/usr/share/doc/bird-doc/prog-2.html is in bird-doc 1.6.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<META NAME="GENERATOR" CONTENT="LinuxDoc-Tools 1.0.9">
<TITLE>BIRD Programmer's Documentation: Core</TITLE>
<LINK HREF="prog-3.html" REL=next>
<LINK HREF="prog-1.html" REL=previous>
<LINK HREF="prog.html#toc2" REL=contents>
</HEAD>
<BODY>
<A HREF="prog-3.html">Next</A>
<A HREF="prog-1.html">Previous</A>
<A HREF="prog.html#toc2">Contents</A>
<HR>
<H2><A NAME="s2">2.</A> <A HREF="prog.html#toc2">Core</A></H2>
<H2><A NAME="ss2.1">2.1</A> <A HREF="prog.html#toc2.1">Forwarding Information Base</A>
</H2>
<P>
<P>FIB is a data structure designed for storage of routes indexed by their
network prefixes. It supports insertion, deletion, searching by prefix,
`routing' (in CIDR sense, that is searching for a longest prefix matching
a given IP address) and (which makes the structure very tricky to implement)
asynchronous reading, that is enumerating the contents of a FIB while other
modules add, modify or remove entries.
<P>Internally, each FIB is represented as a collection of nodes of type <I>fib_node</I>
indexed using a sophisticated hashing mechanism.
We use two-stage hashing where we calculate a 16-bit primary hash key independent
on hash table size and then we just divide the primary keys modulo table size
to get a real hash key used for determining the bucket containing the node.
The lists of nodes in each bucket are sorted according to the primary hash
key, hence if we keep the total number of buckets to be a power of two,
re-hashing of the structure keeps the relative order of the nodes.
<P>To get the asynchronous reading consistent over node deletions, we need to
keep a list of readers for each node. When a node gets deleted, its readers
are automatically moved to the next node in the table.
<P>Basic FIB operations are performed by functions defined by this module,
enumerating of FIB contents is accomplished by using the <B>FIB_WALK()</B> macro
or <B>FIB_ITERATE_START()</B> if you want to do it asynchronously.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>fib_init</B>
(<I>struct fib *</I> <B>f</B>, <I>pool *</I> <B>p</B>, <I>unsigned</I> <B>node_size</B>, <I>unsigned</I> <B>hash_order</B>, <I>fib_init_func</I> <B>init</B>) -- initialize a new FIB
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>the FIB to be initialized (the structure itself being allocated by the caller)
<DT><I>pool *</I> <B>p</B><DD><P>pool to allocate the nodes in
<DT><I>unsigned</I> <B>node_size</B><DD><P>node size to be used (each node consists of a standard header <I>fib_node</I>
followed by user data)
<DT><I>unsigned</I> <B>hash_order</B><DD><P>initial hash order (a binary logarithm of hash table size), 0 to use default order
(recommended)
<DT><I>fib_init_func</I> <B>init</B><DD><P>pointer a function to be called to initialize a newly created node
</DL>
<H3>Description</H3>
<P>This function initializes a newly allocated FIB and prepares it for use.
<HR><H3>Function</H3>
<P><I>void *</I>
<B>fib_find</B>
(<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) -- search for FIB node by prefix
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
<DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
<DT><I>int</I> <B>len</B><DD><P>prefix length
</DL>
<H3>Description</H3>
<P>Search for a FIB node corresponding to the given prefix, return
a pointer to it or <I>NULL</I> if no such node exists.
<HR><H3>Function</H3>
<P><I>void *</I>
<B>fib_get</B>
(<I>struct fib *</I> <B>f</B>, <I>ip_addr *</I> <B>a</B>, <I>int</I> <B>len</B>) -- find or create a FIB node
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to work with
<DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the prefix
<DT><I>int</I> <B>len</B><DD><P>prefix length
</DL>
<H3>Description</H3>
<P>Search for a FIB node corresponding to the given prefix and
return a pointer to it. If no such node exists, create it.
<HR><H3>Function</H3>
<P><I>void *</I>
<B>fib_route</B>
(<I>struct fib *</I> <B>f</B>, <I>ip_addr</I> <B>a</B>, <I>int</I> <B>len</B>) -- CIDR routing lookup
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to search in
<DT><I>ip_addr</I> <B>a</B><DD><P>pointer to IP address of the prefix
<DT><I>int</I> <B>len</B><DD><P>prefix length
</DL>
<H3>Description</H3>
<P>Search for a FIB node with longest prefix matching the given
network, that is a node which a CIDR router would use for routing
that network.
<HR><H3>Function</H3>
<P><I>void</I>
<B>fib_delete</B>
(<I>struct fib *</I> <B>f</B>, <I>void *</I> <B>E</B>) -- delete a FIB node
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to delete from
<DT><I>void *</I> <B>E</B><DD><P>entry to delete
</DL>
<H3>Description</H3>
<P>This function removes the given entry from the FIB,
taking care of all the asynchronous readers by shifting
them to the next node in the canonical reading order.
<HR><H3>Function</H3>
<P><I>void</I>
<B>fib_free</B>
(<I>struct fib *</I> <B>f</B>) -- delete a FIB
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be deleted
</DL>
<H3>Description</H3>
<P>This function deletes a FIB -- it frees all memory associated
with it and all its entries.
<HR><H3>Function</H3>
<P><I>void</I>
<B>fib_check</B>
(<I>struct fib *</I> <B>f</B>) -- audit a FIB
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct fib *</I> <B>f</B><DD><P>FIB to be checked
</DL>
<H3>Description</H3>
<P>This debugging function audits a FIB by checking its internal consistency.
Use when you suspect somebody of corrupting innocent data structures.
<H2><A NAME="ss2.2">2.2</A> <A HREF="prog.html#toc2.2">Routing tables</A>
</H2>
<P>
<P>Routing tables are probably the most important structures BIRD uses. They
hold all the information about known networks, the associated routes and
their attributes.
<P>There are multiple routing tables (a primary one together with any
number of secondary ones if requested by the configuration). Each table
is basically a FIB containing entries describing the individual
destination networks. For each network (represented by structure <I>net</I>),
there is a one-way linked list of route entries (<I>rte</I>), the first entry
on the list being the best one (i.e., the one we currently use
for routing), the order of the other ones is undetermined.
<P>The <I>rte</I> contains information specific to the route (preference, protocol
metrics, time of last modification etc.) and a pointer to a <I>rta</I> structure
(see the route attribute module for a precise explanation) holding the
remaining route attributes which are expected to be shared by multiple
routes in order to conserve memory.
<P>
<P><HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_find</B>
(<I>net *</I> <B>net</B>, <I>struct rte_src *</I> <B>src</B>) -- find a route
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>net *</I> <B>net</B><DD><P>network node
<DT><I>struct rte_src *</I> <B>src</B><DD><P>route source
</DL>
<H3>Description</H3>
<P>The <B>rte_find()</B> function returns a route for destination <B>net</B>
which is from route source <B>src</B>.
<HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_get_temp</B>
(<I>rta *</I> <B>a</B>) -- get a temporary <I>rte</I>
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>a</B><DD><P>attributes to assign to the new route (a <I>rta</I>; in case it's
un-cached, <B>rte_update()</B> will create a cached copy automatically)
</DL>
<H3>Description</H3>
<P>Create a temporary <I>rte</I> and bind it with the attributes <B>a</B>.
Also set route preference to the default preference set for
the protocol.
<HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_cow_rta</B>
(<I>rte *</I> <B>r</B>, <I>linpool *</I> <B>lp</B>) -- get a private writable copy of <I>rte</I> with writable <I>rta</I>
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
<DT><I>linpool *</I> <B>lp</B><DD><P>a linpool from which to allocate <I>rta</I>
</DL>
<H3>Description</H3>
<P><B>rte_cow_rta()</B> takes a <I>rte</I> and prepares it and associated <I>rta</I> for
modification. There are three possibilities: First, both <I>rte</I> and <I>rta</I> are
private copies, in that case they are returned unchanged. Second, <I>rte</I> is
private copy, but <I>rta</I> is cached, in that case <I>rta</I> is duplicated using
<B>rta_do_cow()</B>. Third, both <I>rte</I> is shared and <I>rta</I> is cached, in that case
both structures are duplicated by <B>rte_do_cow()</B> and <B>rta_do_cow()</B>.
<P>Note that in the second case, cached <I>rta</I> loses one reference, while private
copy created by <B>rta_do_cow()</B> is a shallow copy sharing indirect data (eattrs,
nexthops, ...) with it. To work properly, original shared <I>rta</I> should have
another reference during the life of created private copy.
<H3>Result</H3>
<P>a pointer to the new writable <I>rte</I> with writable <I>rta</I>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_announce</B>
(<I>rtable *</I> <B>tab</B>, <I>unsigned</I> <B>type</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>rte *</I> <B>new_best</B>, <I>rte *</I> <B>old_best</B>, <I>rte *</I> <B>before_old</B>) -- announce a routing table change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>table the route has been added to
<DT><I>unsigned</I> <B>type</B><DD><P>type of route announcement (RA_OPTIMAL or RA_ANY)
<DT><I>net *</I> <B>net</B><DD><P>network in question
<DT><I>rte *</I> <B>new</B><DD><P>the new route to be announced
<DT><I>rte *</I> <B>old</B><DD><P>the previous route for the same network
<DT><I>rte *</I> <B>new_best</B><DD><P>the new best route for the same network
<DT><I>rte *</I> <B>old_best</B><DD><P>the previous best route for the same network
<DT><I>rte *</I> <B>before_old</B><DD><P>The previous route before <B>old</B> for the same network.
If <B>before_old</B> is NULL <B>old</B> was the first.
</DL>
<H3>Description</H3>
<P>This function gets a routing table update and announces it
to all protocols that acccepts given type of route announcement
and are connected to the same table by their announcement hooks.
<P>Route announcement of type <I>RA_OPTIMAL</I> si generated when optimal
route (in routing table <B>tab</B>) changes. In that case <B>old</B> stores the
old optimal route.
<P>Route announcement of type <I>RA_ANY</I> si generated when any route (in
routing table <B>tab</B>) changes In that case <B>old</B> stores the old route
from the same protocol.
<P>For each appropriate protocol, we first call its <B>import_control()</B>
hook which performs basic checks on the route (each protocol has a
right to veto or force accept of the route before any filter is
asked) and adds default values of attributes specific to the new
protocol (metrics, tags etc.). Then it consults the protocol's
export filter and if it accepts the route, the <B>rt_notify()</B> hook of
the protocol gets called.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_free</B>
(<I>rte *</I> <B>e</B>) -- delete a <I>rte</I>
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be deleted
</DL>
<H3>Description</H3>
<P><B>rte_free()</B> deletes the given <I>rte</I> from the routing table it's linked to.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_update2</B>
(<I>struct announce_hook *</I> <B>ah</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>struct rte_src *</I> <B>src</B>) -- enter a new update to a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>pointer to table announce hook
<DT><I>net *</I> <B>net</B><DD><P>network node
<DT><I>rte *</I> <B>new</B><DD><P>a <I>rte</I> representing the new route or <I>NULL</I> for route removal.
<DT><I>struct rte_src *</I> <B>src</B><DD><P>protocol originating the update
</DL>
<H3>Description</H3>
<P>This function is called by the routing protocols whenever they discover
a new route or wish to update/remove an existing route. The right announcement
sequence is to build route attributes first (either un-cached with <B>aflags</B> set
to zero or a cached one using <B>rta_lookup()</B>; in this case please note that
you need to increase the use count of the attributes yourself by calling
<B>rta_clone()</B>), call <B>rte_get_temp()</B> to obtain a temporary <I>rte</I>, fill in all
the appropriate data and finally submit the new <I>rte</I> by calling <B>rte_update()</B>.
<P><B>src</B> specifies the protocol that originally created the route and the meaning
of protocol-dependent data of <B>new</B>. If <B>new</B> is not <I>NULL</I>, <B>src</B> have to be the
same value as <B>new</B>->attrs->proto. <B>p</B> specifies the protocol that called
<B>rte_update()</B>. In most cases it is the same protocol as <B>src</B>. <B>rte_update()</B>
stores <B>p</B> in <B>new</B>->sender;
<P>When <B>rte_update()</B> gets any route, it automatically validates it (checks,
whether the network and next hop address are valid IP addresses and also
whether a normal routing protocol doesn't try to smuggle a host or link
scope route to the table), converts all protocol dependent attributes stored
in the <I>rte</I> to temporary extended attributes, consults import filters of the
protocol to see if the route should be accepted and/or its attributes modified,
stores the temporary attributes back to the <I>rte</I>.
<P>Now, having a "public" version of the route, we
automatically find any old route defined by the protocol <B>src</B>
for network <B>n</B>, replace it by the new one (or removing it if <B>new</B> is <I>NULL</I>),
recalculate the optimal route for this destination and finally broadcast
the change (if any) to all routing protocols by calling <B>rte_announce()</B>.
<P>All memory used for attribute lists and other temporary allocations is taken
from a special linear pool <B>rte_update_pool</B> and freed when <B>rte_update()</B>
finishes.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_refresh_begin</B>
(<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) -- start a refresh cycle
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>t</B><DD><P>related routing table
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook
</DL>
<H3>Description</H3>
<P>This function starts a refresh cycle for given routing table and announce
hook. The refresh cycle is a sequence where the protocol sends all its valid
routes to the routing table (by <B>rte_update()</B>). After that, all protocol
routes (more precisely routes with <B>ah</B> as <B>sender</B>) not sent during the
refresh cycle but still in the table from the past are pruned. This is
implemented by marking all related routes as stale by REF_STALE flag in
<B>rt_refresh_begin()</B>, then marking all related stale routes with REF_DISCARD
flag in <B>rt_refresh_end()</B> and then removing such routes in the prune loop.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_refresh_end</B>
(<I>rtable *</I> <B>t</B>, <I>struct announce_hook *</I> <B>ah</B>) -- end a refresh cycle
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>t</B><DD><P>related routing table
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>related announce hook
</DL>
<H3>Description</H3>
<P>This function starts a refresh cycle for given routing table and announce
hook. See <B>rt_refresh_begin()</B> for description of refresh cycles.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_dump</B>
(<I>rte *</I> <B>e</B>) -- dump a route
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P><I>rte</I> to be dumped
</DL>
<H3>Description</H3>
<P>This functions dumps contents of a <I>rte</I> to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_dump</B>
(<I>rtable *</I> <B>t</B>) -- dump a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>t</B><DD><P>routing table to be dumped
</DL>
<H3>Description</H3>
<P>This function dumps contents of a given routing table to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_dump_all</B>
(<B>void</B>) -- dump all routing tables
<P>
<H3>Description</H3>
<P>
<P>This function dumps contents of all routing tables to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_init</B>
(<B>void</B>) -- initialize routing tables
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup. It initializes the
routing table module.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rt_prune_table</B>
(<I>rtable *</I> <B>tab</B>) -- prune a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>a routing table for pruning
</DL>
<H3>Description</H3>
<P>This function scans the routing table <B>tab</B> and removes routes belonging to
flushing protocols, discarded routes and also stale network entries, in a
similar fashion like <B>rt_prune_loop()</B>. Returns 1 when all such routes are
pruned. Contrary to <B>rt_prune_loop()</B>, this function is not a part of the
protocol flushing loop, but it is called from <B>rt_event()</B> for just one routing
table.
<P>Note that <B>rt_prune_table()</B> and <B>rt_prune_loop()</B> share (for each table) the
prune state (<B>prune_state</B>) and also the pruning iterator (<B>prune_fit</B>).
<HR><H3>Function</H3>
<P><I>int</I>
<B>rt_prune_loop</B>
(<B>void</B>) -- prune routing tables
<P>
<H3>Description</H3>
<P>
<P>The prune loop scans routing tables and removes routes belonging to flushing
protocols, discarded routes and also stale network entries. Returns 1 when
all such routes are pruned. It is a part of the protocol flushing loop.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_lock_table</B>
(<I>rtable *</I> <B>r</B>) -- lock a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>r</B><DD><P>routing table to be locked
</DL>
<H3>Description</H3>
<P>Lock a routing table, because it's in use by a protocol,
preventing it from being freed when it gets undefined in a new
configuration.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_unlock_table</B>
(<I>rtable *</I> <B>r</B>) -- unlock a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>r</B><DD><P>routing table to be unlocked
</DL>
<H3>Description</H3>
<P>Unlock a routing table formerly locked by <B>rt_lock_table()</B>,
that is decrease its use count and delete it if it's scheduled
for deletion by configuration changes.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_commit</B>
(<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>) -- commit new routing table configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>new</B><DD><P>new configuration
<DT><I>struct config *</I> <B>old</B><DD><P>original configuration or <I>NULL</I> if it's boot time config
</DL>
<H3>Description</H3>
<P>Scan differences between <B>old</B> and <B>new</B> configuration and modify
the routing tables according to these changes. If <B>new</B> defines a
previously unknown table, create it, if it omits a table existing
in <B>old</B>, schedule it for deletion (it gets deleted when all protocols
disconnect from it by calling <B>rt_unlock_table()</B>), if it exists
in both configurations, leave it unchanged.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rt_feed_baby</B>
(<I>struct proto *</I> <B>p</B>) -- advertise routes to a new protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol to be fed
</DL>
<H3>Description</H3>
<P>This function performs one pass of advertisement of routes to a newly
initialized protocol. It's called by the protocol code as long as it
has something to do. (We avoid transferring all the routes in single
pass in order not to monopolize CPU time.)
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_feed_baby_abort</B>
(<I>struct proto *</I> <B>p</B>) -- abort protocol feeding
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol
</DL>
<H3>Description</H3>
<P>This function is called by the protocol code when the protocol
stops or ceases to exist before the last iteration of <B>rt_feed_baby()</B>
has finished.
<HR><H3>Function</H3>
<P><I>net *</I>
<B>net_find</B>
(<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) -- find a network entry
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
<DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
<DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
</DL>
<H3>Description</H3>
<P><B>net_find()</B> looks up the given network in routing table <B>tab</B> and
returns a pointer to its <I>net</I> entry or <I>NULL</I> if no such network
exists.
<HR><H3>Function</H3>
<P><I>net *</I>
<B>net_get</B>
(<I>rtable *</I> <B>tab</B>, <I>ip_addr</I> <B>addr</B>, <I>unsigned</I> <B>len</B>) -- obtain a network entry
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rtable *</I> <B>tab</B><DD><P>a routing table
<DT><I>ip_addr</I> <B>addr</B><DD><P>address of the network
<DT><I>unsigned</I> <B>len</B><DD><P>length of the network prefix
</DL>
<H3>Description</H3>
<P><B>net_get()</B> looks up the given network in routing table <B>tab</B> and
returns a pointer to its <I>net</I> entry. If no such entry exists, it's
created.
<HR><H3>Function</H3>
<P><I>rte *</I>
<B>rte_cow</B>
(<I>rte *</I> <B>r</B>) -- copy a route for writing
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>r</B><DD><P>a route entry to be copied
</DL>
<H3>Description</H3>
<P><B>rte_cow()</B> takes a <I>rte</I> and prepares it for modification. The exact action
taken depends on the flags of the <I>rte</I> -- if it's a temporary entry, it's
just returned unchanged, else a new temporary entry with the same contents
is created.
<P>The primary use of this function is inside the filter machinery -- when
a filter wants to modify <I>rte</I> contents (to change the preference or to
attach another set of attributes), it must ensure that the <I>rte</I> is not
shared with anyone else (and especially that it isn't stored in any routing
table).
<H3>Result</H3>
<P>a pointer to the new writable <I>rte</I>.
<H2><A NAME="ss2.3">2.3</A> <A HREF="prog.html#toc2.3">Route attribute cache</A>
</H2>
<P>
<P>Each route entry carries a set of route attributes. Several of them
vary from route to route, but most attributes are usually common
for a large number of routes. To conserve memory, we've decided to
store only the varying ones directly in the <I>rte</I> and hold the rest
in a special structure called <I>rta</I> which is shared among all the
<I>rte</I>'s with these attributes.
<P>Each <I>rta</I> contains all the static attributes of the route (i.e.,
those which are always present) as structure members and a list of
dynamic attributes represented by a linked list of <I>ea_list</I>
structures, each of them consisting of an array of <I>eattr</I>'s containing
the individual attributes. An attribute can be specified more than once
in the <I>ea_list</I> chain and in such case the first occurrence overrides
the others. This semantics is used especially when someone (for example
a filter) wishes to alter values of several dynamic attributes, but
it wants to preserve the original attribute lists maintained by
another module.
<P>Each <I>eattr</I> contains an attribute identifier (split to protocol ID and
per-protocol attribute ID), protocol dependent flags, a type code (consisting
of several bit fields describing attribute characteristics) and either an
embedded 32-bit value or a pointer to a <I>adata</I> structure holding attribute
contents.
<P>There exist two variants of <I>rta</I>'s -- cached and un-cached ones. Un-cached
<I>rta</I>'s can have arbitrarily complex structure of <I>ea_list</I>'s and they
can be modified by any module in the route processing chain. Cached
<I>rta</I>'s have their attribute lists normalized (that means at most one
<I>ea_list</I> is present and its values are sorted in order to speed up
searching), they are stored in a hash table to make fast lookup possible
and they are provided with a use count to allow sharing.
<P>Routing tables always contain only cached <I>rta</I>'s.
<P>
<P><HR><H3>Function</H3>
<P><I>struct mpnh *</I>
<B>mpnh_merge</B>
(<I>struct mpnh *</I> <B>x</B>, <I>struct mpnh *</I> <B>y</B>, <I>int</I> <B>rx</B>, <I>int</I> <B>ry</B>, <I>int</I> <B>max</B>, <I>linpool *</I> <B>lp</B>) -- merge nexthop lists
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct mpnh *</I> <B>x</B><DD><P>list 1
<DT><I>struct mpnh *</I> <B>y</B><DD><P>list 2
<DT><I>int</I> <B>rx</B><DD><P>reusability of list <B>x</B>
<DT><I>int</I> <B>ry</B><DD><P>reusability of list <B>y</B>
<DT><I>int</I> <B>max</B><DD><P>max number of nexthops
<DT><I>linpool *</I> <B>lp</B><DD><P>linpool for allocating nexthops
</DL>
<H3>Description</H3>
<P>The <B>mpnh_merge()</B> function takes two nexthop lists <B>x</B> and <B>y</B> and merges them,
eliminating possible duplicates. The input lists must be sorted and the
result is sorted too. The number of nexthops in result is limited by <B>max</B>.
New nodes are allocated from linpool <B>lp</B>.
<P>The arguments <B>rx</B> and <B>ry</B> specify whether corresponding input lists may be
consumed by the function (i.e. their nodes reused in the resulting list), in
that case the caller should not access these lists after that. To eliminate
issues with deallocation of these lists, the caller should use some form of
bulk deallocation (e.g. stack or linpool) to free these nodes when the
resulting list is no longer needed. When reusability is not set, the
corresponding lists are not modified nor linked from the resulting list.
<HR><H3>Function</H3>
<P><I>eattr *</I>
<B>ea_find</B>
(<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>) -- find an extended attribute
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list to search in
<DT><I>unsigned</I> <B>id</B><DD><P>attribute ID to search for
</DL>
<H3>Description</H3>
<P>Given an extended attribute list, <B>ea_find()</B> searches for a first
occurrence of an attribute with specified ID, returning either a pointer
to its <I>eattr</I> structure or <I>NULL</I> if no such attribute exists.
<HR><H3>Function</H3>
<P><I>eattr *</I>
<B>ea_walk</B>
(<I>struct ea_walk_state *</I> <B>s</B>, <I>uint</I> <B>id</B>, <I>uint</I> <B>max</B>) -- walk through extended attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ea_walk_state *</I> <B>s</B><DD><P>walk state structure
<DT><I>uint</I> <B>id</B><DD><P>start of attribute ID interval
<DT><I>uint</I> <B>max</B><DD><P>length of attribute ID interval
</DL>
<H3>Description</H3>
<P>Given an extended attribute list, <B>ea_walk()</B> walks through the list looking
for first occurrences of attributes with ID in specified interval from <B>id</B> to
(<B>id</B> + <B>max</B> - 1), returning pointers to found <I>eattr</I> structures, storing its
walk state in <B>s</B> for subsequent calls.
<P>The function <B>ea_walk()</B> is supposed to be called in a loop, with initially
zeroed walk state structure <B>s</B> with filled the initial extended attribute
list, returning one found attribute in each call or <I>NULL</I> when no other
attribute exists. The extended attribute list or the arguments should not be
modified between calls. The maximum value of <B>max</B> is 128.
<HR><H3>Function</H3>
<P><I>int</I>
<B>ea_get_int</B>
(<I>ea_list *</I> <B>e</B>, <I>unsigned</I> <B>id</B>, <I>int</I> <B>def</B>) -- fetch an integer attribute
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
<DT><I>unsigned</I> <B>id</B><DD><P>attribute ID
<DT><I>int</I> <B>def</B><DD><P>default value
</DL>
<H3>Description</H3>
<P>This function is a shortcut for retrieving a value of an integer attribute
by calling <B>ea_find()</B> to find the attribute, extracting its value or returning
a provided default if no such attribute is present.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_sort</B>
(<I>ea_list *</I> <B>e</B>) -- sort an attribute list
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>list to be sorted
</DL>
<H3>Description</H3>
<P>This function takes a <I>ea_list</I> chain and sorts the attributes
within each of its entries.
<P>If an attribute occurs multiple times in a single <I>ea_list</I>,
<B>ea_sort()</B> leaves only the first (the only significant) occurrence.
<HR><H3>Function</H3>
<P><I>unsigned</I>
<B>ea_scan</B>
(<I>ea_list *</I> <B>e</B>) -- estimate attribute list size
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
</DL>
<H3>Description</H3>
<P>This function calculates an upper bound of the size of
a given <I>ea_list</I> after merging with <B>ea_merge()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_merge</B>
(<I>ea_list *</I> <B>e</B>, <I>ea_list *</I> <B>t</B>) -- merge segments of an attribute list
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
<DT><I>ea_list *</I> <B>t</B><DD><P>buffer to store the result to
</DL>
<H3>Description</H3>
<P>This function takes a possibly multi-segment attribute list
and merges all of its segments to one.
<P>The primary use of this function is for <I>ea_list</I> normalization:
first call <B>ea_scan()</B> to determine how much memory will the result
take, then allocate a buffer (usually using <B>alloca()</B>), merge the
segments with <B>ea_merge()</B> and finally sort and prune the result
by calling <B>ea_sort()</B>.
<HR><H3>Function</H3>
<P><I>int</I>
<B>ea_same</B>
(<I>ea_list *</I> <B>x</B>, <I>ea_list *</I> <B>y</B>) -- compare two <I>ea_list</I>'s
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>x</B><DD><P>attribute list
<DT><I>ea_list *</I> <B>y</B><DD><P>attribute list
</DL>
<H3>Description</H3>
<P><B>ea_same()</B> compares two normalized attribute lists <B>x</B> and <B>y</B> and returns
1 if they contain the same attributes, 0 otherwise.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_show</B>
(<I>struct cli *</I> <B>c</B>, <I>eattr *</I> <B>e</B>) -- print an <I>eattr</I> to CLI
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct cli *</I> <B>c</B><DD><P>destination CLI
<DT><I>eattr *</I> <B>e</B><DD><P>attribute to be printed
</DL>
<H3>Description</H3>
<P>This function takes an extended attribute represented by its <I>eattr</I>
structure and prints it to the CLI according to the type information.
<P>If the protocol defining the attribute provides its own
<B>get_attr()</B> hook, it's consulted first.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ea_dump</B>
(<I>ea_list *</I> <B>e</B>) -- dump an extended attribute
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute to be dumped
</DL>
<H3>Description</H3>
<P><B>ea_dump()</B> dumps contents of the extended attribute given to
the debug output.
<HR><H3>Function</H3>
<P><I>uint</I>
<B>ea_hash</B>
(<I>ea_list *</I> <B>e</B>) -- calculate an <I>ea_list</I> hash key
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>e</B><DD><P>attribute list
</DL>
<H3>Description</H3>
<P><B>ea_hash()</B> takes an extended attribute list and calculated a hopefully
uniformly distributed hash value from its contents.
<HR><H3>Function</H3>
<P><I>ea_list *</I>
<B>ea_append</B>
(<I>ea_list *</I> <B>to</B>, <I>ea_list *</I> <B>what</B>) -- concatenate <I>ea_list</I>'s
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>ea_list *</I> <B>to</B><DD><P>destination list (can be <I>NULL</I>)
<DT><I>ea_list *</I> <B>what</B><DD><P>list to be appended (can be <I>NULL</I>)
</DL>
<H3>Description</H3>
<P>This function appends the <I>ea_list</I> <B>what</B> at the end of
<I>ea_list</I> <B>to</B> and returns a pointer to the resulting list.
<HR><H3>Function</H3>
<P><I>rta *</I>
<B>rta_lookup</B>
(<I>rta *</I> <B>o</B>) -- look up a <I>rta</I> in attribute cache
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>o</B><DD><P>a un-cached <I>rta</I>
</DL>
<H3>Description</H3>
<P><B>rta_lookup()</B> gets an un-cached <I>rta</I> structure and returns its cached
counterpart. It starts with examining the attribute cache to see whether
there exists a matching entry. If such an entry exists, it's returned and
its use count is incremented, else a new entry is created with use count
set to 1.
<P>The extended attribute lists attached to the <I>rta</I> are automatically
converted to the normalized form.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_dump</B>
(<I>rta *</I> <B>a</B>) -- dump route attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>a</B><DD><P>attribute structure to dump
</DL>
<H3>Description</H3>
<P>This function takes a <I>rta</I> and dumps its contents to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_dump_all</B>
(<B>void</B>) -- dump attribute cache
<P>
<H3>Description</H3>
<P>
<P>This function dumps the whole contents of route attribute cache
to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_init</B>
(<B>void</B>) -- initialize route attribute cache
<P>
<H3>Description</H3>
<P>
<P>This function is called during initialization of the routing
table module to set up the internals of the attribute cache.
<HR><H3>Function</H3>
<P><I>rta *</I>
<B>rta_clone</B>
(<I>rta *</I> <B>r</B>) -- clone route attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be cloned
</DL>
<H3>Description</H3>
<P><B>rta_clone()</B> takes a cached <I>rta</I> and returns its identical cached
copy. Currently it works by just returning the original <I>rta</I> with
its use count incremented.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rta_free</B>
(<I>rta *</I> <B>r</B>) -- free route attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rta *</I> <B>r</B><DD><P>a <I>rta</I> to be freed
</DL>
<H3>Description</H3>
<P>If you stop using a <I>rta</I> (for example when deleting a route which uses
it), you need to call <B>rta_free()</B> to notify the attribute cache the
attribute is no longer in use and can be freed if you were the last
user (which <B>rta_free()</B> tests by inspecting the use count).
<P>
<H2><A NAME="ss2.4">2.4</A> <A HREF="prog.html#toc2.4">Routing protocols</A>
</H2>
<H3>Introduction</H3>
<P>The routing protocols are the bird's heart and a fine amount of code
is dedicated to their management and for providing support functions to them.
(-: Actually, this is the reason why the directory with sources of the core
code is called <CODE>nest</CODE> :-).
<P>
<P>When talking about protocols, one need to distinguish between <EM>protocols</EM>
and protocol <EM>instances</EM>. A protocol exists exactly once, not depending on whether
it's configured or not and it can have an arbitrary number of instances corresponding
to its "incarnations" requested by the configuration file. Each instance is completely
autonomous, has its own configuration, its own status, its own set of routes and its
own set of interfaces it works on.
<P>
<P>A protocol is represented by a <I>protocol</I> structure containing all the basic
information (protocol name, default settings and pointers to most of the protocol
hooks). All these structures are linked in the <B>protocol_list</B> list.
<P>
<P>Each instance has its own <I>proto</I> structure describing all its properties: protocol
type, configuration, a resource pool where all resources belonging to the instance
live, various protocol attributes (take a look at the declaration of <I>proto</I> in
<CODE>protocol.h</CODE>), protocol states (see below for what do they mean), connections
to routing tables, filters attached to the protocol
and finally a set of pointers to the rest of protocol hooks (they
are the same for all instances of the protocol, but in order to avoid extra
indirections when calling the hooks from the fast path, they are stored directly
in <I>proto</I>). The instance is always linked in both the global instance list
(<B>proto_list</B>) and a per-status list (either <B>active_proto_list</B> for
running protocols, <B>initial_proto_list</B> for protocols being initialized or
<B>flush_proto_list</B> when the protocol is being shut down).
<P>
<P>The protocol hooks are described in the next chapter, for more information about
configuration of protocols, please refer to the configuration chapter and also
to the description of the <B>proto_commit</B> function.
<P>
<H3>Protocol states</H3>
<P>As startup and shutdown of each protocol are complex processes which can be affected
by lots of external events (user's actions, reconfigurations, behavior of neighboring routers etc.),
we have decided to supervise them by a pair of simple state machines -- the protocol
state machine and a core state machine.
<P>
<P>The <EM>protocol state machine</EM> corresponds to internal state of the protocol
and the protocol can alter its state whenever it wants to. There are
the following states:
<P>
<DL>
<DT><CODE>PS_DOWN</CODE><DD><P>The protocol is down and waits for being woken up by calling its
start() hook.
<DT><CODE>PS_START</CODE><DD><P>The protocol is waiting for connection with the rest of the
network. It's active, it has resources allocated, but it still doesn't want
any routes since it doesn't know what to do with them.
<DT><CODE>PS_UP</CODE><DD><P>The protocol is up and running. It communicates with the core,
delivers routes to tables and wants to hear announcement about route changes.
<DT><CODE>PS_STOP</CODE><DD><P>The protocol has been shut down (either by being asked by the
core code to do so or due to having encountered a protocol error).
</DL>
<P>
<P>Unless the protocol is in the <CODE>PS_DOWN</CODE> state, it can decide to change
its state by calling the <B>proto_notify_state</B> function.
<P>
<P>At any time, the core code can ask the protocol to shut itself down by calling its stop() hook.
<P>
<P>The <EM>core state machine</EM> takes care of the core view of protocol state.
The states are traversed according to changes of the protocol state machine, but
sometimes the transitions are delayed if the core needs to finish some actions
(for example sending of new routes to the protocol) before proceeding to the
new state. There are the following core states:
<P>
<DL>
<DT><CODE>FS_HUNGRY</CODE><DD><P>The protocol is down, it doesn't have any routes and
doesn't want them.
<DT><CODE>FS_FEEDING</CODE><DD><P>The protocol has reached the <CODE>PS_UP</CODE> state, but
we are still busy sending the initial set of routes to it.
<DT><CODE>FS_HAPPY</CODE><DD><P>The protocol is up and has complete routing information.
<DT><CODE>FS_FLUSHING</CODE><DD><P>The protocol is shutting down (it's in either <CODE>PS_STOP</CODE>
or <CODE>PS_DOWN</CODE> state) and we're flushing all of its routes from the
routing tables.
</DL>
<P>
<H3>Functions of the protocol module</H3>
<P>The protocol module provides the following functions:
<HR><H3>Function</H3>
<P><I>void *</I>
<B>proto_new</B>
(<I>struct proto_config *</I> <B>c</B>, <I>unsigned</I> <B>size</B>) -- create a new protocol instance
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>c</B><DD><P>protocol configuration
<DT><I>unsigned</I> <B>size</B><DD><P>size of protocol data structure (each protocol instance is represented by
a structure starting with generic part [struct <I>proto</I>] and continued
with data specific to the protocol)
</DL>
<H3>Description</H3>
<P>When a new configuration has been read in, the core code starts
initializing all the protocol instances configured by calling their
<B>init()</B> hooks with the corresponding instance configuration. The initialization
code of the protocol is expected to create a new instance according to the
configuration by calling this function and then modifying the default settings
to values wanted by the protocol.
<HR><H3>Function</H3>
<P><I>struct announce_hook *</I>
<B>proto_add_announce_hook</B>
(<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>, <I>struct proto_stats *</I> <B>stats</B>) -- connect protocol to a routing table
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>struct rtable *</I> <B>t</B><DD><P>routing table to connect to
<DT><I>struct proto_stats *</I> <B>stats</B><DD><P>per-table protocol statistics
</DL>
<H3>Description</H3>
<P>This function creates a connection between the protocol instance <B>p</B> and the
routing table <B>t</B>, making the protocol hear all changes in the table.
<P>The announce hook is linked in the protocol ahook list. Announce hooks are
allocated from the routing table resource pool and when protocol accepts
routes also in the table ahook list. The are linked to the table ahook list
and unlinked from it depending on export_state (in <B>proto_want_export_up()</B> and
<B>proto_want_export_down()</B>) and they are automatically freed after the protocol
is flushed (in <B>proto_fell_down()</B>).
<P>Unless you want to listen to multiple routing tables (as the Pipe protocol
does), you needn't to worry about this function since the connection to the
protocol's primary routing table is initialized automatically by the core
code.
<HR><H3>Function</H3>
<P><I>struct announce_hook *</I>
<B>proto_find_announce_hook</B>
(<I>struct proto *</I> <B>p</B>, <I>struct rtable *</I> <B>t</B>) -- find announce hooks
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>struct rtable *</I> <B>t</B><DD><P>routing table
</DL>
<H3>Description</H3>
<P>Returns pointer to announce hook or NULL
<HR><H3>Function</H3>
<P><I>void *</I>
<B>proto_config_new</B>
(<I>struct protocol *</I> <B>pr</B>, <I>int</I> <B>class</B>) -- create a new protocol configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct protocol *</I> <B>pr</B><DD><P>protocol the configuration will belong to
<DT><I>int</I> <B>class</B><DD><P>SYM_PROTO or SYM_TEMPLATE
</DL>
<H3>Description</H3>
<P>Whenever the configuration file says that a new instance
of a routing protocol should be created, the parser calls
<B>proto_config_new()</B> to create a configuration entry for this
instance (a structure staring with the <I>proto_config</I> header
containing all the generic items followed by protocol-specific
ones). Also, the configuration entry gets added to the list
of protocol instances kept in the configuration.
<P>The function is also used to create protocol templates (when class
SYM_TEMPLATE is specified), the only difference is that templates
are not added to the list of protocol instances and therefore not
initialized during <B>protos_commit()</B>).
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_copy_config</B>
(<I>struct proto_config *</I> <B>dest</B>, <I>struct proto_config *</I> <B>src</B>) -- copy a protocol configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>dest</B><DD><P>destination protocol configuration
<DT><I>struct proto_config *</I> <B>src</B><DD><P>source protocol configuration
</DL>
<H3>Description</H3>
<P>Whenever a new instance of a routing protocol is created from the
template, <B>proto_copy_config()</B> is called to copy a content of
the source protocol configuration to the new protocol configuration.
Name, class and a node in protos list of <B>dest</B> are kept intact.
<B>copy_config()</B> protocol hook is used to copy protocol-specific data.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_preconfig</B>
(<I>struct config *</I> <B>c</B>) -- pre-configuration processing
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>This function calls the <B>preconfig()</B> hooks of all routing
protocols available to prepare them for reading of the new
configuration.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_postconfig</B>
(<I>struct config *</I> <B>c</B>) -- post-configuration processing
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>This function calls the <B>postconfig()</B> hooks of all protocol
instances specified in configuration <B>c</B>. The hooks are not
called for protocol templates.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_commit</B>
(<I>struct config *</I> <B>new</B>, <I>struct config *</I> <B>old</B>, <I>int</I> <B>force_reconfig</B>, <I>int</I> <B>type</B>) -- commit new protocol configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct config *</I> <B>new</B><DD><P>new configuration
<DT><I>struct config *</I> <B>old</B><DD><P>old configuration or <I>NULL</I> if it's boot time config
<DT><I>int</I> <B>force_reconfig</B><DD><P>force restart of all protocols (used for example
when the router ID changes)
<DT><I>int</I> <B>type</B><DD><P>type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
</DL>
<H3>Description</H3>
<P>Scan differences between <B>old</B> and <B>new</B> configuration and adjust all
protocol instances to conform to the new configuration.
<P>When a protocol exists in the new configuration, but it doesn't in the
original one, it's immediately started. When a collision with the other
running protocol would arise, the new protocol will be temporarily stopped
by the locking mechanism.
<P>When a protocol exists in the old configuration, but it doesn't in the
new one, it's shut down and deleted after the shutdown completes.
<P>When a protocol exists in both configurations, the core decides
whether it's possible to reconfigure it dynamically - it checks all
the core properties of the protocol (changes in filters are ignored
if type is RECONFIG_SOFT) and if they match, it asks the
<B>reconfigure()</B> hook of the protocol to see if the protocol is able
to switch to the new configuration. If it isn't possible, the
protocol is shut down and a new instance is started with the new
configuration after the shutdown is completed.
<H2><A NAME="ss2.5">2.5</A> <A HREF="prog.html#toc2.5">Graceful restart recovery</A>
</H2>
<P>
<P>Graceful restart of a router is a process when the routing plane (e.g. BIRD)
restarts but both the forwarding plane (e.g kernel routing table) and routing
neighbors keep proper routes, and therefore uninterrupted packet forwarding
is maintained.
<P>BIRD implements graceful restart recovery by deferring export of routes to
protocols until routing tables are refilled with the expected content. After
start, protocols generate routes as usual, but routes are not propagated to
them, until protocols report that they generated all routes. After that,
graceful restart recovery is finished and the export (and the initial feed)
to protocols is enabled.
<P>When graceful restart recovery need is detected during initialization, then
enabled protocols are marked with <B>gr_recovery</B> flag before start. Such
protocols then decide how to proceed with graceful restart, participation is
voluntary. Protocols could lock the recovery by <B>proto_graceful_restart_lock()</B>
(stored in <B>gr_lock</B> flag), which means that they want to postpone the end of
the recovery until they converge and then unlock it. They also could set
<B>gr_wait</B> before advancing to <I>PS_UP</I>, which means that the core should defer
route export to that protocol until the end of the recovery. This should be
done by protocols that expect their neigbors to keep the proper routes
(kernel table, BGP sessions with BGP graceful restart capability).
<P>The graceful restart recovery is finished when either all graceful restart
locks are unlocked or when graceful restart wait timer fires.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>graceful_restart_recovery</B>
(<B>void</B>) -- request initial graceful restart recovery
<P>
<H3>Graceful restart recovery</H3>
<P>
<P>Called by the platform initialization code if the need for recovery
after graceful restart is detected during boot. Have to be called
before <B>protos_commit()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>graceful_restart_init</B>
(<B>void</B>) -- initialize graceful restart
<P>
<H3>Description</H3>
<P>
<P>When graceful restart recovery was requested, the function starts an active
phase of the recovery and initializes graceful restart wait timer. The
function have to be called after <B>protos_commit()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>graceful_restart_done</B>
(<I>struct timer *t</I> <B>UNUSED</B>) -- finalize graceful restart
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct timer *t</I> <B>UNUSED</B><DD><P>-- undescribed --
</DL>
<H3>Description</H3>
<P>When there are no locks on graceful restart, the functions finalizes the
graceful restart recovery. Protocols postponing route export until the end of
the recovery are awakened and the export to them is enabled. All other
related state is cleared. The function is also called when the graceful
restart wait timer fires (but there are still some locks).
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_graceful_restart_lock</B>
(<I>struct proto *</I> <B>p</B>) -- lock graceful restart by protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>This function allows a protocol to postpone the end of graceful restart
recovery until it converges. The lock is removed when the protocol calls
<B>proto_graceful_restart_unlock()</B> or when the protocol is stopped.
<P>The function have to be called during the initial phase of graceful restart
recovery and only for protocols that are part of graceful restart (i.e. their
<B>gr_recovery</B> is set), which means it should be called from protocol start
hooks.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_graceful_restart_unlock</B>
(<I>struct proto *</I> <B>p</B>) -- unlock graceful restart by protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>This function unlocks a lock from <B>proto_graceful_restart_lock()</B>. It is also
automatically called when the lock holding protocol went down.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_dump_all</B>
(<B>void</B>) -- dump status of all protocols
<P>
<H3>Description</H3>
<P>
<P>This function dumps status of all existing protocol instances to the
debug output. It involves printing of general status information
such as protocol states, its position on the protocol lists
and also calling of a <B>dump()</B> hook of the protocol to print
the internals.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_build</B>
(<I>struct protocol *</I> <B>p</B>) -- make a single protocol available
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct protocol *</I> <B>p</B><DD><P>the protocol
</DL>
<H3>Description</H3>
<P>After the platform specific initialization code uses <B>protos_build()</B>
to add all the standard protocols, it should call <B>proto_build()</B> for
all platform specific protocols to inform the core that they exist.
<HR><H3>Function</H3>
<P><I>void</I>
<B>protos_build</B>
(<B>void</B>) -- build a protocol list
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup to insert
all standard protocols to the global protocol list. Insertion
of platform specific protocols (such as the kernel syncer)
is in the domain of competence of the platform dependent
startup code.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_request_feeding</B>
(<I>struct proto *</I> <B>p</B>) -- request feeding routes to the protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>given protocol
</DL>
<H3>Description</H3>
<P>Sometimes it is needed to send again all routes to the
protocol. This is called feeding and can be requested by this
function. This would cause protocol export state transition
to ES_FEEDING (during feeding) and when completed, it will
switch back to ES_READY. This function can be called even
when feeding is already running, in that case it is restarted.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_notify_limit</B>
(<I>struct announce_hook *</I> <B>ah</B>, <I>struct proto_limit *</I> <B>l</B>, <I>int</I> <B>dir</B>, <I>u32</I> <B>rt_count</B>)
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct announce_hook *</I> <B>ah</B><DD><P>announce hook
<DT><I>struct proto_limit *</I> <B>l</B><DD><P>limit being hit
<DT><I>int</I> <B>dir</B><DD><P>limit direction (PLD_*)
<DT><I>u32</I> <B>rt_count</B><DD><P>the number of routes
</DL>
<H3>Description</H3>
<P>The function is called by the route processing core when limit <B>l</B>
is breached. It activates the limit and tooks appropriate action
according to <B>l</B>->action.
<HR><H3>Function</H3>
<P><I>void</I>
<B>proto_notify_state</B>
(<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>ps</B>) -- notify core about protocol state change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol the state of which has changed
<DT><I>unsigned</I> <B>ps</B><DD><P>the new status
</DL>
<H3>Description</H3>
<P>Whenever a state of a protocol changes due to some event internal
to the protocol (i.e., not inside a <B>start()</B> or <B>shutdown()</B> hook),
it should immediately notify the core about the change by calling
<B>proto_notify_state()</B> which will write the new state to the <I>proto</I>
structure and take all the actions necessary to adapt to the new
state. State change to PS_DOWN immediately frees resources of protocol
and might execute start callback of protocol; therefore,
it should be used at tail positions of protocol callbacks.
<H2><A NAME="ss2.6">2.6</A> <A HREF="prog.html#toc2.6">Protocol hooks</A>
</H2>
<P>
<P>Each protocol can provide a rich set of hook functions referred to by pointers
in either the <I>proto</I> or <I>protocol</I> structure. They are called by the core whenever
it wants the protocol to perform some action or to notify the protocol about
any change of its environment. All of the hooks can be set to <I>NULL</I> which means
to ignore the change or to take a default action.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>preconfig</B>
(<I>struct protocol *</I> <B>p</B>, <I>struct config *</I> <B>c</B>) -- protocol preconfiguration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct protocol *</I> <B>p</B><DD><P>a routing protocol
<DT><I>struct config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>The <B>preconfig()</B> hook is called before parsing of a new configuration.
<HR><H3>Function</H3>
<P><I>void</I>
<B>postconfig</B>
(<I>struct proto_config *</I> <B>c</B>) -- instance post-configuration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
</DL>
<H3>Description</H3>
<P>The <B>postconfig()</B> hook is called for each configured instance after
parsing of the new configuration is finished.
<HR><H3>Function</H3>
<P><I>struct proto *</I>
<B>init</B>
(<I>struct proto_config *</I> <B>c</B>) -- initialize an instance
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto_config *</I> <B>c</B><DD><P>instance configuration
</DL>
<H3>Description</H3>
<P>The <B>init()</B> hook is called by the core to create a protocol instance
according to supplied protocol configuration.
<H3>Result</H3>
<P>a pointer to the instance created
<HR><H3>Function</H3>
<P><I>int</I>
<B>reconfigure</B>
(<I>struct proto *</I> <B>p</B>, <I>struct proto_config *</I> <B>c</B>) -- request instance reconfiguration
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>an instance
<DT><I>struct proto_config *</I> <B>c</B><DD><P>new configuration
</DL>
<H3>Description</H3>
<P>The core calls the <B>reconfigure()</B> hook whenever it wants to ask the
protocol for switching to a new configuration. If the reconfiguration
is possible, the hook returns 1. Otherwise, it returns 0 and the core
will shut down the instance and start a new one with the new configuration.
<P>After the protocol confirms reconfiguration, it must no longer keep any
references to the old configuration since the memory it's stored in can
be re-used at any time.
<HR><H3>Function</H3>
<P><I>void</I>
<B>dump</B>
(<I>struct proto *</I> <B>p</B>) -- dump protocol state
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>an instance
</DL>
<H3>Description</H3>
<P>This hook dumps the complete state of the instance to the
debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>dump_attrs</B>
(<I>rte *</I> <B>e</B>) -- dump protocol-dependent attributes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>a route entry
</DL>
<H3>Description</H3>
<P>This hook dumps all attributes in the <I>rte</I> which belong to this
protocol to the debug output.
<HR><H3>Function</H3>
<P><I>int</I>
<B>start</B>
(<I>struct proto *</I> <B>p</B>) -- request instance startup
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>The <B>start()</B> hook is called by the core when it wishes to start
the instance. Multitable protocols should lock their tables here.
<H3>Result</H3>
<P>new protocol state
<HR><H3>Function</H3>
<P><I>int</I>
<B>shutdown</B>
(<I>struct proto *</I> <B>p</B>) -- request instance shutdown
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>The <B>stop()</B> hook is called by the core when it wishes to shut
the instance down for some reason.
<H3>Returns</H3>
<P>new protocol state
<HR><H3>Function</H3>
<P><I>void</I>
<B>cleanup</B>
(<I>struct proto *</I> <B>p</B>) -- request instance cleanup
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
</DL>
<H3>Description</H3>
<P>The <B>cleanup()</B> hook is called by the core when the protocol became
hungry/down, i.e. all protocol ahooks and routes are flushed.
Multitable protocols should unlock their tables here.
<HR><H3>Function</H3>
<P><I>void</I>
<B>get_status</B>
(<I>struct proto *</I> <B>p</B>, <I>byte *</I> <B>buf</B>) -- get instance status
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the status string
</DL>
<H3>Description</H3>
<P>This hook is called by the core if it wishes to obtain an brief one-line user friendly
representation of the status of the instance to be printed by the <cf/show protocols/
command.
<HR><H3>Function</H3>
<P><I>void</I>
<B>get_route_info</B>
(<I>rte *</I> <B>e</B>, <I>byte *</I> <B>buf</B>, <I>ea_list *</I> <B>attrs</B>) -- get route information
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>a route entry
<DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with the resulting string
<DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes of the route
</DL>
<H3>Description</H3>
<P>This hook is called to fill the buffer <B>buf</B> with a brief user friendly
representation of metrics of a route belonging to this protocol.
<HR><H3>Function</H3>
<P><I>int</I>
<B>get_attr</B>
(<I>eattr *</I> <B>a</B>, <I>byte *</I> <B>buf</B>, <I>int</I> <B>buflen</B>) -- get attribute information
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>eattr *</I> <B>a</B><DD><P>an extended attribute
<DT><I>byte *</I> <B>buf</B><DD><P>buffer to be filled with attribute information
<DT><I>int</I> <B>buflen</B><DD><P>a length of the <B>buf</B> parameter
</DL>
<H3>Description</H3>
<P>The <B>get_attr()</B> hook is called by the core to obtain a user friendly
representation of an extended route attribute. It can either leave
the whole conversion to the core (by returning <I>GA_UNKNOWN</I>), fill
in only attribute name (and let the core format the attribute value
automatically according to the type field; by returning <I>GA_NAME</I>)
or doing the whole conversion (used in case the value requires extra
care; return <I>GA_FULL</I>).
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_notify</B>
(<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct iface *</I> <B>i</B>) -- notify instance about interface changes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>unsigned</I> <B>flags</B><DD><P>interface change flags
<DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
</DL>
<H3>Description</H3>
<P>This hook is called whenever any network interface changes its status.
The change is described by a combination of status bits (<I>IF_CHANGE_xxx</I>)
in the <B>flags</B> parameter.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ifa_notify</B>
(<I>struct proto *</I> <B>p</B>, <I>unsigned</I> <B>flags</B>, <I>struct ifa *</I> <B>a</B>) -- notify instance about interface address changes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>unsigned</I> <B>flags</B><DD><P>address change flags
<DT><I>struct ifa *</I> <B>a</B><DD><P>the interface address
</DL>
<H3>Description</H3>
<P>This hook is called to notify the protocol instance about an interface
acquiring or losing one of its addresses. The change is described by
a combination of status bits (<I>IF_CHANGE_xxx</I>) in the <B>flags</B> parameter.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rt_notify</B>
(<I>struct proto *</I> <B>p</B>, <I>net *</I> <B>net</B>, <I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>, <I>ea_list *</I> <B>attrs</B>) -- notify instance about routing table change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance
<DT><I>net *</I> <B>net</B><DD><P>a network entry
<DT><I>rte *</I> <B>new</B><DD><P>new route for the network
<DT><I>rte *</I> <B>old</B><DD><P>old route for the network
<DT><I>ea_list *</I> <B>attrs</B><DD><P>extended attributes associated with the <B>new</B> entry
</DL>
<H3>Description</H3>
<P>The <B>rt_notify()</B> hook is called to inform the protocol instance about
changes in the connected routing table <B>table</B>, that is a route <B>old</B>
belonging to network <B>net</B> being replaced by a new route <B>new</B> with
extended attributes <B>attrs</B>. Either <B>new</B> or <B>old</B> or both can be <I>NULL</I>
if the corresponding route doesn't exist.
<P>If the type of route announcement is RA_OPTIMAL, it is an
announcement of optimal route change, <B>new</B> stores the new optimal
route and <B>old</B> stores the old optimal route.
<P>If the type of route announcement is RA_ANY, it is an announcement
of any route change, <B>new</B> stores the new route and <B>old</B> stores the
old route from the same protocol.
<P><B>p</B>->accept_ra_types specifies which kind of route announcements
protocol wants to receive.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_notify</B>
(<I>neighbor *</I> <B>neigh</B>) -- notify instance about neighbor status change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>neighbor *</I> <B>neigh</B><DD><P>a neighbor cache entry
</DL>
<H3>Description</H3>
<P>The <B>neigh_notify()</B> hook is called by the neighbor cache whenever
a neighbor changes its state, that is it gets disconnected or a
sticky neighbor gets connected.
<HR><H3>Function</H3>
<P><I>ea_list *</I>
<B>make_tmp_attrs</B>
(<I>rte *</I> <B>e</B>, <I>struct linpool *</I> <B>pool</B>) -- convert embedded attributes to temporary ones
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>route entry
<DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool to allocate attribute memory in
</DL>
<H3>Description</H3>
<P>This hook is called by the routing table functions if they need
to convert the protocol attributes embedded directly in the <I>rte</I>
to temporary extended attributes in order to distribute them
to other protocols or to filters. <B>make_tmp_attrs()</B> creates
an <I>ea_list</I> in the linear pool <B>pool</B>, fills it with values of the
temporary attributes and returns a pointer to it.
<HR><H3>Function</H3>
<P><I>void</I>
<B>store_tmp_attrs</B>
(<I>rte *</I> <B>e</B>, <I>ea_list *</I> <B>attrs</B>) -- convert temporary attributes to embedded ones
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e</B><DD><P>route entry
<DT><I>ea_list *</I> <B>attrs</B><DD><P>temporary attributes to be converted
</DL>
<H3>Description</H3>
<P>This hook is an exact opposite of <B>make_tmp_attrs()</B> -- it takes
a list of extended attributes and converts them to attributes
embedded in the <I>rte</I> corresponding to this protocol.
<P>You must be prepared for any of the attributes being missing
from the list and use default values instead.
<HR><H3>Function</H3>
<P><I>int</I>
<B>import_control</B>
(<I>struct proto *</I> <B>p</B>, <I>rte **</I> <B>e</B>, <I>ea_list **</I> <B>attrs</B>, <I>struct linpool *</I> <B>pool</B>) -- pre-filtering decisions on route import
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol instance the route is going to be imported to
<DT><I>rte **</I> <B>e</B><DD><P>the route in question
<DT><I>ea_list **</I> <B>attrs</B><DD><P>extended attributes of the route
<DT><I>struct linpool *</I> <B>pool</B><DD><P>linear pool for allocation of all temporary data
</DL>
<H3>Description</H3>
<P>The <B>import_control()</B> hook is called as the first step of a exporting
a route from a routing table to the protocol instance. It can modify
route attributes and force acceptance or rejection of the route regardless
of user-specified filters. See <B>rte_announce()</B> for a complete description
of the route distribution process.
<P>The standard use of this hook is to reject routes having originated
from the same instance and to set default values of the protocol's metrics.
<H3>Result</H3>
<P>1 if the route has to be accepted, -1 if rejected and 0 if it
should be passed to the filters.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rte_recalculate</B>
(<I>struct rtable *</I> <B>table</B>, <I>struct network *</I> <B>net</B>, <I>struct rte *</I> <B>new</B>, <I>struct rte *</I> <B>old</B>, <I>struct rte *</I> <B>old_best</B>) -- prepare routes for comparison
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct rtable *</I> <B>table</B><DD><P>a routing table
<DT><I>struct network *</I> <B>net</B><DD><P>a network entry
<DT><I>struct rte *</I> <B>new</B><DD><P>new route for the network
<DT><I>struct rte *</I> <B>old</B><DD><P>old route for the network
<DT><I>struct rte *</I> <B>old_best</B><DD><P>old best route for the network (may be NULL)
</DL>
<H3>Description</H3>
<P>This hook is called when a route change (from <B>old</B> to <B>new</B> for a
<B>net</B> entry) is propagated to a <B>table</B>. It may be used to prepare
routes for comparison by <B>rte_better()</B> in the best route
selection. <B>new</B> may or may not be in <B>net</B>->routes list,
<B>old</B> is not there.
<H3>Result</H3>
<P>1 if the ordering implied by <B>rte_better()</B> changes enough
that full best route calculation have to be done, 0 otherwise.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rte_better</B>
(<I>rte *</I> <B>new</B>, <I>rte *</I> <B>old</B>) -- compare metrics of two routes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>new</B><DD><P>the new route
<DT><I>rte *</I> <B>old</B><DD><P>the original route
</DL>
<H3>Description</H3>
<P>This hook gets called when the routing table contains two routes
for the same network which have originated from different instances
of a single protocol and it wants to select which one is preferred
over the other one. Protocols usually decide according to route metrics.
<H3>Result</H3>
<P>1 if <B>new</B> is better (more preferred) than <B>old</B>, 0 otherwise.
<HR><H3>Function</H3>
<P><I>int</I>
<B>rte_same</B>
(<I>rte *</I> <B>e1</B>, <I>rte *</I> <B>e2</B>) -- compare two routes
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>rte *</I> <B>e1</B><DD><P>route
<DT><I>rte *</I> <B>e2</B><DD><P>route
</DL>
<H3>Description</H3>
<P>The <B>rte_same()</B> hook tests whether the routes <B>e1</B> and <B>e2</B> belonging
to the same protocol instance have identical contents. Contents of
<I>rta</I>, all the extended attributes and <I>rte</I> preference are checked
by the core code, no need to take care of them here.
<H3>Result</H3>
<P>1 if <B>e1</B> is identical to <B>e2</B>, 0 otherwise.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_insert</B>
(<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) -- notify instance about route insertion
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>net *</I> <B>n</B><DD><P>network
<DT><I>rte *</I> <B>e</B><DD><P>route
</DL>
<H3>Description</H3>
<P>This hook is called whenever a <I>rte</I> belonging to the instance
is accepted for insertion to a routing table.
<P>Please avoid using this function in new protocols.
<HR><H3>Function</H3>
<P><I>void</I>
<B>rte_remove</B>
(<I>net *</I> <B>n</B>, <I>rte *</I> <B>e</B>) -- notify instance about route removal
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>net *</I> <B>n</B><DD><P>network
<DT><I>rte *</I> <B>e</B><DD><P>route
</DL>
<H3>Description</H3>
<P>This hook is called whenever a <I>rte</I> belonging to the instance
is removed from a routing table.
<P>Please avoid using this function in new protocols.
<H2><A NAME="ss2.7">2.7</A> <A HREF="prog.html#toc2.7">Interfaces</A>
</H2>
<P>
<P>The interface module keeps track of all network interfaces in the
system and their addresses.
<P>Each interface is represented by an <I>iface</I> structure which carries
interface capability flags (<I>IF_MULTIACCESS</I>, <I>IF_BROADCAST</I> etc.),
MTU, interface name and index and finally a linked list of network
prefixes assigned to the interface, each one represented by
struct <I>ifa</I>.
<P>The interface module keeps a `soft-up' state for each <I>iface</I> which
is a conjunction of link being up, the interface being of a `sane'
type and at least one IP address assigned to it.
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>ifa_dump</B>
(<I>struct ifa *</I> <B>a</B>) -- dump interface address
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>interface address descriptor
</DL>
<H3>Description</H3>
<P>This function dumps contents of an <I>ifa</I> to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_dump</B>
(<I>struct iface *</I> <B>i</B>) -- dump interface
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>interface to dump
</DL>
<H3>Description</H3>
<P>This function dumps all information associated with a given
network interface to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_dump_all</B>
(<B>void</B>) -- dump all interfaces
<P>
<H3>Description</H3>
<P>
<P>This function dumps information about all known network
interfaces to the debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_delete</B>
(<I>struct iface *</I> <B>old</B>) -- remove interface
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>old</B><DD><P>interface
</DL>
<H3>Description</H3>
<P>This function is called by the low-level platform dependent code
whenever it notices an interface disappears. It is just a shorthand
for <B>if_update()</B>.
<HR><H3>Function</H3>
<P><I>struct iface *</I>
<B>if_update</B>
(<I>struct iface *</I> <B>new</B>) -- update interface status
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>new</B><DD><P>new interface status
</DL>
<H3>Description</H3>
<P><B>if_update()</B> is called by the low-level platform dependent code
whenever it notices an interface change.
<P>There exist two types of interface updates -- synchronous and asynchronous
ones. In the synchronous case, the low-level code calls <B>if_start_update()</B>,
scans all interfaces reported by the OS, uses <B>if_update()</B> and <B>ifa_update()</B>
to pass them to the core and then it finishes the update sequence by
calling <B>if_end_update()</B>. When working asynchronously, the sysdep code
calls <B>if_update()</B> and <B>ifa_update()</B> whenever it notices a change.
<P><B>if_update()</B> will automatically notify all other modules about the change.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_feed_baby</B>
(<I>struct proto *</I> <B>p</B>) -- advertise interfaces to a new protocol
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol to feed
</DL>
<H3>Description</H3>
<P>When a new protocol starts, this function sends it a series
of notifications about all existing interfaces.
<HR><H3>Function</H3>
<P><I>struct iface *</I>
<B>if_find_by_index</B>
(<I>unsigned</I> <B>idx</B>) -- find interface by ifindex
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>unsigned</I> <B>idx</B><DD><P>ifindex
</DL>
<H3>Description</H3>
<P>This function finds an <I>iface</I> structure corresponding to an interface
of the given index <B>idx</B>. Returns a pointer to the structure or <I>NULL</I>
if no such structure exists.
<HR><H3>Function</H3>
<P><I>struct iface *</I>
<B>if_find_by_name</B>
(<I>char *</I> <B>name</B>) -- find interface by name
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>char *</I> <B>name</B><DD><P>interface name
</DL>
<H3>Description</H3>
<P>This function finds an <I>iface</I> structure corresponding to an interface
of the given name <B>name</B>. Returns a pointer to the structure or <I>NULL</I>
if no such structure exists.
<HR><H3>Function</H3>
<P><I>struct ifa *</I>
<B>ifa_update</B>
(<I>struct ifa *</I> <B>a</B>) -- update interface address
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>new interface address
</DL>
<H3>Description</H3>
<P>This function adds address information to a network
interface. It's called by the platform dependent code during
the interface update process described under <B>if_update()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>ifa_delete</B>
(<I>struct ifa *</I> <B>a</B>) -- remove interface address
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>interface address
</DL>
<H3>Description</H3>
<P>This function removes address information from a network
interface. It's called by the platform dependent code during
the interface update process described under <B>if_update()</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>if_init</B>
(<B>void</B>) -- initialize interface module
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup to initialize
all data structures of the interface module.
<H2><A NAME="ss2.8">2.8</A> <A HREF="prog.html#toc2.8">Neighbor cache</A>
</H2>
<P>
<P>Most routing protocols need to associate their internal state data with
neighboring routers, check whether an address given as the next hop
attribute of a route is really an address of a directly connected host
and which interface is it connected through. Also, they often need to
be notified when a neighbor ceases to exist or when their long awaited
neighbor becomes connected. The neighbor cache is there to solve all
these problems.
<P>The neighbor cache maintains a collection of neighbor entries. Each
entry represents one IP address corresponding to either our directly
connected neighbor or our own end of the link (when the scope of the
address is set to <I>SCOPE_HOST</I>) together with per-neighbor data belonging to a
single protocol.
<P>Active entries represent known neighbors and are stored in a hash
table (to allow fast retrieval based on the IP address of the node) and
two linked lists: one global and one per-interface (allowing quick
processing of interface change events). Inactive entries exist only
when the protocol has explicitly requested it via the <I>NEF_STICKY</I>
flag because it wishes to be notified when the node will again become
a neighbor. Such entries are enqueued in a special list which is walked
whenever an interface changes its state to up.
<P>When a neighbor event occurs (a neighbor gets disconnected or a sticky
inactive neighbor becomes connected), the protocol hook <B>neigh_notify()</B>
is called to advertise the change.
<P>
<P><HR><H3>Function</H3>
<P><I>neighbor *</I>
<B>neigh_find</B>
(<I>struct proto *</I> <B>p</B>, <I>ip_addr *</I> <B>a</B>, <I>unsigned</I> <B>flags</B>) -- find or create a neighbor entry.
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct proto *</I> <B>p</B><DD><P>protocol which asks for the entry.
<DT><I>ip_addr *</I> <B>a</B><DD><P>pointer to IP address of the node to be searched for.
<DT><I>unsigned</I> <B>flags</B><DD><P>0 or <I>NEF_STICKY</I> if you want to create a sticky entry.
</DL>
<H3>Description</H3>
<P>Search the neighbor cache for a node with given IP address. If
it's found, a pointer to the neighbor entry is returned. If no
such entry exists and the node is directly connected on
one of our active interfaces, a new entry is created and returned
to the caller with protocol-dependent fields initialized to zero.
If the node is not connected directly or *<B>a</B> is not a valid unicast
IP address, <B>neigh_find()</B> returns <I>NULL</I>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_dump</B>
(<I>neighbor *</I> <B>n</B>) -- dump specified neighbor entry.
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>neighbor *</I> <B>n</B><DD><P>the entry to dump
</DL>
<H3>Description</H3>
<P>This functions dumps the contents of a given neighbor entry
to debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_dump_all</B>
(<B>void</B>) -- dump all neighbor entries.
<P>
<H3>Description</H3>
<P>
<P>This function dumps the contents of the neighbor cache to
debug output.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_if_up</B>
(<I>struct iface *</I> <B>i</B>)
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>interface in question
</DL>
<H3>Description</H3>
<P>Tell the neighbor cache that a new interface became up.
<P>The neighbor cache wakes up all inactive sticky neighbors with
addresses belonging to prefixes of the interface <B>i</B>.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_if_down</B>
(<I>struct iface *</I> <B>i</B>) -- notify neighbor cache about interface down event
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
</DL>
<H3>Description</H3>
<P>Notify the neighbor cache that an interface has ceased to exist.
<P>It causes all entries belonging to neighbors connected to this interface
to be flushed.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_if_link</B>
(<I>struct iface *</I> <B>i</B>) -- notify neighbor cache about interface link change
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct iface *</I> <B>i</B><DD><P>the interface in question
</DL>
<H3>Description</H3>
<P>Notify the neighbor cache that an interface changed link state.
All owners of neighbor entries connected to this interface are
notified.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_ifa_update</B>
(<I>struct ifa *</I> <B>a</B>)
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct ifa *</I> <B>a</B><DD><P>interface address in question
</DL>
<H3>Description</H3>
<P>Tell the neighbor cache that an address was added or removed.
<P>The neighbor cache wakes up all inactive sticky neighbors with
addresses belonging to prefixes of the interface belonging to <B>ifa</B>
and causes all unreachable neighbors to be flushed.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_prune</B>
(<B>void</B>) -- prune neighbor cache
<P>
<H3>Description</H3>
<P>
<P><B>neigh_prune()</B> examines all neighbor entries cached and removes those
corresponding to inactive protocols. It's called whenever a protocol
is shut down to get rid of all its heritage.
<HR><H3>Function</H3>
<P><I>void</I>
<B>neigh_init</B>
(<I>pool *</I> <B>if_pool</B>) -- initialize the neighbor cache.
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>pool *</I> <B>if_pool</B><DD><P>resource pool to be used for neighbor entries.
</DL>
<H3>Description</H3>
<P>This function is called during BIRD startup to initialize
the neighbor cache module.
<H2><A NAME="ss2.9">2.9</A> <A HREF="prog.html#toc2.9">Command line interface</A>
</H2>
<P>
<P>This module takes care of the BIRD's command-line interface (CLI).
The CLI exists to provide a way to control BIRD remotely and to inspect
its status. It uses a very simple textual protocol over a stream
connection provided by the platform dependent code (on UNIX systems,
it's a UNIX domain socket).
<P>Each session of the CLI consists of a sequence of request and replies,
slightly resembling the FTP and SMTP protocols.
Requests are commands encoded as a single line of text, replies are
sequences of lines starting with a four-digit code followed by either
a space (if it's the last line of the reply) or a minus sign (when the
reply is going to continue with the next line), the rest of the line
contains a textual message semantics of which depends on the numeric
code. If a reply line has the same code as the previous one and it's
a continuation line, the whole prefix can be replaced by a single
white space character.
<P>Reply codes starting with 0 stand for `action successfully completed' messages,
1 means `table entry', 8 `runtime error' and 9 `syntax error'.
<P>Each CLI session is internally represented by a <I>cli</I> structure and a
resource pool containing all resources associated with the connection,
so that it can be easily freed whenever the connection gets closed, not depending
on the current state of command processing.
<P>The CLI commands are declared as a part of the configuration grammar
by using the <CODE>CF_CLI</CODE> macro. When a command is received, it is processed
by the same lexical analyzer and parser as used for the configuration, but
it's switched to a special mode by prepending a fake token to the text,
so that it uses only the CLI command rules. Then the parser invokes
an execution routine corresponding to the command, which either constructs
the whole reply and returns it back or (in case it expects the reply will be long)
it prints a partial reply and asks the CLI module (using the <B>cont</B> hook)
to call it again when the output is transferred to the user.
<P>The <B>this_cli</B> variable points to a <I>cli</I> structure of the session being
currently parsed, but it's of course available only in command handlers
not entered using the <B>cont</B> hook.
<P>TX buffer management works as follows: At cli.tx_buf there is a
list of TX buffers (struct cli_out), cli.tx_write is the buffer
currently used by the producer (<B>cli_printf()</B>, <B>cli_alloc_out()</B>) and
cli.tx_pos is the buffer currently used by the consumer
(<B>cli_write()</B>, in system dependent code). The producer uses
cli_out.wpos ptr as the current write position and the consumer
uses cli_out.outpos ptr as the current read position. When the
producer produces something, it calls <B>cli_write_trigger()</B>. If there
is not enough space in the current buffer, the producer allocates
the new one. When the consumer processes everything in the buffer
queue, it calls <B>cli_written()</B>, tha frees all buffers (except the
first one) and schedules cli.event .
<P>
<P><HR><H3>Function</H3>
<P><I>void</I>
<B>cli_printf</B>
(<I>cli *</I> <B>c</B>, <I>int</I> <B>code</B>, <I>char *</I> <B>msg</B>, <I>...</I> <B>...</B>) -- send reply to a CLI connection
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>cli *</I> <B>c</B><DD><P>CLI connection
<DT><I>int</I> <B>code</B><DD><P>numeric code of the reply, negative for continuation lines
<DT><I>char *</I> <B>msg</B><DD><P>a <B>printf()</B>-like formatting string.
<DT><I>...</I> <B>...</B><DD><P>variable arguments
</DL>
<H3>Description</H3>
<P>This function send a single line of reply to a given CLI connection.
In works in all aspects like <B>bsprintf()</B> except that it automatically
prepends the reply line prefix.
<P>Please note that if the connection can be already busy sending some
data in which case <B>cli_printf()</B> stores the output to a temporary buffer,
so please avoid sending a large batch of replies without waiting
for the buffers to be flushed.
<P>If you want to write to the current CLI output, you can use the <B>cli_msg()</B>
macro instead.
<HR><H3>Function</H3>
<P><I>void</I>
<B>cli_init</B>
(<B>void</B>) -- initialize the CLI module
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup to initialize
the internal data structures of the CLI module.
<H2><A NAME="ss2.10">2.10</A> <A HREF="prog.html#toc2.10">Object locks</A>
</H2>
<P>
<P>The lock module provides a simple mechanism for avoiding conflicts between
various protocols which would like to use a single physical resource (for
example a network port). It would be easy to say that such collisions can
occur only when the user specifies an invalid configuration and therefore
he deserves to get what he has asked for, but unfortunately they can also
arise legitimately when the daemon is reconfigured and there exists (although
for a short time period only) an old protocol instance being shut down and a new one
willing to start up on the same interface.
<P>The solution is very simple: when any protocol wishes to use a network port
or some other non-shareable resource, it asks the core to lock it and it doesn't
use the resource until it's notified that it has acquired the lock.
<P>Object locks are represented by <I>object_lock</I> structures which are in turn a
kind of resource. Lockable resources are uniquely determined by resource type
(<I>OBJLOCK_UDP</I> for a UDP port etc.), IP address (usually a broadcast or
multicast address the port is bound to), port number, interface and optional
instance ID.
<P>
<P><HR><H3>Function</H3>
<P><I>struct object_lock *</I>
<B>olock_new</B>
(<I>pool *</I> <B>p</B>) -- create an object lock
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>pool *</I> <B>p</B><DD><P>resource pool to create the lock in.
</DL>
<H3>Description</H3>
<P>The <B>olock_new()</B> function creates a new resource of type <I>object_lock</I>
and returns a pointer to it. After filling in the structure, the caller
should call <B>olock_acquire()</B> to do the real locking.
<HR><H3>Function</H3>
<P><I>void</I>
<B>olock_acquire</B>
(<I>struct object_lock *</I> <B>l</B>) -- acquire a lock
<P>
<H3>Arguments</H3>
<P>
<DL>
<DT><I>struct object_lock *</I> <B>l</B><DD><P>the lock to acquire
</DL>
<H3>Description</H3>
<P>This function attempts to acquire exclusive access to the non-shareable
resource described by the lock <B>l</B>. It returns immediately, but as soon
as the resource becomes available, it calls the <B>hook()</B> function set up
by the caller.
<P>When you want to release the resource, just <B>rfree()</B> the lock.
<HR><H3>Function</H3>
<P><I>void</I>
<B>olock_init</B>
(<B>void</B>) -- initialize the object lock mechanism
<P>
<H3>Description</H3>
<P>
<P>This function is called during BIRD startup. It initializes
all the internal data structures of the lock module.
<HR>
<A HREF="prog-3.html">Next</A>
<A HREF="prog-1.html">Previous</A>
<A HREF="prog.html#toc2">Contents</A>
</BODY>
</HTML>
|