This file is indexed.

/usr/share/axiom-20170501/input/combinatorics.input is in axiom-test 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
)set break resume
)sys rm -f combinatorics.output
)spool combinatorics.output
)set message test on
)set message auto off
)clear all

powerSet(S:Set Any):Set Set Any==
++ This produces the power set (set of all subsets) of a given set, using a 
++ simple recursive algorithm.
  card:=cardinality(S)
  if card=1 then
     return(set [set[],S])
  else
     x:=members(S).card
     S1:=remove(x,S)
     S1P:=powerSet(S1)
     S1Px:Set Set Any:=set [union(set[x],s) for s in members(S1P)]
     return(union(S1P,S1Px))

choose(S:Set ANY, n:NNI):Set Set Any==
++ choose(S,n) produces all subsets of S with cardinality n.  Again, a simple
++ recursive algorithm is used
  card:=cardinality(S)
  if n=0 then
    return(set[set[]])
  if card=n then
    return(set[S])
  else
    x:=members(S).1
    S1:=remove(x,S)
    S1P:=choose(S1,n-1)
    S1Px:Set Set Any:=set [union(set[x],s) for s in members(S1P)]
    return(union(choose(S1,n),S1Px))

nextperm(L:List INT,n:INT):List INT==
++ The driver of Algorithm L: given any permutation, produces the next one
++ in lexicographical order.  This algorithm is implemented in "lexperm" below
  a:=L
  for i in 1..n-1 repeat if a.i<a.(i+1) then k:=i
  for i in k+1..n repeat if a.k<a.i then j:=i
  temp:=a.k
  a.k:=a.j
  a.j:=temp
  next:List INT:=concat([a.i for i in 1..k],reverse([a.i for i in k+1..n]))
  return(next)

lexperm(n:INT):List List INT==
++ This is an implementation of Knuth's "Algorithm L" for listing 
++ permutations of [1..n] in lexicographical order.  
  a:List INT:=[k for k in 1..n]
  P:List List INT:=[]
  repeat
    ++print(a)
    P:=append(P,[copy(a)])
    if #[k for k in 1..n-1 | a.k<a.(k+1)]=0 then
      return(P)
    else
      a:=nextperm(a,n)

lexperm2(L:List INT):List List INT==
++ A variation of lexperm which applies the Algorithm L to any list of integers
++ It works well for lists which include repeated elements
  a:=L
  n:=#L
  P:List List INT:=[]
  repeat
    ++print(a)
    P:=append(P,[copy(a)])
    if #[k for k in 1..n-1 | a.k<a.(k+1)]=0 then
      return(P)
    else
      a:=nextperm(a,n)

listPermutations(L:List Any):List List Any==
++ Another variant of lexperm, this time for any list
  E:=removeDuplicates(L)
  EN:=sort([position(x,E) for x in L])
  P:=lexperm2(EN)
  Q:List List Any:=[[E.i for i in p] for p in P]
  return(Q)

randomPermutation(L:List Any):List Any==
++ This is an implementation of the Knuth Shuffle
  M:=copy(L)
  n:=#L
  for k in 1..n-1 repeat
    p:=random(n)+1
    temp:=M.p
    M.p:=M.k
    M.k:=temp
  return(M)

derangements(n:INT):INT==
++ returns the number of derangements D(n) of n objects, using the recursion 
++ D(1)=0,D(2)=1,D(n)=(n-1)*(D(n-1)+D(n-2))
  if n<3 then
    return(n-1)
  else
    a:=0
    b:=1
    for i in 3..n repeat
      c:=(i-1)*(b+a)
      a:=b
      b:=c
    return(c)

fixed?(L1:List Any,L2:List Any):Boolean==
++ This is a helper program for computing derangements.  It returns true if the
++ input lists have at least one element in the same place in each list. 
  if #L1~=#L2 then
    error("Lists must be of the same length")
  else
    return(reduce(\/, [(L1.i=L2.i)@Boolean for i in 1..#L1]))

listDerangements(L:List Any):List List Any==
++ List all the derangements (permutations with no fixed points) by the 
++ simple method of first listing all permutations, and keeping only 
++ those with no fixed points.
  P:=listPermutations(L)
  Ds:List List Any:=[]
  for X in P repeat
    if ~fixed?(L,X) then
       Ds:=append(Ds,[X])
  return(Ds)

countDerangements(L:List Any):INT==
++ Returns the number of derangements of a list possibly with repeated
++ elements, using McMahon's method of generating functions
  E:=removeDuplicates(L)
  a:=[count(x,L) for x in E]
  if reduce(max,a)=1 then
    return(derangements(#a))
  else
    vs:=[subscript('x::Symbol,[i])@Symbol for i in 1..#a]
    S:=reduce(+,vs)
    P:DMP(vs,FRAC INT):=reduce(*,[(S-vs.i)^a.i for i in 1..#a])
    c:=coefficient(P,vs.1,a.1)
    for i in 2..#a repeat
      c:=coefficient(c,vs.i,a.i)
    return(c)

randomDerangement(L:List Any):List Any==
++ Produces a random derangment by choosing permutations at random until 
++ one of them is a derangement.  This is not in fact guaranteed to work, 
++ but the probability of it failing is negligible.  This should be replaced 
++ with a better program.
  if countDerangements(L)=0 then
    error("The list has zero derangements")
  else
    repeat
      X:=randomPermutation(L)
      if ~fixed?(X,L) then
        return(X)

listStringPermutations(S:String):List String==
  E:=removeDuplicates(S)
  L:=sort([position(x,parts(E)) for x in parts(S)])
  P:=lexperm2(L)
  Q:List String:=[reduce(concat,[(E.x)::String for x in p]) for p in P]
  return(Q)

stringFixed?(S1:String,S2:String):Boolean==
  if (#S1~=#S2) then
     error("Strings must have the same length")
  else
     return(reduce(\/, [(S1.i=S2.i)@Boolean for i in 1..#S1]))

listStringDerangements(S:String):List String==
  P:=listStringPermutations(S)
  Ds:List String:=[]
  for X in P repeat
    if ~stringFixed?(S,X) then
       Ds:=append(Ds,[X])
  return(Ds)

listPartitions(n:INT):List List INT==
++ This list all the set partitions in terms of "codes": for a set S with 
++ n elements a partition code C is a list of n numbers 1,2,..,k with 
++ k<=n, such that the i-th element of S belongs to subset C.i.  For example,
++ if S={2,4,6,8,10} and C=[1,2,1,3,1] then the corresponding subset 
++ partition is {{2,6,10},{4},{8}}
  p:List List INT:=[[1]]
  if n=1 then
    return(p)
  else
    for i in 2..n repeat
      q:List List INT:=[]
      for x in p repeat
        c:=reduce(max,x)+1
        np:=[append(x,[j]) for j in 1..c]
        q:=concat(q,np)
      p:=copy(q)
    return(p)

setPartitions(S:Set Any):Set Set Any==
++ For a given set S, this returns the subset list generated from the codes 
++ produced by the listPartitions function
  n:=#S
  P:List List INT:=listPartitions(n)
  Q:Set Set Any:=set[]
  for x in P repeat
    R:List Set Any:=[set[] for i in 1..reduce(max,x)]
    for i in 1..n repeat R.(x.i):=union(R.(x.i),set[parts(S).i])
    Q:=union(Q,set R)
  return(Q)

listSizePartitions(n:INT,k:INT):List List INT==
++ This lists the codes of all the set partitions whose maximum value is k.  
++ These codes correspond to partitions of exactly k subsets.
  p:List List INT:=[[1]]
  if n=1 then
    return(p)
  else
    for i in 2..n repeat
      q:List List INT:=[]
      for x in p repeat
        c:=reduce(max,x)+1
        np:=[append(x,[j]) for j in 1..min(k,c)]
        q:=concat(q,np)
      p:=copy(q)
    for x in p repeat
      if reduce(max,x)<k then p:=remove(x,p)
    return(p)

setSizePartitions(S:Set Any,k:INT):Set Set Any==
++ For a given set S, this returns all partitions of S into exactly k 
++ disjoint subsets
  n:=#S
  P:List List INT:=listSizePartitions(n,k)
  Q:Set Set Any:=set[]
  for x in P repeat
    R:List Set Any:=[set[] for i in 1..k]
    for i in 1..n repeat R.(x.i):=union(R.(x.i),set[parts(S).i])
    Q:=union(Q,set R)
  return(Q)

bell(n:NNI):PI==
++ The Bell numbers B(n): the number of ways a set of n elements can be 
++ partitioned into disjoint subsets.  Bell numbers are in fact sums of 
++ Stirling numbers of the second kind so that we could simply define
++ bell(n)==reduce(+,[stirling2(n,k) for k in 0..n])
  if n<2 then
    return(1)
  else
    B:=[1,1]
    for i in 2..n repeat
      N:=reduce(+,[binomial(i-1,k)*B.(k+1) for k in 0..i-1])
      B:=append(B,[N])
    return(B.last)

touchard(n:PI,z:Symbol):POLY FRAC INT==
++ The Touchard polynomials T(n,x) are generating functions for Stirling 
++ numbers of the second kind: the coefficient of x^k in T(n,x) is the 
++ value stirling2(n,k)
  if n=0 then
    return(1)
  else
    Tc:POLY FRAC INT:=1
    for i in 1..n repeat
      Tc:=z*(Tc+D(Tc,z))
    return(Tc)

randomStringPermutation(S:String):String==
  L:List String:=parts(S)
  P:=randomPermutation(L)
  return(reduce(concat,P))

randomStringDerangement(S:String):String==
  E:=removeDuplicates(S)
  a:=[count(x,S) for x in parts(E)]
  if reduce(\/,[(2*z>#S)@Boolean for z in a]) then
    error("The string has zero derangements")
  else
    repeat
      X:=randomStringPermutation(S)
      if ~stringFixed?(X,S) then
        return(X)

--S 1 of 21
S := set[4,14,46,5]
--R 
--R
--R   (24)  {4,5,14,46}
--R                                                   Type: Set(PositiveInteger)
--E 1

--S 2 of 21
powerSet(S)
--R 
--R   Compiling function powerSet with type Set(Any) -> Set(Set(Any)) 
--R
--R   (25)
--R   {{}, {4}, {5}, {5,4}, {14}, {14,4}, {14,5}, {14,5,4}, {46}, {46,4}, {46,5},
--R    {46,5,4}, {46,14}, {46,14,4}, {46,14,5}, {46,14,5,4}}
--R                                                          Type: Set(Set(Any))
--E 2

--S 3 of 21
S:=set["A",2.5,vector[1,2,3]]
--R 
--R
--R   (26)  {"A",2.5,[1,2,3]}
--R                                                               Type: Set(Any)
--E 3

--S 4 of 21
powerSet(S)
--R 
--R
--R   (27)
--R   {{}, {"A"}, {2.5}, {2.5,"A"}, {[1,2,3]}, {[1,2,3],"A"}, {[1,2,3],2.5},
--R    {[1,2,3],2.5,"A"}}
--R                                                          Type: Set(Set(Any))
--E 4

--S 5 of 21
S:=set["cat","dog","fly","eel"]
--R 
--R
--R   (28)  {"cat","dog","eel","fly"}
--R                                                            Type: Set(String)
--E 5

--S 6 of 21
choose(S,2)
--R 
--R   There are no library operations named choose
--R      Use HyperDoc Browse or issue
--R                               )what op choose
--R      to learn if there is any operation containing choose in its name.
--R   Cannot find a definition or applicable library operation named 
--R      choose with argument type(s)
--R                                  Set(Any)
--R                                   Integer
--R      Perhaps you should use @ to indicate the required return type, or
--R      $ to specify which version of the function you need.
--R   Axiom will attempt to step through and interpret the code.
--R   Compiling function choose with type (Set(Any),NonNegativeInteger)
--R       -> Set(Set(Any)) 
--I   Compiling function G2391 with type Integer -> Boolean 
--R
--R   (29)
--R   {{"eel","fly"}, {"dog","fly"}, {"dog","eel"}, {"cat","fly"}, {"cat","eel"},
--R    {"cat","dog"}}
--R                                                          Type: Set(Set(Any))
--E 6

--S 7 of 21
L:=[1,1,2,3,3]
--R 
--R
--R   (30)  [1,1,2,3,3]
--R                                                  Type: List(PositiveInteger)
--E 7

--S 8 of 21
listPermutations(L)
--R 
--R   Compiling function nextperm with type (List(Integer),Integer) -> 
--R      List(Integer) 
--R   Compiling function lexperm2 with type List(Integer) -> List(List(
--R      Integer)) 
--R   Compiling function listPermutations with type List(Any) -> List(List
--R      (Any)) 
--R
--R   (31)
--R   [[1,1,2,3,3], [1,1,3,2,3], [1,1,3,3,2], [1,2,1,3,3], [1,2,3,1,3],
--R    [1,2,3,3,1], [1,3,1,2,3], [1,3,1,3,2], [1,3,2,1,3], [1,3,2,3,1],
--R    [1,3,3,1,2], [1,3,3,2,1], [2,1,1,3,3], [2,1,3,1,3], [2,1,3,3,1],
--R    [2,3,1,1,3], [2,3,1,3,1], [2,3,3,1,1], [3,1,1,2,3], [3,1,1,3,2],
--R    [3,1,2,1,3], [3,1,2,3,1], [3,1,3,1,2], [3,1,3,2,1], [3,2,1,1,3],
--R    [3,2,1,3,1], [3,2,3,1,1], [3,3,1,1,2], [3,3,1,2,1], [3,3,2,1,1]]
--R                                                        Type: List(List(Any))
--E 8

--S 9 of 21
listDerangements(L)
--R 
--R   Compiling function fixed? with type (List(Any),List(Any)) -> Boolean
--R      
--R   Compiling function listDerangements with type List(Any) -> List(List
--R      (Any)) 
--R
--R   (32)  [[2,3,3,1,1],[3,2,3,1,1],[3,3,1,1,2],[3,3,1,2,1]]
--R                                                        Type: List(List(Any))
--E 9

--S 10 of 21
listStringPermutations("EERIE")
--R 
--R   Compiling function listStringPermutations with type String -> List(
--R      String) 
--R
--R   (33)
--R   ["EEERI", "EEEIR", "EEREI", "EERIE", "EEIER", "EEIRE", "EREEI", "EREIE",
--R    "ERIEE", "EIEER", "EIERE", "EIREE", "REEEI", "REEIE", "REIEE", "RIEEE",
--R    "IEEER", "IEERE", "IEREE", "IREEE"]
--R                                                           Type: List(String)
--E 10

--S 11 of 21
listStringDerangements("banana")
--R 
--R   Compiling function stringFixed? with type (String,String) -> Boolean
--R      
--R   Compiling function listStringDerangements with type String -> List(
--R      String) 
--R
--R   (34)  ["abanan","anaban","ananab"]
--R                                                           Type: List(String)
--E 11

--S 12 of 21
stirling2(3,2)
--R 
--R
--R   (35)  3
--R                                                        Type: PositiveInteger
--E 12

--S 13 of 21
listPartitions(3)
--R 
--R   Compiling function listPartitions with type Integer -> List(List(
--R      Integer)) 
--R
--R   (36)  [[1,1,1],[1,1,2],[1,2,1],[1,2,2],[1,2,3]]
--R                                                    Type: List(List(Integer))
--E 13

--S 14 of 21
G:Set Any:=set[2.5,'x+'y,"A"]
--R 
--R
--R   (37)  {2.5,y + x,"A"}
--R                                                               Type: Set(Any)
--E 14

--S 15 of 21
setPartitions(G)
--R 
--R   Compiling function setPartitions with type Set(Any) -> Set(Set(Any))
--R      
--R
--R   (38)
--R   {{{2.5,y + x,"A"}}, {{2.5,y + x},{"A"}}, {{2.5,"A"},{y + x}},
--R    {{2.5},{y + x,"A"}}, {{2.5},{y + x},{"A"}}}
--R                                                          Type: Set(Set(Any))
--E 15

--S 16 of 21
P:=listSizePartitions(5,3)
--R   Compiling function listSizePartitions with type (Integer,Integer)
--R       -> List(List(Integer)) 
--R
--R   (39)
--R   [[1,1,1,2,3], [1,1,2,1,3], [1,1,2,2,3], [1,1,2,3,1], [1,1,2,3,2],
--R    [1,1,2,3,3], [1,2,1,1,3], [1,2,1,2,3], [1,2,1,3,1], [1,2,1,3,2],
--R    [1,2,1,3,3], [1,2,2,1,3], [1,2,2,2,3], [1,2,2,3,1], [1,2,2,3,2],
--R    [1,2,2,3,3], [1,2,3,1,1], [1,2,3,1,2], [1,2,3,1,3], [1,2,3,2,1],
--R    [1,2,3,2,2], [1,2,3,2,3], [1,2,3,3,1], [1,2,3,3,2], [1,2,3,3,3]]
--R                                                    Type: List(List(Integer))
--E 16

--S 17 of 21
#P
--R 
--R
--R   (40)  25
--R                                                        Type: PositiveInteger
--E 17

--S 18 of 21
stirling2(5,3)
--R 
--R
--R   (41)  25
--R                                                        Type: PositiveInteger
--E 18

--S 19 of 21
p := touchard(7,x)
--R 
--R   Compiling function touchard with type (PositiveInteger,Symbol) -> 
--R      Polynomial(Fraction(Integer)) 
--R
--R          7      6       5       4       3      2
--R   (42)  x  + 21x  + 140x  + 350x  + 301x  + 63x  + x
--R                                          Type: Polynomial(Fraction(Integer))
--E 19

--S 20 of 21
[coefficient(p,x,k) for k in 0..7]
--R 
--R
--R   (43)  [0,1,63,301,350,140,21,1]
--R                                    Type: List(Polynomial(Fraction(Integer)))
--E 20

--S 21 of 21
[stirling2(7,k) for k in 0..7]
--R 
--R
--R   (44)  [0,1,63,301,350,140,21,1]
--R                                                          Type: List(Integer)
--E 21


)spool