/usr/share/axiom-20170501/input/tutchap67.input is in axiom-test 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | --Copyright The Numerical Algorithms Group Limited 1996.
(vecA,vecB) : Vector Integer
vecA := vector [3,0,4]
vecB := vector [2,4,-2]
vecA + vecB
vecA - vecB
5*vecA
vecB*7
vecB/2
1/2 * vecB
vecA * (1/2)
dot(vecA,vecB)
sqrt dot(vecA,vecA)
magnitude vecA
direction x == 1/magnitude x * x
direction vecA
magnitude direction vecB
p := vector [u1*t,u2*t,u3*t-1/2*g*t^2]
D(p,t)
DV(s,t) == map(x+->D(x,t),s)
v := DV(p,t) -- the velocity,
a := DV(v,t) -- acceleration
j := DV(a,t) -- and jerk
)clear properties all
s := operator 's;
sSol := solve(D(s(t),t,2) - aF + r/m*D(s(t),t),s,t=0,[0,u])
u := vector [ux,uy]
aF := vector [0,-g]
function(sSol ,'s,'t)
s t
function(numerator sSol,'n,'t)
function(1/denominator sSol*n(t),'s,'t)
s t
outputGeneral 6
map(x+->eval(x,[m=1,ux=20,uy=10,r=0.1,g=9.8]),s t)
draw(curve(%.1,%.2),t=0..2)
map(x+->eval(x,[m=1,ux=20,uy=10,r=0,g=9.8]),s t)
map(x+->limit(x,r=0),s t)
map(x+->eval(x,[m=1,ux=20,uy=10,g=9.8]),%::Vector Expression Integer)
draw(curve(%.1,%.2),t=0..2)
Integer has Ring
PositiveInteger has Ring
has(Fraction Integer,DivisionRing)
has(Integer,DivisionRing)
List has Group
List ? has Group
Field has Ring
Group has Ring
vecC := vector [0,x +-> x,[a,b,c]]
matA := matrix [[x,0],[7.3,%i]]
vecC(1)
vecC.2
vecC 3
vecD : Vector Integer := [1,2,3,4,5,6]
matB : Matrix Integer := [[1,2,3],[4,5,6]]
vector [1,2,3] :: Matrix Integer
matA(1,2)
matrix [[matA]]
matrix [[matA::SquareMatrix(2,Polynomial Complex Float)]]
matrix [[squareMatrix matA]]
matC := matrix [[a,b,c],[d,e,f]]
lvec := vector [2,3]
rvec := vector [4,5,6]
lvec * matC
matC * rvec
lrvec := vector [1,2]
lrvec * ((matrix [[a,b],[c,d]] * lrvec) :: Matrix Polynomial Integer)
vecD := new(5,0)
new(3,3,0)$Matrix Integer
Z3 := %;
I3 := Z3; I3(1,1) := 1; I3(2,2) := 1; I3(3,3) := 1;
I3
I3 := Z3; for k in [1,2,3] repeat I3(k,k) := 1
I3
I3 := Z3; for k in 1..3 repeat I3(k,k) := 1
I3
expand(-7/2..7/3)
for i in 11..20 repeat _
( print i; _
if prime? i then messagePrint(" (That was prime.)")$OutputForm )
poly := 0;
for i in [1,2,3,4] for c in ['a,'b,'c,'d] repeat poly := poly + i*c
poly
vecC := vector [n^2 for n in 1..3]
hilbert3 := matrix [[1/(i+j) for i in 1..3] for j in 1..3]
I3 := matrix [[((m,n)+->if m=n then 1 else 0)(i,j) _
for i in 1..3] for j in 1..3]
diagonalMatrix [1,1,1]
inverse hilbert3
% * hilbert3
matC := matrix [[a,b],[c,d]]
inverse matC
determinant matC
(x-a)^2 + (y-b)^2 - r^2 = 0
row1 := [1,x,y,x^2+y^2]
row2 := [eval(row1.i,[x,y],[0,1]) for i in 1..4]
row3 := [eval(row1.i,[x,y],[1,0]) for i in 1..4];
row4 := [eval(row1.i,[x,y],[-1,-1]) for i in 1..4];
determinant [row1,row2,row3,row4] = 0
solve([[1/(i+j) for i in 1..3] for j in 1..3],[3,5,7])
matD := matrix [[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]]
c := vector [5,6,7,8]
solve(matD,c)
horizConcat(matD,c)
rank %
rank matD
solve([[2,3,4,5],[3,4,5,6],[4,5,6,7]],[5,6,7])
subMatrix(matD,1,3,1,4)
rank horizConcat(matD,vector [5,6,7,9])
solve(matD,[5,6,7,9])
hilbert3 :: Matrix DoubleFloat -- continuing the previous session
% * inverse %
matrix [[1/(i+j) for i in 1..11] for j in 1..11]::Matrix DoubleFloat;
badUnit := % * inverse %;
diagEls := set [%(i,i) for i in 1..11];
min diagEls
max diagEls
offDiags := empty()$Set DoubleFloat
for i in 1..11 repeat _
for j in 1..11 | i ~= j repeat _
offDiags := union(offDiags,badUnit(i,j))
min offDiags
max offDiags
hilbert11 := matrix [[1/(i+j) for i in 1..11] for j in 1..11];
% * inverse %
detHilbert3 := determinant hilbert3
detHilbert11 := determinant hilbert11
% :: DoubleFloat
determinant(hilbert11::Matrix DoubleFloat)
test3 := hilbert3 :: Matrix Polynomial Fraction Integer;
test3(1,1) := (1 + eps)/2;
determinant test3
(% - detHilbert3)/detHilbert3
for i in 1..3 repeat for j in 1..3 repeat _
test3(i,j) := hilbert3(i,j) + (2*randnum(2) - 1)*eps
test3
(determinant test3 - detHilbert3)/detHilbert3
error3 := matrix [[eps[i,j] for i in 1..3] for j in 1..3]
test3 := hilbert3 + t*error3;
detErr := (determinant test3 - detHilbert3)/detHilbert3;
detErrReduced := coefficient(%,'t,1)
coefficient(detErr,'t,0)
epses := variables detErrReduced
coefs := coefficients detErrReduced
index := first sort((i,j)+->abs coefs.i > abs coefs.j, expand(1..9))
epses.5
coefs.5
sort((i,j)+->abs i > abs j, coefs).2
|