_n4##x,_p3##y,_p2##z,c)), \
(I[79] = (T)(img)(_n4##x,_p2##y,_p2##z,c)), \
(I[87] = (T)(img)(_n4##x,_p1##y,_p2##z,c)), \
(I[95] = (T)(img)(_n4##x,y,_p2##z,c)), \
(I[103] = (T)(img)(_n4##x,_n1##y,_p2##z,c)), \
(I[111] = (T)(img)(_n4##x,_n2##y,_p2##z,c)), \
(I[119] = (T)(img)(_n4##x,_n3##y,_p2##z,c)), \
(I[127] = (T)(img)(_n4##x,_n4##y,_p2##z,c)), \
(I[135] = (T)(img)(_n4##x,_p3##y,_p1##z,c)), \
(I[143] = (T)(img)(_n4##x,_p2##y,_p1##z,c)), \
(I[151] = (T)(img)(_n4##x,_p1##y,_p1##z,c)), \
(I[159] = (T)(img)(_n4##x,y,_p1##z,c)), \
(I[167] = (T)(img)(_n4##x,_n1##y,_p1##z,c)), \
(I[175] = (T)(img)(_n4##x,_n2##y,_p1##z,c)), \
(I[183] = (T)(img)(_n4##x,_n3##y,_p1##z,c)), \
(I[191] = (T)(img)(_n4##x,_n4##y,_p1##z,c)), \
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[207] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[215] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[223] = (T)(img)(_n4##x,y,z,c)), \
(I[231] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[239] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[247] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[255] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[263] = (T)(img)(_n4##x,_p3##y,_n1##z,c)), \
(I[271] = (T)(img)(_n4##x,_p2##y,_n1##z,c)), \
(I[279] = (T)(img)(_n4##x,_p1##y,_n1##z,c)), \
(I[287] = (T)(img)(_n4##x,y,_n1##z,c)), \
(I[295] = (T)(img)(_n4##x,_n1##y,_n1##z,c)), \
(I[303] = (T)(img)(_n4##x,_n2##y,_n1##z,c)), \
(I[311] = (T)(img)(_n4##x,_n3##y,_n1##z,c)), \
(I[319] = (T)(img)(_n4##x,_n4##y,_n1##z,c)), \
(I[327] = (T)(img)(_n4##x,_p3##y,_n2##z,c)), \
(I[335] = (T)(img)(_n4##x,_p2##y,_n2##z,c)), \
(I[343] = (T)(img)(_n4##x,_p1##y,_n2##z,c)), \
(I[351] = (T)(img)(_n4##x,y,_n2##z,c)), \
(I[359] = (T)(img)(_n4##x,_n1##y,_n2##z,c)), \
(I[367] = (T)(img)(_n4##x,_n2##y,_n2##z,c)), \
(I[375] = (T)(img)(_n4##x,_n3##y,_n2##z,c)), \
(I[383] = (T)(img)(_n4##x,_n4##y,_n2##z,c)), \
(I[391] = (T)(img)(_n4##x,_p3##y,_n3##z,c)), \
(I[399] = (T)(img)(_n4##x,_p2##y,_n3##z,c)), \
(I[407] = (T)(img)(_n4##x,_p1##y,_n3##z,c)), \
(I[415] = (T)(img)(_n4##x,y,_n3##z,c)), \
(I[423] = (T)(img)(_n4##x,_n1##y,_n3##z,c)), \
(I[431] = (T)(img)(_n4##x,_n2##y,_n3##z,c)), \
(I[439] = (T)(img)(_n4##x,_n3##y,_n3##z,c)), \
(I[447] = (T)(img)(_n4##x,_n4##y,_n3##z,c)), \
(I[455] = (T)(img)(_n4##x,_p3##y,_n4##z,c)), \
(I[463] = (T)(img)(_n4##x,_p2##y,_n4##z,c)), \
(I[471] = (T)(img)(_n4##x,_p1##y,_n4##z,c)), \
(I[479] = (T)(img)(_n4##x,y,_n4##z,c)), \
(I[487] = (T)(img)(_n4##x,_n1##y,_n4##z,c)), \
(I[495] = (T)(img)(_n4##x,_n2##y,_n4##z,c)), \
(I[503] = (T)(img)(_n4##x,_n3##y,_n4##z,c)), \
(I[511] = (T)(img)(_n4##x,_n4##y,_n4##z,c)),1)) || \
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \
I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \
I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \
I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \
I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \
I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \
I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \
I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
#define cimg_for_in8x8x8(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \
cimg_for_in8((img)._depth,z0,z1,z) cimg_for_in8((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \
_p3##x = x - 3<0?0:x - 3, \
_p2##x = x - 2<0?0:x - 2, \
_p1##x = x - 1<0?0:x - 1, \
_n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \
_n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \
_n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \
_n4##x = (int)( \
(I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c)), \
(I[8] = (T)(img)(_p3##x,_p2##y,_p3##z,c)), \
(I[16] = (T)(img)(_p3##x,_p1##y,_p3##z,c)), \
(I[24] = (T)(img)(_p3##x,y,_p3##z,c)), \
(I[32] = (T)(img)(_p3##x,_n1##y,_p3##z,c)), \
(I[40] = (T)(img)(_p3##x,_n2##y,_p3##z,c)), \
(I[48] = (T)(img)(_p3##x,_n3##y,_p3##z,c)), \
(I[56] = (T)(img)(_p3##x,_n4##y,_p3##z,c)), \
(I[64] = (T)(img)(_p3##x,_p3##y,_p2##z,c)), \
(I[72] = (T)(img)(_p3##x,_p2##y,_p2##z,c)), \
(I[80] = (T)(img)(_p3##x,_p1##y,_p2##z,c)), \
(I[88] = (T)(img)(_p3##x,y,_p2##z,c)), \
(I[96] = (T)(img)(_p3##x,_n1##y,_p2##z,c)), \
(I[104] = (T)(img)(_p3##x,_n2##y,_p2##z,c)), \
(I[112] = (T)(img)(_p3##x,_n3##y,_p2##z,c)), \
(I[120] = (T)(img)(_p3##x,_n4##y,_p2##z,c)), \
(I[128] = (T)(img)(_p3##x,_p3##y,_p1##z,c)), \
(I[136] = (T)(img)(_p3##x,_p2##y,_p1##z,c)), \
(I[144] = (T)(img)(_p3##x,_p1##y,_p1##z,c)), \
(I[152] = (T)(img)(_p3##x,y,_p1##z,c)), \
(I[160] = (T)(img)(_p3##x,_n1##y,_p1##z,c)), \
(I[168] = (T)(img)(_p3##x,_n2##y,_p1##z,c)), \
(I[176] = (T)(img)(_p3##x,_n3##y,_p1##z,c)), \
(I[184] = (T)(img)(_p3##x,_n4##y,_p1##z,c)), \
(I[192] = (T)(img)(_p3##x,_p3##y,z,c)), \
(I[200] = (T)(img)(_p3##x,_p2##y,z,c)), \
(I[208] = (T)(img)(_p3##x,_p1##y,z,c)), \
(I[216] = (T)(img)(_p3##x,y,z,c)), \
(I[224] = (T)(img)(_p3##x,_n1##y,z,c)), \
(I[232] = (T)(img)(_p3##x,_n2##y,z,c)), \
(I[240] = (T)(img)(_p3##x,_n3##y,z,c)), \
(I[248] = (T)(img)(_p3##x,_n4##y,z,c)), \
(I[256] = (T)(img)(_p3##x,_p3##y,_n1##z,c)), \
(I[264] = (T)(img)(_p3##x,_p2##y,_n1##z,c)), \
(I[272] = (T)(img)(_p3##x,_p1##y,_n1##z,c)), \
(I[280] = (T)(img)(_p3##x,y,_n1##z,c)), \
(I[288] = (T)(img)(_p3##x,_n1##y,_n1##z,c)), \
(I[296] = (T)(img)(_p3##x,_n2##y,_n1##z,c)), \
(I[304] = (T)(img)(_p3##x,_n3##y,_n1##z,c)), \
(I[312] = (T)(img)(_p3##x,_n4##y,_n1##z,c)), \
(I[320] = (T)(img)(_p3##x,_p3##y,_n2##z,c)), \
(I[328] = (T)(img)(_p3##x,_p2##y,_n2##z,c)), \
(I[336] = (T)(img)(_p3##x,_p1##y,_n2##z,c)), \
(I[344] = (T)(img)(_p3##x,y,_n2##z,c)), \
(I[352] = (T)(img)(_p3##x,_n1##y,_n2##z,c)), \
(I[360] = (T)(img)(_p3##x,_n2##y,_n2##z,c)), \
(I[368] = (T)(img)(_p3##x,_n3##y,_n2##z,c)), \
(I[376] = (T)(img)(_p3##x,_n4##y,_n2##z,c)), \
(I[384] = (T)(img)(_p3##x,_p3##y,_n3##z,c)), \
(I[392] = (T)(img)(_p3##x,_p2##y,_n3##z,c)), \
(I[400] = (T)(img)(_p3##x,_p1##y,_n3##z,c)), \
(I[408] = (T)(img)(_p3##x,y,_n3##z,c)), \
(I[416] = (T)(img)(_p3##x,_n1##y,_n3##z,c)), \
(I[424] = (T)(img)(_p3##x,_n2##y,_n3##z,c)), \
(I[432] = (T)(img)(_p3##x,_n3##y,_n3##z,c)), \
(I[440] = (T)(img)(_p3##x,_n4##y,_n3##z,c)), \
(I[448] = (T)(img)(_p3##x,_p3##y,_n4##z,c)), \
(I[456] = (T)(img)(_p3##x,_p2##y,_n4##z,c)), \
(I[464] = (T)(img)(_p3##x,_p1##y,_n4##z,c)), \
(I[472] = (T)(img)(_p3##x,y,_n4##z,c)), \
(I[480] = (T)(img)(_p3##x,_n1##y,_n4##z,c)), \
(I[488] = (T)(img)(_p3##x,_n2##y,_n4##z,c)), \
(I[496] = (T)(img)(_p3##x,_n3##y,_n4##z,c)), \
(I[504] = (T)(img)(_p3##x,_n4##y,_n4##z,c)), \
(I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c)), \
(I[9] = (T)(img)(_p2##x,_p2##y,_p3##z,c)), \
(I[17] = (T)(img)(_p2##x,_p1##y,_p3##z,c)), \
(I[25] = (T)(img)(_p2##x,y,_p3##z,c)), \
(I[33] = (T)(img)(_p2##x,_n1##y,_p3##z,c)), \
(I[41] = (T)(img)(_p2##x,_n2##y,_p3##z,c)), \
(I[49] = (T)(img)(_p2##x,_n3##y,_p3##z,c)), \
(I[57] = (T)(img)(_p2##x,_n4##y,_p3##z,c)), \
(I[65] = (T)(img)(_p2##x,_p3##y,_p2##z,c)), \
(I[73] = (T)(img)(_p2##x,_p2##y,_p2##z,c)), \
(I[81] = (T)(img)(_p2##x,_p1##y,_p2##z,c)), \
(I[89] = (T)(img)(_p2##x,y,_p2##z,c)), \
(I[97] = (T)(img)(_p2##x,_n1##y,_p2##z,c)), \
(I[105] = (T)(img)(_p2##x,_n2##y,_p2##z,c)), \
(I[113] = (T)(img)(_p2##x,_n3##y,_p2##z,c)), \
(I[121] = (T)(img)(_p2##x,_n4##y,_p2##z,c)), \
(I[129] = (T)(img)(_p2##x,_p3##y,_p1##z,c)), \
(I[137] = (T)(img)(_p2##x,_p2##y,_p1##z,c)), \
(I[145] = (T)(img)(_p2##x,_p1##y,_p1##z,c)), \
(I[153] = (T)(img)(_p2##x,y,_p1##z,c)), \
(I[161] = (T)(img)(_p2##x,_n1##y,_p1##z,c)), \
(I[169] = (T)(img)(_p2##x,_n2##y,_p1##z,c)), \
(I[177] = (T)(img)(_p2##x,_n3##y,_p1##z,c)), \
(I[185] = (T)(img)(_p2##x,_n4##y,_p1##z,c)), \
(I[193] = (T)(img)(_p2##x,_p3##y,z,c)), \
(I[201] = (T)(img)(_p2##x,_p2##y,z,c)), \
(I[209] = (T)(img)(_p2##x,_p1##y,z,c)), \
(I[217] = (T)(img)(_p2##x,y,z,c)), \
(I[225] = (T)(img)(_p2##x,_n1##y,z,c)), \
(I[233] = (T)(img)(_p2##x,_n2##y,z,c)), \
(I[241] = (T)(img)(_p2##x,_n3##y,z,c)), \
(I[249] = (T)(img)(_p2##x,_n4##y,z,c)), \
(I[257] = (T)(img)(_p2##x,_p3##y,_n1##z,c)), \
(I[265] = (T)(img)(_p2##x,_p2##y,_n1##z,c)), \
(I[273] = (T)(img)(_p2##x,_p1##y,_n1##z,c)), \
(I[281] = (T)(img)(_p2##x,y,_n1##z,c)), \
(I[289] = (T)(img)(_p2##x,_n1##y,_n1##z,c)), \
(I[297] = (T)(img)(_p2##x,_n2##y,_n1##z,c)), \
(I[305] = (T)(img)(_p2##x,_n3##y,_n1##z,c)), \
(I[313] = (T)(img)(_p2##x,_n4##y,_n1##z,c)), \
(I[321] = (T)(img)(_p2##x,_p3##y,_n2##z,c)), \
(I[329] = (T)(img)(_p2##x,_p2##y,_n2##z,c)), \
(I[337] = (T)(img)(_p2##x,_p1##y,_n2##z,c)), \
(I[345] = (T)(img)(_p2##x,y,_n2##z,c)), \
(I[353] = (T)(img)(_p2##x,_n1##y,_n2##z,c)), \
(I[361] = (T)(img)(_p2##x,_n2##y,_n2##z,c)), \
(I[369] = (T)(img)(_p2##x,_n3##y,_n2##z,c)), \
(I[377] = (T)(img)(_p2##x,_n4##y,_n2##z,c)), \
(I[385] = (T)(img)(_p2##x,_p3##y,_n3##z,c)), \
(I[393] = (T)(img)(_p2##x,_p2##y,_n3##z,c)), \
(I[401] = (T)(img)(_p2##x,_p1##y,_n3##z,c)), \
(I[409] = (T)(img)(_p2##x,y,_n3##z,c)), \
(I[417] = (T)(img)(_p2##x,_n1##y,_n3##z,c)), \
(I[425] = (T)(img)(_p2##x,_n2##y,_n3##z,c)), \
(I[433] = (T)(img)(_p2##x,_n3##y,_n3##z,c)), \
(I[441] = (T)(img)(_p2##x,_n4##y,_n3##z,c)), \
(I[449] = (T)(img)(_p2##x,_p3##y,_n4##z,c)), \
(I[457] = (T)(img)(_p2##x,_p2##y,_n4##z,c)), \
(I[465] = (T)(img)(_p2##x,_p1##y,_n4##z,c)), \
(I[473] = (T)(img)(_p2##x,y,_n4##z,c)), \
(I[481] = (T)(img)(_p2##x,_n1##y,_n4##z,c)), \
(I[489] = (T)(img)(_p2##x,_n2##y,_n4##z,c)), \
(I[497] = (T)(img)(_p2##x,_n3##y,_n4##z,c)), \
(I[505] = (T)(img)(_p2##x,_n4##y,_n4##z,c)), \
(I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c)), \
(I[10] = (T)(img)(_p1##x,_p2##y,_p3##z,c)), \
(I[18] = (T)(img)(_p1##x,_p1##y,_p3##z,c)), \
(I[26] = (T)(img)(_p1##x,y,_p3##z,c)), \
(I[34] = (T)(img)(_p1##x,_n1##y,_p3##z,c)), \
(I[42] = (T)(img)(_p1##x,_n2##y,_p3##z,c)), \
(I[50] = (T)(img)(_p1##x,_n3##y,_p3##z,c)), \
(I[58] = (T)(img)(_p1##x,_n4##y,_p3##z,c)), \
(I[66] = (T)(img)(_p1##x,_p3##y,_p2##z,c)), \
(I[74] = (T)(img)(_p1##x,_p2##y,_p2##z,c)), \
(I[82] = (T)(img)(_p1##x,_p1##y,_p2##z,c)), \
(I[90] = (T)(img)(_p1##x,y,_p2##z,c)), \
(I[98] = (T)(img)(_p1##x,_n1##y,_p2##z,c)), \
(I[106] = (T)(img)(_p1##x,_n2##y,_p2##z,c)), \
(I[114] = (T)(img)(_p1##x,_n3##y,_p2##z,c)), \
(I[122] = (T)(img)(_p1##x,_n4##y,_p2##z,c)), \
(I[130] = (T)(img)(_p1##x,_p3##y,_p1##z,c)), \
(I[138] = (T)(img)(_p1##x,_p2##y,_p1##z,c)), \
(I[146] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \
(I[154] = (T)(img)(_p1##x,y,_p1##z,c)), \
(I[162] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \
(I[170] = (T)(img)(_p1##x,_n2##y,_p1##z,c)), \
(I[178] = (T)(img)(_p1##x,_n3##y,_p1##z,c)), \
(I[186] = (T)(img)(_p1##x,_n4##y,_p1##z,c)), \
(I[194] = (T)(img)(_p1##x,_p3##y,z,c)), \
(I[202] = (T)(img)(_p1##x,_p2##y,z,c)), \
(I[210] = (T)(img)(_p1##x,_p1##y,z,c)), \
(I[218] = (T)(img)(_p1##x,y,z,c)), \
(I[226] = (T)(img)(_p1##x,_n1##y,z,c)), \
(I[234] = (T)(img)(_p1##x,_n2##y,z,c)), \
(I[242] = (T)(img)(_p1##x,_n3##y,z,c)), \
(I[250] = (T)(img)(_p1##x,_n4##y,z,c)), \
(I[258] = (T)(img)(_p1##x,_p3##y,_n1##z,c)), \
(I[266] = (T)(img)(_p1##x,_p2##y,_n1##z,c)), \
(I[274] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \
(I[282] = (T)(img)(_p1##x,y,_n1##z,c)), \
(I[290] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \
(I[298] = (T)(img)(_p1##x,_n2##y,_n1##z,c)), \
(I[306] = (T)(img)(_p1##x,_n3##y,_n1##z,c)), \
(I[314] = (T)(img)(_p1##x,_n4##y,_n1##z,c)), \
(I[322] = (T)(img)(_p1##x,_p3##y,_n2##z,c)), \
(I[330] = (T)(img)(_p1##x,_p2##y,_n2##z,c)), \
(I[338] = (T)(img)(_p1##x,_p1##y,_n2##z,c)), \
(I[346] = (T)(img)(_p1##x,y,_n2##z,c)), \
(I[354] = (T)(img)(_p1##x,_n1##y,_n2##z,c)), \
(I[362] = (T)(img)(_p1##x,_n2##y,_n2##z,c)), \
(I[370] = (T)(img)(_p1##x,_n3##y,_n2##z,c)), \
(I[378] = (T)(img)(_p1##x,_n4##y,_n2##z,c)), \
(I[386] = (T)(img)(_p1##x,_p3##y,_n3##z,c)), \
(I[394] = (T)(img)(_p1##x,_p2##y,_n3##z,c)), \
(I[402] = (T)(img)(_p1##x,_p1##y,_n3##z,c)), \
(I[410] = (T)(img)(_p1##x,y,_n3##z,c)), \
(I[418] = (T)(img)(_p1##x,_n1##y,_n3##z,c)), \
(I[426] = (T)(img)(_p1##x,_n2##y,_n3##z,c)), \
(I[434] = (T)(img)(_p1##x,_n3##y,_n3##z,c)), \
(I[442] = (T)(img)(_p1##x,_n4##y,_n3##z,c)), \
(I[450] = (T)(img)(_p1##x,_p3##y,_n4##z,c)), \
(I[458] = (T)(img)(_p1##x,_p2##y,_n4##z,c)), \
(I[466] = (T)(img)(_p1##x,_p1##y,_n4##z,c)), \
(I[474] = (T)(img)(_p1##x,y,_n4##z,c)), \
(I[482] = (T)(img)(_p1##x,_n1##y,_n4##z,c)), \
(I[490] = (T)(img)(_p1##x,_n2##y,_n4##z,c)), \
(I[498] = (T)(img)(_p1##x,_n3##y,_n4##z,c)), \
(I[506] = (T)(img)(_p1##x,_n4##y,_n4##z,c)), \
(I[3] = (T)(img)(x,_p3##y,_p3##z,c)), \
(I[11] = (T)(img)(x,_p2##y,_p3##z,c)), \
(I[19] = (T)(img)(x,_p1##y,_p3##z,c)), \
(I[27] = (T)(img)(x,y,_p3##z,c)), \
(I[35] = (T)(img)(x,_n1##y,_p3##z,c)), \
(I[43] = (T)(img)(x,_n2##y,_p3##z,c)), \
(I[51] = (T)(img)(x,_n3##y,_p3##z,c)), \
(I[59] = (T)(img)(x,_n4##y,_p3##z,c)), \
(I[67] = (T)(img)(x,_p3##y,_p2##z,c)), \
(I[75] = (T)(img)(x,_p2##y,_p2##z,c)), \
(I[83] = (T)(img)(x,_p1##y,_p2##z,c)), \
(I[91] = (T)(img)(x,y,_p2##z,c)), \
(I[99] = (T)(img)(x,_n1##y,_p2##z,c)), \
(I[107] = (T)(img)(x,_n2##y,_p2##z,c)), \
(I[115] = (T)(img)(x,_n3##y,_p2##z,c)), \
(I[123] = (T)(img)(x,_n4##y,_p2##z,c)), \
(I[131] = (T)(img)(x,_p3##y,_p1##z,c)), \
(I[139] = (T)(img)(x,_p2##y,_p1##z,c)), \
(I[147] = (T)(img)(x,_p1##y,_p1##z,c)), \
(I[155] = (T)(img)(x,y,_p1##z,c)), \
(I[163] = (T)(img)(x,_n1##y,_p1##z,c)), \
(I[171] = (T)(img)(x,_n2##y,_p1##z,c)), \
(I[179] = (T)(img)(x,_n3##y,_p1##z,c)), \
(I[187] = (T)(img)(x,_n4##y,_p1##z,c)), \
(I[195] = (T)(img)(x,_p3##y,z,c)), \
(I[203] = (T)(img)(x,_p2##y,z,c)), \
(I[211] = (T)(img)(x,_p1##y,z,c)), \
(I[219] = (T)(img)(x,y,z,c)), \
(I[227] = (T)(img)(x,_n1##y,z,c)), \
(I[235] = (T)(img)(x,_n2##y,z,c)), \
(I[243] = (T)(img)(x,_n3##y,z,c)), \
(I[251] = (T)(img)(x,_n4##y,z,c)), \
(I[259] = (T)(img)(x,_p3##y,_n1##z,c)), \
(I[267] = (T)(img)(x,_p2##y,_n1##z,c)), \
(I[275] = (T)(img)(x,_p1##y,_n1##z,c)), \
(I[283] = (T)(img)(x,y,_n1##z,c)), \
(I[291] = (T)(img)(x,_n1##y,_n1##z,c)), \
(I[299] = (T)(img)(x,_n2##y,_n1##z,c)), \
(I[307] = (T)(img)(x,_n3##y,_n1##z,c)), \
(I[315] = (T)(img)(x,_n4##y,_n1##z,c)), \
(I[323] = (T)(img)(x,_p3##y,_n2##z,c)), \
(I[331] = (T)(img)(x,_p2##y,_n2##z,c)), \
(I[339] = (T)(img)(x,_p1##y,_n2##z,c)), \
(I[347] = (T)(img)(x,y,_n2##z,c)), \
(I[355] = (T)(img)(x,_n1##y,_n2##z,c)), \
(I[363] = (T)(img)(x,_n2##y,_n2##z,c)), \
(I[371] = (T)(img)(x,_n3##y,_n2##z,c)), \
(I[379] = (T)(img)(x,_n4##y,_n2##z,c)), \
(I[387] = (T)(img)(x,_p3##y,_n3##z,c)), \
(I[395] = (T)(img)(x,_p2##y,_n3##z,c)), \
(I[403] = (T)(img)(x,_p1##y,_n3##z,c)), \
(I[411] = (T)(img)(x,y,_n3##z,c)), \
(I[419] = (T)(img)(x,_n1##y,_n3##z,c)), \
(I[427] = (T)(img)(x,_n2##y,_n3##z,c)), \
(I[435] = (T)(img)(x,_n3##y,_n3##z,c)), \
(I[443] = (T)(img)(x,_n4##y,_n3##z,c)), \
(I[451] = (T)(img)(x,_p3##y,_n4##z,c)), \
(I[459] = (T)(img)(x,_p2##y,_n4##z,c)), \
(I[467] = (T)(img)(x,_p1##y,_n4##z,c)), \
(I[475] = (T)(img)(x,y,_n4##z,c)), \
(I[483] = (T)(img)(x,_n1##y,_n4##z,c)), \
(I[491] = (T)(img)(x,_n2##y,_n4##z,c)), \
(I[499] = (T)(img)(x,_n3##y,_n4##z,c)), \
(I[507] = (T)(img)(x,_n4##y,_n4##z,c)), \
(I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c)), \
(I[12] = (T)(img)(_n1##x,_p2##y,_p3##z,c)), \
(I[20] = (T)(img)(_n1##x,_p1##y,_p3##z,c)), \
(I[28] = (T)(img)(_n1##x,y,_p3##z,c)), \
(I[36] = (T)(img)(_n1##x,_n1##y,_p3##z,c)), \
(I[44] = (T)(img)(_n1##x,_n2##y,_p3##z,c)), \
(I[52] = (T)(img)(_n1##x,_n3##y,_p3##z,c)), \
(I[60] = (T)(img)(_n1##x,_n4##y,_p3##z,c)), \
(I[68] = (T)(img)(_n1##x,_p3##y,_p2##z,c)), \
(I[76] = (T)(img)(_n1##x,_p2##y,_p2##z,c)), \
(I[84] = (T)(img)(_n1##x,_p1##y,_p2##z,c)), \
(I[92] = (T)(img)(_n1##x,y,_p2##z,c)), \
(I[100] = (T)(img)(_n1##x,_n1##y,_p2##z,c)), \
(I[108] = (T)(img)(_n1##x,_n2##y,_p2##z,c)), \
(I[116] = (T)(img)(_n1##x,_n3##y,_p2##z,c)), \
(I[124] = (T)(img)(_n1##x,_n4##y,_p2##z,c)), \
(I[132] = (T)(img)(_n1##x,_p3##y,_p1##z,c)), \
(I[140] = (T)(img)(_n1##x,_p2##y,_p1##z,c)), \
(I[148] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \
(I[156] = (T)(img)(_n1##x,y,_p1##z,c)), \
(I[164] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \
(I[172] = (T)(img)(_n1##x,_n2##y,_p1##z,c)), \
(I[180] = (T)(img)(_n1##x,_n3##y,_p1##z,c)), \
(I[188] = (T)(img)(_n1##x,_n4##y,_p1##z,c)), \
(I[196] = (T)(img)(_n1##x,_p3##y,z,c)), \
(I[204] = (T)(img)(_n1##x,_p2##y,z,c)), \
(I[212] = (T)(img)(_n1##x,_p1##y,z,c)), \
(I[220] = (T)(img)(_n1##x,y,z,c)), \
(I[228] = (T)(img)(_n1##x,_n1##y,z,c)), \
(I[236] = (T)(img)(_n1##x,_n2##y,z,c)), \
(I[244] = (T)(img)(_n1##x,_n3##y,z,c)), \
(I[252] = (T)(img)(_n1##x,_n4##y,z,c)), \
(I[260] = (T)(img)(_n1##x,_p3##y,_n1##z,c)), \
(I[268] = (T)(img)(_n1##x,_p2##y,_n1##z,c)), \
(I[276] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \
(I[284] = (T)(img)(_n1##x,y,_n1##z,c)), \
(I[292] = (T)(img)(_n1##x,_n1##y,_n1##z,c)), \
(I[300] = (T)(img)(_n1##x,_n2##y,_n1##z,c)), \
(I[308] = (T)(img)(_n1##x,_n3##y,_n1##z,c)), \
(I[316] = (T)(img)(_n1##x,_n4##y,_n1##z,c)), \
(I[324] = (T)(img)(_n1##x,_p3##y,_n2##z,c)), \
(I[332] = (T)(img)(_n1##x,_p2##y,_n2##z,c)), \
(I[340] = (T)(img)(_n1##x,_p1##y,_n2##z,c)), \
(I[348] = (T)(img)(_n1##x,y,_n2##z,c)), \
(I[356] = (T)(img)(_n1##x,_n1##y,_n2##z,c)), \
(I[364] = (T)(img)(_n1##x,_n2##y,_n2##z,c)), \
(I[372] = (T)(img)(_n1##x,_n3##y,_n2##z,c)), \
(I[380] = (T)(img)(_n1##x,_n4##y,_n2##z,c)), \
(I[388] = (T)(img)(_n1##x,_p3##y,_n3##z,c)), \
(I[396] = (T)(img)(_n1##x,_p2##y,_n3##z,c)), \
(I[404] = (T)(img)(_n1##x,_p1##y,_n3##z,c)), \
(I[412] = (T)(img)(_n1##x,y,_n3##z,c)), \
(I[420] = (T)(img)(_n1##x,_n1##y,_n3##z,c)), \
(I[428] = (T)(img)(_n1##x,_n2##y,_n3##z,c)), \
(I[436] = (T)(img)(_n1##x,_n3##y,_n3##z,c)), \
(I[444] = (T)(img)(_n1##x,_n4##y,_n3##z,c)), \
(I[452] = (T)(img)(_n1##x,_p3##y,_n4##z,c)), \
(I[460] = (T)(img)(_n1##x,_p2##y,_n4##z,c)), \
(I[468] = (T)(img)(_n1##x,_p1##y,_n4##z,c)), \
(I[476] = (T)(img)(_n1##x,y,_n4##z,c)), \
(I[484] = (T)(img)(_n1##x,_n1##y,_n4##z,c)), \
(I[492] = (T)(img)(_n1##x,_n2##y,_n4##z,c)), \
(I[500] = (T)(img)(_n1##x,_n3##y,_n4##z,c)), \
(I[508] = (T)(img)(_n1##x,_n4##y,_n4##z,c)), \
(I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c)), \
(I[13] = (T)(img)(_n2##x,_p2##y,_p3##z,c)), \
(I[21] = (T)(img)(_n2##x,_p1##y,_p3##z,c)), \
(I[29] = (T)(img)(_n2##x,y,_p3##z,c)), \
(I[37] = (T)(img)(_n2##x,_n1##y,_p3##z,c)), \
(I[45] = (T)(img)(_n2##x,_n2##y,_p3##z,c)), \
(I[53] = (T)(img)(_n2##x,_n3##y,_p3##z,c)), \
(I[61] = (T)(img)(_n2##x,_n4##y,_p3##z,c)), \
(I[69] = (T)(img)(_n2##x,_p3##y,_p2##z,c)), \
(I[77] = (T)(img)(_n2##x,_p2##y,_p2##z,c)), \
(I[85] = (T)(img)(_n2##x,_p1##y,_p2##z,c)), \
(I[93] = (T)(img)(_n2##x,y,_p2##z,c)), \
(I[101] = (T)(img)(_n2##x,_n1##y,_p2##z,c)), \
(I[109] = (T)(img)(_n2##x,_n2##y,_p2##z,c)), \
(I[117] = (T)(img)(_n2##x,_n3##y,_p2##z,c)), \
(I[125] = (T)(img)(_n2##x,_n4##y,_p2##z,c)), \
(I[133] = (T)(img)(_n2##x,_p3##y,_p1##z,c)), \
(I[141] = (T)(img)(_n2##x,_p2##y,_p1##z,c)), \
(I[149] = (T)(img)(_n2##x,_p1##y,_p1##z,c)), \
(I[157] = (T)(img)(_n2##x,y,_p1##z,c)), \
(I[165] = (T)(img)(_n2##x,_n1##y,_p1##z,c)), \
(I[173] = (T)(img)(_n2##x,_n2##y,_p1##z,c)), \
(I[181] = (T)(img)(_n2##x,_n3##y,_p1##z,c)), \
(I[189] = (T)(img)(_n2##x,_n4##y,_p1##z,c)), \
(I[197] = (T)(img)(_n2##x,_p3##y,z,c)), \
(I[205] = (T)(img)(_n2##x,_p2##y,z,c)), \
(I[213] = (T)(img)(_n2##x,_p1##y,z,c)), \
(I[221] = (T)(img)(_n2##x,y,z,c)), \
(I[229] = (T)(img)(_n2##x,_n1##y,z,c)), \
(I[237] = (T)(img)(_n2##x,_n2##y,z,c)), \
(I[245] = (T)(img)(_n2##x,_n3##y,z,c)), \
(I[253] = (T)(img)(_n2##x,_n4##y,z,c)), \
(I[261] = (T)(img)(_n2##x,_p3##y,_n1##z,c)), \
(I[269] = (T)(img)(_n2##x,_p2##y,_n1##z,c)), \
(I[277] = (T)(img)(_n2##x,_p1##y,_n1##z,c)), \
(I[285] = (T)(img)(_n2##x,y,_n1##z,c)), \
(I[293] = (T)(img)(_n2##x,_n1##y,_n1##z,c)), \
(I[301] = (T)(img)(_n2##x,_n2##y,_n1##z,c)), \
(I[309] = (T)(img)(_n2##x,_n3##y,_n1##z,c)), \
(I[317] = (T)(img)(_n2##x,_n4##y,_n1##z,c)), \
(I[325] = (T)(img)(_n2##x,_p3##y,_n2##z,c)), \
(I[333] = (T)(img)(_n2##x,_p2##y,_n2##z,c)), \
(I[341] = (T)(img)(_n2##x,_p1##y,_n2##z,c)), \
(I[349] = (T)(img)(_n2##x,y,_n2##z,c)), \
(I[357] = (T)(img)(_n2##x,_n1##y,_n2##z,c)), \
(I[365] = (T)(img)(_n2##x,_n2##y,_n2##z,c)), \
(I[373] = (T)(img)(_n2##x,_n3##y,_n2##z,c)), \
(I[381] = (T)(img)(_n2##x,_n4##y,_n2##z,c)), \
(I[389] = (T)(img)(_n2##x,_p3##y,_n3##z,c)), \
(I[397] = (T)(img)(_n2##x,_p2##y,_n3##z,c)), \
(I[405] = (T)(img)(_n2##x,_p1##y,_n3##z,c)), \
(I[413] = (T)(img)(_n2##x,y,_n3##z,c)), \
(I[421] = (T)(img)(_n2##x,_n1##y,_n3##z,c)), \
(I[429] = (T)(img)(_n2##x,_n2##y,_n3##z,c)), \
(I[437] = (T)(img)(_n2##x,_n3##y,_n3##z,c)), \
(I[445] = (T)(img)(_n2##x,_n4##y,_n3##z,c)), \
(I[453] = (T)(img)(_n2##x,_p3##y,_n4##z,c)), \
(I[461] = (T)(img)(_n2##x,_p2##y,_n4##z,c)), \
(I[469] = (T)(img)(_n2##x,_p1##y,_n4##z,c)), \
(I[477] = (T)(img)(_n2##x,y,_n4##z,c)), \
(I[485] = (T)(img)(_n2##x,_n1##y,_n4##z,c)), \
(I[493] = (T)(img)(_n2##x,_n2##y,_n4##z,c)), \
(I[501] = (T)(img)(_n2##x,_n3##y,_n4##z,c)), \
(I[509] = (T)(img)(_n2##x,_n4##y,_n4##z,c)), \
(I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c)), \
(I[14] = (T)(img)(_n3##x,_p2##y,_p3##z,c)), \
(I[22] = (T)(img)(_n3##x,_p1##y,_p3##z,c)), \
(I[30] = (T)(img)(_n3##x,y,_p3##z,c)), \
(I[38] = (T)(img)(_n3##x,_n1##y,_p3##z,c)), \
(I[46] = (T)(img)(_n3##x,_n2##y,_p3##z,c)), \
(I[54] = (T)(img)(_n3##x,_n3##y,_p3##z,c)), \
(I[62] = (T)(img)(_n3##x,_n4##y,_p3##z,c)), \
(I[70] = (T)(img)(_n3##x,_p3##y,_p2##z,c)), \
(I[78] = (T)(img)(_n3##x,_p2##y,_p2##z,c)), \
(I[86] = (T)(img)(_n3##x,_p1##y,_p2##z,c)), \
(I[94] = (T)(img)(_n3##x,y,_p2##z,c)), \
(I[102] = (T)(img)(_n3##x,_n1##y,_p2##z,c)), \
(I[110] = (T)(img)(_n3##x,_n2##y,_p2##z,c)), \
(I[118] = (T)(img)(_n3##x,_n3##y,_p2##z,c)), \
(I[126] = (T)(img)(_n3##x,_n4##y,_p2##z,c)), \
(I[134] = (T)(img)(_n3##x,_p3##y,_p1##z,c)), \
(I[142] = (T)(img)(_n3##x,_p2##y,_p1##z,c)), \
(I[150] = (T)(img)(_n3##x,_p1##y,_p1##z,c)), \
(I[158] = (T)(img)(_n3##x,y,_p1##z,c)), \
(I[166] = (T)(img)(_n3##x,_n1##y,_p1##z,c)), \
(I[174] = (T)(img)(_n3##x,_n2##y,_p1##z,c)), \
(I[182] = (T)(img)(_n3##x,_n3##y,_p1##z,c)), \
(I[190] = (T)(img)(_n3##x,_n4##y,_p1##z,c)), \
(I[198] = (T)(img)(_n3##x,_p3##y,z,c)), \
(I[206] = (T)(img)(_n3##x,_p2##y,z,c)), \
(I[214] = (T)(img)(_n3##x,_p1##y,z,c)), \
(I[222] = (T)(img)(_n3##x,y,z,c)), \
(I[230] = (T)(img)(_n3##x,_n1##y,z,c)), \
(I[238] = (T)(img)(_n3##x,_n2##y,z,c)), \
(I[246] = (T)(img)(_n3##x,_n3##y,z,c)), \
(I[254] = (T)(img)(_n3##x,_n4##y,z,c)), \
(I[262] = (T)(img)(_n3##x,_p3##y,_n1##z,c)), \
(I[270] = (T)(img)(_n3##x,_p2##y,_n1##z,c)), \
(I[278] = (T)(img)(_n3##x,_p1##y,_n1##z,c)), \
(I[286] = (T)(img)(_n3##x,y,_n1##z,c)), \
(I[294] = (T)(img)(_n3##x,_n1##y,_n1##z,c)), \
(I[302] = (T)(img)(_n3##x,_n2##y,_n1##z,c)), \
(I[310] = (T)(img)(_n3##x,_n3##y,_n1##z,c)), \
(I[318] = (T)(img)(_n3##x,_n4##y,_n1##z,c)), \
(I[326] = (T)(img)(_n3##x,_p3##y,_n2##z,c)), \
(I[334] = (T)(img)(_n3##x,_p2##y,_n2##z,c)), \
(I[342] = (T)(img)(_n3##x,_p1##y,_n2##z,c)), \
(I[350] = (T)(img)(_n3##x,y,_n2##z,c)), \
(I[358] = (T)(img)(_n3##x,_n1##y,_n2##z,c)), \
(I[366] = (T)(img)(_n3##x,_n2##y,_n2##z,c)), \
(I[374] = (T)(img)(_n3##x,_n3##y,_n2##z,c)), \
(I[382] = (T)(img)(_n3##x,_n4##y,_n2##z,c)), \
(I[390] = (T)(img)(_n3##x,_p3##y,_n3##z,c)), \
(I[398] = (T)(img)(_n3##x,_p2##y,_n3##z,c)), \
(I[406] = (T)(img)(_n3##x,_p1##y,_n3##z,c)), \
(I[414] = (T)(img)(_n3##x,y,_n3##z,c)), \
(I[422] = (T)(img)(_n3##x,_n1##y,_n3##z,c)), \
(I[430] = (T)(img)(_n3##x,_n2##y,_n3##z,c)), \
(I[438] = (T)(img)(_n3##x,_n3##y,_n3##z,c)), \
(I[446] = (T)(img)(_n3##x,_n4##y,_n3##z,c)), \
(I[454] = (T)(img)(_n3##x,_p3##y,_n4##z,c)), \
(I[462] = (T)(img)(_n3##x,_p2##y,_n4##z,c)), \
(I[470] = (T)(img)(_n3##x,_p1##y,_n4##z,c)), \
(I[478] = (T)(img)(_n3##x,y,_n4##z,c)), \
(I[486] = (T)(img)(_n3##x,_n1##y,_n4##z,c)), \
(I[494] = (T)(img)(_n3##x,_n2##y,_n4##z,c)), \
(I[502] = (T)(img)(_n3##x,_n3##y,_n4##z,c)), \
(I[510] = (T)(img)(_n3##x,_n4##y,_n4##z,c)), \
x + 4>=(img).width()?(img).width() - 1:x + 4); \
x<=(int)(x1) && ((_n4##x<(img).width() && ( \
(I[7] = (T)(img)(_n4##x,_p3##y,_p3##z,c)), \
(I[15] = (T)(img)(_n4##x,_p2##y,_p3##z,c)), \
(I[23] = (T)(img)(_n4##x,_p1##y,_p3##z,c)), \
(I[31] = (T)(img)(_n4##x,y,_p3##z,c)), \
(I[39] = (T)(img)(_n4##x,_n1##y,_p3##z,c)), \
(I[47] = (T)(img)(_n4##x,_n2##y,_p3##z,c)), \
(I[55] = (T)(img)(_n4##x,_n3##y,_p3##z,c)), \
(I[63] = (T)(img)(_n4##x,_n4##y,_p3##z,c)), \
(I[71] = (T)(img)(_n4##x,_p3##y,_p2##z,c)), \
(I[79] = (T)(img)(_n4##x,_p2##y,_p2##z,c)), \
(I[87] = (T)(img)(_n4##x,_p1##y,_p2##z,c)), \
(I[95] = (T)(img)(_n4##x,y,_p2##z,c)), \
(I[103] = (T)(img)(_n4##x,_n1##y,_p2##z,c)), \
(I[111] = (T)(img)(_n4##x,_n2##y,_p2##z,c)), \
(I[119] = (T)(img)(_n4##x,_n3##y,_p2##z,c)), \
(I[127] = (T)(img)(_n4##x,_n4##y,_p2##z,c)), \
(I[135] = (T)(img)(_n4##x,_p3##y,_p1##z,c)), \
(I[143] = (T)(img)(_n4##x,_p2##y,_p1##z,c)), \
(I[151] = (T)(img)(_n4##x,_p1##y,_p1##z,c)), \
(I[159] = (T)(img)(_n4##x,y,_p1##z,c)), \
(I[167] = (T)(img)(_n4##x,_n1##y,_p1##z,c)), \
(I[175] = (T)(img)(_n4##x,_n2##y,_p1##z,c)), \
(I[183] = (T)(img)(_n4##x,_n3##y,_p1##z,c)), \
(I[191] = (T)(img)(_n4##x,_n4##y,_p1##z,c)), \
(I[199] = (T)(img)(_n4##x,_p3##y,z,c)), \
(I[207] = (T)(img)(_n4##x,_p2##y,z,c)), \
(I[215] = (T)(img)(_n4##x,_p1##y,z,c)), \
(I[223] = (T)(img)(_n4##x,y,z,c)), \
(I[231] = (T)(img)(_n4##x,_n1##y,z,c)), \
(I[239] = (T)(img)(_n4##x,_n2##y,z,c)), \
(I[247] = (T)(img)(_n4##x,_n3##y,z,c)), \
(I[255] = (T)(img)(_n4##x,_n4##y,z,c)), \
(I[263] = (T)(img)(_n4##x,_p3##y,_n1##z,c)), \
(I[271] = (T)(img)(_n4##x,_p2##y,_n1##z,c)), \
(I[279] = (T)(img)(_n4##x,_p1##y,_n1##z,c)), \
(I[287] = (T)(img)(_n4##x,y,_n1##z,c)), \
(I[295] = (T)(img)(_n4##x,_n1##y,_n1##z,c)), \
(I[303] = (T)(img)(_n4##x,_n2##y,_n1##z,c)), \
(I[311] = (T)(img)(_n4##x,_n3##y,_n1##z,c)), \
(I[319] = (T)(img)(_n4##x,_n4##y,_n1##z,c)), \
(I[327] = (T)(img)(_n4##x,_p3##y,_n2##z,c)), \
(I[335] = (T)(img)(_n4##x,_p2##y,_n2##z,c)), \
(I[343] = (T)(img)(_n4##x,_p1##y,_n2##z,c)), \
(I[351] = (T)(img)(_n4##x,y,_n2##z,c)), \
(I[359] = (T)(img)(_n4##x,_n1##y,_n2##z,c)), \
(I[367] = (T)(img)(_n4##x,_n2##y,_n2##z,c)), \
(I[375] = (T)(img)(_n4##x,_n3##y,_n2##z,c)), \
(I[383] = (T)(img)(_n4##x,_n4##y,_n2##z,c)), \
(I[391] = (T)(img)(_n4##x,_p3##y,_n3##z,c)), \
(I[399] = (T)(img)(_n4##x,_p2##y,_n3##z,c)), \
(I[407] = (T)(img)(_n4##x,_p1##y,_n3##z,c)), \
(I[415] = (T)(img)(_n4##x,y,_n3##z,c)), \
(I[423] = (T)(img)(_n4##x,_n1##y,_n3##z,c)), \
(I[431] = (T)(img)(_n4##x,_n2##y,_n3##z,c)), \
(I[439] = (T)(img)(_n4##x,_n3##y,_n3##z,c)), \
(I[447] = (T)(img)(_n4##x,_n4##y,_n3##z,c)), \
(I[455] = (T)(img)(_n4##x,_p3##y,_n4##z,c)), \
(I[463] = (T)(img)(_n4##x,_p2##y,_n4##z,c)), \
(I[471] = (T)(img)(_n4##x,_p1##y,_n4##z,c)), \
(I[479] = (T)(img)(_n4##x,y,_n4##z,c)), \
(I[487] = (T)(img)(_n4##x,_n1##y,_n4##z,c)), \
(I[495] = (T)(img)(_n4##x,_n2##y,_n4##z,c)), \
(I[503] = (T)(img)(_n4##x,_n3##y,_n4##z,c)), \
(I[511] = (T)(img)(_n4##x,_n4##y,_n4##z,c)),1)) || \
_n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \
I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \
I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \
I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \
I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \
I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \
I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \
I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \
I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \
I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \
I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \
I[80] = I[81], I[81] = I[82], I[82] = I[83], I[83] = I[84], I[84] = I[85], I[85] = I[86], I[86] = I[87], \
I[88] = I[89], I[89] = I[90], I[90] = I[91], I[91] = I[92], I[92] = I[93], I[93] = I[94], I[94] = I[95], \
I[96] = I[97], I[97] = I[98], I[98] = I[99], I[99] = I[100], I[100] = I[101], I[101] = I[102], I[102] = I[103], \
I[104] = I[105], I[105] = I[106], I[106] = I[107], I[107] = I[108], I[108] = I[109], I[109] = I[110], I[110] = I[111], \
I[112] = I[113], I[113] = I[114], I[114] = I[115], I[115] = I[116], I[116] = I[117], I[117] = I[118], I[118] = I[119], \
I[120] = I[121], I[121] = I[122], I[122] = I[123], I[123] = I[124], I[124] = I[125], I[125] = I[126], I[126] = I[127], \
I[128] = I[129], I[129] = I[130], I[130] = I[131], I[131] = I[132], I[132] = I[133], I[133] = I[134], I[134] = I[135], \
I[136] = I[137], I[137] = I[138], I[138] = I[139], I[139] = I[140], I[140] = I[141], I[141] = I[142], I[142] = I[143], \
I[144] = I[145], I[145] = I[146], I[146] = I[147], I[147] = I[148], I[148] = I[149], I[149] = I[150], I[150] = I[151], \
I[152] = I[153], I[153] = I[154], I[154] = I[155], I[155] = I[156], I[156] = I[157], I[157] = I[158], I[158] = I[159], \
I[160] = I[161], I[161] = I[162], I[162] = I[163], I[163] = I[164], I[164] = I[165], I[165] = I[166], I[166] = I[167], \
I[168] = I[169], I[169] = I[170], I[170] = I[171], I[171] = I[172], I[172] = I[173], I[173] = I[174], I[174] = I[175], \
I[176] = I[177], I[177] = I[178], I[178] = I[179], I[179] = I[180], I[180] = I[181], I[181] = I[182], I[182] = I[183], \
I[184] = I[185], I[185] = I[186], I[186] = I[187], I[187] = I[188], I[188] = I[189], I[189] = I[190], I[190] = I[191], \
I[192] = I[193], I[193] = I[194], I[194] = I[195], I[195] = I[196], I[196] = I[197], I[197] = I[198], I[198] = I[199], \
I[200] = I[201], I[201] = I[202], I[202] = I[203], I[203] = I[204], I[204] = I[205], I[205] = I[206], I[206] = I[207], \
I[208] = I[209], I[209] = I[210], I[210] = I[211], I[211] = I[212], I[212] = I[213], I[213] = I[214], I[214] = I[215], \
I[216] = I[217], I[217] = I[218], I[218] = I[219], I[219] = I[220], I[220] = I[221], I[221] = I[222], I[222] = I[223], \
I[224] = I[225], I[225] = I[226], I[226] = I[227], I[227] = I[228], I[228] = I[229], I[229] = I[230], I[230] = I[231], \
I[232] = I[233], I[233] = I[234], I[234] = I[235], I[235] = I[236], I[236] = I[237], I[237] = I[238], I[238] = I[239], \
I[240] = I[241], I[241] = I[242], I[242] = I[243], I[243] = I[244], I[244] = I[245], I[245] = I[246], I[246] = I[247], \
I[248] = I[249], I[249] = I[250], I[250] = I[251], I[251] = I[252], I[252] = I[253], I[253] = I[254], I[254] = I[255], \
I[256] = I[257], I[257] = I[258], I[258] = I[259], I[259] = I[260], I[260] = I[261], I[261] = I[262], I[262] = I[263], \
I[264] = I[265], I[265] = I[266], I[266] = I[267], I[267] = I[268], I[268] = I[269], I[269] = I[270], I[270] = I[271], \
I[272] = I[273], I[273] = I[274], I[274] = I[275], I[275] = I[276], I[276] = I[277], I[277] = I[278], I[278] = I[279], \
I[280] = I[281], I[281] = I[282], I[282] = I[283], I[283] = I[284], I[284] = I[285], I[285] = I[286], I[286] = I[287], \
I[288] = I[289], I[289] = I[290], I[290] = I[291], I[291] = I[292], I[292] = I[293], I[293] = I[294], I[294] = I[295], \
I[296] = I[297], I[297] = I[298], I[298] = I[299], I[299] = I[300], I[300] = I[301], I[301] = I[302], I[302] = I[303], \
I[304] = I[305], I[305] = I[306], I[306] = I[307], I[307] = I[308], I[308] = I[309], I[309] = I[310], I[310] = I[311], \
I[312] = I[313], I[313] = I[314], I[314] = I[315], I[315] = I[316], I[316] = I[317], I[317] = I[318], I[318] = I[319], \
I[320] = I[321], I[321] = I[322], I[322] = I[323], I[323] = I[324], I[324] = I[325], I[325] = I[326], I[326] = I[327], \
I[328] = I[329], I[329] = I[330], I[330] = I[331], I[331] = I[332], I[332] = I[333], I[333] = I[334], I[334] = I[335], \
I[336] = I[337], I[337] = I[338], I[338] = I[339], I[339] = I[340], I[340] = I[341], I[341] = I[342], I[342] = I[343], \
I[344] = I[345], I[345] = I[346], I[346] = I[347], I[347] = I[348], I[348] = I[349], I[349] = I[350], I[350] = I[351], \
I[352] = I[353], I[353] = I[354], I[354] = I[355], I[355] = I[356], I[356] = I[357], I[357] = I[358], I[358] = I[359], \
I[360] = I[361], I[361] = I[362], I[362] = I[363], I[363] = I[364], I[364] = I[365], I[365] = I[366], I[366] = I[367], \
I[368] = I[369], I[369] = I[370], I[370] = I[371], I[371] = I[372], I[372] = I[373], I[373] = I[374], I[374] = I[375], \
I[376] = I[377], I[377] = I[378], I[378] = I[379], I[379] = I[380], I[380] = I[381], I[381] = I[382], I[382] = I[383], \
I[384] = I[385], I[385] = I[386], I[386] = I[387], I[387] = I[388], I[388] = I[389], I[389] = I[390], I[390] = I[391], \
I[392] = I[393], I[393] = I[394], I[394] = I[395], I[395] = I[396], I[396] = I[397], I[397] = I[398], I[398] = I[399], \
I[400] = I[401], I[401] = I[402], I[402] = I[403], I[403] = I[404], I[404] = I[405], I[405] = I[406], I[406] = I[407], \
I[408] = I[409], I[409] = I[410], I[410] = I[411], I[411] = I[412], I[412] = I[413], I[413] = I[414], I[414] = I[415], \
I[416] = I[417], I[417] = I[418], I[418] = I[419], I[419] = I[420], I[420] = I[421], I[421] = I[422], I[422] = I[423], \
I[424] = I[425], I[425] = I[426], I[426] = I[427], I[427] = I[428], I[428] = I[429], I[429] = I[430], I[430] = I[431], \
I[432] = I[433], I[433] = I[434], I[434] = I[435], I[435] = I[436], I[436] = I[437], I[437] = I[438], I[438] = I[439], \
I[440] = I[441], I[441] = I[442], I[442] = I[443], I[443] = I[444], I[444] = I[445], I[445] = I[446], I[446] = I[447], \
I[448] = I[449], I[449] = I[450], I[450] = I[451], I[451] = I[452], I[452] = I[453], I[453] = I[454], I[454] = I[455], \
I[456] = I[457], I[457] = I[458], I[458] = I[459], I[459] = I[460], I[460] = I[461], I[461] = I[462], I[462] = I[463], \
I[464] = I[465], I[465] = I[466], I[466] = I[467], I[467] = I[468], I[468] = I[469], I[469] = I[470], I[470] = I[471], \
I[472] = I[473], I[473] = I[474], I[474] = I[475], I[475] = I[476], I[476] = I[477], I[477] = I[478], I[478] = I[479], \
I[480] = I[481], I[481] = I[482], I[482] = I[483], I[483] = I[484], I[484] = I[485], I[485] = I[486], I[486] = I[487], \
I[488] = I[489], I[489] = I[490], I[490] = I[491], I[491] = I[492], I[492] = I[493], I[493] = I[494], I[494] = I[495], \
I[496] = I[497], I[497] = I[498], I[498] = I[499], I[499] = I[500], I[500] = I[501], I[501] = I[502], I[502] = I[503], \
I[504] = I[505], I[505] = I[506], I[506] = I[507], I[507] = I[508], I[508] = I[509], I[509] = I[510], I[510] = I[511], \
_p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x)
#define cimg_get8x8x8(img,x,y,z,c,I,T) \
I[0] = (T)(img)(_p3##x,_p3##y,_p3##z,c), I[1] = (T)(img)(_p2##x,_p3##y,_p3##z,c), I[2] = (T)(img)(_p1##x,_p3##y,_p3##z,c), I[3] = (T)(img)(x,_p3##y,_p3##z,c), I[4] = (T)(img)(_n1##x,_p3##y,_p3##z,c), I[5] = (T)(img)(_n2##x,_p3##y,_p3##z,c), I[6] = (T)(img)(_n3##x,_p3##y,_p3##z,c), I[7] = (T)(img)(_n4##x,_p3##y,_p3##z,c), \
I[8] = (T)(img)(_p3##x,_p2##y,_p3##z,c), I[9] = (T)(img)(_p2##x,_p2##y,_p3##z,c), I[10] = (T)(img)(_p1##x,_p2##y,_p3##z,c), I[11] = (T)(img)(x,_p2##y,_p3##z,c), I[12] = (T)(img)(_n1##x,_p2##y,_p3##z,c), I[13] = (T)(img)(_n2##x,_p2##y,_p3##z,c), I[14] = (T)(img)(_n3##x,_p2##y,_p3##z,c), I[15] = (T)(img)(_n4##x,_p2##y,_p3##z,c), \
I[16] = (T)(img)(_p3##x,_p1##y,_p3##z,c), I[17] = (T)(img)(_p2##x,_p1##y,_p3##z,c), I[18] = (T)(img)(_p1##x,_p1##y,_p3##z,c), I[19] = (T)(img)(x,_p1##y,_p3##z,c), I[20] = (T)(img)(_n1##x,_p1##y,_p3##z,c), I[21] = (T)(img)(_n2##x,_p1##y,_p3##z,c), I[22] = (T)(img)(_n3##x,_p1##y,_p3##z,c), I[23] = (T)(img)(_n4##x,_p1##y,_p3##z,c), \
I[24] = (T)(img)(_p3##x,y,_p3##z,c), I[25] = (T)(img)(_p2##x,y,_p3##z,c), I[26] = (T)(img)(_p1##x,y,_p3##z,c), I[27] = (T)(img)(x,y,_p3##z,c), I[28] = (T)(img)(_n1##x,y,_p3##z,c), I[29] = (T)(img)(_n2##x,y,_p3##z,c), I[30] = (T)(img)(_n3##x,y,_p3##z,c), I[31] = (T)(img)(_n4##x,y,_p3##z,c), \
I[32] = (T)(img)(_p3##x,_n1##y,_p3##z,c), I[33] = (T)(img)(_p2##x,_n1##y,_p3##z,c), I[34] = (T)(img)(_p1##x,_n1##y,_p3##z,c), I[35] = (T)(img)(x,_n1##y,_p3##z,c), I[36] = (T)(img)(_n1##x,_n1##y,_p3##z,c), I[37] = (T)(img)(_n2##x,_n1##y,_p3##z,c), I[38] = (T)(img)(_n3##x,_n1##y,_p3##z,c), I[39] = (T)(img)(_n4##x,_n1##y,_p3##z,c), \
I[40] = (T)(img)(_p3##x,_n2##y,_p3##z,c), I[41] = (T)(img)(_p2##x,_n2##y,_p3##z,c), I[42] = (T)(img)(_p1##x,_n2##y,_p3##z,c), I[43] = (T)(img)(x,_n2##y,_p3##z,c), I[44] = (T)(img)(_n1##x,_n2##y,_p3##z,c), I[45] = (T)(img)(_n2##x,_n2##y,_p3##z,c), I[46] = (T)(img)(_n3##x,_n2##y,_p3##z,c), I[47] = (T)(img)(_n4##x,_n2##y,_p3##z,c), \
I[48] = (T)(img)(_p3##x,_n3##y,_p3##z,c), I[49] = (T)(img)(_p2##x,_n3##y,_p3##z,c), I[50] = (T)(img)(_p1##x,_n3##y,_p3##z,c), I[51] = (T)(img)(x,_n3##y,_p3##z,c), I[52] = (T)(img)(_n1##x,_n3##y,_p3##z,c), I[53] = (T)(img)(_n2##x,_n3##y,_p3##z,c), I[54] = (T)(img)(_n3##x,_n3##y,_p3##z,c), I[55] = (T)(img)(_n4##x,_n3##y,_p3##z,c), \
I[56] = (T)(img)(_p3##x,_n4##y,_p3##z,c), I[57] = (T)(img)(_p2##x,_n4##y,_p3##z,c), I[58] = (T)(img)(_p1##x,_n4##y,_p3##z,c), I[59] = (T)(img)(x,_n4##y,_p3##z,c), I[60] = (T)(img)(_n1##x,_n4##y,_p3##z,c), I[61] = (T)(img)(_n2##x,_n4##y,_p3##z,c), I[62] = (T)(img)(_n3##x,_n4##y,_p3##z,c), I[63] = (T)(img)(_n4##x,_n4##y,_p3##z,c), \
I[64] = (T)(img)(_p3##x,_p3##y,_p2##z,c), I[65] = (T)(img)(_p2##x,_p3##y,_p2##z,c), I[66] = (T)(img)(_p1##x,_p3##y,_p2##z,c), I[67] = (T)(img)(x,_p3##y,_p2##z,c), I[68] = (T)(img)(_n1##x,_p3##y,_p2##z,c), I[69] = (T)(img)(_n2##x,_p3##y,_p2##z,c), I[70] = (T)(img)(_n3##x,_p3##y,_p2##z,c), I[71] = (T)(img)(_n4##x,_p3##y,_p2##z,c), \
I[72] = (T)(img)(_p3##x,_p2##y,_p2##z,c), I[73] = (T)(img)(_p2##x,_p2##y,_p2##z,c), I[74] = (T)(img)(_p1##x,_p2##y,_p2##z,c), I[75] = (T)(img)(x,_p2##y,_p2##z,c), I[76] = (T)(img)(_n1##x,_p2##y,_p2##z,c), I[77] = (T)(img)(_n2##x,_p2##y,_p2##z,c), I[78] = (T)(img)(_n3##x,_p2##y,_p2##z,c), I[79] = (T)(img)(_n4##x,_p2##y,_p2##z,c), \
I[80] = (T)(img)(_p3##x,_p1##y,_p2##z,c), I[81] = (T)(img)(_p2##x,_p1##y,_p2##z,c), I[82] = (T)(img)(_p1##x,_p1##y,_p2##z,c), I[83] = (T)(img)(x,_p1##y,_p2##z,c), I[84] = (T)(img)(_n1##x,_p1##y,_p2##z,c), I[85] = (T)(img)(_n2##x,_p1##y,_p2##z,c), I[86] = (T)(img)(_n3##x,_p1##y,_p2##z,c), I[87] = (T)(img)(_n4##x,_p1##y,_p2##z,c), \
I[88] = (T)(img)(_p3##x,y,_p2##z,c), I[89] = (T)(img)(_p2##x,y,_p2##z,c), I[90] = (T)(img)(_p1##x,y,_p2##z,c), I[91] = (T)(img)(x,y,_p2##z,c), I[92] = (T)(img)(_n1##x,y,_p2##z,c), I[93] = (T)(img)(_n2##x,y,_p2##z,c), I[94] = (T)(img)(_n3##x,y,_p2##z,c), I[95] = (T)(img)(_n4##x,y,_p2##z,c), \
I[96] = (T)(img)(_p3##x,_n1##y,_p2##z,c), I[97] = (T)(img)(_p2##x,_n1##y,_p2##z,c), I[98] = (T)(img)(_p1##x,_n1##y,_p2##z,c), I[99] = (T)(img)(x,_n1##y,_p2##z,c), I[100] = (T)(img)(_n1##x,_n1##y,_p2##z,c), I[101] = (T)(img)(_n2##x,_n1##y,_p2##z,c), I[102] = (T)(img)(_n3##x,_n1##y,_p2##z,c), I[103] = (T)(img)(_n4##x,_n1##y,_p2##z,c), \
I[104] = (T)(img)(_p3##x,_n2##y,_p2##z,c), I[105] = (T)(img)(_p2##x,_n2##y,_p2##z,c), I[106] = (T)(img)(_p1##x,_n2##y,_p2##z,c), I[107] = (T)(img)(x,_n2##y,_p2##z,c), I[108] = (T)(img)(_n1##x,_n2##y,_p2##z,c), I[109] = (T)(img)(_n2##x,_n2##y,_p2##z,c), I[110] = (T)(img)(_n3##x,_n2##y,_p2##z,c), I[111] = (T)(img)(_n4##x,_n2##y,_p2##z,c), \
I[112] = (T)(img)(_p3##x,_n3##y,_p2##z,c), I[113] = (T)(img)(_p2##x,_n3##y,_p2##z,c), I[114] = (T)(img)(_p1##x,_n3##y,_p2##z,c), I[115] = (T)(img)(x,_n3##y,_p2##z,c), I[116] = (T)(img)(_n1##x,_n3##y,_p2##z,c), I[117] = (T)(img)(_n2##x,_n3##y,_p2##z,c), I[118] = (T)(img)(_n3##x,_n3##y,_p2##z,c), I[119] = (T)(img)(_n4##x,_n3##y,_p2##z,c), \
I[120] = (T)(img)(_p3##x,_n4##y,_p2##z,c), I[121] = (T)(img)(_p2##x,_n4##y,_p2##z,c), I[122] = (T)(img)(_p1##x,_n4##y,_p2##z,c), I[123] = (T)(img)(x,_n4##y,_p2##z,c), I[124] = (T)(img)(_n1##x,_n4##y,_p2##z,c), I[125] = (T)(img)(_n2##x,_n4##y,_p2##z,c), I[126] = (T)(img)(_n3##x,_n4##y,_p2##z,c), I[127] = (T)(img)(_n4##x,_n4##y,_p2##z,c), \
I[128] = (T)(img)(_p3##x,_p3##y,_p1##z,c), I[129] = (T)(img)(_p2##x,_p3##y,_p1##z,c), I[130] = (T)(img)(_p1##x,_p3##y,_p1##z,c), I[131] = (T)(img)(x,_p3##y,_p1##z,c), I[132] = (T)(img)(_n1##x,_p3##y,_p1##z,c), I[133] = (T)(img)(_n2##x,_p3##y,_p1##z,c), I[134] = (T)(img)(_n3##x,_p3##y,_p1##z,c), I[135] = (T)(img)(_n4##x,_p3##y,_p1##z,c), \
I[136] = (T)(img)(_p3##x,_p2##y,_p1##z,c), I[137] = (T)(img)(_p2##x,_p2##y,_p1##z,c), I[138] = (T)(img)(_p1##x,_p2##y,_p1##z,c), I[139] = (T)(img)(x,_p2##y,_p1##z,c), I[140] = (T)(img)(_n1##x,_p2##y,_p1##z,c), I[141] = (T)(img)(_n2##x,_p2##y,_p1##z,c), I[142] = (T)(img)(_n3##x,_p2##y,_p1##z,c), I[143] = (T)(img)(_n4##x,_p2##y,_p1##z,c), \
I[144] = (T)(img)(_p3##x,_p1##y,_p1##z,c), I[145] = (T)(img)(_p2##x,_p1##y,_p1##z,c), I[146] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[147] = (T)(img)(x,_p1##y,_p1##z,c), I[148] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[149] = (T)(img)(_n2##x,_p1##y,_p1##z,c), I[150] = (T)(img)(_n3##x,_p1##y,_p1##z,c), I[151] = (T)(img)(_n4##x,_p1##y,_p1##z,c), \
I[152] = (T)(img)(_p3##x,y,_p1##z,c), I[153] = (T)(img)(_p2##x,y,_p1##z,c), I[154] = (T)(img)(_p1##x,y,_p1##z,c), I[155] = (T)(img)(x,y,_p1##z,c), I[156] = (T)(img)(_n1##x,y,_p1##z,c), I[157] = (T)(img)(_n2##x,y,_p1##z,c), I[158] = (T)(img)(_n3##x,y,_p1##z,c), I[159] = (T)(img)(_n4##x,y,_p1##z,c), \
I[160] = (T)(img)(_p3##x,_n1##y,_p1##z,c), I[161] = (T)(img)(_p2##x,_n1##y,_p1##z,c), I[162] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[163] = (T)(img)(x,_n1##y,_p1##z,c), I[164] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[165] = (T)(img)(_n2##x,_n1##y,_p1##z,c), I[166] = (T)(img)(_n3##x,_n1##y,_p1##z,c), I[167] = (T)(img)(_n4##x,_n1##y,_p1##z,c), \
I[168] = (T)(img)(_p3##x,_n2##y,_p1##z,c), I[169] = (T)(img)(_p2##x,_n2##y,_p1##z,c), I[170] = (T)(img)(_p1##x,_n2##y,_p1##z,c), I[171] = (T)(img)(x,_n2##y,_p1##z,c), I[172] = (T)(img)(_n1##x,_n2##y,_p1##z,c), I[173] = (T)(img)(_n2##x,_n2##y,_p1##z,c), I[174] = (T)(img)(_n3##x,_n2##y,_p1##z,c), I[175] = (T)(img)(_n4##x,_n2##y,_p1##z,c), \
I[176] = (T)(img)(_p3##x,_n3##y,_p1##z,c), I[177] = (T)(img)(_p2##x,_n3##y,_p1##z,c), I[178] = (T)(img)(_p1##x,_n3##y,_p1##z,c), I[179] = (T)(img)(x,_n3##y,_p1##z,c), I[180] = (T)(img)(_n1##x,_n3##y,_p1##z,c), I[181] = (T)(img)(_n2##x,_n3##y,_p1##z,c), I[182] = (T)(img)(_n3##x,_n3##y,_p1##z,c), I[183] = (T)(img)(_n4##x,_n3##y,_p1##z,c), \
I[184] = (T)(img)(_p3##x,_n4##y,_p1##z,c), I[185] = (T)(img)(_p2##x,_n4##y,_p1##z,c), I[186] = (T)(img)(_p1##x,_n4##y,_p1##z,c), I[187] = (T)(img)(x,_n4##y,_p1##z,c), I[188] = (T)(img)(_n1##x,_n4##y,_p1##z,c), I[189] = (T)(img)(_n2##x,_n4##y,_p1##z,c), I[190] = (T)(img)(_n3##x,_n4##y,_p1##z,c), I[191] = (T)(img)(_n4##x,_n4##y,_p1##z,c), \
I[192] = (T)(img)(_p3##x,_p3##y,z,c), I[193] = (T)(img)(_p2##x,_p3##y,z,c), I[194] = (T)(img)(_p1##x,_p3##y,z,c), I[195] = (T)(img)(x,_p3##y,z,c), I[196] = (T)(img)(_n1##x,_p3##y,z,c), I[197] = (T)(img)(_n2##x,_p3##y,z,c), I[198] = (T)(img)(_n3##x,_p3##y,z,c), I[199] = (T)(img)(_n4##x,_p3##y,z,c), \
I[200] = (T)(img)(_p3##x,_p2##y,z,c), I[201] = (T)(img)(_p2##x,_p2##y,z,c), I[202] = (T)(img)(_p1##x,_p2##y,z,c), I[203] = (T)(img)(x,_p2##y,z,c), I[204] = (T)(img)(_n1##x,_p2##y,z,c), I[205] = (T)(img)(_n2##x,_p2##y,z,c), I[206] = (T)(img)(_n3##x,_p2##y,z,c), I[207] = (T)(img)(_n4##x,_p2##y,z,c), \
I[208] = (T)(img)(_p3##x,_p1##y,z,c), I[209] = (T)(img)(_p2##x,_p1##y,z,c), I[210] = (T)(img)(_p1##x,_p1##y,z,c), I[211] = (T)(img)(x,_p1##y,z,c), I[212] = (T)(img)(_n1##x,_p1##y,z,c), I[213] = (T)(img)(_n2##x,_p1##y,z,c), I[214] = (T)(img)(_n3##x,_p1##y,z,c), I[215] = (T)(img)(_n4##x,_p1##y,z,c), \
I[216] = (T)(img)(_p3##x,y,z,c), I[217] = (T)(img)(_p2##x,y,z,c), I[218] = (T)(img)(_p1##x,y,z,c), I[219] = (T)(img)(x,y,z,c), I[220] = (T)(img)(_n1##x,y,z,c), I[221] = (T)(img)(_n2##x,y,z,c), I[222] = (T)(img)(_n3##x,y,z,c), I[223] = (T)(img)(_n4##x,y,z,c), \
I[224] = (T)(img)(_p3##x,_n1##y,z,c), I[225] = (T)(img)(_p2##x,_n1##y,z,c), I[226] = (T)(img)(_p1##x,_n1##y,z,c), I[227] = (T)(img)(x,_n1##y,z,c), I[228] = (T)(img)(_n1##x,_n1##y,z,c), I[229] = (T)(img)(_n2##x,_n1##y,z,c), I[230] = (T)(img)(_n3##x,_n1##y,z,c), I[231] = (T)(img)(_n4##x,_n1##y,z,c), \
I[232] = (T)(img)(_p3##x,_n2##y,z,c), I[233] = (T)(img)(_p2##x,_n2##y,z,c), I[234] = (T)(img)(_p1##x,_n2##y,z,c), I[235] = (T)(img)(x,_n2##y,z,c), I[236] = (T)(img)(_n1##x,_n2##y,z,c), I[237] = (T)(img)(_n2##x,_n2##y,z,c), I[238] = (T)(img)(_n3##x,_n2##y,z,c), I[239] = (T)(img)(_n4##x,_n2##y,z,c), \
I[240] = (T)(img)(_p3##x,_n3##y,z,c), I[241] = (T)(img)(_p2##x,_n3##y,z,c), I[242] = (T)(img)(_p1##x,_n3##y,z,c), I[243] = (T)(img)(x,_n3##y,z,c), I[244] = (T)(img)(_n1##x,_n3##y,z,c), I[245] = (T)(img)(_n2##x,_n3##y,z,c), I[246] = (T)(img)(_n3##x,_n3##y,z,c), I[247] = (T)(img)(_n4##x,_n3##y,z,c), \
I[248] = (T)(img)(_p3##x,_n4##y,z,c), I[249] = (T)(img)(_p2##x,_n4##y,z,c), I[250] = (T)(img)(_p1##x,_n4##y,z,c), I[251] = (T)(img)(x,_n4##y,z,c), I[252] = (T)(img)(_n1##x,_n4##y,z,c), I[253] = (T)(img)(_n2##x,_n4##y,z,c), I[254] = (T)(img)(_n3##x,_n4##y,z,c), I[255] = (T)(img)(_n4##x,_n4##y,z,c), \
I[256] = (T)(img)(_p3##x,_p3##y,_n1##z,c), I[257] = (T)(img)(_p2##x,_p3##y,_n1##z,c), I[258] = (T)(img)(_p1##x,_p3##y,_n1##z,c), I[259] = (T)(img)(x,_p3##y,_n1##z,c), I[260] = (T)(img)(_n1##x,_p3##y,_n1##z,c), I[261] = (T)(img)(_n2##x,_p3##y,_n1##z,c), I[262] = (T)(img)(_n3##x,_p3##y,_n1##z,c), I[263] = (T)(img)(_n4##x,_p3##y,_n1##z,c), \
I[264] = (T)(img)(_p3##x,_p2##y,_n1##z,c), I[265] = (T)(img)(_p2##x,_p2##y,_n1##z,c), I[266] = (T)(img)(_p1##x,_p2##y,_n1##z,c), I[267] = (T)(img)(x,_p2##y,_n1##z,c), I[268] = (T)(img)(_n1##x,_p2##y,_n1##z,c), I[269] = (T)(img)(_n2##x,_p2##y,_n1##z,c), I[270] = (T)(img)(_n3##x,_p2##y,_n1##z,c), I[271] = (T)(img)(_n4##x,_p2##y,_n1##z,c), \
I[272] = (T)(img)(_p3##x,_p1##y,_n1##z,c), I[273] = (T)(img)(_p2##x,_p1##y,_n1##z,c), I[274] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[275] = (T)(img)(x,_p1##y,_n1##z,c), I[276] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[277] = (T)(img)(_n2##x,_p1##y,_n1##z,c), I[278] = (T)(img)(_n3##x,_p1##y,_n1##z,c), I[279] = (T)(img)(_n4##x,_p1##y,_n1##z,c), \
I[280] = (T)(img)(_p3##x,y,_n1##z,c), I[281] = (T)(img)(_p2##x,y,_n1##z,c), I[282] = (T)(img)(_p1##x,y,_n1##z,c), I[283] = (T)(img)(x,y,_n1##z,c), I[284] = (T)(img)(_n1##x,y,_n1##z,c), I[285] = (T)(img)(_n2##x,y,_n1##z,c), I[286] = (T)(img)(_n3##x,y,_n1##z,c), I[287] = (T)(img)(_n4##x,y,_n1##z,c), \
I[288] = (T)(img)(_p3##x,_n1##y,_n1##z,c), I[289] = (T)(img)(_p2##x,_n1##y,_n1##z,c), I[290] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[291] = (T)(img)(x,_n1##y,_n1##z,c), I[292] = (T)(img)(_n1##x,_n1##y,_n1##z,c), I[293] = (T)(img)(_n2##x,_n1##y,_n1##z,c), I[294] = (T)(img)(_n3##x,_n1##y,_n1##z,c), I[295] = (T)(img)(_n4##x,_n1##y,_n1##z,c), \
I[296] = (T)(img)(_p3##x,_n2##y,_n1##z,c), I[297] = (T)(img)(_p2##x,_n2##y,_n1##z,c), I[298] = (T)(img)(_p1##x,_n2##y,_n1##z,c), I[299] = (T)(img)(x,_n2##y,_n1##z,c), I[300] = (T)(img)(_n1##x,_n2##y,_n1##z,c), I[301] = (T)(img)(_n2##x,_n2##y,_n1##z,c), I[302] = (T)(img)(_n3##x,_n2##y,_n1##z,c), I[303] = (T)(img)(_n4##x,_n2##y,_n1##z,c), \
I[304] = (T)(img)(_p3##x,_n3##y,_n1##z,c), I[305] = (T)(img)(_p2##x,_n3##y,_n1##z,c), I[306] = (T)(img)(_p1##x,_n3##y,_n1##z,c), I[307] = (T)(img)(x,_n3##y,_n1##z,c), I[308] = (T)(img)(_n1##x,_n3##y,_n1##z,c), I[309] = (T)(img)(_n2##x,_n3##y,_n1##z,c), I[310] = (T)(img)(_n3##x,_n3##y,_n1##z,c), I[311] = (T)(img)(_n4##x,_n3##y,_n1##z,c), \
I[312] = (T)(img)(_p3##x,_n4##y,_n1##z,c), I[313] = (T)(img)(_p2##x,_n4##y,_n1##z,c), I[314] = (T)(img)(_p1##x,_n4##y,_n1##z,c), I[315] = (T)(img)(x,_n4##y,_n1##z,c), I[316] = (T)(img)(_n1##x,_n4##y,_n1##z,c), I[317] = (T)(img)(_n2##x,_n4##y,_n1##z,c), I[318] = (T)(img)(_n3##x,_n4##y,_n1##z,c), I[319] = (T)(img)(_n4##x,_n4##y,_n1##z,c), \
I[320] = (T)(img)(_p3##x,_p3##y,_n2##z,c), I[321] = (T)(img)(_p2##x,_p3##y,_n2##z,c), I[322] = (T)(img)(_p1##x,_p3##y,_n2##z,c), I[323] = (T)(img)(x,_p3##y,_n2##z,c), I[324] = (T)(img)(_n1##x,_p3##y,_n2##z,c), I[325] = (T)(img)(_n2##x,_p3##y,_n2##z,c), I[326] = (T)(img)(_n3##x,_p3##y,_n2##z,c), I[327] = (T)(img)(_n4##x,_p3##y,_n2##z,c), \
I[328] = (T)(img)(_p3##x,_p2##y,_n2##z,c), I[329] = (T)(img)(_p2##x,_p2##y,_n2##z,c), I[330] = (T)(img)(_p1##x,_p2##y,_n2##z,c), I[331] = (T)(img)(x,_p2##y,_n2##z,c), I[332] = (T)(img)(_n1##x,_p2##y,_n2##z,c), I[333] = (T)(img)(_n2##x,_p2##y,_n2##z,c), I[334] = (T)(img)(_n3##x,_p2##y,_n2##z,c), I[335] = (T)(img)(_n4##x,_p2##y,_n2##z,c), \
I[336] = (T)(img)(_p3##x,_p1##y,_n2##z,c), I[337] = (T)(img)(_p2##x,_p1##y,_n2##z,c), I[338] = (T)(img)(_p1##x,_p1##y,_n2##z,c), I[339] = (T)(img)(x,_p1##y,_n2##z,c), I[340] = (T)(img)(_n1##x,_p1##y,_n2##z,c), I[341] = (T)(img)(_n2##x,_p1##y,_n2##z,c), I[342] = (T)(img)(_n3##x,_p1##y,_n2##z,c), I[343] = (T)(img)(_n4##x,_p1##y,_n2##z,c), \
I[344] = (T)(img)(_p3##x,y,_n2##z,c), I[345] = (T)(img)(_p2##x,y,_n2##z,c), I[346] = (T)(img)(_p1##x,y,_n2##z,c), I[347] = (T)(img)(x,y,_n2##z,c), I[348] = (T)(img)(_n1##x,y,_n2##z,c), I[349] = (T)(img)(_n2##x,y,_n2##z,c), I[350] = (T)(img)(_n3##x,y,_n2##z,c), I[351] = (T)(img)(_n4##x,y,_n2##z,c), \
I[352] = (T)(img)(_p3##x,_n1##y,_n2##z,c), I[353] = (T)(img)(_p2##x,_n1##y,_n2##z,c), I[354] = (T)(img)(_p1##x,_n1##y,_n2##z,c), I[355] = (T)(img)(x,_n1##y,_n2##z,c), I[356] = (T)(img)(_n1##x,_n1##y,_n2##z,c), I[357] = (T)(img)(_n2##x,_n1##y,_n2##z,c), I[358] = (T)(img)(_n3##x,_n1##y,_n2##z,c), I[359] = (T)(img)(_n4##x,_n1##y,_n2##z,c), \
I[360] = (T)(img)(_p3##x,_n2##y,_n2##z,c), I[361] = (T)(img)(_p2##x,_n2##y,_n2##z,c), I[362] = (T)(img)(_p1##x,_n2##y,_n2##z,c), I[363] = (T)(img)(x,_n2##y,_n2##z,c), I[364] = (T)(img)(_n1##x,_n2##y,_n2##z,c), I[365] = (T)(img)(_n2##x,_n2##y,_n2##z,c), I[366] = (T)(img)(_n3##x,_n2##y,_n2##z,c), I[367] = (T)(img)(_n4##x,_n2##y,_n2##z,c), \
I[368] = (T)(img)(_p3##x,_n3##y,_n2##z,c), I[369] = (T)(img)(_p2##x,_n3##y,_n2##z,c), I[370] = (T)(img)(_p1##x,_n3##y,_n2##z,c), I[371] = (T)(img)(x,_n3##y,_n2##z,c), I[372] = (T)(img)(_n1##x,_n3##y,_n2##z,c), I[373] = (T)(img)(_n2##x,_n3##y,_n2##z,c), I[374] = (T)(img)(_n3##x,_n3##y,_n2##z,c), I[375] = (T)(img)(_n4##x,_n3##y,_n2##z,c), \
I[376] = (T)(img)(_p3##x,_n4##y,_n2##z,c), I[377] = (T)(img)(_p2##x,_n4##y,_n2##z,c), I[378] = (T)(img)(_p1##x,_n4##y,_n2##z,c), I[379] = (T)(img)(x,_n4##y,_n2##z,c), I[380] = (T)(img)(_n1##x,_n4##y,_n2##z,c), I[381] = (T)(img)(_n2##x,_n4##y,_n2##z,c), I[382] = (T)(img)(_n3##x,_n4##y,_n2##z,c), I[383] = (T)(img)(_n4##x,_n4##y,_n2##z,c), \
I[384] = (T)(img)(_p3##x,_p3##y,_n3##z,c), I[385] = (T)(img)(_p2##x,_p3##y,_n3##z,c), I[386] = (T)(img)(_p1##x,_p3##y,_n3##z,c), I[387] = (T)(img)(x,_p3##y,_n3##z,c), I[388] = (T)(img)(_n1##x,_p3##y,_n3##z,c), I[389] = (T)(img)(_n2##x,_p3##y,_n3##z,c), I[390] = (T)(img)(_n3##x,_p3##y,_n3##z,c), I[391] = (T)(img)(_n4##x,_p3##y,_n3##z,c), \
I[392] = (T)(img)(_p3##x,_p2##y,_n3##z,c), I[393] = (T)(img)(_p2##x,_p2##y,_n3##z,c), I[394] = (T)(img)(_p1##x,_p2##y,_n3##z,c), I[395] = (T)(img)(x,_p2##y,_n3##z,c), I[396] = (T)(img)(_n1##x,_p2##y,_n3##z,c), I[397] = (T)(img)(_n2##x,_p2##y,_n3##z,c), I[398] = (T)(img)(_n3##x,_p2##y,_n3##z,c), I[399] = (T)(img)(_n4##x,_p2##y,_n3##z,c), \
I[400] = (T)(img)(_p3##x,_p1##y,_n3##z,c), I[401] = (T)(img)(_p2##x,_p1##y,_n3##z,c), I[402] = (T)(img)(_p1##x,_p1##y,_n3##z,c), I[403] = (T)(img)(x,_p1##y,_n3##z,c), I[404] = (T)(img)(_n1##x,_p1##y,_n3##z,c), I[405] = (T)(img)(_n2##x,_p1##y,_n3##z,c), I[406] = (T)(img)(_n3##x,_p1##y,_n3##z,c), I[407] = (T)(img)(_n4##x,_p1##y,_n3##z,c), \
I[408] = (T)(img)(_p3##x,y,_n3##z,c), I[409] = (T)(img)(_p2##x,y,_n3##z,c), I[410] = (T)(img)(_p1##x,y,_n3##z,c), I[411] = (T)(img)(x,y,_n3##z,c), I[412] = (T)(img)(_n1##x,y,_n3##z,c), I[413] = (T)(img)(_n2##x,y,_n3##z,c), I[414] = (T)(img)(_n3##x,y,_n3##z,c), I[415] = (T)(img)(_n4##x,y,_n3##z,c), \
I[416] = (T)(img)(_p3##x,_n1##y,_n3##z,c), I[417] = (T)(img)(_p2##x,_n1##y,_n3##z,c), I[418] = (T)(img)(_p1##x,_n1##y,_n3##z,c), I[419] = (T)(img)(x,_n1##y,_n3##z,c), I[420] = (T)(img)(_n1##x,_n1##y,_n3##z,c), I[421] = (T)(img)(_n2##x,_n1##y,_n3##z,c), I[422] = (T)(img)(_n3##x,_n1##y,_n3##z,c), I[423] = (T)(img)(_n4##x,_n1##y,_n3##z,c), \
I[424] = (T)(img)(_p3##x,_n2##y,_n3##z,c), I[425] = (T)(img)(_p2##x,_n2##y,_n3##z,c), I[426] = (T)(img)(_p1##x,_n2##y,_n3##z,c), I[427] = (T)(img)(x,_n2##y,_n3##z,c), I[428] = (T)(img)(_n1##x,_n2##y,_n3##z,c), I[429] = (T)(img)(_n2##x,_n2##y,_n3##z,c), I[430] = (T)(img)(_n3##x,_n2##y,_n3##z,c), I[431] = (T)(img)(_n4##x,_n2##y,_n3##z,c), \
I[432] = (T)(img)(_p3##x,_n3##y,_n3##z,c), I[433] = (T)(img)(_p2##x,_n3##y,_n3##z,c), I[434] = (T)(img)(_p1##x,_n3##y,_n3##z,c), I[435] = (T)(img)(x,_n3##y,_n3##z,c), I[436] = (T)(img)(_n1##x,_n3##y,_n3##z,c), I[437] = (T)(img)(_n2##x,_n3##y,_n3##z,c), I[438] = (T)(img)(_n3##x,_n3##y,_n3##z,c), I[439] = (T)(img)(_n4##x,_n3##y,_n3##z,c), \
I[440] = (T)(img)(_p3##x,_n4##y,_n3##z,c), I[441] = (T)(img)(_p2##x,_n4##y,_n3##z,c), I[442] = (T)(img)(_p1##x,_n4##y,_n3##z,c), I[443] = (T)(img)(x,_n4##y,_n3##z,c), I[444] = (T)(img)(_n1##x,_n4##y,_n3##z,c), I[445] = (T)(img)(_n2##x,_n4##y,_n3##z,c), I[446] = (T)(img)(_n3##x,_n4##y,_n3##z,c), I[447] = (T)(img)(_n4##x,_n4##y,_n3##z,c), \
I[448] = (T)(img)(_p3##x,_p3##y,_n4##z,c), I[449] = (T)(img)(_p2##x,_p3##y,_n4##z,c), I[450] = (T)(img)(_p1##x,_p3##y,_n4##z,c), I[451] = (T)(img)(x,_p3##y,_n4##z,c), I[452] = (T)(img)(_n1##x,_p3##y,_n4##z,c), I[453] = (T)(img)(_n2##x,_p3##y,_n4##z,c), I[454] = (T)(img)(_n3##x,_p3##y,_n4##z,c), I[455] = (T)(img)(_n4##x,_p3##y,_n4##z,c), \
I[456] = (T)(img)(_p3##x,_p2##y,_n4##z,c), I[457] = (T)(img)(_p2##x,_p2##y,_n4##z,c), I[458] = (T)(img)(_p1##x,_p2##y,_n4##z,c), I[459] = (T)(img)(x,_p2##y,_n4##z,c), I[460] = (T)(img)(_n1##x,_p2##y,_n4##z,c), I[461] = (T)(img)(_n2##x,_p2##y,_n4##z,c), I[462] = (T)(img)(_n3##x,_p2##y,_n4##z,c), I[463] = (T)(img)(_n4##x,_p2##y,_n4##z,c), \
I[464] = (T)(img)(_p3##x,_p1##y,_n4##z,c), I[465] = (T)(img)(_p2##x,_p1##y,_n4##z,c), I[466] = (T)(img)(_p1##x,_p1##y,_n4##z,c), I[467] = (T)(img)(x,_p1##y,_n4##z,c), I[468] = (T)(img)(_n1##x,_p1##y,_n4##z,c), I[469] = (T)(img)(_n2##x,_p1##y,_n4##z,c), I[470] = (T)(img)(_n3##x,_p1##y,_n4##z,c), I[471] = (T)(img)(_n4##x,_p1##y,_n4##z,c), \
I[472] = (T)(img)(_p3##x,y,_n4##z,c), I[473] = (T)(img)(_p2##x,y,_n4##z,c), I[474] = (T)(img)(_p1##x,y,_n4##z,c), I[475] = (T)(img)(x,y,_n4##z,c), I[476] = (T)(img)(_n1##x,y,_n4##z,c), I[477] = (T)(img)(_n2##x,y,_n4##z,c), I[478] = (T)(img)(_n3##x,y,_n4##z,c), I[479] = (T)(img)(_n4##x,y,_n4##z,c), \
I[480] = (T)(img)(_p3##x,_n1##y,_n4##z,c), I[481] = (T)(img)(_p2##x,_n1##y,_n4##z,c), I[482] = (T)(img)(_p1##x,_n1##y,_n4##z,c), I[483] = (T)(img)(x,_n1##y,_n4##z,c), I[484] = (T)(img)(_n1##x,_n1##y,_n4##z,c), I[485] = (T)(img)(_n2##x,_n1##y,_n4##z,c), I[486] = (T)(img)(_n3##x,_n1##y,_n4##z,c), I[487] = (T)(img)(_n4##x,_n1##y,_n4##z,c), \
I[488] = (T)(img)(_p3##x,_n2##y,_n4##z,c), I[489] = (T)(img)(_p2##x,_n2##y,_n4##z,c), I[490] = (T)(img)(_p1##x,_n2##y,_n4##z,c), I[491] = (T)(img)(x,_n2##y,_n4##z,c), I[492] = (T)(img)(_n1##x,_n2##y,_n4##z,c), I[493] = (T)(img)(_n2##x,_n2##y,_n4##z,c), I[494] = (T)(img)(_n3##x,_n2##y,_n4##z,c), I[495] = (T)(img)(_n4##x,_n2##y,_n4##z,c), \
I[496] = (T)(img)(_p3##x,_n3##y,_n4##z,c), I[497] = (T)(img)(_p2##x,_n3##y,_n4##z,c), I[498] = (T)(img)(_p1##x,_n3##y,_n4##z,c), I[499] = (T)(img)(x,_n3##y,_n4##z,c), I[500] = (T)(img)(_n1##x,_n3##y,_n4##z,c), I[501] = (T)(img)(_n2##x,_n3##y,_n4##z,c), I[502] = (T)(img)(_n3##x,_n3##y,_n4##z,c), I[503] = (T)(img)(_n4##x,_n3##y,_n4##z,c), \
I[504] = (T)(img)(_p3##x,_n4##y,_n4##z,c), I[505] = (T)(img)(_p2##x,_n4##y,_n4##z,c), I[506] = (T)(img)(_p1##x,_n4##y,_n4##z,c), I[507] = (T)(img)(x,_n4##y,_n4##z,c), I[508] = (T)(img)(_n1##x,_n4##y,_n4##z,c), I[509] = (T)(img)(_n2##x,_n4##y,_n4##z,c), I[510] = (T)(img)(_n3##x,_n4##y,_n4##z,c), I[511] = (T)(img)(_n4##x,_n4##y,_n4##z,c);
// End of the plug-in
#endif /* cimg_plugin_loop_macros */
|