This file is indexed.

/usr/share/axiom-20170501/input/conformal.input is in axiom-test 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
)set break resume
)set fun comp on
)spool conformal.output
)set message test on
)set message auto off
)clear all

--S 1 of 18
C := Complex DoubleFloat                -- Complex Numbers
--R 
--R
--R   (1)  Complex(DoubleFloat)
--R                                                                 Type: Domain
--E 1

--S 2 of 18
S := Segment DoubleFloat                -- Draw ranges
--R 
--R
--R   (2)  Segment(DoubleFloat)
--R                                                                 Type: Domain
--E 2

--S 3 of 18
R3 := POINT DoubleFloat                         -- points in 3-space
--R 
--R
--R   (3)  Point(DoubleFloat)
--R                                                                 Type: Domain
--E 3
--S 4 of 18
conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
--R 
--R                                                                   Type: Void
--E 4

--S 5 of 18
conformalDraw(f, rRange, tRange, rSteps, tSteps, coord) ==
  transformC :=
    coord = "polar" => polar2Complex
    cartesian2Complex
  cm := makeConformalMap(f, transformC)
  sp := createThreeSpace()
  adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
  makeViewport3D(sp, "Conformal Map")
--R 
--R                                                                   Type: Void
--E 5
--S 6 of 18
riemannConformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
--R 
--R                                                                   Type: Void
--E 6

--S 7 of 18
riemannConformalDraw(f, rRange, tRange, rSteps, tSteps, coord) ==
  transformC :=
    coord = "polar" => polar2Complex
    cartesian2Complex
  sp := createThreeSpace()
  cm := makeRiemannConformalMap(f, transformC)
  adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
  -- add an invisible point at the north pole for scaling
  curve(sp, [point [0,0,2.0@DoubleFloat,0], point [0,0, 2.0@DoubleFloat,0]])
  makeViewport3D(sp, "Conformal Map on the Riemann Sphere")
--R 
--R                                                                   Type: Void
--E 7
--S 8 of 18
adaptGrid(sp, f, uRange, vRange,  uSteps, vSteps) ==
  delU := (hi(uRange) - lo(uRange))/uSteps
  delV := (hi(vRange) - lo(vRange))/vSteps
  uSteps := uSteps + 1; vSteps := vSteps + 1
  u := lo uRange
  -- draw the coodinate lines in the v direction
  for i in 1..uSteps repeat
    -- create a curve 'c' which fixes the current value of 'u'
    c := curryLeft(f,u)
    cf := (t:DoubleFloat):DoubleFloat +-> 0
    -- draw the 'v' coordinate line
    makeObject(c, vRange::Segment Float, colorFunction == cf, space == sp, _
               tubeRadius == 0.02,  tubePoints == 6)
    u := u + delU
  v := lo vRange
  -- draw the coodinate lines in the u direction
  for i in 1..vSteps repeat
    -- create a curve 'c' which fixes the current value of 'v'
    c := curryRight(f,v)
    cf := (t:DoubleFloat):DoubleFloat +-> 1
    -- draw the 'u' coordinate line
    makeObject(c, uRange::Segment Float, colorFunction == cf, space == sp, _
               tubeRadius == 0.02,  tubePoints == 6)
    v := v + delV
  void()
--R 
--R                                                                   Type: Void
--E 8
--S 9 of 18
riemannTransform(z) ==
  r := sqrt norm z
  cosTheta := (real z)/r
  sinTheta := (imag z)/r
  cp := 4*r/(4+r^2)
  sp := sqrt(1-cp*cp)
  if r>2 then sp := -sp
  point [cosTheta*cp, sinTheta*cp, -sp + 1]
--R 
--R                                                                   Type: Void
--E 9
--S 10 of 18
cartesian2Complex(r:DoubleFloat, i:DoubleFloat):C == complex(r, i)
--R 
--R   Function declaration cartesian2Complex : (DoubleFloat,DoubleFloat)
--R       -> Complex(DoubleFloat) has been added to workspace.
--R                                                                   Type: Void
--E 10
--S 11 of 18
polar2Complex(r:DoubleFloat, th:DoubleFloat):C == complex(r*cos(th), r*sin(th))
--R 
--R   Function declaration polar2Complex : (DoubleFloat,DoubleFloat) -> 
--R      Complex(DoubleFloat) has been added to workspace.
--R                                                                   Type: Void
--E 11
--S 12 of 18
makeConformalMap(f, transformC) ==
  (u:DoubleFloat,v:DoubleFloat):R3 +->
    z := f transformC(u, v)
    point [real z, imag z, 0.0@DoubleFloat]
--R 
--R                                                                   Type: Void
--E 12
--S 13 of 18
makeRiemannConformalMap(f, transformC) ==
  (u:DoubleFloat, v:DoubleFloat):R3 +-> riemannTransform f transformC(u, v)
--R 
--R                                                                   Type: Void
--E 13
--S 14 of 18
riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D
--R 
--R                                                                   Type: Void
--E 14

--S 15 of 18
riemannSphereDraw(rRange, tRange, rSteps, tSteps, coord) ==
  transformC :=
    coord = "polar" => polar2Complex
    cartesian2Complex
  grid := (u:DoubleFloat , v:DoubleFloat): R3 +->
    z1 := transformC(u, v)
    point [real z1, imag z1, 0]
  sp := createThreeSpace()
  adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps)
  connectingLines(sp, grid, rRange, tRange, rSteps, tSteps)
  makeObject(riemannSphere, 0..2*%pi, 0..%pi, space == sp)
  f := (z:C):C +-> z
  cm := makeRiemannConformalMap(f, transformC)
  adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)
  makeViewport3D(sp, "Riemann Sphere")
--R 
--R                                                                   Type: Void
--E 15
--S 16 of 18
connectingLines(sp, f, uRange, vRange, uSteps, vSteps) ==
  delU := (hi(uRange) - lo(uRange))/uSteps
  delV := (hi(vRange) - lo(vRange))/vSteps
  uSteps := uSteps + 1; vSteps := vSteps + 1
  u := lo uRange
  -- for each grid point
  for i in 1..uSteps repeat
    v := lo vRange
    for j in 1..vSteps repeat
      p1 := f(u,v)
      p2 := riemannTransform complex(p1.1, p1.2)
      fun := lineFromTo(p1,p2)
      cf := (t:DoubleFloat):DoubleFloat +-> 3
      makeObject(fun, 0..1, space == sp, tubePoints == 4, tubeRadius == 0.01,
                 colorFunction == cf)
      v := v + delV
    u := u + delU
  void()
--R 
--R                                                                   Type: Void
--E 16

--S 17 of 18
riemannSphere(u,v) ==
  sv := sin(v)
  0.99@DoubleFloat*(point [cos(u)*sv, sin(u)*sv, cos(v),0.0@DoubleFloat]) +
    point [0.0@DoubleFloat, 0.0@DoubleFloat, 1.0@DoubleFloat, 4.0@DoubleFloat]
--R 
--R                                                                   Type: Void
--E 17
--S 18 of 18
lineFromTo(p1, p2) ==
  d := p2 - p1
  (t:DoubleFloat):Point DoubleFloat +-> p1 + t*d
--R 
--R                                                                   Type: Void
--E 18
)spool
)lisp (bye)