/usr/share/cain/gui/PValueMean.py is in cain 1.10+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | """P-value for the null hypothesis that the means are equal."""
# If we are running the unit tests.
if __name__ == '__main__':
import sys
sys.path.insert(1, '..')
import wx
import wx.grid
import numpy
import scipy.stats
from math import sqrt
from pylab import figure, plot, title, xlabel, ylabel
def studentTTest(m1, s1, n1, m2):
"""Arguments:
m denotes the mean.
s denotes the standard deviation.
n denotes the cardinality."""
# If the cardinalities are not greater than unity, the variance is not
# defined.
assert n1 > 1
# Check the case that the standard deviation is zero.
if s1 == 0:
if m1 == m2:
return 1.
else:
return 0.
# t-statistic.
t = - abs((m1 - m2)) * sqrt(n1) / s1
# Degrees of freedom.
df = n1 - 1
# 2-sided test.
return 2 * scipy.stats.t.cdf(t, df)
def welchTTest(m1, s1, n1, m2, s2, n2):
"""Arguments:
m denotes the mean.
s denotes the standard deviation.
n denotes the cardinality."""
# If the cardinalities are not greater than unity, the variance is not
# defined.
assert n1 > 1 and n2 > 1
# Check the cases that one or more standard deviation is zero.
if s1 == 0 or s2 == 0:
if m1 == m2:
return 1.
else:
return 0.
# Weighted variance.
wv = s1 * s1 / n1 + s2 * s2 / n2
# t-statistic.
t = - abs((m1 - m2)) / sqrt(wv)
# Degrees of freedom.
df = wv * wv / (s1**4 / (n1*n1*(n1-1)) + s2**4 / (n2*n2*(n2-1)))
# 2-sided test.
return 2 * scipy.stats.t.cdf(t, df)
def statistics(x):
"""Return a tuple of the mean, standard deviation, and cardinality."""
if type(x) is type(()):
return (x[0], x[1], float('inf'))
elif type(x) is type([]):
if len(x) > 1:
return (numpy.mean(x), sqrt(numpy.var(x)), len(x))
else:
assert x.__class__.__name__ == 'Histogram'
if x.isVarianceDefined():
return (x.mean, sqrt(x.getUnbiasedVariance()), x.cardinality)
return None
def oneSampleTTest(x, y):
s1 = statistics(x)
if s1:
if type(y) is type(()):
return studentTTest(s1[0], s1[1], s1[2], y[0])
elif y.__class__.__name__ == 'Histogram':
return studentTTest(s1[0], s1[1], s1[2], y.mean)
else:
assert False
else:
return 0.
def twoSampleTTest(x, y):
s1 = statistics(x)
s2 = statistics(y)
if s1 and s2:
return welchTTest(s1[0], s1[1], s1[2], s2[0], s2[1], s2[2])
else:
return 0.
def pValue(x1, r1, x2, r2):
assert not (r1 and r2)
if r1:
return oneSampleTTest(x2, x1)
elif r2:
return oneSampleTTest(x1, x2)
else:
return twoSampleTTest(x1, x2)
class Selection(wx.Panel):
def __init__(self, parent, state):
wx.Panel.__init__(self, parent, -1)
self.state = state
self.outputKeys = []
sizer = wx.BoxSizer(wx.VERTICAL)
self.output = wx.Choice(self, choices=[])
self.Bind(wx.EVT_CHOICE, self.onOutput, self.output)
sizer.Add(self.output, 1, wx.EXPAND | wx.ALL, 5)
self.species = wx.Choice(self, choices=[])
sizer.Add(self.species, 1, wx.EXPAND | wx.ALL, 5)
self.frame = wx.Choice(self, choices=[])
sizer.Add(self.frame, 1, wx.EXPAND | wx.ALL, 5)
self.SetSizer(sizer)
self.refresh()
def onOutput(self, event):
self.update()
event.Skip()
def update(self):
index = self.output.GetSelection()
if index == wx.NOT_FOUND:
return
# Check that the simulation output has not disappeared.
if not self.outputKeys[index] in self.state.output:
self.refresh()
return
output = self.state.output[self.outputKeys[index]]
modelId = self.outputKeys[index][0]
model = self.state.models[modelId]
# The species choice.
selection = self.species.GetSelection()
self.species.Clear()
self.species.Append('All species')
for i in output.recordedSpecies:
self.species.Append(model.speciesIdentifiers[i])
if selection != wx.NOT_FOUND and selection < self.species.GetCount():
self.species.SetSelection(selection)
else:
self.species.SetSelection(0)
# The frame choice.
selection = self.frame.GetSelection()
self.frame.Clear()
if output.__class__.__name__ in ('HistogramFrames', 'TimeSeriesFrames',
'StatisticsFrames'):
self.frame.Append('All frames')
for time in output.frameTimes:
self.frame.Append(str(time))
self.frame.Enable()
if selection != wx.NOT_FOUND and selection < self.frame.GetCount():
self.frame.SetSelection(selection)
else:
self.frame.SetSelection(0)
else:
self.frame.Disable()
def getSelections(self):
"""Return a tuple of the selection indices."""
return (self.output.GetSelection(), self.species.GetSelection(),
self.frame.GetSelection())
def getOutput(self):
"""Return a tuple of the following:
- The list of selected species.
- The list of selected frame times. The empty string indicates a
steady state solution instead of a frame.
- The list of selected output.
- A boolean value that indicates if the solution is to be used as
a reference. Currently, steady state solutions are used as a reference
solution, because I don't know how to define the number of degrees of
freedom."""
index = self.output.GetSelection()
if index == wx.NOT_FOUND:
return None, None, None, None
# Check that the simulation output has not disappeared.
if not self.outputKeys[index] in self.state.output:
self.refresh()
return None, None, None, None
data = self.state.output[self.outputKeys[index]]
s = self.species.GetSelection()
if s == wx.NOT_FOUND:
return None, None, None, None
if s == 0:
species = [self.species.GetString(n) for n in
range(1, self.species.GetCount())]
speciesIndices = range(self.species.GetCount() - 1)
else:
species = [self.species.GetString(s)]
speciesIndices = [s-1]
# First check the *Average cases because they do not use frames.
if data.__class__.__name__ == 'HistogramAverage':
return species, [''], [[data.histograms[s]]], True
if data.__class__.__name__ == 'StatisticsAverage':
return species, [''], [[data.statistics[s]]], True
# Then deal with output that has frames.
f = self.frame.GetSelection()
if f == wx.NOT_FOUND:
return None, None, None, None
if f == 0:
frames = [self.frame.GetString(n) for n in
range(1,self.frame.GetCount())]
frameIndices = range(self.frame.GetCount() - 1)
else:
frames = [self.frame.GetString(f)]
frameIndices = [f-1]
if data.__class__.__name__ == 'TimeSeriesFrames':
output = [[[x[i, j] for x in data.populations] for i in
frameIndices] for j in speciesIndices]
isReference = False
elif data.__class__.__name__ == 'HistogramFrames':
output = [[data.histograms[i][j] for i in frameIndices] for j in
speciesIndices]
isReference = False
elif data.__class__.__name__ == 'StatisticsFrames':
output = [[data.statistics[i][j] for i in frameIndices] for j in
speciesIndices]
isReference = True
else:
assert(False)
return species, frames, output, isReference
def refresh(self):
# Get the appropriate outputs.
self.outputKeys = []
for key in self.state.output:
if self.state.output[key].__class__.__name__ in\
('TimeSeriesFrames', 'HistogramFrames', 'HistogramAverage',
'StatisticsFrames', 'StatisticsAverage'):
self.outputKeys.append(key)
outputChoices = [x[0] + ', ' + x[1] for x in self.outputKeys]
selection = self.output.GetSelection()
self.output.Clear()
for choice in outputChoices:
self.output.Append(choice)
# Set the selection.
if selection != wx.NOT_FOUND and selection < self.output.GetCount():
self.output.SetSelection(selection)
else:
self.output.SetSelection(0)
# Updated the species and frame for this output.
self.update()
class PValueMean(wx.Frame):
def __init__(self, state, title, parent=None):
wx.Frame.__init__(self, parent, -1, title, size=(600,600))
self.state = state
# Selections.
selectionsSizer = wx.BoxSizer(wx.HORIZONTAL)
self.selections = [Selection(self, state), Selection(self, state)]
for s in self.selections:
selectionsSizer.Add(s, 1, wx.EXPAND | wx.ALL, 5)
sizer = wx.BoxSizer(wx.VERTICAL)
# Don't expand in the vertical direction.
sizer.Add(selectionsSizer, 0, wx.EXPAND | wx.ALIGN_TOP, 5)
# Calculate and plot.
buttonsSizer = wx.BoxSizer(wx.HORIZONTAL)
b = wx.Button(self, -1, 'Calculate')
self.Bind(wx.EVT_BUTTON, self.onCalculate, b)
buttonsSizer.Add(b, 0)
b = wx.Button(self, -1, 'Plot')
self.Bind(wx.EVT_BUTTON, self.onPlot, b)
buttonsSizer.Add(b, 0)
sizer.Add(buttonsSizer, 0, wx.ALL, 5)
# Grid.
self.grid = wx.grid.Grid(self)
self.grid.CreateGrid(0, 0)
self.grid.SetRowLabelSize(12*12)
sizer.Add(self.grid, 1, wx.EXPAND)
self.SetSizer(sizer)
# Intercept the close event.
self.Bind(wx.EVT_CLOSE, self.onClose)
def onClose(self, event):
# If there is a parent, it stores a dictionary of these frames.
if self.GetParent():
del self.GetParent().children[self.GetId()]
self.Destroy()
def refresh(self):
# CONTINUE: Store the current selections.
for s in self.selections:
s.refresh()
def onCalculate(self, event):
# Check that they are not trying to compare a selection with itself.
if self.selections[0].getSelections() ==\
self.selections[1].getSelections():
wx.MessageBox('The two selections must be distinct.',
'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
return
s1, f1, o1, r1 = self.selections[0].getOutput()
s2, f2, o2, r2 = self.selections[1].getOutput()
if not (s1 and s2):
wx.MessageBox('The two selections are invalid.',
'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
return
# Both selections may not be reference solutions.
if r1 and r2:
wx.MessageBox('One cannot calculate p-values for two reference solutions.',
'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
return
# Check for incompatible lengths.
if min(len(s1), len(s2)) != 1 and len(s1) != len(s2):
wx.MessageBox('The first selection has %s species while the other '\
'has %s.\nThe lengths are not compatible.' %
(len(s1), len(s2)),
'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
return
if min(len(f1), len(f2)) != 1 and len(f1) != len(f2):
wx.MessageBox('The first selection has %s frames while the other '\
'has %s.\nThe lengths are not compatible.' %
(len(f1), len(f2)),
'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
return
# Make the list of column (species) index pairs.
if len(s1) == 1:
cols = [(0, i) for i in range(len(s2))]
elif len(s2) == 1:
cols = [(i, 0) for i in range(len(s1))]
else:
assert len(s1) == len(s2)
cols = [(i, i) for i in range(len(s1))]
# Set the number of columns.
if len(cols) > self.grid.GetNumberCols():
self.grid.AppendCols(len(cols) - self.grid.GetNumberCols())
elif self.grid.GetNumberCols() > len(cols):
self.grid.DeleteCols(0, self.grid.GetNumberCols() - len(cols))
# Set the column labels.
if len(s1) == len(s2) and all([s1[i] == s2[i] for i in range(len(s1))]):
for i in range(len(cols)):
self.grid.SetColLabelValue(i, s1[cols[i][0]])
self.grid.SetColSize(i, 12*12)
else:
for i in range(len(cols)):
self.grid.SetColLabelValue(i, s1[cols[i][0]] + ', ' +
s2[cols[i][1]])
self.grid.SetColSize(i, 12*12)
# Make the list of row (frame) index pairs.
if len(f1) == 1:
rows = [(0, i) for i in range(len(f2))]
elif len(f2) == 1:
rows = [(i, 0) for i in range(len(f1))]
else:
assert len(f1) == len(f2)
rows = [(i, i) for i in range(len(f1))]
# Set the number of rows.
if len(rows) > self.grid.GetNumberRows():
self.grid.AppendRows(len(rows) - self.grid.GetNumberRows())
elif self.grid.GetNumberRows() > len(rows):
self.grid.DeleteRows(0, self.grid.GetNumberRows() - len(rows))
# Set the row labels.
if len(f1) == len(f2) and all([f1[i] == f2[i] for i in range(len(f1))]):
for i in range(len(rows)):
self.grid.SetRowLabelValue(i, f1[rows[i][0]])
else:
for i in range(len(rows)):
self.grid.SetRowLabelValue(i, f1[rows[i][0]] + ', ' +
f2[rows[i][1]])
# Calculate the p-values.
for j in range(len(cols)):
for i in range(len(rows)):
a = o1[cols[j][0]][rows[i][0]]
b = o2[cols[j][1]][rows[i][1]]
self.grid.SetCellValue(i, j, str(pValue(a, r1, b, r2)))
self.grid.SetReadOnly(i, j)
def onPlot(self, event):
"""Plot the columns of the grid."""
if self.grid.GetNumberCols() == 0 or self.grid.GetNumberRows() == 0:
wx.MessageBox('The grid is empty.',
'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
return
for j in range(self.grid.GetNumberCols()):
y = [float(self.grid.GetCellValue(i, j)) for i in
range(self.grid.GetNumberRows())]
figure()
plot(y)
title(self.grid.GetColLabelValue(j))
xlabel('Frame Number')
ylabel('P-value')
def main():
import sys
sys.path.insert(1, '..')
from random import uniform
from state.Model import Model
from state.Histogram import Histogram
from state.HistogramFrames import HistogramFrames
# A histogram.
numberOfBins = 4
multiplicity = 2
# Simulation output.
frameTimes = [0, 1]
recordedSpecies = [0, 1, 2]
hf = HistogramFrames(numberOfBins, multiplicity, recordedSpecies)
hf.setFrameTimes(frameTimes)
for i in range(len(frameTimes)):
for j in range(len(recordedSpecies)):
h = Histogram(numberOfBins, multiplicity)
h.setCurrentToMinimum()
for b in range(numberOfBins):
h.accumulate(b, uniform(0., 1.))
hf.histograms[i][j].merge(h)
# The model.
model = Model()
model.speciesIdentifiers = ['s1', 's2', 's3']
# The state.
class TestState:
pass
state = TestState()
state.models = {}
state.models['model'] = model
state.output = {}
state.output[('model', 'method')] = hf
app = wx.PySimpleApp()
PValueMean(state, 'P-value for equal means').Show()
app.MainLoop()
if __name__ == '__main__':
main()
|