This file is indexed.

/usr/share/axiom-20170501/input/numericgamma.input is in axiom-test 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
)set break resume
)sys rm -f numericgamma.output
)spool numericgamma.output
)set message test on
)set message auto off
)clear all
)sys cp $AXIOM/../../src/input/numericgamma.input.pamphlet .
)lisp (tangle "numericgamma.input.pamphlet" "sfx.spad" "sfx.spad")
)co sfx.spad

--S 1 of 36
Gam(a:Float,x:Float):Float ==
  if x < 0.0 or a < 0.0 then error "Invalid arguments"
  if x = 0.0 then return Gamma(a)

  ITMAX ==> 100        -- Maximum allowed number of iterations
  FPMIN ==> 1.0e-1000  -- near the smallest representable number
                       -- (there is no smallest representable float)

  EPS := (10.0**(-digits()$Float+1))$Float  -- Relative accuracy

  an: Float
  del: Float

  b:Float:=x+1.0-a     -- Set up for evaluating continued fractions
  c:Float:=1.0/FPMIN   -- by modified Lentz's method
  d:Float:=1.0/b       -- with b_0 = 0
  h:Float:=d
  i:=1
  repeat               -- iterate to convergence
    an:=-i*(i-a)
    b:=b+2.0
    d:=an*d+b
    if abs(d) < FPMIN then d:=FPMIN
    c:=b+an/c;
    if abs(c) < FPMIN then c:=FPMIN
    d:=1.0/d
    del:=d*c
    h:=h*del
    if i > ITMAX or abs(del-1.0) < EPS then break
    i:=i+1
  if i > ITMAX then error("a too large, ITMAX too small")
  exp(-x)*x**a*h        -- put factors in front
--R 
--R   Function declaration Gam : (Float,Float) -> Float has been added to 
--R      workspace.
--R                                                                   Type: Void
--E 1

--S 2 of 36
Gam(0,1)
--R 
--R   Compiling function Gam with type (Float,Float) -> Float 
--R 
--RDaly Bug
--R   Error signalled from user code in function Gam: 
--R      a too large, ITMAX too small
--E 2

--S 3 of 36
Gam(1.1.1)
--R 
--R   There are 1 exposed and 1 unexposed library operations named elt 
--R      having 1 argument(s) but none was determined to be applicable. 
--R      Use HyperDoc Browse, or issue
--R                               )display op elt
--R      to learn more about the available operations. Perhaps 
--R      package-calling the operation or using coercions on the arguments
--R      will allow you to apply the operation.
--R 
--RDaly Bug
--R   Cannot find application of object of type Float to argument(s) of 
--R      type(s) 
--R                                    Float
--R      
--E 3

--S 4 of 36
Gam(5,10)
--R 
--R
--R   (2)  0.7020645138 4706574415
--R                                                                  Type: Float
--E 4

--S 5 of 36
Gam(5,11)
--R 
--R
--R   (3)  0.3625104156 5228203538
--R                                                                  Type: Float
--E 5

--S 6 of 36
Gam(7,0)
--R 
--R
--R   (4)  720.0000000000 0011369
--R                                                                  Type: Float
--E 6

--S 7 of 36
digits 100
--R 
--R
--R   (5)  20
--R                                                        Type: PositiveInteger
--E 7

--S 8 of 36
Gam(0,1)
--R 
--R 
--RDaly Bug
--R   Error signalled from user code in function Gam: 
--R      a too large, ITMAX too small
--E 8

--S 9 of 36
Gam(1,1.1)
--R 
--R
--R   (6)
--R  0.3328710836 9807955328 8846906431 3155216124 7952156921 2491793331 386750747
--R  0 8541284431 1612617072 7005478519
--R                                                                  Type: Float
--E 9

--S 10 of 36
Gam(1,1)
--R 
--R
--R   (7)
--R  0.3678794411 7144232159 5523770161 4608674458 1113103176 7834507836 801697461
--R  4 9574489980 3357147274 3459196437
--R                                                                  Type: Float
--E 10

--S 11 of 36
Gam(1,1.1)
--R 
--R
--R   (8)
--R  0.3328710836 9807955328 8846906431 3155216124 7952156921 2491793331 386750747
--R  0 8541284431 1612617072 7005478519
--R                                                                  Type: Float
--E 11

--S 12 of 36
Gam(5,10)
--R 
--R
--R   (9)
--R  0.7020645138 4706574414 6387196628 3546367191 6532623256 0684622278 670587055
--R  0 5584357048 3474646670 2985365058
--R                                                                  Type: Float
--E 12

--S 13 of 36
Gam(5,11)
--R 
--R
--R   (10)
--R  0.3625104156 5228203538 0753904311 4079803866 4530925132 7036797697 419049037
--R  4 2658968752 0305953551 1648548436
--R                                                                  Type: Float
--E 13


--S 14 of 36
Gam(7,0)
--R 
--R
--R   (11)  720.0000000000 0011368683 7721616029 7393798828 125
--R                                                                  Type: Float
--E 14

--S 15 of 36
Gam(7,0.1)
--R 
--R
--R   (12)
--R  719.9999999869 1035963050 9717349089 5137595484 2683243460 6577519316 5312727
--R  417 6619922456 9102294155 8764196
--R                                                                  Type: Float
--E 15

--S 16 of 36
Gam(7,0.2)
--R 
--R
--R   (13)
--R  719.9999984646 1597708521 8246915701 3222705579 4693807497 2229652513 6047137
--R  980 7138425860 0596921944 0451807
--R                                                                  Type: Float
--E 16


--S 17 of 36
NGamma(a,x)
--R 
--R   There are 1 exposed and 0 unexposed library operations named NGamma 
--R      having 2 argument(s) but none was determined to be applicable. 
--R      Use HyperDoc Browse, or issue
--R                             )display op NGamma
--R      to learn more about the available operations. Perhaps 
--R      package-calling the operation or using coercions on the arguments
--R      will allow you to apply the operation.
--R 
--RDaly Bug
--R   Cannot find a definition or applicable library operation named 
--R      NGamma with argument type(s) 
--R                                 Variable(a)
--R                                 Variable(x)
--R      
--R      Perhaps you should use "@" to indicate the required return type, 
--R      or "$" to specify which version of the function you need.
--E 17

--S 18 of 36
machineFraction(NGamma(0,1))
--R
--R          7904139241557877
--R   (14)  -----------------
--R         36028797018963968
--R                                                      Type: Fraction(Integer)
--E 18

--S 19 of 36
machineFraction(NGamma(0,2))
--R
--R          7047306297697619
--R   (15)  ------------------
--R         144115188075855872
--R                                                      Type: Fraction(Integer)
--E 19

--S 20 of 36
machineFraction(NGamma(1,1))
--R
--R          828390857088487
--R   (16)  ----------------
--R         2251799813685248
--R                                                      Type: Fraction(Integer)
--E 20

--S 21 of 36
machineFraction(NGamma(1,1.1))
--R 
--R
--R          5996472354020337
--R   (17)  -----------------
--R         18014398509481984
--R                                                      Type: Fraction(Integer)
--E 21

--S 22 of 36
machineFraction(NGamma(5,10))
--R
--R         197613592684481
--R   (18)  ---------------
--R         281474976710656
--R                                                      Type: Fraction(Integer)
--E 22

--S 23 of 36
machineFraction(NGamma(5,11))
--R
--R         3265203545699083
--R   (19)  ----------------
--R         9007199254740992
--R                                                      Type: Fraction(Integer)
--E 23

--S 24 of 36
machineFraction(NGamma(7,0))
--R
--R         6333186975989761
--R   (20)  ----------------
--R           8796093022208
--R                                                      Type: Fraction(Integer)
--E 24

--S 25 of 36
machineFraction(NGamma(7,0.1))
--R 
--R
--R         6333190201121973
--R   (21)  ----------------
--R           8796093022208
--R                                                      Type: Fraction(Integer)
--E 25

--S 26 of 36
machineFraction(NGamma(7,0.2))
--R 
--R
--R         6333187094743041
--R   (22)  ----------------
--R           8796093022208
--R                                                      Type: Fraction(Integer)
--E 26

)set functions compile on

--S 27 of 36
j:=120
--R 
--R
--R   (23)  120
--R                                                        Type: PositiveInteger
--E 27

--S 28 of 36
nume(a) == cons(1::Float,[((a-i)*i)::Float for i in 1..])
--R 
--R                                                                   Type: Void
--E 28

--S 29 of 36
dene(a,x) == [(x+2*i+1-a)::Float for i in 0..]
--R 
--R                                                                   Type: Void
--E 29

--S 30 of 36
cfe(a,x) == continuedFraction(0,nume(a),dene(a,x))
--R 
--R                                                                   Type: Void
--E 30

--S 31 of 36
ccfe(a,x) == convergents cfe(a,x)
--R 
--R                                                                   Type: Void
--E 31

--S 32 of 36
gamcfe(a,x) == exp(-x)*x**a*(ccfe(a,x).j)::Float
--R 
--R                                                                   Type: Void
--E 32

--S 33 of 36
gamcfe(2,3)
--R 
--R   Compiling function nume with type PositiveInteger -> Stream(Float) 
--R   Compiling function dene with type (PositiveInteger,PositiveInteger)
--R       -> Stream(Float) 
--R   Compiling function cfe with type (PositiveInteger,PositiveInteger)
--R       -> ContinuedFraction(Float) 
--R   Compiling function ccfe with type (PositiveInteger,PositiveInteger)
--R       -> Stream(Fraction(Float)) 
--R   Compiling function gamcfe with type (PositiveInteger,PositiveInteger
--R      ) -> Expression(Float) 
--R
--R   (29)
--R  0.1991482734 7145577191 7369662600 2471065267 9836875369 2862270510 910424242
--R  6 7092079820 0616216976 9465333782
--R                                                      Type: Expression(Float)
--E 33

--S 34 of 36
E1fun(x) == gamcfe(0,x)
--R 
--R                                                                   Type: Void
--E 34

--S 35 of 36
E1fun(2.0)
--R 
--R   Compiling function nume with type NonNegativeInteger -> Stream(Float
--R      ) 
--R   Compiling function dene with type (NonNegativeInteger,Float) -> 
--R      Stream(Float) 
--R   Compiling function cfe with type (NonNegativeInteger,Float) -> 
--R      ContinuedFraction(Float) 
--R   Compiling function ccfe with type (NonNegativeInteger,Float) -> 
--R      Stream(Fraction(Float)) 
--R   Compiling function gamcfe with type (NonNegativeInteger,Float) -> 
--R      Float 
--R   Compiling function E1fun with type Float -> Float 
--R
--R   (31)
--R  0.0489005107 0806111956 7239826914 3472898212 1544510421 3277251841 716377988
--R  0 9149832755 9949235928 1965882172 4
--R                                                                  Type: Float
--E 35

--S 36 of 36
E1fun(2.0)-E1(2.0)
--R 
--R
--R   (32)  1.1102230246251565E-16
--R                                        Type: OnePointCompletion(DoubleFloat)
--E 36

)spool 
)lisp (bye)