/usr/src/castle-game-engine-6.4/castlescript/castlecurves.pas is in castle-game-engine-src 6.4+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 | {
Copyright 2004-2017 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ 3D curves (TCurve and basic descendants). }
unit CastleCurves;
{$I castleconf.inc}
{$modeswitch nestedprocvars}{$H+}
interface
uses SysUtils, Classes, Generics.Collections, DOM,
CastleVectors, CastleBoxes, CastleUtils, CastleScript,
CastleClassUtils, CastleFrustum;
type
ECurveFileInvalid = class(Exception);
{ 3D curve, a set of points defined by a continous function @link(Point)
for arguments within [TBegin, TEnd]. }
TCurve = class
private
FTBegin, FTEnd: Single;
FDefaultSegments: Cardinal;
protected
procedure LoadFromElement(const E: TDOMElement); virtual;
procedure SaveToStream(const Stream: TStream); virtual;
public
{ The valid range of curve function argument. Must be TBegin <= TEnd.
@groupBegin }
property TBegin: Single read FTBegin write FTBegin default 0;
property TEnd: Single read FTEnd write FTEnd default 1;
{ @groupEnd }
{ Curve function, for each parameter value determine the 3D point.
This determines the actual shape of the curve. }
function Point(const t: Float): TVector3; virtual; abstract;
function Point2D(const t: Float): TVector2;
{ Curve function to work with rendered line segments begin/end points.
This is simply a more specialized version of @link(Point),
it scales the argument such that you get Point(TBegin) for I = 0
and you get Point(TEnd) for I = Segments. }
function PointOfSegment(i, Segments: Cardinal): TVector3;
{ Default number of segments, used when rendering by T3D interface
(that is, @code(Render(Frustum, TransparentGroup...)) method.) }
property DefaultSegments: Cardinal
read FDefaultSegments write FDefaultSegments default 10;
constructor Create;
{ Load the first curve defined in given XML file.
Hint: use https://github.com/castle-engine/castle-engine/wiki/Curves-tool to design curves
visually. }
class function LoadFromFile(const URL: string): TCurve;
function BoundingBox: TBox3D; virtual; abstract;
end;
TCurveList = class({$ifdef CASTLE_OBJFPC}specialize{$endif} TObjectList<TCurve>)
public
{ Load curves definitions from a simple XML file.
Hint: use https://github.com/castle-engine/castle-engine/wiki/Curves-tool to design curves
visually. }
procedure LoadFromFile(const URL: string);
{ Save curve definitions to a simple XML file.
Hint: use https://github.com/castle-engine/castle-engine/wiki/Curves-tool to design curves
visually. }
procedure SaveToFile(const URL: string);
end;
{ Curve defined by explicitly giving functions for
Point(t) = x(t), y(t), z(t) as CastleScript expressions. }
TCasScriptCurve = class(TCurve)
private
FSegmentsForBoundingBox: Cardinal;
FTVariable: TCasScriptFloat;
FFunction: array [0..2] of TCasScriptExpression;
FBoundingBox: TBox3D;
procedure SetSegmentsForBoundingBox(AValue: Cardinal);
procedure SetTVariable(AValue: TCasScriptFloat);
function GetFunction(const Index: Integer): TCasScriptExpression;
procedure SetFunction(const Index: Integer; const Value: TCasScriptExpression);
procedure UpdateBoundingBox;
protected
procedure LoadFromElement(const E: TDOMElement); override;
procedure SaveToStream(const Stream: TStream); override;
public
function Point(const t: Float): TVector3; override;
{ XFunction, YFunction, ZFunction are functions based on variable 't'.
Once set, these instances become owned by this class, do not free
them yourself!
@groupBegin }
property XFunction: TCasScriptExpression index 0 read GetFunction write SetFunction;
property YFunction: TCasScriptExpression index 1 read GetFunction write SetFunction;
property ZFunction: TCasScriptExpression index 2 read GetFunction write SetFunction;
{ @groupEnd }
{ This is the variable controlling 't' value, embedded also in
XFunction, YFunction, ZFunction. This is NOT owned by this class,
make sure to free it yourself! }
property TVariable: TCasScriptFloat read FTVariable write SetTVariable;
property SegmentsForBoundingBox: Cardinal
read FSegmentsForBoundingBox write SetSegmentsForBoundingBox default 100;
{ Simple bounding box. It is simply
a BoundingBox of Point(i, SegmentsForBoundingBox)
for i in [0 .. SegmentsForBoundingBox].
Subclasses may override this to calculate something more accurate. }
function BoundingBox: TBox3D; override;
constructor Create;
destructor Destroy; override;
end;
{ A basic abstract class for curves determined my some set of ControlPoints.
Note: it is @italic(not) defined in this class any correspondence between
values of T (argument for Point function) and ControlPoints. }
TControlPointsCurve = class(TCurve)
strict private
FBoundingBox: TBox3D;
strict protected
{ Using these function you can control how Convex Hull (for RenderConvexHull)
is calculated: CreateConvexHullPoints should return points that must be
in convex hull (we will run ConvexHull function on those points),
DestroyConvexHullPoints should finalize them.
This way you can create new object in CreateConvexHullPoints and free it in
DestroyConvexHullPoints, but you can also give in CreateConvexHullPoints
reference to some already existing object and do nothing in
DestroyConvexHullPoints. (we will not modify object given as
CreateConvexHullPoints in any way)
Default implementation in this class returns ControlPoints as
CreateConvexHullPoints. (and does nothing in DestroyConvexHullPoints) }
function CreateConvexHullPoints: TVector3List; virtual;
procedure DestroyConvexHullPoints(Points: TVector3List); virtual;
protected
procedure LoadFromElement(const E: TDOMElement); override;
procedure SaveToStream(const Stream: TStream); override;
public
ControlPoints: TVector3List;
{ Bounding box of the curve.
In this class, it is simply a BoundingBox of ControlPoints. }
function BoundingBox: TBox3D; override;
{ Always after changing ControlPoints or TBegin or TEnd and before calling
@link(Point) (or anything that uses @link(Point), like @link(BoundingBox))
call this method. It recalculates necessary things.
ControlPoints.Count must be >= 2.
When overriding: always call inherited first. }
procedure UpdateControlPoints; virtual;
{ Constructor. }
constructor Create;
{ Calculate initial control points by sampling given TCasScriptCurve,
with analytical curve equation.
TBegin and TEnd are copied from CasScriptCurve. }
constructor CreateFromEquation(CasScriptCurve: TCasScriptCurve;
ControlPointsCount: Cardinal);
destructor Destroy; override;
{ Calculate the convex hull. Caller is responsible for freeing the result. }
function ConvexHull: TVector3List;
end;
TControlPointsCurveClass = class of TControlPointsCurve;
TControlPointsCurveList = {$ifdef CASTLE_OBJFPC}specialize{$endif} TObjectList<TControlPointsCurve>;
TCubicBezier2DPoints = array [0..3] of TVector2;
TCubicBezier3DPoints = array [0..3] of TVector3;
{ Piecewise (composite) cubic Bezier curve.
Each segment (ControlPoints[i]..ControlPoints[i+1])
is a cubic Bezier curve (Bezier with 4 control points,
2 points in the middle are auto-calculated for max smoothness).
This is a cubic B-spline. Which is equivalent to C2 continuous
composite Bézier curves. See
https://en.wikipedia.org/wiki/Spline_%28mathematics%29 .
Aka Cubic B-Spline (piecewise C2-Smooth Cubic Bezier).
ControlPoints.Count may be 1 (in general,
for TControlPointsCurve, it must be >= 2).
You can use this to calculate points on a curve, you cannot render the curve
out-of-the-box with this class.
For a portable and renderable curves consider using
X3D NURBS nodes (wrapped in a TCastleScene) instead.
Or convert this curve to a TLineSetNode X3D node.
}
TPiecewiseCubicBezier = class(TControlPointsCurve)
strict private
BezierCurves: array of TCubicBezier3DPoints;
ConvexHullPoints: TVector3List;
FBoundingBox: TBox3D;
strict protected
function CreateConvexHullPoints: TVector3List; override;
procedure DestroyConvexHullPoints(Points: TVector3List); override;
public
constructor Create;
destructor Destroy; override;
procedure UpdateControlPoints; override;
function Point(const t: Float): TVector3; override;
function BoundingBox: TBox3D; override;
end;
{ Cubic (4 control points) Bezier curve (with all weights equal) in 1D. }
function CubicBezier1D(T: Single; const Points: TVector4): Single;
{ Cubic (4 control points) Bezier curve (with all weights equal) in 2D. }
function CubicBezier2D(T: Single; const Points: TCubicBezier2DPoints): TVector2;
{ Cubic (4 control points) Bezier curve (with all weights equal) in 3D. }
function CubicBezier3D(T: Single; const Points: TCubicBezier3DPoints): TVector3;
{ Catmull-Rom spline. Nice way to have a function that for certain arguments
reaches certain values, and between interpolates smoothly.
Catmull-Rom splines are a special case of cubic Hermite splines, see
https://en.wikipedia.org/wiki/Cubic_Hermite_spline . }
function CatmullRomSpline(const X: Single; const Loop: boolean;
const Arguments: TSingleList;
const Values: TSingleList): Single;
{ Catmull-Rom spline low-level function.
For X in [0..1], the curve values change from V1 to V2.
V0 and V3 are curve values outside the [0..1] range, used to calculate tangents.
See http://www.mvps.org/directx/articles/catmull/.
@seealso CatmullRomSpline }
function CatmullRom(const V0, V1, V2, V3, X: Single): Single;
{ Hermite spline. Nice way to have a function that for certain arguments
reaches certain values, and between interpolates smoothly.
Requires specifying tangent values (use @link(CatmullRomSpline)
or @link(HermiteTenseSpline) to use automatic tangents). }
function HermiteSpline(const X: Single; const Loop: boolean;
const Arguments, Values, Tangents: TSingleList): Single;
{ Hermite spline with tangents zero (it will be horizontal at control points).
Nice way to have a function that for certain arguments
reaches certain values, and between interpolates smoothly.
This is equivalent (for faster) to using @link(HermiteSpline) with all
tangents equal to zero.
This is called a "cardinal spline", a special case of
Hermite spline, with all tangents calculated with "tension" parameter equal
to 1 (maximum), which means that all tangents are simply zero (horizontal).
See https://en.wikipedia.org/wiki/Cubic_Hermite_spline for math behind this. }
function HermiteTenseSpline(const X: Single; const Loop: boolean;
const Arguments, Values: TSingleList): Single;
implementation
uses Math,
CastleXMLUtils, CastleDownload;
function ConvexHullIndexes(Points: TVector3List): TIntegerList; forward;
{ TCurve ------------------------------------------------------------ }
function TCurve.PointOfSegment(i, Segments: Cardinal): TVector3;
begin
Result := Point(TBegin + (i/Segments) * (TEnd-TBegin));
end;
constructor TCurve.Create;
begin
inherited;
FTBegin := 0;
FTEnd := 1;
FDefaultSegments := 10;
end;
procedure TCurve.LoadFromElement(const E: TDOMElement);
var
ETime: TDOMElement;
begin
ETime := E.ChildElement('time');
TBegin := ETime.AttributeSingle('begin');
TEnd := ETime.AttributeSingle('end');
end;
procedure TCurve.SaveToStream(const Stream: TStream);
begin
WritelnStr(Stream, Format(' <time begin="%f" end="%f" />', [TBegin, TEnd]));
end;
function TCurve.Point2D(const T: Float): TVector2;
var
V: TVector3;
begin
V := Point(T);
Result[0] := V[0];
Result[1] := V[1];
end;
class function TCurve.LoadFromFile(const URL: string): TCurve;
var
List: TCurveList;
begin
List := TCurveList.Create(true);
try
List.LoadFromFile(URL);
if List.Count = 0 then
raise ECurveFileInvalid.Create('Empty curve XML file, cannot get first curve');
Result := List.Extract(List.First);
finally FreeAndNil(List) end;
end;
{ TCurveList ---------------------------------------------------- }
procedure TCurveList.LoadFromFile(const URL: string);
var
Document: TXMLDocument;
I: TXMLElementIterator;
CurveTypeStr: string;
Curve: TCurve;
begin
Clear;
Document := URLReadXML(URL);
try
Check(Document.DocumentElement.TagName = 'curves',
'Root node of curves file must be <curves>');
I := Document.DocumentElement.ChildrenIterator('curve');
try
while I.GetNext do
begin
CurveTypeStr := I.Current.AttributeString('type');
if SameText(CurveTypeStr, TPiecewiseCubicBezier.ClassName) then
Curve := TPiecewiseCubicBezier.Create else
if SameText(CurveTypeStr, TCasScriptCurve.ClassName) then
Curve := TCasScriptCurve.Create else
raise ECurveFileInvalid.CreateFmt('Curve type "%s" unknown', [CurveTypeStr]);
Curve.LoadFromElement(I.Current);
if Curve is TControlPointsCurve then
TControlPointsCurve(Curve).UpdateControlPoints;
Add(Curve);
end;
finally FreeAndNil(I); end;
finally FreeAndNil(Document) end;
end;
procedure TCurveList.SaveToFile(const URL: string);
var
Stream: TStream;
I: Integer;
begin
Stream := URLSaveStream(URL);
try
WritelnStr(Stream, '<?xml version="1.0"?>');
WritelnStr(Stream, '<curves>');
for I := 0 to Count - 1 do
begin
WritelnStr(Stream, ' <curve type="' + Items[I].ClassName + '">');
Items[I].SaveToStream(Stream);
WritelnStr(Stream, ' </curve>');
end;
WritelnStr(Stream, '</curves>');
finally FreeAndNil(Stream) end;
end;
{ TCasScriptCurve ------------------------------------------------------------ }
procedure TCasScriptCurve.SetTVariable(AValue: TCasScriptFloat);
begin
if FTVariable = AValue then Exit;
FTVariable := AValue;
UpdateBoundingBox;
end;
procedure TCasScriptCurve.SetSegmentsForBoundingBox(AValue: Cardinal);
begin
if FSegmentsForBoundingBox = AValue then Exit;
FSegmentsForBoundingBox := AValue;
UpdateBoundingBox;
end;
function TCasScriptCurve.GetFunction(const Index: Integer): TCasScriptExpression;
begin
Result := FFunction[Index];
end;
procedure TCasScriptCurve.SetFunction(const Index: Integer;
const Value: TCasScriptExpression);
begin
if FFunction[Index] = Value then Exit;
if FFunction[Index] <> nil then
FFunction[Index].FreeByParentExpression;
FFunction[Index] := Value;
UpdateBoundingBox;
end;
procedure TCasScriptCurve.UpdateBoundingBox;
var
i, k: Integer;
P: TVector3;
begin
if (XFunction = nil) or
(YFunction = nil) or
(ZFunction = nil) or
(TVariable = nil) then
FBoundingBox := TBox3D.Empty else
begin
{ calculate FBoundingBox }
P := PointOfSegment(0, SegmentsForBoundingBox); { = Point(TBegin) }
FBoundingBox.Data[0] := P;
FBoundingBox.Data[1] := P;
for i := 1 to SegmentsForBoundingBox do
begin
P := PointOfSegment(i, SegmentsForBoundingBox);
for k := 0 to 2 do
begin
FBoundingBox.Data[0].Data[k] := Min(FBoundingBox.Data[0].Data[k], P[k]);
FBoundingBox.Data[1].Data[k] := Max(FBoundingBox.Data[1].Data[k], P[k]);
end;
end;
end;
end;
function TCasScriptCurve.Point(const t: Float): TVector3;
var
I: Integer;
begin
TVariable.Value := T;
for I := 0 to 2 do
Result[I] := (FFunction[I].Execute as TCasScriptFloat).Value;
{test: Writeln('Point at t = ',FloatToNiceStr(Single(t)), ' is (',
Result.ToString, ')');}
end;
function TCasScriptCurve.BoundingBox: TBox3D;
begin
Result := FBoundingBox;
end;
constructor TCasScriptCurve.Create;
begin
inherited;
FSegmentsForBoundingBox := 100;
FBoundingBox := TBox3D.Empty;
end;
destructor TCasScriptCurve.Destroy;
var
I: Integer;
begin
for I := 0 to 2 do
if FFunction[I] <> nil then
begin
FFunction[I].FreeByParentExpression;
FFunction[I] := nil;
end;
inherited;
end;
procedure TCasScriptCurve.LoadFromElement(const E: TDOMElement);
begin
inherited LoadFromElement(E);
// TODO: load TCasScriptCurve specifics
end;
procedure TCasScriptCurve.SaveToStream(const Stream: TStream);
begin
inherited SaveToStream(Stream);
// TODO: save TCasScriptCurve specifics
end;
{ TControlPointsCurve ------------------------------------------------ }
function TControlPointsCurve.BoundingBox: TBox3D;
begin
Result := FBoundingBox;
end;
procedure TControlPointsCurve.UpdateControlPoints;
begin
FBoundingBox := CalculateBoundingBox(ControlPoints.L,
ControlPoints.Count, 0);
end;
function TControlPointsCurve.CreateConvexHullPoints: TVector3List;
begin
Result := ControlPoints;
end;
procedure TControlPointsCurve.DestroyConvexHullPoints(Points: TVector3List);
begin
end;
function TControlPointsCurve.ConvexHull: TVector3List;
var
PotentialConvexHullPoints: TVector3List;
Indexes: TIntegerList;
I: Integer;
begin
Result := TVector3List.Create;
PotentialConvexHullPoints := CreateConvexHullPoints;
try
if PotentialConvexHullPoints.Count <> 0 then
begin
Indexes := ConvexHullIndexes(PotentialConvexHullPoints);
try
for I := 0 to Indexes.Count - 1 do
Result.Add(PotentialConvexHullPoints.List^[Indexes.List^[I]]);
finally FreeAndNil(Indexes) end;
end;
finally DestroyConvexHullPoints(PotentialConvexHullPoints) end;
end;
constructor TControlPointsCurve.Create;
begin
inherited;
ControlPoints := TVector3List.Create;
{ DON'T call UpdateControlPoints from here - UpdateControlPoints is virtual !
So we set FBoundingBox by hand. }
FBoundingBox := TBox3D.Empty;
end;
constructor TControlPointsCurve.CreateFromEquation(
CasScriptCurve: TCasScriptCurve; ControlPointsCount: Cardinal);
var
i: Integer;
begin
Create;
TBegin := CasScriptCurve.TBegin;
TEnd := CasScriptCurve.TEnd;
ControlPoints.Count := ControlPointsCount;
for i := 0 to ControlPointsCount-1 do
ControlPoints.List^[i] := CasScriptCurve.PointOfSegment(i, ControlPointsCount-1);
UpdateControlPoints;
end;
destructor TControlPointsCurve.Destroy;
begin
FreeAndNil(ControlPoints);
inherited;
end;
procedure TControlPointsCurve.LoadFromElement(const E: TDOMElement);
var
I: TXMLElementIterator;
EControlPoints: TDOMElement;
begin
inherited LoadFromElement(E);
EControlPoints := E.ChildElement('control_points');
I := EControlPoints.ChildrenIterator('control_point');
try
while I.GetNext do
ControlPoints.Add(I.Current.AttributeVector3('value'));
finally FreeAndNil(I); end;
end;
procedure TControlPointsCurve.SaveToStream(const Stream: TStream);
var
I: Integer;
VectorStr: string;
begin
inherited SaveToStream(Stream);
WritelnStr(Stream, ' <control_points>');
for I := 0 to ControlPoints.Count - 1 do
begin
VectorStr := ControlPoints[I].ToRawString;
WritelnStr(Stream, ' <control_point value="' + VectorStr + '"/>');
end;
WritelnStr(Stream, ' </control_points>');
end;
{ TPiecewiseCubicBezier --------------------------------------------------- }
function TPiecewiseCubicBezier.CreateConvexHullPoints: TVector3List;
begin
Result := ConvexHullPoints;
end;
procedure TPiecewiseCubicBezier.DestroyConvexHullPoints(Points: TVector3List);
begin
end;
function TPiecewiseCubicBezier.Point(const t: Float): TVector3;
var
T01: Single;
TInsidePiece: Double;
IndexBefore: Int64;
IndexBeforeChange: Integer;
begin
Assert(ControlPoints.Count >= 1);
if ControlPoints.Count = 1 then
Exit(ControlPoints.Items[0]);
T01 := MapRange(T, TBegin, TEnd, 0, 1);
if ControlPoints.Count = 2 then
// super-fast case
Exit(Lerp(T01, ControlPoints.Items[0], ControlPoints.Items[1]));
FloatDivMod(T01, 1 / (ControlPoints.Count - 1), IndexBefore, TInsidePiece);
TInsidePiece := TInsidePiece * (ControlPoints.Count - 1); // make TInsidePiece in 0..1 range
{ fix IndexBefore (together with TInsidePiece, synchronized)
to be within [0, ControlPoints.Count - 2] range.
Necessary so that both IndexBefore and IndexAfter are later in valid
control points [0, ControlPoints.Count - 1] range. }
IndexBeforeChange := 0;
if IndexBefore > ControlPoints.Count - 2 then
IndexBeforeChange := -(IndexBefore - (ControlPoints.Count - 2)) else
if IndexBefore < 0 then
IndexBeforeChange := -IndexBefore;
if IndexBeforeChange <> 0 then
begin
IndexBefore := IndexBefore + IndexBeforeChange;
TInsidePiece := TInsidePiece - IndexBeforeChange;
end;
Assert(IndexBefore >= 0);
Assert(IndexBefore <= ControlPoints.Count - 2);
// writeln('TPiecewiseCubicBezier got ', IndexBefore, ' ', TInsidePiece:1:2);
if IndexBefore >= Length(BezierCurves) then
raise Exception.Create('Curves data inside PiecewiseCubicBezier not initialized, probably you forgot to call UpdateControlPoints after changing the ControlPoints');
Result := CubicBezier3D(TInsidePiece, BezierCurves[IndexBefore]);
end;
procedure TPiecewiseCubicBezier.UpdateControlPoints;
procedure UpdateBezierCurves;
var
S: TVector3List;
C: TVector3List;
I: Integer;
PointBegin, PointEnd: TVector3;
begin
{ Normal calculations cannot be done when
ControlPoints.Count = 2:
C.Count would be 1, S.Count would be 2,
S[0] would be calculated based on C[0] and S[1],
S[1] would be calculated based on C[0] and S[0].
So we can't calculate S[0] and S[1] using given equations when
ControlPoints.Count = 2.
Point() method implements a special case for ControlPoints.Count = 2,
it just does Lerp then. }
if ControlPoints.Count <= 2 then
Exit;
{ based on SLE mmgk notes, "Krzywe Beziera" page 4 }
C := nil;
S := nil;
try
C := TVector3List.Create;
C.Count := ControlPoints.Count - 1;
{ calculate C values }
for I := 0 to C.Count - 1 do
C[I] := ControlPoints[I + 1] - ControlPoints[I];
S := TVector3List.Create;
S.Count := ControlPoints.Count;
{ calculate S values }
for I := 1 to S.Count - 2 do
S[I] := (C[I-1] + C[I]) / 2;
S[0 ] := C[0 ] * 2 - S[1 ];
S[S.Count-1] := C[S.Count-2] * 2 - S[S.Count-2];
SetLength(BezierCurves, ControlPoints.Count - 1);
for I := 1 to ControlPoints.Count - 1 do
begin
PointBegin := ControlPoints.List^[I - 1];
PointEnd := ControlPoints.List^[I];
BezierCurves[I - 1][0] := PointBegin;
BezierCurves[I - 1][1] := PointBegin + S[I -1] / 3;
BezierCurves[I - 1][2] := PointEnd - S[I ] / 3;
BezierCurves[I - 1][3] := PointEnd;
end;
finally
C.Free;
S.Free;
end;
end;
procedure UpdateConvexHullPoints;
var
I: Integer;
begin
ConvexHullPoints.Clear;
ConvexHullPoints.AddRange(ControlPoints);
for I := 0 to Length(BezierCurves) - 1 do
begin
{ add also intermediate control points }
ConvexHullPoints.Add(BezierCurves[I][1]);
ConvexHullPoints.Add(BezierCurves[I][2]);
end;
end;
procedure UpdateBoundingBox;
begin
FBoundingBox := CalculateBoundingBox(ConvexHullPoints.L,
ConvexHullPoints.Count, 0);
end;
begin
inherited;
UpdateBezierCurves;
UpdateConvexHullPoints;
UpdateBoundingBox;
end;
constructor TPiecewiseCubicBezier.Create;
begin
inherited;
ConvexHullPoints := TVector3List.Create;
FBoundingBox := TBox3D.Empty;
end;
destructor TPiecewiseCubicBezier.Destroy;
begin
FreeAndNil(ConvexHullPoints);
inherited;
end;
function TPiecewiseCubicBezier.BoundingBox: TBox3D;
begin
Result := FBoundingBox;
end;
{ global routines ------------------------------------------------------------ }
function CubicBezier1D(T: Single; const Points: TVector4): Single;
var
T1: Single;
begin
T := Clamped(T, 0, 1);
T1 := 1 - T;
Result := Points[0] * Sqr(T1) * T1 +
Points[1] * 3 * Sqr(T1) * T +
Points[2] * 3 * Sqr(T) * T1 +
Points[3] * Sqr(T) * T;
end;
function CubicBezier2D(T: Single; const Points: TCubicBezier2DPoints): TVector2;
var
T1: Single;
begin
T := Clamped(T, 0, 1);
T1 := 1 - T;
Result := Points[0] * ( Sqr(T1) * T1) +
Points[1] * (3 * Sqr(T1) * T) +
Points[2] * (3 * Sqr(T) * T1) +
Points[3] * ( Sqr(T) * T);
end;
function CubicBezier3D(T: Single; const Points: TCubicBezier3DPoints): TVector3;
var
T1: Single;
begin
T := Clamped(T, 0, 1);
T1 := 1 - T;
Result := Points[0] * ( Sqr(T1) * T1) +
Points[1] * (3 * Sqr(T1) * T) +
Points[2] * (3 * Sqr(T) * T1) +
Points[3] * ( Sqr(T) * T);
end;
type
{ Calculate curve segment value, knowing that X is between
Arguments[IndexOfRightValue - 1] and
Arguments[IndexOfRightValue] and that count > 1 and IndexOfRightValue > 0.
XInSegment is X already transformed from
Arguments[IndexOfRightValue - 1] and
Arguments[IndexOfRightValue] to the [0..1] range.
IOW, this is the curve-specific equation, with all boring special cases
eliminated. }
TCurveSegmentFunction = function (const IndexOfRightValue: Integer;
const XInSegment: Single): Single is nested;
{ General spline calculation, using SegmentFunction for a curve-specific equation. }
function CalculateSpline(const X: Single; const Loop: boolean;
const Arguments, Values: TSingleList;
const SegmentFunction: TCurveSegmentFunction): Single;
{ Calculate assuming that X is between [First..Last], and Count > 1. }
function CalculateInRange(const X: Single): Single;
var
I, C: Integer;
begin
C := Arguments.Count;
// TODO: make binary search
I := 1;
while (I + 1 < C) and (X > Arguments.List^[I]) do Inc(I);
Result := SegmentFunction(I,
(X - Arguments.List^[I - 1]) / (Arguments.List^[I] - Arguments.List^[I - 1]));
end;
var
C: Integer;
FirstArg, LastArg, Len: Single;
begin
C := Arguments.Count;
if C = 0 then
Result := 0 else
begin
FirstArg := Arguments.List^[0];
if C = 1 then
Result := FirstArg else
begin
LastArg := Arguments.List^[C - 1];
Len := LastArg - FirstArg;
if X < FirstArg then
begin
if Loop then
Result := CalculateInRange(X + Ceil((FirstArg - X) / Len) * Len) else
Result := Values.List^[0];
end else
if X > LastArg then
begin
if Loop then
Result := CalculateInRange(X - Ceil((X - LastArg) / Len) * Len) else
Result := Values.List^[C - 1];
end else
Result := CalculateInRange(X);
end;
end;
end;
function CatmullRom(const V0, V1, V2, V3, X: Single): Single;
var
X2, X3: Single;
begin
X2 := Sqr(X);
X3 := X2 * X;
Result := 0.5 * (
(2 * V1) +
(-V0 + V2) * X +
(2*V0 - 5*V1 + 4*V2 - V3) * X2 +
(-V0 + 3*V1- 3*V2 + V3) * X3
);
end;
function CatmullRomSpline(const X: Single; const Loop: boolean;
const Arguments: TSingleList;
const Values: TSingleList): Single;
function CatmullRomSegment(const I: Integer; const XInSegment: Single): Single;
var
C: Integer;
V0, V1, V2, V3: Single;
begin
C := Arguments.Count;
V1 := Values.List^[I - 1];
V2 := Values.List^[I];
if I - 2 = -1 then
begin
if Loop then
V0 := Values.List^[C - 2] else // not Values.List^[C - 1], as first and last values are usually equal
V0 := Values.List^[0];
end else
V0 := Values.List^[I - 2];
if I + 1 = C then
begin
if Loop then
V3 := Values.List^[1] else // not Values.List^[C - 1], as first and last values are usually equal
V3 := Values.List^[C - 1];
end else
V3 := Values.List^[I + 1];
Result := CatmullRom(V0, V1, V2, V3, XInSegment);
end;
begin
if Arguments.Count <> Values.Count then
raise Exception.Create('CatmullRomSpline: Arguments and Values lists must have equal count');
Result := CalculateSpline(X, Loop, Arguments, Values,
{$ifdef CASTLE_OBJFPC}@{$endif} CatmullRomSegment);
end;
function Hermite(const V0, V1, Tangent0, Tangent1, X: Single): Single;
var
X2, X3: Single;
begin
X2 := Sqr(X);
X3 := X2 * X;
{ equation from https://en.wikipedia.org/wiki/Cubic_Hermite_spline }
Result :=
(2 * X3 - 3 * X2 + 1) * V0 +
(X3 - 2 * X2 + X) * Tangent0 +
(-2 * X3 + 3 *X2) * V1 +
(X3 - X2) * Tangent1;
end;
function HermiteSpline(const X: Single; const Loop: boolean;
const Arguments, Values, Tangents: TSingleList): Single;
function HermiteSegment(const I: Integer; const XInSegment: Single): Single;
begin
Result := Hermite(
Values .List^[I - 1], Values .List^[I],
Tangents.List^[I - 1], Tangents.List^[I], XInSegment);
end;
begin
if (Arguments.Count <> Values.Count) or
(Arguments.Count <> Tangents.Count) then
raise Exception.Create('HermiteSpline: Arguments and Values and Tangents lists must have equal count');
Result := CalculateSpline(X, Loop, Arguments, Values,
{$ifdef CASTLE_OBJFPC}@{$endif} HermiteSegment);
end;
function HermiteTense(const V0, V1, X: Single): Single;
var
X2, X3: Single;
begin
X2 := Sqr(X);
X3 := X2 * X;
Result :=
(2 * X3 - 3 * X2 + 1) * V0 +
(-2 * X3 + 3 *X2) * V1;
end;
function HermiteTenseSpline(const X: Single; const Loop: boolean;
const Arguments, Values: TSingleList): Single;
function HermiteTenseSegment(const I: Integer; const XInSegment: Single): Single;
begin
Result := HermiteTense(
Values.List^[I - 1], Values.List^[I], XInSegment);
end;
begin
if Arguments.Count <> Values.Count then
raise Exception.Create('HermiteTenseSpline: Arguments and Values lists must have equal count');
Result := CalculateSpline(X, Loop, Arguments, Values,
{$ifdef CASTLE_OBJFPC}@{$endif} HermiteTenseSegment);
end;
{ Calculate the convex hull ignoring Z coordinates of pixels.
That is, all Points[*][2] are ignored.
Returns newly created array with the indices to Points.
If you want to draw an edge of convex hull,
you want to iterate over these points like (for each i) Points[Result[i]]).
Points.Count must be >= 1. }
function ConvexHullIndexes(Points: TVector3List): TIntegerList;
{ this is the Jarvis algorithm, based on description in Cormen's
"Introduction to alg." }
var InResult: TBooleanList;
function FindNext(Start: Integer; var NextI: Integer; RightSide: boolean): boolean;
{ Starting from Points[Start], knowing that InResult[Start],
find next vertex on convex hull. If RightSide then we're moving from
lowest vertex to highest, walking over the right edge of the convex hull.
Else we're moving from highest to lowest, walking over the left edge
of hull.
Return false if RightSide and Start is the highest vertex,
or (not RightSide) and Start is the lowest vertex.
Else sets Next as appropriate and returns true.
Returned Next for SURE has InResult[Next] = false. }
var MaxCotanAngle, ThisCotan: Single;
MaxCotanAngleI, i: Integer;
begin
MaxCotanAngle := -MaxSingle;
MaxCotanAngleI := -1;
for i := 0 to Points.Count-1 do
if not InResult[i] then
begin
if SameValue(Points.List^[i][1], Points.List^[Start][1]) then
begin
if RightSide = (Points.List^[i][0] > Points.List^[Start][0]) then
begin
MaxCotanAngle := MaxSingle;
MaxCotanAngleI := i;
end;
end else
if RightSide = (Points.List^[i][1] > Points.List^[Start][1]) then
begin
ThisCotan:=(Points.List^[i][0] - Points.List^[Start][0]) /
(Points.List^[i][1] - Points.List^[Start][1]);
if ThisCotan > MaxCotanAngle then
begin
MaxCotanAngle := ThisCotan;
MaxCotanAngleI := i;
end;
end;
end;
Result := MaxCotanAngleI <> -1;
if Result then NextI := MaxCotanAngleI;
end;
procedure MarkNext(i: Integer);
begin
InResult[i] := true;
Result.Add(i);
end;
var MinY: Single;
i0, i, NextI: Integer;
begin
Assert(Points.Count >= 1);
{ find i0, index of lowest point in Points }
MinY := Points.List^[0][1];
i0 := 0;
for i := 1 to Points.Count-1 do
if Points.List^[i][1] < MinY then
begin
MinY := Points.List^[i][1];
i0 := i;
end;
InResult := TBooleanList.Create;
try
InResult.Count := Points.Count; { TFPGList already initializes all to false }
Result := TIntegerList.Create;
try
MarkNext(i0);
i := i0;
while FindNext(i, NextI, true ) do begin i := NextI; MarkNext(i); end;
while FindNext(i, NextI, false) do begin i := NextI; MarkNext(i); end;
except Result.Free; raise end;
finally InResult.Free end;
end;
end.
|