This file is indexed.

/usr/bin/tradis_comparison is in bio-tradis 1.3.3+dfsg-3.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env Rscript

# PODNAME: tradis_comparison.R
# ABSTRACT: tradis_comparison.R

library("edgeR")
library("getopt")

options(width=80)

opt = getopt(matrix( c('help', 'h', 0, "logical", 
                       'verbose', 'v', 0, "integer",
                       'controls', 'c', 1, "character",
                       'conditions', 'm', 1, "character",
                       'output', 'o', 1, "character",
                       'plot', 'p', 1, "character",
			'filter', 'f', 0, "logical",
			'mincount', 't', 1, "integer"
), ncol=4, byrow=TRUE ) );

if(! is.null(opt$help) || is.null(opt$controls )  || is.null(opt$conditions ) )
{
  cat(paste("Usage: tradis_comparison.R [-h] [-f] [-t read cutoff] [-o outputfile.csv] [-p outputplot.pdf] --controls controls.txt --conditions conditions.txt\n\n"));
  writeLines(c(strwrap("Compares two experimental conditions using the method of Dembek et al. mBio 2015. Read counts per gene are compared using edgeR. This analysis requires experimental replicates."),
	"\n\nRequired Arguments:\n",
	strwrap("--controls : 'control' libraries, generally growth in a permissive condition"),
	strwrap("--conditions : libraries exposed to the experimental condition being compared"),
	"\nOptional Arguments:\n",
	strwrap("-o : output filename"), 
	strwrap("-p : output filename for diagnostic plots"), 
	strwrap("-f : enable filtering on minimum read counts"),
	strwrap("-t : if --filter is enabled, sets minimum read count necessary in one condition for a gene to be included in the comparison."),"\n"))
  q(status=1);
}

if( is.null(opt$filter)) {opt$filter=FALSE}
if( is.null(opt$mincount)) {opt$mincount = 0}

# parse contols and conditions files to lists
control_files <- scan(opt$controls, what="", sep="\n")
condition_files <- scan(opt$conditions, what="", sep="\n")

if(length(control_files) < 2 || length(condition_files) < 2){
	print("2 or more controls/conditions must be provided")
}
if(length(control_files) != length(condition_files)){
	print("Unequal number of conditions and controls provided")
}

control_list = list()
for(i in 1:length(control_files)){
	control_list[[i]] <- read.table(control_files[i], sep="\t",header=TRUE, quote="\"", stringsAsFactors=F)
}
condition_list = list()
for(i in 1:length(condition_files)){
	condition_list[[i]] <- read.table(condition_files[i], sep="\t",header=TRUE, quote="\"", stringsAsFactors=F)
}

# set default output filename
if ( is.null(opt$output ) ) { opt$output = paste(opt$condition1,opt$control1, ".output.csv",sep = "")}

#only look at genes with counts > 0 (or input alternative) in some condition
all_list <- c(control_list, condition_list)

# make list of rows where read count > 0 (or input alternative) in all controls and conditions
read_counts = do.call(cbind, lapply(all_list, function(x){ x$read_count }))

#old case for only 0.
if(! opt$filter){
	zeros = apply( apply(read_counts, 1, ">", 0), 2, any )
} else {
	zeros_cont = apply( apply(read_counts[,1:length(control_files)], 1, ">", opt$mincount), 2, all )
	zeros_cond = apply( apply(read_counts[,(length(control_files) + 1):(length(control_files) + length(condition_files))], 1, ">", opt$mincount), 2, all )
	zeros = (zeros_cont | zeros_cond)
}


# remove these rows
noness_list = lapply(all_list, function(x){ x[zeros,] } )

#build count matrix
count_mat <- do.call(cbind, lapply(noness_list, function(x){x[,7]}))
conds = c()
for(i in 1:length(control_files)){
	conds <- c(conds, "ctrl")
}
for(i in 1:length(condition_files)){
	conds <- c(conds, "cond")
}
conds <- as.factor(conds)


if( is.null(opt$plot) ){ opt$plot = paste(opt$condition1,opt$control1,".output.pdf",sep = "") }
pdf( opt$plot )

#edgeR
d <- DGEList(counts = count_mat, group=conds)
plotMDS.DGEList(d, labels=conds)
d <- calcNormFactors(d)
d <- estimateCommonDisp(d)
d <- estimateTagwiseDisp(d)
de.tgw <- exactTest(d,pair=c("ctrl","cond"))

ctrl1_noness <- noness_list[[1]]
diff <- cbind(ctrl1_noness[,1:2],ctrl1_noness[,11],de.tgw$table,q.value=p.adjust(de.tgw$table$PValue,"BH"))


#volcano plot
plot(diff$logFC, -log(diff$q.value, base=2), xlim=range(c(-6,6)),xlab="Log2 Fold-Change, cond - Ctrl",ylab="-Log2 Q-value", cex = .5, pch=20)
abline(h=-log(0.01), col="red")
abline(v=-2, col="red")
abline(v=2, col="red")


#write results
write.table(diff,file=opt$output,append=FALSE, quote=TRUE, sep=",", row.names=FALSE, col.names=c("locus_tag","gene_name","function","logFC","logCPM","PValue","q.value"))