This file is indexed.

/usr/include/bm/bmtrans.h is in bmagic 3.7.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
#ifndef BMTRANS__H__INCLUDED__
#define BMTRANS__H__INCLUDED__

/*
Copyright(c) 2002-2009 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)

Permission is hereby granted, free of charge, to any person 
obtaining a copy of this software and associated documentation 
files (the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, 
publish, distribute, sublicense, and/or sell copies of the Software, 
and to permit persons to whom the Software is furnished to do so, 
subject to the following conditions:

The above copyright notice and this permission notice shall be included 
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

For more information please visit:  http://bmagic.sourceforge.net

*/
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable : 4311 4312 4127)
#endif

namespace bm
{

/**
    Mini-matrix for bit transposition purposes
    @internal
*/
template<typename T, unsigned ROWS, unsigned COLS>
struct tmatrix
{
    typedef T value_type;
    
    T BM_ALIGN16 value[ROWS][COLS] BM_ALIGN16ATTR;

    enum params
    {
        n_rows = ROWS,
        n_columns = COLS
    };


    /// Row characteristics for transposed matrix
    struct rstat
    {
        unsigned               bit_count;
        unsigned               gap_count;
        bm::set_representation best_rep;
    };

    static unsigned rows() { return ROWS; }
    static unsigned cols() { return COLS; }

    const T* row(unsigned row_idx) const { return value[row_idx]; }
          T* row(unsigned row_idx)       { return value[row_idx]; }
};


/*!
    Bit array grabber - template specitialization for various basic types    
    @internal
*/
template<typename T, unsigned BPC>
struct bit_grabber
{
    static
    unsigned get(const T*, unsigned)
    {
        BM_ASSERT(0); return 0;
    }
};

template<>
struct bit_grabber<unsigned, 32>
{
    static
    unsigned get(const unsigned* arr, unsigned j)
    {
        return  (((arr[0] >> j) & 1) << 0) |
                (((arr[1] >> j) & 1) << 1) |
                (((arr[2] >> j) & 1) << 2) |
                (((arr[3] >> j) & 1) << 3) |
                (((arr[4] >> j) & 1) << 4) |
                (((arr[5] >> j) & 1) << 5) |
                (((arr[6] >> j) & 1) << 6) |
                (((arr[7] >> j) & 1) << 7) |
                (((arr[8] >> j) & 1) << 8) |
                (((arr[9] >> j) & 1) << 9) |
                (((arr[10]>> j) & 1) << 10)|
                (((arr[11]>> j) & 1) << 11)|
                (((arr[12]>> j) & 1) << 12)|
                (((arr[13]>> j) & 1) << 13)|
                (((arr[14]>> j) & 1) << 14)|
                (((arr[15]>> j) & 1) << 15)|
                (((arr[16]>> j) & 1) << 16)|
                (((arr[17]>> j) & 1) << 17)|
                (((arr[18]>> j) & 1) << 18)|
                (((arr[19]>> j) & 1) << 19)|
                (((arr[20]>> j) & 1) << 20)|
                (((arr[21]>> j) & 1) << 21)|
                (((arr[22]>> j) & 1) << 22)|
                (((arr[23]>> j) & 1) << 23)|
                (((arr[24]>> j) & 1) << 24)|
                (((arr[25]>> j) & 1) << 25)|
                (((arr[26]>> j) & 1) << 26)|
                (((arr[27]>> j) & 1) << 27)|
                (((arr[28]>> j) & 1) << 28)|
                (((arr[29]>> j) & 1) << 29)|
                (((arr[30]>> j) & 1) << 30)|
                (((arr[31]>> j) & 1) << 31);    
    }
};

template<>
struct bit_grabber<unsigned short, 16>
{
    static
    unsigned get(const unsigned short* arr, unsigned j)
    {
        return  (((arr[0] >> j) & 1) << 0) |
                (((arr[1] >> j) & 1) << 1) |
                (((arr[2] >> j) & 1) << 2) |
                (((arr[3] >> j) & 1) << 3) |
                (((arr[4] >> j) & 1) << 4) |
                (((arr[5] >> j) & 1) << 5) |
                (((arr[6] >> j) & 1) << 6) |
                (((arr[7] >> j) & 1) << 7) |
                (((arr[8] >> j) & 1) << 8) |
                (((arr[9] >> j) & 1) << 9) |
                (((arr[10]>> j) & 1) << 10)|
                (((arr[11]>> j) & 1) << 11)|
                (((arr[12]>> j) & 1) << 12)|
                (((arr[13]>> j) & 1) << 13)|
                (((arr[14]>> j) & 1) << 14)|
                (((arr[15]>> j) & 1) << 15);
    }
};


template<>
struct bit_grabber<unsigned char, 8>
{
    static
    unsigned get(const unsigned char* arr, unsigned j)
    {
        return  (((arr[0] >> j) & 1) << 0) |
                (((arr[1] >> j) & 1) << 1) |
                (((arr[2] >> j) & 1) << 2) |
                (((arr[3] >> j) & 1) << 3) |
                (((arr[4] >> j) & 1) << 4) |
                (((arr[5] >> j) & 1) << 5) |
                (((arr[6] >> j) & 1) << 6) |
                (((arr[7] >> j) & 1) << 7);
    }
};


/*!
    Bit transpose matrix grabber - template specitialization for various basic types    
    @internal
*/
template<typename T, unsigned BPC, unsigned BPS>
struct bit_trans_grabber
{
    static
    T get(const T  tmatrix[BPC][BPS], unsigned i, unsigned j)
    {
        T w = 0;
        
            // Next code hopes that compiler will completely
            // eliminate ifs (all conditions are known at compile time)
            //    ( typically C++ compilers are smart to do that)
            
            // 8-bit (minimum)
            w |=
                (((tmatrix[0][i] >> j) & 1) << 0) |
                (((tmatrix[1][i] >> j) & 1) << 1) |
                (((tmatrix[2][i] >> j) & 1) << 2) |
                (((tmatrix[3][i] >> j) & 1) << 3) |
                (((tmatrix[4][i] >> j) & 1) << 4) |
                (((tmatrix[5][i] >> j) & 1) << 5) |
                (((tmatrix[6][i] >> j) & 1) << 6) |
                (((tmatrix[7][i] >> j) & 1) << 7);
                
            // 16-bit
            if (BPC > 8) 
            {
                w |=
                (((tmatrix[8][i] >> j) & 1) << 8) |
                (((tmatrix[9][i] >> j) & 1) << 9) |
                (((tmatrix[10][i] >> j) & 1) << 10) |
                (((tmatrix[11][i] >> j) & 1) << 11) |
                (((tmatrix[12][i] >> j) & 1) << 12) |
                (((tmatrix[13][i] >> j) & 1) << 13) |
                (((tmatrix[14][i] >> j) & 1) << 14) |
                (((tmatrix[15][i] >> j) & 1) << 15);
            }
            
            // 32-bit
            if (BPC > 16)
            {
                w |= 
                (((tmatrix[16][i] >> j) & 1) << 16) |                
                (((tmatrix[17][i] >> j) & 1) << 17) |
                (((tmatrix[18][i] >> j) & 1) << 18) |
                (((tmatrix[19][i] >> j) & 1) << 19) |
                (((tmatrix[20][i] >> j) & 1) << 20) |
                (((tmatrix[21][i] >> j) & 1) << 21) |
                (((tmatrix[22][i] >> j) & 1) << 22) |
                (((tmatrix[23][i] >> j) & 1) << 23) |
                (((tmatrix[24][i] >> j) & 1) << 24) |
                (((tmatrix[25][i] >> j) & 1) << 25) |
                (((tmatrix[26][i] >> j) & 1) << 26) |
                (((tmatrix[27][i] >> j) & 1) << 27) |
                (((tmatrix[28][i] >> j) & 1) << 28) |
                (((tmatrix[29][i] >> j) & 1) << 29) |
                (((tmatrix[30][i] >> j) & 1) << 30) |
                (((tmatrix[31][i] >> j) & 1) << 31); 
            }   
        return w;
    }
};

/*
template<>
struct bit_trans_grabber<unsigned, 32, bm::set_block_plain_size>
{
    static
    unsigned get(const unsigned tmatrix[32][bm::set_block_plain_size], unsigned i, unsigned j)
    {
        return
                (((tmatrix[0][i] >> j) & 1) << 0) |
                (((tmatrix[1][i] >> j) & 1) << 1) |
                (((tmatrix[2][i] >> j) & 1) << 2) |
                (((tmatrix[3][i] >> j) & 1) << 3) |
                (((tmatrix[4][i] >> j) & 1) << 4) |
                (((tmatrix[5][i] >> j) & 1) << 5) |
                (((tmatrix[6][i] >> j) & 1) << 6) |
                (((tmatrix[7][i] >> j) & 1) << 7) |
                (((tmatrix[8][i] >> j) & 1) << 8) |
                (((tmatrix[9][i] >> j) & 1) << 9) |
                (((tmatrix[10][i] >> j) & 1) << 10) |
                (((tmatrix[11][i] >> j) & 1) << 11) |
                (((tmatrix[12][i] >> j) & 1) << 12) |
                (((tmatrix[13][i] >> j) & 1) << 13) |
                (((tmatrix[14][i] >> j) & 1) << 14) |
                (((tmatrix[15][i] >> j) & 1) << 15) |
                (((tmatrix[16][i] >> j) & 1) << 16) |
                (((tmatrix[17][i] >> j) & 1) << 17) |
                (((tmatrix[18][i] >> j) & 1) << 18) |
                (((tmatrix[19][i] >> j) & 1) << 19) |
                (((tmatrix[20][i] >> j) & 1) << 20) |
                (((tmatrix[21][i] >> j) & 1) << 21) |
                (((tmatrix[22][i] >> j) & 1) << 22) |
                (((tmatrix[23][i] >> j) & 1) << 23) |
                (((tmatrix[24][i] >> j) & 1) << 24) |
                (((tmatrix[25][i] >> j) & 1) << 25) |
                (((tmatrix[26][i] >> j) & 1) << 26) |
                (((tmatrix[27][i] >> j) & 1) << 27) |
                (((tmatrix[28][i] >> j) & 1) << 28) |
                (((tmatrix[29][i] >> j) & 1) << 29) |
                (((tmatrix[30][i] >> j) & 1) << 30) |
                (((tmatrix[31][i] >> j) & 1) << 31);    
    }
};
*/



/**
    Generic bit-array transposition function
    T - array type (any int)
    BPC - bit plain count
    BPS - bit plain size
    
    \param arr      - source array start
    \param arr_size - source array size
    \param tmatrix   - destination bit matrix
        
*/
template<typename T, unsigned BPC, unsigned BPS>
void vect_bit_transpose(const T* arr, 
                        unsigned arr_size,
                        T        tmatrix[BPC][BPS])
{
    BM_ASSERT(sizeof(T)*8 == BPC);

    unsigned col = 0;
    for (unsigned i = 0; i < arr_size; 
                         i+=BPC, arr+=BPC, 
                         ++col)
    {
        for (unsigned j = 0; j < BPC; ++j)
        {
            unsigned w = 
                bm::bit_grabber<T, BPC>::get(arr, j);
            T* row = tmatrix[j];
            row[col] = (T)w;
        } // for j
    } // for i
}


/**
    Restore bit array from the transposition matrix
    T - array type (any int)
    BPC - bit plain count
    BPS - bit plain size
    
    \param arr       - dest array
    \param tmatrix   - source bit-slice matrix
        
*/
template<typename T, unsigned BPC, unsigned BPS>
void vect_bit_trestore(const T  tmatrix[BPC][BPS], 
                             T* arr)
{
    unsigned col = 0;
    for (unsigned i = 0; i < BPS; ++i)
    {
        for (unsigned j = 0; j < BPC; ++j, ++col) 
        {
            arr[col] = 
                bm::bit_trans_grabber<T, BPC, BPS>::get(tmatrix, i, j);
        } // for j
    } // for i    
}



/*!
    \brief Compute pairwise Row x Row Humming distances on plains(rows) of 
           the transposed bit block
   \param tmatrix - bit-block transposition matrix (bit-plains)
   \param distance - pairwise NxN Humming distance matrix (diagonal is popcnt)

   @ingroup bitfunc
*/
template<typename T, unsigned BPC, unsigned BPS>
void tmatrix_distance(const T  tmatrix[BPC][BPS], 
                      unsigned distance[BPC][BPC])
{                      
    for (unsigned i = 0; i < BPC; ++i)
    {
        const T* r1 = tmatrix[i];
        const T* r1_end = r1 + BPS;
        distance[i][i] = 
            bm::bit_block_calc_count((bm::word_t*)r1, (bm::word_t*)r1_end);

        for (unsigned j = i + 1; j < BPC; ++j)
        {
            r1 = tmatrix[i];
            r1_end = r1 + BPS;
            unsigned count = 0;

            {
                const T* r2 = tmatrix[i];
                const T* r2_end = r2 + BPS;
                const bm::word_t* r3 = (bm::word_t*)(tmatrix[j]);
                do {
                    BM_INCWORD_BITCOUNT(count, r2[0] ^ r3[0]);
                    BM_INCWORD_BITCOUNT(count, r2[1] ^ r3[1]);
                    BM_INCWORD_BITCOUNT(count, r2[2] ^ r3[2]);
                    BM_INCWORD_BITCOUNT(count, r2[3] ^ r3[3]);
                    r2 += 4;
                    r3 += 4;
                } while (r2 < r2_end);
            }
            distance[i][j] = count;
        } // for j
    } // for i
}



const unsigned char ibpc_uncompr = 0; ///!< plain uncompressed
const unsigned char ibpc_all_zero= 1; ///!< plain ALL ZERO
const unsigned char ibpc_all_one = 2; ///!< plain ALL ONE
const unsigned char ibpc_equiv   = 3; ///!< plain is equal to plain M
const unsigned char ibpc_close   = 4; ///!< plain is close to plain M

const unsigned char ibpc_end = 8; ///!< ibpc limiter


/*!
    \brief Make a compression descriptor vector for bit-plains

    \param distance - pairwise distance matrix
    \param pc_vector - OUT compression descriptor vector
    <pre>
        pc_vector[] format:
            each element (pc_vector[i]) describes the plain compression:
                first 3 bits - compression code:
                    0 - plain uncompressed
                    1 - plain is ALL ZERO (000000...)
                    2 - plain is ALL ONE  (111111...)
                    3 - plain is equal to another plain J (5 high bits (max 31))
                    4 - plain is close (but not equal) to plain J
                next 5 bits - number of plain used as a XOR expression
                 ( compression codes: 3,4 )
    </pre>                    
    
    @ingroup bitfunc
*/
template<typename T, unsigned BPC, unsigned BPS>
void bit_iblock_make_pcv(
      const unsigned  distance[BPC][BPC],
      unsigned char*  pc_vector)
{
    BM_ASSERT(pc_vector);

    for (unsigned i = 0; i < BPC; ++i)
    {
        unsigned char pc = ibpc_uncompr; 
        unsigned row_bitcount = distance[i][i];
        
        const unsigned total_possible_max = sizeof(T)*8*BPS;
        switch (row_bitcount)
        {
        case 0:
            pc_vector[i] = ibpc_all_zero; 
            continue;
        case total_possible_max:
            pc_vector[i] = ibpc_all_one; 
            continue;
        }
        
        // Dense-populated set, leave it as is
        if (row_bitcount >  total_possible_max/2)
        {
            pc_vector[i] = ibpc_uncompr;
            continue;
        }
        
        // scan for the closest neighbor
        //
        unsigned rmin = ~0u;
        unsigned rmin_idx = 0;
        for (unsigned j = i + 1; j < BPC; ++j)
        {
            unsigned d = distance[i][j];
            if (d < rmin) // new minimum - closest plain
            {
                if (d == 0) // plain is complete duplicate of j
                {
                    pc = (unsigned char)(ibpc_equiv | (j << 3));
                    break;
                }
                rmin = d; rmin_idx = j;
            }
        } // for j
        
        if ((pc == 0) && rmin_idx && (rmin < row_bitcount)) // neighbor found
        {
            pc = (unsigned char)(ibpc_close | (rmin_idx << 3));
        }
        pc_vector[i] = pc;
    } // for i
}


/*!
    \brief Compute number of ibpc codes in pc_vector
*/
inline
void bit_iblock_pcv_stat(const unsigned char* BMRESTRICT pc_vector,
                         const unsigned char* BMRESTRICT pc_vector_end,
                         unsigned* BMRESTRICT pc_vector_stat
                        )
{
    BM_ASSERT(pc_vector_stat);
    // pc_vector_stat MUST be assigned to 0 before 
    do 
    {
        unsigned ibpc = *pc_vector & 7;
        ++(pc_vector_stat[ibpc]);
    } while (++pc_vector < pc_vector_end);
}



/**
    \brief Matrix reduction based on transformation pc vector
*/
inline
void bit_iblock_reduce(
    const unsigned  tmatrix[bm::set_block_plain_cnt][bm::set_block_plain_size],
    const unsigned char* BMRESTRICT pc_vector,
    const unsigned char* BMRESTRICT pc_vector_end,
    unsigned  tmatrix_out[bm::set_block_plain_cnt][bm::set_block_plain_size])
{
    ::memset(tmatrix_out, 0, sizeof(tmatrix_out));
    
    unsigned row = 0;
    do 
    {
        unsigned ibpc = *pc_vector & 7;
        unsigned n_row = *pc_vector >> 3;
        
        switch(ibpc)
        {
        case bm::ibpc_uncompr:
            {
            const unsigned* r1 = tmatrix[row];
            unsigned* r_out = tmatrix_out[row];
            for (unsigned i = 0; i < bm::set_block_plain_size; ++i)
            {
                r_out[i] = r1[i];
            }
            }
            break;
        case bm::ibpc_all_zero:
            break;
        case bm::ibpc_all_one:
            break;
        case bm::ibpc_equiv:
            break;
        case bm::ibpc_close:
            {
            const unsigned* r1 = tmatrix[row];
            const unsigned* r2 = tmatrix[n_row];
            unsigned* r_out = tmatrix_out[row];
            for (unsigned i = 0; i < bm::set_block_plain_size; ++i)
            {
                r_out[i] = r1[i] ^ r2[i];
            } // for
            }
            break;
        default:
            BM_ASSERT(0);
            break;
        } // switch
        ++row;
    } while (++pc_vector < pc_vector_end);
    
}

/**
    \brief Transposed Matrix reduction based on transformation pc vector
*/
template<class TMatrix>
void tmatrix_reduce(TMatrix& tmatrix, 
                    const unsigned char* pc_vector,
                    const unsigned       effective_cols)
{
    BM_ASSERT(pc_vector);

    typedef typename TMatrix::value_type value_type;

    const unsigned char* pc_vector_end = pc_vector + tmatrix.rows();
    unsigned row = 0;
    unsigned cols = effective_cols ? effective_cols : tmatrix.cols();

    do
    {
        unsigned ibpc = *pc_vector & 7;        
        switch(ibpc)
        {
        case bm::ibpc_uncompr:
        case bm::ibpc_all_zero:
        case bm::ibpc_all_one:
        case bm::ibpc_equiv:
            break;
        case bm::ibpc_close:
            {
            unsigned n_row = *pc_vector >> 3;
            BM_ASSERT(n_row > row);

            value_type* r1 = tmatrix.row(row);
            const value_type* r2 = tmatrix.row(n_row);
            for (unsigned i = 0; i < cols; ++i)
            {
                r1[i] ^= r2[i];
            } // for
            }
            break;
        default:
            BM_ASSERT(0);
            break;
        } // switch
        ++row;
    } while (++pc_vector < pc_vector_end);
}

/**
    \brief Transposed Matrix restore based on transformation pc vector
*/
template<class TMatrix>
void tmatrix_restore(TMatrix& tmatrix, 
                     const unsigned char* pc_vector,
                     const unsigned effective_cols)
{
    BM_ASSERT(pc_vector);

    typedef typename TMatrix::value_type value_type;

    unsigned cols = effective_cols ? effective_cols : tmatrix.cols();
    for (int row = tmatrix.rows()-1; row >= 0; --row)
    {
        unsigned ibpc = pc_vector[row] & 7;  
        int n_row = pc_vector[row] >> 3;

        value_type* r1 = tmatrix.row(row);

        switch(ibpc)
        {
        case bm::ibpc_uncompr:
            break;
        case bm::ibpc_all_zero:
            for (unsigned i = 0; i < cols; ++i)
                r1[i] = 0;
             break;
        case bm::ibpc_all_one:
            for (unsigned i = 0; i < cols; ++i)
                r1[i] = (value_type)(~0);
            break;
        case bm::ibpc_equiv:
            {
            BM_ASSERT(n_row > row);
            const value_type* r2 = tmatrix.row(n_row);
            for (unsigned i = 0; i < cols; ++i)
                r1[i] = r2[i];
            }
            break;
        case bm::ibpc_close:
            {      
            BM_ASSERT(n_row > row);
            const value_type* r2 = tmatrix.row(n_row);
            for (unsigned i = 0; i < cols; ++i)
                r1[i] ^= r2[i];
            }
            break;
        default:
            BM_ASSERT(0);
            break;
        } // switch
    }  // for

}



/**
    \brief Copy GAP block body to bit block with DGap transformation 
    \internal
*/
template<typename GT>//, typename BT>
void gap_2_bitblock(const GT* BMRESTRICT gap_buf, 
                          GT* BMRESTRICT block, 
                          unsigned       block_size)
{
    GT* dgap_buf = block;
    GT* block_end = block + block_size;

    GT* dgap_end = gap_2_dgap<GT>(gap_buf, dgap_buf, false);
//    GT* block_end2 = (GT*) block_end;
    
    // zero the tail memory
    for ( ;dgap_end < block_end; ++dgap_end)
    {
        *dgap_end = 0;
    }
}

/**
    @brief Compute t-matrix rows statistics used for compression

    @param tmatrix - transposed matrix
    @param pc_vector - row content vector
    @param rstat - output row vector

    @internal
*/
template<class TMatrix>
void compute_tmatrix_rstat(const TMatrix& tmatrix, 
                           const unsigned char* pc_vector,
                           typename TMatrix::rstat* rstat,
                           unsigned effective_cols)
{
    BM_ASSERT(rstat);
    typedef typename TMatrix::value_type value_type;

    unsigned cols = effective_cols ? effective_cols : tmatrix.cols();
    //unsigned cols = tmatrix.cols();
    unsigned rows = tmatrix.rows();

    for (unsigned i = 0; i < rows; ++i)
    {
        unsigned ibpc = pc_vector[i] & 7;        
        switch(ibpc)
        {
        case bm::ibpc_all_zero:
        case bm::ibpc_all_one:
        case bm::ibpc_equiv:
            rstat[i].bit_count = rstat[i].gap_count = 0;
            rstat[i].best_rep = bm::set_bitset;
            break;
        case bm::ibpc_uncompr:
        case bm::ibpc_close:
            {
            const value_type* r1 = tmatrix.row(i);
            const value_type* r1_end = r1 + cols;
            // TODO: find how to deal with the potentially incorrect type-cast
            bm::bit_count_change32((bm::word_t*)r1, (bm::word_t*)r1_end, 
                                    &rstat[i].bit_count, &rstat[i].gap_count);

            const unsigned bitset_size = sizeof(value_type) * cols;
            const unsigned total_possible_max_bits = sizeof(value_type)*8*cols;

            rstat[i].best_rep = 
                bm::best_representation(rstat[i].bit_count,
                                        total_possible_max_bits,
                                        rstat[i].gap_count,
                                        bitset_size);

            }
            break;
        default:
            BM_ASSERT(0);
            break;
        } // switch

    } // for 
}



/**
    \brief Compute effective right column border of the t-matrix
    \internal
*/
template<typename TM>
unsigned find_effective_columns(const TM& tmatrix)
{
    // TODO: need optimization in order not to scan the whole space
    unsigned col = 1;
    for (unsigned i = 0; i < tmatrix.rows(); ++i)
    {
        const typename TM::value_type* row = tmatrix.value[i];
        for (unsigned j = 0; j < tmatrix.cols(); ++j)
        {
            if (row[j] != 0 && j > col)
            {
                col = j;
            }
        }
    }
    return col;
}


/**
    \brief Bit-plain splicing of a GAP block
    
    GT - gap word type
    BT - block word type
    BLOCK_SIZE - bit block size in words (works as a transposition basis)
    
    @internal
*/
template<typename GT, typename BT, unsigned BLOCK_SIZE>
class gap_transpose_engine
{
public:
    /// cryptic calculation of equivalent size for the transpose matrix
    /// based on BLOCK_SIZE and sizeof(GT)(16)
    ///
    /// matrix[size_of_gap*8][(Size_block_in_bytes / size_of_gap) / number_of_planes)] 
    typedef 
    tmatrix<GT, sizeof(GT)*8, 
                (((BLOCK_SIZE * sizeof(unsigned)) / (sizeof(GT))) / (sizeof(GT) * 8))>
                tmatrix_type;
                
    gap_transpose_engine() : eff_cols_(0)
    {}            
    
    /// Transpose GAP block through a temp. block of aligned(!) memory
    /// 
    void transpose(const GT* BMRESTRICT gap_buf)
    {
        const unsigned arr_size = BLOCK_SIZE * sizeof(unsigned) / sizeof(GT);

        BM_ASSERT(sizeof(tmatrix_.value) == tmatrix_type::n_columns * 
                                            tmatrix_type::n_rows * sizeof(GT));
        // load all GAP as D-GAP(but not head word) into aligned bit-block
        gap_2_bitblock(gap_buf, tmp_gap_block_, BLOCK_SIZE * 2);
        
        // transpose
        vect_bit_transpose<GT, tmatrix_type::n_rows, tmatrix_type::n_columns>
                           (tmp_gap_block_, arr_size, tmatrix_.value);

        // calculate number of non-zero columns
        eff_cols_ = find_effective_columns(tmatrix_);        
    }

	/// Transpose array of shorts
	///
	void transpose(const GT* BMRESTRICT garr,
		           unsigned garr_size)
	{
		BM_ASSERT(garr_size);

		bit_block_set(tmp_gap_block_, 0);
		::memcpy(tmp_gap_block_, garr, sizeof(GT)*garr_size);

        const unsigned arr_size = BLOCK_SIZE * sizeof(unsigned) / sizeof(GT);
        BM_ASSERT(sizeof(tmatrix_.value) == tmatrix_type::n_columns * 
                                            tmatrix_type::n_rows * sizeof(GT));
        // transpose
        vect_bit_transpose<GT, tmatrix_type::n_rows, tmatrix_type::n_columns>
                           (tmp_gap_block_, arr_size, tmatrix_.value);

        // calculate number of non-zero columns
        eff_cols_ = find_effective_columns(tmatrix_);        

	}

    void compute_distance_matrix()
    {
        tmatrix_distance<typename tmatrix_type::value_type, 
                         tmatrix_type::n_rows, tmatrix_type::n_columns>
                         (tmatrix_.value, distance_);

        // make compression descriptor vector and statistics vector
        bit_iblock_make_pcv<unsigned char, 
                            tmatrix_type::n_rows, tmatrix_type::n_columns>
                            (distance_, pc_vector_);

        bit_iblock_pcv_stat(pc_vector_, 
                            pc_vector_ + tmatrix_type::n_rows, 
                            pc_vector_stat_);
    }

    void reduce()
    {
        tmatrix_reduce(tmatrix_, pc_vector_, eff_cols_);
        compute_tmatrix_rstat(tmatrix_, pc_vector_, rstat_vector_, eff_cols_);
    }

    void restore()
    {
        tmatrix_restore(tmatrix_, pc_vector_, eff_cols_);
    }
    
    
    /// Restore GAP block from the transposed matrix
    ///
    void trestore(GT             gap_head, 
                  GT* BMRESTRICT gap_buf)
    {
        BM_ASSERT(sizeof(tmatrix_.value) == tmatrix_type::n_columns * 
                                            tmatrix_type::n_rows * sizeof(GT));
  
        // restore into a temp buffer
        GT* gap_tmp = tmp_gap_block_;
       
        vect_bit_trestore<GT, tmatrix_type::n_rows, tmatrix_type::n_columns>(tmatrix_.value, gap_tmp);
        
        // D-Gap to GAP block recalculation
        gap_tmp = tmp_gap_block_;
        dgap_2_gap<GT>(gap_tmp, gap_buf, gap_head);
    }
    
public:
//    GT            gap_head_;
    tmatrix_type                  tmatrix_;    
    unsigned                      eff_cols_;
    unsigned                      distance_[tmatrix_type::n_rows][tmatrix_type::n_rows];
    unsigned char                 pc_vector_[tmatrix_type::n_rows];
    unsigned                      pc_vector_stat_[bm::ibpc_end];
    typename tmatrix_type::rstat  rstat_vector_[tmatrix_type::n_rows];

    GT  BM_ALIGN16                tmp_gap_block_[BLOCK_SIZE*2] BM_ALIGN16ATTR;
};


} // namespace bm

#ifdef _MSC_VER
#pragma warning( pop )
#endif


#endif