/usr/include/plugins/inpaint.h is in cimg-dev 1.7.9+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | /*
#
# File : inpaint.h
# ( C++ header file - CImg plug-in )
#
# Copyright : David Tschumperlé
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# Description :
#
# This plug-in implements the patch-based inpainting algorithm for 2d images, as
# described in the two following publications :
#
# "A Smarter Examplar-based Inpainting Algorithm using Local and Global Heuristics
# for more Geometric Coherence."
# (M. Daisy, P. Buyssens, D. Tschumperlé, O. Lezoray).
# IEEE International Conference on Image Processing (ICIP'14), Paris/France, Oct. 2014
#
# and
#
# "A Fast Spatial Patch Blending Algorithm for Artefact Reduction in Pattern-based
# Image Inpainting."
# (M. Daisy, D. Tschumperlé, O. Lezoray).
# SIGGRAPH Asia 2013 Technical Briefs, Hong-Kong, November 2013.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#ifndef cimg_plugin_inpaint
#define cimg_plugin_inpaint
template<typename t>
CImg<T>& inpaint_patch(const CImg<t>& mask, const unsigned int patch_size=11,
const unsigned int lookup_size=22, const float lookup_factor=1,
const int lookup_increment=1,
const unsigned int blend_size=0, const float blend_threshold=0.5f,
const float blend_decay=0.02, const unsigned int blend_scales=10,
const bool is_blend_outer=false) {
if (depth()>1)
throw CImgInstanceException(_cimg_instance
"inpaint_patch(): Instance image is volumetric (should be 2d).",
cimg_instance);
if (!is_sameXYZ(mask))
throw CImgArgumentException(_cimg_instance
"inpaint_patch() : Sizes of instance image and specified mask "
"(%u,%u,%u,%u) do not match.",
cimg_instance,
mask._width,mask._height,mask._depth,mask._spectrum);
if (!patch_size)
throw CImgArgumentException(_cimg_instance
"inpaint_patch() : Specified patch size is 0, must be strictly "
"positive.",
cimg_instance);
if (!lookup_size)
throw CImgArgumentException(_cimg_instance
"inpaint_patch() : Specified lookup size is 0, must be strictly "
"positive.",
cimg_instance);
if (lookup_factor<0)
throw CImgArgumentException(_cimg_instance
"inpaint_patch() : Specified lookup factor %g is negative, must be "
"positive.",
cimg_instance,
lookup_factor);
if (!lookup_increment)
throw CImgArgumentException(_cimg_instance
"inpaint_patch() : Specified lookup increment is 0, must be "
"strictly positive.",
cimg_instance);
if (blend_decay<0)
throw CImgArgumentException(_cimg_instance
"inpaint_patch() : Specified blend decay %g is negative, must be "
"positive.",
cimg_instance,
blend_decay);
// Find (dilated by 2) bounding box for the inpainting mask.
unsigned int xm0 = _width, ym0 = _height, xm1 = 0, ym1 = 0;
bool is_mask_found = false;
cimg_forXY(mask,x,y) if (mask(x,y)) {
is_mask_found = true;
if (x<(int)xm0) xm0 = (unsigned int)x;
if (x>(int)xm1) xm1 = (unsigned int)x;
if (y<(int)ym0) ym0 = (unsigned int)y;
if (y>(int)ym1) ym1 = (unsigned int)y;
}
if (!is_mask_found) return *this;
xm0 = xm0>2?xm0 - 2:0;
ym0 = ym0>2?ym0 - 2:0;
xm1 = xm1<_width - 3?xm1 + 2:_width - 1;
ym1 = ym1<_height - 3?ym1 + 2:_height - 1;
int ox = xm0, oy = ym0;
unsigned int dx = xm1 - xm0 + 1U, dy = ym1 - ym0 + 1U;
// Construct normalized version of the mask.
CImg<ucharT> nmask(dx,dy);
unsigned char *ptrM = nmask.data();
cimg_for_inXY(mask,xm0,ym0,xm1,ym1,x,y) *(ptrM++) = mask(x,y)?0:1;
xm0 = ym0 = 0; xm1 = dx - 1; ym1 = dy - 1;
// Start patch filling algorithm.
const int p2 = (int)patch_size/2, p1 = (int)patch_size - p2 - 1;
const unsigned int patch_size2 = patch_size*patch_size;
unsigned int _lookup_size = lookup_size, nb_lookups = 0, nb_fails = 0, nb_saved_patches = 0;
bool is_strict_search = true;
const float one = 1;
CImg<floatT> confidences(nmask), priorities(dx,dy,1,2,-1), pC;
CImg<unsigned int> saved_patches(4,256), is_visited(width(),height(),1,1,0);
CImg<ucharT> pM, pN; // Pre-declare patch variables (avoid iterative memory alloc/dealloc).
CImg<T> pP, pbest;
CImg<floatT> weights(patch_size,patch_size,1,1,0);
weights.draw_gaussian((float)p1,(float)p1,patch_size/15.0f,&one)/=patch_size2;
unsigned int target_index = 0;
while (true) {
// Extract mask border points and compute priorities to find target point.
unsigned int nb_border_points = 0;
float target_confidence = -1, target_priority = -1;
int target_x = -1, target_y = -1;
CImg_5x5(M,unsigned char);
cimg_for_in5x5(nmask,xm0,ym0,xm1,ym1,x,y,0,0,M,unsigned char)
if (!Mcc && (Mcp || Mcn || Mpc || Mnc)) { // Found mask border point.
float confidence_term = -1, data_term = -1;
if (priorities(x,y)>=0) { // If priority has already been computed.
confidence_term = priorities(x,y,0);
data_term = priorities(x,y,1);
} else { // If priority must be computed/updated.
// Compute smoothed normal vector.
const float
// N = smoothed 3x3 neighborhood of M.
Npc = (4.0f*Mpc + 2.0f*Mbc + 2.0f*Mcc + 2.0f*Mpp + 2.0f*Mpn + Mbp + Mbn + Mcp + Mcn)/16,
Nnc = (4.0f*Mnc + 2.0f*Mac + 2.0f*Mcc + 2.0f*Mnp + 2.0f*Mnn + Map + Man + Mcp + Mcn)/16,
Ncp = (4.0f*Mcp + 2.0f*Mcb + 2.0f*Mcc + 2.0f*Mpp + 2.0f*Mnp + Mpb + Mnb + Mpc + Mnc)/16,
Ncn = (4.0f*Mcn + 2.0f*Mca + 2.0f*Mcc + 2.0f*Mpn + 2.0f*Mnn + Mpa + Mna + Mpc + Mnc)/16,
_nx = 0.5f*(Nnc - Npc),
_ny = 0.5f*(Ncn - Ncp),
nn = std::sqrt(1e-8f + _nx*_nx + _ny*_ny),
nx = _nx/nn,
ny = _ny/nn;
// Compute confidence term.
nmask._inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,1).move_to(pM);
confidences._inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,1).move_to(pC);
confidence_term = 0;
const unsigned char *ptrM = pM.data();
cimg_for(pC,ptrC,float) confidence_term+=*ptrC**(ptrM++);
confidence_term/=patch_size2;
priorities(x,y,0) = confidence_term;
// Compute data term.
_inpaint_patch_crop(ox + x - p1,oy + y - p1,ox + x + p2,oy + y + p2,2).move_to(pP);
float mean_ix2 = 0, mean_ixiy = 0, mean_iy2 = 0;
CImg_3x3(I,T);
CImg_3x3(_M, unsigned char);
cimg_forC(pP,c) cimg_for3x3(pP,p,q,0,c,I,T) {
// Compute weight-mean of structure tensor inside patch.
cimg_get3x3(pM,p,q,0,0,_M,unsigned char);
const float
ixf = (float)(_Mnc*_Mcc*(Inc - Icc)),
iyf = (float)(_Mcn*_Mcc*(Icn - Icc)),
ixb = (float)(_Mcc*_Mpc*(Icc - Ipc)),
iyb = (float)(_Mcc*_Mcp*(Icc - Icp)),
ix = cimg::abs(ixf)>cimg::abs(ixb)?ixf:ixb,
iy = cimg::abs(iyf)>cimg::abs(iyb)?iyf:iyb,
w = weights(p,q);
mean_ix2 += w*ix*ix;
mean_ixiy += w*ix*iy;
mean_iy2 += w*iy*iy;
}
const float // Compute tensor-directed data term.
ux = mean_ix2*(-ny) + mean_ixiy*nx,
uy = mean_ixiy*(-ny) + mean_iy2*nx;
data_term = std::sqrt(ux*ux + uy*uy);
priorities(x,y,1) = data_term;
}
const float priority = confidence_term*data_term;
if (priority>target_priority) {
target_priority = priority; target_confidence = confidence_term;
target_x = ox + x; target_y = oy + y;
}
++nb_border_points;
}
if (!nb_border_points) break; // No more mask border points to inpaint!
// Locate already reconstructed neighbors (if any), to get good origins for patch lookup.
CImg<unsigned int> lookup_candidates(2,256);
unsigned int nb_lookup_candidates = 0, *ptr_lookup_candidates = lookup_candidates.data();
const unsigned int *ptr_saved_patches = saved_patches.data();
const int
x0 = target_x - (int)patch_size, y0 = target_y - (int)patch_size,
x1 = target_x + (int)patch_size, y1 = target_y + (int)patch_size;
for (unsigned int k = 0; k<nb_saved_patches; ++k) {
const unsigned int
src_x = *(ptr_saved_patches++), src_y = *(ptr_saved_patches++),
dest_x = *(ptr_saved_patches++), dest_y = *(ptr_saved_patches++);
if ((int)dest_x>=x0 && (int)dest_y>=y0 && (int)dest_x<=x1 && (int)dest_y<=y1) {
const int off_x = target_x - dest_x, off_y = target_y - dest_y;
*(ptr_lookup_candidates++) = src_x + off_x;
*(ptr_lookup_candidates++) = src_y + off_y;
if (++nb_lookup_candidates>=lookup_candidates._height)
lookup_candidates.resize(2,-200,1,1,0);
}
}
// Add also target point as a center for the patch lookup.
*(ptr_lookup_candidates++) = target_x;
*(ptr_lookup_candidates++) = target_y;
++nb_lookup_candidates;
// Divide size of lookup regions if several lookup sources have been detected.
unsigned int final_lookup_size = _lookup_size;
if (nb_lookup_candidates>1) {
const unsigned int
_final_lookup_size = (unsigned int)cimg::round(_lookup_size*lookup_factor/
std::sqrt((float)nb_lookup_candidates),1,1);
final_lookup_size = _final_lookup_size + 1 - (_final_lookup_size%2);
}
const int l2 = (int)final_lookup_size/2, l1 = (int)final_lookup_size - l2 - 1;
#ifdef gmic_debug
CImg<ucharT> visu(*this,false);
for (unsigned int C = 0; C<nb_lookup_candidates; ++C) {
const int
xl = lookup_candidates(0,C),
yl = lookup_candidates(1,C);
visu.draw_rectangle(xl - l1,yl - l1,xl + l2,yl + l2,CImg<ucharT>::vector(0,255,0).data(),0.2f);
}
visu.draw_rectangle(target_x - p1,target_y - p1,target_x + p2,target_y + p2,
CImg<ucharT>::vector(255,0,0).data(),0.5f);
static int foo = 0;
if (!(foo%1)) {
// visu.save("video.ppm",foo);
static CImgDisplay disp_debug;
disp_debug.display(visu).set_title("DEBUG");
}
++foo;
#endif // #ifdef gmic_debug
// Find best patch candidate to fill target point.
_inpaint_patch_crop(target_x - p1,target_y - p1,target_x + p2,target_y + p2,0).move_to(pP);
nmask._inpaint_patch_crop(target_x - ox - p1,target_y - oy - p1,target_x - ox + p2,target_y - oy + p2,0).
move_to(pM);
++target_index;
const unsigned int
_lookup_increment = (unsigned int)(lookup_increment>0?lookup_increment:
nb_lookup_candidates>1?1:-lookup_increment);
float best_ssd = cimg::type<float>::max();
int best_x = -1, best_y = -1;
for (unsigned int C = 0; C<nb_lookup_candidates; ++C) {
const int
xl = (int)lookup_candidates(0,C),
yl = (int)lookup_candidates(1,C),
x0 = cimg::max(p1,xl - l1), y0 = cimg::max(p1,yl - l1),
x1 = cimg::min(width() - 1 - p2,xl + l2), y1 = cimg::min(height() - 1 - p2,yl + l2);
for (int y = y0; y<=y1; y+=_lookup_increment)
for (int x = x0; x<=x1; x+=_lookup_increment) if (is_visited(x,y)!=target_index) {
if (is_strict_search) mask._inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,1).move_to(pN);
else nmask._inpaint_patch_crop(x - ox - p1,y - oy - p1,x - ox + p2,y - oy + p2,0).move_to(pN);
if ((is_strict_search && pN.sum()==0) || (!is_strict_search && pN.sum()==patch_size2)) {
_inpaint_patch_crop(x - p1,y - p1,x + p2,y + p2,0).move_to(pC);
float ssd = 0;
const T *_pP = pP._data;
const float *_pC = pC._data;
cimg_for(pM,_pM,unsigned char) { if (*_pM) {
cimg_forC(pC,c) {
ssd+=cimg::sqr((Tfloat)*_pC - (Tfloat)*_pP); _pC+=patch_size2; _pP+=patch_size2;
}
if (ssd>=best_ssd) break;
_pC-=pC._spectrum*patch_size2;
_pP-=pC._spectrum*patch_size2;
}
++_pC; ++_pP;
}
if (ssd<best_ssd) { best_ssd = ssd; best_x = x; best_y = y; }
}
is_visited(x,y) = target_index;
}
}
if (best_x<0) { // If no best patch found.
priorities(target_x - ox,target_y - oy,0)/=10; // Reduce its priority (lower data_term).
if (++nb_fails>=4) { // If too much consecutive fails :
nb_fails = 0;
_lookup_size+=_lookup_size/2; // Try to expand the lookup size.
if (++nb_lookups>=3) {
if (is_strict_search) { // If still fails, switch to non-strict search mode.
is_strict_search = false;
_lookup_size = lookup_size;
nb_lookups = 0;
}
else return *this; // Pathological case, probably a weird mask.
}
}
} else { // Best patch found -> reconstruct missing part on the target patch.
_lookup_size = lookup_size;
nb_lookups = nb_fails = 0;
_inpaint_patch_crop(best_x - p1,best_y - p1,best_x + p2,best_y + p2,0).move_to(pbest);
nmask._inpaint_patch_crop(target_x - ox - p1,target_y - oy - p1,target_x - ox + p2,target_y - oy + p2,1).
move_to(pM);
cimg_for(pM,ptr,unsigned char) *ptr=1 - *ptr;
draw_image(target_x - p1,target_y - p1,pbest,pM,1,1);
confidences.draw_image(target_x - ox - p1,target_y - oy - p1,pC.fill(target_confidence),pM,1,1);
nmask.draw_rectangle(target_x - ox - p1,target_y - oy - p1,0,0,target_x - ox + p2,target_y - oy + p2,0,0,1);
priorities.draw_rectangle(target_x - ox - (int)patch_size,
target_y - oy - (int)patch_size,0,0,
target_x - ox + 3*p2/2,
target_y - oy + 3*p2/2,0,0,-1);
// Remember patch positions.
unsigned int *ptr_saved_patches = saved_patches.data(0,nb_saved_patches);
*(ptr_saved_patches++) = best_x;
*(ptr_saved_patches++) = best_y;
*(ptr_saved_patches++) = target_x;
*ptr_saved_patches = target_y;
if (++nb_saved_patches>=saved_patches._height) saved_patches.resize(4,-200,1,1,0);
}
}
nmask.assign(); // Free some unused memory resources.
priorities.assign();
confidences.assign();
is_visited.assign();
// Blend inpainting result (if requested), using multi-scale blending algorithm.
if (blend_size && blend_scales) {
const float _blend_threshold = cimg::max(0.0f,cimg::min(1.0f,blend_threshold));
saved_patches._height = nb_saved_patches;
// Re-crop image and mask if outer blending is activated.
if (is_blend_outer) {
const int
b2 = (int)blend_size/2, b1 = (int)blend_size - b2 - 1,
xb0 = cimg::max(0,ox - b1),
yb0 = cimg::max(0,oy - b1),
xb1 = cimg::min(_width - 1,xb0 + dx + b1 + b2),
yb1 = cimg::min(_height - 1,yb0 + dy + b1 + b2);
ox = xb0; oy = yb0; dx = xb1 - xb0 + 1U, dy = yb1 - yb0 + 1U;
}
// Generate map of source offsets.
CImg<unsigned int> offsets(dx,dy,1,2);
unsigned int *ptr = saved_patches.end();
cimg_forY(saved_patches,i) {
const unsigned int yd = *(--ptr), xd = *(--ptr), ys = *(--ptr), xs = *(--ptr);
for (int l = -p1; l<=p2; ++l)
for (int k = -p1; k<=p2; ++k) {
const int xdk = xd + k, ydl = yd + l;
if (xdk>=0 && xdk<=width() - 1 && ydl>=0 && ydl<=height() - 1 && mask(xd + k,yd + l)) {
offsets(xd - ox + k,yd - oy + l,0) = xs + k;
offsets(xd - ox + k,yd - oy + l,1) = ys + l;
}
}
}
unsigned int *ptrx = offsets.data(0,0,0,0), *ptry = offsets.data(0,0,0,1);
cimg_forXY(offsets,x,y) {
if (!mask(x + ox,y + oy)) { *ptrx = x + ox; *ptry = y + oy; }
++ptrx; ++ptry;
}
// Generate map of local blending amplitudes.
CImg<floatT> blend_map(dx,dy,1,1,0);
CImg_3x3(I,float);
cimg_for3XY(offsets,x,y) if (mask(x + ox,y + oy)) {
const float
iox = cimg::max((float)offsets(_n1x,y,0) - offsets(x,y,0),
(float)offsets(x,y,0) - offsets(_p1x,y,0)),
ioy = cimg::max((float)offsets(x,_n1y,1) - offsets(x,y,1),
(float)offsets(x,y,1) - offsets(x,_p1y,1)),
ion = std::sqrt(iox*iox + ioy*ioy);
float iin = 0;
cimg_forC(*this,c) {
cimg_get3x3(*this,x,y,0,c,I,float);
const float
iix = (float)cimg::max(Inc - Icc,Icc - Ipc),
iiy = (float)cimg::max(Icn - Icc,Icc - Icp);
iin+=std::log(1 + iix*iix + iiy*iiy);
}
iin/=_spectrum;
blend_map(x,y) = ion*iin;
}
blend_map.threshold(blend_map.max()*_blend_threshold).distance(1);
cimg_forXY(blend_map,x,y) blend_map(x,y) = 1/(1 + blend_decay*blend_map(x,y));
blend_map.quantize(blend_scales + 1,false);
float bm, bM = blend_map.max_min(bm);
if (bm==bM) blend_map.fill((float)blend_scales);
// Generate blending scales.
CImg<T> result = _inpaint_patch_crop(ox,oy,ox + dx - 1,oy + dy - 1,0);
for (unsigned int blend_iter = 1; blend_iter<=blend_scales; ++blend_iter) {
const unsigned int
_blend_width = blend_iter*blend_size/blend_scales,
blend_width = _blend_width?_blend_width + 1 - (_blend_width%2):0;
if (!blend_width) continue;
const int b2 = (int)blend_width/2, b1 = (int)blend_width - b2 - 1;
CImg<floatT>
blended = _inpaint_patch_crop(ox,oy,ox + dx - 1,oy + dy - 1,0),
cumul(dx,dy,1,1);
weights.assign(blend_width,blend_width,1,1,0).
draw_gaussian((float)b1,(float)b1,blend_width/4.0f,&one);
cimg_forXY(cumul,x,y) cumul(x,y) = mask(x + ox,y + oy)?0.0f:1.0f;
blended.mul(cumul);
cimg_forY(saved_patches,l) {
const unsigned int *ptr = saved_patches.data(0,l);
const int
xs = (int)*(ptr++),
ys = (int)*(ptr++),
xd = (int)*(ptr++),
yd = (int)*(ptr++);
if (xs - b1<0 || ys - b1<0 || xs + b2>=width() || ys + b2>=height()) { // Blend with partial patch.
const int
xs0 = cimg::max(0,xs - b1),
ys0 = cimg::max(0,ys - b1),
xs1 = cimg::min(width() - 1,xs + b2),
ys1 = cimg::min(height() - 1,ys + b2);
_inpaint_patch_crop(xs0,ys0,xs1,ys1,0).move_to(pP);
weights._inpaint_patch_crop(xs0 - xs + b1,ys0 - ys + b1,xs1 - xs + b1,ys1 - ys + b1,0).move_to(pC);
blended.draw_image(xd + xs0 - xs - ox,yd + ys0 - ys - oy,pP,pC,-1);
cumul.draw_image(xd + xs0 - xs - ox,yd + ys0 - ys - oy,pC,-1);
} else { // Blend with full-size patch.
_inpaint_patch_crop(xs - b1,ys - b1,xs + b2,ys + b2,0).move_to(pP);
blended.draw_image(xd - b1 - ox,yd - b1 - oy,pP,weights,-1);
cumul.draw_image(xd - b1 - ox,yd - b1 - oy,weights,-1);
}
}
if (is_blend_outer) {
cimg_forXY(blended,x,y) if (blend_map(x,y)==blend_iter) {
const float cum = cumul(x,y);
if (cum>0) cimg_forC(*this,c) result(x,y,c) = (T)(blended(x,y,c)/cum);
}
} else { cimg_forXY(blended,x,y) if (mask(x + ox,y + oy) && blend_map(x,y)==blend_iter) {
const float cum = cumul(x,y);
if (cum>0) cimg_forC(*this,c) result(x,y,c) = (T)(blended(x,y,c)/cum);
}
}
}
if (is_blend_outer) draw_image(ox,oy,result);
else cimg_forXY(result,x,y) if (mask(x + ox,y + oy))
cimg_forC(*this,c) (*this)(x + ox,y + oy,c) = (T)result(x,y,c);
}
return *this;
}
// Special crop function that supports more boundary conditions :
// 0=dirichlet (with value 0), 1=dirichlet (with value 1) and 2=neumann.
CImg<T> _inpaint_patch_crop(const int x0, const int y0, const int x1, const int y1,
const unsigned int boundary=0) const {
const int
nx0 = x0<x1?x0:x1, nx1 = x0^x1^nx0,
ny0 = y0<y1?y0:y1, ny1 = y0^y1^ny0;
CImg<T> res(1U + nx1 - nx0,1U + ny1 - ny0,1,_spectrum);
if (nx0<0 || nx1>=width() || ny0<0 || ny1>=height()) {
if (boundary>=2) cimg_forXYZC(res,x,y,z,c) res(x,y,z,c) = _atXY(nx0 + x,ny0 + y,z,c);
else res.fill((T)boundary).draw_image(-nx0,-ny0,*this);
} else res.draw_image(-nx0,-ny0,*this);
return res;
}
template<typename t>
CImg<T> get_inpaint_patch(const CImg<t>& mask, const unsigned int patch_size=11,
const unsigned int lookup_size=22, const float lookup_factor=1,
const int lookup_increment=1,
const unsigned int blend_size=0, const float blend_threshold=0.5,
const float blend_decay=0.02f, const unsigned int blend_scales=10,
const bool is_blend_outer=false) const {
return (+*this).inpaint_patch(mask,patch_size,lookup_size,lookup_factor,lookup_increment,
blend_size,blend_threshold,blend_decay,blend_scales,is_blend_outer);
}
#endif /* cimg_plugin_inpaint */
|