This file is indexed.

/usr/share/axiom-20170501/input/allfns.input is in axiom-test 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331
46332
46333
46334
46335
46336
46337
46338
46339
46340
46341
46342
46343
46344
46345
46346
46347
46348
46349
46350
46351
46352
46353
46354
46355
46356
46357
46358
46359
46360
46361
46362
46363
46364
46365
46366
46367
46368
46369
46370
46371
46372
46373
46374
46375
46376
46377
46378
46379
46380
46381
46382
46383
46384
46385
46386
46387
46388
46389
46390
46391
46392
46393
46394
46395
46396
46397
46398
46399
46400
46401
46402
46403
46404
46405
46406
46407
46408
46409
46410
46411
46412
46413
46414
46415
46416
46417
46418
46419
46420
46421
46422
46423
46424
46425
46426
46427
46428
46429
46430
46431
46432
46433
46434
46435
46436
46437
46438
46439
46440
46441
46442
46443
46444
46445
46446
46447
46448
46449
46450
46451
46452
46453
46454
46455
46456
46457
46458
46459
46460
46461
46462
46463
46464
46465
46466
46467
46468
46469
46470
46471
46472
46473
46474
46475
46476
46477
46478
46479
46480
46481
46482
46483
46484
46485
46486
46487
46488
46489
46490
46491
46492
46493
46494
46495
46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
46517
46518
46519
46520
46521
46522
46523
46524
46525
46526
46527
46528
46529
46530
46531
46532
46533
46534
46535
46536
46537
46538
46539
46540
46541
46542
46543
46544
46545
46546
46547
46548
46549
46550
46551
46552
46553
46554
46555
46556
46557
46558
46559
46560
46561
46562
46563
46564
46565
46566
46567
46568
46569
46570
46571
46572
46573
46574
46575
46576
46577
46578
46579
46580
46581
46582
46583
46584
46585
46586
46587
46588
46589
46590
46591
46592
46593
46594
46595
46596
46597
46598
46599
46600
46601
46602
46603
46604
46605
46606
46607
46608
46609
46610
46611
46612
46613
46614
46615
46616
46617
46618
46619
46620
46621
46622
46623
46624
46625
46626
46627
46628
46629
46630
46631
46632
46633
46634
46635
46636
46637
46638
46639
46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
46652
46653
46654
46655
46656
46657
46658
46659
46660
46661
46662
46663
46664
46665
46666
46667
46668
46669
46670
46671
46672
46673
46674
46675
46676
46677
46678
46679
46680
46681
46682
46683
46684
46685
46686
46687
46688
46689
46690
46691
46692
46693
46694
46695
46696
46697
46698
46699
46700
46701
46702
46703
46704
46705
46706
46707
46708
46709
46710
46711
46712
46713
46714
46715
46716
46717
46718
46719
46720
46721
46722
46723
46724
46725
46726
46727
46728
46729
46730
46731
46732
46733
46734
46735
46736
46737
46738
46739
46740
46741
46742
46743
46744
46745
46746
46747
46748
46749
46750
46751
46752
46753
46754
46755
46756
46757
46758
46759
46760
46761
46762
46763
46764
46765
46766
46767
46768
46769
46770
46771
46772
46773
46774
46775
46776
46777
46778
46779
46780
46781
46782
46783
46784
46785
46786
46787
46788
46789
46790
46791
46792
46793
46794
46795
46796
46797
46798
46799
46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
46823
46824
46825
46826
46827
46828
46829
46830
46831
46832
46833
46834
46835
46836
46837
46838
46839
46840
46841
46842
46843
46844
46845
46846
46847
46848
46849
46850
46851
46852
46853
46854
46855
46856
46857
46858
46859
46860
46861
46862
46863
46864
46865
46866
46867
46868
46869
46870
46871
46872
46873
46874
46875
46876
46877
46878
46879
46880
46881
46882
46883
46884
46885
46886
46887
46888
46889
46890
46891
46892
46893
46894
46895
46896
46897
46898
46899
46900
46901
46902
46903
46904
46905
46906
46907
46908
46909
46910
46911
46912
46913
46914
46915
46916
46917
46918
46919
46920
46921
46922
46923
46924
46925
46926
46927
46928
46929
46930
46931
46932
46933
46934
46935
46936
46937
46938
46939
46940
46941
46942
46943
46944
46945
46946
46947
46948
46949
46950
46951
46952
46953
46954
46955
46956
46957
46958
46959
46960
46961
46962
46963
46964
46965
46966
46967
46968
46969
46970
46971
46972
46973
46974
46975
46976
46977
46978
46979
46980
46981
46982
46983
46984
46985
46986
46987
46988
46989
46990
46991
46992
46993
46994
46995
46996
46997
46998
46999
47000
47001
47002
47003
47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015
47016
47017
47018
47019
47020
47021
47022
47023
47024
47025
47026
47027
47028
47029
47030
47031
47032
47033
47034
47035
47036
47037
47038
47039
47040
47041
47042
47043
47044
47045
47046
47047
47048
47049
47050
47051
47052
47053
47054
47055
47056
47057
47058
47059
47060
47061
47062
47063
47064
47065
47066
47067
47068
47069
47070
47071
47072
47073
47074
47075
47076
47077
47078
47079
47080
47081
47082
47083
47084
47085
47086
47087
47088
47089
47090
47091
47092
47093
47094
47095
47096
47097
47098
47099
47100
47101
47102
47103
47104
47105
47106
47107
47108
47109
47110
47111
47112
47113
47114
47115
47116
47117
47118
47119
47120
47121
47122
47123
47124
47125
47126
47127
47128
47129
47130
47131
47132
47133
47134
47135
47136
47137
47138
47139
47140
47141
47142
47143
47144
47145
47146
47147
47148
47149
47150
47151
47152
47153
47154
47155
47156
47157
47158
47159
47160
47161
47162
47163
47164
47165
47166
47167
47168
47169
47170
47171
47172
47173
47174
47175
47176
47177
47178
47179
47180
47181
47182
47183
47184
47185
47186
47187
47188
47189
47190
47191
47192
47193
47194
47195
47196
47197
47198
47199
47200
47201
47202
47203
47204
47205
47206
47207
47208
47209
47210
47211
47212
47213
47214
47215
47216
47217
47218
47219
47220
47221
47222
47223
47224
47225
47226
47227
47228
47229
47230
47231
47232
47233
47234
47235
47236
47237
47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
47250
47251
47252
47253
47254
47255
47256
47257
47258
47259
47260
47261
47262
47263
47264
47265
47266
47267
47268
47269
47270
47271
47272
47273
47274
47275
47276
47277
47278
47279
47280
47281
47282
47283
47284
47285
47286
47287
47288
47289
47290
47291
47292
47293
47294
47295
47296
47297
47298
47299
47300
47301
47302
47303
47304
47305
47306
47307
47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320
47321
47322
47323
47324
47325
47326
47327
47328
47329
47330
47331
47332
47333
47334
47335
47336
47337
47338
47339
47340
47341
47342
47343
47344
47345
47346
47347
47348
47349
47350
47351
47352
47353
47354
47355
47356
47357
47358
47359
47360
47361
47362
47363
47364
47365
47366
47367
47368
47369
47370
47371
47372
47373
47374
47375
47376
47377
47378
47379
47380
47381
47382
47383
47384
47385
47386
47387
47388
47389
47390
47391
47392
47393
47394
47395
47396
47397
47398
47399
47400
47401
47402
47403
47404
47405
47406
47407
47408
47409
47410
47411
47412
47413
47414
47415
47416
47417
47418
47419
47420
47421
47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433
47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461
47462
47463
47464
47465
47466
47467
47468
47469
47470
47471
47472
47473
47474
47475
47476
47477
47478
47479
47480
47481
47482
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494
47495
47496
47497
47498
47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
47519
47520
47521
47522
47523
47524
47525
47526
47527
47528
47529
47530
47531
47532
47533
47534
47535
47536
47537
47538
47539
47540
47541
47542
47543
47544
47545
47546
47547
47548
47549
47550
47551
47552
47553
47554
47555
47556
47557
47558
47559
47560
47561
47562
47563
47564
47565
47566
47567
47568
47569
47570
47571
47572
47573
47574
47575
47576
47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
47592
47593
47594
47595
47596
47597
47598
47599
47600
47601
47602
47603
47604
47605
47606
47607
47608
47609
47610
47611
47612
47613
47614
47615
47616
47617
47618
47619
47620
47621
47622
47623
47624
47625
47626
47627
47628
47629
47630
47631
47632
47633
47634
47635
47636
47637
47638
47639
47640
47641
47642
47643
47644
47645
47646
47647
47648
47649
47650
47651
47652
47653
47654
47655
47656
47657
47658
47659
47660
47661
47662
47663
47664
47665
47666
47667
47668
47669
47670
47671
47672
47673
47674
47675
47676
47677
47678
47679
47680
47681
47682
47683
47684
47685
47686
47687
47688
47689
47690
47691
47692
47693
47694
47695
47696
47697
47698
47699
47700
47701
47702
47703
47704
47705
47706
47707
47708
47709
47710
47711
47712
47713
47714
47715
47716
47717
47718
47719
47720
47721
47722
47723
47724
47725
47726
47727
47728
47729
47730
47731
47732
47733
47734
47735
47736
47737
47738
47739
47740
47741
47742
47743
47744
47745
47746
47747
47748
47749
47750
47751
47752
47753
47754
47755
47756
47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827
47828
47829
47830
47831
47832
47833
47834
47835
47836
47837
47838
47839
47840
47841
47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
47870
47871
47872
47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
47889
47890
47891
47892
47893
47894
47895
47896
47897
47898
47899
47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
47932
47933
47934
47935
47936
47937
47938
47939
47940
47941
47942
47943
47944
47945
47946
47947
47948
47949
47950
47951
47952
47953
47954
47955
47956
47957
47958
47959
47960
47961
47962
47963
47964
47965
47966
47967
47968
47969
47970
47971
47972
47973
47974
47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
47995
47996
47997
47998
47999
48000
48001
48002
48003
48004
48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017
48018
48019
48020
48021
48022
48023
48024
48025
48026
48027
48028
48029
48030
48031
48032
48033
48034
48035
48036
48037
48038
48039
48040
48041
48042
48043
48044
48045
48046
48047
48048
48049
48050
48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
48070
48071
48072
48073
48074
48075
48076
48077
48078
48079
48080
48081
48082
48083
48084
48085
48086
48087
48088
48089
48090
48091
48092
48093
48094
48095
48096
48097
48098
48099
48100
48101
48102
48103
48104
48105
48106
48107
48108
48109
48110
48111
48112
48113
48114
48115
48116
48117
48118
48119
48120
48121
48122
48123
48124
48125
48126
48127
48128
48129
48130
48131
48132
48133
48134
48135
48136
48137
48138
48139
48140
48141
48142
48143
48144
48145
48146
48147
48148
48149
48150
48151
48152
48153
48154
48155
48156
48157
48158
48159
48160
48161
48162
48163
48164
48165
48166
48167
48168
48169
48170
48171
48172
48173
48174
48175
48176
48177
48178
48179
48180
48181
48182
48183
48184
48185
48186
48187
48188
48189
48190
48191
48192
48193
48194
48195
48196
48197
48198
48199
48200
48201
48202
48203
48204
48205
48206
48207
48208
48209
48210
48211
48212
48213
48214
48215
48216
48217
48218
48219
48220
48221
48222
48223
48224
48225
48226
48227
48228
48229
48230
48231
48232
48233
48234
48235
48236
48237
48238
48239
48240
48241
48242
48243
48244
48245
48246
48247
48248
48249
48250
48251
48252
48253
48254
48255
48256
48257
48258
48259
48260
48261
48262
48263
48264
48265
48266
48267
48268
48269
48270
48271
48272
48273
48274
48275
48276
48277
48278
48279
48280
48281
48282
48283
48284
48285
48286
48287
48288
48289
48290
48291
48292
48293
48294
48295
48296
48297
48298
48299
48300
48301
48302
48303
48304
48305
48306
48307
48308
48309
48310
48311
48312
48313
48314
48315
48316
48317
48318
48319
48320
48321
48322
48323
48324
48325
48326
48327
48328
48329
48330
48331
48332
48333
48334
48335
48336
48337
48338
48339
48340
48341
48342
48343
48344
48345
48346
48347
48348
48349
48350
48351
48352
48353
48354
48355
48356
48357
48358
48359
48360
48361
48362
48363
48364
48365
48366
48367
48368
48369
48370
48371
48372
48373
48374
48375
48376
48377
48378
48379
48380
48381
48382
48383
48384
48385
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418
48419
48420
48421
48422
48423
48424
48425
48426
48427
48428
48429
48430
48431
48432
48433
48434
48435
48436
48437
48438
48439
48440
48441
48442
48443
48444
48445
48446
48447
48448
48449
48450
48451
48452
48453
48454
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
48470
48471
48472
48473
48474
48475
48476
48477
48478
48479
48480
48481
48482
48483
48484
48485
48486
48487
48488
48489
48490
48491
48492
48493
48494
48495
48496
48497
48498
48499
48500
48501
48502
48503
48504
48505
48506
48507
48508
48509
48510
48511
48512
48513
48514
48515
48516
48517
48518
48519
48520
48521
48522
48523
48524
48525
48526
48527
48528
48529
48530
48531
48532
48533
48534
48535
48536
48537
48538
48539
48540
48541
48542
48543
48544
48545
48546
48547
48548
48549
48550
48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596
48597
48598
48599
48600
48601
48602
48603
48604
48605
48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48631
48632
48633
48634
48635
48636
48637
48638
48639
48640
48641
48642
48643
48644
48645
48646
48647
48648
48649
48650
48651
48652
48653
48654
48655
48656
48657
48658
48659
48660
48661
48662
48663
48664
48665
48666
48667
48668
48669
48670
48671
48672
48673
48674
48675
48676
48677
48678
48679
48680
48681
48682
48683
48684
48685
48686
48687
48688
48689
48690
48691
48692
48693
48694
48695
48696
48697
48698
48699
48700
48701
48702
48703
48704
48705
48706
48707
48708
48709
48710
48711
48712
48713
48714
48715
48716
48717
48718
48719
48720
48721
48722
48723
48724
48725
48726
48727
48728
48729
48730
48731
48732
48733
48734
48735
48736
48737
48738
48739
48740
48741
48742
48743
48744
48745
48746
48747
48748
48749
48750
48751
48752
48753
48754
48755
48756
48757
48758
48759
48760
48761
48762
48763
48764
48765
48766
48767
48768
48769
48770
48771
48772
48773
48774
48775
48776
48777
48778
48779
48780
48781
48782
48783
48784
48785
48786
48787
48788
48789
48790
48791
48792
48793
48794
48795
48796
48797
48798
48799
48800
48801
48802
48803
48804
48805
48806
48807
48808
48809
48810
48811
48812
48813
48814
48815
48816
48817
48818
48819
48820
48821
48822
48823
48824
48825
48826
48827
48828
48829
48830
48831
48832
48833
48834
48835
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
48851
48852
48853
48854
48855
48856
48857
48858
48859
48860
48861
48862
48863
48864
48865
48866
48867
48868
48869
48870
48871
48872
48873
48874
48875
48876
48877
48878
48879
48880
48881
48882
48883
48884
48885
48886
48887
48888
48889
48890
48891
48892
48893
48894
48895
48896
48897
48898
48899
48900
48901
48902
48903
48904
48905
48906
48907
48908
48909
48910
48911
48912
48913
48914
48915
48916
48917
48918
48919
48920
48921
48922
48923
48924
48925
48926
48927
48928
48929
48930
48931
48932
48933
48934
48935
48936
48937
48938
48939
48940
48941
48942
48943
48944
48945
48946
48947
48948
48949
48950
48951
48952
48953
48954
48955
48956
48957
48958
48959
48960
48961
48962
48963
48964
48965
48966
48967
48968
48969
48970
48971
48972
48973
48974
48975
48976
48977
48978
48979
48980
48981
48982
48983
48984
48985
48986
48987
48988
48989
48990
48991
48992
48993
48994
48995
48996
48997
48998
48999
49000
49001
49002
49003
49004
49005
49006
49007
49008
49009
49010
49011
49012
49013
49014
49015
49016
49017
49018
49019
49020
49021
49022
49023
49024
49025
49026
49027
49028
49029
49030
49031
49032
49033
49034
49035
49036
49037
49038
49039
49040
49041
49042
49043
49044
49045
49046
49047
49048
49049
49050
49051
49052
49053
49054
49055
49056
49057
49058
49059
49060
49061
49062
49063
49064
49065
49066
49067
49068
49069
49070
49071
49072
49073
49074
49075
49076
49077
49078
49079
49080
49081
49082
49083
49084
49085
49086
49087
49088
49089
49090
49091
49092
49093
49094
49095
49096
49097
49098
49099
49100
49101
49102
49103
49104
49105
49106
49107
49108
49109
49110
49111
49112
49113
49114
49115
49116
49117
49118
49119
49120
49121
49122
49123
49124
49125
49126
49127
49128
49129
49130
49131
49132
49133
49134
49135
49136
49137
49138
49139
49140
49141
49142
49143
49144
49145
49146
49147
49148
49149
49150
49151
49152
49153
49154
49155
49156
49157
49158
49159
49160
49161
49162
49163
49164
49165
49166
49167
49168
49169
49170
49171
49172
49173
49174
49175
49176
49177
49178
49179
49180
49181
49182
49183
49184
49185
49186
49187
49188
49189
49190
49191
49192
49193
49194
49195
49196
49197
49198
49199
49200
49201
49202
49203
49204
49205
49206
49207
49208
49209
49210
49211
49212
49213
49214
49215
49216
49217
49218
49219
49220
49221
49222
49223
49224
49225
49226
49227
49228
49229
49230
49231
49232
49233
49234
49235
49236
49237
49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
49260
49261
49262
49263
49264
49265
49266
49267
49268
49269
49270
49271
49272
49273
49274
49275
49276
49277
49278
49279
49280
49281
49282
49283
49284
49285
49286
49287
49288
49289
49290
49291
49292
49293
49294
49295
49296
49297
49298
49299
49300
49301
49302
49303
49304
49305
49306
49307
49308
49309
49310
49311
49312
49313
49314
49315
49316
49317
49318
49319
49320
49321
49322
49323
49324
49325
49326
49327
49328
49329
49330
49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
49341
49342
49343
49344
49345
49346
49347
49348
49349
49350
49351
49352
49353
49354
49355
49356
49357
49358
49359
49360
49361
49362
49363
49364
49365
49366
49367
49368
49369
49370
49371
49372
49373
49374
49375
49376
49377
49378
49379
49380
49381
49382
49383
49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
49395
49396
49397
49398
49399
49400
49401
49402
49403
49404
49405
49406
49407
49408
49409
49410
49411
49412
49413
49414
49415
49416
49417
49418
49419
49420
49421
49422
49423
49424
49425
49426
49427
49428
49429
49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
49446
49447
49448
49449
49450
49451
49452
49453
49454
49455
49456
49457
49458
49459
49460
49461
49462
49463
49464
49465
49466
49467
49468
49469
49470
49471
49472
49473
49474
49475
49476
49477
49478
49479
49480
49481
49482
49483
49484
49485
49486
49487
49488
49489
49490
49491
49492
49493
49494
49495
49496
49497
49498
49499
49500
49501
49502
49503
49504
49505
49506
49507
49508
49509
49510
49511
49512
49513
49514
49515
49516
49517
49518
49519
49520
49521
49522
49523
49524
49525
49526
49527
49528
49529
49530
49531
49532
49533
49534
49535
49536
49537
49538
49539
49540
49541
49542
49543
49544
49545
49546
49547
49548
49549
49550
49551
49552
49553
49554
49555
49556
49557
49558
49559
49560
49561
49562
49563
49564
49565
49566
49567
49568
49569
49570
49571
49572
49573
49574
49575
49576
49577
49578
49579
49580
49581
49582
49583
49584
49585
49586
49587
49588
49589
49590
49591
49592
49593
49594
49595
49596
49597
49598
49599
49600
49601
49602
49603
49604
49605
49606
49607
49608
49609
49610
49611
49612
49613
49614
49615
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
49627
49628
49629
49630
49631
49632
49633
49634
49635
49636
49637
49638
49639
49640
49641
49642
49643
49644
49645
49646
49647
49648
49649
49650
49651
49652
49653
49654
49655
49656
49657
49658
49659
49660
49661
49662
49663
49664
49665
49666
49667
49668
49669
49670
49671
49672
49673
49674
49675
49676
49677
49678
49679
49680
49681
49682
49683
49684
49685
49686
49687
49688
49689
49690
49691
49692
49693
49694
49695
49696
49697
49698
49699
49700
49701
49702
49703
49704
49705
49706
49707
49708
49709
49710
49711
49712
49713
49714
49715
49716
49717
49718
49719
49720
49721
49722
49723
49724
49725
49726
49727
49728
49729
49730
49731
49732
49733
49734
49735
49736
49737
49738
49739
49740
49741
49742
49743
49744
49745
49746
49747
49748
49749
49750
49751
49752
49753
49754
49755
49756
49757
49758
49759
49760
49761
49762
49763
49764
49765
49766
49767
49768
49769
49770
49771
49772
49773
49774
49775
49776
49777
49778
49779
49780
49781
49782
49783
49784
49785
49786
49787
49788
49789
49790
49791
49792
49793
49794
49795
49796
49797
49798
49799
49800
49801
49802
49803
49804
49805
49806
49807
49808
49809
49810
49811
49812
49813
49814
49815
49816
49817
49818
49819
49820
49821
49822
49823
49824
49825
49826
49827
49828
49829
49830
49831
49832
49833
49834
49835
49836
49837
49838
49839
49840
49841
49842
49843
49844
49845
49846
49847
49848
49849
49850
49851
49852
49853
49854
49855
49856
49857
49858
49859
49860
49861
49862
49863
49864
49865
49866
49867
49868
49869
49870
49871
49872
49873
49874
49875
49876
49877
49878
49879
49880
49881
49882
49883
49884
49885
49886
49887
49888
49889
49890
49891
49892
49893
49894
49895
49896
49897
49898
49899
49900
49901
49902
49903
49904
49905
49906
49907
49908
49909
49910
49911
49912
49913
49914
49915
49916
49917
49918
49919
49920
49921
49922
49923
49924
49925
49926
49927
49928
49929
49930
49931
49932
49933
49934
49935
49936
49937
49938
49939
49940
49941
49942
49943
49944
49945
49946
49947
49948
49949
49950
49951
49952
49953
49954
49955
49956
49957
49958
49959
49960
49961
49962
49963
49964
49965
49966
49967
49968
49969
49970
49971
49972
49973
49974
49975
49976
49977
49978
49979
49980
49981
49982
49983
49984
49985
49986
49987
49988
49989
49990
49991
49992
49993
49994
49995
49996
49997
49998
49999
50000
50001
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
50015
50016
50017
50018
50019
50020
50021
50022
50023
50024
50025
50026
50027
50028
50029
50030
50031
50032
50033
50034
50035
50036
50037
50038
50039
50040
50041
50042
50043
50044
50045
50046
50047
50048
50049
50050
50051
50052
50053
50054
50055
50056
50057
50058
50059
50060
50061
50062
50063
50064
50065
50066
50067
50068
50069
50070
50071
50072
50073
50074
50075
50076
50077
50078
50079
50080
50081
50082
50083
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
50097
50098
50099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
50487
50488
50489
50490
50491
50492
50493
50494
50495
50496
50497
50498
50499
50500
50501
50502
50503
50504
50505
50506
50507
50508
50509
50510
50511
50512
50513
50514
50515
50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
50679
50680
50681
50682
50683
50684
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
50700
50701
50702
50703
50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
50760
50761
50762
50763
50764
50765
50766
50767
50768
50769
50770
50771
50772
50773
50774
50775
50776
50777
50778
50779
50780
50781
50782
50783
50784
50785
50786
50787
50788
50789
50790
50791
50792
50793
50794
50795
50796
50797
50798
50799
50800
50801
50802
50803
50804
50805
50806
50807
50808
50809
50810
50811
50812
50813
50814
50815
50816
50817
50818
50819
50820
50821
50822
50823
50824
50825
50826
50827
50828
50829
50830
50831
50832
50833
50834
50835
50836
50837
50838
50839
50840
50841
50842
50843
50844
50845
50846
50847
50848
50849
50850
50851
50852
50853
50854
50855
50856
50857
50858
50859
50860
50861
50862
50863
50864
50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
50889
50890
50891
50892
50893
50894
50895
50896
50897
50898
50899
50900
50901
50902
50903
50904
50905
50906
50907
50908
50909
50910
50911
50912
50913
50914
50915
50916
50917
50918
50919
50920
50921
50922
50923
50924
50925
50926
50927
50928
50929
50930
50931
50932
50933
50934
50935
50936
50937
50938
50939
50940
50941
50942
50943
50944
50945
50946
50947
50948
50949
50950
50951
50952
50953
50954
50955
50956
50957
50958
50959
50960
50961
50962
50963
50964
50965
50966
50967
50968
50969
50970
50971
50972
50973
50974
50975
50976
50977
50978
50979
50980
50981
50982
50983
50984
50985
50986
50987
50988
50989
50990
50991
50992
50993
50994
50995
50996
50997
50998
50999
51000
51001
51002
51003
51004
51005
51006
51007
51008
51009
51010
51011
51012
51013
51014
51015
51016
51017
51018
51019
51020
51021
51022
51023
51024
51025
51026
51027
51028
51029
51030
51031
51032
51033
51034
51035
51036
51037
51038
51039
51040
51041
51042
51043
51044
51045
51046
51047
51048
51049
51050
51051
51052
51053
51054
51055
51056
51057
51058
51059
51060
51061
51062
51063
51064
51065
51066
51067
51068
51069
51070
51071
51072
51073
51074
51075
51076
51077
51078
51079
51080
51081
51082
51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
51093
51094
51095
51096
51097
51098
51099
51100
51101
51102
51103
51104
51105
51106
51107
51108
51109
51110
51111
51112
51113
51114
51115
51116
51117
51118
51119
51120
51121
51122
51123
51124
51125
51126
51127
51128
51129
51130
51131
51132
51133
51134
51135
51136
51137
51138
51139
51140
51141
51142
51143
51144
51145
51146
51147
51148
51149
51150
51151
51152
51153
51154
51155
51156
51157
51158
51159
51160
51161
51162
51163
51164
51165
51166
51167
51168
51169
51170
51171
51172
51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192
51193
51194
51195
51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
51211
51212
51213
51214
51215
51216
51217
51218
51219
51220
51221
51222
51223
51224
51225
51226
51227
51228
51229
51230
51231
51232
51233
51234
51235
51236
51237
51238
51239
51240
51241
51242
51243
51244
51245
51246
51247
51248
51249
51250
51251
51252
51253
51254
51255
51256
51257
51258
51259
51260
51261
51262
51263
51264
51265
51266
51267
51268
51269
51270
51271
51272
51273
51274
51275
51276
51277
51278
51279
51280
51281
51282
51283
51284
51285
51286
51287
51288
51289
51290
51291
51292
51293
51294
51295
51296
51297
51298
51299
51300
51301
51302
51303
51304
51305
51306
51307
51308
51309
51310
51311
51312
51313
51314
51315
51316
51317
51318
51319
51320
51321
51322
51323
51324
51325
51326
51327
51328
51329
51330
51331
51332
51333
51334
51335
51336
51337
51338
51339
51340
51341
51342
51343
51344
51345
51346
51347
51348
51349
51350
51351
51352
51353
51354
51355
51356
51357
51358
51359
51360
51361
51362
51363
51364
51365
51366
51367
51368
51369
51370
51371
51372
51373
51374
51375
51376
51377
51378
51379
51380
51381
51382
51383
51384
51385
51386
51387
51388
51389
51390
51391
51392
51393
51394
51395
51396
51397
51398
51399
51400
51401
51402
51403
51404
51405
51406
51407
51408
51409
51410
51411
51412
51413
51414
51415
51416
51417
51418
51419
51420
51421
51422
51423
51424
51425
51426
51427
51428
51429
51430
51431
51432
51433
51434
51435
51436
51437
51438
51439
51440
51441
51442
51443
51444
51445
51446
51447
51448
51449
51450
51451
51452
51453
51454
51455
51456
51457
51458
51459
51460
51461
51462
51463
51464
51465
51466
51467
51468
51469
51470
51471
51472
51473
51474
51475
51476
51477
51478
51479
51480
51481
51482
51483
51484
51485
51486
51487
51488
51489
51490
51491
51492
51493
51494
51495
51496
51497
51498
51499
51500
51501
51502
51503
51504
51505
51506
51507
51508
51509
51510
51511
51512
51513
51514
51515
51516
51517
51518
51519
51520
51521
51522
51523
51524
51525
51526
51527
51528
51529
51530
51531
51532
51533
51534
51535
51536
51537
51538
51539
51540
51541
51542
51543
51544
51545
51546
51547
51548
51549
51550
51551
51552
51553
51554
51555
51556
51557
51558
51559
51560
51561
51562
51563
51564
51565
51566
51567
51568
51569
51570
51571
51572
51573
51574
51575
51576
51577
51578
51579
51580
51581
51582
51583
51584
51585
51586
51587
51588
51589
51590
51591
51592
51593
51594
51595
51596
51597
51598
51599
51600
51601
51602
51603
51604
51605
51606
51607
51608
51609
51610
51611
51612
51613
51614
51615
51616
51617
51618
51619
51620
51621
51622
51623
51624
51625
51626
51627
51628
51629
51630
51631
51632
51633
51634
51635
51636
51637
51638
51639
51640
51641
51642
51643
51644
51645
51646
51647
51648
51649
51650
51651
51652
51653
51654
51655
51656
51657
51658
51659
51660
51661
51662
51663
51664
51665
51666
51667
51668
51669
51670
51671
51672
51673
51674
51675
51676
51677
51678
51679
51680
51681
51682
51683
51684
51685
51686
51687
51688
51689
51690
51691
51692
51693
51694
51695
51696
51697
51698
51699
51700
51701
51702
51703
51704
51705
51706
51707
51708
51709
51710
51711
51712
51713
51714
51715
51716
51717
51718
51719
51720
51721
51722
51723
51724
51725
51726
51727
51728
51729
51730
51731
51732
51733
51734
51735
51736
51737
51738
51739
51740
51741
51742
51743
51744
51745
51746
51747
51748
51749
51750
51751
51752
51753
51754
51755
51756
51757
51758
51759
51760
51761
51762
51763
51764
51765
51766
51767
51768
51769
51770
51771
51772
51773
51774
51775
51776
51777
51778
51779
51780
51781
51782
51783
51784
51785
51786
51787
51788
51789
51790
51791
51792
51793
51794
51795
51796
51797
51798
51799
51800
51801
51802
51803
51804
51805
51806
51807
51808
51809
51810
51811
51812
51813
51814
51815
51816
51817
51818
51819
51820
51821
51822
51823
51824
51825
51826
51827
51828
51829
51830
51831
51832
51833
51834
51835
51836
51837
51838
51839
51840
51841
51842
51843
51844
51845
51846
51847
51848
51849
51850
51851
51852
51853
51854
51855
51856
51857
51858
51859
51860
51861
51862
51863
51864
51865
51866
51867
51868
51869
51870
51871
51872
51873
51874
51875
51876
51877
51878
51879
51880
51881
51882
51883
51884
51885
51886
51887
51888
51889
51890
51891
51892
51893
51894
51895
51896
51897
51898
51899
51900
51901
51902
51903
51904
51905
51906
51907
51908
51909
51910
51911
51912
51913
51914
51915
51916
51917
51918
51919
51920
51921
51922
51923
51924
51925
51926
51927
51928
51929
51930
51931
51932
51933
51934
51935
51936
51937
51938
51939
51940
51941
51942
51943
51944
51945
51946
51947
51948
51949
51950
51951
51952
51953
51954
51955
51956
51957
51958
51959
51960
51961
51962
51963
51964
51965
51966
51967
51968
51969
51970
51971
51972
51973
51974
51975
51976
51977
51978
51979
51980
51981
51982
51983
51984
51985
51986
51987
51988
51989
51990
51991
51992
51993
51994
51995
51996
51997
51998
51999
52000
52001
52002
52003
52004
52005
52006
52007
52008
52009
52010
52011
52012
52013
52014
52015
52016
52017
52018
52019
52020
52021
52022
52023
52024
52025
52026
52027
52028
52029
52030
52031
52032
52033
52034
52035
52036
52037
52038
52039
52040
52041
52042
52043
52044
52045
52046
52047
52048
52049
52050
52051
52052
52053
52054
52055
52056
52057
52058
52059
52060
52061
52062
52063
52064
52065
52066
52067
52068
52069
52070
52071
52072
52073
52074
52075
52076
52077
52078
52079
52080
52081
52082
52083
52084
52085
52086
52087
52088
52089
52090
52091
52092
52093
52094
52095
52096
52097
52098
52099
52100
52101
52102
52103
52104
52105
52106
52107
52108
52109
52110
52111
52112
52113
52114
52115
52116
52117
52118
52119
52120
52121
52122
52123
52124
52125
52126
52127
52128
52129
52130
52131
52132
52133
52134
52135
52136
52137
52138
52139
52140
52141
52142
52143
52144
52145
52146
52147
52148
52149
52150
52151
52152
52153
52154
52155
52156
52157
52158
52159
52160
52161
52162
52163
52164
52165
52166
52167
52168
52169
52170
52171
52172
52173
52174
52175
52176
52177
52178
52179
52180
52181
52182
52183
52184
52185
52186
52187
52188
52189
52190
52191
52192
52193
52194
52195
52196
52197
52198
52199
52200
52201
52202
52203
52204
52205
52206
52207
52208
52209
52210
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
52223
52224
52225
52226
52227
52228
52229
52230
52231
52232
52233
52234
52235
52236
52237
52238
52239
52240
52241
52242
52243
52244
52245
52246
52247
52248
52249
52250
52251
52252
52253
52254
52255
52256
52257
52258
52259
52260
52261
52262
52263
52264
52265
52266
52267
52268
52269
52270
52271
52272
52273
52274
52275
52276
52277
52278
52279
52280
52281
52282
52283
52284
52285
52286
52287
52288
52289
52290
52291
52292
52293
52294
52295
52296
52297
52298
52299
52300
52301
52302
52303
52304
52305
52306
52307
52308
52309
52310
52311
52312
52313
52314
52315
52316
52317
52318
52319
52320
52321
52322
52323
52324
52325
52326
52327
52328
52329
52330
52331
52332
52333
52334
52335
52336
52337
52338
52339
52340
52341
52342
52343
52344
52345
52346
52347
52348
52349
52350
52351
52352
52353
52354
52355
52356
52357
52358
52359
52360
52361
52362
52363
52364
52365
52366
52367
52368
52369
52370
52371
52372
52373
52374
52375
52376
52377
52378
52379
52380
52381
52382
52383
52384
52385
52386
52387
52388
52389
52390
52391
52392
52393
52394
52395
52396
52397
52398
52399
52400
52401
52402
52403
52404
52405
52406
52407
52408
52409
52410
52411
52412
52413
52414
52415
52416
52417
52418
52419
52420
52421
52422
52423
52424
52425
52426
52427
52428
52429
52430
52431
52432
52433
52434
52435
52436
52437
52438
52439
52440
52441
52442
52443
52444
52445
52446
52447
52448
52449
52450
52451
52452
52453
52454
52455
52456
52457
52458
52459
52460
52461
52462
52463
52464
52465
52466
52467
52468
52469
52470
52471
52472
52473
52474
52475
52476
52477
52478
52479
52480
52481
52482
52483
52484
52485
52486
52487
52488
52489
52490
52491
52492
52493
52494
52495
52496
52497
52498
52499
52500
52501
52502
52503
52504
52505
52506
52507
52508
52509
52510
52511
52512
52513
52514
52515
52516
52517
52518
52519
52520
52521
52522
52523
52524
52525
52526
52527
52528
52529
52530
52531
52532
52533
52534
52535
52536
52537
52538
52539
52540
52541
52542
52543
52544
52545
52546
52547
52548
52549
52550
52551
52552
52553
52554
52555
52556
52557
52558
52559
52560
52561
52562
52563
52564
52565
52566
52567
52568
52569
52570
52571
52572
52573
52574
52575
52576
52577
52578
52579
52580
52581
52582
52583
52584
52585
52586
52587
52588
52589
52590
52591
52592
52593
52594
52595
52596
52597
52598
52599
52600
52601
52602
52603
52604
52605
52606
52607
52608
52609
52610
52611
52612
52613
52614
52615
52616
52617
52618
52619
52620
52621
52622
52623
52624
52625
52626
52627
52628
52629
52630
52631
52632
52633
52634
52635
52636
52637
52638
52639
52640
52641
52642
52643
52644
52645
52646
52647
52648
52649
52650
52651
52652
52653
52654
52655
52656
52657
52658
52659
52660
52661
52662
52663
52664
52665
52666
52667
52668
52669
52670
52671
52672
52673
52674
52675
52676
52677
52678
52679
52680
52681
52682
52683
52684
52685
52686
52687
52688
52689
52690
52691
52692
52693
52694
52695
52696
52697
52698
52699
52700
52701
52702
52703
52704
52705
52706
52707
52708
52709
52710
52711
52712
52713
52714
52715
52716
52717
52718
52719
52720
52721
52722
52723
52724
52725
52726
52727
52728
52729
52730
52731
52732
52733
52734
52735
52736
52737
52738
52739
52740
52741
52742
52743
52744
52745
52746
52747
52748
52749
52750
52751
52752
52753
52754
52755
52756
52757
52758
52759
52760
52761
52762
52763
52764
52765
52766
52767
52768
52769
52770
52771
52772
52773
52774
52775
52776
52777
52778
52779
52780
52781
52782
52783
52784
52785
52786
52787
52788
52789
52790
52791
52792
52793
52794
52795
52796
52797
52798
52799
52800
52801
52802
52803
52804
52805
52806
52807
52808
52809
52810
52811
52812
52813
52814
52815
52816
52817
52818
52819
52820
52821
52822
52823
52824
52825
52826
52827
52828
52829
52830
52831
52832
52833
52834
52835
52836
52837
52838
52839
52840
52841
52842
52843
52844
52845
52846
52847
52848
52849
52850
52851
52852
52853
52854
52855
52856
52857
52858
52859
52860
52861
52862
52863
52864
52865
52866
52867
52868
52869
52870
52871
52872
52873
52874
52875
52876
52877
52878
52879
52880
52881
52882
52883
52884
52885
52886
52887
52888
52889
52890
52891
52892
52893
52894
52895
52896
52897
52898
52899
52900
52901
52902
52903
52904
52905
52906
52907
52908
52909
52910
52911
52912
52913
52914
52915
52916
52917
52918
52919
52920
52921
52922
52923
52924
52925
52926
52927
52928
52929
52930
52931
52932
52933
52934
52935
52936
52937
52938
52939
52940
52941
52942
52943
52944
52945
52946
52947
52948
52949
52950
52951
52952
52953
52954
52955
52956
52957
52958
52959
52960
52961
52962
52963
52964
52965
52966
52967
52968
52969
52970
52971
52972
52973
52974
52975
52976
52977
52978
52979
52980
52981
52982
52983
52984
52985
52986
52987
52988
52989
52990
52991
52992
52993
52994
52995
52996
52997
52998
52999
53000
53001
53002
53003
53004
53005
53006
53007
53008
53009
53010
53011
53012
53013
53014
53015
53016
53017
53018
53019
53020
53021
53022
53023
53024
53025
53026
53027
53028
53029
53030
53031
53032
53033
53034
53035
53036
53037
53038
53039
53040
53041
53042
53043
53044
53045
53046
53047
53048
53049
53050
53051
53052
53053
53054
53055
53056
53057
53058
53059
53060
53061
53062
53063
53064
53065
53066
53067
53068
53069
53070
53071
53072
53073
53074
53075
53076
53077
53078
53079
53080
53081
53082
53083
53084
53085
53086
53087
53088
53089
53090
53091
53092
53093
53094
53095
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105
53106
53107
53108
53109
53110
53111
53112
53113
53114
53115
53116
53117
53118
53119
53120
53121
53122
53123
53124
53125
53126
53127
53128
53129
53130
53131
53132
53133
53134
53135
53136
53137
53138
53139
53140
53141
53142
53143
53144
53145
53146
53147
53148
53149
53150
53151
53152
53153
53154
53155
53156
53157
53158
53159
53160
53161
53162
53163
53164
53165
53166
53167
53168
53169
53170
53171
53172
53173
53174
53175
53176
53177
53178
53179
53180
53181
53182
53183
53184
53185
53186
53187
53188
53189
53190
53191
53192
53193
53194
53195
53196
53197
53198
53199
53200
53201
53202
53203
53204
53205
53206
53207
53208
53209
53210
53211
53212
53213
53214
53215
53216
53217
53218
53219
53220
53221
53222
53223
53224
53225
53226
53227
53228
53229
53230
53231
53232
53233
53234
53235
53236
53237
53238
53239
53240
53241
53242
53243
53244
53245
53246
53247
53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265
53266
53267
53268
53269
53270
53271
53272
53273
53274
53275
53276
53277
53278
53279
53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
53295
53296
53297
53298
53299
53300
53301
53302
53303
53304
53305
53306
53307
53308
53309
53310
53311
53312
53313
53314
53315
53316
53317
53318
53319
53320
53321
53322
53323
53324
53325
53326
53327
53328
53329
53330
53331
53332
53333
53334
53335
53336
53337
53338
53339
53340
53341
53342
53343
53344
53345
53346
53347
53348
53349
53350
53351
53352
53353
53354
53355
53356
53357
53358
53359
53360
53361
53362
53363
53364
53365
53366
53367
53368
53369
53370
53371
53372
53373
53374
53375
53376
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
53393
53394
53395
53396
53397
53398
53399
53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
53410
53411
53412
53413
53414
53415
53416
53417
53418
53419
53420
53421
53422
53423
53424
53425
53426
53427
53428
53429
53430
53431
53432
53433
53434
53435
53436
53437
53438
53439
53440
53441
53442
53443
53444
53445
53446
53447
53448
53449
53450
53451
53452
53453
53454
53455
53456
53457
53458
53459
53460
53461
53462
53463
53464
53465
53466
53467
53468
53469
53470
53471
53472
53473
53474
53475
53476
53477
53478
53479
53480
53481
53482
53483
53484
53485
53486
53487
53488
53489
53490
53491
53492
53493
53494
53495
53496
53497
53498
53499
53500
53501
53502
53503
53504
53505
53506
53507
53508
53509
53510
53511
53512
53513
53514
53515
53516
53517
53518
53519
53520
53521
53522
53523
53524
53525
53526
53527
53528
53529
53530
53531
53532
53533
53534
53535
53536
53537
53538
53539
53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554
53555
53556
53557
53558
53559
53560
53561
53562
53563
53564
53565
53566
53567
53568
53569
53570
53571
53572
53573
53574
53575
53576
53577
53578
53579
53580
53581
53582
53583
53584
53585
53586
53587
53588
53589
53590
53591
53592
53593
53594
53595
53596
53597
53598
53599
53600
53601
53602
53603
53604
53605
53606
53607
53608
53609
53610
53611
53612
53613
53614
53615
53616
53617
53618
53619
53620
53621
53622
53623
53624
53625
53626
53627
53628
53629
53630
53631
53632
53633
53634
53635
53636
53637
53638
53639
53640
53641
53642
53643
53644
53645
53646
53647
53648
53649
53650
53651
53652
53653
53654
53655
53656
53657
53658
53659
53660
53661
53662
53663
53664
53665
53666
53667
53668
53669
53670
53671
53672
53673
53674
53675
53676
53677
53678
53679
53680
53681
53682
53683
53684
53685
53686
53687
53688
53689
53690
53691
53692
53693
53694
53695
53696
53697
53698
53699
53700
53701
53702
53703
53704
53705
53706
53707
53708
53709
53710
53711
53712
53713
53714
53715
53716
53717
53718
53719
53720
53721
53722
53723
53724
53725
53726
53727
53728
53729
53730
53731
53732
53733
53734
53735
53736
53737
53738
53739
53740
53741
53742
53743
53744
53745
53746
53747
53748
53749
53750
53751
53752
53753
53754
53755
53756
53757
53758
53759
53760
53761
53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
53772
53773
53774
53775
53776
53777
53778
53779
53780
53781
53782
53783
53784
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
53803
53804
53805
53806
53807
53808
53809
53810
53811
53812
53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
53828
53829
53830
53831
53832
53833
53834
53835
53836
53837
53838
53839
53840
53841
53842
53843
53844
53845
53846
53847
53848
53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
53880
53881
53882
53883
53884
53885
53886
53887
53888
53889
53890
53891
53892
53893
53894
53895
53896
53897
53898
53899
53900
53901
53902
53903
53904
53905
53906
53907
53908
53909
53910
53911
53912
53913
53914
53915
53916
53917
53918
53919
53920
53921
53922
53923
53924
53925
53926
53927
53928
53929
53930
53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
53941
53942
53943
53944
53945
53946
53947
53948
53949
53950
53951
53952
53953
53954
53955
53956
53957
53958
53959
53960
53961
53962
53963
53964
53965
53966
53967
53968
53969
53970
53971
53972
53973
53974
53975
53976
53977
53978
53979
53980
53981
53982
53983
53984
53985
53986
53987
53988
53989
53990
53991
53992
53993
53994
53995
53996
53997
53998
53999
54000
54001
54002
54003
54004
54005
54006
54007
54008
54009
54010
54011
54012
54013
54014
54015
54016
54017
54018
54019
54020
54021
54022
54023
54024
54025
54026
54027
54028
54029
54030
54031
54032
54033
54034
54035
54036
54037
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057
54058
54059
54060
54061
54062
54063
54064
54065
54066
54067
54068
54069
54070
54071
54072
54073
54074
54075
54076
54077
54078
54079
54080
54081
54082
54083
54084
54085
54086
54087
54088
54089
54090
54091
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
54132
54133
54134
54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
54152
54153
54154
54155
54156
54157
54158
54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171
54172
54173
54174
54175
54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
54207
54208
54209
54210
54211
54212
54213
54214
54215
54216
54217
54218
54219
54220
54221
54222
54223
54224
54225
54226
54227
54228
54229
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
54245
54246
54247
54248
54249
54250
54251
54252
54253
54254
54255
54256
54257
54258
54259
54260
54261
54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
54277
54278
54279
54280
54281
54282
54283
54284
54285
54286
54287
54288
54289
54290
54291
54292
54293
54294
54295
54296
54297
54298
54299
54300
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
54316
54317
54318
54319
54320
54321
54322
54323
54324
54325
54326
54327
54328
54329
54330
54331
54332
54333
54334
54335
54336
54337
54338
54339
54340
54341
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389
54390
54391
54392
54393
54394
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
54411
54412
54413
54414
54415
54416
54417
54418
54419
54420
54421
54422
54423
54424
54425
54426
54427
54428
54429
54430
54431
54432
54433
54434
54435
54436
54437
54438
54439
54440
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454
54455
54456
54457
54458
54459
54460
54461
54462
54463
54464
54465
54466
54467
54468
54469
54470
54471
54472
54473
54474
54475
54476
54477
54478
54479
54480
54481
54482
54483
54484
54485
54486
54487
54488
54489
54490
54491
54492
54493
54494
54495
54496
54497
54498
54499
54500
54501
54502
54503
54504
54505
54506
54507
54508
54509
54510
54511
54512
54513
54514
54515
54516
54517
54518
54519
54520
54521
54522
54523
54524
54525
54526
54527
54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539
54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
54565
54566
54567
54568
54569
54570
54571
54572
54573
54574
54575
54576
54577
54578
54579
54580
54581
54582
54583
54584
54585
54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
54600
54601
54602
54603
54604
54605
54606
54607
54608
54609
54610
54611
54612
54613
54614
54615
54616
54617
54618
54619
54620
54621
54622
54623
54624
54625
54626
54627
54628
54629
54630
54631
54632
54633
54634
54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
54658
54659
54660
54661
54662
54663
54664
54665
54666
54667
54668
54669
54670
54671
54672
54673
54674
54675
54676
54677
54678
54679
54680
54681
54682
54683
54684
54685
54686
54687
54688
54689
54690
54691
54692
54693
54694
54695
54696
54697
54698
54699
54700
54701
54702
54703
54704
54705
54706
54707
54708
54709
54710
54711
54712
54713
54714
54715
54716
54717
54718
54719
54720
54721
54722
54723
54724
54725
54726
54727
54728
54729
54730
54731
54732
54733
54734
54735
54736
54737
54738
54739
54740
54741
54742
54743
54744
54745
54746
54747
54748
54749
54750
54751
54752
54753
54754
54755
54756
54757
54758
54759
54760
54761
54762
54763
54764
54765
54766
54767
54768
54769
54770
54771
54772
54773
54774
54775
54776
54777
54778
54779
54780
54781
54782
54783
54784
54785
54786
54787
54788
54789
54790
54791
54792
54793
54794
54795
54796
54797
54798
54799
54800
54801
54802
54803
54804
54805
54806
54807
54808
54809
54810
54811
54812
54813
54814
54815
54816
54817
54818
54819
54820
54821
54822
54823
54824
54825
54826
54827
54828
54829
54830
54831
54832
54833
54834
54835
54836
54837
54838
54839
54840
54841
54842
54843
54844
54845
54846
54847
54848
54849
54850
54851
54852
54853
54854
54855
54856
54857
54858
54859
54860
54861
54862
54863
54864
54865
54866
54867
54868
54869
54870
54871
54872
54873
54874
54875
54876
54877
54878
54879
54880
54881
54882
54883
54884
54885
54886
54887
54888
54889
54890
54891
54892
54893
54894
54895
54896
54897
54898
54899
54900
54901
54902
54903
54904
54905
54906
54907
54908
54909
54910
54911
54912
54913
54914
54915
54916
54917
54918
54919
54920
54921
54922
54923
54924
54925
54926
54927
54928
54929
54930
54931
54932
54933
54934
54935
54936
54937
54938
54939
54940
54941
54942
54943
54944
54945
54946
54947
54948
54949
54950
54951
54952
54953
54954
54955
54956
54957
54958
54959
54960
54961
54962
54963
54964
54965
54966
54967
54968
54969
54970
54971
54972
54973
54974
54975
54976
54977
54978
54979
54980
54981
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
55005
55006
55007
55008
55009
55010
55011
55012
55013
55014
55015
55016
55017
55018
55019
55020
55021
55022
55023
55024
55025
55026
55027
55028
55029
55030
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
55053
55054
55055
55056
55057
55058
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078
55079
55080
55081
55082
55083
55084
55085
55086
55087
55088
55089
55090
55091
55092
55093
55094
55095
55096
55097
55098
55099
55100
55101
55102
55103
55104
55105
55106
55107
55108
55109
55110
55111
55112
55113
55114
55115
55116
55117
55118
55119
55120
55121
55122
55123
55124
55125
55126
55127
55128
55129
55130
55131
55132
55133
55134
55135
55136
55137
55138
55139
55140
55141
55142
55143
55144
55145
55146
55147
55148
55149
55150
55151
55152
55153
55154
55155
55156
55157
55158
55159
55160
55161
55162
55163
55164
55165
55166
55167
55168
55169
55170
55171
55172
55173
55174
55175
55176
55177
55178
55179
55180
55181
55182
55183
55184
55185
55186
55187
55188
55189
55190
55191
55192
55193
55194
55195
55196
55197
55198
55199
55200
55201
55202
55203
55204
55205
55206
55207
55208
55209
55210
55211
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
55282
55283
55284
55285
55286
55287
55288
55289
55290
55291
55292
55293
55294
55295
55296
55297
55298
55299
55300
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
55402
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
55600
55601
55602
55603
55604
55605
55606
55607
55608
55609
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
55621
55622
55623
55624
55625
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648
55649
55650
55651
55652
55653
55654
55655
55656
55657
55658
55659
55660
55661
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
55700
55701
55702
55703
55704
55705
55706
55707
55708
55709
55710
55711
55712
55713
55714
55715
55716
55717
55718
55719
55720
55721
55722
55723
55724
55725
55726
55727
55728
55729
55730
55731
55732
55733
55734
55735
55736
55737
55738
55739
55740
55741
55742
55743
55744
55745
55746
55747
55748
55749
55750
55751
55752
55753
55754
55755
55756
55757
55758
55759
55760
55761
55762
55763
55764
55765
55766
55767
55768
55769
55770
55771
55772
55773
55774
55775
55776
55777
55778
55779
55780
55781
55782
55783
55784
55785
55786
55787
55788
55789
55790
55791
55792
55793
55794
55795
55796
55797
55798
55799
55800
55801
55802
55803
55804
55805
55806
55807
55808
55809
55810
55811
55812
55813
55814
55815
55816
55817
55818
55819
55820
55821
55822
55823
55824
55825
55826
55827
55828
55829
55830
55831
55832
55833
55834
55835
55836
55837
55838
55839
55840
55841
55842
55843
55844
55845
55846
55847
55848
55849
55850
55851
55852
55853
55854
55855
55856
55857
55858
55859
55860
55861
55862
55863
55864
55865
55866
55867
55868
55869
55870
55871
55872
55873
55874
55875
55876
55877
55878
55879
55880
55881
55882
55883
55884
55885
55886
55887
55888
55889
55890
55891
55892
55893
55894
55895
55896
55897
55898
55899
55900
55901
55902
55903
55904
55905
55906
55907
55908
55909
55910
55911
55912
55913
55914
55915
55916
55917
55918
55919
55920
55921
55922
55923
55924
55925
55926
55927
55928
55929
55930
55931
55932
55933
55934
55935
55936
55937
55938
55939
55940
55941
55942
55943
55944
55945
55946
55947
55948
55949
55950
55951
55952
55953
55954
55955
55956
55957
55958
55959
55960
55961
55962
55963
55964
55965
55966
55967
55968
55969
55970
55971
55972
55973
55974
55975
55976
55977
55978
55979
55980
55981
55982
55983
55984
55985
55986
55987
55988
55989
55990
55991
55992
55993
55994
55995
55996
55997
55998
55999
56000
56001
56002
56003
56004
56005
56006
56007
56008
56009
56010
56011
56012
56013
56014
56015
56016
56017
56018
56019
56020
56021
56022
56023
56024
56025
56026
56027
56028
56029
56030
56031
56032
56033
56034
56035
56036
56037
56038
56039
56040
56041
56042
56043
56044
56045
56046
56047
56048
56049
56050
56051
56052
56053
56054
56055
56056
56057
56058
56059
56060
56061
56062
56063
56064
56065
56066
56067
56068
56069
56070
56071
56072
56073
56074
56075
56076
56077
56078
56079
56080
56081
56082
56083
56084
56085
56086
56087
56088
56089
56090
56091
56092
56093
56094
56095
56096
56097
56098
56099
56100
56101
56102
56103
56104
56105
56106
56107
56108
56109
56110
56111
56112
56113
56114
56115
56116
56117
56118
56119
56120
56121
56122
56123
56124
56125
56126
56127
56128
56129
56130
56131
56132
56133
56134
56135
56136
56137
56138
56139
56140
56141
56142
56143
56144
56145
56146
56147
56148
56149
56150
56151
56152
56153
56154
56155
56156
56157
56158
56159
56160
56161
56162
56163
56164
56165
56166
56167
56168
56169
56170
56171
56172
56173
56174
56175
56176
56177
56178
56179
56180
56181
56182
56183
56184
56185
56186
56187
56188
56189
56190
56191
56192
56193
56194
56195
56196
56197
56198
56199
56200
56201
56202
56203
56204
56205
56206
56207
56208
56209
56210
56211
56212
56213
56214
56215
56216
56217
56218
56219
56220
56221
56222
56223
56224
56225
56226
56227
56228
56229
56230
56231
56232
56233
56234
56235
56236
56237
56238
56239
56240
56241
56242
56243
56244
56245
56246
56247
56248
56249
56250
56251
56252
56253
56254
56255
56256
56257
56258
56259
56260
56261
56262
56263
56264
56265
56266
56267
56268
56269
56270
56271
56272
56273
56274
56275
56276
56277
56278
56279
56280
56281
56282
56283
56284
56285
56286
56287
56288
56289
56290
56291
56292
56293
56294
56295
56296
56297
56298
56299
56300
56301
56302
56303
56304
56305
56306
56307
56308
56309
56310
56311
56312
56313
56314
56315
56316
56317
56318
56319
56320
56321
56322
56323
56324
56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335
56336
56337
56338
56339
56340
56341
56342
56343
56344
56345
56346
56347
56348
56349
56350
56351
56352
56353
56354
56355
56356
56357
56358
56359
56360
56361
56362
56363
56364
56365
56366
56367
56368
56369
56370
56371
56372
56373
56374
56375
56376
56377
56378
56379
56380
56381
56382
56383
56384
56385
56386
56387
56388
56389
56390
56391
56392
56393
56394
56395
56396
56397
56398
56399
56400
56401
56402
56403
56404
56405
56406
56407
56408
56409
56410
56411
56412
56413
56414
56415
56416
56417
56418
56419
56420
56421
56422
56423
56424
56425
56426
56427
56428
56429
56430
56431
56432
56433
56434
56435
56436
56437
56438
56439
56440
56441
56442
56443
56444
56445
56446
56447
56448
56449
56450
56451
56452
56453
56454
56455
56456
56457
56458
56459
56460
56461
56462
56463
56464
56465
56466
56467
56468
56469
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480
56481
56482
56483
56484
56485
56486
56487
56488
56489
56490
56491
56492
56493
56494
56495
56496
56497
56498
56499
56500
56501
56502
56503
56504
56505
56506
56507
56508
56509
56510
56511
56512
56513
56514
56515
56516
56517
56518
56519
56520
56521
56522
56523
56524
56525
56526
56527
56528
56529
56530
56531
56532
56533
56534
56535
56536
56537
56538
56539
56540
56541
56542
56543
56544
56545
56546
56547
56548
56549
56550
56551
56552
56553
56554
56555
56556
56557
56558
56559
56560
56561
56562
56563
56564
56565
56566
56567
56568
56569
56570
56571
56572
56573
56574
56575
56576
56577
56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589
56590
56591
56592
56593
56594
56595
56596
56597
56598
56599
56600
56601
56602
56603
56604
56605
56606
56607
56608
56609
56610
56611
56612
56613
56614
56615
56616
56617
56618
56619
56620
56621
56622
56623
56624
56625
56626
56627
56628
56629
56630
56631
56632
56633
56634
56635
56636
56637
56638
56639
56640
56641
56642
56643
56644
56645
56646
56647
56648
56649
56650
56651
56652
56653
56654
56655
56656
56657
56658
56659
56660
56661
56662
56663
56664
56665
56666
56667
56668
56669
56670
56671
56672
56673
56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684
56685
56686
56687
56688
56689
56690
56691
56692
56693
56694
56695
56696
56697
56698
56699
56700
56701
56702
56703
56704
56705
56706
56707
56708
56709
56710
56711
56712
56713
56714
56715
56716
56717
56718
56719
56720
56721
56722
56723
56724
56725
56726
56727
56728
56729
56730
56731
56732
56733
56734
56735
56736
56737
56738
56739
56740
56741
56742
56743
56744
56745
56746
56747
56748
56749
56750
56751
56752
56753
56754
56755
56756
56757
56758
56759
56760
56761
56762
56763
56764
56765
56766
56767
56768
56769
56770
56771
56772
56773
56774
56775
56776
56777
56778
56779
56780
56781
56782
56783
56784
56785
56786
56787
56788
56789
56790
56791
56792
56793
56794
56795
56796
56797
56798
56799
56800
56801
56802
56803
56804
56805
56806
56807
56808
56809
56810
56811
56812
56813
56814
56815
56816
56817
56818
56819
56820
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832
56833
56834
56835
56836
56837
56838
56839
56840
56841
56842
56843
56844
56845
56846
56847
56848
56849
56850
56851
56852
56853
56854
56855
56856
56857
56858
56859
56860
56861
56862
56863
56864
56865
56866
56867
56868
56869
56870
56871
56872
56873
56874
56875
56876
56877
56878
56879
56880
56881
56882
56883
56884
56885
56886
56887
56888
56889
56890
56891
56892
56893
56894
56895
56896
56897
56898
56899
56900
56901
56902
56903
56904
56905
56906
56907
56908
56909
56910
56911
56912
56913
56914
56915
56916
56917
56918
56919
56920
56921
56922
56923
56924
56925
56926
56927
56928
56929
56930
56931
56932
56933
56934
56935
56936
56937
56938
56939
56940
56941
56942
56943
56944
56945
56946
56947
56948
56949
56950
56951
56952
56953
56954
56955
56956
56957
56958
56959
56960
56961
56962
56963
56964
56965
56966
56967
56968
56969
56970
56971
56972
56973
56974
56975
56976
56977
56978
56979
56980
56981
56982
56983
56984
56985
56986
56987
56988
56989
56990
56991
56992
56993
56994
56995
56996
56997
56998
56999
57000
57001
57002
57003
57004
57005
57006
57007
57008
57009
57010
57011
57012
57013
57014
57015
57016
57017
57018
57019
57020
57021
57022
57023
57024
57025
57026
57027
57028
57029
57030
57031
57032
57033
57034
57035
57036
57037
57038
57039
57040
57041
57042
57043
57044
57045
57046
57047
57048
57049
57050
57051
57052
57053
57054
57055
57056
57057
57058
57059
57060
57061
57062
57063
57064
57065
57066
57067
57068
57069
57070
57071
57072
57073
57074
57075
57076
57077
57078
57079
57080
57081
57082
57083
57084
57085
57086
57087
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098
57099
57100
57101
57102
57103
57104
57105
57106
57107
57108
57109
57110
57111
57112
57113
57114
57115
57116
57117
57118
57119
57120
57121
57122
57123
57124
57125
57126
57127
57128
57129
57130
57131
57132
57133
57134
57135
57136
57137
57138
57139
57140
57141
57142
57143
57144
57145
57146
57147
57148
57149
57150
57151
57152
57153
57154
57155
57156
57157
57158
57159
57160
57161
57162
57163
57164
57165
57166
57167
57168
57169
57170
57171
57172
57173
57174
57175
57176
57177
57178
57179
57180
57181
57182
57183
57184
57185
57186
57187
57188
57189
57190
57191
57192
57193
57194
57195
57196
57197
57198
57199
57200
57201
57202
57203
57204
57205
57206
57207
57208
57209
57210
57211
57212
57213
57214
57215
57216
57217
57218
57219
57220
57221
57222
57223
57224
57225
57226
57227
57228
57229
57230
57231
57232
57233
57234
57235
57236
57237
57238
57239
57240
57241
57242
57243
57244
57245
57246
57247
57248
57249
57250
57251
57252
57253
57254
57255
57256
57257
57258
57259
57260
57261
57262
57263
57264
57265
57266
57267
57268
57269
57270
57271
57272
57273
57274
57275
57276
57277
57278
57279
57280
57281
57282
57283
57284
57285
57286
57287
57288
57289
57290
57291
57292
57293
57294
57295
57296
57297
57298
57299
57300
57301
57302
57303
57304
57305
57306
57307
57308
57309
57310
57311
57312
57313
57314
57315
57316
57317
57318
57319
57320
57321
57322
57323
57324
57325
57326
57327
57328
57329
57330
57331
57332
57333
57334
57335
57336
57337
57338
57339
57340
57341
57342
57343
57344
57345
57346
57347
57348
57349
57350
57351
57352
57353
57354
57355
57356
57357
57358
57359
57360
57361
57362
57363
57364
57365
57366
57367
57368
57369
57370
57371
57372
57373
57374
57375
57376
57377
57378
57379
57380
57381
57382
57383
57384
57385
57386
57387
57388
57389
57390
57391
57392
57393
57394
57395
57396
57397
57398
57399
57400
57401
57402
57403
57404
57405
57406
57407
57408
57409
57410
57411
57412
57413
57414
57415
57416
57417
57418
57419
57420
57421
57422
57423
57424
57425
57426
57427
57428
57429
57430
57431
57432
57433
57434
57435
57436
57437
57438
57439
57440
57441
57442
57443
57444
57445
57446
57447
57448
57449
57450
57451
57452
57453
57454
57455
57456
57457
57458
57459
57460
57461
57462
57463
57464
57465
57466
57467
57468
57469
57470
57471
57472
57473
57474
57475
57476
57477
57478
57479
57480
57481
57482
57483
57484
57485
57486
57487
57488
57489
57490
57491
57492
57493
57494
57495
57496
57497
57498
57499
57500
57501
57502
57503
57504
57505
57506
57507
57508
57509
57510
57511
57512
57513
57514
57515
57516
57517
57518
57519
57520
57521
57522
57523
57524
57525
57526
57527
57528
57529
57530
57531
57532
57533
57534
57535
57536
57537
57538
57539
57540
57541
57542
57543
57544
57545
57546
57547
57548
57549
57550
57551
57552
57553
57554
57555
57556
57557
57558
57559
57560
57561
57562
57563
57564
57565
57566
57567
57568
57569
57570
57571
57572
57573
57574
57575
57576
57577
57578
57579
57580
57581
57582
57583
57584
57585
57586
57587
57588
57589
57590
57591
57592
57593
57594
57595
57596
57597
57598
57599
57600
57601
57602
57603
57604
57605
57606
57607
57608
57609
57610
57611
57612
57613
57614
57615
57616
57617
57618
57619
57620
57621
57622
57623
57624
57625
57626
57627
57628
57629
57630
57631
57632
57633
57634
57635
57636
57637
57638
57639
57640
57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651
57652
57653
57654
57655
57656
57657
57658
57659
57660
57661
57662
57663
57664
57665
57666
57667
57668
57669
57670
57671
57672
57673
57674
57675
57676
57677
57678
57679
57680
57681
57682
57683
57684
57685
57686
57687
57688
57689
57690
57691
57692
57693
57694
57695
57696
57697
57698
57699
57700
57701
57702
57703
57704
57705
57706
57707
57708
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
57725
57726
57727
57728
57729
57730
57731
57732
57733
57734
57735
57736
57737
57738
57739
57740
57741
57742
57743
57744
57745
57746
57747
57748
57749
57750
57751
57752
57753
57754
57755
57756
57757
57758
57759
57760
57761
57762
57763
57764
57765
57766
57767
57768
57769
57770
57771
57772
57773
57774
57775
57776
57777
57778
57779
57780
57781
57782
57783
57784
57785
57786
57787
57788
57789
57790
57791
57792
57793
57794
57795
57796
57797
57798
57799
57800
57801
57802
57803
57804
57805
57806
57807
57808
57809
57810
57811
57812
57813
57814
57815
57816
57817
57818
57819
57820
57821
57822
57823
57824
57825
57826
57827
57828
57829
57830
57831
57832
57833
57834
57835
57836
57837
57838
57839
57840
57841
57842
57843
57844
57845
57846
57847
57848
57849
57850
57851
57852
57853
57854
57855
57856
57857
57858
57859
57860
57861
57862
57863
57864
57865
57866
57867
57868
57869
57870
57871
57872
57873
57874
57875
57876
57877
57878
57879
57880
57881
57882
57883
57884
57885
57886
57887
57888
57889
57890
57891
57892
57893
57894
57895
57896
57897
57898
57899
57900
57901
57902
57903
57904
57905
57906
57907
57908
57909
57910
57911
57912
57913
57914
57915
57916
57917
57918
57919
57920
57921
57922
57923
57924
57925
57926
57927
57928
57929
57930
57931
57932
57933
57934
57935
57936
57937
57938
57939
57940
57941
57942
57943
57944
57945
57946
57947
57948
57949
57950
57951
57952
57953
57954
57955
57956
57957
57958
57959
57960
57961
57962
57963
57964
57965
57966
57967
57968
57969
57970
57971
57972
57973
57974
57975
57976
57977
57978
57979
57980
57981
57982
57983
57984
57985
57986
57987
57988
57989
57990
57991
57992
57993
57994
57995
57996
57997
57998
57999
58000
58001
58002
58003
58004
58005
58006
58007
58008
58009
58010
58011
58012
58013
58014
58015
58016
58017
58018
58019
58020
58021
58022
58023
58024
58025
58026
58027
58028
58029
58030
58031
58032
58033
58034
58035
58036
58037
58038
58039
58040
58041
58042
58043
58044
58045
58046
58047
58048
58049
58050
58051
58052
58053
58054
58055
58056
58057
58058
58059
58060
58061
58062
58063
58064
58065
58066
58067
58068
58069
58070
58071
58072
58073
58074
58075
58076
58077
58078
58079
58080
58081
58082
58083
58084
58085
58086
58087
58088
58089
58090
58091
58092
58093
58094
58095
58096
58097
58098
58099
58100
58101
58102
58103
58104
58105
58106
58107
58108
58109
58110
58111
58112
58113
58114
58115
58116
58117
58118
58119
58120
58121
58122
58123
58124
58125
58126
58127
58128
58129
58130
58131
58132
58133
58134
58135
58136
58137
58138
58139
58140
58141
58142
58143
58144
58145
58146
58147
58148
58149
58150
58151
58152
58153
58154
58155
58156
58157
58158
58159
58160
58161
58162
58163
58164
58165
58166
58167
58168
58169
58170
58171
58172
58173
58174
58175
58176
58177
58178
58179
58180
58181
58182
58183
58184
58185
58186
58187
58188
58189
58190
58191
58192
58193
58194
58195
58196
58197
58198
58199
58200
58201
58202
58203
58204
58205
58206
58207
58208
58209
58210
58211
58212
58213
58214
58215
58216
58217
58218
58219
58220
58221
58222
58223
58224
58225
58226
58227
58228
58229
58230
58231
58232
58233
58234
58235
58236
58237
58238
58239
58240
58241
58242
58243
58244
58245
58246
58247
58248
58249
58250
58251
58252
58253
58254
58255
58256
58257
58258
58259
58260
58261
58262
58263
58264
58265
58266
58267
58268
58269
58270
58271
58272
58273
58274
58275
58276
58277
58278
58279
58280
58281
58282
58283
58284
58285
58286
58287
58288
58289
58290
58291
58292
58293
58294
58295
58296
58297
58298
58299
58300
58301
58302
58303
58304
58305
58306
58307
58308
58309
58310
58311
58312
58313
58314
58315
58316
58317
58318
58319
58320
58321
58322
58323
58324
58325
58326
58327
58328
58329
58330
58331
58332
58333
58334
58335
58336
58337
58338
58339
58340
58341
58342
58343
58344
58345
58346
58347
58348
58349
58350
58351
58352
58353
58354
58355
58356
58357
58358
58359
58360
58361
58362
58363
58364
58365
58366
58367
58368
58369
58370
58371
58372
58373
58374
58375
58376
58377
58378
58379
58380
58381
58382
58383
58384
58385
58386
58387
58388
58389
58390
58391
58392
58393
58394
58395
58396
58397
58398
58399
58400
58401
58402
58403
58404
58405
58406
58407
58408
58409
58410
58411
58412
58413
58414
58415
58416
58417
58418
58419
58420
58421
58422
58423
58424
58425
58426
58427
58428
58429
58430
58431
58432
58433
58434
58435
58436
58437
58438
58439
58440
58441
58442
58443
58444
58445
58446
58447
58448
58449
58450
58451
58452
58453
58454
58455
58456
58457
58458
58459
58460
58461
58462
58463
58464
58465
58466
58467
58468
58469
58470
58471
58472
58473
58474
58475
58476
58477
58478
58479
58480
58481
58482
58483
58484
58485
58486
58487
58488
58489
58490
58491
58492
58493
58494
58495
58496
58497
58498
58499
58500
58501
58502
58503
58504
58505
58506
58507
58508
58509
58510
58511
58512
58513
58514
58515
58516
58517
58518
58519
58520
58521
58522
58523
58524
58525
58526
58527
58528
58529
58530
58531
58532
58533
58534
58535
58536
58537
58538
58539
58540
58541
58542
58543
58544
58545
58546
58547
58548
58549
58550
58551
58552
58553
58554
58555
58556
58557
58558
58559
58560
58561
58562
58563
58564
58565
58566
58567
58568
58569
58570
58571
58572
58573
58574
58575
58576
58577
58578
58579
58580
58581
58582
58583
58584
58585
58586
58587
58588
58589
58590
58591
58592
58593
58594
58595
58596
58597
58598
58599
58600
58601
58602
58603
58604
58605
58606
58607
58608
58609
58610
58611
58612
58613
58614
58615
58616
58617
58618
58619
58620
58621
58622
58623
58624
58625
58626
58627
58628
58629
58630
58631
58632
58633
58634
58635
58636
58637
58638
58639
58640
58641
58642
58643
58644
58645
58646
58647
58648
58649
58650
58651
58652
58653
58654
58655
58656
58657
58658
58659
58660
58661
58662
58663
58664
58665
58666
58667
58668
58669
58670
58671
58672
58673
58674
58675
58676
58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
58689
58690
58691
58692
58693
58694
58695
58696
58697
58698
58699
58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714
58715
58716
58717
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
58746
58747
58748
58749
58750
58751
58752
58753
58754
58755
58756
58757
58758
58759
58760
58761
58762
58763
58764
58765
58766
58767
58768
58769
58770
58771
58772
58773
58774
58775
58776
58777
58778
58779
58780
58781
58782
58783
58784
58785
58786
58787
58788
58789
58790
58791
58792
58793
58794
58795
58796
58797
58798
58799
58800
58801
58802
58803
58804
58805
58806
58807
58808
58809
58810
58811
58812
58813
58814
58815
58816
58817
58818
58819
58820
58821
58822
58823
58824
58825
58826
58827
58828
58829
58830
58831
58832
58833
58834
58835
58836
58837
58838
58839
58840
58841
58842
58843
58844
58845
58846
58847
58848
58849
58850
58851
58852
58853
58854
58855
58856
58857
58858
58859
58860
58861
58862
58863
58864
58865
58866
58867
58868
58869
58870
58871
58872
58873
58874
58875
58876
58877
58878
58879
58880
58881
58882
58883
58884
58885
58886
58887
58888
58889
58890
58891
58892
58893
58894
58895
58896
58897
58898
58899
58900
58901
58902
58903
58904
58905
58906
58907
58908
58909
58910
58911
58912
58913
58914
58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
58937
58938
58939
58940
58941
58942
58943
58944
58945
58946
58947
58948
58949
58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
58965
58966
58967
58968
58969
58970
58971
58972
58973
58974
58975
58976
58977
58978
58979
58980
58981
58982
58983
58984
58985
58986
58987
58988
58989
58990
58991
58992
58993
58994
58995
58996
58997
58998
58999
59000
59001
59002
59003
59004
59005
59006
59007
59008
59009
59010
59011
59012
59013
59014
59015
59016
59017
59018
59019
59020
59021
59022
59023
59024
59025
59026
59027
59028
59029
59030
59031
59032
59033
59034
59035
59036
59037
59038
59039
59040
59041
59042
59043
59044
59045
59046
59047
59048
59049
59050
59051
59052
59053
59054
59055
59056
59057
59058
59059
59060
59061
59062
59063
59064
59065
59066
59067
59068
59069
59070
59071
59072
59073
59074
59075
59076
59077
59078
59079
59080
59081
59082
59083
59084
59085
59086
59087
59088
59089
59090
59091
59092
59093
59094
59095
59096
59097
59098
59099
59100
59101
59102
59103
59104
59105
59106
59107
59108
59109
59110
59111
59112
59113
59114
59115
59116
59117
59118
59119
59120
59121
59122
59123
59124
59125
59126
59127
59128
59129
59130
59131
59132
59133
59134
59135
59136
59137
59138
59139
59140
59141
59142
59143
59144
59145
59146
59147
59148
59149
59150
59151
59152
59153
59154
59155
59156
59157
59158
59159
59160
59161
59162
59163
59164
59165
59166
59167
59168
59169
59170
59171
59172
59173
59174
59175
59176
59177
59178
59179
59180
59181
59182
59183
59184
59185
59186
59187
59188
59189
59190
59191
59192
59193
59194
59195
59196
59197
59198
59199
59200
59201
59202
59203
59204
59205
59206
59207
59208
59209
59210
59211
59212
59213
59214
59215
59216
59217
59218
59219
59220
59221
59222
59223
59224
59225
59226
59227
59228
59229
59230
59231
59232
59233
59234
59235
59236
59237
59238
59239
59240
59241
59242
59243
59244
59245
59246
59247
59248
59249
59250
59251
59252
59253
59254
59255
59256
59257
59258
59259
59260
59261
59262
59263
59264
59265
59266
59267
59268
59269
59270
59271
59272
59273
59274
59275
59276
59277
59278
59279
59280
59281
59282
59283
59284
59285
59286
59287
59288
59289
59290
59291
59292
59293
59294
59295
59296
59297
59298
59299
59300
59301
59302
59303
59304
59305
59306
59307
59308
59309
59310
59311
59312
59313
59314
59315
59316
59317
59318
59319
59320
59321
59322
59323
59324
59325
59326
59327
59328
59329
59330
59331
59332
59333
59334
59335
59336
59337
59338
59339
59340
59341
59342
59343
59344
59345
59346
59347
59348
59349
59350
59351
59352
59353
59354
59355
59356
59357
59358
59359
59360
59361
59362
59363
59364
59365
59366
59367
59368
59369
59370
59371
59372
59373
59374
59375
59376
59377
59378
59379
59380
59381
59382
59383
59384
59385
59386
59387
59388
59389
59390
59391
59392
59393
59394
59395
59396
59397
59398
59399
59400
59401
59402
59403
59404
59405
59406
59407
59408
59409
59410
59411
59412
59413
59414
59415
59416
59417
59418
59419
59420
59421
59422
59423
59424
59425
59426
59427
59428
59429
59430
59431
59432
59433
59434
59435
59436
59437
59438
59439
59440
59441
59442
59443
59444
59445
59446
59447
59448
59449
59450
59451
59452
59453
59454
59455
59456
59457
59458
59459
59460
59461
59462
59463
59464
59465
59466
59467
59468
59469
59470
59471
59472
59473
59474
59475
59476
59477
59478
59479
59480
59481
59482
59483
59484
59485
59486
59487
59488
59489
59490
59491
59492
59493
59494
59495
59496
59497
59498
59499
59500
59501
59502
59503
59504
59505
59506
59507
59508
59509
59510
59511
59512
59513
59514
59515
59516
59517
59518
59519
59520
59521
59522
59523
59524
59525
59526
59527
59528
59529
59530
59531
59532
59533
59534
59535
59536
59537
59538
59539
59540
59541
59542
59543
59544
59545
59546
59547
59548
59549
59550
59551
59552
59553
59554
59555
59556
59557
59558
59559
59560
59561
59562
59563
59564
59565
59566
59567
59568
59569
59570
59571
59572
59573
59574
59575
59576
59577
59578
59579
59580
59581
59582
59583
59584
59585
59586
59587
59588
59589
59590
59591
59592
59593
59594
59595
59596
59597
59598
59599
59600
59601
59602
59603
59604
59605
59606
59607
59608
59609
59610
59611
59612
59613
59614
59615
59616
59617
59618
59619
59620
59621
59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632
59633
59634
59635
59636
59637
59638
59639
59640
59641
59642
59643
59644
59645
59646
59647
59648
59649
59650
59651
59652
59653
59654
59655
59656
59657
59658
59659
59660
59661
59662
59663
59664
59665
59666
59667
59668
59669
59670
59671
59672
59673
59674
59675
59676
59677
59678
59679
59680
59681
59682
59683
59684
59685
59686
59687
59688
59689
59690
59691
59692
59693
59694
59695
59696
59697
59698
59699
59700
59701
59702
59703
59704
59705
59706
59707
59708
59709
59710
59711
59712
59713
59714
59715
59716
59717
59718
59719
59720
59721
59722
59723
59724
59725
59726
59727
59728
59729
59730
59731
59732
59733
59734
59735
59736
59737
59738
59739
59740
59741
59742
59743
59744
59745
59746
59747
59748
59749
59750
59751
59752
59753
59754
59755
59756
59757
59758
59759
59760
59761
59762
59763
59764
59765
59766
59767
59768
59769
59770
59771
59772
59773
59774
59775
59776
59777
59778
59779
59780
59781
59782
59783
59784
59785
59786
59787
59788
59789
59790
59791
59792
59793
59794
59795
59796
59797
59798
59799
59800
59801
59802
59803
59804
59805
59806
59807
59808
59809
59810
59811
59812
59813
59814
59815
59816
59817
59818
59819
59820
59821
59822
59823
59824
59825
59826
59827
59828
59829
59830
59831
59832
59833
59834
59835
59836
59837
59838
59839
59840
59841
59842
59843
59844
59845
59846
59847
59848
59849
59850
59851
59852
59853
59854
59855
59856
59857
59858
59859
59860
59861
59862
59863
59864
59865
59866
59867
59868
59869
59870
59871
59872
59873
59874
59875
59876
59877
59878
59879
59880
59881
59882
59883
59884
59885
59886
59887
59888
59889
59890
59891
59892
59893
59894
59895
59896
59897
59898
59899
59900
59901
59902
59903
59904
59905
59906
59907
59908
59909
59910
59911
59912
59913
59914
59915
59916
59917
59918
59919
59920
59921
59922
59923
59924
59925
59926
59927
59928
59929
59930
59931
59932
59933
59934
59935
59936
59937
59938
59939
59940
59941
59942
59943
59944
59945
59946
59947
59948
59949
59950
59951
59952
59953
59954
59955
59956
59957
59958
59959
59960
59961
59962
59963
59964
59965
59966
59967
59968
59969
59970
59971
59972
59973
59974
59975
59976
59977
59978
59979
59980
59981
59982
59983
59984
59985
59986
59987
59988
59989
59990
59991
59992
59993
59994
59995
59996
59997
59998
59999
60000
60001
60002
60003
60004
60005
60006
60007
60008
60009
60010
60011
60012
60013
60014
60015
60016
60017
60018
60019
60020
60021
60022
60023
60024
60025
60026
60027
60028
60029
60030
60031
60032
60033
60034
60035
60036
60037
60038
60039
60040
60041
60042
60043
60044
60045
60046
60047
60048
60049
60050
60051
60052
60053
60054
60055
60056
60057
60058
60059
60060
60061
60062
60063
60064
60065
60066
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
60098
60099
60100
60101
60102
60103
60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
60114
60115
60116
60117
60118
60119
60120
60121
60122
60123
60124
60125
60126
60127
60128
60129
60130
60131
60132
60133
60134
60135
60136
60137
60138
60139
60140
60141
60142
60143
60144
60145
60146
60147
60148
60149
60150
60151
60152
60153
60154
60155
60156
60157
60158
60159
60160
60161
60162
60163
60164
60165
60166
60167
60168
60169
60170
60171
60172
60173
60174
60175
60176
60177
60178
60179
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
60195
60196
60197
60198
60199
60200
60201
60202
60203
60204
60205
60206
60207
60208
60209
60210
60211
60212
60213
60214
60215
60216
60217
60218
60219
60220
60221
60222
60223
60224
60225
60226
60227
60228
60229
60230
60231
60232
60233
60234
60235
60236
60237
60238
60239
60240
60241
60242
60243
60244
60245
60246
60247
60248
60249
60250
60251
60252
60253
60254
60255
60256
60257
60258
60259
60260
60261
60262
60263
60264
60265
60266
60267
60268
60269
60270
60271
60272
60273
60274
60275
60276
60277
60278
60279
60280
60281
60282
60283
60284
60285
60286
60287
60288
60289
60290
60291
60292
60293
60294
60295
60296
60297
60298
60299
60300
60301
60302
60303
60304
60305
60306
60307
60308
60309
60310
60311
60312
60313
60314
60315
60316
60317
60318
60319
60320
60321
60322
60323
60324
60325
60326
60327
60328
60329
60330
60331
60332
60333
60334
60335
60336
60337
60338
60339
60340
60341
60342
60343
60344
60345
60346
60347
60348
60349
60350
60351
60352
60353
60354
60355
60356
60357
60358
60359
60360
60361
60362
60363
60364
60365
60366
60367
60368
60369
60370
60371
60372
60373
60374
60375
60376
60377
60378
60379
60380
60381
60382
60383
60384
60385
60386
60387
60388
60389
60390
60391
60392
60393
60394
60395
60396
60397
60398
60399
60400
60401
60402
60403
60404
60405
60406
60407
60408
60409
60410
60411
60412
60413
60414
60415
60416
60417
60418
60419
60420
60421
60422
60423
60424
60425
60426
60427
60428
60429
60430
60431
60432
60433
60434
60435
60436
60437
60438
60439
60440
60441
60442
60443
60444
60445
60446
60447
60448
60449
60450
60451
60452
60453
60454
60455
60456
60457
60458
60459
60460
60461
60462
60463
60464
60465
60466
60467
60468
60469
60470
60471
60472
60473
60474
60475
60476
60477
60478
60479
60480
60481
60482
60483
60484
60485
60486
60487
60488
60489
60490
60491
60492
60493
60494
60495
60496
60497
60498
60499
60500
60501
60502
60503
60504
60505
60506
60507
60508
60509
60510
60511
60512
60513
60514
60515
60516
60517
60518
60519
60520
60521
60522
60523
60524
60525
60526
60527
60528
60529
60530
60531
60532
60533
60534
60535
60536
60537
60538
60539
60540
60541
60542
60543
60544
60545
60546
60547
60548
60549
60550
60551
60552
60553
60554
60555
60556
60557
60558
60559
60560
60561
60562
60563
60564
60565
60566
60567
60568
60569
60570
60571
60572
60573
60574
60575
60576
60577
60578
60579
60580
60581
60582
60583
60584
60585
60586
60587
60588
60589
60590
60591
60592
60593
60594
60595
60596
60597
60598
60599
60600
60601
60602
60603
60604
60605
60606
60607
60608
60609
60610
60611
60612
60613
60614
60615
60616
60617
60618
60619
60620
60621
60622
60623
60624
60625
60626
60627
60628
60629
60630
60631
60632
60633
60634
60635
60636
60637
60638
60639
60640
60641
60642
60643
60644
60645
60646
60647
60648
60649
60650
60651
60652
60653
60654
60655
60656
60657
60658
60659
60660
60661
60662
60663
60664
60665
60666
60667
60668
60669
60670
60671
60672
60673
60674
60675
60676
60677
60678
60679
60680
60681
60682
60683
60684
60685
60686
60687
60688
60689
60690
60691
60692
60693
60694
60695
60696
60697
60698
60699
60700
60701
60702
60703
60704
60705
60706
60707
60708
60709
60710
60711
60712
60713
60714
60715
60716
60717
60718
60719
60720
60721
60722
60723
60724
60725
60726
60727
60728
60729
60730
60731
60732
60733
60734
60735
60736
60737
60738
60739
60740
60741
60742
60743
60744
60745
60746
60747
60748
60749
60750
60751
60752
60753
60754
60755
60756
60757
60758
60759
60760
60761
60762
60763
60764
60765
60766
60767
60768
60769
60770
60771
60772
60773
60774
60775
60776
60777
60778
60779
60780
60781
60782
60783
60784
60785
60786
60787
60788
60789
60790
60791
60792
60793
60794
60795
60796
60797
60798
60799
60800
60801
60802
60803
60804
60805
60806
60807
60808
60809
60810
60811
60812
60813
60814
60815
60816
60817
60818
60819
60820
60821
60822
60823
60824
60825
60826
60827
60828
60829
60830
60831
60832
60833
60834
60835
60836
60837
60838
60839
60840
60841
60842
60843
60844
60845
60846
60847
60848
60849
60850
60851
60852
60853
60854
60855
60856
60857
60858
60859
60860
60861
60862
60863
60864
60865
60866
60867
60868
60869
60870
60871
60872
60873
60874
60875
60876
60877
60878
60879
60880
60881
60882
60883
60884
60885
60886
60887
60888
60889
60890
60891
60892
60893
60894
60895
60896
60897
60898
60899
60900
60901
60902
60903
60904
60905
60906
60907
60908
60909
60910
60911
60912
60913
60914
60915
60916
60917
60918
60919
60920
60921
60922
60923
60924
60925
60926
60927
60928
60929
60930
60931
60932
60933
60934
60935
60936
60937
60938
60939
60940
60941
60942
60943
60944
60945
60946
60947
60948
60949
60950
60951
60952
60953
60954
60955
60956
60957
60958
60959
60960
60961
60962
60963
60964
60965
60966
60967
60968
60969
60970
60971
60972
60973
60974
60975
60976
60977
60978
60979
60980
60981
60982
60983
60984
60985
60986
60987
60988
60989
60990
60991
60992
60993
60994
60995
60996
60997
60998
60999
61000
61001
61002
61003
61004
61005
61006
61007
61008
61009
61010
61011
61012
61013
61014
61015
61016
61017
61018
61019
61020
61021
61022
61023
61024
61025
61026
61027
61028
61029
61030
61031
61032
61033
61034
61035
61036
61037
61038
61039
61040
61041
61042
61043
61044
61045
61046
61047
61048
61049
61050
61051
61052
61053
61054
61055
61056
61057
61058
61059
61060
61061
61062
61063
61064
61065
61066
61067
61068
61069
61070
61071
61072
61073
61074
61075
61076
61077
61078
61079
61080
61081
61082
61083
61084
61085
61086
61087
61088
61089
61090
61091
61092
61093
61094
61095
61096
61097
61098
61099
61100
61101
61102
61103
61104
61105
61106
61107
61108
61109
61110
61111
61112
61113
61114
61115
61116
61117
61118
61119
61120
61121
61122
61123
61124
61125
61126
61127
61128
61129
61130
61131
61132
61133
61134
61135
61136
61137
61138
61139
61140
61141
61142
61143
61144
61145
61146
61147
61148
61149
61150
61151
61152
61153
61154
61155
61156
61157
61158
61159
61160
61161
61162
61163
61164
61165
61166
61167
61168
61169
61170
61171
61172
61173
61174
61175
61176
61177
61178
61179
61180
61181
61182
61183
61184
61185
61186
61187
61188
61189
61190
61191
61192
61193
61194
61195
61196
61197
61198
61199
61200
61201
61202
61203
61204
61205
61206
61207
61208
61209
61210
61211
61212
61213
61214
61215
61216
61217
61218
61219
61220
61221
61222
61223
61224
61225
61226
61227
61228
61229
61230
61231
61232
61233
61234
61235
61236
61237
61238
61239
61240
61241
61242
61243
61244
61245
61246
61247
61248
61249
61250
61251
61252
61253
61254
61255
61256
61257
61258
61259
61260
61261
61262
61263
61264
61265
61266
61267
61268
61269
61270
61271
61272
61273
61274
61275
61276
61277
61278
61279
61280
61281
61282
61283
61284
61285
61286
61287
61288
61289
61290
61291
61292
61293
61294
61295
61296
61297
61298
61299
61300
61301
61302
61303
61304
61305
61306
61307
61308
61309
61310
61311
61312
61313
61314
61315
61316
61317
61318
61319
61320
61321
61322
61323
61324
61325
61326
61327
61328
61329
61330
61331
61332
61333
61334
61335
61336
61337
61338
61339
61340
61341
61342
61343
61344
61345
61346
61347
61348
61349
61350
61351
61352
61353
61354
61355
61356
61357
61358
61359
61360
61361
61362
61363
61364
61365
61366
61367
61368
61369
61370
61371
61372
61373
61374
61375
61376
61377
61378
61379
61380
61381
61382
61383
61384
61385
61386
61387
61388
61389
61390
61391
61392
61393
61394
61395
61396
61397
61398
61399
61400
61401
61402
61403
61404
61405
61406
61407
61408
61409
61410
61411
61412
61413
61414
61415
61416
61417
61418
61419
61420
61421
61422
61423
61424
61425
61426
61427
61428
61429
61430
61431
61432
61433
61434
61435
61436
61437
61438
61439
61440
61441
61442
61443
61444
61445
61446
61447
61448
61449
61450
61451
61452
61453
61454
61455
61456
61457
61458
61459
61460
61461
61462
61463
61464
61465
61466
61467
61468
61469
61470
61471
61472
61473
61474
61475
61476
61477
61478
61479
61480
61481
61482
61483
61484
61485
61486
61487
61488
61489
61490
61491
61492
61493
61494
61495
61496
61497
61498
61499
61500
61501
61502
61503
61504
61505
61506
61507
61508
61509
61510
61511
61512
61513
61514
61515
61516
61517
61518
61519
61520
61521
61522
61523
61524
61525
61526
61527
61528
61529
61530
61531
61532
61533
61534
61535
61536
61537
61538
61539
61540
61541
61542
61543
61544
61545
61546
61547
61548
61549
61550
61551
61552
61553
61554
61555
61556
61557
61558
61559
61560
61561
61562
61563
61564
61565
61566
61567
61568
61569
61570
61571
61572
61573
61574
61575
61576
61577
61578
61579
61580
61581
61582
61583
61584
61585
61586
61587
61588
61589
61590
61591
61592
61593
61594
61595
61596
61597
61598
61599
61600
61601
61602
61603
61604
61605
61606
61607
61608
61609
61610
61611
61612
61613
61614
61615
61616
61617
61618
61619
61620
61621
61622
61623
61624
61625
61626
61627
61628
61629
61630
61631
61632
61633
61634
61635
61636
61637
61638
61639
61640
61641
61642
61643
61644
61645
61646
61647
61648
61649
61650
61651
61652
61653
61654
61655
61656
61657
61658
61659
61660
61661
61662
61663
61664
61665
61666
61667
61668
61669
61670
61671
61672
61673
61674
61675
61676
61677
61678
61679
61680
61681
61682
61683
61684
61685
61686
61687
61688
61689
61690
61691
61692
61693
61694
61695
61696
61697
61698
61699
61700
61701
61702
61703
61704
61705
61706
61707
61708
61709
61710
61711
61712
61713
61714
61715
61716
61717
61718
61719
61720
61721
61722
61723
61724
61725
61726
61727
61728
61729
61730
61731
61732
61733
61734
61735
61736
61737
61738
61739
61740
61741
61742
61743
61744
61745
61746
61747
61748
61749
61750
61751
61752
61753
61754
61755
61756
61757
61758
61759
61760
61761
61762
61763
61764
61765
61766
61767
61768
61769
61770
61771
61772
61773
61774
61775
61776
61777
61778
61779
61780
61781
61782
61783
61784
61785
61786
61787
61788
61789
61790
61791
61792
61793
61794
61795
61796
61797
61798
61799
61800
61801
61802
61803
61804
61805
61806
61807
61808
61809
61810
61811
61812
61813
61814
61815
61816
61817
61818
61819
61820
61821
61822
61823
61824
61825
61826
61827
61828
61829
61830
61831
61832
61833
61834
61835
61836
61837
61838
61839
61840
61841
61842
61843
61844
61845
61846
61847
61848
61849
61850
61851
61852
61853
61854
61855
61856
61857
61858
61859
61860
61861
61862
61863
61864
61865
61866
61867
61868
61869
61870
61871
61872
61873
61874
61875
61876
61877
61878
61879
61880
61881
61882
61883
61884
61885
61886
61887
61888
61889
61890
61891
61892
61893
61894
61895
61896
61897
61898
61899
61900
61901
61902
61903
61904
61905
61906
61907
61908
61909
61910
61911
61912
61913
61914
61915
61916
61917
61918
61919
61920
61921
61922
61923
61924
61925
61926
61927
61928
61929
61930
61931
61932
61933
61934
61935
61936
61937
61938
61939
61940
61941
61942
61943
61944
61945
61946
61947
61948
61949
61950
61951
61952
61953
61954
61955
61956
61957
61958
61959
61960
61961
61962
61963
61964
61965
61966
61967
61968
61969
61970
61971
61972
61973
61974
61975
61976
61977
61978
61979
61980
61981
61982
61983
61984
61985
61986
61987
61988
61989
61990
61991
61992
61993
61994
61995
61996
61997
61998
61999
62000
62001
62002
62003
62004
62005
62006
62007
62008
62009
62010
62011
62012
62013
62014
62015
62016
62017
62018
62019
62020
62021
62022
62023
62024
62025
62026
62027
62028
62029
62030
62031
62032
62033
62034
62035
62036
62037
62038
62039
62040
62041
62042
62043
62044
62045
62046
62047
62048
62049
62050
62051
62052
62053
62054
62055
62056
62057
62058
62059
62060
62061
62062
62063
62064
62065
62066
62067
62068
62069
62070
62071
62072
62073
62074
62075
62076
62077
62078
62079
62080
62081
62082
62083
62084
62085
62086
62087
62088
62089
62090
62091
62092
62093
62094
62095
62096
62097
62098
62099
62100
62101
62102
62103
62104
62105
62106
62107
62108
62109
62110
62111
62112
62113
62114
62115
62116
62117
62118
62119
62120
62121
62122
62123
62124
62125
62126
62127
62128
62129
62130
62131
62132
62133
62134
62135
62136
62137
62138
62139
62140
62141
62142
62143
62144
62145
62146
62147
62148
62149
62150
62151
62152
62153
62154
62155
62156
62157
62158
62159
62160
62161
62162
62163
62164
62165
62166
62167
62168
62169
62170
62171
62172
62173
62174
62175
62176
62177
62178
62179
62180
62181
62182
62183
62184
62185
62186
62187
62188
62189
62190
62191
62192
62193
62194
62195
62196
62197
62198
62199
62200
62201
62202
62203
62204
62205
62206
62207
62208
62209
62210
62211
62212
62213
62214
62215
62216
62217
62218
62219
62220
62221
62222
62223
62224
62225
62226
62227
62228
62229
62230
62231
62232
62233
62234
62235
62236
62237
62238
62239
62240
62241
62242
62243
62244
62245
62246
62247
62248
62249
62250
62251
62252
62253
62254
62255
62256
62257
62258
62259
62260
62261
62262
62263
62264
62265
62266
62267
62268
62269
62270
62271
62272
62273
62274
62275
62276
62277
62278
62279
62280
62281
62282
62283
62284
62285
62286
62287
62288
62289
62290
62291
62292
62293
62294
62295
62296
62297
62298
62299
62300
62301
62302
62303
62304
62305
62306
62307
62308
62309
62310
62311
62312
62313
62314
62315
62316
62317
62318
62319
62320
62321
62322
62323
62324
62325
62326
62327
62328
62329
62330
62331
62332
62333
62334
62335
62336
62337
62338
62339
62340
62341
62342
62343
62344
62345
62346
62347
62348
62349
62350
62351
62352
62353
62354
62355
62356
62357
62358
62359
62360
62361
62362
62363
62364
62365
62366
62367
62368
62369
62370
62371
62372
62373
62374
62375
62376
62377
62378
62379
62380
62381
62382
62383
62384
62385
62386
62387
62388
62389
62390
62391
62392
62393
62394
62395
62396
62397
62398
62399
62400
62401
62402
62403
62404
62405
62406
62407
62408
62409
62410
62411
62412
62413
62414
62415
62416
62417
62418
62419
62420
62421
62422
62423
62424
62425
62426
62427
62428
62429
62430
62431
62432
62433
62434
62435
62436
62437
62438
62439
62440
62441
62442
62443
62444
62445
62446
62447
62448
62449
62450
62451
62452
62453
62454
62455
62456
62457
62458
62459
62460
62461
62462
62463
62464
62465
62466
62467
62468
62469
62470
62471
62472
62473
62474
62475
62476
62477
62478
62479
62480
62481
62482
62483
62484
62485
62486
62487
62488
62489
62490
62491
62492
62493
62494
62495
62496
62497
62498
62499
62500
62501
62502
62503
62504
62505
62506
62507
62508
62509
62510
62511
62512
62513
62514
62515
62516
62517
62518
62519
62520
62521
62522
62523
62524
62525
62526
62527
62528
62529
62530
62531
62532
62533
62534
62535
62536
62537
62538
62539
62540
62541
62542
62543
62544
62545
62546
62547
62548
62549
62550
62551
62552
62553
62554
62555
62556
62557
62558
62559
62560
62561
62562
62563
62564
62565
62566
62567
62568
62569
62570
62571
62572
62573
62574
62575
62576
62577
62578
62579
62580
62581
62582
62583
62584
62585
62586
62587
62588
62589
62590
62591
62592
62593
62594
62595
62596
62597
62598
62599
62600
62601
62602
62603
62604
62605
62606
62607
62608
62609
62610
62611
62612
62613
62614
62615
62616
62617
62618
62619
62620
62621
62622
62623
62624
62625
62626
62627
62628
62629
62630
62631
62632
62633
62634
62635
62636
62637
62638
62639
62640
62641
62642
62643
62644
62645
62646
62647
62648
62649
62650
62651
62652
62653
62654
62655
62656
62657
62658
62659
62660
62661
62662
62663
62664
62665
62666
62667
62668
62669
62670
62671
62672
62673
62674
62675
62676
62677
62678
62679
62680
62681
62682
62683
62684
62685
62686
62687
62688
62689
62690
62691
62692
62693
62694
62695
62696
62697
62698
62699
62700
62701
62702
62703
62704
62705
62706
62707
62708
62709
62710
62711
62712
62713
62714
62715
62716
62717
62718
62719
62720
62721
62722
62723
62724
62725
62726
62727
62728
62729
62730
62731
62732
62733
62734
62735
62736
62737
62738
62739
62740
62741
62742
62743
62744
62745
62746
62747
62748
62749
62750
62751
62752
62753
62754
62755
62756
62757
62758
62759
62760
62761
62762
62763
62764
62765
62766
62767
62768
62769
62770
62771
62772
62773
62774
62775
62776
62777
62778
62779
62780
62781
62782
62783
62784
62785
62786
62787
62788
62789
62790
62791
62792
62793
62794
62795
62796
62797
62798
62799
62800
62801
62802
62803
62804
62805
62806
62807
62808
62809
62810
62811
62812
62813
62814
62815
62816
62817
62818
62819
62820
62821
62822
62823
62824
62825
62826
62827
62828
62829
62830
62831
62832
62833
62834
62835
62836
62837
62838
62839
62840
62841
62842
62843
62844
62845
62846
62847
62848
62849
62850
62851
62852
62853
62854
62855
62856
62857
62858
62859
62860
62861
62862
62863
62864
62865
62866
62867
62868
62869
62870
62871
62872
62873
62874
62875
62876
62877
62878
62879
62880
62881
62882
62883
62884
62885
62886
62887
62888
62889
62890
62891
62892
62893
62894
62895
62896
62897
62898
62899
62900
62901
62902
62903
62904
62905
62906
62907
62908
62909
62910
62911
62912
62913
62914
62915
62916
62917
62918
62919
62920
62921
62922
62923
62924
62925
62926
62927
62928
62929
62930
62931
62932
62933
62934
62935
62936
62937
62938
62939
62940
62941
62942
62943
62944
62945
62946
62947
62948
62949
62950
62951
62952
62953
62954
62955
62956
62957
62958
62959
62960
62961
62962
62963
62964
62965
62966
62967
62968
62969
62970
62971
62972
62973
62974
62975
62976
62977
62978
62979
62980
62981
62982
62983
62984
62985
62986
62987
62988
62989
62990
62991
62992
62993
62994
62995
62996
62997
62998
62999
63000
63001
63002
63003
63004
63005
63006
63007
63008
63009
63010
63011
63012
63013
63014
63015
63016
63017
63018
63019
63020
63021
63022
63023
63024
63025
63026
63027
63028
63029
63030
63031
63032
63033
63034
63035
63036
63037
63038
63039
63040
63041
63042
63043
63044
63045
63046
63047
63048
63049
63050
63051
63052
63053
63054
63055
63056
63057
63058
63059
63060
63061
63062
63063
63064
63065
63066
63067
63068
63069
63070
63071
63072
63073
63074
63075
63076
63077
63078
63079
63080
63081
63082
63083
63084
63085
63086
63087
63088
63089
63090
63091
63092
63093
63094
63095
63096
63097
63098
63099
63100
63101
63102
63103
63104
63105
63106
63107
63108
63109
63110
63111
63112
63113
63114
63115
63116
63117
63118
63119
63120
63121
63122
63123
63124
63125
63126
63127
63128
63129
63130
63131
63132
63133
63134
63135
63136
63137
63138
63139
63140
63141
63142
63143
63144
63145
63146
63147
63148
63149
63150
63151
63152
63153
63154
63155
63156
63157
63158
63159
63160
63161
63162
63163
63164
63165
63166
63167
63168
63169
63170
63171
63172
63173
63174
63175
63176
63177
63178
63179
63180
63181
63182
63183
63184
63185
63186
63187
63188
63189
63190
63191
63192
63193
63194
63195
63196
63197
63198
63199
63200
63201
63202
63203
63204
63205
63206
63207
63208
63209
63210
63211
63212
63213
63214
63215
63216
63217
63218
63219
63220
63221
63222
63223
63224
63225
63226
63227
63228
63229
63230
63231
63232
63233
63234
63235
63236
63237
63238
63239
63240
63241
63242
63243
63244
63245
63246
63247
63248
63249
63250
63251
63252
63253
63254
63255
63256
63257
63258
63259
63260
63261
63262
63263
63264
63265
63266
63267
63268
63269
63270
63271
63272
63273
63274
63275
63276
63277
63278
63279
63280
63281
63282
63283
63284
63285
63286
63287
63288
63289
63290
63291
63292
63293
63294
63295
63296
63297
63298
63299
63300
63301
63302
63303
63304
63305
63306
63307
63308
63309
63310
63311
63312
63313
63314
63315
63316
63317
63318
63319
63320
63321
63322
63323
63324
63325
63326
63327
63328
63329
63330
63331
63332
63333
63334
63335
63336
63337
63338
63339
63340
63341
63342
63343
63344
63345
63346
63347
63348
63349
63350
63351
63352
63353
63354
63355
63356
63357
63358
63359
63360
63361
63362
63363
63364
63365
63366
63367
63368
63369
63370
63371
63372
63373
63374
63375
63376
63377
63378
63379
63380
63381
63382
63383
63384
63385
63386
63387
63388
63389
63390
63391
63392
63393
63394
63395
63396
63397
63398
63399
63400
63401
63402
63403
63404
63405
63406
63407
63408
63409
63410
63411
63412
63413
63414
63415
63416
63417
63418
63419
63420
63421
63422
63423
63424
63425
63426
63427
63428
63429
63430
63431
63432
63433
63434
63435
63436
63437
63438
63439
63440
63441
63442
63443
63444
63445
63446
63447
63448
63449
63450
63451
63452
63453
63454
63455
63456
63457
63458
63459
63460
63461
63462
63463
63464
63465
63466
63467
63468
63469
63470
63471
63472
63473
63474
63475
63476
63477
63478
63479
63480
63481
63482
63483
63484
63485
63486
63487
63488
63489
63490
63491
63492
63493
63494
63495
63496
63497
63498
63499
63500
63501
63502
63503
63504
63505
63506
63507
63508
63509
63510
63511
63512
63513
63514
63515
63516
63517
63518
63519
63520
63521
63522
63523
63524
63525
63526
63527
63528
63529
63530
63531
63532
63533
63534
63535
63536
63537
63538
63539
63540
63541
63542
63543
63544
63545
63546
63547
63548
63549
63550
63551
63552
63553
63554
63555
63556
63557
63558
63559
63560
63561
63562
63563
63564
63565
63566
63567
63568
63569
63570
63571
63572
63573
63574
63575
63576
63577
63578
63579
63580
63581
63582
63583
63584
63585
63586
63587
63588
63589
63590
63591
63592
63593
63594
63595
63596
63597
63598
63599
63600
63601
63602
63603
63604
63605
63606
63607
63608
63609
63610
63611
63612
63613
63614
63615
63616
63617
63618
63619
63620
63621
63622
63623
63624
63625
63626
63627
63628
63629
63630
63631
63632
63633
63634
63635
63636
63637
63638
63639
63640
63641
63642
63643
63644
63645
63646
63647
63648
63649
63650
63651
63652
63653
63654
63655
63656
63657
63658
63659
63660
63661
63662
63663
63664
63665
63666
63667
63668
63669
63670
63671
63672
63673
63674
63675
63676
63677
63678
63679
63680
63681
63682
63683
63684
63685
63686
63687
63688
63689
63690
63691
63692
63693
63694
63695
63696
63697
63698
63699
63700
63701
63702
63703
63704
63705
63706
63707
63708
63709
63710
63711
63712
63713
63714
63715
63716
63717
63718
63719
63720
63721
63722
63723
63724
63725
63726
63727
63728
63729
63730
63731
63732
63733
63734
63735
63736
63737
63738
63739
63740
63741
63742
63743
63744
63745
63746
63747
63748
63749
63750
63751
63752
63753
63754
63755
63756
63757
63758
63759
63760
63761
63762
63763
63764
63765
63766
63767
63768
63769
63770
63771
63772
63773
63774
63775
63776
63777
63778
63779
63780
63781
63782
63783
63784
63785
63786
63787
63788
63789
63790
63791
63792
63793
63794
63795
63796
63797
63798
63799
63800
63801
63802
63803
63804
63805
63806
63807
63808
63809
63810
63811
63812
63813
63814
63815
63816
63817
63818
63819
63820
63821
63822
63823
63824
63825
63826
63827
63828
63829
63830
63831
63832
63833
63834
63835
63836
63837
63838
63839
63840
63841
63842
63843
63844
63845
63846
63847
63848
63849
63850
63851
63852
63853
63854
63855
63856
63857
63858
63859
63860
63861
63862
63863
63864
63865
63866
63867
63868
63869
63870
63871
63872
63873
63874
63875
63876
63877
63878
63879
63880
63881
63882
63883
63884
63885
63886
63887
63888
63889
63890
63891
63892
63893
63894
63895
63896
63897
63898
63899
63900
63901
63902
63903
63904
63905
63906
63907
63908
63909
63910
63911
63912
63913
63914
63915
63916
63917
63918
63919
63920
63921
63922
63923
63924
63925
63926
63927
63928
63929
63930
63931
63932
63933
63934
63935
63936
63937
63938
63939
63940
63941
63942
63943
63944
63945
63946
63947
63948
63949
63950
63951
63952
63953
63954
63955
63956
63957
63958
63959
63960
63961
63962
63963
63964
63965
63966
63967
63968
63969
63970
63971
63972
63973
63974
63975
63976
63977
63978
63979
63980
63981
63982
63983
63984
63985
63986
63987
63988
63989
63990
63991
63992
63993
63994
63995
63996
63997
63998
63999
64000
64001
64002
64003
64004
64005
64006
64007
64008
64009
64010
64011
64012
64013
64014
64015
64016
64017
64018
64019
64020
64021
64022
64023
64024
64025
64026
64027
64028
64029
64030
64031
64032
64033
64034
64035
64036
64037
64038
64039
64040
64041
64042
64043
64044
64045
64046
64047
64048
64049
64050
64051
64052
64053
64054
64055
64056
64057
64058
64059
64060
64061
64062
64063
64064
64065
64066
64067
64068
64069
64070
64071
64072
64073
64074
64075
64076
64077
64078
64079
64080
64081
64082
64083
64084
64085
64086
64087
64088
64089
64090
64091
64092
64093
64094
64095
64096
64097
64098
64099
64100
64101
64102
64103
64104
64105
64106
64107
64108
64109
64110
64111
64112
64113
64114
64115
64116
64117
64118
64119
64120
64121
64122
64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142
64143
64144
64145
64146
64147
64148
64149
64150
64151
64152
64153
64154
64155
64156
64157
64158
64159
64160
64161
64162
64163
64164
64165
64166
64167
64168
64169
64170
64171
64172
64173
64174
64175
64176
64177
64178
64179
64180
64181
64182
64183
64184
64185
64186
64187
64188
64189
64190
64191
64192
64193
64194
64195
64196
64197
64198
64199
64200
64201
64202
64203
64204
64205
64206
64207
64208
64209
64210
64211
64212
64213
64214
64215
64216
64217
64218
64219
64220
64221
64222
64223
64224
64225
64226
64227
64228
64229
64230
64231
64232
64233
64234
64235
64236
64237
64238
64239
64240
64241
64242
64243
64244
64245
64246
64247
64248
64249
64250
64251
64252
64253
64254
64255
64256
64257
64258
64259
64260
64261
64262
64263
64264
64265
64266
64267
64268
64269
64270
64271
64272
64273
64274
64275
64276
64277
64278
64279
64280
64281
64282
64283
64284
64285
64286
64287
64288
64289
64290
64291
64292
64293
64294
64295
64296
64297
64298
64299
64300
64301
64302
64303
64304
64305
64306
64307
64308
64309
64310
64311
64312
64313
64314
64315
64316
64317
64318
64319
64320
64321
64322
64323
64324
64325
64326
64327
64328
64329
64330
64331
64332
64333
64334
64335
64336
64337
64338
64339
64340
64341
64342
64343
64344
64345
64346
64347
64348
64349
64350
64351
64352
64353
64354
64355
64356
64357
64358
64359
64360
64361
64362
64363
64364
64365
64366
64367
64368
64369
64370
64371
64372
64373
64374
64375
64376
64377
64378
64379
64380
64381
64382
64383
64384
64385
64386
64387
64388
64389
64390
64391
64392
64393
64394
64395
64396
64397
64398
64399
64400
64401
64402
64403
64404
64405
64406
64407
64408
64409
64410
64411
64412
64413
64414
64415
64416
64417
64418
64419
64420
64421
64422
64423
64424
64425
64426
64427
64428
64429
64430
64431
64432
64433
64434
64435
64436
64437
64438
64439
64440
64441
64442
64443
64444
64445
64446
64447
64448
64449
64450
64451
64452
64453
64454
64455
64456
64457
64458
64459
64460
64461
64462
64463
64464
64465
64466
64467
64468
64469
64470
64471
64472
64473
64474
64475
64476
64477
64478
64479
64480
64481
64482
64483
64484
64485
64486
64487
64488
64489
64490
64491
64492
64493
64494
64495
64496
64497
64498
64499
64500
64501
64502
64503
64504
64505
64506
64507
64508
64509
64510
64511
64512
64513
64514
64515
64516
64517
64518
64519
64520
64521
64522
64523
64524
64525
64526
64527
64528
64529
64530
64531
64532
64533
64534
64535
64536
64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
64547
64548
64549
64550
64551
64552
64553
64554
64555
64556
64557
64558
64559
64560
64561
64562
64563
64564
64565
64566
64567
64568
64569
64570
64571
64572
64573
64574
64575
64576
64577
64578
64579
64580
64581
64582
64583
64584
64585
64586
64587
64588
64589
64590
64591
64592
64593
64594
64595
64596
64597
64598
64599
64600
64601
64602
64603
64604
64605
64606
64607
64608
64609
64610
64611
64612
64613
64614
64615
64616
64617
64618
64619
64620
64621
64622
64623
64624
64625
64626
64627
64628
64629
64630
64631
64632
64633
64634
64635
64636
64637
64638
64639
64640
64641
64642
64643
64644
64645
64646
64647
64648
64649
64650
64651
64652
64653
64654
64655
64656
64657
64658
64659
64660
64661
64662
64663
64664
64665
64666
64667
64668
64669
64670
64671
64672
64673
64674
64675
64676
64677
64678
64679
64680
64681
64682
64683
64684
64685
64686
64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
64697
64698
64699
64700
64701
64702
64703
64704
64705
64706
64707
64708
64709
64710
64711
64712
64713
64714
64715
64716
64717
64718
64719
64720
64721
64722
64723
64724
64725
64726
64727
64728
64729
64730
64731
64732
64733
64734
64735
64736
64737
64738
64739
64740
64741
64742
64743
64744
64745
64746
64747
64748
64749
64750
64751
64752
64753
64754
64755
64756
64757
64758
64759
64760
64761
64762
64763
64764
64765
64766
64767
64768
64769
64770
64771
64772
64773
64774
64775
64776
64777
64778
64779
64780
64781
64782
64783
64784
64785
64786
64787
64788
64789
64790
64791
64792
64793
64794
64795
64796
64797
64798
64799
64800
64801
64802
64803
64804
64805
64806
64807
64808
64809
64810
64811
64812
64813
64814
64815
64816
64817
64818
64819
64820
64821
64822
64823
64824
64825
64826
64827
64828
64829
64830
64831
64832
64833
64834
64835
64836
64837
64838
64839
64840
64841
64842
64843
64844
64845
64846
64847
64848
64849
64850
64851
64852
64853
64854
64855
64856
64857
64858
64859
64860
64861
64862
64863
64864
64865
64866
64867
64868
64869
64870
64871
64872
64873
64874
64875
64876
64877
64878
64879
64880
64881
64882
64883
64884
64885
64886
64887
64888
64889
64890
64891
64892
64893
64894
64895
64896
64897
64898
64899
64900
64901
64902
64903
64904
64905
64906
64907
64908
64909
64910
64911
64912
64913
64914
64915
64916
64917
64918
64919
64920
64921
64922
64923
64924
64925
64926
64927
64928
64929
64930
64931
64932
64933
64934
64935
64936
64937
64938
64939
64940
64941
64942
64943
64944
64945
64946
64947
64948
64949
64950
64951
64952
64953
64954
64955
64956
64957
64958
64959
64960
64961
64962
64963
64964
64965
64966
64967
64968
64969
64970
64971
64972
64973
64974
64975
64976
64977
64978
64979
64980
64981
64982
64983
64984
64985
64986
64987
64988
64989
64990
64991
64992
64993
64994
64995
64996
64997
64998
64999
65000
65001
65002
65003
65004
65005
65006
65007
65008
65009
65010
65011
65012
65013
65014
65015
65016
65017
65018
65019
65020
65021
65022
65023
65024
65025
65026
65027
65028
65029
65030
65031
65032
65033
65034
65035
65036
65037
65038
65039
65040
65041
65042
65043
65044
65045
65046
65047
65048
65049
65050
65051
65052
65053
65054
65055
65056
65057
65058
65059
65060
65061
65062
65063
65064
65065
65066
65067
65068
65069
65070
65071
65072
65073
65074
65075
65076
65077
65078
65079
65080
65081
65082
65083
65084
65085
65086
65087
65088
65089
65090
65091
65092
65093
65094
65095
65096
65097
65098
65099
65100
65101
65102
65103
65104
65105
65106
65107
65108
65109
65110
65111
65112
65113
65114
65115
65116
65117
65118
65119
65120
65121
65122
65123
65124
65125
65126
65127
65128
65129
65130
65131
65132
65133
65134
65135
65136
65137
65138
65139
65140
65141
65142
65143
65144
65145
65146
65147
65148
65149
65150
65151
65152
65153
65154
65155
65156
65157
65158
65159
65160
65161
65162
65163
65164
65165
65166
65167
65168
65169
65170
65171
65172
65173
65174
65175
65176
65177
65178
65179
65180
65181
65182
65183
65184
65185
65186
65187
65188
65189
65190
65191
65192
65193
65194
65195
65196
65197
65198
65199
65200
65201
65202
65203
65204
65205
65206
65207
65208
65209
65210
65211
65212
65213
65214
65215
65216
65217
65218
65219
65220
65221
65222
65223
65224
65225
65226
65227
65228
65229
65230
65231
65232
65233
65234
65235
65236
65237
65238
65239
65240
65241
65242
65243
65244
65245
65246
65247
65248
65249
65250
65251
65252
65253
65254
65255
65256
65257
65258
65259
65260
65261
65262
65263
65264
65265
65266
65267
65268
65269
65270
65271
65272
65273
65274
65275
65276
65277
65278
65279
65280
65281
65282
65283
65284
65285
65286
65287
65288
65289
65290
65291
65292
65293
65294
65295
65296
65297
65298
65299
65300
65301
65302
65303
65304
65305
65306
65307
65308
65309
65310
65311
65312
65313
65314
65315
65316
65317
65318
65319
65320
65321
65322
65323
65324
65325
65326
65327
65328
65329
65330
65331
65332
65333
65334
65335
65336
65337
65338
65339
65340
65341
65342
65343
65344
65345
65346
65347
65348
65349
65350
65351
65352
65353
65354
65355
65356
65357
65358
65359
65360
65361
65362
65363
65364
65365
65366
65367
65368
65369
65370
65371
65372
65373
65374
65375
65376
65377
65378
65379
65380
65381
65382
65383
65384
65385
65386
65387
65388
65389
65390
65391
65392
65393
65394
65395
65396
65397
65398
65399
65400
65401
65402
65403
65404
65405
65406
65407
65408
65409
65410
65411
65412
65413
65414
65415
65416
65417
65418
65419
65420
65421
65422
65423
65424
65425
65426
65427
65428
65429
65430
65431
65432
65433
65434
65435
65436
65437
65438
65439
65440
65441
65442
65443
65444
65445
65446
65447
65448
65449
65450
65451
65452
65453
65454
65455
65456
65457
65458
65459
65460
65461
65462
65463
65464
65465
65466
65467
65468
65469
65470
65471
65472
65473
)set break resume
)sys rm -f allfns.output
)spool allfns.output
)set message test on
)set message auto off
)clear all
 
--S 1 of 3320
)d op ^
--R 
--R
--RThere are 7 exposed functions called ^ :
--R   [1] Boolean -> Boolean from Boolean
--R   [2] D -> D from D if D has BTAGG
--R   [3] (D,Integer) -> D from D if D has DIVRING
--R   [4] (D,Integer) -> D from D if D has GROUP
--R   [5] (D,NonNegativeInteger) -> D from D if D has MONOID
--R   [6] (StochasticDifferential(D2),PositiveInteger) -> 
--R            StochasticDifferential(D2)
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R   [7] (D,PositiveInteger) -> D from D if D has SGROUP
--R
--RExamples of ^ from Boolean
--R
--R
--RExamples of ^ from BitAggregate
--R
--R
--RExamples of ^ from DivisionRing
--R
--R
--RExamples of ^ from Group
--R
--R
--RExamples of ^ from Monoid
--R
--R
--RExamples of ^ from StochasticDifferential
--R
--R
--RExamples of ^ from SemiGroup
--R
--E 1

--S 2 of 3320
)d op ~
--R 
--R
--RThere are 2 exposed functions called ~ :
--R   [1] D -> D from D if D has LOGIC
--R   [2] SingleInteger -> SingleInteger from SingleInteger
--R
--RExamples of ~ from Logic
--R
--R
--RExamples of ~ from SingleInteger
--R
--E 2

--S 3 of 3320
)d op = 
--R 
--R
--RThere are 8 exposed functions called = :
--R   [1] (ArrayStack(D2),ArrayStack(D2)) -> Boolean from ArrayStack(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [2] (D,D) -> Boolean from D if D has BASTYPE
--R   [3] (Dequeue(D2),Dequeue(D2)) -> Boolean from Dequeue(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [4] (D1,D1) -> Equation(D1) from Equation(D1) if D1 has TYPE
--R   [5] (FortranScalarType,FortranScalarType) -> Boolean from 
--R            FortranScalarType
--R   [6] (Heap(D2),Heap(D2)) -> Boolean from Heap(D2)
--R             if D2 has SETCAT and D2 has ORDSET
--R   [7] (Queue(D2),Queue(D2)) -> Boolean from Queue(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [8] (Stack(D2),Stack(D2)) -> Boolean from Stack(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R
--RThere are 2 unexposed functions called = :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [2] (Reference(D2),Reference(D2)) -> Boolean from Reference(D2) if 
--R            D2 has TYPE
--R
--RExamples of = from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rb:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--R(a=b)@Boolean
--R
--R
--RExamples of = from BasicType
--R
--R
--RExamples of = from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rb:Dequeue INT:= dequeue [1,2,3,4,5] 
--R(a=b)@Boolean
--R
--R
--RExamples of = from Equation
--R
--R
--RExamples of = from FortranScalarType
--R
--R
--RExamples of = from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rb:Heap INT:= heap [1,2,3,4,5] 
--R(a=b)@Boolean
--R
--R
--RExamples of = from OutputForm
--R
--R
--RExamples of = from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rb:Queue INT:= queue [1,2,3,4,5] 
--R(a=b)@Boolean
--R
--R
--RExamples of = from Reference
--R
--R
--RExamples of = from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rb:Stack INT:= stack [1,2,3,4,5] 
--R(a=b)@Boolean
--R
--E 3

--S 4 of 3320
)d op +
--R 
--R
--RThere are 15 exposed functions called + :
--R   [1] (D,D) -> D from D if D has ABELSG
--R   [2] (Color,Color) -> Color from Color
--R   [3] (Database(D1),Database(D1)) -> Database(D1) from Database(D1)
--R             if D1 has OrderedSetwith
--R               ?.? : (%,Symbol) -> String
--R               display : % -> Void
--R               fullDisplay : % -> Void
--R   [4] (Equation(D1),D1) -> Equation(D1) from Equation(D1)
--R             if D1 has ABELSG and D1 has TYPE
--R   [5] (D1,Equation(D1)) -> Equation(D1) from Equation(D1)
--R             if D1 has ABELSG and D1 has TYPE
--R   [6] (D1,D) -> D from D if D has FAMONC(D1,D2) and D1 has SETCAT and 
--R            D2 has CABMON
--R   [7] (D1,FullPartialFractionExpansion(D2,D1)) -> 
--R            FullPartialFractionExpansion(D2,D1)
--R             from FullPartialFractionExpansion(D2,D1)
--R             if D2 has Join(Field,CharacteristicZero) and D1 has UPOLYC
--R            (D2)
--R   [8] (D,D) -> D from D if D has GRMOD(D1,D2) and D1 has COMRING and 
--R            D2 has ABELMON
--R   [9] (PolynomialIdeals(D1,D2,D3,D4),PolynomialIdeals(D1,D2,D3,D4))
--R             -> PolynomialIdeals(D1,D2,D3,D4)
--R             from PolynomialIdeals(D1,D2,D3,D4)
--R             if D1 has FIELD and D2 has OAMONS and D3 has ORDSET and D4
--R             has POLYCAT(D1,D2,D3)
--R   [10] ((D2 -> D3),(D2 -> D3)) -> (D2 -> D3) from MappingPackage4(D2,
--R            D3)
--R             if D2 has SETCAT and D3 has RING
--R   [11] (D,D) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R   [12] (D,Divisor(D)) -> Divisor(D) from D
--R             if D has PLACESC(D2,D3) and D2 has FIELD and D3 has 
--R            LOCPOWC(D2)
--R   [13] (Divisor(D),D) -> Divisor(D) from D
--R             if D has PLACESC(D2,D3) and D2 has FIELD and D3 has 
--R            LOCPOWC(D2)
--R   [14] (D,D) -> Divisor(D) from D
--R             if D2 has FIELD and D3 has LOCPOWC(D2) and D has PLACESC(
--R            D2,D3)
--R   [15] (D,D) -> D from D if D has VECTCAT(D1) and D1 has TYPE and D1
--R             has ABELSG
--R
--RThere are 5 unexposed functions called + :
--R   [1] (InputForm,InputForm) -> InputForm from InputForm
--R   [2] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [3] (Pattern(D1),Pattern(D1)) -> Pattern(D1) from Pattern(D1) if D1
--R             has SETCAT
--R   [4] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R   [5] (Point(DoubleFloat),Point(DoubleFloat)) -> Point(DoubleFloat)
--R             from TubePlotTools
--R
--RExamples of + from AbelianSemiGroup
--R
--R
--RExamples of + from Color
--R
--R
--RExamples of + from Database
--R
--R
--RExamples of + from Equation
--R
--R
--RExamples of + from FreeAbelianMonoidCategory
--R
--R
--RExamples of + from FullPartialFractionExpansion
--R
--R
--RExamples of + from GradedModule
--R
--R
--RExamples of + from PolynomialIdeals
--R
--R
--RExamples of + from InputForm
--R
--R
--RExamples of + from MappingPackage4
--R
--Rf:=(x:INT):INT +-> 3*x 
--Rg:=(x:INT):INT +-> 2*x+3 
--R(f+g)(4)
--R
--R
--RExamples of + from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rm+m
--R
--R
--RExamples of + from OutputForm
--R
--R
--RExamples of + from Pattern
--R
--R
--RExamples of + from PlacesCategory
--R
--R
--RExamples of + from StreamTaylorSeriesOperations
--R
--R
--RExamples of + from TubePlotTools
--R
--R
--RExamples of + from VectorCategory
--R
--E 4

--S 5 of 3320
)d op -
--R 
--R
--RThere are 17 exposed functions called - :
--R   [1] (D,D) -> D from D if D has ABELGRP
--R   [2] D -> D from D if D has ABELGRP
--R   [3] (CardinalNumber,CardinalNumber) -> Union(CardinalNumber,"failed"
--R            )
--R             from CardinalNumber
--R   [4] (Database(D1),Database(D1)) -> Database(D1) from Database(D1)
--R             if D1 has OrderedSetwith
--R               ?.? : (%,Symbol) -> String
--R               display : % -> Void
--R               fullDisplay : % -> Void
--R   [5] (Equation(D1),D1) -> Equation(D1) from Equation(D1)
--R             if D1 has ABELGRP and D1 has TYPE
--R   [6] (D1,Equation(D1)) -> Equation(D1) from Equation(D1)
--R             if D1 has ABELGRP and D1 has TYPE
--R   [7] (D,D) -> D from D if D has GRMOD(D1,D2) and D1 has COMRING and 
--R            D2 has ABELMON
--R   [8] D -> D from D if D has GRMOD(D1,D2) and D1 has COMRING and D2
--R             has ABELMON
--R   [9] ((D2 -> D3),(D2 -> D3)) -> (D2 -> D3) from MappingPackage4(D2,D3
--R            )
--R             if D2 has SETCAT and D3 has RING
--R   [10] D -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R   [11] (D,D) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R   [12] D -> Divisor(D) from D
--R             if D2 has FIELD and D3 has LOCPOWC(D2) and D has PLACESC(
--R            D2,D3)
--R   [13] (D,Divisor(D)) -> Divisor(D) from D
--R             if D has PLACESC(D2,D3) and D2 has FIELD and D3 has 
--R            LOCPOWC(D2)
--R   [14] (Divisor(D),D) -> Divisor(D) from D
--R             if D has PLACESC(D2,D3) and D2 has FIELD and D3 has 
--R            LOCPOWC(D2)
--R   [15] (D,D) -> Divisor(D) from D
--R             if D2 has FIELD and D3 has LOCPOWC(D2) and D has PLACESC(
--R            D2,D3)
--R   [16] (D,D) -> D from D if D has VECTCAT(D1) and D1 has TYPE and D1
--R             has ABELGRP
--R   [17] D -> D from D if D has VECTCAT(D1) and D1 has TYPE and D1 has 
--R            ABELGRP
--R
--RThere are 5 unexposed functions called - :
--R   [1] OutputForm -> OutputForm from OutputForm
--R   [2] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [3] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R   [4] Stream(D2) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R   [5] (Point(DoubleFloat),Point(DoubleFloat)) -> Point(DoubleFloat)
--R             from TubePlotTools
--R
--RExamples of - from AbelianGroup
--R
--R
--RExamples of - from CardinalNumber
--R
--Rc2:=2::CardinalNumber 
--Rc2-c2 
--RA1:=Aleph 1 
--RA1-c2
--R
--R
--RExamples of - from Database
--R
--R
--RExamples of - from Equation
--R
--R
--RExamples of - from GradedModule
--R
--R
--RExamples of - from MappingPackage4
--R
--Rf:=(x:INT):INT +-> 3*x 
--Rg:=(x:INT):INT +-> 2*x+3 
--R(f-g)(4)
--R
--R
--RExamples of - from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--R-m
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rm-m
--R
--R
--RExamples of - from OutputForm
--R
--R
--RExamples of - from PlacesCategory
--R
--R
--RExamples of - from StreamTaylorSeriesOperations
--R
--R
--RExamples of - from TubePlotTools
--R
--R
--RExamples of - from VectorCategory
--R
--E 5

--S 6 of 3320
)d op *
--R 
--R
--RThere are 39 exposed functions called * :
--R   [1] (Integer,D) -> D from D if D has ABELGRP
--R   [2] (NonNegativeInteger,D) -> D from D if D has ABELMON
--R   [3] (PositiveInteger,D) -> D from D if D has ABELSG
--R   [4] (CartesianTensor(D1,D2,D3),CartesianTensor(D1,D2,D3)) -> 
--R            CartesianTensor(D1,D2,D3)
--R             from CartesianTensor(D1,D2,D3) if D1: INT and D2: NNI and 
--R            D3 has COMRING
--R   [5] (DoubleFloat,Color) -> Color from Color
--R   [6] (PositiveInteger,Color) -> Color from Color
--R   [7] (DenavitHartenbergMatrix(D2),Point(D2)) -> Point(D2)
--R             from DenavitHartenbergMatrix(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory)
--R   [8] (D1,D) -> D from D if D has DIRPCAT(D2,D1) and D1 has TYPE and 
--R            D1 has MONOID
--R   [9] (D,D1) -> D from D if D has DIRPCAT(D2,D1) and D1 has TYPE and 
--R            D1 has MONOID
--R   [10] (D1,Equation(D1)) -> Equation(D1) from Equation(D1)
--R             if D1 has SGROUP and D1 has TYPE
--R   [11] (Equation(D1),D1) -> Equation(D1) from Equation(D1)
--R             if D1 has SGROUP and D1 has TYPE
--R   [12] (D1,D2) -> D from D if D has FAMONC(D2,D1) and D2 has SETCAT 
--R            and D1 has CABMON
--R   [13] (D1,D2) -> D from D if D has FMCAT(D1,D2) and D1 has RING and 
--R            D2 has SETCAT
--R   [14] (D,D1) -> D from D if D has GRMOD(D1,D2) and D1 has COMRING and
--R            D2 has ABELMON
--R   [15] (D1,D) -> D from D if D has GRMOD(D1,D2) and D1 has COMRING and
--R            D2 has ABELMON
--R   [16] (PolynomialIdeals(D1,D2,D3,D4),PolynomialIdeals(D1,D2,D3,D4))
--R             -> PolynomialIdeals(D1,D2,D3,D4)
--R             from PolynomialIdeals(D1,D2,D3,D4)
--R             if D1 has FIELD and D2 has OAMONS and D3 has ORDSET and D4
--R             has POLYCAT(D1,D2,D3)
--R   [17] (D1,D) -> D from D if D has LMODULE(D1) and D1 has RNG
--R   [18] ((D5 -> D6),(D4 -> D5)) -> (D4 -> D6) from MappingPackage3(D4,
--R            D5,D6)
--R             if D4 has SETCAT and D5 has SETCAT and D6 has SETCAT
--R   [19] ((D2 -> D3),(D2 -> D3)) -> (D2 -> D3) from MappingPackage4(D2,
--R            D3)
--R             if D2 has SETCAT and D3 has RING
--R   [20] (D1,D) -> D1 from D
--R             if D has MATCAT(D2,D1,D3) and D2 has RING and D1 has FLAGG
--R            (D2) and D3 has FLAGG(D2)
--R   [21] (D,D1) -> D1 from D
--R             if D has MATCAT(D2,D3,D1) and D2 has RING and D3 has FLAGG
--R            (D2) and D1 has FLAGG(D2)
--R   [22] (Integer,D) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [23] (D,D1) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R   [24] (D1,D) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R   [25] (D,D) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R   [26] (D,D) -> D from D if D has MONAD
--R   [27] (MyExpression(D1,D2),MyExpression(D1,D2)) -> MyExpression(D1,D2
--R            )
--R             from MyExpression(D1,D2)
--R             if D1: SYMBOL and D2 has Join(Ring,OrderedSet,
--R            IntegralDomain)
--R   [28] (Integer,D) -> Divisor(D) from D
--R             if D3 has FIELD and D4 has LOCPOWC(D3) and D has PLACESC(
--R            D3,D4)
--R   [29] (D,D1) -> D from D if D has RMODULE(D1) and D1 has RNG
--R   [30] (Matrix(Fraction(D3)),SparseEchelonMatrix(D2,D3)) -> 
--R            SparseEchelonMatrix(D2,D3)
--R             from SparseEchelonMatrix(D2,D3)
--R             if D3 has INTDOM and D3 has RING and D2 has ORDSET
--R   [31] (Matrix(D3),SparseEchelonMatrix(D2,D3)) -> SparseEchelonMatrix(
--R            D2,D3)
--R             from SparseEchelonMatrix(D2,D3) if D3 has RING and D2 has 
--R            ORDSET
--R   [32] (D,D) -> D from D if D has SGROUP
--R   [33] (D1,D) -> D1 from D
--R             if D has SMATCAT(D2,D3,D1,D4) and D3 has RING and D1 has 
--R            DIRPCAT(D2,D3) and D4 has DIRPCAT(D2,D3)
--R   [34] (D,D1) -> D1 from D
--R             if D has SMATCAT(D2,D3,D4,D1) and D3 has RING and D4 has 
--R            DIRPCAT(D2,D3) and D1 has DIRPCAT(D2,D3)
--R   [35] (D,D1) -> D from D if D has VECTCAT(D1) and D1 has TYPE and D1
--R             has MONOID
--R   [36] (D1,D) -> D from D if D has VECTCAT(D1) and D1 has TYPE and D1
--R             has MONOID
--R   [37] (Integer,D) -> D from D
--R             if D has VECTCAT(D2) and D2 has TYPE and D2 has ABELGRP
--R         
--R   [38] (D1,D) -> D from D if D has XFALG(D1,D2) and D1 has ORDSET and 
--R            D2 has RING
--R   [39] (D,D1) -> D from D if D has XFALG(D2,D1) and D2 has ORDSET and 
--R            D1 has RING
--R
--RThere are 23 unexposed functions called * :
--R   [1] (FreeGroup(D1),D1) -> FreeGroup(D1) from FreeGroup(D1) if D1
--R             has SETCAT
--R   [2] (D1,FreeGroup(D1)) -> FreeGroup(D1) from FreeGroup(D1) if D1
--R             has SETCAT
--R   [3] (D1,D2) -> FreeModule1(D2,D1) from FreeModule1(D2,D1)
--R             if D2 has RING and D1 has ORDSET
--R   [4] (FreeMonoid(D1),D1) -> FreeMonoid(D1) from FreeMonoid(D1) if D1
--R             has SETCAT
--R   [5] (D1,FreeMonoid(D1)) -> FreeMonoid(D1) from FreeMonoid(D1) if D1
--R             has SETCAT
--R   [6] (D1,GeneralModulePolynomial(D2,D3,D4,D5,D6,D1)) -> 
--R            GeneralModulePolynomial(D2,D3,D4,D5,D6,D1)
--R             from GeneralModulePolynomial(D2,D3,D4,D5,D6,D1)
--R             if D2: LIST(SYMBOL) and D3 has COMRING and D5 has DIRPCAT(
--R            #(D2),NNI) and D6: ((Record(index: D4,exponent: D5),Record(
--R            index: D4,exponent: D5)) -> Boolean) and D4 has ORDSET and 
--R            D1 has POLYCAT(D3,D5,OVAR(D2))
--R   [7] (Vector(D2),Vector(D2)) -> Vector(D2)
--R             from InnerNormalBasisFieldFunctions(D2) if D2 has FFIELDC
--R            
--R   [8] (InputForm,InputForm) -> InputForm from InputForm
--R   [9] (InnerTaylorSeries(D2),Integer) -> InnerTaylorSeries(D2)
--R             from InnerTaylorSeries(D2) if D2 has RING
--R   [10] (InnerTaylorSeries(D1),D1) -> InnerTaylorSeries(D1)
--R             from InnerTaylorSeries(D1) if D1 has RING
--R   [11] (D1,InnerTaylorSeries(D1)) -> InnerTaylorSeries(D1)
--R             from InnerTaylorSeries(D1) if D1 has RING
--R   [12] (Magma(D1),Magma(D1)) -> Magma(D1) from Magma(D1) if D1 has 
--R            ORDSET
--R   [13] (OrderedFreeMonoid(D1),D1) -> OrderedFreeMonoid(D1)
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R   [14] (D1,OrderedFreeMonoid(D1)) -> OrderedFreeMonoid(D1)
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R   [15] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [16] (Pattern(D1),Pattern(D1)) -> Pattern(D1) from Pattern(D1) if D1
--R             has SETCAT
--R   [17] (D2,Vector(D3)) -> Vector(D3) from PseudoRemainderSequence(D2,
--R            D3)
--R             if D3 has UPOLYC(D2) and D2 has INTDOM
--R   [18] (D1,SparseMultivariateTaylorSeries(D2,D3,D1)) -> 
--R            SparseMultivariateTaylorSeries(D2,D3,D1)
--R             from SparseMultivariateTaylorSeries(D2,D3,D1)
--R             if D2 has RING and D3 has ORDSET and D1 has POLYCAT(D2,
--R            INDE(D3),D3)
--R   [19] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R   [20] (D2,Stream(D2)) -> Stream(D2) from StreamTaylorSeriesOperations
--R            (D2)
--R             if D2 has RING
--R   [21] (Stream(D2),D2) -> Stream(D2) from StreamTaylorSeriesOperations
--R            (D2)
--R             if D2 has RING
--R   [22] (DoubleFloat,Point(DoubleFloat)) -> Point(DoubleFloat) from 
--R            TubePlotTools
--R   [23] (XPolynomialRing(D1,D2),D1) -> XPolynomialRing(D1,D2)
--R             from XPolynomialRing(D1,D2) if D1 has RING and D2 has 
--R            ORDMON
--R
--RExamples of * from AbelianGroup
--R
--R
--RExamples of * from AbelianMonoid
--R
--R
--RExamples of * from AbelianSemiGroup
--R
--R
--RExamples of * from CartesianTensor
--R
--Rm:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] 
--RTm:CartesianTensor(1,2,Integer):=m 
--Rv:DirectProduct(2,Integer):=directProduct [3,4] 
--RTv:CartesianTensor(1,2,Integer):=v 
--RTm*Tv
--R
--R
--RExamples of * from Color
--R
--R
--RExamples of * from DenavitHartenbergMatrix
--R
--Rrotatex(30)*point([1,2,3])
--R
--R
--RExamples of * from DirectProductCategory
--R
--R
--RExamples of * from Equation
--R
--R
--RExamples of * from FreeAbelianMonoidCategory
--R
--R
--RExamples of * from FreeGroup
--R
--R
--RExamples of * from FreeModule1
--R
--R
--RExamples of * from FreeModuleCat
--R
--R
--RExamples of * from FreeMonoid
--R
--R
--RExamples of * from GeneralModulePolynomial
--R
--R
--RExamples of * from GradedModule
--R
--R
--RExamples of * from PolynomialIdeals
--R
--R
--RExamples of * from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of * from InputForm
--R
--R
--RExamples of * from InnerTaylorSeries
--R
--R
--RExamples of * from LeftModule
--R
--R
--RExamples of * from Magma
--R
--R
--RExamples of * from MappingPackage3
--R
--R
--RExamples of * from MappingPackage4
--R
--Rf:=(x:INT):INT +-> 3*x 
--Rg:=(x:INT):INT +-> 2*x+3 
--R(f*g)(4)
--R
--R
--RExamples of * from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rr:=transpose([1,2,3,4,5])@Matrix(INT) 
--Rr*m
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rc:=coerce([1,2,3,4,5])@Matrix(INT) 
--Rm*c
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--R3*m
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rm*1/3
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--R1/3*m
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rm*m
--R
--R
--RExamples of * from Monad
--R
--R
--RExamples of * from MyExpression
--R
--R
--RExamples of * from OrderedFreeMonoid
--R
--Rm1:=(y**3)$OFMONOID(Symbol) 
--Rm1*x
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rx*m1
--R
--R
--RExamples of * from OutputForm
--R
--R
--RExamples of * from Pattern
--R
--R
--RExamples of * from PlacesCategory
--R
--R
--RExamples of * from PseudoRemainderSequence
--R
--R
--RExamples of * from RightModule
--R
--R
--RExamples of * from SparseEchelonMatrix
--R
--R
--RExamples of * from SemiGroup
--R
--R
--RExamples of * from SquareMatrixCategory
--R
--R
--RExamples of * from SparseMultivariateTaylorSeries
--R
--R
--RExamples of * from StreamTaylorSeriesOperations
--R
--R
--RExamples of * from TubePlotTools
--R
--R
--RExamples of * from VectorCategory
--R
--R
--RExamples of * from XFreeAlgebra
--R
--R
--RExamples of * from XPolynomialRing
--R
--E 6

--S 7 of 3320
)d op /
--R 
--R
--RThere are 15 exposed functions called / :
--R   [1] (D,D1) -> D from D
--R             if D has AMR(D1,D2) and D1 has RING and D2 has OAMON and 
--R            D1 has FIELD
--R   [2] (DoubleFloat,Integer) -> DoubleFloat from DoubleFloat
--R   [3] (D,D) -> D from D
--R             if D = EQ(D1) and D1 has FIELD and D1 has TYPE or D = EQ(
--R            D1) and D1 has GROUP and D1 has TYPE
--R   [4] (D,D) -> D from D if D has FIELD
--R   [5] (Float,Integer) -> Float from Float
--R   [6] (SparseMultivariatePolynomial(D2,Kernel(D)),
--R            SparseMultivariatePolynomial(D2,Kernel(D))) -> D
--R             from D if D2 has INTDOM and D2 has ORDSET and D has FS(D2)
--R            
--R   [7] (D,D) -> D from D if D has GROUP
--R   [8] (D,D1) -> D from D if D has LIECAT(D1) and D1 has COMRING and D1
--R             has FIELD
--R   [9] ((D2 -> Expression(Integer)),(D2 -> Expression(Integer))) -> (D2
--R             -> Expression(Integer))
--R             from MappingPackage4(D2,D3) if D2 has SETCAT and D3 has 
--R            RING
--R   [10] (D,D1) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1) and D1 has FIELD
--R   [11] (MyExpression(D1,D2),MyExpression(D1,D2)) -> MyExpression(D1,D2
--R            )
--R             from MyExpression(D1,D2)
--R             if D1: SYMBOL and D2 has Join(Ring,OrderedSet,
--R            IntegralDomain)
--R   [12] (D1,D1) -> D from D if D has QFCAT(D1) and D1 has INTDOM
--R   [13] (D,D1) -> D from D
--R             if D has RMATCAT(D2,D3,D1,D4,D5) and D1 has RING and D4
--R             has DIRPCAT(D3,D1) and D5 has DIRPCAT(D2,D1) and D1 has 
--R            FIELD
--R   [14] (StochasticDifferential(D2),Expression(D2)) -> 
--R            StochasticDifferential(D2)
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R   [15] (D,D1) -> D from D if D has VSPACE(D1) and D1 has FIELD
--R
--RThere are 12 unexposed functions called / :
--R   [1] (Vector(D2),Vector(D2)) -> Vector(D2)
--R             from InnerNormalBasisFieldFunctions(D2) if D2 has FFIELDC
--R            
--R   [2] (InputForm,InputForm) -> InputForm from InputForm
--R   [3] (D1,D2) -> LocalAlgebra(D1,D3,D2) from LocalAlgebra(D1,D3,D2)
--R             if D3 has COMRING and D1 has ALGEBRA(D3) and D2 has 
--R            SubsetCategory(Monoid,D3)
--R   [4] (LocalAlgebra(D2,D3,D1),D1) -> LocalAlgebra(D2,D3,D1)
--R             from LocalAlgebra(D2,D3,D1)
--R             if D3 has COMRING and D2 has ALGEBRA(D3) and D1 has 
--R            SubsetCategory(Monoid,D3)
--R   [5] (D1,D2) -> Localize(D1,D3,D2) from Localize(D1,D3,D2)
--R             if D3 has COMRING and D1 has MODULE(D3) and D2 has 
--R            SubsetCategory(Monoid,D3)
--R   [6] (Localize(D2,D3,D1),D1) -> Localize(D2,D3,D1) from Localize(D2,
--R            D3,D1)
--R             if D3 has COMRING and D2 has MODULE(D3) and D1 has 
--R            SubsetCategory(Monoid,D3)
--R   [7] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [8] (OrdinaryWeightedPolynomials(D1,D2,D3,D4),
--R            OrdinaryWeightedPolynomials(D1,D2,D3,D4)) -> Union(
--R            OrdinaryWeightedPolynomials(D1,D2,D3,D4),"failed")
--R             from OrdinaryWeightedPolynomials(D1,D2,D3,D4)
--R             if D1 has FIELD and D1 has RING and D2: LIST(SYMBOL) and 
--R            D3: LIST(NNI) and D4: NNI
--R   [9] (Pattern(D1),Pattern(D1)) -> Pattern(D1) from Pattern(D1) if D1
--R             has SETCAT
--R   [10] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R   [11] (WeightedPolynomials(D1,D2,D3,D4,D5,D6,D7),WeightedPolynomials(
--R            D1,D2,D3,D4,D5,D6,D7)) -> Union(WeightedPolynomials(D1,D2,D3,D4,
--R            D5,D6,D7),"failed")
--R             from WeightedPolynomials(D1,D2,D3,D4,D5,D6,D7)
--R             if D1 has FIELD and D1 has RING and D2 has ORDSET and D3
--R             has OAMONS and D5: LIST(D2) and D4 has POLYCAT(D1,D3,D2) 
--R            and D6: LIST(NNI) and D7: NNI
--R   [12] (XPolynomialRing(D1,D2),D1) -> XPolynomialRing(D1,D2)
--R             from XPolynomialRing(D1,D2)
--R             if D1 has FIELD and D1 has RING and D2 has ORDMON
--R
--RExamples of / from AbelianMonoidRing
--R
--R
--RExamples of / from DoubleFloat
--R
--R
--RExamples of / from Equation
--R
--R
--RExamples of / from Field
--R
--R
--RExamples of / from Float
--R
--R
--RExamples of / from FunctionSpace
--R
--R
--RExamples of / from Group
--R
--R
--RExamples of / from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of / from InputForm
--R
--R
--RExamples of / from LocalAlgebra
--R
--R
--RExamples of / from LieAlgebra
--R
--R
--RExamples of / from Localize
--R
--R
--RExamples of / from MappingPackage4
--R
--Rp:=(x:EXPR(INT)):EXPR(INT)+->3*x 
--Rq:=(x:EXPR(INT)):EXPR(INT)+->2*x+3 
--R(p/q)(4) 
--R(p/q)(x)
--R
--R
--RExamples of / from MatrixCategory
--R
--Rm:=matrix [[2**i for i in 2..4] for j in 1..5] 
--Rm/4
--R
--R
--RExamples of / from MyExpression
--R
--R
--RExamples of / from OutputForm
--R
--R
--RExamples of / from OrdinaryWeightedPolynomials
--R
--R
--RExamples of / from Pattern
--R
--R
--RExamples of / from QuotientFieldCategory
--R
--R
--RExamples of / from RectangularMatrixCategory
--R
--R
--RExamples of / from StochasticDifferential
--R
--R
--RExamples of / from StreamTaylorSeriesOperations
--R
--R
--RExamples of / from VectorSpace
--R
--R
--RExamples of / from WeightedPolynomials
--R
--R
--RExamples of / from XPolynomialRing
--R
--E 7

--S 8 of 3320
)d op **
--R 
--R
--RThere are 22 exposed functions called ** :
--R   [1] (CardinalNumber,CardinalNumber) -> CardinalNumber from 
--R            CardinalNumber
--R   [2] (DoubleFloat,DoubleFloat) -> DoubleFloat from DoubleFloat
--R   [3] (D,Integer) -> D from D if D has DIVRING
--R   [4] (D,D) -> D from D if D has ELEMFUN
--R   [5] (Float,Float) -> Float from Float
--R   [6] (D,NonNegativeInteger) -> D from D
--R             if D has FS(D2) and D2 has ORDSET and D2 has SGROUP
--R   [7] (D,Integer) -> D from D if D has GROUP
--R   [8] (PolynomialIdeals(D2,D3,D4,D5),NonNegativeInteger) -> 
--R            PolynomialIdeals(D2,D3,D4,D5)
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R   [9] ((D3 -> D3),NonNegativeInteger) -> (D3 -> D3) from 
--R            MappingPackage1(D3)
--R             if D3 has SETCAT
--R   [10] (D,Integer) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2) and D2 has FIELD
--R   [11] (D,NonNegativeInteger) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [12] (ModuleOperator(D2,D3),Integer) -> ModuleOperator(D2,D3)
--R             from ModuleOperator(D2,D3) if D2 has RING and D3 has 
--R            LMODULE(D2)
--R   [13] (BasicOperator,Integer) -> ModuleOperator(D3,D4)
--R             from ModuleOperator(D3,D4) if D3 has RING and D4 has 
--R            LMODULE(D3)
--R   [14] (D,PositiveInteger) -> D from D if D has MONAD
--R   [15] (D,NonNegativeInteger) -> D from D if D has MONADWU
--R   [16] (D,NonNegativeInteger) -> D from D if D has MONOID
--R   [17] (MyExpression(D1,D2),MyExpression(D1,D2)) -> MyExpression(D1,D2
--R            )
--R             from MyExpression(D1,D2)
--R             if D1: SYMBOL and D2 has Join(Ring,OrderedSet,
--R            IntegralDomain)
--R   [18] (D,Fraction(Integer)) -> D from D if D has RADCAT
--R   [19] (StochasticDifferential(D2),PositiveInteger) -> 
--R            StochasticDifferential(D2)
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R   [20] (D,PositiveInteger) -> D from D if D has SGROUP
--R   [21] (D,Integer) -> D from D
--R             if D has SMATCAT(D2,D3,D4,D5) and D3 has RING and D4 has 
--R            DIRPCAT(D2,D3) and D5 has DIRPCAT(D2,D3) and D3 has FIELD
--R         
--R   [22] (D,D1) -> D from D if D has UTSCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RThere are 18 unexposed functions called ** :
--R   [1] (D1,Fraction(Integer)) -> D1 from AlgebraicFunction(D3,D1)
--R             if D3 has RETRACT(INT) and D3 has Join(OrderedSet,
--R            IntegralDomain) and D1 has FS(D3)
--R   [2] (D1,D1) -> D1 from CombinatorialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R   [3] (D1,Fraction(Integer)) -> D1
--R             from ElementaryFunctionsUnivariateLaurentSeries(D3,D4,D1)
--R             if D3 has FIELD and D3 has ALGEBRA(FRAC(INT)) and D4 has 
--R            UTSCAT(D3) and D1 has ULSCCAT(D3,D4)
--R   [4] (D1,Fraction(Integer)) -> D1
--R             from ElementaryFunctionsUnivariatePuiseuxSeries(D3,D4,D1,
--R            D5)
--R             if D3 has FIELD and D3 has ALGEBRA(FRAC(INT)) and D4 has 
--R            ULSCAT(D3) and D1 has UPXSCCA(D3,D4) and D5 has PTRANFN(D4)
--R            
--R   [5] (D1,Integer) -> FreeGroup(D1) from FreeGroup(D1) if D1 has 
--R            SETCAT
--R   [6] (D1,NonNegativeInteger) -> FreeMonoid(D1) from FreeMonoid(D1)
--R             if D1 has SETCAT
--R   [7] (Vector(D3),Integer) -> Vector(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R   [8] (InputForm,Integer) -> InputForm from InputForm
--R   [9] (InputForm,NonNegativeInteger) -> InputForm from InputForm
--R   [10] (Matrix(D3),NonNegativeInteger) -> Matrix(D3)
--R             from StorageEfficientMatrixOperations(D3) if D3 has RING
--R         
--R   [11] (D1,NonNegativeInteger) -> OrderedFreeMonoid(D1)
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R   [12] (Operator(D2),Integer) -> Operator(D2) from Operator(D2) if D2
--R             has RING
--R   [13] (BasicOperator,Integer) -> Operator(D3) from Operator(D3) if D3
--R             has RING
--R   [14] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [15] (Pattern(D1),Pattern(D1)) -> Pattern(D1) from Pattern(D1) if D1
--R             has SETCAT
--R   [16] (Pattern(D2),NonNegativeInteger) -> Pattern(D2) from Pattern(D2
--R            )
--R             if D2 has SETCAT
--R   [17] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [18] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTranscendentalFunctions(D2) if D2 has ALGEBRA(
--R            FRAC(INT))
--R
--RExamples of ** from AlgebraicFunction
--R
--R
--RExamples of ** from CardinalNumber
--R
--Rc2:=2::CardinalNumber 
--Rc2**c2 
--RA1:=Aleph 1 
--RA1**c2 
--RgeneralizedContinuumHypothesisAssumed true 
--RA1**A1
--R
--R
--RExamples of ** from CombinatorialFunction
--R
--R
--RExamples of ** from DoubleFloat
--R
--R
--RExamples of ** from DivisionRing
--R
--R
--RExamples of ** from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of ** from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of ** from ElementaryFunctionCategory
--R
--R
--RExamples of ** from FreeGroup
--R
--R
--RExamples of ** from Float
--R
--R
--RExamples of ** from FreeMonoid
--R
--R
--RExamples of ** from FunctionSpace
--R
--R
--RExamples of ** from Group
--R
--R
--RExamples of ** from PolynomialIdeals
--R
--R
--RExamples of ** from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of ** from InputForm
--R
--R
--RExamples of ** from MappingPackage1
--R
--R
--RExamples of ** from MatrixCategory
--R
--R(matrix [[j**i for i in 0..4] for j in 1..5]) ** 2
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rm**3
--R
--R
--RExamples of ** from StorageEfficientMatrixOperations
--R
--R
--RExamples of ** from ModuleOperator
--R
--R
--RExamples of ** from Monad
--R
--R
--RExamples of ** from MonadWithUnit
--R
--R
--RExamples of ** from Monoid
--R
--R
--RExamples of ** from MyExpression
--R
--R
--RExamples of ** from OrderedFreeMonoid
--R
--Rm1:=(y**3)$OFMONOID(Symbol)
--R
--R
--RExamples of ** from Operator
--R
--R
--RExamples of ** from OutputForm
--R
--R
--RExamples of ** from Pattern
--R
--R
--RExamples of ** from RadicalCategory
--R
--R
--RExamples of ** from StochasticDifferential
--R
--R
--RExamples of ** from SemiGroup
--R
--R
--RExamples of ** from SquareMatrixCategory
--R
--R
--RExamples of ** from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of ** from StreamTranscendentalFunctions
--R
--R
--RExamples of ** from UnivariateTaylorSeriesCategory
--R
--E 8

--S 9 of 3320
)d op /\
--R 
--R
--RThere are 2 exposed functions called /\ :
--R   [1] (D,D) -> D from D if D has LOGIC
--R   [2] (SingleInteger,SingleInteger) -> SingleInteger from 
--R            SingleInteger
--R
--RExamples of /\ from Logic
--R
--R
--RExamples of /\ from SingleInteger
--R
--E 9

--S 10 of 3320
)d op \/
--R 
--R
--RThere are 2 exposed functions called \/ :
--R   [1] (D,D) -> D from D if D has LOGIC
--R   [2] (SingleInteger,SingleInteger) -> SingleInteger from 
--R            SingleInteger
--R
--RExamples of \/ from Logic
--R
--R
--RExamples of \/ from SingleInteger
--R
--E 10

--S 11 of 3320
)d op #
--R 
--R
--RThere are 7 exposed functions called # :
--R   [1] D -> NonNegativeInteger from D if D has finiteAggregate and D
--R             has AGG
--R   [2] ArrayStack(D2) -> NonNegativeInteger from ArrayStack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [3] Dequeue(D2) -> NonNegativeInteger from Dequeue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [4] Heap(D2) -> NonNegativeInteger from Heap(D2)
--R             if $ has finiteAggregate and D2 has ORDSET
--R   [5] Queue(D2) -> NonNegativeInteger from Queue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [6] D -> Integer from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R   [7] Stack(D2) -> NonNegativeInteger from Stack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R
--RThere is one unexposed function called # :
--R   [1] XPolynomialRing(D2,D3) -> NonNegativeInteger from 
--R            XPolynomialRing(D2,D3)
--R             if D2 has RING and D3 has ORDMON
--R
--RExamples of # from Aggregate
--R
--R
--RExamples of # from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--R#a
--R
--R
--RExamples of # from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--R#a
--R
--R
--RExamples of # from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--R#a
--R
--R
--RExamples of # from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--R#a
--R
--R
--RExamples of # from SExpressionCategory
--R
--R
--RExamples of # from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--R#a
--R
--R
--RExamples of # from XPolynomialRing
--R
--E 11

--S 12 of 3320
)d op ^=
--R 
--R
--RThere is one unexposed function called ^= :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of ^= from OutputForm
--R
--E 12

--S 13 of 3320
)d op ^
--R 
--R
--RThere are 7 exposed functions called ^ :
--R   [1] Boolean -> Boolean from Boolean
--R   [2] D -> D from D if D has BTAGG
--R   [3] (D,Integer) -> D from D if D has DIVRING
--R   [4] (D,Integer) -> D from D if D has GROUP
--R   [5] (D,NonNegativeInteger) -> D from D if D has MONOID
--R   [6] (StochasticDifferential(D2),PositiveInteger) -> 
--R            StochasticDifferential(D2)
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R   [7] (D,PositiveInteger) -> D from D if D has SGROUP
--R
--RExamples of ^ from Boolean
--R
--R
--RExamples of ^ from BitAggregate
--R
--R
--RExamples of ^ from DivisionRing
--R
--R
--RExamples of ^ from Group
--R
--R
--RExamples of ^ from Monoid
--R
--R
--RExamples of ^ from StochasticDifferential
--R
--R
--RExamples of ^ from SemiGroup
--R
--E 13

--S 14 of 3320
)d op ~=
--R 
--R
--RThere are 6 exposed functions called ~= :
--R   [1] (ArrayStack(D2),ArrayStack(D2)) -> Boolean from ArrayStack(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [2] (D,D) -> Boolean from D if D has BASTYPE
--R   [3] (Dequeue(D2),Dequeue(D2)) -> Boolean from Dequeue(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [4] (Heap(D2),Heap(D2)) -> Boolean from Heap(D2)
--R             if D2 has SETCAT and D2 has ORDSET
--R   [5] (Queue(D2),Queue(D2)) -> Boolean from Queue(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [6] (Stack(D2),Stack(D2)) -> Boolean from Stack(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R
--RExamples of ~= from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rb:=copy a 
--R(a~=b)
--R
--R
--RExamples of ~= from BasicType
--R
--R
--RExamples of ~= from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rb:=copy a 
--R(a~=b)
--R
--R
--RExamples of ~= from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rb:=copy a 
--R(a~=b)
--R
--R
--RExamples of ~= from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rb:=copy a 
--R(a~=b)
--R
--R
--RExamples of ~= from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rb:=copy a 
--R(a~=b)
--R
--E 14

--S 15 of 3320
)d op <=
--R 
--R
--RThere are 3 exposed functions called <= :
--R   [1] (D,D) -> Boolean from D if D has DIVCAT(D2) and D2 has SETCAT
--R         
--R   [2] (D,D) -> Boolean from D if D has ORDSET
--R   [3] (PermutationGroup(D2),PermutationGroup(D2)) -> Boolean
--R             from PermutationGroup(D2) if D2 has SETCAT
--R
--RThere is one unexposed function called <= :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of <= from DivisorCategory
--R
--R
--RExamples of <= from OrderedSet
--R
--R
--RExamples of <= from OutputForm
--R
--R
--RExamples of <= from PermutationGroup
--R
--E 15

--S 16 of 3320
)d op <
--R 
--R
--RThere are 4 exposed functions called < :
--R   [1] (D,D) -> Boolean from D if D has ORDSET
--R   [2] (D,D) -> Boolean from D if D has PERMCAT(D2) and D2 has SETCAT
--R         
--R   [3] (PermutationGroup(D2),PermutationGroup(D2)) -> Boolean
--R             from PermutationGroup(D2) if D2 has SETCAT
--R   [4] (D,D) -> Boolean from D if D has SETAGG(D2) and D2 has SETCAT
--R         
--R
--RThere is one unexposed function called < :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of < from OrderedSet
--R
--R
--RExamples of < from OutputForm
--R
--R
--RExamples of < from PermutationCategory
--R
--R
--RExamples of < from PermutationGroup
--R
--R
--RExamples of < from SetAggregate
--R
--E 16

--S 17 of 3320
)d op >=
--R 
--R
--RThere is one exposed function called >= :
--R   [1] (D,D) -> Boolean from D if D has ORDSET
--R
--RThere is one unexposed function called >= :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of >= from OrderedSet
--R
--R
--RExamples of >= from OutputForm
--R
--E 17

--S 18 of 3320
)d op >
--R 
--R
--RThere is one exposed function called > :
--R   [1] (D,D) -> Boolean from D if D has ORDSET
--R
--RThere is one unexposed function called > :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of > from OrderedSet
--R
--R
--RExamples of > from OutputForm
--R
--E 18

--S 19 of 3320
--R--)d op 0
--E 19

--S 20 of 3320
--R--)d op 1
--E 20

--S 21 of 3320
)d op abelianGroup
--R 
--R
--RThere is one exposed function called abelianGroup :
--R   [1] List(PositiveInteger) -> PermutationGroup(Integer)
--R             from PermutationGroupExamples
--R
--RExamples of abelianGroup from PermutationGroupExamples
--R
--E 21

--S 22 of 3320
)d op abs
--R 
--R
--RThere are 7 exposed functions called abs :
--R   [1] D -> D from D if D has COMPCAT(D1) and D1 has COMRING and D1
--R             has RNS
--R   [2] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [3] D -> D1 from D if D has OC(D1) and D1 has COMRING and D1 has RNS
--R            
--R   [4] D -> D from D if D has ORDRING
--R   [5] D -> D1 from D if D has QUATCAT(D1) and D1 has COMRING and D1
--R             has RNS
--R   [6] D -> D from D if D has RNS
--R   [7] D -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called abs :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of abs from ComplexCategory
--R
--R
--RExamples of abs from FortranExpression
--R
--R
--RExamples of abs from FunctionalSpecialFunction
--R
--R
--RExamples of abs from OctonionCategory
--R
--R
--RExamples of abs from OrderedRing
--R
--R
--RExamples of abs from QuaternionCategory
--R
--R
--RExamples of abs from RealNumberSystem
--R
--R
--RExamples of abs from SpecialFunctionCategory
--R
--E 22

--S 23 of 3320 done
)d op absolutelyIrreducible?
--R 
--R
--RThere is one exposed function called absolutelyIrreducible? :
--R   [1]  -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RThere is one unexposed function called absolutelyIrreducible? :
--R   [1]  -> Boolean from FunctionFieldCategory&(D2,D3,D4,D5)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D5 has UPOLYC(FRAC
--R            (D4)) and D2 has FFCAT(D3,D4,D5)
--R
--RExamples of absolutelyIrreducible? from FunctionFieldCategory&
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4) 
--RabsolutelyIrreducible?()$R2
--R
--R
--RExamples of absolutelyIrreducible? from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4) 
--RabsolutelyIrreducible?()$R2
--R
--E 23

--S 24 of 3320
)d op accuracyIF
--R 
--R
--RThere is one exposed function called accuracyIF :
--R   [1] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
--R            Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
--R            DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
--R            relerr: DoubleFloat) -> Float
--R             from d02AgentsPackage
--R
--RExamples of accuracyIF from d02AgentsPackage
--R
--E 24

--S 25 of 3320 done
)d op aColumn
--R 
--R
--RThere is one exposed function called aColumn :
--R   [1] (D1,PositiveInteger) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R
--RExamples of aColumn from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RaColumn(M, 2)
--R
--E 25

--S 26 of 3320
)d op acos
--R 
--R
--RThere are 2 exposed functions called acos :
--R   [1] D -> D from D if D has ATRIG
--R   [2] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R
--RThere are 5 unexposed functions called acos :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of acos from ArcTrigonometricFunctionCategory
--R
--R
--RExamples of acos from ElementaryFunction
--R
--R
--RExamples of acos from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of acos from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of acos from FortranExpression
--R
--R
--RExamples of acos from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of acos from StreamTranscendentalFunctions
--R
--E 26

--S 27 of 3320
)d op acosh
--R 
--R
--RThere is one exposed function called acosh :
--R   [1] D -> D from D if D has AHYP
--R
--RThere are 5 unexposed functions called acosh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of acosh from ArcHyperbolicFunctionCategory
--R
--R
--RExamples of acosh from ElementaryFunction
--R
--R
--RExamples of acosh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of acosh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of acosh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of acosh from StreamTranscendentalFunctions
--R
--E 27

--S 28 of 3320
)d op acoshIfCan
--R 
--R
--RThere is one exposed function called acoshIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of acoshIfCan from PartialTranscendentalFunctions
--R
--E 28

--S 29 of 3320
)d op acosIfCan
--R 
--R
--RThere is one exposed function called acosIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of acosIfCan from PartialTranscendentalFunctions
--R
--E 29

--S 30 of 3320
)d op acot
--R 
--R
--RThere is one exposed function called acot :
--R   [1] D -> D from D if D has ATRIG
--R
--RThere are 5 unexposed functions called acot :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of acot from ArcTrigonometricFunctionCategory
--R
--R
--RExamples of acot from ElementaryFunction
--R
--R
--RExamples of acot from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of acot from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of acot from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of acot from StreamTranscendentalFunctions
--R
--E 30

--S 31 of 3320
)d op acoth
--R 
--R
--RThere is one exposed function called acoth :
--R   [1] D -> D from D if D has AHYP
--R
--RThere are 5 unexposed functions called acoth :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of acoth from ArcHyperbolicFunctionCategory
--R
--R
--RExamples of acoth from ElementaryFunction
--R
--R
--RExamples of acoth from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of acoth from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of acoth from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of acoth from StreamTranscendentalFunctions
--R
--E 31

--S 32 of 3320
)d op acothIfCan
--R 
--R
--RThere is one exposed function called acothIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of acothIfCan from PartialTranscendentalFunctions
--R
--E 32

--S 33 of 3320
)d op acotIfCan
--R 
--R
--RThere is one exposed function called acotIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of acotIfCan from PartialTranscendentalFunctions
--R
--E 33

--S 34 of 3320
)d op acsc
--R 
--R
--RThere is one exposed function called acsc :
--R   [1] D -> D from D if D has ATRIG
--R
--RThere are 5 unexposed functions called acsc :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of acsc from ArcTrigonometricFunctionCategory
--R
--R
--RExamples of acsc from ElementaryFunction
--R
--R
--RExamples of acsc from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of acsc from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of acsc from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of acsc from StreamTranscendentalFunctions
--R
--E 34

--S 35 of 3320
)d op acsch
--R 
--R
--RThere is one exposed function called acsch :
--R   [1] D -> D from D if D has AHYP
--R
--RThere are 5 unexposed functions called acsch :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of acsch from ArcHyperbolicFunctionCategory
--R
--R
--RExamples of acsch from ElementaryFunction
--R
--R
--RExamples of acsch from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of acsch from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of acsch from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of acsch from StreamTranscendentalFunctions
--R
--E 35

--S 36 of 3320
)d op acsch 
--R 
--R
--RThere is one exposed function called acsch :
--R   [1] D -> D from D if D has AHYP
--R
--RThere are 5 unexposed functions called acsch :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of acsch from ArcHyperbolicFunctionCategory
--R
--R
--RExamples of acsch from ElementaryFunction
--R
--R
--RExamples of acsch from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of acsch from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of acsch from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of acsch from StreamTranscendentalFunctions
--R
--E 36

--S 37 of 3320
)d op acschIfCan
--R 
--R
--RThere is one exposed function called acschIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of acschIfCan from PartialTranscendentalFunctions
--R
--E 37

--S 38 of 3320
)d op acscIfCan
--R 
--R
--RThere is one exposed function called acscIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of acscIfCan from PartialTranscendentalFunctions
--R
--E 38

--S 39 of 3320
)d op actualExtensionV
--R 
--R
--RThere is one exposed function called actualExtensionV :
--R   [1] D -> D2 from D
--R             if D has INFCLCT(D2,D3,D4,D5,D6,D7,D8,D9,D1) and D4 has 
--R            POLYCAT(D2,D5,OVAR(D3)) and D5 has DIRPCAT(#(D3),NNI) and 
--R            D6 has PRSPCAT(D2) and D7 has LOCPOWC(D2) and D8 has 
--R            PLACESC(D2,D7) and D1 has BLMETCT and D2 has FIELD
--R
--RExamples of actualExtensionV from InfinitlyClosePointCategory
--R
--E 39

--S 40 of 3320
)d op aCubic
--R 
--R
--RThere is one unexposed function called aCubic :
--R   [1] (D2,D2,D2,D2) -> D2 from PolynomialSolveByFormulas(D3,D2)
--R             if D2 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D2)
--R            
--R
--RExamples of aCubic from PolynomialSolveByFormulas
--R
--E 40

--S 41 of 3320
)d op adaptive
--R 
--R
--RThere are 3 exposed functions called adaptive :
--R   [1] Boolean -> DrawOption from DrawOption
--R   [2]  -> Boolean from GraphicsDefaults
--R   [3] Boolean -> Boolean from GraphicsDefaults
--R
--RThere is one unexposed function called adaptive :
--R   [1] (List(DrawOption),Boolean) -> Boolean from DrawOptionFunctions0
--R            
--R
--RExamples of adaptive from DrawOptionFunctions0
--R
--R
--RExamples of adaptive from DrawOption
--R
--R
--RExamples of adaptive from GraphicsDefaults
--R
--E 41

--S 42 of 3320
)d op adaptive?
--R 
--R
--RThere is one unexposed function called adaptive? :
--R   [1]  -> Boolean from Plot
--R
--RExamples of adaptive? from Plot
--R
--E 42

--S 43 of 3320
)d op adaptive3D?
--R 
--R
--RThere is one unexposed function called adaptive3D? :
--R   [1]  -> Boolean from Plot3D
--R
--RExamples of adaptive3D? from Plot3D
--R
--E 43

--S 44 of 3320
)d op addBadValue
--R 
--R
--RThere are 2 unexposed functions called addBadValue :
--R   [1] (Pattern(D3),D2) -> Pattern(D3) from PatternFunctions1(D3,D2)
--R             if D3 has SETCAT and D2 has TYPE
--R   [2] (Pattern(D2),Any) -> Pattern(D2) from Pattern(D2) if D2 has 
--R            SETCAT
--R
--RExamples of addBadValue from PatternFunctions1
--R
--R
--RExamples of addBadValue from Pattern
--R
--E 44

--S 45 of 3320
)d op addiag
--R 
--R
--RThere is one unexposed function called addiag :
--R   [1] Stream(Stream(D3)) -> Stream(D3) from 
--R            StreamTaylorSeriesOperations(D3)
--R             if D3 has RING
--R
--RExamples of addiag from StreamTaylorSeriesOperations
--R
--E 45

--S 46 of 3320
)d op additive?
--R 
--R
--RThere is one exposed function called additive? :
--R   [1] (DirichletRing(D3),PositiveInteger) -> Boolean from 
--R            DirichletRing(D3)
--R             if D3 has RING
--R
--RExamples of additive? from DirichletRing
--R
--E 46

--S 47 of 3320
)d op addMatch
--R 
--R
--RThere is one unexposed function called addMatch :
--R   [1] (Pattern(D3),D2,PatternMatchResult(D3,D2)) -> PatternMatchResult
--R            (D3,D2)
--R             from PatternMatchResult(D3,D2) if D3 has SETCAT and D2
--R             has SETCAT
--R
--RExamples of addMatch from PatternMatchResult
--R
--E 47

--S 48 of 3320
)d op addMatchRestricted
--R 
--R
--RThere is one unexposed function called addMatchRestricted :
--R   [1] (Pattern(D3),D2,PatternMatchResult(D3,D2),D2) -> 
--R            PatternMatchResult(D3,D2)
--R             from PatternMatchResult(D3,D2) if D3 has SETCAT and D2
--R             has SETCAT
--R
--RExamples of addMatchRestricted from PatternMatchResult
--R
--E 48

--S 49 of 3320
)d op addmod
--R 
--R
--RThere is one exposed function called addmod :
--R   [1] (D,D,D) -> D from D if D has INS
--R
--RExamples of addmod from IntegerNumberSystem
--R
--E 49

--S 50 of 3320
)d op addPoint
--R 
--R
--RThere are 3 unexposed functions called addPoint :
--R   [1] (SubSpace(D3,D4),Point(D4)) -> NonNegativeInteger from SubSpace(
--R            D3,D4)
--R             if D4 has RING and D3: PI
--R   [2] (SubSpace(D3,D4),List(NonNegativeInteger),NonNegativeInteger)
--R             -> SubSpace(D3,D4)
--R             from SubSpace(D3,D4) if D3: PI and D4 has RING
--R   [3] (SubSpace(D3,D4),List(NonNegativeInteger),Point(D4)) -> SubSpace
--R            (D3,D4)
--R             from SubSpace(D3,D4) if D4 has RING and D3: PI
--R
--RExamples of addPoint from SubSpace
--R
--E 50

--S 51 of 3320
)d op addPoint2
--R 
--R
--RThere is one unexposed function called addPoint2 :
--R   [1] (SubSpace(D2,D3),Point(D3)) -> SubSpace(D2,D3) from SubSpace(D2,
--R            D3)
--R             if D3 has RING and D2: PI
--R
--RExamples of addPoint2 from SubSpace
--R
--E 51

--S 52 of 3320
)d op addPointLast
--R 
--R
--RThere is one unexposed function called addPointLast :
--R   [1] (SubSpace(D3,D4),SubSpace(D3,D4),Point(D4),NonNegativeInteger)
--R             -> SubSpace(D3,D4)
--R             from SubSpace(D3,D4) if D4 has RING and D3: PI
--R
--RExamples of addPointLast from SubSpace
--R
--E 52

--S 53 of 3320
)d op adjoint
--R 
--R
--RThere are 4 exposed functions called adjoint :
--R   [1] D -> D from D if D has LODOCAT(D1) and D1 has RING
--R   [2] D2 -> Record(adjMat: D2,detMat: D3)
--R             from MatrixLinearAlgebraFunctions(D3,D4,D5,D2)
--R             if D3 has INTDOM and D3 has COMRING and D4 has FLAGG(D3) 
--R            and D5 has FLAGG(D3) and D2 has MATCAT(D3,D4,D5)
--R   [3] (ModuleOperator(D1,D2),ModuleOperator(D1,D2)) -> ModuleOperator(
--R            D1,D2)
--R             from ModuleOperator(D1,D2)
--R             if D1 has COMRING and D1 has RING and D2 has LMODULE(D1)
--R         
--R   [4] ModuleOperator(D1,D2) -> ModuleOperator(D1,D2) from 
--R            ModuleOperator(D1,D2)
--R             if D1 has COMRING and D1 has RING and D2 has LMODULE(D1)
--R         
--R
--RThere are 2 unexposed functions called adjoint :
--R   [1] (Operator(D1),Operator(D1)) -> Operator(D1) from Operator(D1)
--R             if D1 has COMRING and D1 has RING
--R   [2] Operator(D1) -> Operator(D1) from Operator(D1)
--R             if D1 has COMRING and D1 has RING
--R
--RExamples of adjoint from LinearOrdinaryDifferentialOperatorCategory
--R
--R
--RExamples of adjoint from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of adjoint from ModuleOperator
--R
--R
--RExamples of adjoint from Operator
--R
--E 53

--S 54 of 3320
)d op adjunctionDivisor
--R 
--R
--RThere are 4 exposed functions called adjunctionDivisor :
--R   [1] D5 -> D4 from DesingTreePackage(D6,D7,D8,D9,D10,D11,D1,D4,D2,D5,
--R            D3)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D1 has PLACESC(D6,
--R            D11) and D2 has INFCLCT(D6,D7,D8,D9,D10,D11,D1,D4,D3) and 
--R            D3 has BLMETCT and D4 has DIVCAT(D1) and D5 has DSTRCAT(D2)
--R            
--R   [2]  -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D5,D6,D7,D8,
--R            D9,D10,D11,D4,D1,D2,D3)
--R             if D5 has FIELD and D6: LIST(SYMBOL) and D7 has POLYCAT(D5
--R            ,D8,OVAR(D6)) and D8 has DIRPCAT(#(D6),NNI) and D9 has 
--R            PRSPCAT(D5) and D10 has LOCPOWC(D5) and D11 has PLACESC(D5,
--R            D10) and D1 has INFCLCT(D5,D6,D7,D8,D9,D10,D11,D4,D3) and 
--R            D3 has BLMETCT and D4 has DIVCAT(D11) and D2 has DSTRCAT(D1
--R            )
--R   [3]  -> Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D2))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [4]  -> Divisor(Places(D2)) from PackageForAlgebraicFunctionField(D2
--R            ,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of adjunctionDivisor from DesingTreePackage
--R
--R
--RExamples of adjunctionDivisor from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of adjunctionDivisor from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of adjunctionDivisor from PackageForAlgebraicFunctionField
--R
--E 54

--S 55 of 3320
)d op affineAlgSet
--R 
--R
--RThere are 2 exposed functions called affineAlgSet :
--R   [1] List(D5) -> Union(List(D7),"failed",Infinite,Integer)
--R             from AffineAlgebraicSetComputeWithGroebnerBasis(D3,D4,D5,
--R            D6,D7)
--R             if D5 has POLYCAT(D3,D6,OVAR(D4)) and D6 has DIRPCAT(#(D4)
--R            ,NNI) and D3 has FIELD and D4: LIST(SYMBOL) and D7 has 
--R            PRSPCAT(D3)
--R   [2] List(D5) -> Union(List(D7),"failed",Infinite,Integer)
--R             from AffineAlgebraicSetComputeWithResultant(D3,D4,D5,D6,D7
--R            )
--R             if D5 has POLYCAT(D3,D6,OVAR(D4)) and D6 has DIRPCAT(#(D4)
--R            ,NNI) and D3 has FIELD and D4: LIST(SYMBOL) and D7 has 
--R            PRSPCAT(D3)
--R
--RExamples of affineAlgSet from AffineAlgebraicSetComputeWithGroebnerBasis
--R
--R
--RExamples of affineAlgSet from AffineAlgebraicSetComputeWithResultant
--R
--E 55

--S 56 of 3320
)d op affineAlgSetLocal
--R 
--R
--RThere is one exposed function called affineAlgSetLocal :
--R   [1] List(SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3)))
--R             -> Union(List(D7),"failed",Infinite,Integer)
--R             from AffineAlgebraicSetComputeWithResultant(D3,D4,D5,D6,D7
--R            )
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D4),NNI) and D5 has POLYCAT(D3,D6,OVAR(D4)) and D7 has 
--R            PRSPCAT(D3)
--R
--RExamples of affineAlgSetLocal from AffineAlgebraicSetComputeWithResultant
--R
--E 56

--S 57 of 3320
)d op affinePoint
--R 
--R
--RThere is one exposed function called affinePoint :
--R   [1] List(D2) -> D from D if D2 has FIELD and D has AFSPCAT(D2)
--R
--RExamples of affinePoint from AffineSpaceCategory
--R
--E 57

--S 58 of 3320
)d op affineRationalPoints
--R 
--R
--RThere are 2 exposed functions called affineRationalPoints :
--R   [1] (D2,PositiveInteger) -> List(D7)
--R             from AffineAlgebraicSetComputeWithGroebnerBasis(D4,D5,D2,
--R            D6,D7)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D2 has POLYCAT(D4,D6,OVAR(D5)) and D7 has 
--R            PRSPCAT(D4)
--R   [2] (D2,PositiveInteger) -> Union(List(D7),"failed",Infinite,Integer
--R            )
--R             from AffineAlgebraicSetComputeWithResultant(D4,D5,D2,D6,D7
--R            )
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D2 has POLYCAT(D4,D6,OVAR(D5)) and D7 has 
--R            PRSPCAT(D4)
--R
--RExamples of affineRationalPoints from AffineAlgebraicSetComputeWithGroebnerBasis
--R
--R
--RExamples of affineRationalPoints from AffineAlgebraicSetComputeWithResultant
--R
--E 58

--S 59 of 3320
)d op affineSingularPoints
--R 
--R
--RThere are 3 exposed functions called affineSingularPoints :
--R   [1] D2 -> Union(List(D6),"failed",Infinite,Integer)
--R             from AffineAlgebraicSetComputeWithGroebnerBasis(D3,D4,D2,
--R            D5,D6)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has DIRPCAT(#(
--R            D4),NNI) and D2 has POLYCAT(D3,D5,OVAR(D4)) and D6 has 
--R            PRSPCAT(D3)
--R   [2] D2 -> Union(List(D6),"failed",Infinite,Integer)
--R             from AffineAlgebraicSetComputeWithResultant(D3,D4,D2,D5,D6
--R            )
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has DIRPCAT(#(
--R            D4),NNI) and D2 has POLYCAT(D3,D5,OVAR(D4)) and D6 has 
--R            PRSPCAT(D3)
--R   [3] SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3)) -> 
--R            Union(List(D7),"failed",Infinite,Integer)
--R             from AffineAlgebraicSetComputeWithResultant(D3,D4,D5,D6,D7
--R            )
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D4),NNI) and D5 has POLYCAT(D3,D6,OVAR(D4)) and D7 has 
--R            PRSPCAT(D3)
--R
--RExamples of affineSingularPoints from AffineAlgebraicSetComputeWithGroebnerBasis
--R
--R
--RExamples of affineSingularPoints from AffineAlgebraicSetComputeWithResultant
--R
--E 59

--S 60 of 3320
)d op airyAi
--R 
--R
--RThere are 3 exposed functions called airyAi :
--R   [1] Complex(DoubleFloat) -> Complex(DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [2] DoubleFloat -> DoubleFloat from DoubleFloatSpecialFunctions
--R   [3] D -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called airyAi :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of airyAi from DoubleFloatSpecialFunctions
--R
--R
--RExamples of airyAi from FunctionalSpecialFunction
--R
--R
--RExamples of airyAi from SpecialFunctionCategory
--R
--E 60

--S 61 of 3320
)d op airyBi
--R 
--R
--RThere are 3 exposed functions called airyBi :
--R   [1] DoubleFloat -> DoubleFloat from DoubleFloatSpecialFunctions
--R   [2] Complex(DoubleFloat) -> Complex(DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [3] D -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called airyBi :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of airyBi from DoubleFloatSpecialFunctions
--R
--R
--RExamples of airyBi from FunctionalSpecialFunction
--R
--R
--RExamples of airyBi from SpecialFunctionCategory
--R
--E 61

--S 62 of 3320 done
)d op Aleph
--R 
--R
--RThere is one exposed function called Aleph :
--R   [1] NonNegativeInteger -> CardinalNumber from CardinalNumber
--R
--RExamples of Aleph from CardinalNumber
--R
--RA0:=Aleph 0
--R
--E 62

--S 63 of 3320
)d op algDsolve
--R 
--R
--RThere is one unexposed function called algDsolve :
--R   [1] (LinearOrdinaryDifferentialOperator1(D3),D3) -> Record(
--R            particular: Union(D3,"failed"),basis: List(D3))
--R             from PureAlgebraicLODE(D4,D5,D6,D3)
--R             if D3 has FFCAT(D4,D5,D6) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer))) and D5 has UPOLYC(D4) and D6 has UPOLYC
--R            (FRAC(D5))
--R
--RExamples of algDsolve from PureAlgebraicLODE
--R
--E 63

--S 64 of 3320
)d op algebraic?
--R 
--R
--RThere are 2 exposed functions called algebraic? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has TSETCAT(D3,D4,D2,D5) and D3 has INTDOM and D4
--R             has OAMONS and D2 has ORDSET and D5 has RPOLCAT(D3,D4,D2)
--R            
--R   [2] D -> Boolean from D if D has XF(D2) and D2 has FIELD
--R
--RExamples of algebraic? from TriangularSetCategory
--R
--R
--RExamples of algebraic? from ExtensionField
--R
--E 64

--S 65 of 3320
)d op algebraicCoefficients?
--R 
--R
--RThere is one exposed function called algebraicCoefficients? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of algebraicCoefficients? from RegularTriangularSetCategory
--R
--E 65

--S 66 of 3320
)d op algebraicDecompose
--R 
--R
--RThere are 2 exposed functions called algebraicDecompose :
--R   [1] (D2,D3,Boolean) -> Record(done: List(D3),todo: List(Record(val: 
--R            List(D2),tower: D3)))
--R             from RegularSetDecompositionPackage(D5,D6,D7,D2,D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D2 has RPOLCAT(D5,D6,D7) and D3 has RSETCAT(D5,D6,D7,D2)
--R         
--R   [2] (D2,D3) -> Record(done: List(D3),todo: List(Record(val: List(D2)
--R            ,tower: D3)))
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has SFRTCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of algebraicDecompose from RegularSetDecompositionPackage
--R
--R
--RExamples of algebraicDecompose from SquareFreeRegularSetDecompositionPackage
--R
--E 66

--S 67 of 3320
)d op algebraicOf
--R 
--R
--RThere is one exposed function called algebraicOf :
--R   [1] (RightOpenIntervalRootCharacterization(RealClosure(D3),
--R            SparseUnivariatePolynomial(RealClosure(D3))),OutputForm) -> 
--R            RealClosure(D3)
--R             from RealClosure(D3) if D3 has Join(OrderedRing,Field,
--R            RealConstant)
--R
--RExamples of algebraicOf from RealClosure
--R
--E 67

--S 68 of 3320
)d op algebraicSet
--R 
--R
--RThere is one exposed function called algebraicSet :
--R   [1] List(D5) -> List(D7) from ProjectiveAlgebraicSetPackage(D3,D4,D5
--R            ,D6,D7)
--R             if D5 has POLYCAT(D3,D6,OVAR(D4)) and D6 has DIRPCAT(#(D4)
--R            ,NNI) and D3 has FIELD and D4: LIST(SYMBOL) and D7 has 
--R            PRSPCAT(D3)
--R
--RExamples of algebraicSet from ProjectiveAlgebraicSetPackage
--R
--E 68

--S 69 of 3320
)d op algebraicSort
--R 
--R
--RThere are 2 exposed functions called algebraicSort :
--R   [1] List(D6) -> List(D6) from QuasiComponentPackage(D2,D3,D4,D5,D6)
--R             if D6 has RSETCAT(D2,D3,D4,D5) and D2 has GCDDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [2] List(D6) -> List(D6) from SquareFreeQuasiComponentPackage(D2,D3,
--R            D4,D5,D6)
--R             if D6 has RSETCAT(D2,D3,D4,D5) and D2 has GCDDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of algebraicSort from QuasiComponentPackage
--R
--R
--RExamples of algebraicSort from SquareFreeQuasiComponentPackage
--R
--E 69

--S 70 of 3320
)d op algebraicVariables
--R 
--R
--RThere is one exposed function called algebraicVariables :
--R   [1] D -> List(D4) from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of algebraicVariables from TriangularSetCategory
--R
--E 70

--S 71 of 3320
)d op algint
--R 
--R
--RThere is one unexposed function called algint :
--R   [1] (D2,Kernel(D2),Kernel(D2),(SparseUnivariatePolynomial(D2) -> 
--R            SparseUnivariatePolynomial(D2))) -> IntegrationResult(D2)
--R             from AlgebraicIntegration(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,FunctionSpace(D5))
--R            and D5 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of algint from AlgebraicIntegration
--R
--E 71

--S 72 of 3320
)d op algintegrate
--R 
--R
--RThere is one unexposed function called algintegrate :
--R   [1] (D2,(D6 -> D6)) -> IntegrationResult(D2)
--R             from AlgebraicIntegrate(D4,D5,D6,D7,D2)
--R             if D6 has UPOLYC(D5) and D5 has Join(
--R            AlgebraicallyClosedField,FunctionSpace(D4)) and D4 has Join
--R            (OrderedSet,IntegralDomain,RetractableTo(Integer)) and D7
--R             has UPOLYC(FRAC(D6)) and D2 has FFCAT(D5,D6,D7)
--R
--RExamples of algintegrate from AlgebraicIntegrate
--R
--E 72

--S 73 of 3320
)d op algSplitSimple
--R 
--R
--RThere is one exposed function called algSplitSimple :
--R   [1] (D,(D4 -> D4)) -> Record(num: D,den: D4,derivden: D4,gd: D4)
--R             from D
--R             if D4 has UPOLYC(D3) and D3 has UFD and D5 has UPOLYC(FRAC
--R            (D4)) and D has FFCAT(D3,D4,D5)
--R
--RExamples of algSplitSimple from FunctionFieldCategory
--R
--E 73

--S 74 of 3320
)d op aLinear
--R 
--R
--RThere is one unexposed function called aLinear :
--R   [1] (D2,D2) -> D2 from PolynomialSolveByFormulas(D3,D2)
--R             if D2 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D2)
--R            
--R
--RExamples of aLinear from PolynomialSolveByFormulas
--R
--E 74

--S 75 of 3320
)d op allDegrees
--R 
--R
--RThere is one exposed function called allDegrees :
--R   [1] Boolean -> GuessOption from GuessOption
--R
--RThere is one unexposed function called allDegrees :
--R   [1] List(GuessOption) -> Boolean from GuessOptionFunctions0
--R
--RExamples of allDegrees from GuessOptionFunctions0
--R
--R
--RExamples of allDegrees from GuessOption
--R
--E 75

--S 76 of 3320
)d op allIndices
--R 
--R
--RThere is one exposed function called allIndices :
--R   [1] SparseEchelonMatrix(D2,D3) -> List(D2) from SparseEchelonMatrix(
--R            D2,D3)
--R             if D2 has ORDSET and D3 has RING
--R
--RExamples of allIndices from SparseEchelonMatrix
--R
--E 76

--S 77 of 3320
)d op allPairsAmong
--R 
--R
--RThere is one exposed function called allPairsAmong :
--R   [1] List(SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3)))
--R             -> List(List(SparseUnivariatePolynomial(
--R            SparseUnivariatePolynomial(D3))))
--R             from AffineAlgebraicSetComputeWithResultant(D3,D4,D5,D6,D7
--R            )
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D4),NNI) and D5 has POLYCAT(D3,D6,OVAR(D4)) and D7 has 
--R            PRSPCAT(D3)
--R
--RExamples of allPairsAmong from AffineAlgebraicSetComputeWithResultant
--R
--E 77

--S 78 of 3320
)d op allRootsOf
--R 
--R
--RThere are 7 exposed functions called allRootsOf :
--R   [1] Polynomial(Integer) -> List(D) from D if D has RCFIELD
--R   [2] Polynomial(Fraction(Integer)) -> List(D) from D if D has RCFIELD
--R            
--R   [3] Polynomial(D) -> List(D) from D if D has RCFIELD
--R   [4] SparseUnivariatePolynomial(Integer) -> List(D) from D if D has 
--R            RCFIELD
--R   [5] SparseUnivariatePolynomial(Fraction(Integer)) -> List(D) from D
--R             if D has RCFIELD
--R   [6] SparseUnivariatePolynomial(D) -> List(D) from D if D has RCFIELD
--R            
--R   [7] D2 -> List(D) from D
--R             if D3 has Join(OrderedRing,Field) and D2 has UPOLYC(D3) 
--R            and D has RRCC(D3,D2)
--R
--RExamples of allRootsOf from RealClosedField
--R
--R
--RExamples of allRootsOf from RealRootCharacterizationCategory
--R
--E 78

--S 79 of 3320
)d op allSimpleCells
--R 
--R
--RThere are 2 exposed functions called allSimpleCells :
--R   [1] (List(D5),Symbol) -> List(SimpleCell(D4,D5)) from SimpleCell(D4,
--R            D5)
--R             if D5 has UPOLYC(D4) and D4 has RCFIELD
--R   [2] (D2,Symbol) -> List(SimpleCell(D4,D2)) from SimpleCell(D4,D2)
--R             if D4 has RCFIELD and D2 has UPOLYC(D4)
--R
--RExamples of allSimpleCells from SimpleCell
--R
--E 79

--S 80 of 3320
)d op alphabetic 
--R 
--R
--RThere is one exposed function called alphabetic :
--R   [1]  -> CharacterClass from CharacterClass
--R
--RExamples of alphabetic from CharacterClass
--R
--E 80

--S 81 of 3320 done
)d op alphabetic?
--R 
--R
--RThere is one exposed function called alphabetic? :
--R   [1] Character -> Boolean from Character
--R
--RExamples of alphabetic? from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[alphabetic? c for c in chars]
--R
--E 81

--S 82 of 3320
)d op alphanumeric
--R 
--R
--RThere is one exposed function called alphanumeric :
--R   [1]  -> CharacterClass from CharacterClass
--R
--RExamples of alphanumeric from CharacterClass
--R
--E 82

--S 83 of 3320 done
)d op alphanumeric?
--R 
--R
--RThere is one exposed function called alphanumeric? :
--R   [1] Character -> Boolean from Character
--R
--RExamples of alphanumeric? from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[alphanumeric? c for c in chars]
--R
--E 83

--S 84 of 3320
)d op alterDrift!
--R 
--R
--RThere is one exposed function called alterDrift! :
--R   [1] (BasicStochasticDifferential,StochasticDifferential(D2)) -> 
--R            Union(StochasticDifferential(D2),"failed")
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of alterDrift! from StochasticDifferential
--R
--E 84

--S 85 of 3320
)d op alternating
--R 
--R
--RThere is one exposed function called alternating :
--R   [1] Integer -> SymmetricPolynomial(Fraction(Integer)) from 
--R            CycleIndicators
--R
--RExamples of alternating from CycleIndicators
--R
--E 85

--S 86 of 3320
)d op alternatingGroup
--R 
--R
--RThere are 2 exposed functions called alternatingGroup :
--R   [1] PositiveInteger -> PermutationGroup(Integer)
--R             from PermutationGroupExamples
--R   [2] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R
--RExamples of alternatingGroup from PermutationGroupExamples
--R
--E 86

--S 87 of 3320
)d op alternative?
--R 
--R
--RThere is one exposed function called alternative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called alternative? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of alternative? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of alternative? from FiniteRankNonAssociativeAlgebra
--R
--E 87

--S 88 of 3320
)d op alterQuadVar!
--R 
--R
--RThere is one exposed function called alterQuadVar! :
--R   [1] (BasicStochasticDifferential,BasicStochasticDifferential,
--R            StochasticDifferential(D2)) -> Union(StochasticDifferential(D2),
--R            "failed")
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of alterQuadVar! from StochasticDifferential
--R
--E 88

--S 89 of 3320
)d op An
--R 
--R
--RThere is one unexposed function called An :
--R   [1] ModMonic(D2,D3) -> Vector(D2) from ModMonic(D2,D3)
--R             if D2 has RING and D3 has UPOLYC(D2)
--R
--RExamples of An from ModMonic
--R
--E 89

--S 90 of 3320
)d op and
--R 
--R
--RThere are 2 exposed functions called and :
--R   [1] (Boolean,Boolean) -> Boolean from Boolean
--R   [2] (D,D) -> D from D if D has BTAGG
--R
--RThere is one unexposed function called and :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of and from Boolean
--R
--R
--RExamples of and from BitAggregate
--R
--R
--RExamples of and from OutputForm
--R
--E 90

--S 91 of 3320
)d op And
--R 
--R
--RThere is one exposed function called And :
--R   [1] (SingleInteger,SingleInteger) -> SingleInteger from 
--R            SingleInteger
--R
--RThere is one unexposed function called And :
--R   [1] (IndexedBits(D1),IndexedBits(D1)) -> IndexedBits(D1) from 
--R            IndexedBits(D1)
--R             if D1: INT
--R
--RExamples of And from IndexedBits
--R
--R
--RExamples of And from SingleInteger
--R
--E 91

--S 92 of 3320
)d op AND
--R 
--R
--RThere is one exposed function called AND :
--R   [1] (Union(I: Expression(Integer),F: Expression(Float),CF: 
--R            Expression(Complex(Float)),switch: Switch),Union(I: Expression(
--R            Integer),F: Expression(Float),CF: Expression(Complex(Float)),
--R            switch: Switch)) -> Switch
--R             from Switch
--R
--RExamples of AND from Switch
--R
--E 92

--S 93 of 3320
)d op anfactor
--R 
--R
--RThere is one unexposed function called anfactor :
--R   [1] D2 -> Union(Factored(SparseUnivariatePolynomial(AlgebraicNumber)
--R            ),"failed")
--R             from FunctionSpaceUnivariatePolynomialFactor(D3,D4,D2)
--R             if D4 has RETRACT(AN) and D3 has Join(IntegralDomain,
--R            OrderedSet,RetractableTo(Integer)) and D4 has FS(D3) and D2
--R             has UPOLYC(D4)
--R
--RExamples of anfactor from FunctionSpaceUnivariatePolynomialFactor
--R
--E 93

--S 94 of 3320
)d op antiAssociative?
--R 
--R
--RThere is one exposed function called antiAssociative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called antiAssociative? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of antiAssociative? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of antiAssociative? from FiniteRankNonAssociativeAlgebra
--R
--E 94

--S 95 of 3320
)d op antiCommutative?
--R 
--R
--RThere is one exposed function called antiCommutative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called antiCommutative? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of antiCommutative? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of antiCommutative? from FiniteRankNonAssociativeAlgebra
--R
--E 95

--S 96 of 3320
)d op antiCommutator
--R 
--R
--RThere is one exposed function called antiCommutator :
--R   [1] (D,D) -> D from D if D has NARNG
--R
--RExamples of antiCommutator from NonAssociativeRng
--R
--E 96

--S 97 of 3320
)d op anticoord
--R 
--R
--RThere is one unexposed function called anticoord :
--R   [1] (List(D5),DistributedMultivariatePolynomial(D4,D5),List(
--R            DistributedMultivariatePolynomial(D4,D5))) -> 
--R            DistributedMultivariatePolynomial(D4,D5)
--R             from LinGroebnerPackage(D4,D5) if D5 has GCDDOM and D4: 
--R            LIST(SYMBOL)
--R
--RExamples of anticoord from LinGroebnerPackage
--R
--E 97

--S 98 of 3320
)d op antisymmetric?
--R 
--R
--RThere are 2 exposed functions called antisymmetric? :
--R   [1] D -> Boolean from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [2] D -> Boolean from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of antisymmetric? from MatrixCategory
--R
--Rantisymmetric? matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of antisymmetric? from RectangularMatrixCategory
--R
--E 98

--S 99 of 3320
)d op antisymmetricTensors
--R 
--R
--RThere are 2 exposed functions called antisymmetricTensors :
--R   [1] (Matrix(D3),PositiveInteger) -> Matrix(D3)
--R             from RepresentationPackage1(D3) if D3 has commutative(*) 
--R            and D3 has RING
--R   [2] (List(Matrix(D3)),PositiveInteger) -> List(Matrix(D3))
--R             from RepresentationPackage1(D3) if D3 has commutative(*) 
--R            and D3 has RING
--R
--RExamples of antisymmetricTensors from RepresentationPackage1
--R
--E 99

--S 100 of 3320
)d op any
--R 
--R
--RThere is one exposed function called any :
--R   [1] (SExpression,None) -> Any from Any
--R
--RExamples of any from Any
--R
--E 100

--S 101 of 3320
)d op any?
--R 
--R
--RThere are 6 exposed functions called any? :
--R   [1] ((D3 -> Boolean),ArrayStack(D3)) -> Boolean from ArrayStack(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [2] ((D3 -> Boolean),Dequeue(D3)) -> Boolean from Dequeue(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [3] ((D3 -> Boolean),Heap(D3)) -> Boolean from Heap(D3)
--R             if $ has finiteAggregate and D3 has ORDSET
--R   [4] ((D3 -> Boolean),D) -> Boolean from D
--R             if D has finiteAggregate and D has HOAGG(D3) and D3 has 
--R            TYPE
--R   [5] ((D3 -> Boolean),Queue(D3)) -> Boolean from Queue(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [6] ((D3 -> Boolean),Stack(D3)) -> Boolean from Stack(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R
--RExamples of any? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rany?(x+->(x=4),a)
--R
--R
--RExamples of any? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rany?(x+->(x=4),a)
--R
--R
--RExamples of any? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rany?(x+->(x=4),a)
--R
--R
--RExamples of any? from HomogeneousAggregate
--R
--R
--RExamples of any? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rany?(x+->(x=4),a)
--R
--R
--RExamples of any? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rany?(x+->(x=4),a)
--R
--E 101

--S 102 of 3320
)d op append
--R 
--R
--RThere is one exposed function called append :
--R   [1] (List(D1),List(D1)) -> List(D1) from List(D1) if D1 has TYPE
--R
--RExamples of append from List
--R
--E 102

--S 103 of 3320
)d op appendPoint
--R 
--R
--RThere is one unexposed function called appendPoint :
--R   [1] (GraphImage,Point(DoubleFloat)) -> Void from GraphImage
--R
--RExamples of appendPoint from GraphImage
--R
--E 103

--S 104 of 3320
)d op appendRow!
--R 
--R
--RThere is one exposed function called appendRow! :
--R   [1] (SparseEchelonMatrix(D3,D4),Record(Indices: List(D3),Entries: 
--R            List(D4))) -> Void
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of appendRow! from SparseEchelonMatrix
--R
--E 104

--S 105 of 3320
)d op apply
--R 
--R
--RThere are 2 exposed functions called apply :
--R   [1] (Matrix(D2),D) -> D from D if D has FRNAALG(D2) and D2 has 
--R            COMRING
--R   [2] (D,D1,D1) -> D1 from D if D has OREPCAT(D1) and D1 has RING
--R
--RThere are 2 unexposed functions called apply :
--R   [1] (D2,(D1 -> D1),D1) -> D1 from ApplyUnivariateSkewPolynomial(D4,
--R            D1,D2)
--R             if D1 has LMODULE(D4) and D4 has RING and D2 has OREPCAT(
--R            D4)
--R   [2] (D2,D1,D1,Automorphism(D1),(D1 -> D1)) -> D1
--R             from UnivariateSkewPolynomialCategoryOps(D1,D2)
--R             if D1 has RING and D2 has OREPCAT(D1)
--R
--RExamples of apply from ApplyUnivariateSkewPolynomial
--R
--R
--RExamples of apply from FramedNonAssociativeAlgebra
--R
--R
--RExamples of apply from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of apply from UnivariateSkewPolynomialCategoryOps
--R
--E 105

--S 106 of 3320
)d op applyQuote
--R 
--R
--RThere are 5 exposed functions called applyQuote :
--R   [1] (Symbol,List(D)) -> D from D if D has FS(D3) and D3 has ORDSET
--R         
--R   [2] (Symbol,D,D,D,D) -> D from D if D has FS(D2) and D2 has ORDSET
--R         
--R   [3] (Symbol,D,D,D) -> D from D if D has FS(D2) and D2 has ORDSET
--R   [4] (Symbol,D,D) -> D from D if D has FS(D2) and D2 has ORDSET
--R   [5] (Symbol,D) -> D from D if D has FS(D2) and D2 has ORDSET
--R
--RExamples of applyQuote from FunctionSpace
--R
--E 106

--S 107 of 3320
)d op applyRules
--R 
--R
--RThere are 2 unexposed functions called applyRules :
--R   [1] (List(RewriteRule(D3,D4,D1)),D1) -> D1 from ApplyRules(D3,D4,D1)
--R             if D3 has SETCAT and D4 has Join(Ring,PatternMatchable(D3)
--R            ,OrderedSet,ConvertibleTo(Pattern(D3))) and D1 has Join(
--R            FunctionSpace(D4),PatternMatchable(D3),ConvertibleTo(
--R            Pattern(D3)))
--R   [2] (List(RewriteRule(D4,D5,D1)),D1,PositiveInteger) -> D1
--R             from ApplyRules(D4,D5,D1)
--R             if D4 has SETCAT and D5 has Join(Ring,PatternMatchable(D4)
--R            ,OrderedSet,ConvertibleTo(Pattern(D4))) and D1 has Join(
--R            FunctionSpace(D5),PatternMatchable(D4),ConvertibleTo(
--R            Pattern(D4)))
--R
--RExamples of applyRules from ApplyRules
--R
--E 107

--S 108 of 3320
)d op applyTransform
--R 
--R
--RThere is one exposed function called applyTransform :
--R   [1] (D1,D2) -> D1 from BlowUpPackage(D3,D4,D1,D5,D2)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has DIRPCAT(#(
--R            D4),NNI) and D1 has FAMR(D3,D5) and D2 has BLMETCT
--R
--RExamples of applyTransform from BlowUpPackage
--R
--E 108

--S 109 of 3320
)d op approximants
--R 
--R
--RThere is one exposed function called approximants :
--R   [1] ContinuedFraction(D2) -> Stream(Fraction(D2)) from 
--R            ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of approximants from ContinuedFraction
--R
--E 109

--S 110 of 3320
)d op approximate
--R 
--R
--RThere are 4 exposed functions called approximate :
--R   [1] (D,Integer) -> Integer from D if D has PADICCT(D2)
--R   [2] (D,D) -> Fraction(Integer) from D if D has RCFIELD
--R   [3] (D2,D,D1) -> D1 from D
--R             if D has RRCC(D1,D2) and D1 has Join(OrderedRing,Field) 
--R            and D2 has UPOLYC(D1)
--R   [4] (D1,D3) -> D2 from D1
--R             if D1 has UPSCAT(D2,D3) and D3 has OAMON and D2 has D: (D2
--R            ,D3) -> D2 and D2 has coerce: Symbol -> D2 and D2 has RING
--R            
--R
--RThere are 3 unexposed functions called approximate :
--R   [1] (BalancedPAdicRational(D3),Integer) -> Fraction(Integer)
--R             from BalancedPAdicRational(D3) if D3: INT
--R   [2] (PAdicRational(D3),Integer) -> Fraction(Integer) from 
--R            PAdicRational(D3)
--R             if D3: INT
--R   [3] (PAdicRationalConstructor(D3,D4),Integer) -> Fraction(Integer)
--R             from PAdicRationalConstructor(D3,D4) if D3: INT and D4
--R             has PADICCT(D3)
--R
--RExamples of approximate from BalancedPAdicRational
--R
--R
--RExamples of approximate from PAdicIntegerCategory
--R
--R
--RExamples of approximate from PAdicRational
--R
--R
--RExamples of approximate from PAdicRationalConstructor
--R
--R
--RExamples of approximate from RealClosedField
--R
--R
--RExamples of approximate from RealRootCharacterizationCategory
--R
--R
--RExamples of approximate from UnivariatePowerSeriesCategory
--R
--E 110

--S 111 of 3320
)d op approxNthRoot
--R 
--R
--RThere is one exposed function called approxNthRoot :
--R   [1] (D1,NonNegativeInteger) -> D1 from IntegerRoots(D1) if D1 has 
--R            INS
--R
--RExamples of approxNthRoot from IntegerRoots
--R
--E 111

--S 112 of 3320
)d op approxSqrt
--R 
--R
--RThere is one exposed function called approxSqrt :
--R   [1] D1 -> D1 from IntegerRoots(D1) if D1 has INS
--R
--RExamples of approxSqrt from IntegerRoots
--R
--E 112

--S 113 of 3320
)d op aQuadratic
--R 
--R
--RThere is one unexposed function called aQuadratic :
--R   [1] (D2,D2,D2) -> D2 from PolynomialSolveByFormulas(D3,D2)
--R             if D2 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D2)
--R            
--R
--RExamples of aQuadratic from PolynomialSolveByFormulas
--R
--E 113

--S 114 of 3320
)d op aQuartic
--R 
--R
--RThere is one unexposed function called aQuartic :
--R   [1] (D2,D2,D2,D2,D2) -> D2 from PolynomialSolveByFormulas(D3,D2)
--R             if D2 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D2)
--R            
--R
--RExamples of aQuartic from PolynomialSolveByFormulas
--R
--E 114

--S 115 of 3320
)d op areEquivalent?
--R 
--R
--RThere are 3 exposed functions called areEquivalent? :
--R   [1] (List(Matrix(D5)),List(Matrix(D5)),Boolean,Integer) -> Matrix(D5
--R            )
--R             from RepresentationPackage2(D5) if D5 has FIELD and D5
--R             has RING
--R   [2] (List(Matrix(D3)),List(Matrix(D3))) -> Matrix(D3)
--R             from RepresentationPackage2(D3) if D3 has FIELD and D3
--R             has RING
--R   [3] (List(Matrix(D4)),List(Matrix(D4)),Integer) -> Matrix(D4)
--R             from RepresentationPackage2(D4) if D4 has FIELD and D4
--R             has RING
--R
--RExamples of areEquivalent? from RepresentationPackage2
--R
--E 115

--S 116 of 3320
)d op arg1
--R 
--R
--RThere is one unexposed function called arg1 :
--R   [1] (D1,D2) -> D1 from MappingPackageInternalHacks2(D1,D2)
--R             if D1 has SETCAT and D2 has SETCAT
--R
--RExamples of arg1 from MappingPackageInternalHacks2
--R
--E 116

--S 117 of 3320
)d op arg2
--R 
--R
--RThere is one unexposed function called arg2 :
--R   [1] (D2,D1) -> D1 from MappingPackageInternalHacks2(D2,D1)
--R             if D2 has SETCAT and D1 has SETCAT
--R
--RExamples of arg2 from MappingPackageInternalHacks2
--R
--E 117

--S 118 of 3320 done
)d op argscript
--R 
--R
--RThere is one exposed function called argscript :
--R   [1] (Symbol,List(OutputForm)) -> Symbol from Symbol
--R
--RExamples of argscript from Symbol
--R
--Rargscript(Big,[a,1])
--R
--E 118

--S 119 of 3320
)d op argument
--R 
--R
--RThere is one exposed function called argument :
--R   [1] D -> D1 from D if D has COMPCAT(D1) and D1 has COMRING and D1
--R             has TRANFUN
--R
--RThere are 2 unexposed functions called argument :
--R   [1] FourierComponent(D1) -> D1 from FourierComponent(D1) if D1 has 
--R            ORDSET
--R   [2] Kernel(D2) -> List(D2) from Kernel(D2) if D2 has ORDSET
--R
--RExamples of argument from ComplexCategory
--R
--R
--RExamples of argument from FourierComponent
--R
--R
--RExamples of argument from Kernel
--R
--E 119

--S 120 of 3320
)d op argumentList!
--R 
--R
--RThere are 3 exposed functions called argumentList! :
--R   [1] List(Symbol) -> Void from TheSymbolTable
--R   [2] (Symbol,List(Symbol)) -> Void from TheSymbolTable
--R   [3] (Symbol,List(Symbol),TheSymbolTable) -> Void from TheSymbolTable
--R            
--R
--RExamples of argumentList! from TheSymbolTable
--R
--E 120

--S 121 of 3320
)d op argumentListOf
--R 
--R
--RThere is one exposed function called argumentListOf :
--R   [1] (Symbol,TheSymbolTable) -> List(Symbol) from TheSymbolTable
--R
--RExamples of argumentListOf from TheSymbolTable
--R
--E 121

--S 122 of 3320
)d op arity
--R 
--R
--RThere is one exposed function called arity :
--R   [1] BasicOperator -> Union(NonNegativeInteger,"failed") from 
--R            BasicOperator
--R
--RExamples of arity from BasicOperator
--R
--E 122

--S 123 of 3320
)d op aromberg
--R 
--R
--RThere is one exposed function called aromberg :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer,
--R            Integer) -> Record(value: Float,error: Float,totalpts: Integer,
--R            success: Boolean)
--R             from NumericalQuadrature
--R
--RExamples of aromberg from NumericalQuadrature
--R
--E 123

--S 124 of 3320 done
)d op aRow
--R 
--R
--RThere is one exposed function called aRow :
--R   [1] (D1,PositiveInteger) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R
--RExamples of aRow from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RaRow(M, 1) 
--RaRow(M, 2)
--R
--E 124

--S 125 of 3320 done
)d op arrayStack
--R 
--R
--RThere is one exposed function called arrayStack :
--R   [1] List(D2) -> ArrayStack(D2) from ArrayStack(D2) if D2 has SETCAT
--R            
--R
--RExamples of arrayStack from ArrayStack
--R
--Rc:ArrayStack INT:= arrayStack [1,2,3,4,5]
--R
--E 125

--S 126 of 3320
)d op asec
--R 
--R
--RThere is one exposed function called asec :
--R   [1] D -> D from D if D has ATRIG
--R
--RThere are 5 unexposed functions called asec :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of asec from ArcTrigonometricFunctionCategory
--R
--R
--RExamples of asec from ElementaryFunction
--R
--R
--RExamples of asec from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of asec from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of asec from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of asec from StreamTranscendentalFunctions
--R
--E 126

--S 127 of 3320
)d op asech
--R 
--R
--RThere is one exposed function called asech :
--R   [1] D -> D from D if D has AHYP
--R
--RThere are 5 unexposed functions called asech :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of asech from ArcHyperbolicFunctionCategory
--R
--R
--RExamples of asech from ElementaryFunction
--R
--R
--RExamples of asech from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of asech from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of asech from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of asech from StreamTranscendentalFunctions
--R
--E 127

--S 128 of 3320
)d op asechIfCan
--R 
--R
--RThere is one exposed function called asechIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of asechIfCan from PartialTranscendentalFunctions
--R
--E 128

--S 129 of 3320
)d op asecIfCan
--R 
--R
--RThere is one exposed function called asecIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of asecIfCan from PartialTranscendentalFunctions
--R
--E 129

--S 130 of 3320
)d op asimpson
--R 
--R
--RThere is one exposed function called asimpson :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer,
--R            Integer) -> Record(value: Float,error: Float,totalpts: Integer,
--R            success: Boolean)
--R             from NumericalQuadrature
--R
--RExamples of asimpson from NumericalQuadrature
--R
--E 130

--S 131 of 3320
)d op asin
--R 
--R
--RThere are 2 exposed functions called asin :
--R   [1] D -> D from D if D has ATRIG
--R   [2] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R
--RThere are 5 unexposed functions called asin :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of asin from ArcTrigonometricFunctionCategory
--R
--R
--RExamples of asin from ElementaryFunction
--R
--R
--RExamples of asin from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of asin from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of asin from FortranExpression
--R
--R
--RExamples of asin from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of asin from StreamTranscendentalFunctions
--R
--E 131

--S 132 of 3320
)d op asinh
--R 
--R
--RThere is one exposed function called asinh :
--R   [1] D -> D from D if D has AHYP
--R
--RThere are 5 unexposed functions called asinh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of asinh from ArcHyperbolicFunctionCategory
--R
--R
--RExamples of asinh from ElementaryFunction
--R
--R
--RExamples of asinh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of asinh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of asinh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of asinh from StreamTranscendentalFunctions
--R
--E 132

--S 133 of 3320
)d op asinhIfCan
--R 
--R
--RThere is one exposed function called asinhIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of asinhIfCan from PartialTranscendentalFunctions
--R
--E 133

--S 134 of 3320
)d op asinIfCan
--R 
--R
--RThere is one exposed function called asinIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of asinIfCan from PartialTranscendentalFunctions
--R
--E 134

--S 135 of 3320
)d op aspFilename
--R 
--R
--RThere is one exposed function called aspFilename :
--R   [1] String -> String from NAGLinkSupportPackage
--R
--RExamples of aspFilename from NAGLinkSupportPackage
--R
--E 135

--S 136 of 3320
)d op assert
--R 
--R
--RThere are 3 exposed functions called assert :
--R   [1] (BasicOperator,String) -> BasicOperator from BasicOperator
--R   [2] (D1,String) -> D1 from FunctionSpaceAssertions(D3,D1)
--R             if D3 has ORDSET and D1 has FS(D3)
--R   [3] (Symbol,String) -> Expression(Integer) from 
--R            PatternMatchAssertions
--R
--RExamples of assert from BasicOperator
--R
--R
--RExamples of assert from FunctionSpaceAssertions
--R
--R
--RExamples of assert from PatternMatchAssertions
--R
--E 136

--S 137 of 3320
)d op assign
--R 
--R
--RThere are 31 exposed functions called assign :
--R   [1] (Symbol,List(Polynomial(Integer)),Expression(Complex(Float)))
--R             -> FortranCode
--R             from FortranCode
--R   [2] (Symbol,List(Polynomial(Integer)),Expression(Float)) -> 
--R            FortranCode
--R             from FortranCode
--R   [3] (Symbol,List(Polynomial(Integer)),Expression(Integer)) -> 
--R            FortranCode
--R             from FortranCode
--R   [4] (Symbol,Vector(Expression(Complex(Float)))) -> FortranCode
--R             from FortranCode
--R   [5] (Symbol,Vector(Expression(Float))) -> FortranCode from 
--R            FortranCode
--R   [6] (Symbol,Vector(Expression(Integer))) -> FortranCode from 
--R            FortranCode
--R   [7] (Symbol,Matrix(Expression(Complex(Float)))) -> FortranCode
--R             from FortranCode
--R   [8] (Symbol,Matrix(Expression(Float))) -> FortranCode from 
--R            FortranCode
--R   [9] (Symbol,Matrix(Expression(Integer))) -> FortranCode from 
--R            FortranCode
--R   [10] (Symbol,Expression(Complex(Float))) -> FortranCode from 
--R            FortranCode
--R   [11] (Symbol,Expression(Float)) -> FortranCode from FortranCode
--R   [12] (Symbol,Expression(Integer)) -> FortranCode from FortranCode
--R         
--R   [13] (Symbol,List(Polynomial(Integer)),Expression(MachineComplex))
--R             -> FortranCode
--R             from FortranCode
--R   [14] (Symbol,List(Polynomial(Integer)),Expression(MachineFloat)) -> 
--R            FortranCode
--R             from FortranCode
--R   [15] (Symbol,List(Polynomial(Integer)),Expression(MachineInteger))
--R             -> FortranCode
--R             from FortranCode
--R   [16] (Symbol,Vector(Expression(MachineComplex))) -> FortranCode
--R             from FortranCode
--R   [17] (Symbol,Vector(Expression(MachineFloat))) -> FortranCode from 
--R            FortranCode
--R   [18] (Symbol,Vector(Expression(MachineInteger))) -> FortranCode
--R             from FortranCode
--R   [19] (Symbol,Matrix(Expression(MachineComplex))) -> FortranCode
--R             from FortranCode
--R   [20] (Symbol,Matrix(Expression(MachineFloat))) -> FortranCode from 
--R            FortranCode
--R   [21] (Symbol,Matrix(Expression(MachineInteger))) -> FortranCode
--R             from FortranCode
--R   [22] (Symbol,Vector(MachineComplex)) -> FortranCode from FortranCode
--R            
--R   [23] (Symbol,Vector(MachineFloat)) -> FortranCode from FortranCode
--R         
--R   [24] (Symbol,Vector(MachineInteger)) -> FortranCode from FortranCode
--R            
--R   [25] (Symbol,Matrix(MachineComplex)) -> FortranCode from FortranCode
--R            
--R   [26] (Symbol,Matrix(MachineFloat)) -> FortranCode from FortranCode
--R         
--R   [27] (Symbol,Matrix(MachineInteger)) -> FortranCode from FortranCode
--R            
--R   [28] (Symbol,Expression(MachineComplex)) -> FortranCode from 
--R            FortranCode
--R   [29] (Symbol,Expression(MachineFloat)) -> FortranCode from 
--R            FortranCode
--R   [30] (Symbol,Expression(MachineInteger)) -> FortranCode from 
--R            FortranCode
--R   [31] (Symbol,String) -> FortranCode from FortranCode
--R
--RThere is one unexposed function called assign :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of assign from FortranCode
--R
--R
--RExamples of assign from OutputForm
--R
--E 137

--S 138 of 3320
)d op assoc
--R 
--R
--RThere is one exposed function called assoc :
--R   [1] (D2,D) -> Union(Record(key: D2,entry: D3),"failed") from D
--R             if D has ALAGG(D2,D3) and D2 has SETCAT and D3 has SETCAT
--R            
--R
--RExamples of assoc from AssociationListAggregate
--R
--E 138

--S 139 of 3320
)d op associatedEquations
--R 
--R
--RThere is one unexposed function called associatedEquations :
--R   [1] (D2,PositiveInteger) -> Record(minor: List(PositiveInteger),eq: 
--R            D2,minors: List(List(PositiveInteger)),ops: List(D2))
--R             from AssociatedEquations(D4,D2)
--R             if D4 has FIELD and D4 has INTDOM and D2 has LODOCAT(D4)
--R         
--R
--RExamples of associatedEquations from AssociatedEquations
--R
--E 139

--S 140 of 3320
)d op associatedSystem
--R 
--R
--RThere is one unexposed function called associatedSystem :
--R   [1] (D2,PositiveInteger) -> Record(mat: Matrix(D4),vec: Vector(List(
--R            PositiveInteger)))
--R             from AssociatedEquations(D4,D2) if D4 has INTDOM and D2
--R             has LODOCAT(D4)
--R
--RExamples of associatedSystem from AssociatedEquations
--R
--E 140

--S 141 of 3320
)d op associates?
--R 
--R
--RThere is one exposed function called associates? :
--R   [1] (D,D) -> Boolean from D if D has INTDOM
--R
--RExamples of associates? from IntegralDomain
--R
--E 141

--S 142 of 3320
)d op associative?
--R 
--R
--RThere is one exposed function called associative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called associative? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of associative? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of associative? from FiniteRankNonAssociativeAlgebra
--R
--E 142

--S 143 of 3320
)d op associator
--R 
--R
--RThere is one exposed function called associator :
--R   [1] (D,D,D) -> D from D if D has NARNG
--R
--RExamples of associator from NonAssociativeRng
--R
--E 143

--S 144 of 3320
)d op associatorDependence
--R 
--R
--RThere is one exposed function called associatorDependence :
--R   [1]  -> List(Vector(D2)) from D
--R             if D has FINAALG(D2) and D2 has COMRING and D2 has INTDOM
--R            
--R
--RThere is one unexposed function called associatorDependence :
--R   [1]  -> List(Vector(D3)) from FiniteRankNonAssociativeAlgebra&(D2,D3
--R            )
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of associatorDependence from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of associatorDependence from FiniteRankNonAssociativeAlgebra
--R
--E 144

--S 145 of 3320
)d op atan
--R 
--R
--RThere are 4 exposed functions called atan :
--R   [1] D -> D from D if D has ATRIG
--R   [2] (DoubleFloat,DoubleFloat) -> DoubleFloat from DoubleFloat
--R   [3] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [4] (Float,Float) -> Float from Float
--R
--RThere are 5 unexposed functions called atan :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of atan from ArcTrigonometricFunctionCategory
--R
--R
--RExamples of atan from DoubleFloat
--R
--R
--RExamples of atan from ElementaryFunction
--R
--R
--RExamples of atan from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of atan from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of atan from FortranExpression
--R
--R
--RExamples of atan from Float
--R
--R
--RExamples of atan from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of atan from StreamTranscendentalFunctions
--R
--E 145

--S 146 of 3320
)d op atanh
--R 
--R
--RThere is one exposed function called atanh :
--R   [1] D -> D from D if D has AHYP
--R
--RThere are 5 unexposed functions called atanh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of atanh from ArcHyperbolicFunctionCategory
--R
--R
--RExamples of atanh from ElementaryFunction
--R
--R
--RExamples of atanh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of atanh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of atanh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of atanh from StreamTranscendentalFunctions
--R
--E 146

--S 147 of 3320
)d op atanhIfCan
--R 
--R
--RThere is one exposed function called atanhIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of atanhIfCan from PartialTranscendentalFunctions
--R
--E 147

--S 148 of 3320
)d op atanIfCan
--R 
--R
--RThere is one exposed function called atanIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of atanIfCan from PartialTranscendentalFunctions
--R
--E 148

--S 149 of 3320
)d op atom?
--R 
--R
--RThere is one exposed function called atom? :
--R   [1] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of atom? from SExpressionCategory
--R
--E 149

--S 150 of 3320
)d op atoms
--R 
--R
--RThere is one unexposed function called atoms :
--R   [1] PatternMatchListResult(D2,D3,D4) -> PatternMatchResult(D2,D3)
--R             from PatternMatchListResult(D2,D3,D4)
--R             if D3 has SETCAT and D2 has SETCAT and D4 has LSAGG(D3)
--R         
--R
--RExamples of atoms from PatternMatchListResult
--R
--E 150

--S 151 of 3320
)d op atrapezoidal
--R 
--R
--RThere is one exposed function called atrapezoidal :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer,
--R            Integer) -> Record(value: Float,error: Float,totalpts: Integer,
--R            success: Boolean)
--R             from NumericalQuadrature
--R
--RExamples of atrapezoidal from NumericalQuadrature
--R
--E 151

--S 152 of 3320
)d op att2Result
--R 
--R
--RThere is one exposed function called att2Result :
--R   [1] Record(endPointContinuity: Union(continuous: 
--R            Continuous at the end points,lowerSingular: 
--R            There is a singularity at the lower end point,upperSingular: 
--R            There is a singularity at the upper end point,bothSingular: 
--R            There are singularities at both end points,notEvaluated: 
--R            End point continuity not yet evaluated),singularitiesStream: 
--R            Union(str: Stream(DoubleFloat),notEvaluated: 
--R            Internal singularities not yet evaluated),range: Union(finite: 
--R            The range is finite,lowerInfinite: 
--R            The bottom of range is infinite,upperInfinite: 
--R            The top of range is infinite,bothInfinite: 
--R            Both top and bottom points are infinite,notEvaluated: 
--R            Range not yet evaluated)) -> Result
--R             from ExpertSystemToolsPackage
--R
--RExamples of att2Result from ExpertSystemToolsPackage
--R
--E 152

--S 153 of 3320
)d op augment
--R 
--R
--RThere are 4 exposed functions called augment :
--R   [1] (List(D6),List(D)) -> List(D) from D
--R             if D has RSETCAT(D3,D4,D5,D6) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D6 has RPOLCAT(D3,D4,D5)
--R            
--R   [2] (List(D6),D) -> List(D) from D
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D has RSETCAT(D3,D4,D5,D6)
--R   [3] (D2,List(D)) -> List(D) from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R   [4] (D2,D) -> List(D) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R
--RExamples of augment from RegularTriangularSetCategory
--R
--E 153

--S 154 of 3320
)d op autoReduced?
--R 
--R
--RThere is one exposed function called autoReduced? :
--R   [1] (D,((D6,List(D6)) -> Boolean)) -> Boolean from D
--R             if D has TSETCAT(D3,D4,D5,D6) and D3 has INTDOM and D4
--R             has OAMONS and D5 has ORDSET and D6 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of autoReduced? from TriangularSetCategory
--R
--E 154

--S 155 of 3320
)d op axes
--R 
--R
--RThere is one exposed function called axes :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RThere are 2 unexposed functions called axes :
--R   [1] (TwoDimensionalViewport,PositiveInteger,Palette) -> Void
--R             from TwoDimensionalViewport
--R   [2] (TwoDimensionalViewport,PositiveInteger,String) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of axes from TwoDimensionalViewport
--R
--R
--RExamples of axes from ThreeDimensionalViewport
--R
--E 155

--S 156 of 3320
)d op axesColorDefault
--R 
--R
--RThere are 2 exposed functions called axesColorDefault :
--R   [1]  -> Palette from ViewDefaultsPackage
--R   [2] Palette -> Palette from ViewDefaultsPackage
--R
--RExamples of axesColorDefault from ViewDefaultsPackage
--R
--E 156

--S 157 of 3320
)d op axServer
--R 
--R
--RThere is one exposed function called axServer :
--R   [1] (Integer,(SExpression -> Void)) -> Void from AxiomServer
--R
--RExamples of axServer from AxiomServer
--R
--E 157

--S 158 of 3320
)d op B1solve
--R 
--R
--RThere is one unexposed function called B1solve :
--R   [1] Record(mat: Matrix(Fraction(Polynomial(D3))),vec: List(Fraction(
--R            Polynomial(D3))),rank: NonNegativeInteger,rows: List(Integer),
--R            cols: List(Integer)) -> Record(partsol: Vector(Fraction(
--R            Polynomial(D3))),basis: List(Vector(Fraction(Polynomial(D3)))))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D6 has POLYCAT(D3,D5,D4)
--R
--RExamples of B1solve from ParametricLinearEquations
--R
--E 158

--S 159 of 3320
)d op back
--R 
--R
--RThere are 3 exposed functions called back :
--R   [1] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has QUAGG(D1) and D1 has TYPE
--R   [3] Queue(D1) -> D1 from Queue(D1) if D1 has SETCAT
--R
--RExamples of back from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rback a
--R
--R
--RExamples of back from QueueAggregate
--R
--R
--RExamples of back from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rback a
--R
--E 159

--S 160 of 3320
)d op backOldPos
--R 
--R
--RThere is one exposed function called backOldPos :
--R   [1] Record(mval: Matrix(D2),invmval: Matrix(D2),genIdeal: 
--R            PolynomialIdeals(D2,D3,D4,D5)) -> PolynomialIdeals(D2,D3,D4,D5)
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R
--RExamples of backOldPos from PolynomialIdeals
--R
--E 160

--S 161 of 3320
)d op badNum
--R 
--R
--RThere are 2 unexposed functions called badNum :
--R   [1] D2 -> Record(den: Integer,gcdnum: Integer)
--R             from PointsOfFiniteOrderTools(D2,D3)
--R             if D2 has UPOLYC(FRAC(INT)) and D3 has UPOLYC(FRAC(D2))
--R         
--R   [2] D2 -> Integer from PointsOfFiniteOrderTools(D3,D2)
--R             if D3 has UPOLYC(FRAC(INT)) and D2 has UPOLYC(FRAC(D3))
--R         
--R
--RExamples of badNum from PointsOfFiniteOrderTools
--R
--E 161

--S 162 of 3320
)d op badValues
--R 
--R
--RThere is one unexposed function called badValues :
--R   [1] Pattern(D3) -> List(D4) from PatternFunctions1(D3,D4)
--R             if D3 has SETCAT and D4 has TYPE
--R
--RExamples of badValues from PatternFunctions1
--R
--E 162

--S 163 of 3320
)d op bag
--R 
--R
--RThere are 6 exposed functions called bag :
--R   [1] List(D2) -> ArrayStack(D2) from ArrayStack(D2) if D2 has SETCAT
--R            
--R   [2] List(D2) -> D from D if D2 has TYPE and D has BGAGG(D2)
--R   [3] List(D2) -> Dequeue(D2) from Dequeue(D2) if D2 has SETCAT
--R   [4] List(D2) -> Heap(D2) from Heap(D2) if D2 has ORDSET
--R   [5] List(D2) -> Queue(D2) from Queue(D2) if D2 has SETCAT
--R   [6] List(D2) -> Stack(D2) from Stack(D2) if D2 has SETCAT
--R
--RExamples of bag from ArrayStack
--R
--Rbag([1,2,3,4,5])$ArrayStack(INT)
--R
--R
--RExamples of bag from BagAggregate
--R
--R
--RExamples of bag from Dequeue
--R
--Rbag([1,2,3,4,5])$Dequeue(INT)
--R
--R
--RExamples of bag from Heap
--R
--Rbag([1,2,3,4,5])$Heap(INT)
--R
--R
--RExamples of bag from Queue
--R
--Rbag([1,2,3,4,5])$Queue(INT)
--R
--R
--RExamples of bag from Stack
--R
--Rbag([1,2,3,4,5])$Stack(INT)
--R
--E 163

--S 164 of 3320
)d op balancedBinaryTree
--R 
--R
--RThere is one exposed function called balancedBinaryTree :
--R   [1] (NonNegativeInteger,D2) -> BalancedBinaryTree(D2)
--R             from BalancedBinaryTree(D2) if D2 has SETCAT
--R
--RExamples of balancedBinaryTree from BalancedBinaryTree
--R
--RbalancedBinaryTree(4, 0)
--R
--E 164

--S 165 of 3320
)d op balancedFactorisation
--R 
--R
--RThere are 2 unexposed functions called balancedFactorisation :
--R   [1] (D2,D2) -> Factored(D2) from BalancedFactorisation(D3,D2)
--R             if D3 has Join(GcdDomain,CharacteristicZero) and D2 has 
--R            UPOLYC(D3)
--R   [2] (D2,List(D2)) -> Factored(D2) from BalancedFactorisation(D4,D2)
--R             if D2 has UPOLYC(D4) and D4 has Join(GcdDomain,
--R            CharacteristicZero)
--R
--RExamples of balancedFactorisation from BalancedFactorisation
--R
--E 165

--S 166 of 3320
)d op bandedHessian
--R 
--R
--RThere is one exposed function called bandedHessian :
--R   [1] (D2,D3,NonNegativeInteger) -> Matrix(D2)
--R             from MultiVariableCalculusFunctions(D5,D2,D6,D3)
--R             if D5 has SETCAT and D2 has PDRING(D5) and D6 has FLAGG(D2
--R            ) and D3 has FiniteLinearAggregate(D5)with
--R                 finiteAggregate
--R
--RExamples of bandedHessian from MultiVariableCalculusFunctions
--R
--E 166

--S 167 of 3320
)d op bandedJacobian
--R 
--R
--RThere is one exposed function called bandedJacobian :
--R   [1] (D2,D3,NonNegativeInteger,NonNegativeInteger) -> Matrix(D6)
--R             from MultiVariableCalculusFunctions(D5,D6,D2,D3)
--R             if D5 has SETCAT and D6 has PDRING(D5) and D2 has FLAGG(D6
--R            ) and D3 has FiniteLinearAggregate(D5)with
--R                 finiteAggregate
--R
--RExamples of bandedJacobian from MultiVariableCalculusFunctions
--R
--E 167

--S 168 of 3320 done
)d op bandMatrix
--R 
--R
--RThere are 2 exposed functions called bandMatrix :
--R   [1] (D1,List(Integer)) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R   [2] (D1,Segment(Integer)) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R
--RExamples of bandMatrix from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RbandMatrix(M, -1..1)
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RbandMatrix(M, [-1,1]) 
--RbandMatrix(M, [-1,0,1])
--R
--E 168

--S 169 of 3320
)d op base
--R 
--R
--RThere are 5 exposed functions called base :
--R   [1]  -> PositiveInteger from D if D has FPS
--R   [2]  -> D from D if D has INS
--R   [3] PositiveInteger -> PositiveInteger from MachineFloat
--R   [4]  -> PositiveInteger from MachineFloat
--R   [5] PermutationGroup(D2) -> List(D2) from PermutationGroup(D2) if D2
--R             has SETCAT
--R
--RExamples of base from FloatingPointSystem
--R
--R
--RExamples of base from IntegerNumberSystem
--R
--R
--RExamples of base from MachineFloat
--R
--R
--RExamples of base from PermutationGroup
--R
--E 169

--S 170 of 3320
)d op baseRDE
--R 
--R
--RThere is one unexposed function called baseRDE :
--R   [1] (Fraction(D4),Fraction(D4)) -> Record(ans: Fraction(D4),nosol: 
--R            Boolean)
--R             from TranscendentalRischDE(D3,D4)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer)) and D4 has UPOLYC(D3)
--R
--RExamples of baseRDE from TranscendentalRischDE
--R
--E 170

--S 171 of 3320
)d op baseRDEsys
--R 
--R
--RThere is one unexposed function called baseRDEsys :
--R   [1] (Fraction(D4),Fraction(D4),Fraction(D4)) -> Union(List(Fraction(
--R            D4)),"failed")
--R             from TranscendentalRischDESystem(D3,D4)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer)) and D4 has UPOLYC(D3)
--R
--RExamples of baseRDEsys from TranscendentalRischDESystem
--R
--E 171

--S 172 of 3320
)d op basicSet
--R 
--R
--RThere are 2 exposed functions called basicSet :
--R   [1] (List(D8),(D8 -> Boolean),((D8,D8) -> Boolean)) -> Union(Record(
--R            bas: D,top: List(D8)),"failed")
--R             from D
--R             if D8 has RPOLCAT(D5,D6,D7) and D5 has INTDOM and D6 has 
--R            OAMONS and D7 has ORDSET and D has TSETCAT(D5,D6,D7,D8)
--R   [2] (List(D7),((D7,D7) -> Boolean)) -> Union(Record(bas: D,top: List
--R            (D7)),"failed")
--R             from D
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET and D has TSETCAT(D4,D5,D6,D7)
--R
--RExamples of basicSet from TriangularSetCategory
--R
--E 172

--S 173 of 3320
)d op basis
--R 
--R
--RThere are 5 exposed functions called basis :
--R   [1] Vector(D3) -> Vector(D3) from AlgebraPackage(D2,D3)
--R             if D3 has FRNAALG(D2) and D2 has EUCDOM and D2 has INTDOM
--R            
--R   [2] PositiveInteger -> Vector(D) from D if D3 has FIELD and D has 
--R            FAXF(D3)
--R   [3]  -> Vector(D) from D if D2 has FIELD and D has FAXF(D2)
--R   [4]  -> Vector(D) from D
--R             if D2 has COMRING and D3 has UPOLYC(D2) and D has FRAMALG(
--R            D2,D3)
--R   [5]  -> Vector(D) from D if D2 has COMRING and D has FRNAALG(D2)
--R
--RThere are 3 unexposed functions called basis :
--R   [1] FractionalIdeal(D2,D3,D4,D5) -> Vector(D5)
--R             from FractionalIdeal(D2,D3,D4,D5)
--R             if D2 has EUCDOM and D3 has QFCAT(D2) and D4 has UPOLYC(D3
--R            ) and D5 has Join(FramedAlgebra(D3,D4),RetractableTo(D3))
--R         
--R   [2] FramedModule(D2,D3,D4,D5,D6) -> Vector(D5)
--R             from FramedModule(D2,D3,D4,D5,D6)
--R             if D2 has EUCDOM and D3 has QFCAT(D2) and D4 has UPOLYC(D3
--R            ) and D5 has FRAMALG(D3,D4) and D6: VECTOR(D5)
--R   [3] PositiveInteger -> Vector(Vector(D3))
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of basis from AlgebraPackage
--R
--R
--RExamples of basis from FiniteAlgebraicExtensionField
--R
--R
--RExamples of basis from FramedAlgebra
--R
--R
--RExamples of basis from FractionalIdeal
--R
--R
--RExamples of basis from FramedModule
--R
--R
--RExamples of basis from FramedNonAssociativeAlgebra
--R
--R
--RExamples of basis from InnerNormalBasisFieldFunctions
--R
--E 173

--S 174 of 3320
)d op basisOfCenter
--R 
--R
--RThere is one exposed function called basisOfCenter :
--R   [1]  -> List(D3) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfCenter from AlgebraPackage
--R
--E 174

--S 175 of 3320
)d op basisOfCentroid
--R 
--R
--RThere is one exposed function called basisOfCentroid :
--R   [1]  -> List(Matrix(D2)) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfCentroid from AlgebraPackage
--R
--E 175

--S 176 of 3320
)d op basisOfCommutingElements
--R 
--R
--RThere is one exposed function called basisOfCommutingElements :
--R   [1]  -> List(D3) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfCommutingElements from AlgebraPackage
--R
--E 176

--S 177 of 3320
)d op basisOfLeftAnnihilator
--R 
--R
--RThere is one exposed function called basisOfLeftAnnihilator :
--R   [1] D2 -> List(D2) from AlgebraPackage(D3,D2)
--R             if D3 has INTDOM and D2 has FRNAALG(D3)
--R
--RExamples of basisOfLeftAnnihilator from AlgebraPackage
--R
--E 177

--S 178 of 3320
)d op basisOfLeftNucleus
--R 
--R
--RThere is one exposed function called basisOfLeftNucleus :
--R   [1]  -> List(D3) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfLeftNucleus from AlgebraPackage
--R
--E 178

--S 179 of 3320
)d op basisOfLeftNucloid
--R 
--R
--RThere is one exposed function called basisOfLeftNucloid :
--R   [1]  -> List(Matrix(D2)) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfLeftNucloid from AlgebraPackage
--R
--E 179

--S 180 of 3320
)d op basisOfMiddleNucleus
--R 
--R
--RThere is one exposed function called basisOfMiddleNucleus :
--R   [1]  -> List(D3) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfMiddleNucleus from AlgebraPackage
--R
--E 180

--S 181 of 3320
)d op basisOfNucleus
--R 
--R
--RThere is one exposed function called basisOfNucleus :
--R   [1]  -> List(D3) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfNucleus from AlgebraPackage
--R
--E 181

--S 182 of 3320
)d op basisOfRightAnnihilator
--R 
--R
--RThere is one exposed function called basisOfRightAnnihilator :
--R   [1] D2 -> List(D2) from AlgebraPackage(D3,D2)
--R             if D3 has INTDOM and D2 has FRNAALG(D3)
--R
--RExamples of basisOfRightAnnihilator from AlgebraPackage
--R
--E 182

--S 183 of 3320
)d op basisOfRightNucleus
--R 
--R
--RThere is one exposed function called basisOfRightNucleus :
--R   [1]  -> List(D3) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfRightNucleus from AlgebraPackage
--R
--E 183

--S 184 of 3320
)d op basisOfRightNucloid
--R 
--R
--RThere is one exposed function called basisOfRightNucloid :
--R   [1]  -> List(Matrix(D2)) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of basisOfRightNucloid from AlgebraPackage
--R
--E 184

--S 185 of 3320
)d op bat
--R 
--R
--RThere is one unexposed function called bat :
--R   [1] Tableau(List(D3)) -> List(List(D3)) from TableauxBumpers(D3) if 
--R            D3 has ORDSET
--R
--RExamples of bat from TableauxBumpers
--R
--E 185

--S 186 of 3320
)d op bat1
--R 
--R
--RThere is one unexposed function called bat1 :
--R   [1] List(List(List(D3))) -> List(List(D3)) from TableauxBumpers(D3)
--R             if D3 has ORDSET
--R
--RExamples of bat1 from TableauxBumpers
--R
--E 186

--S 187 of 3320
)d op beauzamyBound
--R 
--R
--RThere is one unexposed function called beauzamyBound :
--R   [1] D2 -> Integer from GaloisGroupFactorizationUtilities(D3,D2,D4)
--R             if D3 has RING and D2 has UPOLYC(D3) and D4 has Join(
--R            FloatingPointSystem,RetractableTo(D3),Field,
--R            TranscendentalFunctionCategory,ElementaryFunctionCategory)
--R            
--R
--RExamples of beauzamyBound from GaloisGroupFactorizationUtilities
--R
--E 187

--S 188 of 3320
)d op belong?
--R 
--R
--RThere is one exposed function called belong? :
--R   [1] BasicOperator -> Boolean from D if D has ES
--R
--RThere are 7 unexposed functions called belong? :
--R   [1] BasicOperator -> Boolean from AlgebraicFunction(D3,D4)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D4 has FS(D3
--R            )
--R   [2] BasicOperator -> Boolean from CombinatorialFunction(D3,D4)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D4 has FS(D3
--R            )
--R   [3] BasicOperator -> Boolean from ElementaryFunction(D3,D4)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D4 has Join(
--R            FunctionSpace(D3),RadicalCategory)
--R   [4] BasicOperator -> Boolean from ExpressionSpace&(D3) if D3 has ES
--R            
--R   [5] BasicOperator -> Boolean from FunctionSpace&(D3,D4)
--R             if D4 has ORDSET and D3 has FS(D4)
--R   [6] BasicOperator -> Boolean from FunctionalSpecialFunction(D3,D4)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D4 has FS(D3
--R            )
--R   [7] BasicOperator -> Boolean from LiouvillianFunction(D3,D4)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D4 has Join(
--R            FunctionSpace(D3),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of belong? from AlgebraicFunction
--R
--R
--RExamples of belong? from CombinatorialFunction
--R
--R
--RExamples of belong? from ElementaryFunction
--R
--R
--RExamples of belong? from ExpressionSpace&
--R
--R
--RExamples of belong? from ExpressionSpace
--R
--R
--RExamples of belong? from FunctionSpace&
--R
--R
--RExamples of belong? from FunctionalSpecialFunction
--R
--R
--RExamples of belong? from LiouvillianFunction
--R
--E 188

--S 189 of 3320
)d op bernoulli
--R 
--R
--RThere is one exposed function called bernoulli :
--R   [1] Integer -> Fraction(Integer) from IntegerNumberTheoryFunctions
--R         
--R
--RThere is one unexposed function called bernoulli :
--R   [1] Integer -> SparseUnivariatePolynomial(Fraction(Integer))
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of bernoulli from IntegerNumberTheoryFunctions
--R
--R
--RExamples of bernoulli from PolynomialNumberTheoryFunctions
--R
--E 189

--S 190 of 3320
)d op bernoulliB
--R 
--R
--RThere is one exposed function called bernoulliB :
--R   [1] (NonNegativeInteger,D1) -> D1 from 
--R            NumberTheoreticPolynomialFunctions(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has COMRING
--R
--RExamples of bernoulliB from NumberTheoreticPolynomialFunctions
--R
--E 190

--S 191 of 3320
)d op besselI
--R 
--R
--RThere are 3 exposed functions called besselI :
--R   [1] (DoubleFloat,DoubleFloat) -> DoubleFloat from 
--R            DoubleFloatSpecialFunctions
--R   [2] (Complex(DoubleFloat),Complex(DoubleFloat)) -> Complex(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [3] (D,D) -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called besselI :
--R   [1] (D1,D1) -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of besselI from DoubleFloatSpecialFunctions
--R
--R
--RExamples of besselI from FunctionalSpecialFunction
--R
--R
--RExamples of besselI from SpecialFunctionCategory
--R
--E 191

--S 192 of 3320
)d op besselJ
--R 
--R
--RThere are 3 exposed functions called besselJ :
--R   [1] (DoubleFloat,DoubleFloat) -> DoubleFloat from 
--R            DoubleFloatSpecialFunctions
--R   [2] (Complex(DoubleFloat),Complex(DoubleFloat)) -> Complex(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [3] (D,D) -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called besselJ :
--R   [1] (D1,D1) -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of besselJ from DoubleFloatSpecialFunctions
--R
--R
--RExamples of besselJ from FunctionalSpecialFunction
--R
--R
--RExamples of besselJ from SpecialFunctionCategory
--R
--E 192

--S 193 of 3320
)d op besselK
--R 
--R
--RThere are 3 exposed functions called besselK :
--R   [1] (DoubleFloat,DoubleFloat) -> DoubleFloat from 
--R            DoubleFloatSpecialFunctions
--R   [2] (Complex(DoubleFloat),Complex(DoubleFloat)) -> Complex(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [3] (D,D) -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called besselK :
--R   [1] (D1,D1) -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of besselK from DoubleFloatSpecialFunctions
--R
--R
--RExamples of besselK from FunctionalSpecialFunction
--R
--R
--RExamples of besselK from SpecialFunctionCategory
--R
--E 193

--S 194 of 3320
)d op besselY
--R 
--R
--RThere are 3 exposed functions called besselY :
--R   [1] (DoubleFloat,DoubleFloat) -> DoubleFloat from 
--R            DoubleFloatSpecialFunctions
--R   [2] (Complex(DoubleFloat),Complex(DoubleFloat)) -> Complex(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [3] (D,D) -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called besselY :
--R   [1] (D1,D1) -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of besselY from DoubleFloatSpecialFunctions
--R
--R
--RExamples of besselY from FunctionalSpecialFunction
--R
--R
--RExamples of besselY from SpecialFunctionCategory
--R
--E 194

--S 195 of 3320
)d op Beta
--R 
--R
--RThere are 4 exposed functions called Beta :
--R   [1] (DoubleFloat,DoubleFloat) -> DoubleFloat from DoubleFloat
--R   [2] (DoubleFloat,DoubleFloat) -> DoubleFloat from 
--R            DoubleFloatSpecialFunctions
--R   [3] (Complex(DoubleFloat),Complex(DoubleFloat)) -> Complex(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [4] (D,D) -> D from D if D has SPFCAT
--R
--RThere are 2 unexposed functions called Beta :
--R   [1] (D1,D1) -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R   [2] (NonNegativeInteger,NonNegativeInteger) -> (() -> Float)
--R             from RandomFloatDistributions
--R
--RExamples of Beta from DoubleFloat
--R
--R
--RExamples of Beta from DoubleFloatSpecialFunctions
--R
--R
--RExamples of Beta from FunctionalSpecialFunction
--R
--R
--RExamples of Beta from RandomFloatDistributions
--R
--R
--RExamples of Beta from SpecialFunctionCategory
--R
--E 195

--S 196 of 3320
)d op bezoutDiscriminant
--R 
--R
--RThere is one unexposed function called bezoutDiscriminant :
--R   [1] D2 -> D1 from BezoutMatrix(D1,D2,D3,D4,D5)
--R             if D1 has commutative(*) and D4 has FLAGG(D1) and D5 has 
--R            FLAGG(D1) and D1 has RING and D2 has UPOLYC(D1) and D3 has 
--R            MATCAT(D1,D4,D5)
--R
--RExamples of bezoutDiscriminant from BezoutMatrix
--R
--E 196

--S 197 of 3320
)d op bezoutMatrix
--R 
--R
--RThere is one unexposed function called bezoutMatrix :
--R   [1] (D2,D2) -> D1 from BezoutMatrix(D3,D2,D1,D4,D5)
--R             if D3 has RING and D1 has MATCAT(D3,D4,D5) and D2 has 
--R            UPOLYC(D3) and D4 has FLAGG(D3) and D5 has FLAGG(D3)
--R
--RExamples of bezoutMatrix from BezoutMatrix
--R
--E 197

--S 198 of 3320
)d op bezoutResultant
--R 
--R
--RThere is one unexposed function called bezoutResultant :
--R   [1] (D2,D2) -> D1 from BezoutMatrix(D1,D2,D3,D4,D5)
--R             if D1 has commutative(*) and D4 has FLAGG(D1) and D5 has 
--R            FLAGG(D1) and D1 has RING and D2 has UPOLYC(D1) and D3 has 
--R            MATCAT(D1,D4,D5)
--R
--RExamples of bezoutResultant from BezoutMatrix
--R
--E 198

--S 199 of 3320
)d op bfEntry
--R 
--R
--RThere is one exposed function called bfEntry :
--R   [1] Symbol -> Record(zeros: Stream(DoubleFloat),ones: Stream(
--R            DoubleFloat),singularities: Stream(DoubleFloat))
--R             from BasicFunctions
--R
--RExamples of bfEntry from BasicFunctions
--R
--E 199

--S 200 of 3320
)d op bfKeys
--R 
--R
--RThere is one exposed function called bfKeys :
--R   [1]  -> List(Symbol) from BasicFunctions
--R
--RExamples of bfKeys from BasicFunctions
--R
--E 200

--S 201 of 3320 done
)d op binary
--R 
--R
--RThere is one exposed function called binary :
--R   [1] Fraction(Integer) -> BinaryExpansion from BinaryExpansion
--R
--RThere is one unexposed function called binary :
--R   [1] (InputForm,List(InputForm)) -> InputForm from InputForm
--R
--RExamples of binary from BinaryExpansion
--R
--Rbinary(22/7)
--R
--R
--RExamples of binary from InputForm
--R
--Ra:=[1,2,3]::List(InputForm) 
--Rbinary(_+::InputForm,a)
--R
--E 201

--S 202 of 3320
)d op binaryFunction
--R 
--R
--RThere is one unexposed function called binaryFunction :
--R   [1] Symbol -> ((D4,D5) -> D6) from MakeBinaryCompiledFunction(D3,D4,
--R            D5,D6)
--R             if D3 has KONVERT(INFORM) and D4 has TYPE and D5 has TYPE 
--R            and D6 has TYPE
--R
--RExamples of binaryFunction from MakeBinaryCompiledFunction
--R
--E 202

--S 203 of 3320 done
)d op binarySearchTree
--R 
--R
--RThere is one exposed function called binarySearchTree :
--R   [1] List(D2) -> BinarySearchTree(D2) from BinarySearchTree(D2) if D2
--R             has ORDSET
--R
--RExamples of binarySearchTree from BinarySearchTree
--R
--RbinarySearchTree [1,2,3,4]
--R
--E 203

--S 204 of 3320 done
)d op binaryTournament
--R 
--R
--RThere is one exposed function called binaryTournament :
--R   [1] List(D2) -> BinaryTournament(D2) from BinaryTournament(D2) if D2
--R             has ORDSET
--R
--RExamples of binaryTournament from BinaryTournament
--R
--RbinaryTournament [1,2,3,4]
--R
--E 204

--S 205 of 3320 done
)d op binaryTree
--R 
--R
--RThere are 2 exposed functions called binaryTree :
--R   [1] (BinaryTree(D1),D1,BinaryTree(D1)) -> BinaryTree(D1) from 
--R            BinaryTree(D1)
--R             if D1 has SETCAT
--R   [2] D1 -> BinaryTree(D1) from BinaryTree(D1) if D1 has SETCAT
--R
--RExamples of binaryTree from BinaryTree
--R
--Rt1:=binaryTree([1,2,3]) 
--Rt2:=binaryTree([4,5,6]) 
--RbinaryTree(t1,[7,8,9],t2)
--R
--Rt1:=binaryTree([1,2,3])
--R
--E 205

--S 206 of 3320
)d op binomial
--R 
--R
--RThere are 2 exposed functions called binomial :
--R   [1] (D,D) -> D from D if D has CFCAT
--R   [2] (D1,D1) -> D1 from IntegerCombinatoricFunctions(D1) if D1 has 
--R            INS
--R
--RThere are 3 unexposed functions called binomial :
--R   [1] (D1,D1) -> D1 from CombinatorialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R   [2] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [3] (Integer,RationalNumber) -> (() -> Integer)
--R             from RandomIntegerDistributions
--R
--RExamples of binomial from CombinatorialFunctionCategory
--R
--R[binomial(5,i) for i in 0..5]
--R
--R
--RExamples of binomial from CombinatorialFunction
--R
--R[binomial(5,i) for i in 0..5]
--R
--R
--RExamples of binomial from IntegerCombinatoricFunctions
--R
--R[binomial(5,i) for i in 0..5]
--R
--R
--RExamples of binomial from OutputForm
--R
--R
--RExamples of binomial from RandomIntegerDistributions
--R
--E 206

--S 207 of 3320
)d op binomThmExpt
--R 
--R
--RThere is one exposed function called binomThmExpt :
--R   [1] (D,D,NonNegativeInteger) -> D from D
--R             if D has FAMR(D2,D3) and D2 has RING and D3 has OAMON and 
--R            D2 has COMRING
--R
--RExamples of binomThmExpt from FiniteAbelianMonoidRing
--R
--E 207

--S 208 of 3320
)d op bipolar
--R 
--R
--RThere is one exposed function called bipolar :
--R   [1] D2 -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of bipolar from CoordinateSystems
--R
--E 208

--S 209 of 3320
)d op bipolarCylindrical
--R 
--R
--RThere is one exposed function called bipolarCylindrical :
--R   [1] D2 -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of bipolarCylindrical from CoordinateSystems
--R
--E 209

--S 210 of 3320
)d op biRank
--R 
--R
--RThere is one exposed function called biRank :
--R   [1] D2 -> NonNegativeInteger from AlgebraPackage(D3,D2)
--R             if D3 has INTDOM and D2 has FRNAALG(D3)
--R
--RExamples of biRank from AlgebraPackage
--R
--E 210

--S 211 of 3320
)d op biringToPolyRing
--R 
--R
--RThere is one exposed function called biringToPolyRing :
--R   [1] (DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY],D4)
--R            ,D3) -> D1
--R             from BlowUpPackage(D4,D5,D1,D6,D3)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D1 has FAMR(D4,D6
--R            ) and D6 has DIRPCAT(#(D5),NNI) and D3 has BLMETCT
--R
--RExamples of biringToPolyRing from BlowUpPackage
--R
--E 211

--S 212 of 3320
)d op birth
--R 
--R
--RThere is one unexposed function called birth :
--R   [1] SubSpace(D1,D2) -> SubSpace(D1,D2) from SubSpace(D1,D2)
--R             if D1: PI and D2 has RING
--R
--RExamples of birth from SubSpace
--R
--E 212

--S 213 of 3320
)d op bit?
--R 
--R
--RThere is one exposed function called bit? :
--R   [1] (D,D) -> Boolean from D if D has INS
--R
--RExamples of bit? from IntegerNumberSystem
--R
--E 213

--S 214 of 3320
)d op bitCoef
--R 
--R
--RThere is one unexposed function called bitCoef :
--R   [1] (Integer,Integer) -> Integer from IntegerBits
--R
--RExamples of bitCoef from IntegerBits
--R
--E 214

--S 215 of 3320
)d op bitLength
--R 
--R
--RThere is one unexposed function called bitLength :
--R   [1] Integer -> Integer from IntegerBits
--R
--RExamples of bitLength from IntegerBits
--R
--E 215

--S 216 of 3320
)d op bits
--R 
--R
--RThere are 3 exposed functions called bits :
--R   [1] (NonNegativeInteger,Boolean) -> Bits from Bits
--R   [2] PositiveInteger -> PositiveInteger from D
--R             if D has arbitraryPrecision and D has FPS
--R   [3]  -> PositiveInteger from D if D has FPS
--R
--RExamples of bits from Bits
--R
--R
--RExamples of bits from FloatingPointSystem
--R
--E 216

--S 217 of 3320
)d op bitTruth
--R 
--R
--RThere is one unexposed function called bitTruth :
--R   [1] (Integer,Integer) -> Boolean from IntegerBits
--R
--RExamples of bitTruth from IntegerBits
--R
--E 217

--S 218 of 3320
)d op bivariate?
--R 
--R
--RThere is one unexposed function called bivariate? :
--R   [1] D2 -> Boolean from PolynomialSetUtilitiesPackage(D3,D4,D5,D2)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5)
--R
--RExamples of bivariate? from PolynomialSetUtilitiesPackage
--R
--E 218

--S 219 of 3320
)d op bivariatePolynomials
--R 
--R
--RThere is one unexposed function called bivariatePolynomials :
--R   [1] List(D6) -> Record(goodPols: List(D6),badPols: List(D6))
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5)
--R
--RExamples of bivariatePolynomials from PolynomialSetUtilitiesPackage
--R
--E 219

--S 220 of 3320
)d op bivariateSLPEBR
--R 
--R
--RThere is one unexposed function called bivariateSLPEBR :
--R   [1] (List(SparseUnivariatePolynomial(D6)),SparseUnivariatePolynomial
--R            (D6),D3) -> Union(List(SparseUnivariatePolynomial(D6)),"failed")
--R             from PolynomialFactorizationByRecursion(D4,D5,D3,D6)
--R             if D6 has POLYCAT(D4,D5,D3) and D4 has PFECAT and D5 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of bivariateSLPEBR from PolynomialFactorizationByRecursion
--R
--E 220

--S 221 of 3320
)d op blankSeparate
--R 
--R
--RThere is one unexposed function called blankSeparate :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R
--RExamples of blankSeparate from OutputForm
--R
--E 221

--S 222 of 3320
)d op block
--R 
--R
--RThere is one exposed function called block :
--R   [1] List(FortranCode) -> FortranCode from FortranCode
--R
--RExamples of block from FortranCode
--R
--E 222

--S 223 of 3320 done
)d op blockConcat
--R 
--R
--RThere is one exposed function called blockConcat :
--R   [1] List(List(D1)) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D1 has MATCAT(D3,D4,D5) and D4 has 
--R            FLAGG(D3) and D5 has FLAGG(D3)
--R
--RExamples of blockConcat from MatrixManipulation
--R
--RA := matrix([[a]]) 
--RB := matrix([[b]]) 
--RC := matrix([[c]]) 
--RA11 := element(M, 3,3) 
--RA12 := horizConcat([A,B,C]) 
--RA21 := vertConcat([A,B,C]) 
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RE := blockConcat([[A11,A12],[A21,M]]) 
--Rt1 := blockSplit(E, 4, [2,2]) 
--Rt2 := blockConcat t1 
--Rzero?(E-t2) 
--Rt3 := blockSplit(E, [1,2,1], [2,2]) 
--Rt4 := blockConcat t3 
--Rzero?(E-t4)
--R
--E 223

--S 224 of 3320 done
)d op blockSplit
--R 
--R
--RThere are 4 exposed functions called blockSplit :
--R   [1] (D2,PositiveInteger,PositiveInteger) -> List(List(D2))
--R             from MatrixManipulation(D4,D5,D6,D2)
--R             if D4 has FIELD and D5 has FLAGG(D4) and D6 has FLAGG(D4) 
--R            and D2 has MATCAT(D4,D5,D6)
--R   [2] (D2,List(PositiveInteger),PositiveInteger) -> List(List(D2))
--R             from MatrixManipulation(D5,D6,D7,D2)
--R             if D5 has FIELD and D6 has FLAGG(D5) and D7 has FLAGG(D5) 
--R            and D2 has MATCAT(D5,D6,D7)
--R   [3] (D2,PositiveInteger,List(PositiveInteger)) -> List(List(D2))
--R             from MatrixManipulation(D5,D6,D7,D2)
--R             if D5 has FIELD and D6 has FLAGG(D5) and D7 has FLAGG(D5) 
--R            and D2 has MATCAT(D5,D6,D7)
--R   [4] (D2,List(PositiveInteger),List(PositiveInteger)) -> List(List(D2
--R            ))
--R             from MatrixManipulation(D4,D5,D6,D2)
--R             if D4 has FIELD and D5 has FLAGG(D4) and D6 has FLAGG(D4) 
--R            and D2 has MATCAT(D4,D5,D6)
--R
--RExamples of blockSplit from MatrixManipulation
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= blockSplit(E, [1,2,1], [2,2])
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= blockSplit(E, 4, [2,2])
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= blockSplit(E, [2,1,1], 2)
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= blockSplit(E,2,2)
--R
--E 224

--S 225 of 3320
)d op blowUp
--R 
--R
--RThere is one exposed function called blowUp :
--R   [1] D6 -> List(D6)
--R             from DesingTreePackage(D7,D8,D9,D10,D11,D12,D1,D2,D6,D3,D4
--R            )
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D9 has POLYCAT(D7
--R            ,D10,OVAR(D8)) and D10 has DIRPCAT(#(D8),NNI) and D11 has 
--R            PRSPCAT(D7) and D12 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D12) and D2 has DIVCAT(D1) and D6 has INFCLCT(D7,D8,D9,D10,
--R            D11,D12,D1,D2,D4) and D4 has BLMETCT and D3 has DSTRCAT(D6)
--R            
--R
--RExamples of blowUp from DesingTreePackage
--R
--E 225

--S 226 of 3320
)d op blowUpWithExcpDiv
--R 
--R
--RThere is one exposed function called blowUpWithExcpDiv :
--R   [1] D6 -> Void from DesingTreePackage(D7,D8,D9,D10,D11,D12,D1,D2,D3,
--R            D6,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D9 has POLYCAT(D7
--R            ,D10,OVAR(D8)) and D10 has DIRPCAT(#(D8),NNI) and D11 has 
--R            PRSPCAT(D7) and D12 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D12) and D2 has DIVCAT(D1) and D3 has INFCLCT(D7,D8,D9,D10,
--R            D11,D12,D1,D2,D4) and D4 has BLMETCT and D6 has DSTRCAT(D3)
--R            
--R
--RExamples of blowUpWithExcpDiv from DesingTreePackage
--R
--E 226

--S 227 of 3320
)d op blue
--R 
--R
--RThere is one exposed function called blue :
--R   [1]  -> Color from Color
--R
--RExamples of blue from Color
--R
--E 227

--S 228 of 3320
)d op bombieriNorm
--R 
--R
--RThere are 2 unexposed functions called bombieriNorm :
--R   [1] D2 -> D1 from GaloisGroupFactorizationUtilities(D3,D2,D1)
--R             if D3 has RING and D1 has Join(FloatingPointSystem,
--R            RetractableTo(D3),Field,TranscendentalFunctionCategory,
--R            ElementaryFunctionCategory) and D2 has UPOLYC(D3)
--R   [2] (D2,PositiveInteger) -> D1
--R             from GaloisGroupFactorizationUtilities(D4,D2,D1)
--R             if D4 has RING and D1 has Join(FloatingPointSystem,
--R            RetractableTo(D4),Field,TranscendentalFunctionCategory,
--R            ElementaryFunctionCategory) and D2 has UPOLYC(D4)
--R
--RExamples of bombieriNorm from GaloisGroupFactorizationUtilities
--R
--E 228

--S 229 of 3320
)d op bottom!
--R 
--R
--RThere are 2 exposed functions called bottom! :
--R   [1] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has DQAGG(D1) and D1 has TYPE
--R
--RExamples of bottom! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rbottom! a 
--Ra
--R
--R
--RExamples of bottom! from DequeueAggregate
--R
--E 229

--S 230 of 3320
)d op BoundIntegerRoots
--R 
--R   BoundIntegerRoots is not a known function. Axiom will try to list 
--R      its functions which contain BoundIntegerRoots in their names. 
--R      This is the same output you would get by issuing
--R                     )what operations BoundIntegerRoots
--R
--R   There are no operations containing those patterns
--R
--E 230

--S 231 of 3320
)d op boundOfCauchy
--R 
--R
--RThere is one exposed function called boundOfCauchy :
--R   [1] D2 -> D1 from RealPolynomialUtilitiesPackage(D1,D2)
--R             if D1 has FIELD and D1 has ORDRING and D2 has UPOLYC(D1)
--R         
--R
--RExamples of boundOfCauchy from RealPolynomialUtilitiesPackage
--R
--E 231

--S 232 of 3320
)d op box
--R 
--R
--RThere are 2 exposed functions called box :
--R   [1] List(D) -> D from D if D has ES
--R   [2] D -> D from D if D has ES
--R
--RThere is one unexposed function called box :
--R   [1] OutputForm -> OutputForm from OutputForm
--R
--RExamples of box from ExpressionSpace
--R
--R
--RExamples of box from OutputForm
--R
--E 232

--S 233 of 3320
)d op brace
--R 
--R
--RThere are 2 exposed functions called brace :
--R   [1] List(D2) -> D from D if D2 has SETCAT and D has SETAGG(D2)
--R   [2]  -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R
--RThere are 2 unexposed functions called brace :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R   [2] OutputForm -> OutputForm from OutputForm
--R
--RExamples of brace from OutputForm
--R
--R
--RExamples of brace from SetAggregate
--R
--E 233

--S 234 of 3320
)d op bracket
--R 
--R
--RThere are 2 unexposed functions called bracket :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R   [2] OutputForm -> OutputForm from OutputForm
--R
--RExamples of bracket from OutputForm
--R
--E 234

--S 235 of 3320
)d op branchIfCan
--R 
--R
--RThere are 2 exposed functions called branchIfCan :
--R   [1] (List(D8),D3,List(D8),Boolean,Boolean,Boolean,Boolean,Boolean)
--R             -> Union(Record(eq: List(D8),tower: D3,ineq: List(D8)),"failed")
--R             from QuasiComponentPackage(D5,D6,D7,D8,D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D8 has RPOLCAT(D5,D6,D7) and D3 has RSETCAT(D5,D6,D7,D8)
--R         
--R   [2] (List(D8),D3,List(D8),Boolean,Boolean,Boolean,Boolean,Boolean)
--R             -> Union(Record(eq: List(D8),tower: D3,ineq: List(D8)),"failed")
--R             from SquareFreeQuasiComponentPackage(D5,D6,D7,D8,D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D8 has RPOLCAT(D5,D6,D7) and D3 has RSETCAT(D5,D6,D7,D8)
--R         
--R
--RExamples of branchIfCan from QuasiComponentPackage
--R
--R
--RExamples of branchIfCan from SquareFreeQuasiComponentPackage
--R
--E 235

--S 236 of 3320
)d op branchPoint?
--R 
--R
--RThere are 2 exposed functions called branchPoint? :
--R   [1] D2 -> Boolean from D
--R             if D has FFCAT(D3,D2,D4) and D3 has UFD and D2 has UPOLYC(
--R            D3) and D4 has UPOLYC(FRAC(D2))
--R   [2] D2 -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of branchPoint? from FunctionFieldCategory
--R
--E 236

--S 237 of 3320 done
)d op branchPointAtInfinity?
--R 
--R
--RThere is one exposed function called branchPointAtInfinity? :
--R   [1]  -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of branchPointAtInfinity? from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RbranchPointAtInfinity?()$R 
--RR2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4) 
--RbranchPointAtInfinity?()$R
--R
--E 237

--S 238 of 3320
)d op bright
--R 
--R
--RThere are 3 exposed functions called bright :
--R   [1] String -> List(String) from DisplayPackage
--R   [2] List(String) -> List(String) from DisplayPackage
--R   [3] Color -> Palette from Palette
--R
--RExamples of bright from DisplayPackage
--R
--R
--RExamples of bright from Palette
--R
--E 238

--S 239 of 3320
)d op brillhartIrreducible?
--R 
--R
--RThere are 2 unexposed functions called brillhartIrreducible? :
--R   [1] D2 -> Boolean from BrillhartTests(D2) if D2 has UPOLYC(INT)
--R   [2] (D2,Boolean) -> Boolean from BrillhartTests(D2) if D2 has UPOLYC
--R            (INT)
--R
--RExamples of brillhartIrreducible? from BrillhartTests
--R
--E 239

--S 240 of 3320
)d op brillhartTrials
--R 
--R
--RThere are 2 unexposed functions called brillhartTrials :
--R   [1]  -> NonNegativeInteger from BrillhartTests(D2) if D2 has UPOLYC(
--R            INT)
--R   [2] NonNegativeInteger -> NonNegativeInteger from BrillhartTests(D2)
--R             if D2 has UPOLYC(INT)
--R
--RExamples of brillhartTrials from BrillhartTests
--R
--E 240

--S 241 of 3320
)d op bringDown
--R 
--R
--RThere are 2 unexposed functions called bringDown :
--R   [1] D2 -> Fraction(Integer) from FunctionSpaceReduce(D3,D2)
--R             if D3 has Join(OrderedSet,IntegralDomain,RetractableTo(
--R            Integer)) and D2 has FS(D3)
--R   [2] (D2,Kernel(D2)) -> SparseUnivariatePolynomial(Fraction(Integer))
--R             from FunctionSpaceReduce(D4,D2)
--R             if D2 has FS(D4) and D4 has Join(OrderedSet,IntegralDomain
--R            ,RetractableTo(Integer))
--R
--RExamples of bringDown from FunctionSpaceReduce
--R
--E 241

--S 242 of 3320
)d op bsolve
--R 
--R
--RThere is one unexposed function called bsolve :
--R   [1] (Matrix(D2),List(Fraction(Polynomial(D9))),NonNegativeInteger,
--R            String,Integer) -> Record(rgl: List(Record(eqzro: List(D2),neqzro
--R            : List(D2),wcond: List(Polynomial(D9)),bsoln: Record(partsol: 
--R            Vector(Fraction(Polynomial(D9))),basis: List(Vector(Fraction(
--R            Polynomial(D9))))))),rgsz: Integer)
--R             from ParametricLinearEquations(D9,D10,D1,D2)
--R             if D9 has Join(EuclideanDomain,CharacteristicZero) and D2
--R             has POLYCAT(D9,D1,D10) and D10 has Join(OrderedSet,
--R            ConvertibleTo(Symbol)) and D1 has OAMONS
--R
--RExamples of bsolve from ParametricLinearEquations
--R
--E 242

--S 243 of 3320
)d op btwFact
--R 
--R
--RThere is one unexposed function called btwFact :
--R   [1] (D2,Boolean,Set(NonNegativeInteger),NonNegativeInteger) -> 
--R            Record(contp: Integer,factors: List(Record(irr: D2,pow: Integer))
--R            )
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R
--RExamples of btwFact from GaloisGroupFactorizer
--R
--E 243

--S 244 of 3320
)d op bubbleSort!
--R 
--R
--RThere are 2 unexposed functions called bubbleSort! :
--R   [1] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)
--R             if D3 has TYPE and D1 has IndexedAggregate(Integer,D3)with
--R                 finiteAggregate
--R                 shallowlyMutable
--R   [2] D1 -> D1 from SortPackage(D2,D1)
--R             if D2 has ORDSET and D2 has TYPE and D1 has 
--R            IndexedAggregate(Integer,D2)with
--R                 finiteAggregate
--R                 shallowlyMutable
--R
--RExamples of bubbleSort! from SortPackage
--R
--E 244

--S 245 of 3320
)d op build
--R 
--R
--RThere is one unexposed function called build :
--R   [1] (D1,D2,D3) -> GeneralModulePolynomial(D4,D1,D2,D3,D5,D6)
--R             from GeneralModulePolynomial(D4,D1,D2,D3,D5,D6)
--R             if D4: LIST(SYMBOL) and D1 has COMRING and D3 has DIRPCAT(
--R            #(D4),NNI) and D5: ((Record(index: D2,exponent: D3),Record(
--R            index: D2,exponent: D3)) -> Boolean) and D2 has ORDSET and 
--R            D6 has POLYCAT(D1,D3,OVAR(D4))
--R
--RExamples of build from GeneralModulePolynomial
--R
--E 245

--S 246 of 3320
)d op BumInSepFFE
--R 
--R
--RThere is one unexposed function called BumInSepFFE :
--R   [1] Record(flg: Union("nil","sqfr","irred","prime"),fctr: D3,xpnt: 
--R            Integer) -> Record(flg: Union("nil","sqfr","irred","prime"),fctr
--R            : D3,xpnt: Integer)
--R             from UnivariatePolynomialSquareFree(D2,D3)
--R             if D3 has Join(UnivariatePolynomialCategory(D2),
--R            IntegralDomain)with
--R               gcd : (%,%) -> %and D2 has INTDOM
--R
--RExamples of BumInSepFFE from UnivariatePolynomialSquareFree
--R
--E 246

--S 247 of 3320
)d op bumprow
--R 
--R
--RThere is one unexposed function called bumprow :
--R   [1] (((D5,D5) -> Boolean),List(D5),List(List(D5))) -> Record(fs: 
--R            Boolean,sd: List(D5),td: List(List(D5)))
--R             from TableauxBumpers(D5) if D5 has ORDSET
--R
--RExamples of bumprow from TableauxBumpers
--R
--E 247

--S 248 of 3320
)d op bumptab
--R 
--R
--RThere is one unexposed function called bumptab :
--R   [1] (((D4,D4) -> Boolean),List(D4),List(List(List(D4)))) -> List(
--R            List(List(D4)))
--R             from TableauxBumpers(D4) if D4 has ORDSET
--R
--RExamples of bumptab from TableauxBumpers
--R
--E 248

--S 249 of 3320
)d op bumptab1
--R 
--R
--RThere is one unexposed function called bumptab1 :
--R   [1] (List(D3),List(List(List(D3)))) -> List(List(List(D3)))
--R             from TableauxBumpers(D3) if D3 has ORDSET
--R
--RExamples of bumptab1 from TableauxBumpers
--R
--E 249

--S 250 of 3320
)d op BY
--R 
--R
--RThere is one exposed function called BY :
--R   [1] (D,Integer) -> D from D if D has SEGCAT(D2) and D2 has TYPE
--R
--RExamples of BY from SegmentCategory
--R
--E 250

--S 251 of 3320
)d op c02aff
--R 
--R
--RThere is one exposed function called c02aff :
--R   [1] (Matrix(DoubleFloat),Integer,Boolean,Integer) -> Result
--R             from NagPolynomialRootsPackage
--R
--RExamples of c02aff from NagPolynomialRootsPackage
--R
--E 251

--S 252 of 3320
)d op c02agf
--R 
--R
--RThere is one exposed function called c02agf :
--R   [1] (Matrix(DoubleFloat),Integer,Boolean,Integer) -> Result
--R             from NagPolynomialRootsPackage
--R
--RExamples of c02agf from NagPolynomialRootsPackage
--R
--E 252

--S 253 of 3320
)d op c05adf
--R 
--R
--RThere is one exposed function called c05adf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Integer,Union(
--R            fn: FileName,fp: Asp1(F))) -> Result
--R             from NagRootFindingPackage
--R
--RExamples of c05adf from NagRootFindingPackage
--R
--E 253

--S 254 of 3320
)d op c05nbf
--R 
--R
--RThere is one exposed function called c05nbf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),DoubleFloat,Integer,Union(
--R            fn: FileName,fp: Asp6(FCN))) -> Result
--R             from NagRootFindingPackage
--R
--RExamples of c05nbf from NagRootFindingPackage
--R
--E 254

--S 255 of 3320
)d op c05pbf
--R 
--R
--RThere is one exposed function called c05pbf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),DoubleFloat,Integer
--R            ,Union(fn: FileName,fp: Asp35(FCN))) -> Result
--R             from NagRootFindingPackage
--R
--RExamples of c05pbf from NagRootFindingPackage
--R
--E 255

--S 256 of 3320
)d op c06eaf
--R 
--R
--RThere is one exposed function called c06eaf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06eaf from NagSeriesSummationPackage
--R
--E 256

--S 257 of 3320
)d op c06ebf
--R 
--R
--RThere is one exposed function called c06ebf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06ebf from NagSeriesSummationPackage
--R
--E 257

--S 258 of 3320
)d op c06ecf
--R 
--R
--RThere is one exposed function called c06ecf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer) -> 
--R            Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06ecf from NagSeriesSummationPackage
--R
--E 258

--S 259 of 3320
)d op c06ekf
--R 
--R
--RThere is one exposed function called c06ekf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer
--R            ) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06ekf from NagSeriesSummationPackage
--R
--E 259

--S 260 of 3320
)d op c06fpf
--R 
--R
--RThere is one exposed function called c06fpf :
--R   [1] (Integer,Integer,String,Matrix(DoubleFloat),Matrix(DoubleFloat),
--R            Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06fpf from NagSeriesSummationPackage
--R
--E 260

--S 261 of 3320
)d op c06fqf
--R 
--R
--RThere is one exposed function called c06fqf :
--R   [1] (Integer,Integer,String,Matrix(DoubleFloat),Matrix(DoubleFloat),
--R            Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06fqf from NagSeriesSummationPackage
--R
--E 261

--S 262 of 3320
)d op c06frf
--R 
--R
--RThere is one exposed function called c06frf :
--R   [1] (Integer,Integer,String,Matrix(DoubleFloat),Matrix(DoubleFloat),
--R            Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06frf from NagSeriesSummationPackage
--R
--E 262

--S 263 of 3320
)d op c06fuf
--R 
--R
--RThere is one exposed function called c06fuf :
--R   [1] (Integer,Integer,String,Matrix(DoubleFloat),Matrix(DoubleFloat),
--R            Matrix(DoubleFloat),Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06fuf from NagSeriesSummationPackage
--R
--E 263

--S 264 of 3320
)d op c06gbf
--R 
--R
--RThere is one exposed function called c06gbf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06gbf from NagSeriesSummationPackage
--R
--E 264

--S 265 of 3320
)d op c06gcf
--R 
--R
--RThere is one exposed function called c06gcf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06gcf from NagSeriesSummationPackage
--R
--E 265

--S 266 of 3320
)d op c06gqf
--R 
--R
--RThere is one exposed function called c06gqf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06gqf from NagSeriesSummationPackage
--R
--E 266

--S 267 of 3320
)d op c06gsf
--R 
--R
--RThere is one exposed function called c06gsf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagSeriesSummationPackage
--R
--RExamples of c06gsf from NagSeriesSummationPackage
--R
--E 267

--S 268 of 3320
)d op cache
--R 
--R
--RThere is one unexposed function called cache :
--R   [1]  -> List(D2) from SortedCache(D2) if D2 has CACHSET
--R
--RExamples of cache from SortedCache
--R
--E 268

--S 269 of 3320
)d op cAcos
--R 
--R
--RThere is one unexposed function called cAcos :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAcos from InnerSparseUnivariatePowerSeries
--R
--E 269

--S 270 of 3320
)d op cAcosh
--R 
--R
--RThere is one unexposed function called cAcosh :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAcosh from InnerSparseUnivariatePowerSeries
--R
--E 270

--S 271 of 3320
)d op cAcot
--R 
--R
--RThere is one unexposed function called cAcot :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAcot from InnerSparseUnivariatePowerSeries
--R
--E 271

--S 272 of 3320
)d op cAcoth
--R 
--R
--RThere is one unexposed function called cAcoth :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAcoth from InnerSparseUnivariatePowerSeries
--R
--E 272

--S 273 of 3320
)d op cAcsc
--R 
--R
--RThere is one unexposed function called cAcsc :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAcsc from InnerSparseUnivariatePowerSeries
--R
--E 273

--S 274 of 3320
)d op cAcsch
--R 
--R
--RThere is one unexposed function called cAcsch :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAcsch from InnerSparseUnivariatePowerSeries
--R
--E 274

--S 275 of 3320
)d op calcRanges
--R 
--R
--RThere is one unexposed function called calcRanges :
--R   [1] List(List(Point(DoubleFloat))) -> List(Segment(DoubleFloat))
--R             from PlotTools
--R
--RExamples of calcRanges from PlotTools
--R
--E 275

--S 276 of 3320
)d op call
--R 
--R
--RThere is one exposed function called call :
--R   [1] String -> FortranCode from FortranCode
--R
--RExamples of call from FortranCode
--R
--E 276

--S 277 of 3320
)d op canonicalIfCan
--R 
--R
--RThere is one exposed function called canonicalIfCan :
--R   [1] (D1,D2) -> Union(D1,"failed") from D
--R             if D has MAGCDOC(D1,D2) and D1 has TYPE and D2 has TYPE
--R         
--R
--RExamples of canonicalIfCan from ModularAlgebraicGcdOperations
--R
--E 277

--S 278 of 3320
)d op cap
--R 
--R
--RThere is one exposed function called cap :
--R   [1] (SymmetricPolynomial(Fraction(Integer)),SymmetricPolynomial(
--R            Fraction(Integer))) -> Fraction(Integer)
--R             from CycleIndicators
--R
--RExamples of cap from CycleIndicators
--R
--E 278

--S 279 of 3320
)d op car
--R 
--R
--RThere is one exposed function called car :
--R   [1] D -> D from D
--R             if D has SEXCAT(D1,D2,D3,D4,D5) and D1 has SETCAT and D2
--R             has SETCAT and D3 has SETCAT and D4 has SETCAT and D5 has 
--R            SETCAT
--R
--RExamples of car from SExpressionCategory
--R
--E 279

--S 280 of 3320
)d op cardinality
--R 
--R
--RThere is one exposed function called cardinality :
--R   [1] D -> NonNegativeInteger from D if D has FSAGG(D2) and D2 has 
--R            SETCAT
--R
--RExamples of cardinality from FiniteSetAggregate
--R
--E 280

--S 281 of 3320
)d op cartesian
--R 
--R
--RThere is one exposed function called cartesian :
--R   [1] Point(D2) -> Point(D2) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of cartesian from CoordinateSystems
--R
--E 281

--S 282 of 3320
)d op cAsec
--R 
--R
--RThere is one unexposed function called cAsec :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAsec from InnerSparseUnivariatePowerSeries
--R
--E 282

--S 283 of 3320
)d op cAsech
--R 
--R
--RThere is one unexposed function called cAsech :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAsech from InnerSparseUnivariatePowerSeries
--R
--E 283

--S 284 of 3320
)d op cAsin
--R 
--R
--RThere is one unexposed function called cAsin :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAsin from InnerSparseUnivariatePowerSeries
--R
--E 284

--S 285 of 3320
)d op cAsinh
--R 
--R
--RThere is one unexposed function called cAsinh :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAsinh from InnerSparseUnivariatePowerSeries
--R
--E 285

--S 286 of 3320
)d op cAtan
--R 
--R
--RThere is one unexposed function called cAtan :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAtan from InnerSparseUnivariatePowerSeries
--R
--E 286

--S 287 of 3320
)d op cAtanh
--R 
--R
--RThere is one unexposed function called cAtanh :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cAtanh from InnerSparseUnivariatePowerSeries
--R
--E 287

--S 288 of 3320
)d op cCos
--R 
--R
--RThere is one unexposed function called cCos :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cCos from InnerSparseUnivariatePowerSeries
--R
--E 288

--S 289 of 3320
)d op cCosh
--R 
--R
--RThere is one unexposed function called cCosh :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cCosh from InnerSparseUnivariatePowerSeries
--R
--E 289

--S 290 of 3320
)d op cCot
--R 
--R
--RThere is one unexposed function called cCot :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cCot from InnerSparseUnivariatePowerSeries
--R
--E 290

--S 291 of 3320
)d op cCoth
--R 
--R
--RThere is one unexposed function called cCoth :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cCoth from InnerSparseUnivariatePowerSeries
--R
--E 291

--S 292 of 3320
)d op cCsc
--R 
--R
--RThere is one unexposed function called cCsc :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cCsc from InnerSparseUnivariatePowerSeries
--R
--E 292

--S 293 of 3320
)d op cCsch
--R 
--R
--RThere is one unexposed function called cCsch :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cCsch from InnerSparseUnivariatePowerSeries
--R
--E 293

--S 294 of 3320
)d op cdr
--R 
--R
--RThere is one exposed function called cdr :
--R   [1] D -> D from D
--R             if D has SEXCAT(D1,D2,D3,D4,D5) and D1 has SETCAT and D2
--R             has SETCAT and D3 has SETCAT and D4 has SETCAT and D5 has 
--R            SETCAT
--R
--RExamples of cdr from SExpressionCategory
--R
--E 294

--S 295 of 3320
)d op ceiling
--R 
--R
--RThere are 2 exposed functions called ceiling :
--R   [1] D -> D1 from D if D has QFCAT(D1) and D1 has INTDOM and D1 has 
--R            INS
--R   [2] D -> D from D if D has RNS
--R
--RExamples of ceiling from QuotientFieldCategory
--R
--R
--RExamples of ceiling from RealNumberSystem
--R
--E 295

--S 296 of 3320
)d op center
--R 
--R
--RThere are 3 exposed functions called center :
--R   [1] (String,Integer,String) -> String from DisplayPackage
--R   [2] (List(String),Integer,String) -> List(String) from 
--R            DisplayPackage
--R   [3] D -> D1 from D if D has UPSCAT(D1,D2) and D2 has OAMON and D1
--R             has RING
--R
--RThere are 2 unexposed functions called center :
--R   [1] OutputForm -> OutputForm from OutputForm
--R   [2] (OutputForm,Integer) -> OutputForm from OutputForm
--R
--RExamples of center from DisplayPackage
--R
--R
--RExamples of center from OutputForm
--R
--R
--RExamples of center from UnivariatePowerSeriesCategory
--R
--E 296

--S 297 of 3320
)d op central?
--R 
--R
--RThere is one exposed function called central? :
--R   [1] (DoubleFloat,DoubleFloat,List(Expression(DoubleFloat))) -> 
--R            Boolean
--R             from d03AgentsPackage
--R
--RExamples of central? from d03AgentsPackage
--R
--E 297

--S 298 of 3320
)d op certainlySubVariety?
--R 
--R
--RThere is one unexposed function called certainlySubVariety? :
--R   [1] (List(D6),List(D6)) -> Boolean
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of certainlySubVariety? from PolynomialSetUtilitiesPackage
--R
--E 298

--S 299 of 3320
)d op cExp
--R 
--R
--RThere is one unexposed function called cExp :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cExp from InnerSparseUnivariatePowerSeries
--R
--E 299

--S 300 of 3320
)d op cfirst
--R 
--R
--RThere is one unexposed function called cfirst :
--R   [1] NonNegativeInteger -> (Stream(Polynomial(D3)) -> Stream(
--R            Polynomial(D3)))
--R             from WeierstrassPreparation(D3) if D3 has FIELD
--R
--RExamples of cfirst from WeierstrassPreparation
--R
--E 300

--S 301 of 3320
)d op chainSubResultants
--R 
--R
--RThere is one unexposed function called chainSubResultants :
--R   [1] (D2,D2) -> List(D2) from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of chainSubResultants from PseudoRemainderSequence
--R
--E 301

--S 302 of 3320
)d op changeBase
--R 
--R
--RThere is one exposed function called changeBase :
--R   [1] (Integer,Integer,PositiveInteger) -> MachineFloat from 
--R            MachineFloat
--R
--RThere is one unexposed function called changeBase :
--R   [1] (Matrix(D4),Matrix(D4),Automorphism(D4),(D4 -> D4)) -> Matrix(D4
--R            )
--R             from PseudoLinearNormalForm(D4) if D4 has FIELD
--R
--RExamples of changeBase from MachineFloat
--R
--R
--RExamples of changeBase from PseudoLinearNormalForm
--R
--E 302

--S 303 of 3320
)d op changeMeasure
--R 
--R
--RThere is one exposed function called changeMeasure :
--R   [1] (RoutinesTable,Symbol,Float) -> RoutinesTable from RoutinesTable
--R            
--R
--RExamples of changeMeasure from RoutinesTable
--R
--E 303

--S 304 of 3320
)d op changeName
--R 
--R
--RThere is one exposed function called changeName :
--R   [1] (Symbol,Symbol,Result) -> Result from d01AgentsPackage
--R
--RExamples of changeName from d01AgentsPackage
--R
--E 304

--S 305 of 3320
)d op changeNameToObjf
--R 
--R
--RThere is one exposed function called changeNameToObjf :
--R   [1] (Symbol,Result) -> Result from e04AgentsPackage
--R
--RExamples of changeNameToObjf from e04AgentsPackage
--R
--E 305

--S 306 of 3320
)d op changeThreshhold
--R 
--R
--RThere is one exposed function called changeThreshhold :
--R   [1] (RoutinesTable,Symbol,Float) -> RoutinesTable from RoutinesTable
--R            
--R
--RExamples of changeThreshhold from RoutinesTable
--R
--E 306

--S 307 of 3320
)d op changeVar
--R 
--R
--RThere are 2 unexposed functions called changeVar :
--R   [1] (D1,D2) -> D1 from PrimitiveRatRicDE(D3,D2,D1,D4)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D2 has UPOLYC(D3) and D1 has 
--R            LODOCAT(D2) and D4 has LODOCAT(FRAC(D2))
--R   [2] (D1,Fraction(D4)) -> D1 from PrimitiveRatRicDE(D3,D4,D1,D5)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D4 has UPOLYC(D3) and D1 has 
--R            LODOCAT(D4) and D5 has LODOCAT(FRAC(D4))
--R
--RExamples of changeVar from PrimitiveRatRicDE
--R
--E 307

--S 308 of 3320
)d op changeWeightLevel
--R 
--R
--RThere are 2 unexposed functions called changeWeightLevel :
--R   [1] NonNegativeInteger -> Void from OrdinaryWeightedPolynomials(D3,
--R            D4,D5,D6)
--R             if D3 has RING and D4: LIST(SYMBOL) and D5: LIST(NNI) and 
--R            D6: NNI
--R   [2] NonNegativeInteger -> Void from WeightedPolynomials(D4,D5,D6,D7,
--R            D8,D9,D1)
--R             if D4 has RING and D5 has ORDSET and D6 has OAMONS and D8
--R            : LIST(D5) and D7 has POLYCAT(D4,D6,D5) and D9: LIST(NNI) 
--R            and D1: NNI
--R
--RExamples of changeWeightLevel from OrdinaryWeightedPolynomials
--R
--R
--RExamples of changeWeightLevel from WeightedPolynomials
--R
--E 308

--S 309 of 3320 done
)d op char
--R 
--R
--RThere are 2 exposed functions called char :
--R   [1] String -> Character from Character
--R   [2] Integer -> Character from Character
--R
--RExamples of char from Character
--R
--R[char c for c in ["a","A","X","8","+"]]
--R
--R[char c for c in [97,65,88,56,43]]
--R
--E 309

--S 310 of 3320
)d op character?
--R 
--R
--RThere is one exposed function called character? :
--R   [1] FortranScalarType -> Boolean from FortranScalarType
--R
--RExamples of character? from FortranScalarType
--R
--E 310

--S 311 of 3320
)d op characteristic
--R 
--R
--RThere are 2 exposed functions called characteristic :
--R   [1]  -> NonNegativeInteger from D if D has NASRING
--R   [2]  -> NonNegativeInteger from D if D has RING
--R
--RThere are 9 unexposed functions called characteristic :
--R   [1]  -> NonNegativeInteger from ComplexCategory&(D2,D3)
--R             if D3 has COMRING and D2 has COMPCAT(D3)
--R   [2]  -> NonNegativeInteger from DirectProductCategory&(D2,D3,D4)
--R             if D3: NNI and D4 has TYPE and D2 has DIRPCAT(D3,D4)
--R   [3]  -> NonNegativeInteger from FunctionSpace&(D2,D3)
--R             if D3 has ORDSET and D2 has FS(D3)
--R   [4]  -> NonNegativeInteger from IntegerNumberSystem&(D2) if D2 has 
--R            INS
--R   [5]  -> NonNegativeInteger from OctonionCategory&(D2,D3)
--R             if D3 has COMRING and D2 has OC(D3)
--R   [6]  -> NonNegativeInteger from QuotientFieldCategory&(D2,D3)
--R             if D3 has INTDOM and D2 has QFCAT(D3)
--R   [7]  -> NonNegativeInteger from QuaternionCategory&(D2,D3)
--R             if D3 has COMRING and D2 has QUATCAT(D3)
--R   [8]  -> NonNegativeInteger from RealClosedField&(D2) if D2 has 
--R            RCFIELD
--R   [9]  -> NonNegativeInteger from RealNumberSystem&(D2) if D2 has RNS
--R            
--R
--RExamples of characteristic from ComplexCategory&
--R
--R
--RExamples of characteristic from DirectProductCategory&
--R
--R
--RExamples of characteristic from FunctionSpace&
--R
--R
--RExamples of characteristic from IntegerNumberSystem&
--R
--R
--RExamples of characteristic from NonAssociativeRing
--R
--R
--RExamples of characteristic from OctonionCategory&
--R
--R
--RExamples of characteristic from QuotientFieldCategory&
--R
--R
--RExamples of characteristic from QuaternionCategory&
--R
--R
--RExamples of characteristic from RealClosedField&
--R
--R
--RExamples of characteristic from Ring
--R
--R
--RExamples of characteristic from RealNumberSystem&
--R
--E 311

--S 312 of 3320
)d op characteristicPolynomial
--R 
--R
--RThere are 8 exposed functions called characteristicPolynomial :
--R   [1] (Matrix(D1),D1) -> D1 from CharacteristicPolynomialPackage(D1)
--R             if D1 has COMRING
--R   [2] (Matrix(Fraction(Polynomial(D4))),Symbol) -> Polynomial(D4)
--R             from EigenPackage(D4) if D4 has GCDDOM
--R   [3] Matrix(Fraction(Polynomial(D3))) -> Polynomial(D3) from 
--R            EigenPackage(D3)
--R             if D3 has GCDDOM
--R   [4] D -> D1 from D
--R             if D has FINRALG(D2,D1) and D2 has COMRING and D1 has 
--R            UPOLYC(D2)
--R   [5] Matrix(Complex(Fraction(Integer))) -> Polynomial(Complex(
--R            Fraction(Integer)))
--R             from NumericComplexEigenPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R   [6] (Matrix(Complex(Fraction(Integer))),Symbol) -> Polynomial(
--R            Complex(Fraction(Integer)))
--R             from NumericComplexEigenPackage(D4) if D4 has Join(Field,
--R            OrderedRing)
--R   [7] Matrix(Fraction(Integer)) -> Polynomial(Fraction(Integer))
--R             from NumericRealEigenPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R   [8] (Matrix(Fraction(Integer)),Symbol) -> Polynomial(Fraction(
--R            Integer))
--R             from NumericRealEigenPackage(D4) if D4 has Join(Field,
--R            OrderedRing)
--R
--RThere is one unexposed function called characteristicPolynomial :
--R   [1] D2 -> D1 from CharacteristicPolynomialInMonogenicalAlgebra(D3,D1
--R            ,D2)
--R             if D3 has COMRING and D1 has UPOLYC(D3) and D2 has MONOGEN
--R            (D3,D1)
--R
--RExamples of characteristicPolynomial from CharacteristicPolynomialPackage
--R
--R
--RExamples of characteristicPolynomial from CharacteristicPolynomialInMonogenicalAlgebra
--R
--R
--RExamples of characteristicPolynomial from EigenPackage
--R
--R
--RExamples of characteristicPolynomial from FiniteRankAlgebra
--R
--R
--RExamples of characteristicPolynomial from NumericComplexEigenPackage
--R
--R
--RExamples of characteristicPolynomial from NumericRealEigenPackage
--R
--E 312

--S 313 of 3320
)d op characteristicSerie
--R 
--R
--RThere are 2 exposed functions called characteristicSerie :
--R   [1] List(D6) -> List(WuWenTsunTriangularSet(D3,D4,D5,D6))
--R             from WuWenTsunTriangularSet(D3,D4,D5,D6)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [2] (List(D8),((D8,D8) -> Boolean),((D8,D8) -> D8)) -> List(
--R            WuWenTsunTriangularSet(D5,D6,D7,D8))
--R             from WuWenTsunTriangularSet(D5,D6,D7,D8)
--R             if D8 has RPOLCAT(D5,D6,D7) and D5 has INTDOM and D6 has 
--R            OAMONS and D7 has ORDSET
--R
--RExamples of characteristicSerie from WuWenTsunTriangularSet
--R
--E 313

--S 314 of 3320
)d op characteristicSet
--R 
--R
--RThere are 2 exposed functions called characteristicSet :
--R   [1] List(D5) -> Union(WuWenTsunTriangularSet(D2,D3,D4,D5),"failed")
--R             from WuWenTsunTriangularSet(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [2] (List(D7),((D7,D7) -> Boolean),((D7,D7) -> D7)) -> Union(
--R            WuWenTsunTriangularSet(D4,D5,D6,D7),"failed")
--R             from WuWenTsunTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of characteristicSet from WuWenTsunTriangularSet
--R
--E 314

--S 315 of 3320
)d op charClass
--R 
--R
--RThere are 2 exposed functions called charClass :
--R   [1] List(Character) -> CharacterClass from CharacterClass
--R   [2] String -> CharacterClass from CharacterClass
--R
--RExamples of charClass from CharacterClass
--R
--E 315

--S 316 of 3320
)d op charpol
--R 
--R
--RThere is one unexposed function called charpol :
--R   [1] Matrix(D3) -> SparseUnivariatePolynomial(D3)
--R             from InnerNumericEigenPackage(D3,D4,D5)
--R             if D3 has FIELD and D4 has FIELD and D5 has Join(Field,
--R            OrderedRing)
--R
--RExamples of charpol from InnerNumericEigenPackage
--R
--E 316

--S 317 of 3320
)d op chartCoord
--R 
--R
--RThere is one exposed function called chartCoord :
--R   [1] D -> Integer from D if D has BLMETCT
--R
--RExamples of chartCoord from BlowUpMethodCategory
--R
--E 317

--S 318 of 3320
)d op charthRoot
--R 
--R
--RThere are 3 exposed functions called charthRoot :
--R   [1] D -> Union(D,"failed") from D if D has CHARNZ
--R   [2] D -> D from D if D has FFIELDC
--R   [3] D -> Union(D,"failed") from D if D has CHARNZ and D has PFECAT
--R         
--R
--RExamples of charthRoot from FiniteFieldCategory
--R
--R
--RExamples of charthRoot from CharacteristicNonZero
--R
--E 318

--S 319 of 3320
)d op chartV
--R 
--R
--RThere is one exposed function called chartV :
--R   [1] D -> D2 from D
--R             if D has INFCLCT(D3,D4,D5,D6,D7,D8,D9,D1,D2) and D3 has 
--R            FIELD and D5 has POLYCAT(D3,D6,OVAR(D4)) and D6 has DIRPCAT
--R            (#(D4),NNI) and D7 has PRSPCAT(D3) and D8 has LOCPOWC(D3) 
--R            and D9 has PLACESC(D3,D8) and D2 has BLMETCT
--R
--RExamples of chartV from InfinitlyClosePointCategory
--R
--E 319

--S 320 of 3320
)d op chebyshevT
--R 
--R
--RThere is one exposed function called chebyshevT :
--R   [1] (NonNegativeInteger,D1) -> D1 from OrthogonalPolynomialFunctions
--R            (D1)
--R             if D1 has COMRING
--R
--RThere is one unexposed function called chebyshevT :
--R   [1] Integer -> SparseUnivariatePolynomial(Integer)
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of chebyshevT from OrthogonalPolynomialFunctions
--R
--R
--RExamples of chebyshevT from PolynomialNumberTheoryFunctions
--R
--E 320

--S 321 of 3320
)d op chebyshevU
--R 
--R
--RThere is one exposed function called chebyshevU :
--R   [1] (NonNegativeInteger,D1) -> D1 from OrthogonalPolynomialFunctions
--R            (D1)
--R             if D1 has COMRING
--R
--RThere is one unexposed function called chebyshevU :
--R   [1] Integer -> SparseUnivariatePolynomial(Integer)
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of chebyshevU from OrthogonalPolynomialFunctions
--R
--R
--RExamples of chebyshevU from PolynomialNumberTheoryFunctions
--R
--E 321

--S 322 of 3320
)d op check
--R 
--R
--RThere are 2 exposed functions called check :
--R   [1] Union(skip,MonteCarlo,deterministic) -> GuessOption from 
--R            GuessOption
--R   [2] D -> D from D if D has SPACEC(D1) and D1 has RING
--R
--RThere are 2 unexposed functions called check :
--R   [1] List(GuessOption) -> Union(skip,MonteCarlo,deterministic)
--R             from GuessOptionFunctions0
--R   [2] (List(Record(factor: SparseUnivariatePolynomial(D5),exponent: 
--R            Integer)),List(Record(factor: SparseUnivariatePolynomial(D5),
--R            exponent: Integer))) -> Boolean
--R             from MultivariateSquareFree(D3,D4,D5,D6)
--R             if D5 has EUCDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D6 has POLYCAT(D5,D3,D4)
--R
--RExamples of check from GuessOptionFunctions0
--R
--R
--RExamples of check from GuessOption
--R
--R
--RExamples of check from MultivariateSquareFree
--R
--R
--RExamples of check from ThreeSpaceCategory
--R
--E 322

--S 323 of 3320
)d op checkExtraValues
--R 
--R
--RThere is one exposed function called checkExtraValues :
--R   [1] Boolean -> GuessOption from GuessOption
--R
--RThere is one unexposed function called checkExtraValues :
--R   [1] List(GuessOption) -> Boolean from GuessOptionFunctions0
--R
--RExamples of checkExtraValues from GuessOptionFunctions0
--R
--R
--RExamples of checkExtraValues from GuessOption
--R
--E 323

--S 324 of 3320
)d op checkForZero
--R 
--R
--RThere are 2 unexposed functions called checkForZero :
--R   [1] (Polynomial(D5),Symbol,OrderedCompletion(D6),OrderedCompletion(
--R            D6),Boolean) -> Union(Boolean,"failed")
--R             from DefiniteIntegrationTools(D5,D6)
--R             if D5 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D6 has Join(
--R            TranscendentalFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D5))
--R   [2] (SparseUnivariatePolynomial(D5),OrderedCompletion(D5),
--R            OrderedCompletion(D5),Boolean) -> Union(Boolean,"failed")
--R             from DefiniteIntegrationTools(D4,D5)
--R             if D5 has Join(TranscendentalFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D4)) and D4 has Join(
--R            GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R
--RExamples of checkForZero from DefiniteIntegrationTools
--R
--E 324

--S 325 of 3320
)d op checkOptions
--R 
--R
--RThere is one unexposed function called checkOptions :
--R   [1] List(GuessOption) -> Void from GuessOptionFunctions0
--R
--RExamples of checkOptions from GuessOptionFunctions0
--R
--E 325

--S 326 of 3320
)d op checkPrecision
--R 
--R
--RThere is one exposed function called checkPrecision :
--R   [1]  -> Boolean from NAGLinkSupportPackage
--R
--RExamples of checkPrecision from NAGLinkSupportPackage
--R
--E 326

--S 327 of 3320
)d op checkRur
--R 
--R
--RThere is one unexposed function called checkRur :
--R   [1] (D2,List(D2)) -> Boolean
--R             from InternalRationalUnivariateRepresentationPackage(D4,D5
--R            ,D6,D7,D2)
--R             if D2 has SFRTCAT(D4,D5,D6,D7) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has OAMONS and 
--R            D6 has ORDSET and D7 has RPOLCAT(D4,D5,D6)
--R
--RExamples of checkRur from InternalRationalUnivariateRepresentationPackage
--R
--E 327

--S 328 of 3320
)d op child
--R 
--R
--RThere is one unexposed function called child :
--R   [1] (SubSpace(D2,D3),NonNegativeInteger) -> SubSpace(D2,D3)
--R             from SubSpace(D2,D3) if D2: PI and D3 has RING
--R
--RExamples of child from SubSpace
--R
--E 328

--S 329 of 3320
)d op child?
--R 
--R
--RThere is one exposed function called child? :
--R   [1] (D,D) -> Boolean from D if D has RCAGG(D2) and D2 has TYPE and 
--R            D2 has SETCAT
--R
--RExamples of child? from RecursiveAggregate
--R
--E 329

--S 330 of 3320
)d op children
--R 
--R
--RThere is one exposed function called children :
--R   [1] D -> List(D) from D if D2 has TYPE and D has RCAGG(D2)
--R
--RThere is one unexposed function called children :
--R   [1] SubSpace(D2,D3) -> List(SubSpace(D2,D3)) from SubSpace(D2,D3)
--R             if D2: PI and D3 has RING
--R
--RExamples of children from RecursiveAggregate
--R
--R
--RExamples of children from SubSpace
--R
--E 330

--S 331 of 3320
)d op chineseRemainder
--R 
--R
--RThere are 3 exposed functions called chineseRemainder :
--R   [1] (List(D1),List(D1)) -> D1 from CRApackage(D1) if D1 has EUCDOM
--R         
--R   [2] (List(List(D3)),List(D3)) -> List(D3) from CRApackage(D3) if D3
--R             has EUCDOM
--R   [3] (Integer,Integer,Integer,Integer) -> Integer
--R             from IntegerNumberTheoryFunctions
--R
--RThere is one unexposed function called chineseRemainder :
--R   [1] (List(D7),List(Record(basis: Matrix(D6),basisDen: D6,basisInv: 
--R            Matrix(D6))),NonNegativeInteger) -> Record(basis: Matrix(D6),
--R            basisDen: D6,basisInv: Matrix(D6))
--R             from ChineseRemainderToolsForIntegralBases(D5,D6,D7)
--R             if D7 has UPOLYC(D6) and D6 has UPOLYC(D5) and D5 has 
--R            FFIELDC
--R
--RExamples of chineseRemainder from CRApackage
--R
--R
--RExamples of chineseRemainder from ChineseRemainderToolsForIntegralBases
--R
--R
--RExamples of chineseRemainder from IntegerNumberTheoryFunctions
--R
--E 331

--S 332 of 3320
)d op chiSquare
--R 
--R
--RThere is one unexposed function called chiSquare :
--R   [1] NonNegativeInteger -> (() -> Float) from 
--R            RandomFloatDistributions
--R
--RExamples of chiSquare from RandomFloatDistributions
--R
--E 332

--S 333 of 3320
)d op chiSquare1
--R 
--R
--RThere is one unexposed function called chiSquare1 :
--R   [1] NonNegativeInteger -> Float from RandomFloatDistributions
--R
--RExamples of chiSquare1 from RandomFloatDistributions
--R
--E 333

--S 334 of 3320
)d op choosemon
--R 
--R
--RThere is one unexposed function called choosemon :
--R   [1] (DistributedMultivariatePolynomial(D3,D4),List(
--R            DistributedMultivariatePolynomial(D3,D4))) -> 
--R            DistributedMultivariatePolynomial(D3,D4)
--R             from LinGroebnerPackage(D3,D4) if D3: LIST(SYMBOL) and D4
--R             has GCDDOM
--R
--RExamples of choosemon from LinGroebnerPackage
--R
--E 334

--S 335 of 3320
)d op chvar
--R 
--R
--RThere is one unexposed function called chvar :
--R   [1] (D2,D2) -> Record(func: D2,poly: D2,c1: Fraction(D4),c2: 
--R            Fraction(D4),deg: NonNegativeInteger)
--R             from ChangeOfVariable(D3,D4,D2)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D2 has UPOLYC(FRAC
--R            (D4))
--R
--RExamples of chvar from ChangeOfVariable
--R
--E 335

--S 336 of 3320
)d op Ci
--R 
--R
--RThere is one exposed function called Ci :
--R   [1] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called Ci :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of Ci from LiouvillianFunctionCategory
--R
--R
--RExamples of Ci from LiouvillianFunction
--R
--E 336

--S 337 of 3320
)d op classNumber
--R 
--R
--RThere are 3 exposed functions called classNumber :
--R   [1]  -> Integer
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FINITE and D6 has FIELD and D7: LIST(SYMBOL) and
--R            D8 has POLYCAT(D6,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI
--R            ) and D10 has PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12
--R             has PLACESC(D6,D11) and D1 has DIVCAT(D12) and D2 has 
--R            INFCLCT(D6,D7,D8,D9,D10,D11,D12,D1,D4) and D4 has BLMETCT 
--R            and D3 has DSTRCAT(D2)
--R   [2]  -> Integer
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if PseudoAlgebraicClosureOfFiniteField(D2) has FINITE and 
--R            D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R   [3]  -> Integer from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FINITE and D2 has FIELD and D3: LIST(SYMBOL) and
--R            D4 has BLMETCT
--R
--RExamples of classNumber from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of classNumber from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of classNumber from PackageForAlgebraicFunctionField
--R
--E 337

--S 338 of 3320
)d op clearCache
--R 
--R
--RThere is one unexposed function called clearCache :
--R   [1]  -> Void from SortedCache(D2) if D2 has CACHSET
--R
--RExamples of clearCache from SortedCache
--R
--E 338

--S 339 of 3320
)d op clearDenominator
--R 
--R
--RThere are 3 exposed functions called clearDenominator :
--R   [1] D1 -> D1 from CommonDenominator(D2,D3,D1)
--R             if D2 has INTDOM and D3 has QFCAT(D2) and D1 has FLAGG(D3)
--R            
--R   [2] Matrix(D4) -> Matrix(D3) from MatrixCommonDenominator(D3,D4)
--R             if D4 has QFCAT(D3) and D3 has INTDOM
--R   [3] D1 -> D1 from UnivariatePolynomialCommonDenominator(D2,D3,D1)
--R             if D2 has INTDOM and D3 has QFCAT(D2) and D1 has UPOLYC(D3
--R            )
--R
--RThere is one unexposed function called clearDenominator :
--R   [1] D2 -> D1 from InnerCommonDenominator(D3,D4,D1,D2)
--R             if D3 has INTDOM and D4 has QFCAT(D3) and D1 has FLAGG(D3)
--R            and D2 has FLAGG(D4)
--R
--RExamples of clearDenominator from CommonDenominator
--R
--R
--RExamples of clearDenominator from InnerCommonDenominator
--R
--R
--RExamples of clearDenominator from MatrixCommonDenominator
--R
--R
--RExamples of clearDenominator from UnivariatePolynomialCommonDenominator
--R
--E 339

--S 340 of 3320
)d op clearFortranOutputStack
--R 
--R
--RThere is one exposed function called clearFortranOutputStack :
--R   [1]  -> Stack(String) from FortranOutputStackPackage
--R
--RExamples of clearFortranOutputStack from FortranOutputStackPackage
--R
--E 340

--S 341 of 3320
)d op clearTable!
--R 
--R
--RThere is one unexposed function called clearTable! :
--R   [1]  -> Void from TabulatedComputationPackage(D2,D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of clearTable! from TabulatedComputationPackage
--R
--E 341

--S 342 of 3320
)d op clearTheFTable
--R 
--R
--RThere is one exposed function called clearTheFTable :
--R   [1]  -> Void from IntegrationFunctionsTable
--R
--RExamples of clearTheFTable from IntegrationFunctionsTable
--R
--E 342

--S 343 of 3320
)d op clearTheIFTable
--R 
--R
--RThere is one exposed function called clearTheIFTable :
--R   [1]  -> Void from ODEIntensityFunctionsTable
--R
--RExamples of clearTheIFTable from ODEIntensityFunctionsTable
--R
--E 343

--S 344 of 3320
)d op clearTheSymbolTable
--R 
--R
--RThere are 2 exposed functions called clearTheSymbolTable :
--R   [1] Symbol -> Void from TheSymbolTable
--R   [2]  -> Void from TheSymbolTable
--R
--RExamples of clearTheSymbolTable from TheSymbolTable
--R
--E 344

--S 345 of 3320
)d op clikeUniv
--R 
--R
--RThere is one unexposed function called clikeUniv :
--R   [1] Symbol -> (Polynomial(D3) -> SparseUnivariatePolynomial(
--R            Polynomial(D3)))
--R             from WeierstrassPreparation(D3) if D3 has FIELD
--R
--RExamples of clikeUniv from WeierstrassPreparation
--R
--E 345

--S 346 of 3320
)d op clip
--R 
--R
--RThere are 2 exposed functions called clip :
--R   [1] List(Segment(Float)) -> DrawOption from DrawOption
--R   [2] Boolean -> DrawOption from DrawOption
--R
--RThere are 4 unexposed functions called clip :
--R   [1] Plot -> Record(brans: List(List(Point(DoubleFloat))),xValues: 
--R            Segment(DoubleFloat),yValues: Segment(DoubleFloat))
--R             from TwoDimensionalPlotClipping
--R   [2] (Plot,Fraction(Integer),Fraction(Integer)) -> Record(brans: List
--R            (List(Point(DoubleFloat))),xValues: Segment(DoubleFloat),yValues
--R            : Segment(DoubleFloat))
--R             from TwoDimensionalPlotClipping
--R   [3] List(Point(DoubleFloat)) -> Record(brans: List(List(Point(
--R            DoubleFloat))),xValues: Segment(DoubleFloat),yValues: Segment(
--R            DoubleFloat))
--R             from TwoDimensionalPlotClipping
--R   [4] List(List(Point(DoubleFloat))) -> Record(brans: List(List(Point(
--R            DoubleFloat))),xValues: Segment(DoubleFloat),yValues: Segment(
--R            DoubleFloat))
--R             from TwoDimensionalPlotClipping
--R
--RExamples of clip from TwoDimensionalPlotClipping
--R
--R
--RExamples of clip from DrawOption
--R
--E 346

--S 347 of 3320
)d op clipBoolean
--R 
--R
--RThere is one unexposed function called clipBoolean :
--R   [1] (List(DrawOption),Boolean) -> Boolean from DrawOptionFunctions0
--R            
--R
--RExamples of clipBoolean from DrawOptionFunctions0
--R
--E 347

--S 348 of 3320
)d op clipParametric
--R 
--R
--RThere are 2 unexposed functions called clipParametric :
--R   [1] Plot -> Record(brans: List(List(Point(DoubleFloat))),xValues: 
--R            Segment(DoubleFloat),yValues: Segment(DoubleFloat))
--R             from TwoDimensionalPlotClipping
--R   [2] (Plot,Fraction(Integer),Fraction(Integer)) -> Record(brans: List
--R            (List(Point(DoubleFloat))),xValues: Segment(DoubleFloat),yValues
--R            : Segment(DoubleFloat))
--R             from TwoDimensionalPlotClipping
--R
--RExamples of clipParametric from TwoDimensionalPlotClipping
--R
--E 348

--S 349 of 3320
)d op clipPointsDefault
--R 
--R
--RThere are 2 exposed functions called clipPointsDefault :
--R   [1]  -> Boolean from GraphicsDefaults
--R   [2] Boolean -> Boolean from GraphicsDefaults
--R
--RExamples of clipPointsDefault from GraphicsDefaults
--R
--E 349

--S 350 of 3320
)d op clipSurface
--R 
--R
--RThere is one exposed function called clipSurface :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of clipSurface from ThreeDimensionalViewport
--R
--E 350

--S 351 of 3320
)d op clipWithRanges
--R 
--R
--RThere is one unexposed function called clipWithRanges :
--R   [1] (List(List(Point(DoubleFloat))),DoubleFloat,DoubleFloat,
--R            DoubleFloat,DoubleFloat) -> Record(brans: List(List(Point(
--R            DoubleFloat))),xValues: Segment(DoubleFloat),yValues: Segment(
--R            DoubleFloat))
--R             from TwoDimensionalPlotClipping
--R
--RExamples of clipWithRanges from TwoDimensionalPlotClipping
--R
--E 351

--S 352 of 3320
)d op cLog
--R 
--R
--RThere is one unexposed function called cLog :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cLog from InnerSparseUnivariatePowerSeries
--R
--E 352

--S 353 of 3320
)d op close
--R 
--R
--RThere is one exposed function called close :
--R   [1] ThreeDimensionalViewport -> Void from ThreeDimensionalViewport
--R         
--R
--RThere are 2 unexposed functions called close :
--R   [1] (SubSpaceComponentProperty,Boolean) -> Boolean
--R             from SubSpaceComponentProperty
--R   [2] TwoDimensionalViewport -> Void from TwoDimensionalViewport
--R
--RExamples of close from SubSpaceComponentProperty
--R
--R
--RExamples of close from TwoDimensionalViewport
--R
--R
--RExamples of close from ThreeDimensionalViewport
--R
--E 353

--S 354 of 3320
)d op close!
--R 
--R
--RThere are 2 exposed functions called close! :
--R   [1] D -> D from D if D has FILECAT(D1,D2) and D1 has SETCAT and D2
--R             has SETCAT
--R   [2] Library -> Library from Library
--R
--RExamples of close! from FileCategory
--R
--R
--RExamples of close! from Library
--R
--E 354

--S 355 of 3320
)d op closeComponent
--R 
--R
--RThere is one unexposed function called closeComponent :
--R   [1] (SubSpace(D3,D4),List(NonNegativeInteger),Boolean) -> SubSpace(
--R            D3,D4)
--R             from SubSpace(D3,D4) if D3: PI and D4 has RING
--R
--RExamples of closeComponent from SubSpace
--R
--E 355

--S 356 of 3320
)d op closed?
--R 
--R
--RThere are 2 unexposed functions called closed? :
--R   [1] SubSpaceComponentProperty -> Boolean from 
--R            SubSpaceComponentProperty
--R   [2] TubePlot(D2) -> Boolean from TubePlot(D2) if D2 has PSCURVE
--R
--RExamples of closed? from SubSpaceComponentProperty
--R
--R
--RExamples of closed? from TubePlot
--R
--E 356

--S 357 of 3320
)d op closedCurve
--R 
--R
--RThere are 4 exposed functions called closedCurve :
--R   [1] D -> List(Point(D2)) from D if D has SPACEC(D2) and D2 has RING
--R            
--R   [2] List(Point(D2)) -> D from D if D2 has RING and D has SPACEC(D2)
--R            
--R   [3] (D,List(List(D2))) -> D from D if D has SPACEC(D2) and D2 has 
--R            RING
--R   [4] (D,List(Point(D2))) -> D from D if D has SPACEC(D2) and D2 has 
--R            RING
--R
--RExamples of closedCurve from ThreeSpaceCategory
--R
--E 357

--S 358 of 3320
)d op closedCurve?
--R 
--R
--RThere is one exposed function called closedCurve? :
--R   [1] D -> Boolean from D if D has SPACEC(D2) and D2 has RING
--R
--RExamples of closedCurve? from ThreeSpaceCategory
--R
--E 358

--S 359 of 3320
)d op cn
--R 
--R
--RThere is one unexposed function called cn :
--R   [1] (D1,D2) -> D1 from EllipticFunctionsUnivariateTaylorSeries(D2,D1
--R            )
--R             if D2 has FIELD and D1 has UTSCAT(D2)
--R
--RExamples of cn from EllipticFunctionsUnivariateTaylorSeries
--R
--E 359

--S 360 of 3320
)d op code
--R 
--R
--RThere is one exposed function called code :
--R   [1] FortranCode -> Union(nullBranch: null,assignmentBranch: Record(
--R            var: Symbol,arrayIndex: List(Polynomial(Integer)),rand: Record(
--R            ints2Floats?: Boolean,expr: OutputForm)),arrayAssignmentBranch: 
--R            Record(var: Symbol,rand: OutputForm,ints2Floats?: Boolean),
--R            conditionalBranch: Record(switch: Switch,thenClause: FortranCode,
--R            elseClause: FortranCode),returnBranch: Record(empty?: Boolean,
--R            value: Record(ints2Floats?: Boolean,expr: OutputForm)),
--R            blockBranch: List(FortranCode),commentBranch: List(String),
--R            callBranch: String,forBranch: Record(range: SegmentBinding(
--R            Polynomial(Integer)),span: Polynomial(Integer),body: FortranCode)
--R            ,labelBranch: SingleInteger,loopBranch: Record(switch: Switch,
--R            body: FortranCode),commonBranch: Record(name: Symbol,contents: 
--R            List(Symbol)),printBranch: List(OutputForm))
--R             from FortranCode
--R
--RExamples of code from FortranCode
--R
--E 360

--S 361 of 3320
)d op coef
--R 
--R
--RThere are 3 exposed functions called coef :
--R   [1] (XRecursivePolynomial(D3,D1),D) -> D1 from D
--R             if D has FLALG(D3,D1) and D3 has ORDSET and D1 has COMRING
--R            
--R   [2] (D,D) -> D1 from D if D has XFALG(D2,D1) and D2 has ORDSET and 
--R            D1 has RING
--R   [3] (D,OrderedFreeMonoid(D3)) -> D1 from D
--R             if D has XFALG(D3,D1) and D3 has ORDSET and D1 has RING
--R         
--R
--RThere is one unexposed function called coef :
--R   [1] (XPolynomialRing(D1,D2),D2) -> D1 from XPolynomialRing(D1,D2)
--R             if D1 has RING and D2 has ORDMON
--R
--RExamples of coef from FreeLieAlgebra
--R
--R
--RExamples of coef from XFreeAlgebra
--R
--R
--RExamples of coef from XPolynomialRing
--R
--E 361

--S 362 of 3320
)d op coefChoose
--R 
--R
--RThere is one unexposed function called coefChoose :
--R   [1] (Integer,Factored(D1)) -> D1 from MultivariateSquareFree(D4,D5,
--R            D6,D1)
--R             if D1 has POLYCAT(D6,D4,D5) and D4 has OAMONS and D5 has 
--R            ORDSET and D6 has EUCDOM
--R
--RExamples of coefChoose from MultivariateSquareFree
--R
--E 362

--S 363 of 3320
)d op coefficient
--R 
--R
--RThere are 12 exposed functions called coefficient :
--R   [1] (D,D2) -> D1 from D if D has AMR(D1,D2) and D2 has OAMON and D1
--R             has RING
--R   [2] (CliffordAlgebra(D3,D1,D4),List(PositiveInteger)) -> D1
--R             from CliffordAlgebra(D3,D1,D4)
--R             if D1 has FIELD and D3: PI and D4: QFORM(D3,D1)
--R   [3] (D2,D) -> D1 from D if D has FAMONC(D2,D1) and D2 has SETCAT and
--R            D1 has CABMON
--R   [4] (D,D2) -> D1 from D if D has FMCAT(D1,D2) and D2 has SETCAT and 
--R            D1 has RING
--R   [5] (D,NonNegativeInteger) -> D1 from D if D has MLO(D1) and D1 has 
--R            RING
--R   [6] (D,List(D4),List(NonNegativeInteger)) -> D from D
--R             if D has MTSCAT(D3,D4) and D3 has RING and D4 has ORDSET
--R         
--R   [7] (D,D1,NonNegativeInteger) -> D from D
--R             if D has MTSCAT(D3,D1) and D3 has RING and D1 has ORDSET
--R         
--R   [8] (D,NonNegativeInteger) -> D1 from D if D has OREPCAT(D1) and D1
--R             has RING
--R   [9] (D,List(D5),List(NonNegativeInteger)) -> D from D
--R             if D has POLYCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [10] (D,D1,NonNegativeInteger) -> D from D
--R             if D has POLYCAT(D3,D4,D1) and D3 has RING and D4 has 
--R            OAMONS and D1 has ORDSET
--R   [11] (StochasticDifferential(D3),BasicStochasticDifferential) -> 
--R            Expression(D3)
--R             from StochasticDifferential(D3)
--R             if D3 has Join(OrderedSet,IntegralDomain)
--R   [12] (TaylorSeries(D3),NonNegativeInteger) -> Polynomial(D3)
--R             from TaylorSeries(D3) if D3 has RING
--R
--RThere are 5 unexposed functions called coefficient :
--R   [1] (AntiSymm(D1,D2),AntiSymm(D1,D2)) -> D1 from AntiSymm(D1,D2)
--R             if D1 has RING and D2: LIST(SYMBOL)
--R   [2] (DeRhamComplex(D2,D3),DeRhamComplex(D2,D3)) -> Expression(D2)
--R             from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R   [3] (LaurentPolynomial(D1,D3),Integer) -> D1 from LaurentPolynomial(
--R            D1,D3)
--R             if D1 has INTDOM and D3 has UPOLYC(D1)
--R   [4] (MonoidRing(D1,D2),D2) -> D1 from MonoidRing(D1,D2)
--R             if D1 has RING and D2 has MONOID
--R   [5] (SparseMultivariateTaylorSeries(D3,D4,D1),NonNegativeInteger)
--R             -> D1
--R             from SparseMultivariateTaylorSeries(D3,D4,D1)
--R             if D1 has POLYCAT(D3,INDE(D4),D4) and D3 has RING and D4
--R             has ORDSET
--R
--RExamples of coefficient from AbelianMonoidRing
--R
--R
--RExamples of coefficient from AntiSymm
--R
--R
--RExamples of coefficient from CliffordAlgebra
--R
--R
--RExamples of coefficient from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--RR := Expression(Integer) 
--R[dx,dy,dz] := [generator(i)$der for i in 1..3] 
--Rf : R := x**2*y*z-5*x**3*y**2*z**5 
--Rg : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2 
--Rh : R :=x*y*z-2*x**3*y*z**2 
--Ralpha : der := f*dx + g*dy + h*dz 
--Rbeta : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy 
--Rgamma := alpha * beta 
--Rcoefficient(gamma, dx*dy)
--R
--R
--RExamples of coefficient from FreeAbelianMonoidCategory
--R
--R
--RExamples of coefficient from FreeModuleCat
--R
--R
--RExamples of coefficient from LaurentPolynomial
--R
--R
--RExamples of coefficient from MonogenicLinearOperator
--R
--R
--RExamples of coefficient from MonoidRing
--R
--R
--RExamples of coefficient from MultivariateTaylorSeriesCategory
--R
--R
--RExamples of coefficient from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of coefficient from PolynomialCategory
--R
--R
--RExamples of coefficient from StochasticDifferential
--R
--R
--RExamples of coefficient from SparseMultivariateTaylorSeries
--R
--Rxts:=x::TaylorSeries Fraction Integer 
--Rt1:=sin(xts) 
--Rcoefficient(t1,3)
--R
--R
--RExamples of coefficient from TaylorSeries
--R
--E 363

--S 364 of 3320
)d op coefficients
--R 
--R
--RThere are 4 exposed functions called coefficients :
--R   [1] D -> List(D2) from D if D has FAMR(D2,D3) and D2 has RING and D3
--R             has OAMON
--R   [2] D -> List(D2) from D if D has FMCAT(D2,D3) and D2 has RING and 
--R            D3 has SETCAT
--R   [3] D -> List(D2) from D if D has OREPCAT(D2) and D2 has RING
--R   [4] D -> Stream(D2) from D if D has UTSCAT(D2) and D2 has RING
--R
--RThere are 3 unexposed functions called coefficients :
--R   [1] InnerTaylorSeries(D2) -> Stream(D2) from InnerTaylorSeries(D2)
--R             if D2 has RING
--R   [2] MonoidRing(D2,D3) -> List(D2) from MonoidRing(D2,D3)
--R             if D2 has RING and D3 has MONOID
--R   [3] SparseMultivariateTaylorSeries(D2,D3,D4) -> Stream(D4)
--R             from SparseMultivariateTaylorSeries(D2,D3,D4)
--R             if D2 has RING and D3 has ORDSET and D4 has POLYCAT(D2,
--R            INDE(D3),D3)
--R
--RExamples of coefficients from FiniteAbelianMonoidRing
--R
--R
--RExamples of coefficients from FreeModuleCat
--R
--R
--RExamples of coefficients from InnerTaylorSeries
--R
--R
--RExamples of coefficients from MonoidRing
--R
--R
--RExamples of coefficients from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of coefficients from SparseMultivariateTaylorSeries
--R
--R
--RExamples of coefficients from UnivariateTaylorSeriesCategory
--R
--E 364

--S 365 of 3320
)d op coefficientSet
--R 
--R
--RThere is one exposed function called coefficientSet :
--R   [1] SparseUnivariatePolynomial(Polynomial(D3)) -> List(Polynomial(D3
--R            ))
--R             from CylindricalAlgebraicDecompositionPackage(D3) if D3
--R             has RCFIELD
--R
--RExamples of coefficientSet from CylindricalAlgebraicDecompositionPackage
--R
--E 365

--S 366 of 3320
)d op coefOfFirstNonZeroTerm
--R 
--R
--RThere is one exposed function called coefOfFirstNonZeroTerm :
--R   [1] D -> D1 from D if D has LOCPOWC(D1) and D1 has FIELD
--R
--RExamples of coefOfFirstNonZeroTerm from LocalPowerSeriesCategory
--R
--E 366

--S 367 of 3320
--R----------------------------------)d op coerce (System Error)
--E 367

--S 368 of 3320
)d op coerceImages
--R 
--R
--RThere is one exposed function called coerceImages :
--R   [1] List(D2) -> Permutation(D2) from Permutation(D2) if D2 has 
--R            SETCAT
--R
--RExamples of coerceImages from Permutation
--R
--E 368

--S 369 of 3320
)d op coerceL
--R 
--R
--RThere are 2 exposed functions called coerceL :
--R   [1] OutputForm -> String from HTMLFormat
--R   [2] OutputForm -> String from MathMLFormat
--R
--RExamples of coerceL from HTMLFormat
--R
--RcoerceL(sqrt(3+x)::OutputForm)$HTMLFORM
--R
--R
--RExamples of coerceL from MathMLFormat
--R
--E 369

--S 370 of 3320
)d op coerceListOfPairs
--R 
--R
--RThere is one exposed function called coerceListOfPairs :
--R   [1] List(List(D2)) -> Permutation(D2) from Permutation(D2) if D2
--R             has SETCAT
--R
--RExamples of coerceListOfPairs from Permutation
--R
--E 370

--S 371 of 3320
)d op coerceP
--R 
--R
--RThere is one unexposed function called coerceP :
--R   [1] Vector(Matrix(D3)) -> Vector(Matrix(Polynomial(D3)))
--R             from CoerceVectorMatrixPackage(D3) if D3 has COMRING
--R
--RExamples of coerceP from CoerceVectorMatrixPackage
--R
--E 371

--S 372 of 3320 done
)d op coercePreimagesImages
--R 
--R
--RThere is one exposed function called coercePreimagesImages :
--R   [1] List(List(D2)) -> Permutation(D2) from Permutation(D2) if D2
--R             has SETCAT
--R
--RExamples of coercePreimagesImages from Permutation
--R
--Rp := coercePreimagesImages([[1,2,3],[1,2,3]]) 
--Rq := coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4
--R
--E 372

--S 373 of 3320
)d op coerceS 
--R 
--R
--RThere are 2 exposed functions called coerceS :
--R   [1] OutputForm -> String from HTMLFormat
--R   [2] OutputForm -> String from MathMLFormat
--R
--RExamples of coerceS from HTMLFormat
--R
--RcoerceS(sqrt(3+x)::OutputForm)$HTMLFORM
--R
--R
--RExamples of coerceS from MathMLFormat
--R
--E 373

--S 374 of 3320
)d op coHeight
--R 
--R
--RThere is one exposed function called coHeight :
--R   [1] D -> NonNegativeInteger from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) 
--R            and D4 has FINITE
--R
--RExamples of coHeight from TriangularSetCategory
--R
--E 374

--S 375 of 3320
)d op coleman
--R 
--R
--RThere is one exposed function called coleman :
--R   [1] (List(Integer),List(Integer),List(Integer)) -> Matrix(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of coleman from SymmetricGroupCombinatoricFunctions
--R
--E 375

--S 376 of 3320
)d op collect
--R 
--R
--RThere are 2 exposed functions called collect :
--R   [1] D -> D from D if D has DIVCAT(D1) and D1 has SETCAT
--R   [2] (D,D1) -> D from D
--R             if D has PSETCAT(D2,D3,D1,D4) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET and D4 has RPOLCAT(D2,D3,D1)
--R
--RExamples of collect from DivisorCategory
--R
--R
--RExamples of collect from PolynomialSetCategory
--R
--E 376

--S 377 of 3320
)d op collectQuasiMonic
--R 
--R
--RThere is one exposed function called collectQuasiMonic :
--R   [1] D -> D from D
--R             if D has TSETCAT(D1,D2,D3,D4) and D1 has INTDOM and D2
--R             has OAMONS and D3 has ORDSET and D4 has RPOLCAT(D1,D2,D3)
--R            
--R
--RExamples of collectQuasiMonic from TriangularSetCategory
--R
--E 377

--S 378 of 3320
)d op collectUnder
--R 
--R
--RThere is one exposed function called collectUnder :
--R   [1] (D,D1) -> D from D
--R             if D has PSETCAT(D2,D3,D1,D4) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET and D4 has RPOLCAT(D2,D3,D1)
--R
--RExamples of collectUnder from PolynomialSetCategory
--R
--E 378

--S 379 of 3320
)d op collectUpper
--R 
--R
--RThere is one exposed function called collectUpper :
--R   [1] (D,D1) -> D from D
--R             if D has PSETCAT(D2,D3,D1,D4) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET and D4 has RPOLCAT(D2,D3,D1)
--R
--RExamples of collectUpper from PolynomialSetCategory
--R
--E 379

--S 380 of 3320
)d op color
--R 
--R
--RThere is one exposed function called color :
--R   [1] Integer -> Color from Color
--R
--RThere is one unexposed function called color :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of color from Color
--R
--R
--RExamples of color from PointPackage
--R
--E 380

--S 381 of 3320
)d op colorDef
--R 
--R
--RThere is one exposed function called colorDef :
--R   [1] (ThreeDimensionalViewport,Color,Color) -> Void
--R             from ThreeDimensionalViewport
--R
--RExamples of colorDef from ThreeDimensionalViewport
--R
--E 381

--S 382 of 3320
)d op colorFunction
--R 
--R
--RThere are 3 exposed functions called colorFunction :
--R   [1] ((DoubleFloat,DoubleFloat,DoubleFloat) -> DoubleFloat) -> 
--R            DrawOption
--R             from DrawOption
--R   [2] ((DoubleFloat,DoubleFloat) -> DoubleFloat) -> DrawOption from 
--R            DrawOption
--R   [3] (DoubleFloat -> DoubleFloat) -> DrawOption from DrawOption
--R
--RExamples of colorFunction from DrawOption
--R
--E 382

--S 383 of 3320
)d op column
--R 
--R
--RThere are 2 exposed functions called column :
--R   [1] (D,Integer) -> D1 from D
--R             if D has ARR2CAT(D3,D4,D1) and D3 has TYPE and D4 has 
--R            FLAGG(D3) and D1 has FLAGG(D3)
--R   [2] (D,Integer) -> D1 from D
--R             if D has RMATCAT(D3,D4,D5,D6,D1) and D5 has RING and D6
--R             has DIRPCAT(D4,D5) and D1 has DIRPCAT(D3,D5)
--R
--RExamples of column from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rcolumn(arr,1)
--R
--R
--RExamples of column from RectangularMatrixCategory
--R
--E 383

--S 384 of 3320 done
)d op columns
--R 
--R
--RThere are 2 exposed functions called columns :
--R   [1] (D1,List(PositiveInteger)) -> D1 from MatrixManipulation(D3,D4,
--R            D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R   [2] (D1,Segment(PositiveInteger)) -> D1 from MatrixManipulation(D3,
--R            D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R
--RExamples of columns from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--Rcolumns(M, 1..2)
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--Rcolumns(M, [1,2]) 
--Rcolumns(M, [3,2])
--R
--E 384

--S 385 of 3320 done
)d op columnSpace
--R 
--R
--RThere is one exposed function called columnSpace :
--R   [1] D -> List(D4) from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2) and D2 has EUCDOM
--R
--RExamples of columnSpace from MatrixCategory
--R
--RcolumnSpace matrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]
--R
--E 385

--S 386 of 3320
)d op combineFeatureCompatibility
--R 
--R
--RThere are 2 exposed functions called combineFeatureCompatibility :
--R   [1] (Float,Float) -> Float from d02AgentsPackage
--R   [2] (Float,List(Float)) -> Float from d02AgentsPackage
--R
--RExamples of combineFeatureCompatibility from d02AgentsPackage
--R
--E 386

--S 387 of 3320
)d op commaSeparate
--R 
--R
--RThere is one exposed function called commaSeparate :
--R   [1] List(String) -> String from d01AgentsPackage
--R
--RThere is one unexposed function called commaSeparate :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R
--RExamples of commaSeparate from d01AgentsPackage
--R
--R
--RExamples of commaSeparate from OutputForm
--R
--E 387

--S 388 of 3320
)d op comment
--R 
--R
--RThere are 2 exposed functions called comment :
--R   [1] List(String) -> FortranCode from FortranCode
--R   [2] String -> FortranCode from FortranCode
--R
--RExamples of comment from FortranCode
--R
--E 388

--S 389 of 3320
)d op common
--R 
--R
--RThere is one exposed function called common :
--R   [1] (Symbol,List(Symbol)) -> FortranCode from FortranCode
--R
--RExamples of common from FortranCode
--R
--E 389

--S 390 of 3320
)d op commonDenominator
--R 
--R
--RThere are 3 exposed functions called commonDenominator :
--R   [1] D2 -> D1 from CommonDenominator(D1,D3,D2)
--R             if D3 has QFCAT(D1) and D1 has INTDOM and D2 has FLAGG(D3)
--R            
--R   [2] Matrix(D3) -> D1 from MatrixCommonDenominator(D1,D3)
--R             if D3 has QFCAT(D1) and D1 has INTDOM
--R   [3] D2 -> D1 from UnivariatePolynomialCommonDenominator(D1,D3,D2)
--R             if D3 has QFCAT(D1) and D1 has INTDOM and D2 has UPOLYC(D3
--R            )
--R
--RThere is one unexposed function called commonDenominator :
--R   [1] D2 -> D1 from InnerCommonDenominator(D1,D3,D4,D2)
--R             if D3 has QFCAT(D1) and D1 has INTDOM and D4 has FLAGG(D1)
--R            and D2 has FLAGG(D3)
--R
--RExamples of commonDenominator from CommonDenominator
--R
--R
--RExamples of commonDenominator from InnerCommonDenominator
--R
--R
--RExamples of commonDenominator from MatrixCommonDenominator
--R
--R
--RExamples of commonDenominator from UnivariatePolynomialCommonDenominator
--R
--E 390

--S 391 of 3320
)d op commutative?
--R 
--R
--RThere is one exposed function called commutative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called commutative? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of commutative? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of commutative? from FiniteRankNonAssociativeAlgebra
--R
--E 391

--S 392 of 3320
)d op commutativeEquality
--R 
--R
--RThere is one unexposed function called commutativeEquality :
--R   [1] (ListMonoidOps(D2,D3,D4),ListMonoidOps(D2,D3,D4)) -> Boolean
--R             from ListMonoidOps(D2,D3,D4)
--R             if D2 has SETCAT and D3 has ABELMON and D4: D3
--R
--RExamples of commutativeEquality from ListMonoidOps
--R
--E 392

--S 393 of 3320
)d op commutator
--R 
--R
--RThere are 2 exposed functions called commutator :
--R   [1] (D,D) -> D from D if D has GROUP
--R   [2] (D,D) -> D from D if D has NARNG
--R
--RExamples of commutator from Group
--R
--R
--RExamples of commutator from NonAssociativeRng
--R
--E 393

--S 394 of 3320
)d op comp
--R 
--R
--RThere is one unexposed function called comp :
--R   [1] ((D5 -> D1),(D4 -> D5),D4) -> D1
--R             from MappingPackageInternalHacks3(D4,D5,D1)
--R             if D4 has SETCAT and D5 has SETCAT and D1 has SETCAT
--R
--RExamples of comp from MappingPackageInternalHacks3
--R
--E 394

--S 395 of 3320 done
)d op compactFraction
--R 
--R
--RThere is one exposed function called compactFraction :
--R   [1] PartialFraction(D1) -> PartialFraction(D1) from PartialFraction(
--R            D1)
--R             if D1 has EUCDOM
--R
--RExamples of compactFraction from PartialFraction
--R
--Ra:=partialFraction(1,factorial 10) 
--Rb:=padicFraction(a) 
--RcompactFraction(b)
--R
--E 395

--S 396 of 3320
)d op companionBlocks
--R 
--R
--RThere is one unexposed function called companionBlocks :
--R   [1] (Matrix(D4),Vector(D4)) -> List(Record(C: Matrix(D4),g: Vector(
--R            D4)))
--R             from PseudoLinearNormalForm(D4) if D4 has FIELD
--R
--RExamples of companionBlocks from PseudoLinearNormalForm
--R
--E 396

--S 397 of 3320
)d op comparison
--R 
--R
--RThere is one exposed function called comparison :
--R   [1] (BasicOperator,((BasicOperator,BasicOperator) -> Boolean)) -> 
--R            BasicOperator
--R             from BasicOperator
--R
--RExamples of comparison from BasicOperator
--R
--E 397

--S 398 of 3320
)d op compBound
--R 
--R
--RThere is one unexposed function called compBound :
--R   [1] (D2,List(D2)) -> NonNegativeInteger from GenExEuclid(D4,D2)
--R             if D2 has UPOLYC(D4) and D4 has EUCDOM
--R
--RExamples of compBound from GenExEuclid
--R
--E 398

--S 399 of 3320
)d op compdegd
--R 
--R
--RThere is one unexposed function called compdegd :
--R   [1] List(Record(factor: SparseUnivariatePolynomial(D5),exponent: 
--R            Integer)) -> Integer
--R             from MultivariateSquareFree(D3,D4,D5,D6)
--R             if D5 has EUCDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D6 has POLYCAT(D5,D3,D4)
--R
--RExamples of compdegd from MultivariateSquareFree
--R
--E 399

--S 400 of 3320
)d op compile
--R 
--R
--RThere is one unexposed function called compile :
--R   [1] (Symbol,List(InputForm)) -> Symbol from InputForm
--R
--RExamples of compile from InputForm
--R
--E 400

--S 401 of 3320 done
)d op compiledFunction
--R 
--R
--RThere are 2 unexposed functions called compiledFunction :
--R   [1] (D2,Symbol,Symbol) -> ((D4,D5) -> D6)
--R             from MakeBinaryCompiledFunction(D2,D4,D5,D6)
--R             if D2 has KONVERT(INFORM) and D4 has TYPE and D5 has TYPE 
--R            and D6 has TYPE
--R   [2] (D2,Symbol) -> (D4 -> D5) from MakeUnaryCompiledFunction(D2,D4,
--R            D5)
--R             if D2 has KONVERT(INFORM) and D4 has TYPE and D5 has TYPE
--R            
--R
--RExamples of compiledFunction from MakeBinaryCompiledFunction
--R
--RMBCF:=MakeBinaryCompiledFunction(POLY(FRAC(INT)),FLOAT,FLOAT,FLOAT) 
--Rf:=(x+3)*(y+4) 
--Rg:=compiledFunction(f,x,y)$MBCF 
--Rg(2.0,3.0)
--R
--R
--RExamples of compiledFunction from MakeUnaryCompiledFunction
--R
--RMUCF:=MakeUnaryCompiledFunction(POLY(FRAC(INT)),FLOAT,FLOAT) 
--Rf:=(x+3)^2 
--Rg:=compiledFunction(f,x)$MUCF 
--Rg(2.0)
--R
--E 401

--S 402 of 3320
)d op complement
--R 
--R
--RThere is one exposed function called complement :
--R   [1] D -> D from D if D has FSAGG(D1) and D1 has SETCAT and D1 has 
--R            FINITE
--R
--RExamples of complement from FiniteSetAggregate
--R
--E 402

--S 403 of 3320
)d op complementaryBasis
--R 
--R
--RThere is one exposed function called complementaryBasis :
--R   [1] Vector(D) -> Vector(D) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of complementaryBasis from FunctionFieldCategory
--R
--E 403

--S 404 of 3320
)d op complete
--R 
--R
--RThere are 5 exposed functions called complete :
--R   [1] ContinuedFraction(D1) -> ContinuedFraction(D1) from 
--R            ContinuedFraction(D1)
--R             if D1 has EUCDOM
--R   [2] Integer -> SymmetricPolynomial(Fraction(Integer)) from 
--R            CycleIndicators
--R   [3] D -> D from D if D has LZSTAGG(D1) and D1 has TYPE
--R   [4] D -> D from D if D has PADICCT(D1)
--R   [5] D -> D from D
--R             if D has PSCAT(D1,D2,D3) and D1 has RING and D2 has OAMON 
--R            and D3 has ORDSET
--R
--RExamples of complete from ContinuedFraction
--R
--R
--RExamples of complete from CycleIndicators
--R
--R
--RExamples of complete from LazyStreamAggregate
--R
--Rm:=[i for i in 1..] 
--Rn:=filterUntil(i+->i>100,m) 
--RnumberOfComputedEntries n 
--Rcomplete n 
--RnumberOfComputedEntries n
--R
--R
--RExamples of complete from PAdicIntegerCategory
--R
--R
--RExamples of complete from PowerSeriesCategory
--R
--E 404

--S 405 of 3320
)d op completeEchelonBasis
--R 
--R
--RThere is one exposed function called completeEchelonBasis :
--R   [1] Vector(Vector(D3)) -> Matrix(D3) from RepresentationPackage2(D3)
--R             if D3 has RING
--R
--RExamples of completeEchelonBasis from RepresentationPackage2
--R
--E 405

--S 406 of 3320
)d op completeEval
--R 
--R
--RThere is one unexposed function called completeEval :
--R   [1] (SparseUnivariatePolynomial(D8),List(D6),List(D7)) -> 
--R            SparseUnivariatePolynomial(D7)
--R             from FactoringUtilities(D5,D6,D7,D8)
--R             if D6 has ORDSET and D7 has RING and D8 has POLYCAT(D7,D5,
--R            D6) and D5 has OAMONS
--R
--RExamples of completeEval from FactoringUtilities
--R
--E 406

--S 407 of 3320
)d op completeHensel
--R 
--R
--RThere is one unexposed function called completeHensel :
--R   [1] (D2,List(D2),D3,PositiveInteger) -> List(D2)
--R             from GeneralHenselPackage(D3,D2) if D2 has UPOLYC(D3) and 
--R            D3 has EUCDOM
--R
--RExamples of completeHensel from GeneralHenselPackage
--R
--E 407

--S 408 of 3320
)d op completeHermite
--R 
--R
--RThere is one exposed function called completeHermite :
--R   [1] D2 -> Record(Hermite: D2,eqMat: D2) from SmithNormalForm(D3,D4,
--R            D5,D2)
--R             if D3 has EUCDOM and D4 has FLAGG(D3) and D5 has FLAGG(D3)
--R            and D2 has MATCAT(D3,D4,D5)
--R
--RExamples of completeHermite from SmithNormalForm
--R
--E 408

--S 409 of 3320
)d op completeSmith
--R 
--R
--RThere is one exposed function called completeSmith :
--R   [1] D2 -> Record(Smith: D2,leftEqMat: D2,rightEqMat: D2)
--R             from SmithNormalForm(D3,D4,D5,D2)
--R             if D3 has EUCDOM and D4 has FLAGG(D3) and D5 has FLAGG(D3)
--R            and D2 has MATCAT(D3,D4,D5)
--R
--RExamples of completeSmith from SmithNormalForm
--R
--E 409

--S 410 of 3320
)d op complex
--R 
--R
--RThere is one exposed function called complex :
--R   [1] (D1,D1) -> D from D if D has COMPCAT(D1) and D1 has COMRING
--R
--RExamples of complex from ComplexCategory
--R
--E 410

--S 411 of 3320
)d op complex?
--R 
--R
--RThere is one exposed function called complex? :
--R   [1] FortranScalarType -> Boolean from FortranScalarType
--R
--RExamples of complex? from FortranScalarType
--R
--E 411

--S 412 of 3320
)d op complexEigenvalues
--R 
--R
--RThere is one exposed function called complexEigenvalues :
--R   [1] (Matrix(Complex(Fraction(Integer))),D3) -> List(Complex(D3))
--R             from NumericComplexEigenPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R
--RExamples of complexEigenvalues from NumericComplexEigenPackage
--R
--E 412

--S 413 of 3320
)d op complexEigenvectors
--R 
--R
--RThere is one exposed function called complexEigenvectors :
--R   [1] (Matrix(Complex(Fraction(Integer))),D3) -> List(Record(outval: 
--R            Complex(D3),outmult: Integer,outvect: List(Matrix(Complex(D3)))))
--R             from NumericComplexEigenPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R
--RExamples of complexEigenvectors from NumericComplexEigenPackage
--R
--E 413

--S 414 of 3320
)d op complexElementary
--R 
--R
--RThere are 4 exposed functions called complexElementary :
--R   [1] D1 -> D1 from ComplexTrigonometricManipulations(D2,D1)
--R             if D2 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D2)))
--R            
--R   [2] (D1,Symbol) -> D1 from ComplexTrigonometricManipulations(D3,D1)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D3)))
--R            
--R   [3] D1 -> D1 from TrigonometricManipulations(D2,D1)
--R             if D2 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))
--R   [4] (D1,Symbol) -> D1 from TrigonometricManipulations(D3,D1)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R
--RExamples of complexElementary from ComplexTrigonometricManipulations
--R
--R
--RExamples of complexElementary from TrigonometricManipulations
--R
--E 414

--S 415 of 3320
)d op complexExpand
--R 
--R
--RThere are 2 exposed functions called complexExpand :
--R   [1] IntegrationResult(D1) -> D1 from IntegrationResultToFunction(D3,
--R            D1)
--R             if D1 has Join(AlgebraicallyClosedFunctionSpace(D3),
--R            TranscendentalFunctionCategory) and D3 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,LinearlyExplicitRingOver(
--R            Integer))
--R   [2] IntegrationResult(Fraction(Polynomial(D3))) -> Expression(D3)
--R             from IntegrationResultRFToFunction(D3)
--R             if D3 has Join(GcdDomain,RetractableTo(Integer),OrderedSet
--R            ,LinearlyExplicitRingOver(Integer))
--R
--RExamples of complexExpand from IntegrationResultToFunction
--R
--R
--RExamples of complexExpand from IntegrationResultRFToFunction
--R
--E 415

--S 416 of 3320
)d op complexForm
--R 
--R
--RThere are 2 exposed functions called complexForm :
--R   [1] D2 -> Complex(Expression(D3))
--R             from ComplexTrigonometricManipulations(D3,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D3)))
--R            
--R   [2] D2 -> Complex(D2) from TrigonometricManipulations(D3,D2)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R
--RExamples of complexForm from ComplexTrigonometricManipulations
--R
--R
--RExamples of complexForm from TrigonometricManipulations
--R
--E 416

--S 417 of 3320
)d op complexIntegrate
--R 
--R
--RThere are 2 exposed functions called complexIntegrate :
--R   [1] (D1,Symbol) -> D1 from FunctionSpaceComplexIntegration(D3,D1)
--R             if D3 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            TranscendentalFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D3))
--R   [2] (Fraction(Polynomial(D4)),Symbol) -> Expression(D4)
--R             from IntegrationResultRFToFunction(D4)
--R             if D4 has CHARZ and D4 has Join(GcdDomain,RetractableTo(
--R            Integer),OrderedSet,LinearlyExplicitRingOver(Integer))
--R
--RExamples of complexIntegrate from FunctionSpaceComplexIntegration
--R
--R
--RExamples of complexIntegrate from IntegrationResultRFToFunction
--R
--E 417

--S 418 of 3320
)d op complexLimit
--R 
--R
--RThere are 3 exposed functions called complexLimit :
--R   [1] (D2,Equation(OnePointCompletion(D2))) -> Union(
--R            OnePointCompletion(D2),"failed")
--R             from PowerSeriesLimitPackage(D4,D2)
--R             if D4 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4))
--R   [2] (Fraction(Polynomial(D4)),Equation(OnePointCompletion(Polynomial
--R            (D4)))) -> OnePointCompletion(Fraction(Polynomial(D4)))
--R             from RationalFunctionLimitPackage(D4) if D4 has GCDDOM
--R   [3] (Fraction(Polynomial(D4)),Equation(Fraction(Polynomial(D4))))
--R             -> OnePointCompletion(Fraction(Polynomial(D4)))
--R             from RationalFunctionLimitPackage(D4) if D4 has GCDDOM
--R
--RExamples of complexLimit from PowerSeriesLimitPackage
--R
--R
--RExamples of complexLimit from RationalFunctionLimitPackage
--R
--E 418

--S 419 of 3320
)d op complexNormalize
--R 
--R
--RThere are 4 exposed functions called complexNormalize :
--R   [1] D1 -> D1 from ComplexTrigonometricManipulations(D2,D1)
--R             if D2 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D2)))
--R            
--R   [2] (D1,Symbol) -> D1 from ComplexTrigonometricManipulations(D3,D1)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D3)))
--R            
--R   [3] D1 -> D1 from TrigonometricManipulations(D2,D1)
--R             if D2 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))
--R   [4] (D1,Symbol) -> D1 from TrigonometricManipulations(D3,D1)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R
--RExamples of complexNormalize from ComplexTrigonometricManipulations
--R
--R
--RExamples of complexNormalize from TrigonometricManipulations
--R
--E 419

--S 420 of 3320
)d op complexNumeric
--R 
--R
--RThere are 16 exposed functions called complexNumeric :
--R   [1] D2 -> Complex(Float) from Numeric(D2) if D2 has KONVERT(FLOAT)
--R         
--R   [2] (D2,PositiveInteger) -> Complex(Float) from Numeric(D2)
--R             if D2 has KONVERT(FLOAT)
--R   [3] Complex(D3) -> Complex(Float) from Numeric(D3)
--R             if D3 has COMRING and D3 has KONVERT(FLOAT)
--R   [4] (Complex(D4),PositiveInteger) -> Complex(Float) from Numeric(D4)
--R             if D4 has COMRING and D4 has KONVERT(FLOAT)
--R   [5] Polynomial(Complex(D3)) -> Complex(Float) from Numeric(D3)
--R             if D3 has COMRING and D3 has KONVERT(FLOAT)
--R   [6] (Polynomial(Complex(D4)),PositiveInteger) -> Complex(Float)
--R             from Numeric(D4) if D4 has COMRING and D4 has KONVERT(
--R            FLOAT)
--R   [7] Polynomial(D3) -> Complex(Float) from Numeric(D3)
--R             if D3 has RING and D3 has KONVERT(FLOAT)
--R   [8] (Polynomial(D4),PositiveInteger) -> Complex(Float) from Numeric(
--R            D4)
--R             if D4 has RING and D4 has KONVERT(FLOAT)
--R   [9] Fraction(Polynomial(D3)) -> Complex(Float) from Numeric(D3)
--R             if D3 has INTDOM and D3 has KONVERT(FLOAT)
--R   [10] (Fraction(Polynomial(D4)),PositiveInteger) -> Complex(Float)
--R             from Numeric(D4) if D4 has INTDOM and D4 has KONVERT(FLOAT
--R            )
--R   [11] Fraction(Polynomial(Complex(D3))) -> Complex(Float) from 
--R            Numeric(D3)
--R             if D3 has INTDOM and D3 has KONVERT(FLOAT)
--R   [12] (Fraction(Polynomial(Complex(D4))),PositiveInteger) -> Complex(
--R            Float)
--R             from Numeric(D4) if D4 has INTDOM and D4 has KONVERT(FLOAT
--R            )
--R   [13] Expression(D3) -> Complex(Float) from Numeric(D3)
--R             if D3 has INTDOM and D3 has ORDSET and D3 has KONVERT(
--R            FLOAT)
--R   [14] (Expression(D4),PositiveInteger) -> Complex(Float) from Numeric
--R            (D4)
--R             if D4 has INTDOM and D4 has ORDSET and D4 has KONVERT(
--R            FLOAT)
--R   [15] Expression(Complex(D3)) -> Complex(Float) from Numeric(D3)
--R             if D3 has INTDOM and D3 has ORDSET and D3 has KONVERT(
--R            FLOAT)
--R   [16] (Expression(Complex(D4)),PositiveInteger) -> Complex(Float)
--R             from Numeric(D4)
--R             if D4 has INTDOM and D4 has ORDSET and D4 has KONVERT(
--R            FLOAT)
--R
--RExamples of complexNumeric from Numeric
--R
--E 420

--S 421 of 3320
)d op complexNumericIfCan
--R 
--R
--RThere are 12 exposed functions called complexNumericIfCan :
--R   [1] Polynomial(Complex(D3)) -> Union(Complex(Float),"failed")
--R             from Numeric(D3) if D3 has COMRING and D3 has KONVERT(
--R            FLOAT)
--R   [2] (Polynomial(Complex(D4)),PositiveInteger) -> Union(Complex(Float
--R            ),"failed")
--R             from Numeric(D4) if D4 has COMRING and D4 has KONVERT(
--R            FLOAT)
--R   [3] Polynomial(D3) -> Union(Complex(Float),"failed") from Numeric(D3
--R            )
--R             if D3 has RING and D3 has KONVERT(FLOAT)
--R   [4] (Polynomial(D4),PositiveInteger) -> Union(Complex(Float),
--R            "failed")
--R             from Numeric(D4) if D4 has RING and D4 has KONVERT(FLOAT)
--R            
--R   [5] Fraction(Polynomial(D3)) -> Union(Complex(Float),"failed")
--R             from Numeric(D3) if D3 has INTDOM and D3 has KONVERT(FLOAT
--R            )
--R   [6] (Fraction(Polynomial(D4)),PositiveInteger) -> Union(Complex(
--R            Float),"failed")
--R             from Numeric(D4) if D4 has INTDOM and D4 has KONVERT(FLOAT
--R            )
--R   [7] Fraction(Polynomial(Complex(D3))) -> Union(Complex(Float),
--R            "failed")
--R             from Numeric(D3) if D3 has INTDOM and D3 has KONVERT(FLOAT
--R            )
--R   [8] (Fraction(Polynomial(Complex(D4))),PositiveInteger) -> Union(
--R            Complex(Float),"failed")
--R             from Numeric(D4) if D4 has INTDOM and D4 has KONVERT(FLOAT
--R            )
--R   [9] Expression(D3) -> Union(Complex(Float),"failed") from Numeric(D3
--R            )
--R             if D3 has INTDOM and D3 has ORDSET and D3 has KONVERT(
--R            FLOAT)
--R   [10] (Expression(D4),PositiveInteger) -> Union(Complex(Float),
--R            "failed")
--R             from Numeric(D4)
--R             if D4 has INTDOM and D4 has ORDSET and D4 has KONVERT(
--R            FLOAT)
--R   [11] Expression(Complex(D3)) -> Union(Complex(Float),"failed")
--R             from Numeric(D3)
--R             if D3 has INTDOM and D3 has ORDSET and D3 has KONVERT(
--R            FLOAT)
--R   [12] (Expression(Complex(D4)),PositiveInteger) -> Union(Complex(
--R            Float),"failed")
--R             from Numeric(D4)
--R             if D4 has INTDOM and D4 has ORDSET and D4 has KONVERT(
--R            FLOAT)
--R
--RExamples of complexNumericIfCan from Numeric
--R
--E 421

--S 422 of 3320
)d op complexRoots
--R 
--R
--RThere are 2 exposed functions called complexRoots :
--R   [1] (Fraction(Polynomial(Complex(Integer))),D3) -> List(Complex(D3))
--R             from FloatingComplexPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R   [2] (List(Fraction(Polynomial(Complex(Integer)))),List(Symbol),D4)
--R             -> List(List(Complex(D4)))
--R             from FloatingComplexPackage(D4) if D4 has Join(Field,
--R            OrderedRing)
--R
--RExamples of complexRoots from FloatingComplexPackage
--R
--E 422

--S 423 of 3320
)d op complexSolve
--R 
--R
--RThere are 4 exposed functions called complexSolve :
--R   [1] (List(Fraction(Polynomial(Complex(Integer)))),D3) -> List(List(
--R            Equation(Polynomial(Complex(D3)))))
--R             from FloatingComplexPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R   [2] (List(Equation(Fraction(Polynomial(Complex(Integer))))),D3) -> 
--R            List(List(Equation(Polynomial(Complex(D3)))))
--R             from FloatingComplexPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R   [3] (Fraction(Polynomial(Complex(Integer))),D3) -> List(Equation(
--R            Polynomial(Complex(D3))))
--R             from FloatingComplexPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R   [4] (Equation(Fraction(Polynomial(Complex(Integer)))),D3) -> List(
--R            Equation(Polynomial(Complex(D3))))
--R             from FloatingComplexPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R
--RExamples of complexSolve from FloatingComplexPackage
--R
--E 423

--S 424 of 3320
)d op complexZeros
--R 
--R
--RThere is one exposed function called complexZeros :
--R   [1] (D2,D3) -> List(Complex(D3)) from ComplexRootPackage(D2,D3)
--R             if D2 has UPOLYC(COMPLEX(INT)) and D3 has Join(Field,
--R            OrderedRing)
--R
--RThere are 2 unexposed functions called complexZeros :
--R   [1] D2 -> List(Complex(D3)) from ComplexRootFindingPackage(D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R   [2] (D2,D3) -> List(Complex(D3)) from ComplexRootFindingPackage(D3,
--R            D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R
--RExamples of complexZeros from ComplexRootPackage
--R
--R
--RExamples of complexZeros from ComplexRootFindingPackage
--R
--E 424

--S 425 of 3320
)d op component
--R 
--R
--RThere are 3 unexposed functions called component :
--R   [1] (GraphImage,Point(DoubleFloat),Palette,Palette,PositiveInteger)
--R             -> Void
--R             from GraphImage
--R   [2] (GraphImage,Point(DoubleFloat)) -> Void from GraphImage
--R   [3] (GraphImage,List(Point(DoubleFloat)),Palette,Palette,
--R            PositiveInteger) -> Void
--R             from GraphImage
--R
--RExamples of component from GraphImage
--R
--E 425

--S 426 of 3320
)d op components
--R 
--R
--RThere is one exposed function called components :
--R   [1] D -> List(D) from D if D2 has RING and D has SPACEC(D2)
--R
--RExamples of components from ThreeSpaceCategory
--R
--E 426

--S 427 of 3320
)d op compose
--R 
--R
--RThere is one exposed function called compose :
--R   [1] (D1,D1) -> D1 from PolynomialComposition(D1,D2)
--R             if D2 has RING and D1 has UPOLYC(D2)
--R
--RThere is one unexposed function called compose :
--R   [1] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R
--RExamples of compose from PolynomialComposition
--R
--R
--RExamples of compose from StreamTaylorSeriesOperations
--R
--E 427

--S 428 of 3320
)d op composite
--R 
--R
--RThere are 3 exposed functions called composite :
--R   [1] List(D) -> D from D if D has SPACEC(D2) and D2 has RING
--R   [2] (Fraction(D),D) -> Union(Fraction(D),"failed") from D
--R             if D has UPOLYC(D2) and D2 has RING and D2 has INTDOM
--R   [3] (D,D) -> Union(D,"failed") from D
--R             if D has UPOLYC(D1) and D1 has RING and D1 has INTDOM
--R
--RExamples of composite from ThreeSpaceCategory
--R
--R
--RExamples of composite from UnivariatePolynomialCategory
--R
--E 428

--S 429 of 3320
)d op composites
--R 
--R
--RThere is one exposed function called composites :
--R   [1] D -> List(D) from D if D2 has RING and D has SPACEC(D2)
--R
--RExamples of composites from ThreeSpaceCategory
--R
--E 429

--S 430 of 3320
)d op computeBasis
--R 
--R
--RThere is one unexposed function called computeBasis :
--R   [1] List(HomogeneousDistributedMultivariatePolynomial(D2,D3)) -> 
--R            List(HomogeneousDistributedMultivariatePolynomial(D2,D3))
--R             from LinGroebnerPackage(D2,D3) if D2: LIST(SYMBOL) and D3
--R             has GCDDOM
--R
--RExamples of computeBasis from LinGroebnerPackage
--R
--E 430

--S 431 of 3320 done
)d op computeCycleEntry
--R 
--R
--RThere is one unexposed function called computeCycleEntry :
--R   [1] (D1,D1) -> D1 from CyclicStreamTools(D2,D1)
--R             if D2 has TYPE and D1 has LZSTAGG(D2)
--R
--RExamples of computeCycleEntry from CyclicStreamTools
--R
--Rp:=repeating([1,2,3]) 
--Rq:=cons(4,p) 
--RcomputeCycleEntry(q,cycleElt(q))
--R
--E 431

--S 432 of 3320 done
)d op computeCycleLength
--R 
--R
--RThere is one unexposed function called computeCycleLength :
--R   [1] D2 -> NonNegativeInteger from CyclicStreamTools(D3,D2)
--R             if D3 has TYPE and D2 has LZSTAGG(D3)
--R
--RExamples of computeCycleLength from CyclicStreamTools
--R
--Rp:=repeating([1,2,3]) 
--Rq:=cons(4,p) 
--RcomputeCycleLength(cycleElt(q))
--R
--E 432

--S 433 of 3320
)d op computeInt
--R 
--R
--RThere is one unexposed function called computeInt :
--R   [1] (Kernel(D3),D3,OrderedCompletion(D3),OrderedCompletion(D3),
--R            Boolean) -> Union(OrderedCompletion(D3),"failed")
--R             from DefiniteIntegrationTools(D5,D3)
--R             if D3 has Join(TranscendentalFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D5)) and D5 has Join(
--R            GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R
--RExamples of computeInt from DefiniteIntegrationTools
--R
--E 433

--S 434 of 3320
)d op computePowers
--R 
--R
--RThere is one unexposed function called computePowers :
--R   [1]  -> PrimitiveArray(ModMonic(D2,D3)) from ModMonic(D2,D3)
--R             if D2 has RING and D3 has UPOLYC(D2)
--R
--RExamples of computePowers from ModMonic
--R
--E 434

--S 435 of 3320
)d op concat
--R 
--R
--RThere are 11 exposed functions called concat :
--R   [1] (D,D) -> D from D if D has DIVCAT(D1) and D1 has SETCAT
--R   [2] (Result,Result) -> Result from ExpertSystemToolsPackage
--R   [3] List(Result) -> Result from ExpertSystemToolsPackage
--R   [4] List(D) -> D from D if D has LNAGG(D2) and D2 has TYPE
--R   [5] (D,D) -> D from D if D has LNAGG(D1) and D1 has TYPE
--R   [6] (D1,D) -> D from D if D has LNAGG(D1) and D1 has TYPE
--R   [7] (D,D1) -> D from D if D has LNAGG(D1) and D1 has TYPE
--R   [8] (RoutinesTable,RoutinesTable) -> RoutinesTable from 
--R            RoutinesTable
--R   [9] Stream(Stream(D3)) -> Stream(D3) from StreamFunctions1(D3) if D3
--R             has TYPE
--R   [10] (D1,D) -> D from D if D has URAGG(D1) and D1 has TYPE
--R   [11] (D,D) -> D from D if D has URAGG(D1) and D1 has TYPE
--R
--RExamples of concat from DivisorCategory
--R
--R
--RExamples of concat from ExpertSystemToolsPackage
--R
--R
--RExamples of concat from LinearAggregate
--R
--R
--RExamples of concat from RoutinesTable
--R
--R
--RExamples of concat from StreamFunctions1
--R
--Rm:=[i for i in 10..] 
--Rn:=[j for j in 1.. | prime? j] 
--Rp:=[m,n]::Stream(Stream(PositiveInteger)) 
--Rconcat(p)
--R
--R
--RExamples of concat from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rt2:=concat(4,t1) 
--Rt1 
--Rt2
--R
--Rt1:=[1,2,3] 
--Rt2:=concat(t1,t1) 
--Rt1 
--Rt2
--R
--E 435

--S 436 of 3320
)d op concat!
--R 
--R
--RThere are 5 exposed functions called concat! :
--R   [1] (D,D) -> D from D
--R             if D has shallowlyMutable and D has DLAGG(D1) and D1 has 
--R            TYPE
--R   [2] (D,D) -> D from D if D has ELAGG(D1) and D1 has TYPE
--R   [3] (D,D1) -> D from D if D has ELAGG(D1) and D1 has TYPE
--R   [4] (D,D1) -> D from D
--R             if D has shallowlyMutable and D has URAGG(D1) and D1 has 
--R            TYPE
--R   [5] (D,D) -> D from D
--R             if D has shallowlyMutable and D has URAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of concat! from DoublyLinkedAggregate
--R
--R
--RExamples of concat! from ExtensibleLinearAggregate
--R
--R
--RExamples of concat! from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rconcat!(t1,7) 
--Rt1
--R
--Rt1:=[1,2,3] 
--Rt2:=[4,5,6] 
--Rconcat!(t1,t2) 
--Rt1 
--Rt2
--R
--E 436

--S 437 of 3320
)d op cond
--R 
--R
--RThere are 2 exposed functions called cond :
--R   [1] (Switch,FortranCode,FortranCode) -> FortranCode from FortranCode
--R            
--R   [2] (Switch,FortranCode) -> FortranCode from FortranCode
--R
--RExamples of cond from FortranCode
--R
--E 437

--S 438 of 3320
)d op condition
--R 
--R
--RThere is one unexposed function called condition :
--R   [1] SplittingNode(D2,D1) -> D1 from SplittingNode(D2,D1)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of condition from SplittingNode
--R
--E 438

--S 439 of 3320
)d op conditionP
--R 
--R
--RThere are 2 exposed functions called conditionP :
--R   [1] Matrix(D) -> Union(Vector(D),"failed") from D if D has FFIELDC
--R         
--R   [2] Matrix(D) -> Union(Vector(D),"failed") from D if D has CHARNZ 
--R            and D has PFECAT
--R
--RExamples of conditionP from FiniteFieldCategory
--R
--R
--RExamples of conditionP from CharacteristicNonZero
--R
--E 439

--S 440 of 3320
)d op conditions
--R 
--R
--RThere is one unexposed function called conditions :
--R   [1] SplittingTree(D2,D3) -> List(D3) from SplittingTree(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of conditions from SplittingTree
--R
--E 440

--S 441 of 3320
--R--------------)d op conditionsForIdempotents (System Error)
--E 441

--S 442 of 3320
)d op conical
--R 
--R
--RThere is one exposed function called conical :
--R   [1] (D2,D2) -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of conical from CoordinateSystems
--R
--E 442

--S 443 of 3320
)d op conjug
--R 
--R
--RThere is one exposed function called conjug :
--R   [1] D1 -> D1 from ModuleOperator(D1,D2)
--R             if D1 has COMRING and D1 has RING and D2 has LMODULE(D1)
--R         
--R
--RThere is one unexposed function called conjug :
--R   [1] D1 -> D1 from Operator(D1) if D1 has COMRING and D1 has RING
--R
--RExamples of conjug from ModuleOperator
--R
--R
--RExamples of conjug from Operator
--R
--E 443

--S 444 of 3320
)d op conjugate
--R 
--R
--RThere are 10 exposed functions called conjugate :
--R   [1] D -> D from D if D has AFSPCAT(D1) and D1 has FIELD
--R   [2] (D,NonNegativeInteger) -> D from D if D has AFSPCAT(D2) and D2
--R             has FIELD
--R   [3] D -> D from D if D has COMPCAT(D1) and D1 has COMRING
--R   [4] (D,D) -> D from D if D has GROUP
--R   [5] D -> D from D if D has OC(D1) and D1 has COMRING
--R   [6] D -> D from D if D has PACPERC
--R   [7] List(Integer) -> List(Integer) from PartitionsAndPermutations
--R         
--R   [8] D -> D from D if D has PRSPCAT(D1) and D1 has FIELD
--R   [9] (D,NonNegativeInteger) -> D from D if D has PRSPCAT(D2) and D2
--R             has FIELD
--R   [10] D -> D from D if D has QUATCAT(D1) and D1 has COMRING
--R
--RThere is one unexposed function called conjugate :
--R   [1] Partition -> Partition from Partition
--R
--RExamples of conjugate from AffineSpaceCategory
--R
--R
--RExamples of conjugate from ComplexCategory
--R
--R
--RExamples of conjugate from Group
--R
--R
--RExamples of conjugate from OctonionCategory
--R
--R
--RExamples of conjugate from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of conjugate from PartitionsAndPermutations
--R
--R
--RExamples of conjugate from ProjectiveSpaceCategory
--R
--R
--RExamples of conjugate from Partition
--R
--R
--RExamples of conjugate from QuaternionCategory
--R
--E 444

--S 445 of 3320
)d op conjugates
--R 
--R
--RThere is one exposed function called conjugates :
--R   [1] Stream(List(Integer)) -> Stream(List(Integer))
--R             from PartitionsAndPermutations
--R
--RExamples of conjugates from PartitionsAndPermutations
--R
--E 445

--S 446 of 3320
)d op connect
--R 
--R
--RThere is one unexposed function called connect :
--R   [1] (TwoDimensionalViewport,PositiveInteger,String) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of connect from TwoDimensionalViewport
--R
--E 446

--S 447 of 3320
)d op cons
--R 
--R
--RThere are 2 exposed functions called cons :
--R   [1] (D1,List(D1)) -> List(D1) from List(D1) if D1 has TYPE
--R   [2] (D1,Stream(D1)) -> Stream(D1) from Stream(D1) if D1 has TYPE
--R
--RExamples of cons from List
--R
--R
--RExamples of cons from Stream
--R
--Rm:=[1,2,3] 
--Rn:=repeating(m) 
--Rcons(4,n)
--R
--E 447

--S 448 of 3320
)d op consnewpol
--R 
--R
--RThere is one unexposed function called consnewpol :
--R   [1] (SparseUnivariatePolynomial(D8),SparseUnivariatePolynomial(D7),
--R            Integer) -> Record(pol: SparseUnivariatePolynomial(D8),polval: 
--R            SparseUnivariatePolynomial(D7))
--R             from MultivariateSquareFree(D5,D6,D7,D8)
--R             if D5 has OAMONS and D6 has ORDSET and D7 has EUCDOM and 
--R            D8 has POLYCAT(D7,D5,D6)
--R
--RExamples of consnewpol from MultivariateSquareFree
--R
--E 448

--S 449 of 3320
)d op consRow!
--R 
--R
--RThere is one exposed function called consRow! :
--R   [1] (SparseEchelonMatrix(D3,D4),Record(Indices: List(D3),Entries: 
--R            List(D4))) -> Void
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of consRow! from SparseEchelonMatrix
--R
--E 449

--S 450 of 3320
)d op const
--R 
--R
--RThere is one exposed function called const :
--R   [1] D2 -> (D3 -> D2) from MappingPackage2(D3,D2)
--R             if D3 has SETCAT and D2 has SETCAT
--R
--RExamples of const from MappingPackage2
--R
--E 450

--S 451 of 3320
)d op constant
--R 
--R
--RThere are 5 exposed functions called constant :
--R   [1] (() -> D4) -> (D3 -> D4) from MappingPackage2(D3,D4)
--R             if D4 has SETCAT and D3 has SETCAT
--R   [2] D2 -> D1 from PackageForPoly(D1,D2,D3,D4)
--R             if D3 has DIRPCAT(D4,NNI) and D4: NNI and D1 has RING and 
--R            D2 has FAMR(D1,D3)
--R   [3] D1 -> D1 from FunctionSpaceAssertions(D2,D1)
--R             if D2 has ORDSET and D1 has FS(D2)
--R   [4] Symbol -> Expression(Integer) from PatternMatchAssertions
--R   [5] D -> D1 from D if D has XFALG(D2,D1) and D2 has ORDSET and D1
--R             has RING
--R
--RThere is one unexposed function called constant :
--R   [1] XPolynomialRing(D1,D2) -> D1 from XPolynomialRing(D1,D2)
--R             if D1 has RING and D2 has ORDMON
--R
--RExamples of constant from MappingPackage2
--R
--R
--RExamples of constant from PackageForPoly
--R
--R
--RExamples of constant from FunctionSpaceAssertions
--R
--R
--RExamples of constant from PatternMatchAssertions
--R
--R
--RExamples of constant from XFreeAlgebra
--R
--R
--RExamples of constant from XPolynomialRing
--R
--E 451

--S 452 of 3320
)d op constant?
--R 
--R
--RThere is one exposed function called constant? :
--R   [1] D -> Boolean from D if D has XFALG(D2,D3) and D2 has ORDSET and 
--R            D3 has RING
--R
--RThere are 2 unexposed functions called constant? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R   [2] XPolynomialRing(D2,D3) -> Boolean from XPolynomialRing(D2,D3)
--R             if D2 has RING and D3 has ORDMON
--R
--RExamples of constant? from Pattern
--R
--R
--RExamples of constant? from XFreeAlgebra
--R
--R
--RExamples of constant? from XPolynomialRing
--R
--E 452

--S 453 of 3320
)d op constantCoefficientRicDE
--R 
--R
--RThere is one unexposed function called constantCoefficientRicDE :
--R   [1] (D2,(D5 -> List(D4))) -> List(Record(constant: D4,eq: D2))
--R             from PrimitiveRatRicDE(D4,D5,D2,D6)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D5 has UPOLYC(D4) and D2 has 
--R            LODOCAT(D5) and D6 has LODOCAT(FRAC(D5))
--R
--RExamples of constantCoefficientRicDE from PrimitiveRatRicDE
--R
--E 453

--S 454 of 3320
)d op constantIfCan
--R 
--R
--RThere is one exposed function called constantIfCan :
--R   [1] Kernel(D3) -> Union(D1,"failed") from KernelFunctions2(D1,D3)
--R             if D3 has ORDSET and D1 has ORDSET
--R
--RExamples of constantIfCan from KernelFunctions2
--R
--E 454

--S 455 of 3320
)d op constantKernel
--R 
--R
--RThere is one exposed function called constantKernel :
--R   [1] D2 -> Kernel(D3) from KernelFunctions2(D2,D3)
--R             if D2 has ORDSET and D3 has ORDSET
--R
--RExamples of constantKernel from KernelFunctions2
--R
--E 455

--S 456 of 3320
)d op constantLeft
--R 
--R
--RThere is one exposed function called constantLeft :
--R   [1] (D4 -> D5) -> ((D3,D4) -> D5) from MappingPackage3(D3,D4,D5)
--R             if D4 has SETCAT and D5 has SETCAT and D3 has SETCAT
--R
--RExamples of constantLeft from MappingPackage3
--R
--E 456

--S 457 of 3320
)d op constantOperator
--R 
--R
--RThere is one exposed function called constantOperator :
--R   [1] D2 -> BasicOperator from BasicOperatorFunctions1(D2)
--R             if D2 has ORDSET and D2 has SETCAT
--R
--RExamples of constantOperator from BasicOperatorFunctions1
--R
--E 457

--S 458 of 3320
)d op constantOpIfCan
--R 
--R
--RThere is one exposed function called constantOpIfCan :
--R   [1] BasicOperator -> Union(D1,"failed") from BasicOperatorFunctions1
--R            (D1)
--R             if D1 has SETCAT and D1 has ORDSET
--R
--RExamples of constantOpIfCan from BasicOperatorFunctions1
--R
--E 458

--S 459 of 3320
)d op constantRight
--R 
--R
--RThere is one exposed function called constantRight :
--R   [1] (D3 -> D5) -> ((D3,D4) -> D5) from MappingPackage3(D3,D4,D5)
--R             if D3 has SETCAT and D5 has SETCAT and D4 has SETCAT
--R
--RExamples of constantRight from MappingPackage3
--R
--E 459

--S 460 of 3320
)d op constantToUnaryFunction
--R 
--R
--RThere is one unexposed function called constantToUnaryFunction :
--R   [1] DoubleFloat -> (DoubleFloat -> DoubleFloat) from 
--R            ExpressionTubePlot
--R
--RExamples of constantToUnaryFunction from ExpressionTubePlot
--R
--E 460

--S 461 of 3320
)d op constDsolve
--R 
--R
--RThere is one unexposed function called constDsolve :
--R   [1] (D2,D3,Symbol) -> Record(particular: D3,basis: List(D3))
--R             from ConstantLODE(D5,D3,D2)
--R             if D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D3 has Join(
--R            AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D2 has LODOCAT(D3)
--R
--RExamples of constDsolve from ConstantLODE
--R
--E 461

--S 462 of 3320
)d op construct
--R 
--R
--RThere are 7 exposed functions called construct :
--R   [1] List(D2) -> D from D if D2 has TYPE and D has CLAGG(D2)
--R   [2] List(Record(exponent: NonNegativeInteger,center: D3,num: D3))
--R             -> FullPartialFractionExpansion(D2,D3)
--R             from FullPartialFractionExpansion(D2,D3)
--R             if D3 has UPOLYC(D2) and D2 has Join(Field,
--R            CharacteristicZero)
--R   [3] (Union(fst: FortranScalarType,void: void),List(Polynomial(
--R            Integer)),Boolean) -> FortranType
--R             from FortranType
--R   [4] (Union(fst: FortranScalarType,void: void),List(Symbol),Boolean)
--R             -> FortranType
--R             from FortranType
--R   [5] InfiniteTuple(D2) -> Stream(D2) from InfiniteTuple(D2) if D2
--R             has TYPE
--R   [6] (D,D) -> D from D if D has LIECAT(D1) and D1 has COMRING
--R   [7] List(List(List(D2))) -> ThreeDimensionalMatrix(D2)
--R             from ThreeDimensionalMatrix(D2) if D2 has SETCAT
--R
--RThere are 15 unexposed functions called construct :
--R   [1] (LiePolynomial(D2,D3),LyndonWord(D2)) -> LiePolynomial(D2,D3)
--R             from LiePolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R   [2] (LyndonWord(D2),LiePolynomial(D2,D3)) -> LiePolynomial(D2,D3)
--R             from LiePolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R   [3] (LyndonWord(D2),LyndonWord(D2)) -> LiePolynomial(D2,D3)
--R             from LiePolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R   [4] (D1,D2) -> ModuleMonomial(D1,D2,D3) from ModuleMonomial(D1,D2,D3
--R            )
--R             if D1 has ORDSET and D2 has SETCAT and D3: ((Record(index
--R            : D1,exponent: D2),Record(index: D1,exponent: D2)) -> 
--R            Boolean)
--R   [5] List(Record(key: Symbol,entry: D3)) -> PatternMatchResult(D2,D3)
--R             from PatternMatchResult(D2,D3) if D3 has SETCAT and D2
--R             has SETCAT
--R   [6] (D2,List(D4)) -> List(SplittingNode(D2,D4)) from SplittingNode(
--R            D2,D4)
--R             if D4 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [7] List(Record(val: D3,tower: D4)) -> List(SplittingNode(D3,D4))
--R             from SplittingNode(D3,D4)
--R             if D3 has Join(SetCategory,Aggregate) and D4 has Join(
--R            SetCategory,Aggregate)
--R   [8] Record(val: D2,tower: D3) -> SplittingNode(D2,D3)
--R             from SplittingNode(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R   [9] (D1,D2) -> SplittingNode(D1,D2) from SplittingNode(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [10] (D1,D2,Boolean) -> SplittingNode(D1,D2) from SplittingNode(D1,
--R            D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [11] (D1,D2,D1,List(D2)) -> SplittingTree(D1,D2) from SplittingTree(
--R            D1,D2)
--R             if D2 has Join(SetCategory,Aggregate) and D1 has Join(
--R            SetCategory,Aggregate)
--R   [12] (D1,D2,List(SplittingNode(D1,D2))) -> SplittingTree(D1,D2)
--R             from SplittingTree(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [13] (D1,D2,List(SplittingTree(D1,D2))) -> SplittingTree(D1,D2)
--R             from SplittingTree(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [14] SplittingNode(D2,D3) -> SplittingTree(D2,D3) from SplittingTree
--R            (D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R   [15] (D1,D2) -> SuchThat(D1,D2) from SuchThat(D1,D2)
--R             if D1 has SETCAT and D2 has SETCAT
--R
--RExamples of construct from Collection
--R
--R
--RExamples of construct from FullPartialFractionExpansion
--R
--R
--RExamples of construct from FortranType
--R
--R
--RExamples of construct from InfiniteTuple
--R
--R
--RExamples of construct from LieAlgebra
--R
--R
--RExamples of construct from LiePolynomial
--R
--R
--RExamples of construct from ThreeDimensionalMatrix
--R
--R
--RExamples of construct from ModuleMonomial
--R
--R
--RExamples of construct from PatternMatchResult
--R
--R
--RExamples of construct from SplittingNode
--R
--R
--RExamples of construct from SplittingTree
--R
--R
--RExamples of construct from SuchThat
--R
--E 462

--S 463 of 3320
)d op construct
--R 
--R
--RThere are 7 exposed functions called construct :
--R   [1] List(D2) -> D from D if D2 has TYPE and D has CLAGG(D2)
--R   [2] List(Record(exponent: NonNegativeInteger,center: D3,num: D3))
--R             -> FullPartialFractionExpansion(D2,D3)
--R             from FullPartialFractionExpansion(D2,D3)
--R             if D3 has UPOLYC(D2) and D2 has Join(Field,
--R            CharacteristicZero)
--R   [3] (Union(fst: FortranScalarType,void: void),List(Polynomial(
--R            Integer)),Boolean) -> FortranType
--R             from FortranType
--R   [4] (Union(fst: FortranScalarType,void: void),List(Symbol),Boolean)
--R             -> FortranType
--R             from FortranType
--R   [5] InfiniteTuple(D2) -> Stream(D2) from InfiniteTuple(D2) if D2
--R             has TYPE
--R   [6] (D,D) -> D from D if D has LIECAT(D1) and D1 has COMRING
--R   [7] List(List(List(D2))) -> ThreeDimensionalMatrix(D2)
--R             from ThreeDimensionalMatrix(D2) if D2 has SETCAT
--R
--RThere are 15 unexposed functions called construct :
--R   [1] (LiePolynomial(D2,D3),LyndonWord(D2)) -> LiePolynomial(D2,D3)
--R             from LiePolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R   [2] (LyndonWord(D2),LiePolynomial(D2,D3)) -> LiePolynomial(D2,D3)
--R             from LiePolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R   [3] (LyndonWord(D2),LyndonWord(D2)) -> LiePolynomial(D2,D3)
--R             from LiePolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R   [4] (D1,D2) -> ModuleMonomial(D1,D2,D3) from ModuleMonomial(D1,D2,D3
--R            )
--R             if D1 has ORDSET and D2 has SETCAT and D3: ((Record(index
--R            : D1,exponent: D2),Record(index: D1,exponent: D2)) -> 
--R            Boolean)
--R   [5] List(Record(key: Symbol,entry: D3)) -> PatternMatchResult(D2,D3)
--R             from PatternMatchResult(D2,D3) if D3 has SETCAT and D2
--R             has SETCAT
--R   [6] (D2,List(D4)) -> List(SplittingNode(D2,D4)) from SplittingNode(
--R            D2,D4)
--R             if D4 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [7] List(Record(val: D3,tower: D4)) -> List(SplittingNode(D3,D4))
--R             from SplittingNode(D3,D4)
--R             if D3 has Join(SetCategory,Aggregate) and D4 has Join(
--R            SetCategory,Aggregate)
--R   [8] Record(val: D2,tower: D3) -> SplittingNode(D2,D3)
--R             from SplittingNode(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R   [9] (D1,D2) -> SplittingNode(D1,D2) from SplittingNode(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [10] (D1,D2,Boolean) -> SplittingNode(D1,D2) from SplittingNode(D1,
--R            D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [11] (D1,D2,D1,List(D2)) -> SplittingTree(D1,D2) from SplittingTree(
--R            D1,D2)
--R             if D2 has Join(SetCategory,Aggregate) and D1 has Join(
--R            SetCategory,Aggregate)
--R   [12] (D1,D2,List(SplittingNode(D1,D2))) -> SplittingTree(D1,D2)
--R             from SplittingTree(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [13] (D1,D2,List(SplittingTree(D1,D2))) -> SplittingTree(D1,D2)
--R             from SplittingTree(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R   [14] SplittingNode(D2,D3) -> SplittingTree(D2,D3) from SplittingTree
--R            (D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R   [15] (D1,D2) -> SuchThat(D1,D2) from SuchThat(D1,D2)
--R             if D1 has SETCAT and D2 has SETCAT
--R
--RExamples of construct from Collection
--R
--R
--RExamples of construct from FullPartialFractionExpansion
--R
--R
--RExamples of construct from FortranType
--R
--R
--RExamples of construct from InfiniteTuple
--R
--R
--RExamples of construct from LieAlgebra
--R
--R
--RExamples of construct from LiePolynomial
--R
--R
--RExamples of construct from ThreeDimensionalMatrix
--R
--R
--RExamples of construct from ModuleMonomial
--R
--R
--RExamples of construct from PatternMatchResult
--R
--R
--RExamples of construct from SplittingNode
--R
--R
--RExamples of construct from SplittingTree
--R
--R
--RExamples of construct from SuchThat
--R
--E 463

--S 464 of 3320
)d op contains?
--R 
--R
--RThere is one exposed function called contains? :
--R   [1] (D,D2) -> Boolean from D
--R             if D has INTCAT(D2) and D2 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R
--RExamples of contains? from IntervalCategory
--R
--E 464

--S 465 of 3320
)d op content
--R 
--R
--RThere are 3 exposed functions called content :
--R   [1] D -> D1 from D
--R             if D has FAMR(D1,D2) and D2 has OAMON and D1 has RING and 
--R            D1 has GCDDOM
--R   [2] D -> D1 from D if D has OREPCAT(D1) and D1 has RING and D1 has 
--R            GCDDOM
--R   [3] (D,D1) -> D from D
--R             if D has POLYCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET and D2 has GCDDOM
--R
--RThere is one unexposed function called content :
--R   [1] List(D3) -> List(Integer) from HeuGcd(D3) if D3 has UPOLYC(INT)
--R            
--R
--RExamples of content from FiniteAbelianMonoidRing
--R
--R
--RExamples of content from HeuGcd
--R
--R
--RExamples of content from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of content from PolynomialCategory
--R
--E 465

--S 466 of 3320
)d op continue
--R 
--R
--RThere is one exposed function called continue :
--R   [1] SingleInteger -> FortranCode from FortranCode
--R
--RExamples of continue from FortranCode
--R
--E 466

--S 467 of 3320
)d op continuedFraction
--R 
--R
--RThere are 3 exposed functions called continuedFraction :
--R   [1] (D1,Stream(D1),Stream(D1)) -> ContinuedFraction(D1)
--R             from ContinuedFraction(D1) if D1 has EUCDOM
--R   [2] Fraction(D2) -> ContinuedFraction(D2) from ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R   [3] D2 -> ContinuedFraction(Integer) from NumericContinuedFraction(
--R            D2)
--R             if D2 has FPS
--R
--RThere are 3 unexposed functions called continuedFraction :
--R   [1] BalancedPAdicRational(D2) -> ContinuedFraction(Fraction(Integer)
--R            )
--R             from BalancedPAdicRational(D2) if D2: INT
--R   [2] PAdicRational(D2) -> ContinuedFraction(Fraction(Integer))
--R             from PAdicRational(D2) if D2: INT
--R   [3] PAdicRationalConstructor(D2,D3) -> ContinuedFraction(Fraction(
--R            Integer))
--R             from PAdicRationalConstructor(D2,D3) if D2: INT and D3
--R             has PADICCT(D2)
--R
--RExamples of continuedFraction from BalancedPAdicRational
--R
--R
--RExamples of continuedFraction from ContinuedFraction
--R
--R
--RExamples of continuedFraction from NumericContinuedFraction
--R
--R
--RExamples of continuedFraction from PAdicRational
--R
--R
--RExamples of continuedFraction from PAdicRationalConstructor
--R
--E 467

--S 468 of 3320
)d op contract
--R 
--R
--RThere are 3 exposed functions called contract :
--R   [1] (CartesianTensor(D2,D3,D4),Integer,Integer) -> CartesianTensor(
--R            D2,D3,D4)
--R             from CartesianTensor(D2,D3,D4) if D2: INT and D3: NNI and 
--R            D4 has COMRING
--R   [2] (CartesianTensor(D2,D3,D4),Integer,CartesianTensor(D2,D3,D4),
--R            Integer) -> CartesianTensor(D2,D3,D4)
--R             from CartesianTensor(D2,D3,D4) if D2: INT and D3: NNI and 
--R            D4 has COMRING
--R   [3] (PolynomialIdeals(Fraction(Integer),DirectProduct(D4,
--R            NonNegativeInteger),OrderedVariableList(D3),
--R            DistributedMultivariatePolynomial(D3,Fraction(Integer))),List(
--R            OrderedVariableList(D3))) -> PolynomialIdeals(Fraction(Integer),
--R            DirectProduct(D4,NonNegativeInteger),OrderedVariableList(D3),
--R            DistributedMultivariatePolynomial(D3,Fraction(Integer)))
--R             from IdealDecompositionPackage(D3,D4) if D3: LIST(SYMBOL) 
--R            and D4: NNI
--R
--RExamples of contract from CartesianTensor
--R
--Rm:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] 
--RTm:CartesianTensor(1,2,Integer):=m 
--Rv:DirectProduct(2,Integer):=directProduct [3,4] 
--RTv:CartesianTensor(1,2,Integer):=v 
--RTmv:=contract(Tm,2,1)
--R
--Rm:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] 
--RTm:CartesianTensor(1,2,Integer):=m 
--Rv:DirectProduct(2,Integer):=directProduct [3,4] 
--RTv:CartesianTensor(1,2,Integer):=v 
--RTmv:=contract(Tm,2,Tv,1)
--R
--R
--RExamples of contract from IdealDecompositionPackage
--R
--E 468

--S 469 of 3320 done
)d op contractSolve
--R 
--R
--RThere are 2 exposed functions called contractSolve :
--R   [1] (Equation(Fraction(Polynomial(D4))),Symbol) -> SuchThat(List(
--R            Expression(D4)),List(Equation(Expression(D4))))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [2] (Fraction(Polynomial(D4)),Symbol) -> SuchThat(List(Expression(D4
--R            )),List(Equation(Expression(D4))))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R
--RExamples of contractSolve from RadicalSolvePackage
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--RcontractSolve(b,x)
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--RcontractSolve(b=0,x)
--R
--E 469

--S 470 of 3320
)d op controlPanel
--R 
--R
--RThere is one exposed function called controlPanel :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RThere is one unexposed function called controlPanel :
--R   [1] (TwoDimensionalViewport,String) -> Void from 
--R            TwoDimensionalViewport
--R
--RExamples of controlPanel from TwoDimensionalViewport
--R
--R
--RExamples of controlPanel from ThreeDimensionalViewport
--R
--E 470

--S 471 of 3320
)d op convergents
--R 
--R
--RThere is one exposed function called convergents :
--R   [1] ContinuedFraction(D2) -> Stream(Fraction(D2)) from 
--R            ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of convergents from ContinuedFraction
--R
--E 471

--S 472 of 3320
)d op convert
--R 
--R
--RThere are 32 exposed functions called convert :
--R   [1] Symbol -> BasicStochasticDifferential from 
--R            BasicStochasticDifferential
--R   [2] List(Segment(OrderedCompletion(Float))) -> List(Segment(
--R            OrderedCompletion(DoubleFloat)))
--R             from ExpertSystemToolsPackage
--R   [3] DoubleFloat -> Float from Float
--R   [4] (OutputForm,Integer) -> ScriptFormulaFormat from 
--R            ScriptFormulaFormat
--R   [5] Vector(D2) -> D from D
--R             if D2 has COMRING and D has FRAMALG(D2,D3) and D3 has 
--R            UPOLYC(D2)
--R   [6] D -> Vector(D2) from D
--R             if D has FRAMALG(D2,D3) and D2 has COMRING and D3 has 
--R            UPOLYC(D2)
--R   [7] Vector(D2) -> D from D if D2 has COMRING and D has FRNAALG(D2)
--R         
--R   [8] D -> Vector(D2) from D if D has FRNAALG(D2) and D2 has COMRING
--R         
--R   [9] Factored(D) -> D from D if D has FS(D2) and D2 has INTDOM and D2
--R             has ORDSET
--R   [10] D -> D1 from D if D has KONVERT(D1) and D1 has TYPE
--R   [11] D1 -> D from D
--R             if D2 has COMRING and D has MONOGEN(D2,D1) and D1 has 
--R            UPOLYC(D2)
--R   [12] List(D2) -> D from D if D2 has RING and D has PTCAT(D2)
--R   [13] Symbol -> RomanNumeral from RomanNumeral
--R   [14] Polynomial(D2) -> D from D
--R             if D2 has RING and D has RPOLCAT(D2,D3,D4) and D4 has 
--R            KONVERT(SYMBOL) and D3 has OAMONS and D4 has ORDSET
--R   [15] D1 -> D from D
--R             if D1 = POLY(INT) and D has RPOLCAT(D2,D3,D4) and not(
--R            ofCategory(D2,Algebra(Fraction(Integer)))) and D2 has 
--R            ALGEBRA(INT) and D4 has KONVERT(SYMBOL) and D2 has RING and
--R            D3 has OAMONS and D4 has ORDSET or D1 = POLY(INT) and D
--R             has RPOLCAT(D2,D3,D4) and D2 has ALGEBRA(FRAC(INT)) and D4
--R             has KONVERT(SYMBOL) and D2 has RING and D3 has OAMONS and 
--R            D4 has ORDSET
--R   [16] Polynomial(Fraction(Integer)) -> D from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has ALGEBRA(FRAC(INT)) 
--R            and D4 has KONVERT(SYMBOL) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [17] Record(val: List(D6),tower: D7) -> String
--R             from RegularSetDecompositionPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6
--R            ) and D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET
--R   [18] D1 -> D from D if D has SEGCAT(D1) and D1 has TYPE
--R   [19] D1 -> D from D
--R             if D has SEXCAT(D2,D3,D4,D5,D1) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D1 has 
--R            SETCAT
--R   [20] D1 -> D from D
--R             if D has SEXCAT(D2,D3,D4,D1,D5) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D1 has SETCAT and D5 has 
--R            SETCAT
--R   [21] D1 -> D from D
--R             if D has SEXCAT(D2,D3,D1,D4,D5) and D2 has SETCAT and D3
--R             has SETCAT and D1 has SETCAT and D4 has SETCAT and D5 has 
--R            SETCAT
--R   [22] D1 -> D from D
--R             if D has SEXCAT(D2,D1,D3,D4,D5) and D2 has SETCAT and D1
--R             has SETCAT and D3 has SETCAT and D4 has SETCAT and D5 has 
--R            SETCAT
--R   [23] D1 -> D from D
--R             if D has SEXCAT(D1,D2,D3,D4,D5) and D1 has SETCAT and D2
--R             has SETCAT and D3 has SETCAT and D4 has SETCAT and D5 has 
--R            SETCAT
--R   [24] List(D) -> D from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R   [25] Record(val: List(D6),tower: D7) -> String
--R             from SquareFreeRegularSetDecompositionPackage(D3,D4,D5,D6,
--R            D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D7 has SFRTCAT(D3,D4,D5,D6
--R            ) and D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET
--R   [26] (OutputForm,Integer,OutputForm) -> TexFormat from TexFormat
--R   [27] (OutputForm,Integer) -> TexFormat from TexFormat
--R   [28] NewSparseMultivariatePolynomial(D3,OrderedVariableList(D4)) -> 
--R            NewSparseMultivariatePolynomial(D3,OrderedVariableList(D5))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R   [29] Polynomial(D3) -> Polynomial(RealClosure(Fraction(D3)))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R   [30] NewSparseMultivariatePolynomial(D3,OrderedVariableList(D5)) -> 
--R            Polynomial(RealClosure(Fraction(D3)))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D4: LIST(SYMBOL)
--R   [31] SparseUnivariatePolynomial(D3) -> SparseUnivariatePolynomial(
--R            RealClosure(Fraction(D3)))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R   [32] SquareFreeRegularTriangularSet(D3,IndexedExponents(
--R            OrderedVariableList(D5)),OrderedVariableList(D5),
--R            NewSparseMultivariatePolynomial(D3,OrderedVariableList(D5))) -> 
--R            List(NewSparseMultivariatePolynomial(D3,OrderedVariableList(D5)))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D4: LIST(SYMBOL)
--R
--RThere are 5 unexposed functions called convert :
--R   [1] D2 -> Pattern(D3) from ComplexPattern(D3,D4,D2)
--R             if D4 has Join(ConvertibleTo(Pattern(D3)),CommutativeRing)
--R            and D3 has SETCAT and D2 has COMPCAT(D4)
--R   [2] List(D5) -> GeneralPolynomialSet(D2,D3,D4,D5)
--R             from GeneralPolynomialSet(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] SExpression -> InputForm from InputForm
--R   [4] List(Pattern(D2)) -> Pattern(D2) from Pattern(D2) if D2 has 
--R            SETCAT
--R   [5] SingletonAsOrderedSet -> Symbol from SingletonAsOrderedSet
--R
--RExamples of convert from BasicStochasticDifferential
--R
--R
--RExamples of convert from ComplexPattern
--R
--R
--RExamples of convert from ExpertSystemToolsPackage
--R
--R
--RExamples of convert from Float
--R
--R
--RExamples of convert from ScriptFormulaFormat
--R
--R
--RExamples of convert from FramedAlgebra
--R
--R
--RExamples of convert from FramedNonAssociativeAlgebra
--R
--R
--RExamples of convert from FunctionSpace
--R
--R
--RExamples of convert from GeneralPolynomialSet
--R
--R
--RExamples of convert from InputForm
--R
--R
--RExamples of convert from ConvertibleTo
--R
--R
--RExamples of convert from MonogenicAlgebra
--R
--R
--RExamples of convert from Pattern
--R
--R
--RExamples of convert from PointCategory
--R
--R
--RExamples of convert from RomanNumeral
--R
--R
--RExamples of convert from RecursivePolynomialCategory
--R
--R
--RExamples of convert from RegularSetDecompositionPackage
--R
--R
--RExamples of convert from SingletonAsOrderedSet
--R
--R
--RExamples of convert from SegmentCategory
--R
--R
--RExamples of convert from SExpressionCategory
--R
--R
--RExamples of convert from SquareFreeRegularSetDecompositionPackage
--R
--R
--RExamples of convert from TexFormat
--R
--R
--RExamples of convert from ZeroDimensionalSolvePackage
--R
--E 472

--S 473 of 3320
)d op convertIfCan
--R 
--R
--RThere is one exposed function called convertIfCan :
--R   [1] Symbol -> Union(BasicStochasticDifferential,"failed")
--R             from BasicStochasticDifferential
--R
--RExamples of convertIfCan from BasicStochasticDifferential
--R
--E 473

--S 474 of 3320
)d op coord
--R 
--R
--RThere is one exposed function called coord :
--R   [1] (Point(DoubleFloat) -> Point(DoubleFloat)) -> DrawOption from 
--R            DrawOption
--R
--RThere are 2 unexposed functions called coord :
--R   [1] (List(DrawOption),(Point(DoubleFloat) -> Point(DoubleFloat)))
--R             -> (Point(DoubleFloat) -> Point(DoubleFloat))
--R             from DrawOptionFunctions0
--R   [2] (HomogeneousDistributedMultivariatePolynomial(D4,D5),List(
--R            HomogeneousDistributedMultivariatePolynomial(D4,D5))) -> Vector(
--R            D5)
--R             from LinGroebnerPackage(D4,D5) if D4: LIST(SYMBOL) and D5
--R             has GCDDOM
--R
--RExamples of coord from DrawOptionFunctions0
--R
--R
--RExamples of coord from DrawOption
--R
--R
--RExamples of coord from LinGroebnerPackage
--R
--E 474

--S 475 of 3320
)d op coordinate
--R 
--R
--RThere are 3 exposed functions called coordinate :
--R   [1] (ParametricPlaneCurve(D1),NonNegativeInteger) -> D1
--R             from ParametricPlaneCurve(D1) if D1 has TYPE
--R   [2] (ParametricSpaceCurve(D1),NonNegativeInteger) -> D1
--R             from ParametricSpaceCurve(D1) if D1 has TYPE
--R   [3] (ParametricSurface(D1),NonNegativeInteger) -> D1
--R             from ParametricSurface(D1) if D1 has TYPE
--R
--RExamples of coordinate from ParametricPlaneCurve
--R
--R
--RExamples of coordinate from ParametricSpaceCurve
--R
--R
--RExamples of coordinate from ParametricSurface
--R
--E 475

--S 476 of 3320
)d op coordinates
--R 
--R
--RThere are 12 exposed functions called coordinates :
--R   [1] (Point(DoubleFloat) -> Point(DoubleFloat)) -> DrawOption from 
--R            DrawOption
--R   [2] Vector(D) -> Matrix(D3) from D if D has FAXF(D3) and D3 has 
--R            FIELD
--R   [3] D -> Vector(D2) from D if D has FAXF(D2) and D2 has FIELD
--R   [4] (Vector(D),Vector(D)) -> Matrix(D3) from D
--R             if D has FINAALG(D3) and D3 has COMRING
--R   [5] (D,Vector(D)) -> Vector(D3) from D if D has FINAALG(D3) and D3
--R             has COMRING
--R   [6] (Vector(D),Vector(D)) -> Matrix(D3) from D
--R             if D has FINRALG(D3,D4) and D3 has COMRING and D4 has 
--R            UPOLYC(D3)
--R   [7] (D,Vector(D)) -> Vector(D3) from D
--R             if D has FINRALG(D3,D4) and D3 has COMRING and D4 has 
--R            UPOLYC(D3)
--R   [8] Vector(D) -> Matrix(D3) from D
--R             if D has FRAMALG(D3,D4) and D3 has COMRING and D4 has 
--R            UPOLYC(D3)
--R   [9] D -> Vector(D2) from D
--R             if D has FRAMALG(D2,D3) and D2 has COMRING and D3 has 
--R            UPOLYC(D2)
--R   [10] Vector(D) -> Matrix(D3) from D if D has FRNAALG(D3) and D3 has 
--R            COMRING
--R   [11] D -> Vector(D2) from D if D has FRNAALG(D2) and D2 has COMRING
--R            
--R   [12] (Matrix(D4),List(Matrix(D4))) -> Vector(D4)
--R             from StructuralConstantsPackage(D4) if D4 has FIELD
--R
--RExamples of coordinates from DrawOption
--R
--R
--RExamples of coordinates from FiniteAlgebraicExtensionField
--R
--R
--RExamples of coordinates from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of coordinates from FiniteRankAlgebra
--R
--R
--RExamples of coordinates from FramedAlgebra
--R
--R
--RExamples of coordinates from FramedNonAssociativeAlgebra
--R
--R
--RExamples of coordinates from StructuralConstantsPackage
--R
--E 476

--S 477 of 3320
)d op copies
--R 
--R
--RThere is one exposed function called copies :
--R   [1] (Integer,String) -> String from DisplayPackage
--R
--RExamples of copies from DisplayPackage
--R
--E 477

--S 478 of 3320
)d op copy
--R 
--R
--RThere are 10 exposed functions called copy :
--R   [1] D -> D from D if D has AGG
--R   [2] ArrayStack(D1) -> ArrayStack(D1) from ArrayStack(D1) if D1 has 
--R            SETCAT
--R   [3] BasicOperator -> BasicOperator from BasicOperator
--R   [4] Dequeue(D1) -> Dequeue(D1) from Dequeue(D1) if D1 has SETCAT
--R   [5] Heap(D1) -> Heap(D1) from Heap(D1) if D1 has ORDSET
--R   [6] D -> D from D if D has INS
--R   [7] Queue(D1) -> Queue(D1) from Queue(D1) if D1 has SETCAT
--R   [8] SparseEchelonMatrix(D1,D2) -> SparseEchelonMatrix(D1,D2)
--R             from SparseEchelonMatrix(D1,D2) if D1 has ORDSET and D2
--R             has RING
--R   [9] D -> D from D if D has SPACEC(D1) and D1 has RING
--R   [10] Stack(D1) -> Stack(D1) from Stack(D1) if D1 has SETCAT
--R
--RThere are 3 unexposed functions called copy :
--R   [1] SubSpaceComponentProperty -> SubSpaceComponentProperty
--R             from SubSpaceComponentProperty
--R   [2] Pattern(D1) -> Pattern(D1) from Pattern(D1) if D1 has SETCAT
--R   [3] SplittingNode(D1,D2) -> SplittingNode(D1,D2) from SplittingNode(
--R            D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of copy from Aggregate
--R
--R
--RExamples of copy from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rcopy a
--R
--R
--RExamples of copy from BasicOperator
--R
--R
--RExamples of copy from SubSpaceComponentProperty
--R
--R
--RExamples of copy from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rcopy a
--R
--R
--RExamples of copy from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rcopy a
--R
--R
--RExamples of copy from IntegerNumberSystem
--R
--R
--RExamples of copy from Pattern
--R
--R
--RExamples of copy from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rcopy a
--R
--R
--RExamples of copy from SparseEchelonMatrix
--R
--R
--RExamples of copy from ThreeSpaceCategory
--R
--R
--RExamples of copy from SplittingNode
--R
--R
--RExamples of copy from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rcopy a
--R
--E 478

--S 479 of 3320
)d op copy!
--R 
--R
--RThere is one unexposed function called copy! :
--R   [1] (Matrix(D2),Matrix(D2)) -> Matrix(D2)
--R             from StorageEfficientMatrixOperations(D2) if D2 has RING
--R         
--R
--RExamples of copy! from StorageEfficientMatrixOperations
--R
--E 479

--S 480 of 3320 done
)d op copyBSD
--R 
--R
--RThere is one exposed function called copyBSD :
--R   [1]  -> List(BasicStochasticDifferential) from 
--R            BasicStochasticDifferential
--R
--RExamples of copyBSD from BasicStochasticDifferential
--R
--Rintroduce!(t,dt) -- dt is a new stochastic differential 
--RcopyBSD()
--R
--E 480

--S 481 of 3320
)d op copyDrift
--R 
--R
--RThere is one exposed function called copyDrift :
--R   [1]  -> Table(StochasticDifferential(D2),StochasticDifferential(D2))
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of copyDrift from StochasticDifferential
--R
--E 481

--S 482 of 3320
)d op copy_first
--R 
--R   copy_first is not a known function. Axiom will try to list its 
--R      functions which contain copy_first in their names. This is the 
--R      same output you would get by issuing
--R                         )what operations copy_first
--R
--R   There are no operations containing those patterns
--R
--E 482

--S 483 of 3320
--R---------------------- )d op copyInto_! (fix this)
--E 483

--S 484 of 3320 done
)d op copyIto
--R 
--R
--RThere is one exposed function called copyIto :
--R   [1]  -> Table(Symbol,BasicStochasticDifferential)
--R             from BasicStochasticDifferential
--R
--RExamples of copyIto from BasicStochasticDifferential
--R
--Rintroduce!(t,dt) -- dt is a new stochastic differential 
--RcopyIto()
--R
--E 484

--S 485 of 3320
)d op copyQuadVar
--R 
--R
--RThere is one exposed function called copyQuadVar :
--R   [1]  -> Table(StochasticDifferential(D2),StochasticDifferential(D2))
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of copyQuadVar from StochasticDifferential
--R
--E 485

--S 486 of 3320
--R---------------------- )d op copy_slice (fix this)
--E 486

--S 487 of 3320
)d op corrPoly
--R 
--R
--RThere is one unexposed function called corrPoly :
--R   [1] (SparseUnivariatePolynomial(D2),List(D1),List(D9),List(
--R            NonNegativeInteger),List(SparseUnivariatePolynomial(D2)),Vector(
--R            List(SparseUnivariatePolynomial(D9))),D9) -> Union(List(
--R            SparseUnivariatePolynomial(D2)),"failed")
--R             from MultivariateLifting(D10,D1,D9,D2)
--R             if D1 has ORDSET and D9 has EUCDOM and D2 has POLYCAT(D9,
--R            D10,D1) and D10 has OAMONS
--R
--RExamples of corrPoly from MultivariateLifting
--R
--E 487

--S 488 of 3320
)d op cos
--R 
--R
--RThere are 2 exposed functions called cos :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has TRIGCAT
--R
--RThere are 6 unexposed functions called cos :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] D1 -> FourierComponent(D1) from FourierComponent(D1) if D1 has 
--R            ORDSET
--R   [5] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [6] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of cos from ElementaryFunction
--R
--R
--RExamples of cos from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of cos from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of cos from FourierComponent
--R
--R
--RExamples of cos from FortranExpression
--R
--R
--RExamples of cos from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of cos from StreamTranscendentalFunctions
--R
--R
--RExamples of cos from TrigonometricFunctionCategory
--R
--E 488

--S 489 of 3320
)d op cos2sec
--R 
--R
--RThere is one exposed function called cos2sec :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of cos2sec from TranscendentalManipulations
--R
--E 489

--S 490 of 3320
)d op cosh
--R 
--R
--RThere are 2 exposed functions called cosh :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called cosh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of cosh from ElementaryFunction
--R
--R
--RExamples of cosh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of cosh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of cosh from FortranExpression
--R
--R
--RExamples of cosh from HyperbolicFunctionCategory
--R
--R
--RExamples of cosh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of cosh from StreamTranscendentalFunctions
--R
--E 490

--S 491 of 3320
)d op cosh  
--R 
--R
--RThere are 2 exposed functions called cosh :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called cosh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of cosh from ElementaryFunction
--R
--R
--RExamples of cosh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of cosh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of cosh from FortranExpression
--R
--R
--RExamples of cosh from HyperbolicFunctionCategory
--R
--R
--RExamples of cosh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of cosh from StreamTranscendentalFunctions
--R
--E 491

--S 492 of 3320
)d op cosh2sech
--R 
--R
--RThere is one exposed function called cosh2sech :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of cosh2sech from TranscendentalManipulations
--R
--E 492

--S 493 of 3320
)d op coshIfCan
--R 
--R
--RThere is one exposed function called coshIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of coshIfCan from PartialTranscendentalFunctions
--R
--E 493

--S 494 of 3320
)d op cosIfCan
--R 
--R
--RThere is one exposed function called cosIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of cosIfCan from PartialTranscendentalFunctions
--R
--E 494

--S 495 of 3320
)d op cosSinInfo
--R 
--R
--RThere is one unexposed function called cosSinInfo :
--R   [1] Integer -> List(List(DoubleFloat)) from TubePlotTools
--R
--RExamples of cosSinInfo from TubePlotTools
--R
--E 495

--S 496 of 3320
)d op cot
--R 
--R
--RThere is one exposed function called cot :
--R   [1] D -> D from D if D has TRIGCAT
--R
--RThere are 5 unexposed functions called cot :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of cot from ElementaryFunction
--R
--R
--RExamples of cot from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of cot from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of cot from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of cot from StreamTranscendentalFunctions
--R
--R
--RExamples of cot from TrigonometricFunctionCategory
--R
--E 496

--S 497 of 3320
)d op cot2tan
--R 
--R
--RThere is one exposed function called cot2tan :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of cot2tan from TranscendentalManipulations
--R
--E 497

--S 498 of 3320
)d op cot2trig
--R 
--R
--RThere is one exposed function called cot2trig :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of cot2trig from TranscendentalManipulations
--R
--E 498

--S 499 of 3320
)d op coth
--R 
--R
--RThere is one exposed function called coth :
--R   [1] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called coth :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of coth from ElementaryFunction
--R
--R
--RExamples of coth from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of coth from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of coth from HyperbolicFunctionCategory
--R
--R
--RExamples of coth from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of coth from StreamTranscendentalFunctions
--R
--E 499

--S 500 of 3320
)d op coth  
--R 
--R
--RThere is one exposed function called coth :
--R   [1] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called coth :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of coth from ElementaryFunction
--R
--R
--RExamples of coth from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of coth from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of coth from HyperbolicFunctionCategory
--R
--R
--RExamples of coth from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of coth from StreamTranscendentalFunctions
--R
--E 500

--S 501 of 3320
)d op coth2tanh
--R 
--R
--RThere is one exposed function called coth2tanh :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of coth2tanh from TranscendentalManipulations
--R
--E 501

--S 502 of 3320
)d op coth2trigh
--R 
--R
--RThere is one exposed function called coth2trigh :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of coth2trigh from TranscendentalManipulations
--R
--E 502

--S 503 of 3320
)d op cothIfCan
--R 
--R
--RThere is one exposed function called cothIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of cothIfCan from PartialTranscendentalFunctions
--R
--E 503

--S 504 of 3320
)d op cotIfCan
--R 
--R
--RThere is one exposed function called cotIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of cotIfCan from PartialTranscendentalFunctions
--R
--E 504

--S 505 of 3320
)d op count
--R 
--R
--RThere are 12 exposed functions called count :
--R   [1] (D2,ArrayStack(D2)) -> NonNegativeInteger from ArrayStack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R   [2] ((D3 -> Boolean),ArrayStack(D3)) -> NonNegativeInteger
--R             from ArrayStack(D3) if $ has finiteAggregate and D3 has 
--R            SETCAT
--R   [3] (D2,Dequeue(D2)) -> NonNegativeInteger from Dequeue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R   [4] ((D3 -> Boolean),Dequeue(D3)) -> NonNegativeInteger from Dequeue
--R            (D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [5] (D2,Heap(D2)) -> NonNegativeInteger from Heap(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            ORDSET
--R   [6] ((D3 -> Boolean),Heap(D3)) -> NonNegativeInteger from Heap(D3)
--R             if $ has finiteAggregate and D3 has ORDSET
--R   [7] (D2,D) -> NonNegativeInteger from D
--R             if D has finiteAggregate and D has HOAGG(D2) and D2 has 
--R            TYPE and D2 has SETCAT
--R   [8] ((D3 -> Boolean),D) -> NonNegativeInteger from D
--R             if D has finiteAggregate and D has HOAGG(D3) and D3 has 
--R            TYPE
--R   [9] (D2,Queue(D2)) -> NonNegativeInteger from Queue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R   [10] ((D3 -> Boolean),Queue(D3)) -> NonNegativeInteger from Queue(D3
--R            )
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [11] (D2,Stack(D2)) -> NonNegativeInteger from Stack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R   [12] ((D3 -> Boolean),Stack(D3)) -> NonNegativeInteger from Stack(D3
--R            )
--R             if $ has finiteAggregate and D3 has SETCAT
--R
--RExamples of count from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rcount(4,a)
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rcount(x+->(x>2),a)
--R
--R
--RExamples of count from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rcount(4,a)
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rcount(x+->(x>2),a)
--R
--R
--RExamples of count from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rcount(4,a)
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rcount(x+->(x>2),a)
--R
--R
--RExamples of count from HomogeneousAggregate
--R
--R
--RExamples of count from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rcount(4,a)
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rcount(x+->(x>2),a)
--R
--R
--RExamples of count from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rcount(4,a)
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rcount(x+->(x>2),a)
--R
--E 505

--S 506 of 3320 done
)d op countable?
--R 
--R
--RThere is one exposed function called countable? :
--R   [1] CardinalNumber -> Boolean from CardinalNumber
--R
--RExamples of countable? from CardinalNumber
--R
--Rc2:=2::CardinalNumber 
--Rcountable? c2 
--RA0:=Aleph 0 
--Rcountable? A0 
--RA1:=Aleph 1 
--Rcountable? A1
--R
--E 506

--S 507 of 3320
)d op countRealRoots
--R 
--R
--RThere is one exposed function called countRealRoots :
--R   [1] UnivariatePolynomial(D4,D3) -> Integer from SturmHabichtPackage(
--R            D3,D4)
--R             if D3 has OINTDOM and D4: SYMBOL
--R
--RExamples of countRealRoots from SturmHabichtPackage
--R
--E 507

--S 508 of 3320
)d op countRealRootsMultiple
--R 
--R
--RThere is one exposed function called countRealRootsMultiple :
--R   [1] UnivariatePolynomial(D4,D3) -> Integer from SturmHabichtPackage(
--R            D3,D4)
--R             if D3 has GCDDOM and D3 has OINTDOM and D4: SYMBOL
--R
--RExamples of countRealRootsMultiple from SturmHabichtPackage
--R
--E 508

--S 509 of 3320
)d op cPower
--R 
--R
--RThere is one unexposed function called cPower :
--R   [1] (InnerSparseUnivariatePowerSeries(D1),D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cPower from InnerSparseUnivariatePowerSeries
--R
--E 509

--S 510 of 3320
)d op cRationalPower
--R 
--R
--RThere is one unexposed function called cRationalPower :
--R   [1] (InnerSparseUnivariatePowerSeries(D2),Fraction(Integer)) -> 
--R            InnerSparseUnivariatePowerSeries(D2)
--R             from InnerSparseUnivariatePowerSeries(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R
--RExamples of cRationalPower from InnerSparseUnivariatePowerSeries
--R
--E 510

--S 511 of 3320
)d op create
--R 
--R
--RThere are 4 exposed functions called create :
--R   [1] (D2,D3) -> D from D
--R             if D4 has FIELD and D6 has DIRPCAT(#(D5),NNI) and D7 has 
--R            LOCPOWC(D4) and D has INFCLCT(D4,D5,D3,D6,D2,D7,D8,D9,D1) 
--R            and D3 has POLYCAT(D4,D6,OVAR(D5)) and D2 has PRSPCAT(D4) 
--R            and D8 has PLACESC(D4,D7) and D1 has BLMETCT
--R   [2] (D7,DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY],
--R            D13),AffinePlane(D13),NonNegativeInteger,D11,NonNegativeInteger,
--R            DIVISOR,D13,Symbol) -> D
--R             from D
--R             if D13 has FIELD and D3 has DIRPCAT(#(D1),NNI) and D4 has 
--R            LOCPOWC(D13) and D has INFCLCT(D13,D1,D2,D3,D7,D4,D5,D6,D11
--R            ) and D2 has POLYCAT(D13,D3,OVAR(D1)) and D7 has PRSPCAT(
--R            D13) and D5 has PLACESC(D13,D4) and D11 has BLMETCT
--R   [3] Symbol -> D from D
--R             if D2 has FIELD and D has PLACESC(D2,D3) and D3 has 
--R            LOCPOWC(D2)
--R   [4] List(D2) -> D from D
--R             if D2 has FIELD and D has PLACESC(D2,D3) and D3 has 
--R            LOCPOWC(D2)
--R
--RThere is one unexposed function called create :
--R   [1]  -> SingletonAsOrderedSet from SingletonAsOrderedSet
--R
--RExamples of create from InfinitlyClosePointCategory
--R
--R
--RExamples of create from PlacesCategory
--R
--R
--RExamples of create from SingletonAsOrderedSet
--R
--E 511

--S 512 of 3320
)d op create3Space
--R 
--R
--RThere are 2 exposed functions called create3Space :
--R   [1] SubSpace(3,D2) -> D from D if D2 has RING and D has SPACEC(D2)
--R         
--R   [2]  -> D from D if D has SPACEC(D1) and D1 has RING
--R
--RExamples of create3Space from ThreeSpaceCategory
--R
--E 512

--S 513 of 3320
)d op createGenericMatrix
--R 
--R
--RThere is one exposed function called createGenericMatrix :
--R   [1] NonNegativeInteger -> Matrix(Polynomial(D3))
--R             from RepresentationPackage1(D3) if D3 has RING
--R
--RExamples of createGenericMatrix from RepresentationPackage1
--R
--E 513

--S 514 of 3320
)d op createHN
--R 
--R
--RThere is one exposed function called createHN :
--R   [1] (Integer,Integer,Integer,Integer,Integer,Boolean,Union(left,
--R            center,right,vertical,horizontal)) -> D
--R             from D if D has BLMETCT
--R
--RExamples of createHN from BlowUpMethodCategory
--R
--E 514

--S 515 of 3320
)d op createIrreduciblePoly
--R 
--R
--RThere is one unexposed function called createIrreduciblePoly :
--R   [1] PositiveInteger -> SparseUnivariatePolynomial(D3)
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R
--RExamples of createIrreduciblePoly from FiniteFieldPolynomialPackage
--R
--E 515

--S 516 of 3320
)d op createLowComplexityNormalBasis
--R 
--R
--RThere is one unexposed function called createLowComplexityNormalBasis :
--R   [1] PositiveInteger -> Union(SparseUnivariatePolynomial(D3),Vector(
--R            List(Record(value: D3,index: SingleInteger))))
--R             from FiniteFieldFunctions(D3) if D3 has FFIELDC
--R
--RExamples of createLowComplexityNormalBasis from FiniteFieldFunctions
--R
--E 516

--S 517 of 3320
)d op createLowComplexityTable
--R 
--R
--RThere is one unexposed function called createLowComplexityTable :
--R   [1] PositiveInteger -> Union(Vector(List(Record(value: D3,index: 
--R            SingleInteger))),"failed")
--R             from FiniteFieldFunctions(D3) if D3 has FFIELDC
--R
--RExamples of createLowComplexityTable from FiniteFieldFunctions
--R
--E 517

--S 518 of 3320
)d op createMultiplicationMatrix
--R 
--R
--RThere is one unexposed function called createMultiplicationMatrix :
--R   [1] Vector(List(Record(value: D3,index: SingleInteger))) -> Matrix(
--R            D3)
--R             from FiniteFieldFunctions(D3) if D3 has FFIELDC
--R
--RExamples of createMultiplicationMatrix from FiniteFieldFunctions
--R
--E 518

--S 519 of 3320
)d op createMultiplicationTable
--R 
--R
--RThere is one unexposed function called createMultiplicationTable :
--R   [1] SparseUnivariatePolynomial(D3) -> Vector(List(Record(value: D3,
--R            index: SingleInteger)))
--R             from FiniteFieldFunctions(D3) if D3 has FFIELDC
--R
--RExamples of createMultiplicationTable from FiniteFieldFunctions
--R
--E 519

--S 520 of 3320
)d op createNormalElement
--R 
--R
--RThere is one exposed function called createNormalElement :
--R   [1]  -> D from D if D has FAXF(D1) and D1 has FINITE and D1 has 
--R            FIELD
--R
--RExamples of createNormalElement from FiniteAlgebraicExtensionField
--R
--E 520

--S 521 of 3320
)d op createNormalPoly
--R 
--R
--RThere is one unexposed function called createNormalPoly :
--R   [1] PositiveInteger -> SparseUnivariatePolynomial(D3)
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R
--RExamples of createNormalPoly from FiniteFieldPolynomialPackage
--R
--E 521

--S 522 of 3320
)d op createNormalPrimitivePoly
--R 
--R
--RThere is one unexposed function called createNormalPrimitivePoly :
--R   [1] PositiveInteger -> SparseUnivariatePolynomial(D3)
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R
--RExamples of createNormalPrimitivePoly from FiniteFieldPolynomialPackage
--R
--E 522

--S 523 of 3320
)d op createPrimitiveElement
--R 
--R
--RThere is one exposed function called createPrimitiveElement :
--R   [1]  -> D from D if D has FFIELDC
--R
--RExamples of createPrimitiveElement from FiniteFieldCategory
--R
--E 523

--S 524 of 3320
)d op createPrimitiveNormalPoly
--R 
--R
--RThere is one unexposed function called createPrimitiveNormalPoly :
--R   [1] PositiveInteger -> SparseUnivariatePolynomial(D3)
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R
--RExamples of createPrimitiveNormalPoly from FiniteFieldPolynomialPackage
--R
--E 524

--S 525 of 3320
)d op createPrimitivePoly
--R 
--R
--RThere is one unexposed function called createPrimitivePoly :
--R   [1] PositiveInteger -> SparseUnivariatePolynomial(D3)
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R
--RExamples of createPrimitivePoly from FiniteFieldPolynomialPackage
--R
--E 525

--S 526 of 3320
)d op createRandomElement
--R 
--R
--RThere is one exposed function called createRandomElement :
--R   [1] (List(Matrix(D3)),Matrix(D3)) -> Matrix(D3)
--R             from RepresentationPackage2(D3) if D3 has RING
--R
--RExamples of createRandomElement from RepresentationPackage2
--R
--E 526

--S 527 of 3320
)d op createThreeSpace
--R 
--R
--RThere is one exposed function called createThreeSpace :
--R   [1]  -> ThreeSpace(DoubleFloat) from TopLevelThreeSpace
--R
--RExamples of createThreeSpace from TopLevelThreeSpace
--R
--E 527

--S 528 of 3320
)d op createZechTable
--R 
--R
--RThere is one unexposed function called createZechTable :
--R   [1] SparseUnivariatePolynomial(D3) -> PrimitiveArray(SingleInteger)
--R             from FiniteFieldFunctions(D3) if D3 has FFIELDC
--R
--RExamples of createZechTable from FiniteFieldFunctions
--R
--E 528

--S 529 of 3320 done
)d op credits
--R 
--R
--RThere is one exposed function called credits :
--R   [1]  -> Void from ApplicationProgramInterface
--R
--RExamples of credits from ApplicationProgramInterface
--R
--Rcredits()
--R
--E 529

--S 530 of 3320
)d op credPol
--R 
--R
--RThere is one unexposed function called credPol :
--R   [1] (D1,List(D1)) -> D1 from GroebnerInternalPackage(D3,D4,D5,D1)
--R             if D1 has POLYCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of credPol from GroebnerInternalPackage
--R
--E 530

--S 531 of 3320
)d op crest
--R 
--R
--RThere is one unexposed function called crest :
--R   [1] NonNegativeInteger -> (Stream(Polynomial(D3)) -> Stream(
--R            Polynomial(D3)))
--R             from WeierstrassPreparation(D3) if D3 has FIELD
--R
--RExamples of crest from WeierstrassPreparation
--R
--E 531

--S 532 of 3320
)d op critB
--R 
--R
--RThere is one unexposed function called critB :
--R   [1] (D2,D2,D2,D2) -> Boolean from GroebnerInternalPackage(D3,D2,D4,
--R            D5)
--R             if D3 has GCDDOM and D2 has OAMONS and D4 has ORDSET and 
--R            D5 has POLYCAT(D3,D2,D4)
--R
--RExamples of critB from GroebnerInternalPackage
--R
--E 532

--S 533 of 3320
)d op critBonD
--R 
--R
--RThere is one unexposed function called critBonD :
--R   [1] (D2,List(Record(lcmfij: D4,totdeg: NonNegativeInteger,poli: D2,
--R            polj: D2))) -> List(Record(lcmfij: D4,totdeg: NonNegativeInteger,
--R            poli: D2,polj: D2))
--R             from GroebnerInternalPackage(D3,D4,D5,D2)
--R             if D4 has OAMONS and D2 has POLYCAT(D3,D4,D5) and D3 has 
--R            GCDDOM and D5 has ORDSET
--R
--RExamples of critBonD from GroebnerInternalPackage
--R
--E 533

--S 534 of 3320
)d op critM
--R 
--R
--RThere is one unexposed function called critM :
--R   [1] (D2,D2) -> Boolean from GroebnerInternalPackage(D3,D2,D4,D5)
--R             if D3 has GCDDOM and D2 has OAMONS and D4 has ORDSET and 
--R            D5 has POLYCAT(D3,D2,D4)
--R
--RExamples of critM from GroebnerInternalPackage
--R
--E 534

--S 535 of 3320
)d op critMonD1
--R 
--R
--RThere is one unexposed function called critMonD1 :
--R   [1] (D2,List(Record(lcmfij: D2,totdeg: NonNegativeInteger,poli: D5,
--R            polj: D5))) -> List(Record(lcmfij: D2,totdeg: NonNegativeInteger,
--R            poli: D5,polj: D5))
--R             from GroebnerInternalPackage(D3,D2,D4,D5)
--R             if D2 has OAMONS and D5 has POLYCAT(D3,D2,D4) and D3 has 
--R            GCDDOM and D4 has ORDSET
--R
--RExamples of critMonD1 from GroebnerInternalPackage
--R
--E 535

--S 536 of 3320
)d op critMTonD1
--R 
--R
--RThere is one unexposed function called critMTonD1 :
--R   [1] List(Record(lcmfij: D3,totdeg: NonNegativeInteger,poli: D5,polj
--R            : D5)) -> List(Record(lcmfij: D3,totdeg: NonNegativeInteger,poli
--R            : D5,polj: D5))
--R             from GroebnerInternalPackage(D2,D3,D4,D5)
--R             if D3 has OAMONS and D5 has POLYCAT(D2,D3,D4) and D2 has 
--R            GCDDOM and D4 has ORDSET
--R
--RExamples of critMTonD1 from GroebnerInternalPackage
--R
--E 536

--S 537 of 3320
)d op critpOrder
--R 
--R
--RThere is one unexposed function called critpOrder :
--R   [1] (Record(lcmfij: D4,totdeg: NonNegativeInteger,poli: D6,polj: D6)
--R            ,Record(lcmfij: D4,totdeg: NonNegativeInteger,poli: D6,polj: D6))
--R             -> Boolean
--R             from GroebnerInternalPackage(D3,D4,D5,D6)
--R             if D4 has OAMONS and D6 has POLYCAT(D3,D4,D5) and D3 has 
--R            GCDDOM and D5 has ORDSET
--R
--RExamples of critpOrder from GroebnerInternalPackage
--R
--E 537

--S 538 of 3320
)d op critT
--R 
--R
--RThere is one unexposed function called critT :
--R   [1] Record(lcmfij: D4,totdeg: NonNegativeInteger,poli: D6,polj: D6)
--R             -> Boolean
--R             from GroebnerInternalPackage(D3,D4,D5,D6)
--R             if D4 has OAMONS and D6 has POLYCAT(D3,D4,D5) and D3 has 
--R            GCDDOM and D5 has ORDSET
--R
--RExamples of critT from GroebnerInternalPackage
--R
--E 538

--S 539 of 3320
)d op cross
--R 
--R
--RThere are 2 exposed functions called cross :
--R   [1] (D,D) -> D from D if D has PTCAT(D1) and D1 has RING
--R   [2] (D,D) -> D from D if D has VECTCAT(D1) and D1 has TYPE and D1
--R             has RING
--R
--RThere is one unexposed function called cross :
--R   [1] (Point(DoubleFloat),Point(DoubleFloat)) -> Point(DoubleFloat)
--R             from TubePlotTools
--R
--RExamples of cross from PointCategory
--R
--R
--RExamples of cross from TubePlotTools
--R
--R
--RExamples of cross from VectorCategory
--R
--E 539

--S 540 of 3320
)d op crushedSet
--R 
--R
--RThere is one unexposed function called crushedSet :
--R   [1] List(D5) -> List(D5) from PolynomialSetUtilitiesPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of crushedSet from PolynomialSetUtilitiesPackage
--R
--E 540

--S 541 of 3320
)d op csc
--R 
--R
--RThere is one exposed function called csc :
--R   [1] D -> D from D if D has TRIGCAT
--R
--RThere are 5 unexposed functions called csc :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of csc from ElementaryFunction
--R
--R
--RExamples of csc from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of csc from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of csc from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of csc from StreamTranscendentalFunctions
--R
--R
--RExamples of csc from TrigonometricFunctionCategory
--R
--E 541

--S 542 of 3320
)d op csc2sin
--R 
--R
--RThere is one exposed function called csc2sin :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of csc2sin from TranscendentalManipulations
--R
--E 542

--S 543 of 3320
)d op csch
--R 
--R
--RThere is one exposed function called csch :
--R   [1] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called csch :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of csch from ElementaryFunction
--R
--R
--RExamples of csch from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of csch from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of csch from HyperbolicFunctionCategory
--R
--R
--RExamples of csch from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of csch from StreamTranscendentalFunctions
--R
--E 543

--S 544 of 3320
)d op csch2sinh
--R 
--R
--RThere is one exposed function called csch2sinh :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of csch2sinh from TranscendentalManipulations
--R
--E 544

--S 545 of 3320
)d op cschIfCan
--R 
--R
--RThere is one exposed function called cschIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of cschIfCan from PartialTranscendentalFunctions
--R
--E 545

--S 546 of 3320
)d op cscIfCan
--R 
--R
--RThere is one exposed function called cscIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of cscIfCan from PartialTranscendentalFunctions
--R
--E 546

--S 547 of 3320
)d op cSec
--R 
--R
--RThere is one unexposed function called cSec :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cSec from InnerSparseUnivariatePowerSeries
--R
--E 547

--S 548 of 3320
)d op cSech
--R 
--R
--RThere is one unexposed function called cSech :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cSech from InnerSparseUnivariatePowerSeries
--R
--E 548

--S 549 of 3320
)d op cSin
--R 
--R
--RThere is one unexposed function called cSin :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cSin from InnerSparseUnivariatePowerSeries
--R
--E 549

--S 550 of 3320
)d op cSinh
--R 
--R
--RThere is one unexposed function called cSinh :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cSinh from InnerSparseUnivariatePowerSeries
--R
--E 550

--S 551 of 3320
)d op csubst
--R 
--R
--RThere is one unexposed function called csubst :
--R   [1] (List(D5),List(Stream(D6))) -> (D6 -> Stream(D6))
--R             from SparseMultivariateTaylorSeries(D4,D5,D6)
--R             if D5 has ORDSET and D6 has POLYCAT(D4,INDE(D5),D5) and D4
--R             has RING
--R
--RExamples of csubst from SparseMultivariateTaylorSeries
--R
--E 551

--S 552 of 3320
)d op cTan
--R 
--R
--RThere is one unexposed function called cTan :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cTan from InnerSparseUnivariatePowerSeries
--R
--E 552

--S 553 of 3320
)d op cTanh
--R 
--R
--RThere is one unexposed function called cTanh :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R
--RExamples of cTanh from InnerSparseUnivariatePowerSeries
--R
--E 553

--S 554 of 3320
)d op cubic
--R 
--R
--RThere are 2 unexposed functions called cubic :
--R   [1] D3 -> List(D4) from PolynomialSolveByFormulas(D3,D4)
--R             if D4 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D4)
--R            
--R   [2] (D3,D3,D3,D3) -> List(D3) from PolynomialSolveByFormulas(D4,D3)
--R             if D3 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D4 has UPOLYC(D3)
--R            
--R
--RExamples of cubic from PolynomialSolveByFormulas
--R
--E 554

--S 555 of 3320 done
)d op cubicBezier
--R 
--R
--RThere is one exposed function called cubicBezier :
--R   [1] (List(D3),List(D3),List(D3),List(D3)) -> (D3 -> List(D3)) from 
--R            Bezier(D3)
--R             if D3 has RING
--R
--RExamples of cubicBezier from Bezier
--R
--Rn:=cubicBezier([2.0,2.0],[2.0,4.0],[6.0,4.0],[6.0,2.0]) 
--R[n(t/10.0) for t in 0..10 by 1]
--R
--E 555

--S 556 of 3320
)d op cup
--R 
--R
--RThere is one exposed function called cup :
--R   [1] (SymmetricPolynomial(Fraction(Integer)),SymmetricPolynomial(
--R            Fraction(Integer))) -> SymmetricPolynomial(Fraction(Integer))
--R             from CycleIndicators
--R
--RExamples of cup from CycleIndicators
--R
--E 556

--S 557 of 3320
)d op currentSubProgram
--R 
--R
--RThere is one exposed function called currentSubProgram :
--R   [1]  -> Symbol from TheSymbolTable
--R
--RExamples of currentSubProgram from TheSymbolTable
--R
--E 557

--S 558 of 3320
)d op curry
--R 
--R
--RThere is one exposed function called curry :
--R   [1] ((D3 -> D4),D3) -> (() -> D4) from MappingPackage2(D3,D4)
--R             if D3 has SETCAT and D4 has SETCAT
--R
--RExamples of curry from MappingPackage2
--R
--E 558

--S 559 of 3320
)d op curryLeft
--R 
--R
--RThere is one exposed function called curryLeft :
--R   [1] (((D3,D4) -> D5),D3) -> (D4 -> D5) from MappingPackage3(D3,D4,D5
--R            )
--R             if D3 has SETCAT and D4 has SETCAT and D5 has SETCAT
--R
--RExamples of curryLeft from MappingPackage3
--R
--E 559

--S 560 of 3320
)d op curryRight
--R 
--R
--RThere is one exposed function called curryRight :
--R   [1] (((D4,D3) -> D5),D3) -> (D4 -> D5) from MappingPackage3(D4,D3,D5
--R            )
--R             if D4 has SETCAT and D3 has SETCAT and D5 has SETCAT
--R
--RExamples of curryRight from MappingPackage3
--R
--E 560

--S 561 of 3320
)d op curve
--R 
--R
--RThere are 6 exposed functions called curve :
--R   [1] (D1,D1) -> ParametricPlaneCurve(D1) from ParametricPlaneCurve(D1
--R            )
--R             if D1 has TYPE
--R   [2] (D1,D1,D1) -> ParametricSpaceCurve(D1) from ParametricSpaceCurve
--R            (D1)
--R             if D1 has TYPE
--R   [3] D -> List(Point(D2)) from D if D has SPACEC(D2) and D2 has RING
--R            
--R   [4] List(Point(D2)) -> D from D if D2 has RING and D has SPACEC(D2)
--R            
--R   [5] (D,List(List(D2))) -> D from D if D has SPACEC(D2) and D2 has 
--R            RING
--R   [6] (D,List(Point(D2))) -> D from D if D has SPACEC(D2) and D2 has 
--R            RING
--R
--RExamples of curve from ParametricPlaneCurve
--R
--R
--RExamples of curve from ParametricSpaceCurve
--R
--R
--RExamples of curve from ThreeSpaceCategory
--R
--E 561

--S 562 of 3320
)d op curve?
--R 
--R
--RThere is one exposed function called curve? :
--R   [1] D -> Boolean from D if D has SPACEC(D2) and D2 has RING
--R
--RExamples of curve? from ThreeSpaceCategory
--R
--E 562

--S 563 of 3320
)d op curveColor
--R 
--R
--RThere are 2 exposed functions called curveColor :
--R   [1] Palette -> DrawOption from DrawOption
--R   [2] Float -> DrawOption from DrawOption
--R
--RExamples of curveColor from DrawOption
--R
--E 563

--S 564 of 3320
)d op curveColorPalette
--R 
--R
--RThere is one unexposed function called curveColorPalette :
--R   [1] (List(DrawOption),Palette) -> Palette from DrawOptionFunctions0
--R            
--R
--RExamples of curveColorPalette from DrawOptionFunctions0
--R
--E 564

--S 565 of 3320
)d op curveV
--R 
--R
--RThere is one exposed function called curveV :
--R   [1] D -> DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY]
--R            ,D4)
--R             from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of curveV from InfinitlyClosePointCategory
--R
--E 565

--S 566 of 3320
)d op cycle
--R 
--R
--RThere is one exposed function called cycle :
--R   [1] List(D2) -> D from D if D2 has SETCAT and D has PERMCAT(D2)
--R
--RExamples of cycle from PermutationCategory
--R
--E 566

--S 567 of 3320 done
)d op cycleElt
--R 
--R
--RThere is one unexposed function called cycleElt :
--R   [1] D1 -> Union(D1,"failed") from CyclicStreamTools(D2,D1)
--R             if D2 has TYPE and D1 has LZSTAGG(D2)
--R
--RExamples of cycleElt from CyclicStreamTools
--R
--Rp:=repeating([1,2,3]) 
--Rq:=cons(4,p) 
--RcycleElt q 
--Rr:=[1,2,3]::Stream(Integer) 
--RcycleElt r
--R
--E 567

--S 568 of 3320 done
)d op cycleEntry
--R 
--R
--RThere is one exposed function called cycleEntry :
--R   [1] D -> D from D if D has URAGG(D1) and D1 has TYPE
--R
--RExamples of cycleEntry from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rt2:=concat!(t1,t1) 
--RcycleEntry t2
--R
--E 568

--S 569 of 3320 done
)d op cycleLength
--R 
--R
--RThere is one exposed function called cycleLength :
--R   [1] D -> NonNegativeInteger from D if D has URAGG(D2) and D2 has 
--R            TYPE
--R
--RExamples of cycleLength from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rt2:=concat!(t1,t1) 
--RcycleLength t2
--R
--E 569

--S 570 of 3320
)d op cyclePartition
--R 
--R
--RThere is one exposed function called cyclePartition :
--R   [1] Permutation(D2) -> Partition from Permutation(D2) if D2 has 
--R            SETCAT
--R
--RExamples of cyclePartition from Permutation
--R
--E 570

--S 571 of 3320
)d op cycleRagits
--R 
--R
--RThere is one exposed function called cycleRagits :
--R   [1] RadixExpansion(D2) -> List(Integer) from RadixExpansion(D2) if 
--R            D2: INT
--R
--RExamples of cycleRagits from RadixExpansion
--R
--E 571

--S 572 of 3320
)d op cycles
--R 
--R
--RThere is one exposed function called cycles :
--R   [1] List(List(D2)) -> D from D if D2 has SETCAT and D has PERMCAT(D2
--R            )
--R
--RExamples of cycles from PermutationCategory
--R
--E 572

--S 573 of 3320 done
)d op cycleSplit!
--R 
--R
--RThere is one exposed function called cycleSplit! :
--R   [1] D -> D from D if D has shallowlyMutable and D has URAGG(D1) and 
--R            D1 has TYPE
--R
--RExamples of cycleSplit! from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rt2:=concat!(t1,t1) 
--Rt3:=[1,2,3] 
--Rt4:=concat!(t3,t2) 
--Rt5:=cycleSplit!(t4) 
--Rt4 
--Rt5
--R
--E 573

--S 574 of 3320 done
)d op cycleTail
--R 
--R
--RThere is one exposed function called cycleTail :
--R   [1] D -> D from D if D has URAGG(D1) and D1 has TYPE
--R
--RExamples of cycleTail from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rt2:=concat!(t1,t1) 
--RcycleTail t2
--R
--E 574

--S 575 of 3320
)d op cyclic
--R 
--R
--RThere is one exposed function called cyclic :
--R   [1] Integer -> SymmetricPolynomial(Fraction(Integer)) from 
--R            CycleIndicators
--R
--RExamples of cyclic from CycleIndicators
--R
--E 575

--S 576 of 3320
)d op cyclic?
--R 
--R
--RThere are 2 exposed functions called cyclic? :
--R   [1] D -> Boolean from D if D has RCAGG(D2) and D2 has TYPE
--R   [2] Tree(D2) -> Boolean from Tree(D2) if D2 has SETCAT
--R
--RExamples of cyclic? from RecursiveAggregate
--R
--R
--RExamples of cyclic? from Tree
--R
--Rt1:=tree [1,2,3,4] 
--Rcyclic? t1
--R
--E 576

--S 577 of 3320 done
)d op cyclicCopy
--R 
--R
--RThere is one exposed function called cyclicCopy :
--R   [1] Tree(D1) -> Tree(D1) from Tree(D1) if D1 has SETCAT
--R
--RExamples of cyclicCopy from Tree
--R
--Rt1:=tree [1,2,3,4] 
--RcyclicCopy t1
--R
--E 577

--S 578 of 3320 done
)d op cyclicEntries
--R 
--R
--RThere is one exposed function called cyclicEntries :
--R   [1] Tree(D2) -> List(Tree(D2)) from Tree(D2) if D2 has SETCAT
--R
--RExamples of cyclicEntries from Tree
--R
--Rt1:=tree [1,2,3,4] 
--RcyclicEntries t1
--R
--E 578

--S 579 of 3320 done
)d op cyclicEqual?
--R 
--R
--RThere is one exposed function called cyclicEqual? :
--R   [1] (Tree(D2),Tree(D2)) -> Boolean from Tree(D2) if D2 has SETCAT
--R         
--R
--RExamples of cyclicEqual? from Tree
--R
--Rt1:=tree [1,2,3,4] 
--Rt2:=tree [1,2,3,4] 
--RcyclicEqual?(t1,t2)
--R
--E 579

--S 580 of 3320
)d op cyclicGroup
--R 
--R
--RThere are 2 exposed functions called cyclicGroup :
--R   [1] PositiveInteger -> PermutationGroup(Integer)
--R             from PermutationGroupExamples
--R   [2] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R
--RExamples of cyclicGroup from PermutationGroupExamples
--R
--E 580

--S 581 of 3320 done
)d op cyclicParents
--R 
--R
--RThere is one exposed function called cyclicParents :
--R   [1] Tree(D2) -> List(Tree(D2)) from Tree(D2) if D2 has SETCAT
--R
--RExamples of cyclicParents from Tree
--R
--Rt1:=tree [1,2,3,4] 
--RcyclicParents t1
--R
--E 581

--S 582 of 3320
)d op cyclicSubmodule
--R 
--R
--RThere is one exposed function called cyclicSubmodule :
--R   [1] (List(Matrix(D4)),Vector(D4)) -> Vector(Vector(D4))
--R             from RepresentationPackage2(D4) if D4 has EUCDOM and D4
--R             has RING
--R
--RExamples of cyclicSubmodule from RepresentationPackage2
--R
--E 582

--S 583 of 3320
)d op cyclotomic
--R 
--R
--RThere is one exposed function called cyclotomic :
--R   [1] (NonNegativeInteger,D1) -> D1 from 
--R            NumberTheoreticPolynomialFunctions(D1)
--R             if D1 has COMRING
--R
--RThere are 2 unexposed functions called cyclotomic :
--R   [1] Integer -> SparseUnivariatePolynomial(Integer)
--R             from CyclotomicPolynomialPackage
--R   [2] Integer -> SparseUnivariatePolynomial(Integer)
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of cyclotomic from CyclotomicPolynomialPackage
--R
--R
--RExamples of cyclotomic from NumberTheoreticPolynomialFunctions
--R
--R
--RExamples of cyclotomic from PolynomialNumberTheoryFunctions
--R
--E 583

--S 584 of 3320
)d op cyclotomicDecomposition
--R 
--R
--RThere is one unexposed function called cyclotomicDecomposition :
--R   [1] Integer -> List(SparseUnivariatePolynomial(Integer))
--R             from CyclotomicPolynomialPackage
--R
--RExamples of cyclotomicDecomposition from CyclotomicPolynomialPackage
--R
--E 584

--S 585 of 3320
)d op cyclotomicFactorization
--R 
--R
--RThere is one unexposed function called cyclotomicFactorization :
--R   [1] Integer -> Factored(SparseUnivariatePolynomial(Integer))
--R             from CyclotomicPolynomialPackage
--R
--RExamples of cyclotomicFactorization from CyclotomicPolynomialPackage
--R
--E 585

--S 586 of 3320
)d op cylindrical
--R 
--R
--RThere is one exposed function called cylindrical :
--R   [1] Point(D2) -> Point(D2) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of cylindrical from CoordinateSystems
--R
--E 586

--S 587 of 3320
)d op cylindricalDecomposition
--R 
--R
--RThere are 2 exposed functions called cylindricalDecomposition :
--R   [1] List(Polynomial(D3)) -> List(Cell(D3))
--R             from CylindricalAlgebraicDecompositionPackage(D3) if D3
--R             has RCFIELD
--R   [2] (List(Polynomial(D4)),List(Symbol)) -> List(Cell(D4))
--R             from CylindricalAlgebraicDecompositionPackage(D4) if D4
--R             has RCFIELD
--R
--RExamples of cylindricalDecomposition from CylindricalAlgebraicDecompositionPackage
--R
--E 587

--S 588 of 3320
)d op d
--R 
--R
--RThere is one exposed function called d :
--R   [1] Symbol -> Union(BasicStochasticDifferential,Integer)
--R             from BasicStochasticDifferential
--R
--RExamples of d from BasicStochasticDifferential
--R
--E 588

--S 589 of 3320
)d op D
--R 
--R
--RThere are 11 exposed functions called D :
--R   [1] (D,(D3 -> D3),NonNegativeInteger) -> D from D
--R             if D has DIFEXT(D3) and D3 has RING
--R   [2] (D,(D2 -> D2)) -> D from D if D has DIFEXT(D2) and D2 has RING
--R         
--R   [3] (D,NonNegativeInteger) -> D from D if D has DIFRING
--R   [4] D -> D from D if D has DIFRING
--R   [5] (FullPartialFractionExpansion(D2,D3),NonNegativeInteger) -> 
--R            FullPartialFractionExpansion(D2,D3)
--R             from FullPartialFractionExpansion(D2,D3)
--R             if D2 has Join(Field,CharacteristicZero) and D3 has UPOLYC
--R            (D2)
--R   [6] FullPartialFractionExpansion(D1,D2) -> 
--R            FullPartialFractionExpansion(D1,D2)
--R             from FullPartialFractionExpansion(D1,D2)
--R             if D1 has Join(Field,CharacteristicZero) and D2 has UPOLYC
--R            (D1)
--R   [7]  -> D from D if D has LODOCAT(D1) and D1 has RING
--R   [8] (D,List(D3),List(NonNegativeInteger)) -> D from D
--R             if D has PDRING(D3) and D3 has SETCAT
--R   [9] (D,D1,NonNegativeInteger) -> D from D if D has PDRING(D1) and D1
--R             has SETCAT
--R   [10] (D,List(D2)) -> D from D if D has PDRING(D2) and D2 has SETCAT
--R            
--R   [11] (D,D1) -> D from D if D has PDRING(D1) and D1 has SETCAT
--R
--RExamples of D from DifferentialExtension
--R
--R
--RExamples of D from DifferentialRing
--R
--R
--RExamples of D from FullPartialFractionExpansion
--R
--R
--RExamples of D from LinearOrdinaryDifferentialOperatorCategory
--R
--R
--RExamples of D from PartialDifferentialRing
--R
--E 589

--S 590 of 3320
)d op d01ajf
--R 
--R
--RThere is one exposed function called d01ajf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Integer,Integer
--R            ,Integer,Union(fn: FileName,fp: Asp1(F))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01ajf from NagIntegrationPackage
--R
--E 590

--S 591 of 3320
)d op d01akf
--R 
--R
--RThere is one exposed function called d01akf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Integer,Integer
--R            ,Integer,Union(fn: FileName,fp: Asp1(F))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01akf from NagIntegrationPackage
--R
--E 591

--S 592 of 3320
)d op d01alf
--R 
--R
--RThere is one exposed function called d01alf :
--R   [1] (DoubleFloat,DoubleFloat,Integer,Matrix(DoubleFloat),DoubleFloat
--R            ,DoubleFloat,Integer,Integer,Integer,Union(fn: FileName,fp: Asp1(
--R            F))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01alf from NagIntegrationPackage
--R
--E 592

--S 593 of 3320
)d op d01amf
--R 
--R
--RThere is one exposed function called d01amf :
--R   [1] (DoubleFloat,Integer,DoubleFloat,DoubleFloat,Integer,Integer,
--R            Integer,Union(fn: FileName,fp: Asp1(F))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01amf from NagIntegrationPackage
--R
--E 593

--S 594 of 3320
)d op d01anf
--R 
--R
--RThere is one exposed function called d01anf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,Integer,DoubleFloat,
--R            DoubleFloat,Integer,Integer,Integer,Union(fn: FileName,fp: Asp1(G
--R            ))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01anf from NagIntegrationPackage
--R
--E 594

--S 595 of 3320
)d op d01apf
--R 
--R
--RThere is one exposed function called d01apf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Integer,
--R            DoubleFloat,DoubleFloat,Integer,Integer,Integer,Union(fn: 
--R            FileName,fp: Asp1(G))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01apf from NagIntegrationPackage
--R
--E 595

--S 596 of 3320
)d op d01aqf
--R 
--R
--RThere is one exposed function called d01aqf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,
--R            Integer,Integer,Integer,Union(fn: FileName,fp: Asp1(G))) -> 
--R            Result
--R             from NagIntegrationPackage
--R
--RExamples of d01aqf from NagIntegrationPackage
--R
--E 596

--S 597 of 3320
)d op d01asf
--R 
--R
--RThere is one exposed function called d01asf :
--R   [1] (DoubleFloat,DoubleFloat,Integer,DoubleFloat,Integer,Integer,
--R            Integer,Integer,Union(fn: FileName,fp: Asp1(G))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01asf from NagIntegrationPackage
--R
--E 597

--S 598 of 3320
)d op d01bbf
--R 
--R
--RThere is one exposed function called d01bbf :
--R   [1] (DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer) -> 
--R            Result
--R             from NagIntegrationPackage
--R
--RExamples of d01bbf from NagIntegrationPackage
--R
--E 598

--S 599 of 3320
)d op d01fcf
--R 
--R
--RThere is one exposed function called d01fcf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,
--R            DoubleFloat,Integer,Integer,Integer,Union(fn: FileName,fp: Asp4(
--R            FUNCTN))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01fcf from NagIntegrationPackage
--R
--E 599

--S 600 of 3320
)d op d01gaf
--R 
--R
--RThere is one exposed function called d01gaf :
--R   [1] (Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,Integer) -> 
--R            Result
--R             from NagIntegrationPackage
--R
--RExamples of d01gaf from NagIntegrationPackage
--R
--E 600

--S 601 of 3320
)d op d01gbf
--R 
--R
--RThere is one exposed function called d01gbf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,
--R            DoubleFloat,Integer,Integer,Matrix(DoubleFloat),Integer,Union(fn
--R            : FileName,fp: Asp4(FUNCTN))) -> Result
--R             from NagIntegrationPackage
--R
--RExamples of d01gbf from NagIntegrationPackage
--R
--E 601

--S 602 of 3320
)d op d02bbf
--R 
--R
--RThere is one exposed function called d02bbf :
--R   [1] (DoubleFloat,Integer,Integer,Integer,DoubleFloat,Matrix(
--R            DoubleFloat),DoubleFloat,Integer,Union(fn: FileName,fp: Asp7(FCN)
--R            ),Union(fn: FileName,fp: Asp8(OUTPUT))) -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02bbf from NagOrdinaryDifferentialEquationsPackage
--R
--E 602

--S 603 of 3320
)d op d02bhf
--R 
--R
--RThere is one exposed function called d02bhf :
--R   [1] (DoubleFloat,Integer,Integer,DoubleFloat,DoubleFloat,Matrix(
--R            DoubleFloat),DoubleFloat,Integer,Union(fn: FileName,fp: Asp9(G)),
--R            Union(fn: FileName,fp: Asp7(FCN))) -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02bhf from NagOrdinaryDifferentialEquationsPackage
--R
--E 603

--S 604 of 3320
)d op d02cjf
--R 
--R
--RThere is one exposed function called d02cjf :
--R   [1] (DoubleFloat,Integer,Integer,DoubleFloat,String,DoubleFloat,
--R            Matrix(DoubleFloat),Integer,Union(fn: FileName,fp: Asp9(G)),Union
--R            (fn: FileName,fp: Asp7(FCN)),Union(fn: FileName,fp: Asp8(OUTPUT))
--R            ) -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02cjf from NagOrdinaryDifferentialEquationsPackage
--R
--E 604

--S 605 of 3320
)d op d02ejf
--R 
--R
--RThere is one exposed function called d02ejf :
--R   [1] (DoubleFloat,Integer,Integer,String,Integer,DoubleFloat,Matrix(
--R            DoubleFloat),DoubleFloat,Integer,Union(fn: FileName,fp: Asp9(G)),
--R            Union(fn: FileName,fp: Asp7(FCN)),Union(fn: FileName,fp: Asp31(
--R            PEDERV)),Union(fn: FileName,fp: Asp8(OUTPUT))) -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02ejf from NagOrdinaryDifferentialEquationsPackage
--R
--E 605

--S 606 of 3320
)d op d02gaf
--R 
--R
--RThere is one exposed function called d02gaf :
--R   [1] (Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,DoubleFloat,
--R            DoubleFloat,DoubleFloat,Integer,Integer,Integer,Matrix(
--R            DoubleFloat),Integer,Integer,Union(fn: FileName,fp: Asp7(FCN)))
--R             -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02gaf from NagOrdinaryDifferentialEquationsPackage
--R
--E 606

--S 607 of 3320
)d op d02gbf
--R 
--R
--RThere is one exposed function called d02gbf :
--R   [1] (DoubleFloat,DoubleFloat,Integer,DoubleFloat,Integer,Integer,
--R            Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Integer,Integer,Union(fn: 
--R            FileName,fp: Asp77(FCNF)),Union(fn: FileName,fp: Asp78(FCNG)))
--R             -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02gbf from NagOrdinaryDifferentialEquationsPackage
--R
--E 607

--S 608 of 3320
)d op d02kef
--R 
--R
--RThere are 2 exposed functions called d02kef :
--R   [1] (Matrix(DoubleFloat),Integer,Integer,DoubleFloat,Integer,Integer
--R            ,DoubleFloat,DoubleFloat,Matrix(DoubleFloat),Integer,Integer,
--R            Union(fn: FileName,fp: Asp10(COEFFN)),Union(fn: FileName,fp: 
--R            Asp80(BDYVAL))) -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R   [2] (Matrix(DoubleFloat),Integer,Integer,DoubleFloat,Integer,Integer
--R            ,DoubleFloat,DoubleFloat,Matrix(DoubleFloat),Integer,Integer,
--R            Union(fn: FileName,fp: Asp10(COEFFN)),Union(fn: FileName,fp: 
--R            Asp80(BDYVAL)),FileName,FileName) -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02kef from NagOrdinaryDifferentialEquationsPackage
--R
--E 608

--S 609 of 3320
)d op d02raf
--R 
--R
--RThere is one exposed function called d02raf :
--R   [1] (Integer,Integer,Integer,Integer,DoubleFloat,Integer,Integer,
--R            Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),DoubleFloat,Integer,Union(fn: FileName,fp: Asp41(FCN
--R            ,JACOBF,JACEPS)),Union(fn: FileName,fp: Asp42(G,JACOBG,JACGEP)))
--R             -> Result
--R             from NagOrdinaryDifferentialEquationsPackage
--R
--RExamples of d02raf from NagOrdinaryDifferentialEquationsPackage
--R
--E 609

--S 610 of 3320
)d op d03edf
--R 
--R
--RThere is one exposed function called d03edf :
--R   [1] (Integer,Integer,Integer,Integer,DoubleFloat,Integer,Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),Integer) -> 
--R            Result
--R             from NagPartialDifferentialEquationsPackage
--R
--RExamples of d03edf from NagPartialDifferentialEquationsPackage
--R
--E 610

--S 611 of 3320
)d op d03eef
--R 
--R
--RThere is one exposed function called d03eef :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Integer,Integer
--R            ,Integer,String,Integer,Union(fn: FileName,fp: Asp73(PDEF)),Union
--R            (fn: FileName,fp: Asp74(BNDY))) -> Result
--R             from NagPartialDifferentialEquationsPackage
--R
--RExamples of d03eef from NagPartialDifferentialEquationsPackage
--R
--E 611

--S 612 of 3320
)d op d03faf
--R 
--R
--RThere is one exposed function called d03faf :
--R   [1] (DoubleFloat,DoubleFloat,Integer,Integer,Matrix(DoubleFloat),
--R            Matrix(DoubleFloat),DoubleFloat,DoubleFloat,Integer,Integer,
--R            Matrix(DoubleFloat),Matrix(DoubleFloat),DoubleFloat,DoubleFloat,
--R            Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),
--R            DoubleFloat,Integer,Integer,Integer,ThreeDimensionalMatrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagPartialDifferentialEquationsPackage
--R
--RExamples of d03faf from NagPartialDifferentialEquationsPackage
--R
--E 612

--S 613 of 3320
)d op dAndcExp
--R 
--R
--RThere is one unexposed function called dAndcExp :
--R   [1] (Vector(D4),NonNegativeInteger,SingleInteger) -> Vector(D4)
--R             from InnerNormalBasisFieldFunctions(D4) if D4 has FFIELDC
--R            
--R
--RExamples of dAndcExp from InnerNormalBasisFieldFunctions
--R
--E 613

--S 614 of 3320
)d op dark
--R 
--R
--RThere is one exposed function called dark :
--R   [1] Color -> Palette from Palette
--R
--RExamples of dark from Palette
--R
--E 614

--S 615 of 3320
)d op datalist
--R 
--R
--RThere is one exposed function called datalist :
--R   [1] List(D2) -> DataList(D2) from DataList(D2) if D2 has ORDSET
--R
--RExamples of datalist from DataList
--R
--E 615

--S 616 of 3320
)d op ddFact
--R 
--R
--RThere is one exposed function called ddFact :
--R   [1] (D2,Integer) -> List(Record(factor: D2,degree: Integer))
--R             from ModularDistinctDegreeFactorizer(D2) if D2 has UPOLYC(
--R            INT)
--R
--RExamples of ddFact from ModularDistinctDegreeFactorizer
--R
--E 616

--S 617 of 3320
)d op debug
--R 
--R
--RThere is one exposed function called debug :
--R   [1] Boolean -> GuessOption from GuessOption
--R
--RThere are 2 unexposed functions called debug :
--R   [1] List(GuessOption) -> Boolean from GuessOptionFunctions0
--R   [2] Boolean -> Boolean from Plot
--R
--RExamples of debug from GuessOptionFunctions0
--R
--R
--RExamples of debug from GuessOption
--R
--R
--RExamples of debug from Plot
--R
--E 617

--S 618 of 3320
)d op debug3D
--R 
--R
--RThere is one unexposed function called debug3D :
--R   [1] Boolean -> Boolean from Plot3D
--R
--RExamples of debug3D from Plot3D
--R
--E 618

--S 619 of 3320
)d op dec
--R 
--R
--RThere is one exposed function called dec :
--R   [1] D -> D from D if D has INS
--R
--RExamples of dec from IntegerNumberSystem
--R
--E 619

--S 620 of 3320
)d op decimal
--R 
--R
--RThere is one exposed function called decimal :
--R   [1] Fraction(Integer) -> DecimalExpansion from DecimalExpansion
--R
--RExamples of decimal from DecimalExpansion
--R
--E 620

--S 621 of 3320
)d op declare
--R 
--R
--RThere is one unexposed function called declare :
--R   [1] List(InputForm) -> Symbol from InputForm
--R
--RExamples of declare from InputForm
--R
--E 621

--S 622 of 3320
)d op declare!
--R 
--R
--RThere are 6 exposed functions called declare! :
--R   [1] (Symbol,FortranType,Symbol) -> FortranType from TheSymbolTable
--R         
--R   [2] (Symbol,FortranType) -> FortranType from TheSymbolTable
--R   [3] (List(Symbol),FortranType,Symbol,TheSymbolTable) -> FortranType
--R             from TheSymbolTable
--R   [4] (Symbol,FortranType,Symbol,TheSymbolTable) -> FortranType
--R             from TheSymbolTable
--R   [5] (Symbol,FortranType,SymbolTable) -> FortranType from SymbolTable
--R            
--R   [6] (List(Symbol),FortranType,SymbolTable) -> FortranType from 
--R            SymbolTable
--R
--RExamples of declare! from TheSymbolTable
--R
--R
--RExamples of declare! from SymbolTable
--R
--E 622

--S 623 of 3320
)d op decompose
--R 
--R
--RThere are 7 exposed functions called decompose :
--R   [1] D -> Record(id: FractionalIdeal(D3,Fraction(D3),D4,D5),
--R            principalPart: D5)
--R             from D
--R             if D has FDIVCAT(D2,D3,D4,D5) and D2 has FIELD and D3 has 
--R            UPOLYC(D2) and D4 has UPOLYC(FRAC(D3)) and D5 has FFCAT(D2,
--R            D3,D4)
--R   [2] D2 -> List(D2) from PolynomialDecomposition(D2,D3)
--R             if D3 has FIELD and D2 has UPOLYC(D3)
--R   [3] (D2,NonNegativeInteger,NonNegativeInteger) -> Union(Record(left
--R            : D2,right: D2),"failed")
--R             from PolynomialDecomposition(D2,D4)
--R             if D4 has FIELD and D2 has UPOLYC(D4)
--R   [4] (List(D7),List(D8),Boolean,Boolean) -> List(D8)
--R             from RegularSetDecompositionPackage(D4,D5,D6,D7,D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has RSETCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [5] (List(D7),List(D8),Boolean,Boolean,Boolean,Boolean,Boolean) -> 
--R            List(D8)
--R             from RegularSetDecompositionPackage(D4,D5,D6,D7,D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has RSETCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [6] (List(D7),List(D8),Boolean,Boolean) -> List(D8)
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D7,
--R            D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has SFRTCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [7] (List(D7),List(D8),Boolean,Boolean,Boolean,Boolean,Boolean) -> 
--R            List(D8)
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D7,
--R            D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has SFRTCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R
--RThere is one unexposed function called decompose :
--R   [1] (Fraction(D5),(D5 -> D5)) -> Record(poly: D5,normal: Fraction(D5
--R            ),special: Fraction(D5))
--R             from MonomialExtensionTools(D4,D5) if D5 has UPOLYC(D4) 
--R            and D4 has FIELD
--R
--RExamples of decompose from FiniteDivisorCategory
--R
--R
--RExamples of decompose from MonomialExtensionTools
--R
--R
--RExamples of decompose from PolynomialDecomposition
--R
--R
--RExamples of decompose from RegularSetDecompositionPackage
--R
--R
--RExamples of decompose from SquareFreeRegularSetDecompositionPackage
--R
--E 623

--S 624 of 3320
)d op decompose
--R 
--R
--RThere are 7 exposed functions called decompose :
--R   [1] D -> Record(id: FractionalIdeal(D3,Fraction(D3),D4,D5),
--R            principalPart: D5)
--R             from D
--R             if D has FDIVCAT(D2,D3,D4,D5) and D2 has FIELD and D3 has 
--R            UPOLYC(D2) and D4 has UPOLYC(FRAC(D3)) and D5 has FFCAT(D2,
--R            D3,D4)
--R   [2] D2 -> List(D2) from PolynomialDecomposition(D2,D3)
--R             if D3 has FIELD and D2 has UPOLYC(D3)
--R   [3] (D2,NonNegativeInteger,NonNegativeInteger) -> Union(Record(left
--R            : D2,right: D2),"failed")
--R             from PolynomialDecomposition(D2,D4)
--R             if D4 has FIELD and D2 has UPOLYC(D4)
--R   [4] (List(D7),List(D8),Boolean,Boolean) -> List(D8)
--R             from RegularSetDecompositionPackage(D4,D5,D6,D7,D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has RSETCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [5] (List(D7),List(D8),Boolean,Boolean,Boolean,Boolean,Boolean) -> 
--R            List(D8)
--R             from RegularSetDecompositionPackage(D4,D5,D6,D7,D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has RSETCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [6] (List(D7),List(D8),Boolean,Boolean) -> List(D8)
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D7,
--R            D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has SFRTCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [7] (List(D7),List(D8),Boolean,Boolean,Boolean,Boolean,Boolean) -> 
--R            List(D8)
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D7,
--R            D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has SFRTCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R
--RThere is one unexposed function called decompose :
--R   [1] (Fraction(D5),(D5 -> D5)) -> Record(poly: D5,normal: Fraction(D5
--R            ),special: Fraction(D5))
--R             from MonomialExtensionTools(D4,D5) if D5 has UPOLYC(D4) 
--R            and D4 has FIELD
--R
--RExamples of decompose from FiniteDivisorCategory
--R
--R
--RExamples of decompose from MonomialExtensionTools
--R
--R
--RExamples of decompose from PolynomialDecomposition
--R
--R
--RExamples of decompose from RegularSetDecompositionPackage
--R
--R
--RExamples of decompose from SquareFreeRegularSetDecompositionPackage
--R
--E 624

--S 625 of 3320
)d op decomposeFunc
--R 
--R
--RThere is one unexposed function called decomposeFunc :
--R   [1] (Fraction(SparseUnivariatePolynomial(Expression(D2))),Fraction(
--R            SparseUnivariatePolynomial(Expression(D2))),Fraction(
--R            SparseUnivariatePolynomial(Expression(D2)))) -> Fraction(
--R            SparseUnivariatePolynomial(Expression(D2)))
--R             from TransSolvePackageService(D2)
--R             if D2 has Join(IntegralDomain,OrderedSet)
--R
--RExamples of decomposeFunc from TransSolvePackageService
--R
--E 625

--S 626 of 3320
)d op decrease
--R 
--R
--RThere are 2 exposed functions called decrease :
--R   [1] String -> Float from AttributeButtons
--R   [2] (String,String) -> Float from AttributeButtons
--R
--RExamples of decrease from AttributeButtons
--R
--E 626

--S 627 of 3320
)d op decreasePrecision
--R 
--R
--RThere is one exposed function called decreasePrecision :
--R   [1] Integer -> PositiveInteger from D if D has arbitraryPrecision 
--R            and D has FPS
--R
--RExamples of decreasePrecision from FloatingPointSystem
--R
--E 627

--S 628 of 3320
)d op deepCopy
--R 
--R
--RThere is one unexposed function called deepCopy :
--R   [1] SubSpace(D1,D2) -> SubSpace(D1,D2) from SubSpace(D1,D2)
--R             if D1: PI and D2 has RING
--R
--RExamples of deepCopy from SubSpace
--R
--E 628

--S 629 of 3320
)d op deepestInitial
--R 
--R
--RThere is one exposed function called deepestInitial :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of deepestInitial from RecursivePolynomialCategory
--R
--E 629

--S 630 of 3320
)d op deepestTail
--R 
--R
--RThere is one exposed function called deepestTail :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of deepestTail from RecursivePolynomialCategory
--R
--E 630

--S 631 of 3320
)d op deepExpand
--R 
--R
--RThere is one exposed function called deepExpand :
--R   [1] FreeNilpotentLie(D2,D3,D4) -> OutputForm from FreeNilpotentLie(
--R            D2,D3,D4)
--R             if D2: NNI and D3: NNI and D4 has COMRING
--R
--RExamples of deepExpand from FreeNilpotentLie
--R
--E 631

--S 632 of 3320
)d op defineProperty
--R 
--R
--RThere is one unexposed function called defineProperty :
--R   [1] (SubSpace(D3,D4),List(NonNegativeInteger),
--R            SubSpaceComponentProperty) -> SubSpace(D3,D4)
--R             from SubSpace(D3,D4) if D3: PI and D4 has RING
--R
--RExamples of defineProperty from SubSpace
--R
--E 632

--S 633 of 3320
)d op definingEquations
--R 
--R
--RThere is one unexposed function called definingEquations :
--R   [1] QuasiAlgebraicSet(D2,D3,D4,D5) -> List(D5)
--R             from QuasiAlgebraicSet(D2,D3,D4,D5)
--R             if D2 has GCDDOM and D3 has ORDSET and D4 has OAMONS and 
--R            D5 has POLYCAT(D2,D4,D3)
--R
--RExamples of definingEquations from QuasiAlgebraicSet
--R
--E 633

--S 634 of 3320
)d op definingField
--R 
--R
--RThere are 2 exposed functions called definingField :
--R   [1] D -> D1 from D if D has AFSPCAT(D1) and D1 has FIELD
--R   [2] D -> D1 from D if D has PRSPCAT(D1) and D1 has FIELD
--R
--RExamples of definingField from AffineSpaceCategory
--R
--R
--RExamples of definingField from ProjectiveSpaceCategory
--R
--E 634

--S 635 of 3320
)d op definingInequation
--R 
--R
--RThere is one unexposed function called definingInequation :
--R   [1] QuasiAlgebraicSet(D2,D3,D4,D1) -> D1 from QuasiAlgebraicSet(D2,
--R            D3,D4,D1)
--R             if D1 has POLYCAT(D2,D4,D3) and D2 has GCDDOM and D3 has 
--R            ORDSET and D4 has OAMONS
--R
--RExamples of definingInequation from QuasiAlgebraicSet
--R
--E 635

--S 636 of 3320
)d op definingPolynomial
--R 
--R
--RThere are 6 exposed functions called definingPolynomial :
--R   [1] D -> D from D if D has RING and D has ES
--R   [2]  -> SparseUnivariatePolynomial(D2) from D if D has FAXF(D2) and 
--R            D2 has FIELD
--R   [3]  -> D1 from D if D has MONOGEN(D2,D1) and D2 has COMRING and D1
--R             has UPOLYC(D2)
--R   [4] D -> SparseUnivariatePolynomial(D) from D if D has PACPERC
--R   [5]  -> SparseUnivariatePolynomial(D) from D if D has PACPERC
--R   [6] D -> D1 from D
--R             if D has RRCC(D2,D1) and D2 has Join(OrderedRing,Field) 
--R            and D1 has UPOLYC(D2)
--R
--RThere are 2 unexposed functions called definingPolynomial :
--R   [1] D1 -> D1 from AlgebraicFunction(D2,D1)
--R             if D2 has RETRACT(INT) and D2 has Join(OrderedSet,
--R            IntegralDomain) and D1 has FS(D2)
--R   [2]  -> SparseUnivariatePolynomial(D3) from ComplexCategory&(D2,D3)
--R             if D3 has COMRING and D2 has COMPCAT(D3)
--R
--RExamples of definingPolynomial from AlgebraicFunction
--R
--R
--RExamples of definingPolynomial from ComplexCategory&
--R
--R
--RExamples of definingPolynomial from Ring
--R
--R
--RExamples of definingPolynomial from FiniteAlgebraicExtensionField
--R
--R
--RExamples of definingPolynomial from MonogenicAlgebra
--R
--R
--RExamples of definingPolynomial from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of definingPolynomial from RealRootCharacterizationCategory
--R
--E 636

--S 637 of 3320
)d op degOneCoef
--R 
--R
--RThere is one exposed function called degOneCoef :
--R   [1] (D2,PositiveInteger) -> D1 from PackageForPoly(D1,D2,D4,D5)
--R             if D4 has DIRPCAT(D5,NNI) and D5: NNI and D1 has RING and 
--R            D2 has FAMR(D1,D4)
--R
--RExamples of degOneCoef from PackageForPoly
--R
--E 637

--S 638 of 3320
)d op degree
--R 
--R
--RThere are 22 exposed functions called degree :
--R   [1] D -> D1 from D if D has AMR(D2,D1) and D2 has RING and D1 has 
--R            OAMON
--R   [2] D -> Integer from D if D has DIVCAT(D2) and D2 has SETCAT
--R   [3] (D,D2) -> NonNegativeInteger from D
--R             if D has DPOLCAT(D3,D2,D4,D5) and D3 has RING and D2 has 
--R            ORDSET and D4 has DVARCAT(D2) and D5 has OAMONS
--R   [4] D -> PositiveInteger from D if D has FAXF(D2) and D2 has FIELD
--R         
--R   [5] D -> NonNegativeInteger from D
--R             if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
--R            
--R   [6] D -> D1 from D if D has GRMOD(D2,D1) and D2 has COMRING and D1
--R             has ABELMON
--R   [7] D2 -> Integer from D if D has MAGCDOC(D2,D3) and D2 has TYPE and
--R            D3 has TYPE
--R   [8] D -> NonNegativeInteger from D if D has MLO(D2) and D2 has RING
--R            
--R   [9] D -> NonNegativeInteger from D if D has OREPCAT(D2) and D2 has 
--R            RING
--R   [10] PermutationGroup(D2) -> NonNegativeInteger from 
--R            PermutationGroup(D2)
--R             if D2 has SETCAT
--R   [11] Permutation(D2) -> NonNegativeInteger from Permutation(D2) if 
--R            D2 has SETCAT
--R   [12] (D2,Integer) -> NonNegativeInteger from PackageForPoly(D4,D2,D5
--R            ,D6)
--R             if D4 has RING and D5 has DIRPCAT(D6,NNI) and D6: NNI and 
--R            D2 has FAMR(D4,D5)
--R   [13] (D,List(D5)) -> List(NonNegativeInteger) from D
--R             if D has POLYCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [14] (D,D2) -> NonNegativeInteger from D
--R             if D has POLYCAT(D3,D4,D2) and D3 has RING and D4 has 
--R            OAMONS and D2 has ORDSET
--R   [15] U32Vector -> Integer from U32VectorPolynomialOperations
--R   [16] D -> D1 from D
--R             if D has PSCAT(D2,D1,D3) and D2 has RING and D3 has ORDSET
--R            and D1 has OAMON
--R   [17] D -> PositiveInteger from D if D has SETCATD
--R   [18] D -> NonNegativeInteger from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [19] D -> Integer from D
--R             if D has ULSCCAT(D2,D3) and D2 has RING and D3 has UTSCAT(
--R            D2)
--R   [20] D -> Fraction(Integer) from D
--R             if D has UPXSCCA(D2,D3) and D2 has RING and D3 has ULSCAT(
--R            D2)
--R   [21] D -> OnePointCompletion(PositiveInteger) from D
--R             if D has XF(D2) and D2 has FIELD
--R   [22] D -> NonNegativeInteger from D
--R             if D has XPOLYC(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R
--RThere are 5 unexposed functions called degree :
--R   [1] AntiSymm(D2,D3) -> NonNegativeInteger from AntiSymm(D2,D3)
--R             if D2 has RING and D3: LIST(SYMBOL)
--R   [2] DeRhamComplex(D2,D3) -> NonNegativeInteger from DeRhamComplex(D2
--R            ,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R   [3] ExtAlgBasis -> NonNegativeInteger from ExtAlgBasis
--R   [4] (SparseUnivariatePolynomial(D7),List(D5)) -> List(
--R            NonNegativeInteger)
--R             from FactoringUtilities(D4,D5,D6,D7)
--R             if D5 has ORDSET and D7 has POLYCAT(D6,D4,D5) and D4 has 
--R            OAMONS and D6 has RING
--R   [5] LaurentPolynomial(D2,D3) -> Integer from LaurentPolynomial(D2,D3
--R            )
--R             if D2 has INTDOM and D3 has UPOLYC(D2)
--R
--RExamples of degree from AbelianMonoidRing
--R
--R
--RExamples of degree from AntiSymm
--R
--R
--RExamples of degree from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--Rt1 := generator(1)$der 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--Ra:BOP:=operator('a) 
--Rb:BOP:=operator('b) 
--Rc:BOP:=operator('c) 
--Rtheta:der:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz 
--R[degree x for x in [sigma,theta,t1]]
--R
--R
--RExamples of degree from DivisorCategory
--R
--R
--RExamples of degree from DifferentialPolynomialCategory
--R
--R
--RExamples of degree from ExtAlgBasis
--R
--R
--RExamples of degree from FactoringUtilities
--R
--R
--RExamples of degree from FiniteAlgebraicExtensionField
--R
--R
--RExamples of degree from FreeLieAlgebra
--R
--R
--RExamples of degree from GradedModule
--R
--R
--RExamples of degree from LaurentPolynomial
--R
--R
--RExamples of degree from ModularAlgebraicGcdOperations
--R
--R
--RExamples of degree from MonogenicLinearOperator
--R
--R
--RExamples of degree from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of degree from PermutationGroup
--R
--Ry : PERM INT := [[3,5,7,9]] 
--Rz : PERM INT := [1,3,11] 
--Rg : PERMGRP INT := [ y , z ] 
--Rdegree g
--R
--R
--RExamples of degree from Permutation
--R
--R
--RExamples of degree from PackageForPoly
--R
--R
--RExamples of degree from PolynomialCategory
--R
--R
--RExamples of degree from U32VectorPolynomialOperations
--R
--R
--RExamples of degree from PowerSeriesCategory
--R
--R
--RExamples of degree from SetCategoryWithDegree
--R
--R
--RExamples of degree from TriangularSetCategory
--R
--R
--RExamples of degree from UnivariateLaurentSeriesConstructorCategory
--R
--R
--RExamples of degree from UnivariatePuiseuxSeriesConstructorCategory
--R
--R
--RExamples of degree from ExtensionField
--R
--R
--RExamples of degree from XPolynomialsCat
--R
--E 638

--S 639 of 3320
)d op degreeOfMinimalForm
--R 
--R
--RThere is one exposed function called degreeOfMinimalForm :
--R   [1] D2 -> NonNegativeInteger from PackageForPoly(D3,D2,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D2 has FAMR(D3,D4)
--R
--RExamples of degreeOfMinimalForm from PackageForPoly
--R
--E 639

--S 640 of 3320
)d op degreePartition
--R 
--R
--RThere are 2 unexposed functions called degreePartition :
--R   [1] List(Record(factor: D3,degree: Integer)) -> Multiset(
--R            NonNegativeInteger)
--R             from GaloisGroupFactorizer(D3) if D3 has UPOLYC(INT)
--R   [2] Factored(D4) -> Multiset(NonNegativeInteger)
--R             from GaloisGroupPolynomialUtilities(D3,D4)
--R             if D4 has UPOLYC(D3) and D3 has RING
--R
--RExamples of degreePartition from GaloisGroupFactorizer
--R
--R
--RExamples of degreePartition from GaloisGroupPolynomialUtilities
--R
--E 640

--S 641 of 3320
)d op degreeSubResultant
--R 
--R
--RThere is one unexposed function called degreeSubResultant :
--R   [1] (D1,D1,NonNegativeInteger) -> D1 from PseudoRemainderSequence(D3
--R            ,D1)
--R             if D3 has INTDOM and D1 has UPOLYC(D3)
--R
--RExamples of degreeSubResultant from PseudoRemainderSequence
--R
--E 641

--S 642 of 3320
)d op degreeSubResultantEuclidean
--R 
--R
--RThere is one unexposed function called degreeSubResultantEuclidean :
--R   [1] (D2,D2,NonNegativeInteger) -> Record(coef1: D2,coef2: D2,
--R            subResultant: D2)
--R             from PseudoRemainderSequence(D4,D2)
--R             if D4 has INTDOM and D2 has UPOLYC(D4)
--R
--RExamples of degreeSubResultantEuclidean from PseudoRemainderSequence
--R
--E 642

--S 643 of 3320
)d op delay
--R 
--R
--RThere are 2 exposed functions called delay :
--R   [1] (() -> D) -> D from D if D has LOCPOWC(D2) and D2 has FIELD
--R   [2] (() -> Stream(D2)) -> Stream(D2) from Stream(D2) if D2 has TYPE
--R            
--R
--RExamples of delay from LocalPowerSeriesCategory
--R
--R
--RExamples of delay from Stream
--R
--E 643

--S 644 of 3320
)d op delete
--R 
--R
--RThere are 2 exposed functions called delete :
--R   [1] (D,UniversalSegment(Integer)) -> D from D if D has LNAGG(D2) and
--R            D2 has TYPE
--R   [2] (D,Integer) -> D from D if D has LNAGG(D2) and D2 has TYPE
--R
--RExamples of delete from LinearAggregate
--R
--E 644

--S 645 of 3320 done
)d op delete!
--R 
--R
--RThere are 2 exposed functions called delete! :
--R   [1] (D,UniversalSegment(Integer)) -> D from D if D has ELAGG(D2) and
--R            D2 has TYPE
--R   [2] (D,Integer) -> D from D if D has ELAGG(D2) and D2 has TYPE
--R
--RExamples of delete! from ExtensibleLinearAggregate
--R
--RData:=Record(age:Integer,gender:String) 
--Ra1:AssociationList(String,Data):=table() 
--Ra1."tim":=[55,"male"]$Data 
--Rdelete!(a1,1)
--R
--E 645

--S 646 of 3320
)d op deleteProperty!
--R 
--R
--RThere is one exposed function called deleteProperty! :
--R   [1] (BasicOperator,String) -> BasicOperator from BasicOperator
--R
--RExamples of deleteProperty! from BasicOperator
--R
--E 646

--S 647 of 3320
)d op deleteRoutine!
--R 
--R
--RThere is one exposed function called deleteRoutine! :
--R   [1] (RoutinesTable,Symbol) -> RoutinesTable from RoutinesTable
--R
--RExamples of deleteRoutine! from RoutinesTable
--R
--E 647

--S 648 of 3320
)d op deleteRow!
--R 
--R
--RThere is one exposed function called deleteRow! :
--R   [1] (SparseEchelonMatrix(D3,D4),Integer) -> Void
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of deleteRow! from SparseEchelonMatrix
--R
--E 648

--S 649 of 3320
)d op delta
--R 
--R
--RThere is one unexposed function called delta :
--R   [1] (SetOfMIntegersInOneToN(D3,D4),PositiveInteger,PositiveInteger)
--R             -> NonNegativeInteger
--R             from SetOfMIntegersInOneToN(D3,D4) if D3: PI and D4: PI
--R         
--R
--RExamples of delta from SetOfMIntegersInOneToN
--R
--E 649

--S 650 of 3320
)d op denom
--R 
--R
--RThere are 3 exposed functions called denom :
--R   [1] AlgebraicNumber -> SparseMultivariatePolynomial(Integer,Kernel(
--R            AlgebraicNumber))
--R             from AlgebraicNumber
--R   [2] D -> SparseMultivariatePolynomial(D2,Kernel(D)) from D
--R             if D2 has INTDOM and D2 has ORDSET and D has FS(D2)
--R   [3] D -> D1 from D if D has QFCAT(D1) and D1 has INTDOM
--R
--RThere are 4 unexposed functions called denom :
--R   [1] FractionalIdeal(D1,D2,D3,D4) -> D1 from FractionalIdeal(D1,D2,D3
--R            ,D4)
--R             if D2 has QFCAT(D1) and D3 has UPOLYC(D2) and D1 has 
--R            EUCDOM and D4 has Join(FramedAlgebra(D2,D3),RetractableTo(
--R            D2))
--R   [2] InnerAlgebraicNumber -> SparseMultivariatePolynomial(Integer,
--R            Kernel(InnerAlgebraicNumber))
--R             from InnerAlgebraicNumber
--R   [3] LocalAlgebra(D2,D3,D1) -> D1 from LocalAlgebra(D2,D3,D1)
--R             if D3 has COMRING and D1 has SubsetCategory(Monoid,D3) and
--R            D2 has ALGEBRA(D3)
--R   [4] Localize(D2,D3,D1) -> D1 from Localize(D2,D3,D1)
--R             if D3 has COMRING and D1 has SubsetCategory(Monoid,D3) and
--R            D2 has MODULE(D3)
--R
--RExamples of denom from AlgebraicNumber
--R
--Rt1:=sqrt(3)/sqrt(5) 
--Rdenom t1
--R
--R
--RExamples of denom from FractionalIdeal
--R
--R
--RExamples of denom from FunctionSpace
--R
--R
--RExamples of denom from InnerAlgebraicNumber
--R
--R
--RExamples of denom from LocalAlgebra
--R
--R
--RExamples of denom from Localize
--R
--R
--RExamples of denom from QuotientFieldCategory
--R
--E 650

--S 651 of 3320
)d op denominator
--R 
--R
--RThere are 3 exposed functions called denominator :
--R   [1] D -> D from D if D has FS(D1) and D1 has ORDSET and D1 has 
--R            INTDOM
--R   [2] MyExpression(D1,D2) -> MyExpression(D1,D2) from MyExpression(D1,
--R            D2)
--R             if D1: SYMBOL and D2 has Join(Ring,OrderedSet,
--R            IntegralDomain)
--R   [3] D -> D from D if D has QFCAT(D1) and D1 has INTDOM
--R
--RExamples of denominator from FunctionSpace
--R
--R
--RExamples of denominator from MyExpression
--R
--R
--RExamples of denominator from QuotientFieldCategory
--R
--E 651

--S 652 of 3320
)d op denominators
--R 
--R
--RThere is one exposed function called denominators :
--R   [1] ContinuedFraction(D2) -> Stream(D2) from ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of denominators from ContinuedFraction
--R
--E 652

--S 653 of 3320
)d op denomLODE
--R 
--R
--RThere are 2 unexposed functions called denomLODE :
--R   [1] (D2,Fraction(D1)) -> Union(D1,"failed") from PrimitiveRatDE(D4,
--R            D1,D2,D5)
--R             if D1 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Fraction(Integer))) and D2
--R             has LODOCAT(D1) and D5 has LODOCAT(FRAC(D1))
--R   [2] (D2,List(Fraction(D1))) -> D1 from PrimitiveRatDE(D4,D1,D2,D5)
--R             if D1 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Fraction(Integer))) and D2
--R             has LODOCAT(D1) and D5 has LODOCAT(FRAC(D1))
--R
--RExamples of denomLODE from PrimitiveRatDE
--R
--E 653

--S 654 of 3320
)d op denomRicDE
--R 
--R
--RThere is one unexposed function called denomRicDE :
--R   [1] D2 -> D1 from PrimitiveRatRicDE(D3,D1,D2,D4)
--R             if D1 has UPOLYC(D3) and D3 has Join(Field,
--R            CharacteristicZero,RetractableTo(Fraction(Integer))) and D2
--R             has LODOCAT(D1) and D4 has LODOCAT(FRAC(D1))
--R
--RExamples of denomRicDE from PrimitiveRatRicDE
--R
--E 654

--S 655 of 3320
)d op depth
--R 
--R
--RThere are 4 exposed functions called depth :
--R   [1] ArrayStack(D2) -> NonNegativeInteger from ArrayStack(D2) if D2
--R             has SETCAT
--R   [2] Dequeue(D2) -> NonNegativeInteger from Dequeue(D2) if D2 has 
--R            SETCAT
--R   [3] D -> NonNegativeInteger from D if D has SKAGG(D2) and D2 has 
--R            TYPE
--R   [4] Stack(D2) -> NonNegativeInteger from Stack(D2) if D2 has SETCAT
--R            
--R
--RThere is one unexposed function called depth :
--R   [1] Pattern(D2) -> NonNegativeInteger from Pattern(D2) if D2 has 
--R            SETCAT
--R
--RExamples of depth from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rdepth a
--R
--R
--RExamples of depth from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rdepth a
--R
--R
--RExamples of depth from Pattern
--R
--R
--RExamples of depth from StackAggregate
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rdepth a
--R
--R
--RExamples of depth from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rdepth a
--R
--E 655

--S 656 of 3320
)d op dequeue
--R 
--R
--RThere are 4 exposed functions called dequeue :
--R   [1] List(D2) -> Dequeue(D2) from Dequeue(D2) if D2 has SETCAT
--R   [2]  -> Dequeue(D1) from Dequeue(D1) if D1 has SETCAT
--R   [3] List(D2) -> D from D if D2 has TYPE and D has DQAGG(D2)
--R   [4]  -> D from D if D has DQAGG(D1) and D1 has TYPE
--R
--RExamples of dequeue from Dequeue
--R
--Ra:Dequeue INT:= dequeue ()
--R
--Rg:Dequeue INT:= dequeue [1,2,3,4,5]
--R
--R
--RExamples of dequeue from DequeueAggregate
--R
--E 656

--S 657 of 3320
)d op dequeue!
--R 
--R
--RThere are 3 exposed functions called dequeue! :
--R   [1] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has QUAGG(D1) and D1 has TYPE
--R   [3] Queue(D1) -> D1 from Queue(D1) if D1 has SETCAT
--R
--RExamples of dequeue! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rdequeue! a 
--Ra
--R
--R
--RExamples of dequeue! from QueueAggregate
--R
--R
--RExamples of dequeue! from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rdequeue! a 
--Ra
--R
--E 657

--S 658 of 3320
)d op deref
--R 
--R
--RThere is one unexposed function called deref :
--R   [1] Reference(D1) -> D1 from Reference(D1) if D1 has TYPE
--R
--RExamples of deref from Reference
--R
--E 658

--S 659 of 3320
)d op deriv
--R 
--R
--RThere is one unexposed function called deriv :
--R   [1] Stream(D2) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R
--RExamples of deriv from StreamTaylorSeriesOperations
--R
--E 659

--S 660 of 3320
)d op derivationCoordinates
--R 
--R
--RThere is one exposed function called derivationCoordinates :
--R   [1] (Vector(D),(D4 -> D4)) -> Matrix(D4) from D
--R             if D4 has FIELD and D has MONOGEN(D4,D5) and D4 has 
--R            COMRING and D5 has UPOLYC(D4)
--R
--RExamples of derivationCoordinates from MonogenicAlgebra
--R
--E 660

--S 661 of 3320
)d op derivative
--R 
--R
--RThere are 3 exposed functions called derivative :
--R   [1] (BasicOperator,List((List(D3) -> D3))) -> BasicOperator
--R             from BasicOperatorFunctions1(D3) if D3 has SETCAT
--R   [2] (BasicOperator,(D3 -> D3)) -> BasicOperator
--R             from BasicOperatorFunctions1(D3) if D3 has SETCAT
--R   [3] BasicOperator -> Union(List((List(D3) -> D3)),"failed")
--R             from BasicOperatorFunctions1(D3) if D3 has SETCAT
--R
--RExamples of derivative from BasicOperatorFunctions1
--R
--E 661

--S 662 of 3320
)d op desingTree
--R 
--R
--RThere are 4 exposed functions called desingTree :
--R   [1] D6 -> List(D3)
--R             from DesingTreePackage(D7,D8,D6,D9,D10,D11,D12,D1,D2,D3,D4
--R            )
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D6 has POLYCAT(D7
--R            ,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8),NNI) and D10 has 
--R            PRSPCAT(D7) and D11 has LOCPOWC(D7) and D12 has PLACESC(D7,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D7,D8,D6,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2]  -> List(D3)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12 has PLACESC(D6,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [3]  -> List(DesingTree(
--R            InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(D2,D3,
--R            D4)))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [4]  -> List(DesingTree(InfClsPt(D2,D3,D4)))
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of desingTree from DesingTreePackage
--R
--R
--RExamples of desingTree from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of desingTree from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of desingTree from PackageForAlgebraicFunctionField
--R
--E 662

--S 663 of 3320
)d op desingTreeAtPoint
--R 
--R
--RThere is one exposed function called desingTreeAtPoint :
--R   [1] (D5,D6) -> D4 from DesingTreePackage(D7,D8,D6,D9,D5,D10,D11,D1,
--R            D2,D4,D3)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D6 has POLYCAT(D7
--R            ,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8),NNI) and D5 has 
--R            PRSPCAT(D7) and D10 has LOCPOWC(D7) and D11 has PLACESC(D7,
--R            D10) and D1 has DIVCAT(D11) and D3 has BLMETCT and D4 has 
--R            DSTRCAT(D2) and D2 has INFCLCT(D7,D8,D6,D9,D5,D10,D11,D1,D3
--R            )
--R
--RExamples of desingTreeAtPoint from DesingTreePackage
--R
--E 663

--S 664 of 3320
)d op desingTreeWoFullParam
--R 
--R
--RThere are 3 exposed functions called desingTreeWoFullParam :
--R   [1]  -> List(D3)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12 has PLACESC(D6,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2]  -> List(DesingTree(
--R            InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(D2,D3,
--R            D4)))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [3]  -> List(DesingTree(InfClsPt(D2,D3,D4)))
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of desingTreeWoFullParam from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of desingTreeWoFullParam from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of desingTreeWoFullParam from PackageForAlgebraicFunctionField
--R
--E 664

--S 665 of 3320
)d op destruct
--R 
--R
--RThere is one exposed function called destruct :
--R   [1] D -> List(D) from D
--R             if D2 has SETCAT and D3 has SETCAT and D4 has SETCAT and 
--R            D5 has SETCAT and D6 has SETCAT and D has SEXCAT(D2,D3,D4,
--R            D5,D6)
--R
--RThere is one unexposed function called destruct :
--R   [1] PatternMatchResult(D2,D3) -> List(Record(key: Symbol,entry: D3))
--R             from PatternMatchResult(D2,D3) if D2 has SETCAT and D3
--R             has SETCAT
--R
--RExamples of destruct from PatternMatchResult
--R
--R
--RExamples of destruct from SExpressionCategory
--R
--E 665

--S 666 of 3320
)d op determinant
--R 
--R
--RThere are 3 exposed functions called determinant :
--R   [1] D -> D1 from D
--R             if D has MATCAT(D1,D2,D3) and D2 has FLAGG(D1) and D3 has 
--R            FLAGG(D1) and D1 has commutative(*) and D1 has RING
--R   [2] D2 -> D1 from MatrixLinearAlgebraFunctions(D1,D3,D4,D2)
--R             if D3 has FLAGG(D1) and D4 has FLAGG(D1) and D1 has 
--R            COMRING and D2 has MATCAT(D1,D3,D4)
--R   [3] D -> D1 from D
--R             if D has SMATCAT(D2,D1,D3,D4) and D3 has DIRPCAT(D2,D1) 
--R            and D4 has DIRPCAT(D2,D1) and D1 has commutative(*) and D1
--R             has RING
--R
--RThere is one unexposed function called determinant :
--R   [1] D2 -> D1 from InnerMatrixLinearAlgebraFunctions(D1,D3,D4,D2)
--R             if D3 has FLAGG(D1) and D4 has FLAGG(D1) and D1 has FIELD 
--R            and D2 has MATCAT(D1,D3,D4)
--R
--RExamples of determinant from InnerMatrixLinearAlgebraFunctions
--R
--R
--RExamples of determinant from MatrixCategory
--R
--Rdeterminant matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of determinant from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of determinant from SquareMatrixCategory
--R
--E 666

--S 667 of 3320
)d op df2ef
--R 
--R
--RThere is one exposed function called df2ef :
--R   [1] DoubleFloat -> Expression(Float) from ExpertSystemToolsPackage
--R         
--R
--RExamples of df2ef from ExpertSystemToolsPackage
--R
--E 667

--S 668 of 3320
)d op df2fi
--R 
--R
--RThere is one exposed function called df2fi :
--R   [1] DoubleFloat -> Fraction(Integer) from ExpertSystemToolsPackage
--R         
--R
--RExamples of df2fi from ExpertSystemToolsPackage
--R
--E 668

--S 669 of 3320
)d op df2mf
--R 
--R
--RThere is one exposed function called df2mf :
--R   [1] DoubleFloat -> MachineFloat from ExpertSystemToolsPackage
--R
--RExamples of df2mf from ExpertSystemToolsPackage
--R
--E 669

--S 670 of 3320
)d op df2st
--R 
--R
--RThere are 3 exposed functions called df2st :
--R   [1] DoubleFloat -> String from d01AgentsPackage
--R   [2] DoubleFloat -> String from ExpertSystemContinuityPackage
--R   [3] DoubleFloat -> String from ExpertSystemToolsPackage
--R
--RExamples of df2st from d01AgentsPackage
--R
--R
--RExamples of df2st from ExpertSystemContinuityPackage
--R
--R
--RExamples of df2st from ExpertSystemToolsPackage
--R
--E 670

--S 671 of 3320
)d op dflist
--R 
--R
--RThere is one exposed function called dflist :
--R   [1] List(Record(left: Fraction(Integer),right: Fraction(Integer)))
--R             -> List(DoubleFloat)
--R             from ExpertSystemToolsPackage
--R
--RExamples of dflist from ExpertSystemToolsPackage
--R
--E 671

--S 672 of 3320
)d op dfRange
--R 
--R
--RThere is one exposed function called dfRange :
--R   [1] Segment(OrderedCompletion(DoubleFloat)) -> Segment(
--R            OrderedCompletion(DoubleFloat))
--R             from ExpertSystemToolsPackage
--R
--RExamples of dfRange from ExpertSystemToolsPackage
--R
--E 672

--S 673 of 3320
)d op diag
--R 
--R
--RThere is one exposed function called diag :
--R   [1] ((D3,D3) -> D4) -> (D3 -> D4) from MappingPackage2(D3,D4)
--R             if D3 has SETCAT and D4 has SETCAT
--R
--RExamples of diag from MappingPackage2
--R
--E 673

--S 674 of 3320
)d op diagonal
--R 
--R
--RThere is one exposed function called diagonal :
--R   [1] D -> D1 from D
--R             if D has SMATCAT(D2,D3,D1,D4) and D3 has RING and D4 has 
--R            DIRPCAT(D2,D3) and D1 has DIRPCAT(D2,D3)
--R
--RExamples of diagonal from SquareMatrixCategory
--R
--E 674

--S 675 of 3320
)d op diagonal?
--R 
--R
--RThere are 2 exposed functions called diagonal? :
--R   [1] D -> Boolean from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [2] D -> Boolean from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of diagonal? from MatrixCategory
--R
--Rdiagonal? matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of diagonal? from RectangularMatrixCategory
--R
--E 675

--S 676 of 3320
)d op diagonalMatrix
--R 
--R
--RThere are 6 exposed functions called diagonalMatrix :
--R   [1] (D1,Integer) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R   [2] D1 -> D1 from MatrixManipulation(D2,D3,D4,D1)
--R             if D2 has FIELD and D3 has FLAGG(D2) and D4 has FLAGG(D2) 
--R            and D1 has MATCAT(D2,D3,D4)
--R   [3] List(D) -> D from D
--R             if D2 has RING and D has MATCAT(D2,D3,D4) and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [4] List(D2) -> D from D
--R             if D2 has RING and D has MATCAT(D2,D3,D4) and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [5] Vector(D2) -> Matrix(D2) from Matrix(D2) if D2 has RING
--R   [6] List(D3) -> D from D
--R             if D3 has RING and D has SMATCAT(D2,D3,D4,D5) and D4 has 
--R            DIRPCAT(D2,D3) and D5 has DIRPCAT(D2,D3)
--R
--RExamples of diagonalMatrix from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RdiagonalMatrix(M)
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RdiagonalMatrix(M, 1) 
--RdiagonalMatrix(M, 2) 
--RdiagonalMatrix(M, -1)
--R
--R
--RExamples of diagonalMatrix from MatrixCategory
--R
--RdiagonalMatrix [matrix [[1,2],[3,4]], matrix [[4,5],[6,7]]]
--R
--RdiagonalMatrix [1,2,3]
--R
--R
--RExamples of diagonalMatrix from Matrix
--R
--R
--RExamples of diagonalMatrix from SquareMatrixCategory
--R
--E 676

--S 677 of 3320
)d op diagonalProduct
--R 
--R
--RThere is one exposed function called diagonalProduct :
--R   [1] D -> D1 from D
--R             if D has SMATCAT(D2,D1,D3,D4) and D3 has DIRPCAT(D2,D1) 
--R            and D4 has DIRPCAT(D2,D1) and D1 has RING
--R
--RThere is one unexposed function called diagonalProduct :
--R   [1] Matrix(D1) -> D1 from IntegralBasisTools(D1,D3,D4)
--R             if D3 has UPOLYC(D1) and D1 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D4 has FRAMALG(D1,
--R            D3)
--R
--RExamples of diagonalProduct from IntegralBasisTools
--R
--R
--RExamples of diagonalProduct from SquareMatrixCategory
--R
--E 677

--S 678 of 3320
)d op diagonals
--R 
--R
--RThere is one exposed function called diagonals :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of diagonals from ThreeDimensionalViewport
--R
--E 678

--S 679 of 3320
)d op dictionary
--R 
--R
--RThere are 2 exposed functions called dictionary :
--R   [1] List(D2) -> D from D if D2 has SETCAT and D has DIOPS(D2)
--R   [2]  -> D from D if D has DIOPS(D1) and D1 has SETCAT
--R
--RExamples of dictionary from DictionaryOperations
--R
--E 679

--S 680 of 3320
)d op diff
--R 
--R
--RThere is one unexposed function called diff :
--R   [1] Symbol -> (D4 -> D4) from ODEIntegration(D3,D4)
--R             if D3 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D4 has Join(
--R            AlgebraicallyClosedFunctionSpace(D3),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory)
--R         
--R
--RExamples of diff from ODEIntegration
--R
--E 680

--S 681 of 3320
)d op DiffAction
--R 
--R
--RThere is one exposed function called DiffAction :
--R   [1] (NonNegativeInteger,NonNegativeInteger,D3) -> D1
--R             from FractionFreeFastGaussian(D1,D3)
--R             if D1 has Join(IntegralDomain,GcdDomain) and D3 has AMR(D1
--R            ,NNI)
--R
--RExamples of DiffAction from FractionFreeFastGaussian
--R
--E 681

--S 682 of 3320
)d op DiffC
--R 
--R
--RThere is one exposed function called DiffC :
--R   [1] NonNegativeInteger -> List(D3) from FractionFreeFastGaussian(D3,
--R            D4)
--R             if D3 has Join(IntegralDomain,GcdDomain) and D4 has AMR(D3
--R            ,NNI)
--R
--RExamples of DiffC from FractionFreeFastGaussian
--R
--E 682

--S 683 of 3320
)d op difference
--R 
--R
--RThere are 2 exposed functions called difference :
--R   [1] (D,D1) -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R   [2] (D,D) -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R
--RExamples of difference from SetAggregate
--R
--E 683

--S 684 of 3320
)d op differentialVariables
--R 
--R
--RThere is one exposed function called differentialVariables :
--R   [1] D -> List(D3) from D
--R             if D has DPOLCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            ORDSET and D4 has DVARCAT(D3) and D5 has OAMONS
--R
--RExamples of differentialVariables from DifferentialPolynomialCategory
--R
--E 684

--S 685 of 3320
)d op differentiate
--R 
--R
--RThere are 19 exposed functions called differentiate :
--R   [1] (D,(D3 -> D3),NonNegativeInteger) -> D from D
--R             if D has DIFEXT(D3) and D3 has RING
--R   [2] (D,(D2 -> D2)) -> D from D if D has DIFEXT(D2) and D2 has RING
--R         
--R   [3] (D,NonNegativeInteger) -> D from D if D has DIFRING
--R   [4] D -> D from D if D has DIFRING
--R   [5] (D,NonNegativeInteger) -> D from D if D has DVARCAT(D2) and D2
--R             has ORDSET
--R   [6] D -> D from D if D has DVARCAT(D1) and D1 has ORDSET
--R   [7] (D,(D3 -> D3)) -> D from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R   [8] (FullPartialFractionExpansion(D2,D3),NonNegativeInteger) -> 
--R            FullPartialFractionExpansion(D2,D3)
--R             from FullPartialFractionExpansion(D2,D3)
--R             if D2 has Join(Field,CharacteristicZero) and D3 has UPOLYC
--R            (D2)
--R   [9] FullPartialFractionExpansion(D1,D2) -> 
--R            FullPartialFractionExpansion(D1,D2)
--R             from FullPartialFractionExpansion(D1,D2)
--R             if D1 has Join(Field,CharacteristicZero) and D2 has UPOLYC
--R            (D1)
--R   [10] (GeneralUnivariatePowerSeries(D2,D3,D4),Variable(D3)) -> 
--R            GeneralUnivariatePowerSeries(D2,D3,D4)
--R             from GeneralUnivariatePowerSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has RING and D4: D2
--R   [11] (D,List(D3),List(NonNegativeInteger)) -> D from D
--R             if D has PDRING(D3) and D3 has SETCAT
--R   [12] (D,D1,NonNegativeInteger) -> D from D if D has PDRING(D1) and 
--R            D1 has SETCAT
--R   [13] (D,List(D2)) -> D from D if D has PDRING(D2) and D2 has SETCAT
--R            
--R   [14] (D,D1) -> D from D if D has PDRING(D1) and D1 has SETCAT
--R   [15] (U32Vector,Integer) -> U32Vector from 
--R            U32VectorPolynomialOperations
--R   [16] (U32Vector,NonNegativeInteger,Integer) -> U32Vector
--R             from U32VectorPolynomialOperations
--R   [17] (UnivariateFormalPowerSeries(D2),Variable(QUOTE(x))) -> 
--R            UnivariateFormalPowerSeries(D2)
--R             from UnivariateFormalPowerSeries(D2) if D2 has RING
--R   [18] (D,(D2 -> D2),D) -> D from D if D has UPOLYC(D2) and D2 has 
--R            RING
--R   [19] (UnivariateTaylorSeriesCZero(D2,D3),Variable(D3)) -> 
--R            UnivariateTaylorSeriesCZero(D2,D3)
--R             from UnivariateTaylorSeriesCZero(D2,D3) if D3: SYMBOL and 
--R            D2 has RING
--R
--RThere are 9 unexposed functions called differentiate :
--R   [1] (IntegrationResult(D1),Symbol) -> D1 from IntegrationResult(D1)
--R             if D1 has FIELD and D1 has PDRING(SYMBOL)
--R   [2] (IntegrationResult(D1),(D1 -> D1)) -> D1 from IntegrationResult(
--R            D1)
--R             if D1 has FIELD
--R   [3] (OutputForm,NonNegativeInteger) -> OutputForm from OutputForm
--R         
--R   [4] (SparseUnivariateLaurentSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariateLaurentSeries(D2,D3,D4)
--R             from SparseUnivariateLaurentSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has RING and D4: D2
--R   [5] (SparseUnivariatePuiseuxSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariatePuiseuxSeries(D2,D3,D4)
--R             from SparseUnivariatePuiseuxSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has RING and D4: D2
--R   [6] (SparseUnivariateTaylorSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariateTaylorSeries(D2,D3,D4)
--R             from SparseUnivariateTaylorSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has RING and D4: D2
--R   [7] (UnivariateLaurentSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariateLaurentSeries(D2,D3,D4)
--R             from UnivariateLaurentSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has RING and D4: D2
--R   [8] (UnivariatePuiseuxSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariatePuiseuxSeries(D2,D3,D4)
--R             from UnivariatePuiseuxSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has RING and D4: D2
--R   [9] (UnivariateTaylorSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariateTaylorSeries(D2,D3,D4)
--R             from UnivariateTaylorSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has RING and D4: D2
--R
--RExamples of differentiate from DifferentialExtension
--R
--R
--RExamples of differentiate from DifferentialRing
--R
--R
--RExamples of differentiate from DifferentialVariableCategory
--R
--R
--RExamples of differentiate from FunctionFieldCategory
--R
--R
--RExamples of differentiate from FullPartialFractionExpansion
--R
--R
--RExamples of differentiate from GeneralUnivariatePowerSeries
--R
--R
--RExamples of differentiate from IntegrationResult
--R
--R
--RExamples of differentiate from OutputForm
--R
--R
--RExamples of differentiate from PartialDifferentialRing
--R
--R
--RExamples of differentiate from U32VectorPolynomialOperations
--R
--R
--RExamples of differentiate from SparseUnivariateLaurentSeries
--R
--R
--RExamples of differentiate from SparseUnivariatePuiseuxSeries
--R
--R
--RExamples of differentiate from SparseUnivariateTaylorSeries
--R
--R
--RExamples of differentiate from UnivariateFormalPowerSeries
--R
--R
--RExamples of differentiate from UnivariateLaurentSeries
--R
--R
--RExamples of differentiate from UnivariatePolynomialCategory
--R
--R
--RExamples of differentiate from UnivariatePuiseuxSeries
--R
--R
--RExamples of differentiate from UnivariateTaylorSeries
--R
--R
--RExamples of differentiate from UnivariateTaylorSeriesCZero
--R
--E 685

--S 686 of 3320
)d op diffHP
--R 
--R
--RThere are 12 exposed functions called diffHP :
--R   [1] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(AlgebraicNumber) -> Stream(
--R            UnivariateFormalPowerSeries(AlgebraicNumber))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber)))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> AlgebraicNumber),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber))) -> 
--R            SparseUnivariatePolynomial(AlgebraicNumber)),AX: ((
--R            NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(AlgebraicNumber)))
--R             from GuessAlgebraicNumber
--R   [2] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(AlgebraicNumber) -> Stream(
--R            UnivariateFormalPowerSeries(AlgebraicNumber))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber)))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> AlgebraicNumber),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber))) -> 
--R            SparseUnivariatePolynomial(AlgebraicNumber)),AX: ((
--R            NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(AlgebraicNumber))))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [3] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D3) -> Stream(
--R            UnivariateFormalPowerSeries(D3))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D3)))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(D3)) -> D3),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3))) -> SparseUnivariatePolynomial(D3
--R            )),AX: ((NonNegativeInteger,Symbol,Expression(Integer)) -> 
--R            Expression(Integer)),C: (NonNegativeInteger -> List(D3)))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [4] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D3) -> Stream(
--R            UnivariateFormalPowerSeries(D3))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D3)))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(D3)) -> D3),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3))) -> SparseUnivariatePolynomial(D3
--R            )),AX: ((NonNegativeInteger,Symbol,Expression(Integer)) -> 
--R            Expression(Integer)),C: (NonNegativeInteger -> List(D3))))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [5] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Integer)) -> Stream(
--R            UnivariateFormalPowerSeries(Fraction(Integer)))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Integer))))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            Integer)) -> Integer),AF: ((NonNegativeInteger,NonNegativeInteger
--R            ,UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer)))) -> SparseUnivariatePolynomial(Fraction(Integer))),AX
--R            : ((NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(Integer)))
--R             from GuessInteger
--R   [6] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Integer)) -> Stream(
--R            UnivariateFormalPowerSeries(Fraction(Integer)))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Integer))))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            Integer)) -> Integer),AF: ((NonNegativeInteger,NonNegativeInteger
--R            ,UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer)))) -> SparseUnivariatePolynomial(Fraction(Integer))),AX
--R            : ((NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(Integer))))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [7] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D4) -> Stream(
--R            UnivariateFormalPowerSeries(D4))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D4)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D4)))),
--R            exprStream: ((D6,Symbol) -> Stream(D6)),A: ((NonNegativeInteger,
--R            NonNegativeInteger,SparseUnivariatePolynomial(D5)) -> D5),AF: ((
--R            NonNegativeInteger,NonNegativeInteger,UnivariateFormalPowerSeries
--R            (SparseUnivariatePolynomial(D4))) -> SparseUnivariatePolynomial(
--R            D4)),AX: ((NonNegativeInteger,Symbol,D6) -> D6),C: (
--R            NonNegativeInteger -> List(D5)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [8] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D4) -> Stream(
--R            UnivariateFormalPowerSeries(D4))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D4)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D4)))),
--R            exprStream: ((D6,Symbol) -> Stream(D6)),A: ((NonNegativeInteger,
--R            NonNegativeInteger,SparseUnivariatePolynomial(D5)) -> D5),AF: ((
--R            NonNegativeInteger,NonNegativeInteger,UnivariateFormalPowerSeries
--R            (SparseUnivariatePolynomial(D4))) -> SparseUnivariatePolynomial(
--R            D4)),AX: ((NonNegativeInteger,Symbol,D6) -> D6),C: (
--R            NonNegativeInteger -> List(D5))))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [9] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Polynomial(Integer))) -> 
--R            Stream(UnivariateFormalPowerSeries(Fraction(Polynomial(Integer)))
--R            )),degreeStream: Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Polynomial(Integer)))))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(Polynomial(Integer))) -> Polynomial(
--R            Integer)),AF: ((NonNegativeInteger,NonNegativeInteger,
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer))))) -> SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))),AX: ((NonNegativeInteger,Symbol,Expression
--R            (Integer)) -> Expression(Integer)),C: (NonNegativeInteger -> List
--R            (Polynomial(Integer))))
--R             from GuessPolynomial
--R   [10] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Polynomial(Integer))) -> 
--R            Stream(UnivariateFormalPowerSeries(Fraction(Polynomial(Integer)))
--R            )),degreeStream: Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Polynomial(Integer)))))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(Polynomial(Integer))) -> Polynomial(
--R            Integer)),AF: ((NonNegativeInteger,NonNegativeInteger,
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer))))) -> SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))),AX: ((NonNegativeInteger,Symbol,Expression
--R            (Integer)) -> Expression(Integer)),C: (NonNegativeInteger -> List
--R            (Polynomial(Integer)))))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [11] List(GuessOption) -> HPSPEC from GuessUnivariatePolynomial(D3)
--R             if D3: SYMBOL
--R   [12] Symbol -> (List(GuessOption) -> HPSPEC)
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of diffHP from GuessAlgebraicNumber
--R
--R
--RExamples of diffHP from GuessFinite
--R
--R
--RExamples of diffHP from GuessInteger
--R
--R
--RExamples of diffHP from Guess
--R
--R
--RExamples of diffHP from GuessPolynomial
--R
--R
--RExamples of diffHP from GuessUnivariatePolynomial
--R
--E 686

--S 687 of 3320
)d op digamma
--R 
--R
--RThere are 3 exposed functions called digamma :
--R   [1] DoubleFloat -> DoubleFloat from DoubleFloatSpecialFunctions
--R   [2] Complex(DoubleFloat) -> Complex(DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [3] D -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called digamma :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of digamma from DoubleFloatSpecialFunctions
--R
--R
--RExamples of digamma from FunctionalSpecialFunction
--R
--R
--RExamples of digamma from SpecialFunctionCategory
--R
--E 687

--S 688 of 3320
)d op digit
--R 
--R
--RThere is one exposed function called digit :
--R   [1]  -> CharacterClass from CharacterClass
--R
--RExamples of digit from CharacterClass
--R
--E 688

--S 689 of 3320 done
)d op digit?
--R 
--R
--RThere is one exposed function called digit? :
--R   [1] Character -> Boolean from Character
--R
--RExamples of digit? from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[digit? c for c in chars]
--R
--E 689

--S 690 of 3320
)d op digits
--R 
--R
--RThere are 3 exposed functions called digits :
--R   [1] PositiveInteger -> PositiveInteger from D
--R             if D has arbitraryPrecision and D has FPS
--R   [2]  -> PositiveInteger from D if D has FPS
--R   [3] D -> Stream(Integer) from D if D has PADICCT(D2)
--R
--RThere are 2 unexposed functions called digits :
--R   [1] PositiveInteger -> PositiveInteger from FloatingPointSystem&(D2)
--R             if D2 has FPS
--R   [2]  -> PositiveInteger from FloatingPointSystem&(D2) if D2 has FPS
--R            
--R
--RExamples of digits from FloatingPointSystem&
--R
--R
--RExamples of digits from FloatingPointSystem
--R
--R
--RExamples of digits from PAdicIntegerCategory
--R
--E 690

--S 691 of 3320
)d op dihedral
--R 
--R
--RThere is one exposed function called dihedral :
--R   [1] Integer -> SymmetricPolynomial(Fraction(Integer)) from 
--R            CycleIndicators
--R
--RExamples of dihedral from CycleIndicators
--R
--E 691

--S 692 of 3320
)d op dihedralGroup
--R 
--R
--RThere are 2 exposed functions called dihedralGroup :
--R   [1] PositiveInteger -> PermutationGroup(Integer)
--R             from PermutationGroupExamples
--R   [2] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R
--RExamples of dihedralGroup from PermutationGroupExamples
--R
--E 692

--S 693 of 3320
)d op dilog
--R 
--R
--RThere is one exposed function called dilog :
--R   [1] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called dilog :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of dilog from LiouvillianFunctionCategory
--R
--R
--RExamples of dilog from LiouvillianFunction
--R
--E 693

--S 694 of 3320
)d op dim
--R 
--R
--RThere is one exposed function called dim :
--R   [1] Color -> Palette from Palette
--R
--RThere is one unexposed function called dim :
--R   [1] DeRhamComplex(D2,D3) -> NonNegativeInteger from DeRhamComplex(D2
--R            ,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R
--RExamples of dim from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--Rdim sigma
--R
--R
--RExamples of dim from Palette
--R
--E 694

--S 695 of 3320
)d op dimension
--R 
--R
--RThere are 6 exposed functions called dimension :
--R   [1] Cell(D2) -> NonNegativeInteger from Cell(D2) if D2 has RCFIELD
--R         
--R   [2]  -> NonNegativeInteger from FreeNilpotentLie(D2,D3,D4)
--R             if D2: NNI and D3: NNI and D4 has COMRING
--R   [3] PolynomialIdeals(D2,D3,D4,D5) -> Integer
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R   [4] (PolynomialIdeals(D3,D4,D5,D6),List(D5)) -> Integer
--R             from PolynomialIdeals(D3,D4,D5,D6)
--R             if D5 has ORDSET and D3 has FIELD and D4 has OAMONS and D6
--R             has POLYCAT(D3,D4,D5)
--R   [5] D -> PositiveInteger from D if D has PTCAT(D2) and D2 has RING
--R         
--R   [6]  -> CardinalNumber from D if D has VSPACE(D2) and D2 has FIELD
--R         
--R
--RThere are 2 unexposed functions called dimension :
--R   [1]  -> CardinalNumber from DirectProductCategory&(D2,D3,D4)
--R             if D3: NNI and D4 has TYPE and D2 has DIRPCAT(D3,D4)
--R   [2]  -> CardinalNumber from FiniteAlgebraicExtensionField&(D2,D3)
--R             if D3 has FIELD and D2 has FAXF(D3)
--R
--RExamples of dimension from Cell
--R
--R
--RExamples of dimension from DirectProductCategory&
--R
--R
--RExamples of dimension from FiniteAlgebraicExtensionField&
--R
--R
--RExamples of dimension from FreeNilpotentLie
--R
--R
--RExamples of dimension from PolynomialIdeals
--R
--R
--RExamples of dimension from PointCategory
--R
--R
--RExamples of dimension from VectorSpace
--R
--E 695

--S 696 of 3320
)d op dimensionOfIrreducibleRepresentation
--R 
--R
--RThere is one exposed function called dimensionOfIrreducibleRepresentation :
--R   [1] List(Integer) -> NonNegativeInteger from IrrRepSymNatPackage
--R
--RExamples of dimensionOfIrreducibleRepresentation from IrrRepSymNatPackage
--R
--E 696

--S 697 of 3320
)d op dimensions
--R 
--R
--RThere is one exposed function called dimensions :
--R   [1] (ThreeDimensionalViewport,NonNegativeInteger,NonNegativeInteger,
--R            PositiveInteger,PositiveInteger) -> Void
--R             from ThreeDimensionalViewport
--R
--RThere is one unexposed function called dimensions :
--R   [1] (TwoDimensionalViewport,NonNegativeInteger,NonNegativeInteger,
--R            PositiveInteger,PositiveInteger) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of dimensions from TwoDimensionalViewport
--R
--R
--RExamples of dimensions from ThreeDimensionalViewport
--R
--E 697

--S 698 of 3320
)d op dimensionsOf
--R 
--R
--RThere are 3 exposed functions called dimensionsOf :
--R   [1] FortranType -> List(Polynomial(Integer)) from FortranType
--R   [2] (Symbol,Matrix(DoubleFloat)) -> SExpression from 
--R            NAGLinkSupportPackage
--R   [3] (Symbol,Matrix(Integer)) -> SExpression from 
--R            NAGLinkSupportPackage
--R
--RExamples of dimensionsOf from FortranType
--R
--R
--RExamples of dimensionsOf from NAGLinkSupportPackage
--R
--E 698

--S 699 of 3320
)d op diophantineSystem
--R 
--R
--RThere is one exposed function called diophantineSystem :
--R   [1] (D2,D3) -> Record(particular: Union(D3,"failed"),basis: List(D3)
--R            )
--R             from SmithNormalForm(D4,D5,D3,D2)
--R             if D4 has EUCDOM and D5 has FLAGG(D4) and D3 has FLAGG(D4)
--R            and D2 has MATCAT(D4,D5,D3)
--R
--RExamples of diophantineSystem from SmithNormalForm
--R
--E 699

--S 700 of 3320
)d op dioSolve
--R 
--R
--RThere is one exposed function called dioSolve :
--R   [1] Equation(Polynomial(Integer)) -> Record(varOrder: List(Symbol),
--R            inhom: Union(List(Vector(NonNegativeInteger)),"failed"),hom: List
--R            (Vector(NonNegativeInteger)))
--R             from DiophantineSolutionPackage
--R
--RExamples of dioSolve from DiophantineSolutionPackage
--R
--E 700

--S 701 of 3320
)d op direction
--R 
--R
--RThere is one unexposed function called direction :
--R   [1] String -> Integer from ToolsForSign(D3) if D3 has RING
--R
--RExamples of direction from ToolsForSign
--R
--E 701

--S 702 of 3320
)d op directory
--R 
--R
--RThere is one exposed function called directory :
--R   [1] D -> String from D if D has FNCAT
--R
--RExamples of directory from FileNameCategory
--R
--E 702

--S 703 of 3320
)d op directProduct
--R 
--R
--RThere is one exposed function called directProduct :
--R   [1] Vector(D3) -> D from D if D3 has TYPE and D has DIRPCAT(D2,D3)
--R         
--R
--RExamples of directProduct from DirectProductCategory
--R
--E 703

--S 704 of 3320
)d op directSum
--R 
--R
--RThere is one exposed function called directSum :
--R   [1] (D,D) -> D from D if D has LODOCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RThere is one unexposed function called directSum :
--R   [1] (D1,D1,(D3 -> D3)) -> D1
--R             from LinearOrdinaryDifferentialOperatorsOps(D3,D1)
--R             if D3 has FIELD and D1 has LODOCAT(D3)
--R
--RExamples of directSum from LinearOrdinaryDifferentialOperatorCategory
--R
--R
--RExamples of directSum from LinearOrdinaryDifferentialOperatorsOps
--R
--E 704

--S 705 of 3320
)d op discreteLog
--R 
--R
--RThere are 2 exposed functions called discreteLog :
--R   [1] D -> NonNegativeInteger from D if D has FFIELDC
--R   [2] (D,D) -> Union(NonNegativeInteger,"failed") from D if D has FPC
--R            
--R
--RExamples of discreteLog from FiniteFieldCategory
--R
--R
--RExamples of discreteLog from FieldOfPrimeCharacteristic
--R
--E 705

--S 706 of 3320
)d op discriminant
--R 
--R
--RThere are 4 exposed functions called discriminant :
--R   [1] Vector(D) -> D1 from D
--R             if D has FINRALG(D1,D3) and D3 has UPOLYC(D1) and D1 has 
--R            COMRING
--R   [2]  -> D1 from D if D has FRAMALG(D1,D2) and D2 has UPOLYC(D1) and 
--R            D1 has COMRING
--R   [3] (D,D1) -> D from D
--R             if D has POLYCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET and D2 has COMRING
--R   [4] D -> D1 from D if D has UPOLYC(D1) and D1 has RING and D1 has 
--R            COMRING
--R
--RThere are 4 unexposed functions called discriminant :
--R   [1]  -> D1 from ComplexCategory&(D2,D1) if D1 has COMRING and D2
--R             has COMPCAT(D1)
--R   [2]  -> D1 from FramedAlgebra&(D2,D1,D3)
--R             if D3 has UPOLYC(D1) and D1 has COMRING and D2 has FRAMALG
--R            (D1,D3)
--R   [3]  -> Integer from NumberFieldIntegralBasis(D2,D3)
--R             if D2 has UPOLYC(INT) and D3 has FRAMALG(INT,D2)
--R   [4] D2 -> D1 from PseudoRemainderSequence(D1,D2)
--R             if D1 has INTDOM and D2 has UPOLYC(D1)
--R
--RExamples of discriminant from ComplexCategory&
--R
--R
--RExamples of discriminant from FiniteRankAlgebra
--R
--R
--RExamples of discriminant from FramedAlgebra&
--R
--R
--RExamples of discriminant from FramedAlgebra
--R
--R
--RExamples of discriminant from NumberFieldIntegralBasis
--R
--R
--RExamples of discriminant from PolynomialCategory
--R
--R
--RExamples of discriminant from PseudoRemainderSequence
--R
--R
--RExamples of discriminant from UnivariatePolynomialCategory
--R
--E 706

--S 707 of 3320
)d op discriminantEuclidean
--R 
--R
--RThere is one unexposed function called discriminantEuclidean :
--R   [1] D2 -> Record(coef1: D2,coef2: D2,discriminant: D3)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of discriminantEuclidean from PseudoRemainderSequence
--R
--E 707

--S 708 of 3320
)d op discriminantSet
--R 
--R
--RThere is one exposed function called discriminantSet :
--R   [1] List(SparseUnivariatePolynomial(Polynomial(D3))) -> List(
--R            Polynomial(D3))
--R             from CylindricalAlgebraicDecompositionPackage(D3) if D3
--R             has RCFIELD
--R
--RExamples of discriminantSet from CylindricalAlgebraicDecompositionPackage
--R
--E 708

--S 709 of 3320
)d op display
--R 
--R
--RThere are 11 exposed functions called display :
--R   [1] (BasicOperator,(OutputForm -> OutputForm)) -> BasicOperator
--R             from BasicOperator
--R   [2] (BasicOperator,(List(OutputForm) -> OutputForm)) -> 
--R            BasicOperator
--R             from BasicOperator
--R   [3] BasicOperator -> Union((List(OutputForm) -> OutputForm),"failed"
--R            )
--R             from BasicOperator
--R   [4] Database(D2) -> Void from Database(D2)
--R             if D2 has OrderedSetwith
--R               ?.? : (%,Symbol) -> String
--R               display : % -> Void
--R               fullDisplay : % -> Void
--R   [5] ScriptFormulaFormat -> Void from ScriptFormulaFormat
--R   [6] (ScriptFormulaFormat,Integer) -> Void from ScriptFormulaFormat
--R         
--R   [7] String -> Void from HTMLFormat
--R   [8] IndexCard -> Void from IndexCard
--R   [9] String -> Void from MathMLFormat
--R   [10] TexFormat -> Void from TexFormat
--R   [11] (TexFormat,Integer) -> Void from TexFormat
--R
--RExamples of display from BasicOperator
--R
--R
--RExamples of display from Database
--R
--R
--RExamples of display from ScriptFormulaFormat
--R
--R
--RExamples of display from HTMLFormat
--R
--Rdisplay(coerce(sqrt(3+x)::OutputForm)$HTMLFORM)$HTMLFORM
--R
--R
--RExamples of display from IndexCard
--R
--R
--RExamples of display from MathMLFormat
--R
--R
--RExamples of display from TexFormat
--R
--E 709

--S 710 of 3320
)d op displayAsGF
--R 
--R
--RThere is one unexposed function called displayAsGF :
--R   [1] List(GuessOption) -> Boolean from GuessOptionFunctions0
--R
--RExamples of displayAsGF from GuessOptionFunctions0
--R
--E 710

--S 711 of 3320
)d op displayKind
--R 
--R
--RThere is one exposed function called displayKind :
--R   [1] Symbol -> GuessOption from GuessOption
--R
--RExamples of displayKind from GuessOption
--R
--E 711

--S 712 of 3320
)d op distance
--R 
--R
--RThere is one exposed function called distance :
--R   [1] (D,D) -> Integer from D if D has RCAGG(D2) and D2 has TYPE
--R
--RExamples of distance from RecursiveAggregate
--R
--E 712

--S 713 of 3320
)d op distdfact
--R 
--R
--RThere is one exposed function called distdfact :
--R   [1] (D2,Boolean) -> Record(cont: D4,factors: List(Record(irr: D2,pow
--R            : Integer)))
--R             from DistinctDegreeFactorize(D4,D2)
--R             if D4 has FFIELDC and D2 has UPOLYC(D4)
--R
--RExamples of distdfact from DistinctDegreeFactorize
--R
--E 713

--S 714 of 3320
)d op distFact
--R 
--R
--RThere is one unexposed function called distFact :
--R   [1] (D3,List(SparseUnivariatePolynomial(D3)),Record(contp: D3,
--R            factors: List(Record(irr: D1,pow: Integer))),List(D3),List(D8),
--R            List(D3)) -> Union(Record(polfac: List(D1),correct: D3,corrfact: 
--R            List(SparseUnivariatePolynomial(D3))),"failed")
--R             from LeadingCoefDetermination(D8,D9,D3,D1)
--R             if D8 has ORDSET and D3 has EUCDOM and D1 has POLYCAT(D3,
--R            D9,D8) and D9 has OAMONS
--R
--RExamples of distFact from LeadingCoefDetermination
--R
--E 714

--S 715 of 3320
)d op distinguishedCommonRootsOf
--R 
--R
--RThere is one exposed function called distinguishedCommonRootsOf :
--R   [1] (List(SparseUnivariatePolynomial(D3)),D3) -> Record(zeros: List(
--R            D3),extDegree: Integer)
--R             from RootsFindingPackage(D3) if D3 has FIELD
--R
--RExamples of distinguishedCommonRootsOf from RootsFindingPackage
--R
--E 715

--S 716 of 3320
)d op distinguishedRootsOf
--R 
--R
--RThere are 2 exposed functions called distinguishedRootsOf :
--R   [1] (SparseUnivariatePolynomial(D),D) -> List(D) from D if D has 
--R            PACPERC
--R   [2] (SparseUnivariatePolynomial(D3),D3) -> Record(zeros: List(D3),
--R            extDegree: Integer)
--R             from RootsFindingPackage(D3) if D3 has FIELD
--R
--RExamples of distinguishedRootsOf from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of distinguishedRootsOf from RootsFindingPackage
--R
--E 716

--S 717 of 3320
)d op distribute
--R 
--R
--RThere are 2 exposed functions called distribute :
--R   [1] (D,D) -> D from D if D has ES
--R   [2] D -> D from D if D has ES
--R
--RExamples of distribute from ExpressionSpace
--R
--E 717

--S 718 of 3320
)d op div
--R 
--R
--RThere is one unexposed function called div :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of div from OutputForm
--R
--E 718

--S 719 of 3320
)d op divergence
--R 
--R
--RThere is one exposed function called divergence :
--R   [1] (D2,D3) -> D1 from MultiVariableCalculusFunctions(D4,D1,D2,D3)
--R             if D4 has SETCAT and D1 has PDRING(D4) and D2 has FLAGG(D1
--R            ) and D3 has FiniteLinearAggregate(D4)with
--R                 finiteAggregate
--R
--RExamples of divergence from MultiVariableCalculusFunctions
--R
--E 719

--S 720 of 3320
)d op divide
--R 
--R
--RThere are 2 exposed functions called divide :
--R   [1] (D,D) -> Record(quotient: D,remainder: D) from D if D has EUCDOM
--R            
--R   [2] (NonNegativeInteger,NonNegativeInteger) -> Record(quotient: 
--R            NonNegativeInteger,remainder: NonNegativeInteger)
--R             from NonNegativeInteger
--R
--RThere are 3 unexposed functions called divide :
--R   [1] (FreeMonoid(D2),FreeMonoid(D2)) -> Union(Record(lm: FreeMonoid(
--R            D2),rm: FreeMonoid(D2)),"failed")
--R             from FreeMonoid(D2) if D2 has SETCAT
--R   [2] (OrderedFreeMonoid(D2),OrderedFreeMonoid(D2)) -> Union(Record(lm
--R            : Union(OrderedFreeMonoid(D2),"failed"),rm: Union(
--R            OrderedFreeMonoid(D2),"failed")),"failed")
--R             from OrderedFreeMonoid(D2) if D2 has ORDSET
--R   [3] (D2,D2) -> Record(quotient: D2,remainder: D2)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of divide from EuclideanDomain
--R
--R
--RExamples of divide from FreeMonoid
--R
--R
--RExamples of divide from NonNegativeInteger
--R
--R
--RExamples of divide from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rm2:=(x*y)$OFMONOID(Symbol) 
--Rdivide(m1,m2)
--R
--R
--RExamples of divide from PseudoRemainderSequence
--R
--E 720

--S 721 of 3320
)d op divide!
--R 
--R
--RThere is one exposed function called divide! :
--R   [1] (U32Vector,U32Vector,U32Vector,Integer) -> Void
--R             from U32VectorPolynomialOperations
--R
--RExamples of divide! from U32VectorPolynomialOperations
--R
--E 721

--S 722 of 3320
)d op divideExponents
--R 
--R
--RThere is one exposed function called divideExponents :
--R   [1] (D,NonNegativeInteger) -> Union(D,"failed") from D
--R             if D has UPOLYC(D2) and D2 has RING
--R
--RExamples of divideExponents from UnivariatePolynomialCategory
--R
--E 722

--S 723 of 3320
)d op divideIfCan
--R 
--R
--RThere is one unexposed function called divideIfCan :
--R   [1] (D2,D2) -> Union(Record(quotient: D2,remainder: D2),"failed")
--R             from UnivariatePolynomialDivisionPackage(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of divideIfCan from UnivariatePolynomialDivisionPackage
--R
--E 723

--S 724 of 3320
)d op divideIfCan_!
--R 
--R   divideIfCan_! is not a known function. Axiom will try to list its 
--R      functions which contain divideIfCan_! in their names. This is the
--R      same output you would get by issuing
--R                       )what operations divideIfCan_!
--R
--R   There are no operations containing those patterns
--R
--E 724

--S 725 of 3320
)d op divisor
--R 
--R
--RThere are 5 exposed functions called divisor :
--R   [1] (D1,D2,D2,D2,D3) -> D from D
--R             if D3 has FIELD and D2 has UPOLYC(D3) and D4 has UPOLYC(
--R            FRAC(D2)) and D has FDIVCAT(D3,D2,D4,D1) and D1 has FFCAT(
--R            D3,D2,D4)
--R   [2] (D1,D1,Integer) -> D from D
--R             if D1 has FIELD and D3 has UPOLYC(D1) and D4 has UPOLYC(
--R            FRAC(D3)) and D has FDIVCAT(D1,D3,D4,D5) and D5 has FFCAT(
--R            D1,D3,D4)
--R   [3] (D1,D1) -> D from D
--R             if D1 has FIELD and D2 has UPOLYC(D1) and D3 has UPOLYC(
--R            FRAC(D2)) and D has FDIVCAT(D1,D2,D3,D4) and D4 has FFCAT(
--R            D1,D2,D3)
--R   [4] D1 -> D from D
--R             if D2 has FIELD and D3 has UPOLYC(D2) and D4 has UPOLYC(
--R            FRAC(D3)) and D has FDIVCAT(D2,D3,D4,D1) and D1 has FFCAT(
--R            D2,D3,D4)
--R   [5] FractionalIdeal(D3,Fraction(D3),D4,D5) -> D from D
--R             if D3 has UPOLYC(D2) and D4 has UPOLYC(FRAC(D3)) and D5
--R             has FFCAT(D2,D3,D4) and D2 has FIELD and D has FDIVCAT(D2,
--R            D3,D4,D5)
--R
--RExamples of divisor from FiniteDivisorCategory
--R
--E 725

--S 726 of 3320
)d op divisorAtDesingTree
--R 
--R
--RThere is one exposed function called divisorAtDesingTree :
--R   [1] (D5,D6) -> D4 from DesingTreePackage(D7,D8,D5,D9,D10,D11,D1,D4,
--R            D2,D6,D3)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D5 has POLYCAT(D7
--R            ,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8),NNI) and D10 has 
--R            PRSPCAT(D7) and D11 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D11) and D2 has INFCLCT(D7,D8,D5,D9,D10,D11,D1,D4,D3) and 
--R            D3 has BLMETCT and D4 has DIVCAT(D1) and D6 has DSTRCAT(D2)
--R            
--R
--RExamples of divisorAtDesingTree from DesingTreePackage
--R
--E 726

--S 727 of 3320
)d op divisorCascade
--R 
--R
--RThere are 2 unexposed functions called divisorCascade :
--R   [1] (D2,D2,Boolean) -> List(Record(factors: List(D2),error: D4))
--R             from ComplexRootFindingPackage(D4,D2)
--R             if D4 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D4))
--R   [2] (D2,D2) -> List(Record(factors: List(D2),error: D3))
--R             from ComplexRootFindingPackage(D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R
--RExamples of divisorCascade from ComplexRootFindingPackage
--R
--E 727

--S 728 of 3320
)d op divisors
--R 
--R
--RThere is one exposed function called divisors :
--R   [1] Integer -> List(Integer) from IntegerNumberTheoryFunctions
--R
--RExamples of divisors from IntegerNumberTheoryFunctions
--R
--E 728

--S 729 of 3320
)d op divOfPole
--R 
--R
--RThere is one exposed function called divOfPole :
--R   [1] D -> D from D if D has DIVCAT(D1) and D1 has SETCAT
--R
--RExamples of divOfPole from DivisorCategory
--R
--E 729

--S 730 of 3320
)d op divOfZero
--R 
--R
--RThere is one exposed function called divOfZero :
--R   [1] D -> D from D if D has DIVCAT(D1) and D1 has SETCAT
--R
--RExamples of divOfZero from DivisorCategory
--R
--E 730

--S 731 of 3320
)d op dmp2rfi
--R 
--R
--RThere are 3 unexposed functions called dmp2rfi :
--R   [1] D2 -> Fraction(Polynomial(D3))
--R             from ParametricLinearEquations(D3,D4,D5,D2)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D2 has POLYCAT(D3,D5,D4)
--R   [2] Matrix(D6) -> Matrix(Fraction(Polynomial(D3)))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D5,D4) and D3 has Join(
--R            EuclideanDomain,CharacteristicZero) and D4 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D5 has OAMONS
--R   [3] List(D6) -> List(Fraction(Polynomial(D3)))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D5,D4) and D3 has Join(
--R            EuclideanDomain,CharacteristicZero) and D4 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D5 has OAMONS
--R
--RExamples of dmp2rfi from ParametricLinearEquations
--R
--E 731

--S 732 of 3320
)d op dmpToHdmp
--R 
--R
--RThere is one unexposed function called dmpToHdmp :
--R   [1] DistributedMultivariatePolynomial(D3,D4) -> 
--R            HomogeneousDistributedMultivariatePolynomial(D3,D4)
--R             from PolToPol(D3,D4) if D3: LIST(SYMBOL) and D4 has RING
--R         
--R
--RExamples of dmpToHdmp from PolToPol
--R
--E 732

--S 733 of 3320
)d op dmpToP
--R 
--R
--RThere is one unexposed function called dmpToP :
--R   [1] DistributedMultivariatePolynomial(D3,D4) -> Polynomial(D4)
--R             from PolToPol(D3,D4) if D3: LIST(SYMBOL) and D4 has RING
--R         
--R
--RExamples of dmpToP from PolToPol
--R
--E 733

--S 734 of 3320
)d op dn
--R 
--R
--RThere is one unexposed function called dn :
--R   [1] (D1,D2) -> D1 from EllipticFunctionsUnivariateTaylorSeries(D2,D1
--R            )
--R             if D2 has FIELD and D1 has UTSCAT(D2)
--R
--RExamples of dn from EllipticFunctionsUnivariateTaylorSeries
--R
--E 734

--S 735 of 3320
)d op dom
--R 
--R
--RThere is one exposed function called dom :
--R   [1] Any -> SExpression from Any
--R
--RExamples of dom from Any
--R
--E 735

--S 736 of 3320
)d op domainOf
--R 
--R
--RThere is one exposed function called domainOf :
--R   [1] Any -> OutputForm from Any
--R
--RExamples of domainOf from Any
--R
--E 736

--S 737 of 3320
)d op dominantTerm
--R 
--R
--RThere is one unexposed function called dominantTerm :
--R   [1] UnivariatePuiseuxSeriesWithExponentialSingularity(D2,D3,D4,D5)
--R             -> Union(Record(%term: Record(%coef: UnivariatePuiseuxSeries(D3,
--R            D4,D5),%expon: ExponentialOfUnivariatePuiseuxSeries(D3,D4,D5),
--R            %expTerms: List(Record(k: Fraction(Integer),c: D3))),%type: 
--R            String),"failed")
--R             from UnivariatePuiseuxSeriesWithExponentialSingularity(D2,
--R            D3,D4,D5)
--R             if D2 has Join(OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer),GcdDomain) and D3 has 
--R            Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D2)) and D4: 
--R            SYMBOL and D5: D3
--R
--RExamples of dominantTerm from UnivariatePuiseuxSeriesWithExponentialSingularity
--R
--E 737

--S 738 of 3320
)d op dot
--R 
--R
--RThere are 2 exposed functions called dot :
--R   [1] (D,D) -> D1 from D if D has DIRPCAT(D2,D1) and D1 has TYPE and 
--R            D1 has RING
--R   [2] (D,D) -> D1 from D if D has VECTCAT(D1) and D1 has TYPE and D1
--R             has RING
--R
--RThere are 4 unexposed functions called dot :
--R   [1] (DeRhamComplex(D3,D4),DeRhamComplex(D3,D4),SquareMatrix(#(D4),
--R            Expression(D3))) -> Expression(D3)
--R             from DeRhamComplex(D3,D4)
--R             if D4: LIST(SYMBOL) and D3 has Join(Ring,OrderedSet)
--R   [2] (OutputForm,NonNegativeInteger) -> OutputForm from OutputForm
--R         
--R   [3] OutputForm -> OutputForm from OutputForm
--R   [4] (Point(DoubleFloat),Point(DoubleFloat)) -> DoubleFloat from 
--R            TubePlotTools
--R
--RExamples of dot from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--RG:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1]) 
--Rdot(sigma,sigma,G)
--R
--R
--RExamples of dot from DirectProductCategory
--R
--R
--RExamples of dot from OutputForm
--R
--R
--RExamples of dot from TubePlotTools
--R
--R
--RExamples of dot from VectorCategory
--R
--E 738

--S 739 of 3320 done
)d op dot2eps
--R 
--R
--RThere is one exposed function called dot2eps :
--R   [1] String -> Void from Graphviz
--R
--RExamples of dot2eps from Graphviz
--R
--Rdot2eps "NeuralNet"
--R
--E 739

--S 740 of 33 done20
)d op dotview
--R 
--R
--RThere is one exposed function called dotview :
--R   [1] (String,String) -> Void from Graphviz
--R
--RExamples of dotview from Graphviz
--R
--Rdotview("evince","NeuralNet") -- on Linux 
--Rdotview("gv","NeuralNet") -- on MAC 
--Rdotview("firefox","NeuralNet") -- most places
--R
--E 740

--S 741 of 3320
)d op double
--R 
--R
--RThere is one unexposed function called double :
--R   [1] (PositiveInteger,D1) -> D1 from RepeatedDoubling(D1)
--R             if D1 has SetCategorywith
--R               ?+? : (%,%) -> %
--R
--RExamples of double from RepeatedDoubling
--R
--E 741

--S 742 of 3320
)d op double?
--R 
--R
--RThere is one exposed function called double? :
--R   [1] FortranScalarType -> Boolean from FortranScalarType
--R
--RExamples of double? from FortranScalarType
--R
--E 742

--S 743 of 3320
)d op doubleComplex?
--R 
--R
--RThere is one exposed function called doubleComplex? :
--R   [1] FortranScalarType -> Boolean from FortranScalarType
--R
--RExamples of doubleComplex? from FortranScalarType
--R
--E 743

--S 744 of 3320
)d op doubleDisc
--R 
--R
--RThere is one unexposed function called doubleDisc :
--R   [1] D2 -> Integer from PointsOfFiniteOrderTools(D3,D2)
--R             if D3 has UPOLYC(FRAC(INT)) and D2 has UPOLYC(FRAC(D3))
--R         
--R
--RExamples of doubleDisc from PointsOfFiniteOrderTools
--R
--E 744

--S 745 of 3320
)d op doubleFloatFormat
--R 
--R
--RThere is one exposed function called doubleFloatFormat :
--R   [1] String -> String from DoubleFloat
--R
--RExamples of doubleFloatFormat from DoubleFloat
--R
--E 745

--S 746 of 3320
)d op doubleRank
--R 
--R
--RThere is one exposed function called doubleRank :
--R   [1] D2 -> NonNegativeInteger from AlgebraPackage(D3,D2)
--R             if D3 has INTDOM and D2 has FRNAALG(D3)
--R
--RExamples of doubleRank from AlgebraPackage
--R
--E 746

--S 747 of 3320
)d op doubleResultant
--R 
--R
--RThere is one unexposed function called doubleResultant :
--R   [1] (D2,(D1 -> D1)) -> D1 from DoubleResultantPackage(D4,D1,D5,D2)
--R             if D4 has FIELD and D5 has UPOLYC(FRAC(D1)) and D1 has 
--R            UPOLYC(D4) and D2 has FFCAT(D4,D1,D5)
--R
--RExamples of doubleResultant from DoubleResultantPackage
--R
--E 747

--S 748 of 3320
)d op doublyTransitive?
--R 
--R
--RThere is one exposed function called doublyTransitive? :
--R   [1] D2 -> Boolean from AlgFactor(D2) if D2 has UPOLYC(AN)
--R
--RExamples of doublyTransitive? from AlgFactor
--R
--E 748

--S 749 of 3320
)d op draw
--R 
--R
--RThere are 31 exposed functions called draw :
--R   [1] ((DoubleFloat -> DoubleFloat),Segment(Float),List(DrawOption))
--R             -> TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [2] ((DoubleFloat -> DoubleFloat),Segment(Float)) -> 
--R            TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [3] (ParametricPlaneCurve((DoubleFloat -> DoubleFloat)),Segment(
--R            Float),List(DrawOption)) -> TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [4] (ParametricPlaneCurve((DoubleFloat -> DoubleFloat)),Segment(
--R            Float)) -> TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [5] (ParametricSpaceCurve((DoubleFloat -> DoubleFloat)),Segment(
--R            Float),List(DrawOption)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [6] (ParametricSpaceCurve((DoubleFloat -> DoubleFloat)),Segment(
--R            Float)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [7] ((DoubleFloat -> Point(DoubleFloat)),Segment(Float),List(
--R            DrawOption)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [8] ((DoubleFloat -> Point(DoubleFloat)),Segment(Float)) -> 
--R            ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [9] (((DoubleFloat,DoubleFloat) -> DoubleFloat),Segment(Float),
--R            Segment(Float),List(DrawOption)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [10] (((DoubleFloat,DoubleFloat) -> DoubleFloat),Segment(Float),
--R            Segment(Float)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [11] (((DoubleFloat,DoubleFloat) -> Point(DoubleFloat)),Segment(
--R            Float),Segment(Float),List(DrawOption)) -> 
--R            ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [12] (((DoubleFloat,DoubleFloat) -> Point(DoubleFloat)),Segment(
--R            Float),Segment(Float)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [13] (ParametricSurface(((DoubleFloat,DoubleFloat) -> DoubleFloat)),
--R            Segment(Float),Segment(Float),List(DrawOption)) -> 
--R            ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [14] (ParametricSurface(((DoubleFloat,DoubleFloat) -> DoubleFloat)),
--R            Segment(Float),Segment(Float)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [15] (Equation(D6),Symbol,Symbol,List(DrawOption)) -> 
--R            TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForAlgebraicCurves(D5,D6)
--R             if D6 has FS(D5) and D5 has Join(IntegralDomain,OrderedSet
--R            ,RetractableTo(Integer))
--R   [16] (D2,SegmentBinding(Float),List(DrawOption)) -> 
--R            TwoDimensionalViewport
--R             from TopLevelDrawFunctions(D2)
--R             if D2 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [17] (D2,SegmentBinding(Float)) -> TwoDimensionalViewport
--R             from TopLevelDrawFunctions(D2)
--R             if D2 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [18] (ParametricPlaneCurve(D5),SegmentBinding(Float),List(DrawOption
--R            )) -> TwoDimensionalViewport
--R             from TopLevelDrawFunctions(D5)
--R             if D5 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [19] (ParametricPlaneCurve(D4),SegmentBinding(Float)) -> 
--R            TwoDimensionalViewport
--R             from TopLevelDrawFunctions(D4)
--R             if D4 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [20] (ParametricSpaceCurve(D5),SegmentBinding(Float),List(DrawOption
--R            )) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctions(D5)
--R             if D5 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [21] (ParametricSpaceCurve(D4),SegmentBinding(Float)) -> 
--R            ThreeDimensionalViewport
--R             from TopLevelDrawFunctions(D4)
--R             if D4 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [22] (D2,SegmentBinding(Float),SegmentBinding(Float),List(DrawOption
--R            )) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctions(D2)
--R             if D2 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [23] (D2,SegmentBinding(Float),SegmentBinding(Float)) -> 
--R            ThreeDimensionalViewport
--R             from TopLevelDrawFunctions(D2)
--R             if D2 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [24] (ParametricSurface(D5),SegmentBinding(Float),SegmentBinding(
--R            Float),List(DrawOption)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctions(D5)
--R             if D5 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [25] (ParametricSurface(D4),SegmentBinding(Float),SegmentBinding(
--R            Float)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctions(D4)
--R             if D4 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [26] (List(DoubleFloat),List(DoubleFloat)) -> TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForPoints
--R   [27] (List(DoubleFloat),List(DoubleFloat),List(DrawOption)) -> 
--R            TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForPoints
--R   [28] List(Point(DoubleFloat)) -> TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForPoints
--R   [29] (List(Point(DoubleFloat)),List(DrawOption)) -> 
--R            TwoDimensionalViewport
--R             from TopLevelDrawFunctionsForPoints
--R   [30] (List(DoubleFloat),List(DoubleFloat),List(DoubleFloat)) -> 
--R            ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForPoints
--R   [31] (List(DoubleFloat),List(DoubleFloat),List(DoubleFloat),List(
--R            DrawOption)) -> ThreeDimensionalViewport
--R             from TopLevelDrawFunctionsForPoints
--R
--RExamples of draw from TopLevelDrawFunctionsForCompiledFunctions
--R
--R
--RExamples of draw from TopLevelDrawFunctionsForAlgebraicCurves
--R
--R
--RExamples of draw from TopLevelDrawFunctions
--R
--R
--RExamples of draw from TopLevelDrawFunctionsForPoints
--R
--E 749

--S 750 of 3320
)d op drawComplex
--R 
--R
--RThere is one exposed function called drawComplex :
--R   [1] ((Complex(DoubleFloat) -> Complex(DoubleFloat)),Segment(
--R            DoubleFloat),Segment(DoubleFloat),Boolean) -> 
--R            ThreeDimensionalViewport
--R             from DrawComplex
--R
--RExamples of drawComplex from DrawComplex
--R
--E 750

--S 751 of 3320
)d op drawComplexVectorField
--R 
--R
--RThere is one exposed function called drawComplexVectorField :
--R   [1] ((Complex(DoubleFloat) -> Complex(DoubleFloat)),Segment(
--R            DoubleFloat),Segment(DoubleFloat)) -> ThreeDimensionalViewport
--R             from DrawComplex
--R
--RExamples of drawComplexVectorField from DrawComplex
--R
--E 751

--S 752 of 3320
)d op drawCurves
--R 
--R
--RThere are 2 unexposed functions called drawCurves :
--R   [1] (List(List(Point(DoubleFloat))),Palette,Palette,PositiveInteger,
--R            List(DrawOption)) -> TwoDimensionalViewport
--R             from ViewportPackage
--R   [2] (List(List(Point(DoubleFloat))),List(DrawOption)) -> 
--R            TwoDimensionalViewport
--R             from ViewportPackage
--R
--RExamples of drawCurves from ViewportPackage
--R
--E 752

--S 753 of 3320
)d op drawStyle
--R 
--R
--RThere is one exposed function called drawStyle :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of drawStyle from ThreeDimensionalViewport
--R
--E 753

--S 754 of 3320
)d op drawToScale
--R 
--R
--RThere are 2 exposed functions called drawToScale :
--R   [1]  -> Boolean from GraphicsDefaults
--R   [2] Boolean -> Boolean from GraphicsDefaults
--R
--RExamples of drawToScale from GraphicsDefaults
--R
--E 754

--S 755 of 3320
)d op drift
--R 
--R
--RThere is one exposed function called drift :
--R   [1] StochasticDifferential(D1) -> StochasticDifferential(D1)
--R             from StochasticDifferential(D1)
--R             if D1 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of drift from StochasticDifferential
--R
--E 755

--S 756 of 3320
)d op droot
--R 
--R
--RThere is one unexposed function called droot :
--R   [1] List(D4) -> OutputForm from AlgebraicFunction(D3,D4)
--R             if D4 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of droot from AlgebraicFunction
--R
--E 756

--S 757 of 3320
)d op duplicates
--R 
--R
--RThere is one exposed function called duplicates :
--R   [1] D -> List(Record(entry: D2,count: NonNegativeInteger)) from D
--R             if D has MDAGG(D2) and D2 has SETCAT
--R
--RExamples of duplicates from MultiDictionary
--R
--E 757

--S 758 of 3320
)d op duplicates?
--R 
--R
--RThere is one unexposed function called duplicates? :
--R   [1] ListMultiDictionary(D2) -> Boolean from ListMultiDictionary(D2)
--R             if D2 has SETCAT
--R
--RExamples of duplicates? from ListMultiDictionary
--R
--E 758

--S 759 of 3320
)d op e
--R 
--R
--RThere is one exposed function called e :
--R   [1] PositiveInteger -> CliffordAlgebra(D2,D3,D4)
--R             from CliffordAlgebra(D2,D3,D4)
--R             if D2: PI and D3 has FIELD and D4: QFORM(D2,D3)
--R
--RExamples of e from CliffordAlgebra
--R
--E 759

--S 760 of 3320
)d op e01baf
--R 
--R
--RThere is one exposed function called e01baf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,Integer
--R            ,Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01baf from NagInterpolationPackage
--R
--E 760

--S 761 of 3320
)d op e01bef
--R 
--R
--RThere is one exposed function called e01bef :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer) -> 
--R            Result
--R             from NagInterpolationPackage
--R
--RExamples of e01bef from NagInterpolationPackage
--R
--E 761

--S 762 of 3320
)d op e01bff
--R 
--R
--RThere is one exposed function called e01bff :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01bff from NagInterpolationPackage
--R
--E 762

--S 763 of 3320
)d op e01bgf
--R 
--R
--RThere is one exposed function called e01bgf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01bgf from NagInterpolationPackage
--R
--E 763

--S 764 of 3320
)d op e01bhf
--R 
--R
--RThere is one exposed function called e01bhf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),DoubleFloat,DoubleFloat,Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01bhf from NagInterpolationPackage
--R
--E 764

--S 765 of 3320
)d op e01daf
--R 
--R
--RThere is one exposed function called e01daf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01daf from NagInterpolationPackage
--R
--E 765

--S 766 of 3320
)d op e01saf
--R 
--R
--RThere is one exposed function called e01saf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01saf from NagInterpolationPackage
--R
--E 766

--S 767 of 3320
)d op e01sbf
--R 
--R
--RThere is one exposed function called e01sbf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(Integer),Matrix(DoubleFloat),DoubleFloat,
--R            DoubleFloat,Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01sbf from NagInterpolationPackage
--R
--E 767

--S 768 of 3320
)d op e01sef
--R 
--R
--RThere is one exposed function called e01sef :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer,Integer,DoubleFloat,DoubleFloat,Integer) -> 
--R            Result
--R             from NagInterpolationPackage
--R
--RExamples of e01sef from NagInterpolationPackage
--R
--E 768

--S 769 of 3320
)d op e01sff
--R 
--R
--RThere is one exposed function called e01sff :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),DoubleFloat,Matrix(DoubleFloat),DoubleFloat,
--R            DoubleFloat,Integer) -> Result
--R             from NagInterpolationPackage
--R
--RExamples of e01sff from NagInterpolationPackage
--R
--E 769

--S 770 of 3320
)d op e02adf
--R 
--R
--RThere is one exposed function called e02adf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat)
--R            ,Matrix(DoubleFloat),Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02adf from NagFittingPackage
--R
--E 770

--S 771 of 3320
)d op e02aef
--R 
--R
--RThere is one exposed function called e02aef :
--R   [1] (Integer,Matrix(DoubleFloat),DoubleFloat,Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02aef from NagFittingPackage
--R
--E 771

--S 772 of 3320
)d op e02agf
--R 
--R
--RThere is one exposed function called e02agf :
--R   [1] (Integer,Integer,Integer,DoubleFloat,DoubleFloat,Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,
--R            Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,Matrix(Integer),
--R            Integer,Integer,Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02agf from NagFittingPackage
--R
--E 772

--S 773 of 3320
)d op e02ahf
--R 
--R
--RThere is one exposed function called e02ahf :
--R   [1] (Integer,DoubleFloat,DoubleFloat,Matrix(DoubleFloat),Integer,
--R            Integer,Integer,Integer,Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02ahf from NagFittingPackage
--R
--E 773

--S 774 of 3320
)d op e02ajf
--R 
--R
--RThere is one exposed function called e02ajf :
--R   [1] (Integer,DoubleFloat,DoubleFloat,Matrix(DoubleFloat),Integer,
--R            Integer,DoubleFloat,Integer,Integer,Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02ajf from NagFittingPackage
--R
--E 774

--S 775 of 3320
)d op e02akf
--R 
--R
--RThere is one exposed function called e02akf :
--R   [1] (Integer,DoubleFloat,DoubleFloat,Matrix(DoubleFloat),Integer,
--R            Integer,DoubleFloat,Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02akf from NagFittingPackage
--R
--E 775

--S 776 of 3320
)d op e02baf
--R 
--R
--RThere is one exposed function called e02baf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02baf from NagFittingPackage
--R
--E 776

--S 777 of 3320
)d op e02bbf
--R 
--R
--RThere is one exposed function called e02bbf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),DoubleFloat,
--R            Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02bbf from NagFittingPackage
--R
--E 777

--S 778 of 3320
)d op e02bcf
--R 
--R
--RThere is one exposed function called e02bcf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),DoubleFloat,
--R            Integer,Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02bcf from NagFittingPackage
--R
--E 778

--S 779 of 3320
)d op e02bdf
--R 
--R
--RThere is one exposed function called e02bdf :
--R   [1] (Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer) -> 
--R            Result
--R             from NagFittingPackage
--R
--RExamples of e02bdf from NagFittingPackage
--R
--E 779

--S 780 of 3320
)d op e02bef
--R 
--R
--RThere is one exposed function called e02bef :
--R   [1] (String,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),DoubleFloat,Integer,Integer,Integer,Matrix(
--R            DoubleFloat),Integer,Matrix(DoubleFloat),Matrix(Integer)) -> 
--R            Result
--R             from NagFittingPackage
--R
--RExamples of e02bef from NagFittingPackage
--R
--E 780

--S 781 of 3320
)d op e02daf
--R 
--R
--RThere is one exposed function called e02daf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat)
--R            ,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),
--R            Matrix(Integer),Integer,Integer,Integer,DoubleFloat,Matrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02daf from NagFittingPackage
--R
--E 781

--S 782 of 3320
)d op e02dcf
--R 
--R
--RThere is one exposed function called e02dcf :
--R   [1] (String,Integer,Matrix(DoubleFloat),Integer,Matrix(DoubleFloat),
--R            Matrix(DoubleFloat),DoubleFloat,Integer,Integer,Integer,Integer,
--R            Integer,Matrix(DoubleFloat),Integer,Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(Integer),Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02dcf from NagFittingPackage
--R
--E 782

--S 783 of 3320
)d op e02ddf
--R 
--R
--RThere is one exposed function called e02ddf :
--R   [1] (String,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),DoubleFloat,Integer,Integer,
--R            Integer,Integer,Integer,Matrix(DoubleFloat),Integer,Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02ddf from NagFittingPackage
--R
--E 783

--S 784 of 3320
)d op e02def
--R 
--R
--RThere is one exposed function called e02def :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat)
--R            ,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),
--R            Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02def from NagFittingPackage
--R
--E 784

--S 785 of 3320
)d op e02dff
--R 
--R
--RThere is one exposed function called e02dff :
--R   [1] (Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer,Integer,Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02dff from NagFittingPackage
--R
--E 785

--S 786 of 3320
)d op e02gaf
--R 
--R
--RThere is one exposed function called e02gaf :
--R   [1] (Integer,Integer,Integer,DoubleFloat,Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagFittingPackage
--R
--RExamples of e02gaf from NagFittingPackage
--R
--E 786

--S 787 of 3320
)d op e02zaf
--R 
--R
--RThere is one exposed function called e02zaf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer
--R            ,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,Integer,Integer)
--R             -> Result
--R             from NagFittingPackage
--R
--RExamples of e02zaf from NagFittingPackage
--R
--E 787

--S 788 of 3320
)d op e04dgf
--R 
--R
--RThere is one exposed function called e04dgf :
--R   [1] (Integer,DoubleFloat,DoubleFloat,Integer,DoubleFloat,Boolean,
--R            DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,Matrix(
--R            DoubleFloat),Integer,Union(fn: FileName,fp: Asp49(OBJFUN))) -> 
--R            Result
--R             from NagOptimisationPackage
--R
--RExamples of e04dgf from NagOptimisationPackage
--R
--E 788

--S 789 of 3320
)d op e04fdf
--R 
--R
--RThere is one exposed function called e04fdf :
--R   [1] (Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Integer,
--R            Union(fn: FileName,fp: Asp50(LSFUN1))) -> Result
--R             from NagOptimisationPackage
--R
--RExamples of e04fdf from NagOptimisationPackage
--R
--E 789

--S 790 of 3320
)d op e04gcf
--R 
--R
--RThere is one exposed function called e04gcf :
--R   [1] (Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Integer,
--R            Union(fn: FileName,fp: Asp19(LSFUN2))) -> Result
--R             from NagOptimisationPackage
--R
--RExamples of e04gcf from NagOptimisationPackage
--R
--E 790

--S 791 of 3320
)d op e04jaf
--R 
--R
--RThere is one exposed function called e04jaf :
--R   [1] (Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Integer,Union(fn: FileName,fp: 
--R            Asp24(FUNCT1))) -> Result
--R             from NagOptimisationPackage
--R
--RExamples of e04jaf from NagOptimisationPackage
--R
--E 791

--S 792 of 3320
)d op e04mbf
--R 
--R
--RThere is one exposed function called e04mbf :
--R   [1] (Integer,Integer,Integer,Integer,Integer,Integer,Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Boolean,Integer,Integer,Matrix(DoubleFloat),Integer)
--R             -> Result
--R             from NagOptimisationPackage
--R
--RExamples of e04mbf from NagOptimisationPackage
--R
--E 792

--S 793 of 3320
)d op e04naf
--R 
--R
--RThere is one exposed function called e04naf :
--R   [1] (Integer,Integer,Integer,Integer,Integer,Integer,Integer,Integer
--R            ,DoubleFloat,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Boolean,Boolean,Boolean,Integer,Integer,Matrix(
--R            DoubleFloat),Matrix(Integer),Integer,Union(fn: FileName,fp: Asp20
--R            (QPHESS))) -> Result
--R             from NagOptimisationPackage
--R
--RExamples of e04naf from NagOptimisationPackage
--R
--E 793

--S 794 of 3320
)d op e04ucf
--R 
--R
--RThere is one exposed function called e04ucf :
--R   [1] (Integer,Integer,Integer,Integer,Integer,Integer,Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Matrix(DoubleFloat),Integer,
--R            Integer,Boolean,DoubleFloat,Integer,DoubleFloat,DoubleFloat,
--R            Boolean,DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Boolean,
--R            Integer,Integer,Integer,Integer,Integer,DoubleFloat,DoubleFloat,
--R            DoubleFloat,Integer,Integer,Integer,Integer,Integer,Matrix(
--R            Integer),Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Integer,Union(fn: FileName,fp: 
--R            Asp55(CONFUN)),Union(fn: FileName,fp: Asp49(OBJFUN))) -> Result
--R             from NagOptimisationPackage
--R
--RExamples of e04ucf from NagOptimisationPackage
--R
--E 794

--S 795 of 3320
)d op e04ycf
--R 
--R
--RThere is one exposed function called e04ycf :
--R   [1] (Integer,Integer,Integer,DoubleFloat,Matrix(DoubleFloat),Integer
--R            ,Matrix(DoubleFloat),Integer) -> Result
--R             from NagOptimisationPackage
--R
--RExamples of e04ycf from NagOptimisationPackage
--R
--E 795

--S 796 of 3320
)d op E1
--R 
--R
--RThere is one exposed function called E1 :
--R   [1] DoubleFloat -> OnePointCompletion(DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of E1 from DoubleFloatSpecialFunctions
--R
--E 796

--S 797 of 3320
)d op edf2df
--R 
--R
--RThere is one exposed function called edf2df :
--R   [1] Expression(DoubleFloat) -> DoubleFloat from 
--R            ExpertSystemToolsPackage
--R
--RExamples of edf2df from ExpertSystemToolsPackage
--R
--E 797

--S 798 of 3320
)d op edf2ef
--R 
--R
--RThere is one exposed function called edf2ef :
--R   [1] Expression(DoubleFloat) -> Expression(Float)
--R             from ExpertSystemToolsPackage
--R
--RExamples of edf2ef from ExpertSystemToolsPackage
--R
--E 798

--S 799 of 3320
)d op edf2efi
--R 
--R
--RThere is one exposed function called edf2efi :
--R   [1] Expression(DoubleFloat) -> Expression(Fraction(Integer))
--R             from ExpertSystemToolsPackage
--R
--RExamples of edf2efi from ExpertSystemToolsPackage
--R
--E 799

--S 800 of 3320
)d op edf2fi
--R 
--R
--RThere is one exposed function called edf2fi :
--R   [1] Expression(DoubleFloat) -> Fraction(Integer)
--R             from ExpertSystemToolsPackage
--R
--RExamples of edf2fi from ExpertSystemToolsPackage
--R
--E 800

--S 801 of 3320
)d op ef2edf
--R 
--R
--RThere is one exposed function called ef2edf :
--R   [1] Expression(Float) -> Expression(DoubleFloat)
--R             from ExpertSystemToolsPackage
--R
--RExamples of ef2edf from ExpertSystemToolsPackage
--R
--E 801

--S 802 of 3320
)d op effective?
--R 
--R
--RThere is one exposed function called effective? :
--R   [1] D -> Boolean from D if D has DIVCAT(D2) and D2 has SETCAT
--R
--RExamples of effective? from DivisorCategory
--R
--E 802

--S 803 of 3320
)d op Ei
--R 
--R
--RThere are 2 exposed functions called Ei :
--R   [1] OnePointCompletion(DoubleFloat) -> OnePointCompletion(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [2] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called Ei :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of Ei from DoubleFloatSpecialFunctions
--R
--R
--RExamples of Ei from LiouvillianFunctionCategory
--R
--R
--RExamples of Ei from LiouvillianFunction
--R
--E 803

--S 804 of 3320
)d op Ei1
--R 
--R
--RThere is one exposed function called Ei1 :
--R   [1] OnePointCompletion(DoubleFloat) -> OnePointCompletion(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of Ei1 from DoubleFloatSpecialFunctions
--R
--E 804

--S 805 of 3320
)d op Ei2
--R 
--R
--RThere is one exposed function called Ei2 :
--R   [1] OnePointCompletion(DoubleFloat) -> OnePointCompletion(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of Ei2 from DoubleFloatSpecialFunctions
--R
--E 805

--S 806 of 3320
)d op Ei3
--R 
--R
--RThere is one exposed function called Ei3 :
--R   [1] OnePointCompletion(DoubleFloat) -> OnePointCompletion(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of Ei3 from DoubleFloatSpecialFunctions
--R
--E 806

--S 807 of 3320
)d op Ei4
--R 
--R
--RThere is one exposed function called Ei4 :
--R   [1] OnePointCompletion(DoubleFloat) -> OnePointCompletion(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of Ei4 from DoubleFloatSpecialFunctions
--R
--E 807

--S 808 of 3320
)d op Ei5
--R 
--R
--RThere is one exposed function called Ei5 :
--R   [1] OnePointCompletion(DoubleFloat) -> OnePointCompletion(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of Ei5 from DoubleFloatSpecialFunctions
--R
--E 808

--S 809 of 3320
)d op Ei6
--R 
--R
--RThere is one exposed function called Ei6 :
--R   [1] OnePointCompletion(DoubleFloat) -> OnePointCompletion(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of Ei6 from DoubleFloatSpecialFunctions
--R
--E 809

--S 810 of 3320
)d op eigenMatrix
--R 
--R
--RThere is one exposed function called eigenMatrix :
--R   [1] Matrix(Fraction(Polynomial(Integer))) -> Union(Matrix(Expression
--R            (Integer)),"failed")
--R             from RadicalEigenPackage
--R
--RExamples of eigenMatrix from RadicalEigenPackage
--R
--E 810

--S 811 of 3320
)d op eigenvalues
--R 
--R
--RThere is one exposed function called eigenvalues :
--R   [1] Matrix(Fraction(Polynomial(D3))) -> List(Union(Fraction(
--R            Polynomial(D3)),SuchThat(Symbol,Polynomial(D3))))
--R             from EigenPackage(D3) if D3 has GCDDOM
--R
--RExamples of eigenvalues from EigenPackage
--R
--E 811

--S 812 of 3320
)d op eigenvector
--R 
--R
--RThere is one exposed function called eigenvector :
--R   [1] (Union(Fraction(Polynomial(D4)),SuchThat(Symbol,Polynomial(D4)))
--R            ,Matrix(Fraction(Polynomial(D4)))) -> List(Matrix(Fraction(
--R            Polynomial(D4))))
--R             from EigenPackage(D4) if D4 has GCDDOM
--R
--RExamples of eigenvector from EigenPackage
--R
--E 812

--S 813 of 3320
)d op eigenvectors
--R 
--R
--RThere is one exposed function called eigenvectors :
--R   [1] Matrix(Fraction(Polynomial(D3))) -> List(Record(eigval: Union(
--R            Fraction(Polynomial(D3)),SuchThat(Symbol,Polynomial(D3))),eigmult
--R            : NonNegativeInteger,eigvec: List(Matrix(Fraction(Polynomial(D3))
--R            ))))
--R             from EigenPackage(D3) if D3 has GCDDOM
--R
--RExamples of eigenvectors from EigenPackage
--R
--E 813

--S 814 of 3320
)d op eisensteinIrreducible?
--R 
--R
--RThere is one unexposed function called eisensteinIrreducible? :
--R   [1] D2 -> Boolean from GaloisGroupFactorizer(D2) if D2 has UPOLYC(
--R            INT)
--R
--RExamples of eisensteinIrreducible? from GaloisGroupFactorizer
--R
--E 814

--S 815 of 3320
)d op elColumn2!
--R 
--R
--RThere is one exposed function called elColumn2! :
--R   [1] (D1,D2,Integer,Integer) -> D1
--R             from MatrixLinearAlgebraFunctions(D2,D4,D5,D1)
--R             if D2 has COMRING and D4 has FLAGG(D2) and D5 has FLAGG(D2
--R            ) and D1 has MATCAT(D2,D4,D5)
--R
--RExamples of elColumn2! from MatrixLinearAlgebraFunctions
--R
--E 815

--S 816 of 3320
)d op elem?
--R 
--R
--RThere is one unexposed function called elem? :
--R   [1] IntegrationResult(D2) -> Boolean from IntegrationResult(D2) if 
--R            D2 has FIELD
--R
--RExamples of elem? from IntegrationResult
--R
--E 816

--S 817 of 33 done20
)d op element
--R 
--R
--RThere is one exposed function called element :
--R   [1] (D1,PositiveInteger,PositiveInteger) -> D1
--R             from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R
--RExamples of element from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--Relement(M,2,2)
--R
--E 817

--S 818 of 3320
)d op element?
--R 
--R
--RThere is one exposed function called element? :
--R   [1] (D2,PolynomialIdeals(D3,D4,D5,D2)) -> Boolean
--R             from PolynomialIdeals(D3,D4,D5,D2)
--R             if D3 has FIELD and D4 has OAMONS and D5 has ORDSET and D2
--R             has POLYCAT(D3,D4,D5)
--R
--RExamples of element? from PolynomialIdeals
--R
--E 818

--S 819 of 3320
)d op elementary
--R 
--R
--RThere is one exposed function called elementary :
--R   [1] Integer -> SymmetricPolynomial(Fraction(Integer)) from 
--R            CycleIndicators
--R
--RExamples of elementary from CycleIndicators
--R
--E 819

--S 820 of 3320
)d op elements
--R 
--R
--RThere is one unexposed function called elements :
--R   [1] SetOfMIntegersInOneToN(D2,D3) -> List(PositiveInteger)
--R             from SetOfMIntegersInOneToN(D2,D3) if D2: PI and D3: PI
--R         
--R
--RExamples of elements from SetOfMIntegersInOneToN
--R
--E 820

--S 821 of 3320
)d op elimZeroCols!
--R 
--R
--RThere is one exposed function called elimZeroCols! :
--R   [1] SparseEchelonMatrix(D2,D3) -> Void from SparseEchelonMatrix(D2,
--R            D3)
--R             if D2 has ORDSET and D3 has RING
--R
--RExamples of elimZeroCols! from SparseEchelonMatrix
--R
--E 821

--S 822 of 3320
)d op elliptic
--R 
--R
--RThere are 2 exposed functions called elliptic :
--R   [1] D2 -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R   [2]  -> Union(D1,"failed") from D
--R             if D has FFCAT(D2,D1,D3) and D2 has UFD and D3 has UPOLYC(
--R            FRAC(D1)) and D1 has UPOLYC(D2)
--R
--RThere is one unexposed function called elliptic :
--R   [1]  -> Union(D1,"failed") from FunctionFieldCategory&(D2,D3,D1,D4)
--R             if D3 has UFD and D4 has UPOLYC(FRAC(D1)) and D1 has 
--R            UPOLYC(D3) and D2 has FFCAT(D3,D1,D4)
--R
--RExamples of elliptic from CoordinateSystems
--R
--R
--RExamples of elliptic from FunctionFieldCategory&
--R
--R
--RExamples of elliptic from FunctionFieldCategory
--R
--E 822

--S 823 of 3320
)d op elliptic?
--R 
--R
--RThere is one exposed function called elliptic? :
--R   [1] Record(pde: List(Expression(DoubleFloat)),constraints: List(
--R            Record(start: DoubleFloat,finish: DoubleFloat,grid: 
--R            NonNegativeInteger,boundaryType: Integer,dStart: Matrix(
--R            DoubleFloat),dFinish: Matrix(DoubleFloat))),f: List(List(
--R            Expression(DoubleFloat))),st: String,tol: DoubleFloat) -> Boolean
--R             from d03AgentsPackage
--R
--RExamples of elliptic? from d03AgentsPackage
--R
--E 823

--S 824 of 3320
)d op ellipticCylindrical
--R 
--R
--RThere is one exposed function called ellipticCylindrical :
--R   [1] D2 -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of ellipticCylindrical from CoordinateSystems
--R
--E 824

--S 825 of 3320
)d op elRow1!
--R 
--R
--RThere is one exposed function called elRow1! :
--R   [1] (D1,Integer,Integer) -> D1 from MatrixLinearAlgebraFunctions(D3,
--R            D4,D5,D1)
--R             if D3 has COMRING and D4 has FLAGG(D3) and D5 has FLAGG(D3
--R            ) and D1 has MATCAT(D3,D4,D5)
--R
--RExamples of elRow1! from MatrixLinearAlgebraFunctions
--R
--E 825

--S 826 of 3320
)d op elRow2!
--R 
--R
--RThere is one exposed function called elRow2! :
--R   [1] (D1,D2,Integer,Integer) -> D1
--R             from MatrixLinearAlgebraFunctions(D2,D4,D5,D1)
--R             if D2 has COMRING and D4 has FLAGG(D2) and D5 has FLAGG(D2
--R            ) and D1 has MATCAT(D2,D4,D5)
--R
--RExamples of elRow2! from MatrixLinearAlgebraFunctions
--R
--E 826

--S 827 of 3320
)d op elt
--R 
--R
--RThere are 51 exposed functions called elt :
--R   [1] (D,Integer) -> D1 from D if D has AFSPCAT(D1) and D1 has FIELD
--R         
--R   [2] (D,Integer,Integer,D1) -> D1 from D
--R             if D has ARR2CAT(D1,D3,D4) and D1 has TYPE and D3 has 
--R            FLAGG(D1) and D4 has FLAGG(D1)
--R   [3] (D,Integer,Integer) -> D1 from D
--R             if D has ARR2CAT(D1,D3,D4) and D3 has FLAGG(D1) and D4
--R             has FLAGG(D1) and D1 has TYPE
--R   [4] (D,right) -> D from D if D has BRAGG(D2) and D2 has TYPE
--R   [5] (D,left) -> D from D if D has BRAGG(D2) and D2 has TYPE
--R   [6] (CartesianTensor(D3,D4,D1),List(Integer)) -> D1
--R             from CartesianTensor(D3,D4,D1) if D1 has COMRING and D3: 
--R            INT and D4: NNI
--R   [7] (CartesianTensor(D3,D4,D1),Integer,Integer,Integer,Integer) -> 
--R            D1
--R             from CartesianTensor(D3,D4,D1) if D1 has COMRING and D3: 
--R            INT and D4: NNI
--R   [8] (CartesianTensor(D3,D4,D1),Integer,Integer,Integer) -> D1
--R             from CartesianTensor(D3,D4,D1) if D1 has COMRING and D3: 
--R            INT and D4: NNI
--R   [9] (CartesianTensor(D3,D4,D1),Integer,Integer) -> D1
--R             from CartesianTensor(D3,D4,D1) if D1 has COMRING and D3: 
--R            INT and D4: NNI
--R   [10] (CartesianTensor(D3,D4,D1),Integer) -> D1 from CartesianTensor(
--R            D3,D4,D1)
--R             if D1 has COMRING and D3: INT and D4: NNI
--R   [11] CartesianTensor(D2,D3,D1) -> D1 from CartesianTensor(D2,D3,D1)
--R             if D1 has COMRING and D2: INT and D3: NNI
--R   [12] (Database(D3),Symbol) -> DataList(String) from Database(D3)
--R             if D3 has OrderedSetwith
--R               ?.? : (%,Symbol) -> String
--R               display : % -> Void
--R               fullDisplay : % -> Void
--R   [13] (Database(D2),QueryEquation) -> Database(D2) from Database(D2)
--R             if D2 has OrderedSetwith
--R               ?.? : (%,Symbol) -> String
--R               display : % -> Void
--R               fullDisplay : % -> Void
--R   [14] (DataList(D3),count) -> NonNegativeInteger from DataList(D3)
--R             if D3 has ORDSET
--R   [15] (DataList(D2),sort) -> DataList(D2) from DataList(D2) if D2
--R             has ORDSET
--R   [16] (DataList(D2),unique) -> DataList(D2) from DataList(D2) if D2
--R             has ORDSET
--R   [17] (D,D2) -> D1 from D if D has ELTAB(D2,D1) and D2 has SETCAT and
--R            D1 has TYPE
--R   [18] (D,D2,D1) -> D1 from D
--R             if D has ELTAGG(D2,D1) and D2 has SETCAT and D1 has TYPE
--R         
--R   [19] (BasicOperator,List(D)) -> D from D if D has ES
--R   [20] (BasicOperator,D,D,D,D) -> D from D if D has ES
--R   [21] (BasicOperator,D,D,D) -> D from D if D has ES
--R   [22] (BasicOperator,D,D) -> D from D if D has ES
--R   [23] (BasicOperator,D) -> D from D if D has ES
--R   [24] (D,D1,D1) -> D1 from D
--R             if D has FFCAT(D1,D2,D3) and D1 has UFD and D2 has UPOLYC(
--R            D1) and D3 has UPOLYC(FRAC(D2))
--R   [25] (D,Integer) -> D1 from D if D has FRNAALG(D1) and D1 has 
--R            COMRING
--R   [26] (IndexCard,Symbol) -> String from IndexCard
--R   [27] (Library,Symbol) -> Any from Library
--R   [28] (D,UniversalSegment(Integer)) -> D from D if D has LNAGG(D2) 
--R            and D2 has TYPE
--R   [29] (ThreeDimensionalMatrix(D1),NonNegativeInteger,
--R            NonNegativeInteger,NonNegativeInteger) -> D1
--R             from ThreeDimensionalMatrix(D1) if D1 has SETCAT
--R   [30] (D,List(Integer),List(Integer)) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [31] (D,D1) -> D1 from D if D has PERMCAT(D1) and D1 has SETCAT
--R   [32] (PermutationGroup(D3),NonNegativeInteger) -> Permutation(D3)
--R             from PermutationGroup(D3) if D3 has SETCAT
--R   [33] (D,Integer) -> D1 from D
--R             if D has PLACESC(D1,D3) and D3 has LOCPOWC(D1) and D1 has 
--R            FIELD
--R   [34] (D,Integer) -> D1 from D if D has PRSPCAT(D1) and D1 has FIELD
--R            
--R   [35] (QuadraticForm(D3,D1),DirectProduct(D3,D1)) -> D1
--R             from QuadraticForm(D3,D1) if D3: PI and D1 has FIELD
--R   [36] (D,value) -> D1 from D if D has RCAGG(D1) and D1 has TYPE
--R   [37] (D,Integer,Integer,D1) -> D1 from D
--R             if D has RMATCAT(D3,D4,D1,D5,D6) and D1 has RING and D5
--R             has DIRPCAT(D4,D1) and D6 has DIRPCAT(D3,D1)
--R   [38] (D,Integer,Integer) -> D1 from D
--R             if D has RMATCAT(D3,D4,D1,D5,D6) and D5 has DIRPCAT(D4,D1)
--R            and D6 has DIRPCAT(D3,D1) and D1 has RING
--R   [39] (RewriteRule(D3,D4,D1),D1,PositiveInteger) -> D1
--R             from RewriteRule(D3,D4,D1)
--R             if D3 has SETCAT and D4 has Join(Ring,PatternMatchable(D3)
--R            ,OrderedSet,ConvertibleTo(Pattern(D3))) and D1 has Join(
--R            FunctionSpace(D4),PatternMatchable(D3),ConvertibleTo(
--R            Pattern(D3)))
--R   [40] (Ruleset(D3,D4,D1),D1,PositiveInteger) -> D1 from Ruleset(D3,D4
--R            ,D1)
--R             if D3 has SETCAT and D4 has Join(Ring,PatternMatchable(D3)
--R            ,OrderedSet,ConvertibleTo(Pattern(D3))) and D1 has Join(
--R            FunctionSpace(D4),PatternMatchable(D3),ConvertibleTo(
--R            Pattern(D3)))
--R   [41] (SparseEchelonMatrix(D3,D1),Integer,D3) -> D1
--R             from SparseEchelonMatrix(D3,D1) if D1 has RING and D3 has 
--R            ORDSET
--R   [42] (D,List(Integer)) -> D from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R   [43] (D,Integer) -> D from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R   [44] (D,D) -> D from D if D has SRAGG
--R   [45] (Symbol,List(OutputForm)) -> Symbol from Symbol
--R   [46] (Fraction(D),D1) -> D1 from D
--R             if D has UPOLYC(D1) and D1 has RING and D1 has FIELD
--R   [47] (Fraction(D),Fraction(D)) -> Fraction(D) from D
--R             if D has UPOLYC(D2) and D2 has RING and D2 has INTDOM
--R   [48] (D,D2) -> D1 from D if D has UPSCAT(D1,D2) and D2 has OAMON and
--R            D1 has RING
--R   [49] (D,last) -> D1 from D if D has URAGG(D1) and D1 has TYPE
--R   [50] (D,rest) -> D from D if D has URAGG(D2) and D2 has TYPE
--R   [51] (D,first) -> D1 from D if D has URAGG(D1) and D1 has TYPE
--R
--RThere are 4 unexposed functions called elt :
--R   [1] (EuclideanModularRing(D2,D1,D3,D4,D5,D6),D1) -> D1
--R             from EuclideanModularRing(D2,D1,D3,D4,D5,D6)
--R             if D2 has COMRING and D1 has UPOLYC(D2) and D3 has ABELMON
--R            and D4: ((D1,D3) -> D1) and D5: ((D3,D3) -> Union(D3,
--R            "failed")) and D6: ((D1,D1,D3) -> Union(D1,"failed"))
--R   [2] (OutputForm,List(OutputForm)) -> OutputForm from OutputForm
--R   [3] (BasicOperator,List(Pattern(D3))) -> Pattern(D3) from Pattern(D3
--R            )
--R             if D3 has SETCAT
--R   [4] Reference(D1) -> D1 from Reference(D1) if D1 has TYPE
--R
--RExamples of elt from AffineSpaceCategory
--R
--R
--RExamples of elt from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Relt(arr,1,1,6) 
--Relt(arr,1,10,6)
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Relt(arr,1,1)
--R
--R
--RExamples of elt from BinaryRecursiveAggregate
--R
--R
--RExamples of elt from CartesianTensor
--R
--Rv:=[2,3] 
--Rtv:CartesianTensor(1,2,Integer):=v 
--Rtm:CartesianTensor(1,2,Integer):=[tv,tv] 
--Rtn:CartesianTensor(1,2,Integer):=[tm,tm] 
--Rtp:CartesianTensor(1,2,Integer):=[tn,tn] 
--Rtq:CartesianTensor(1,2,Integer):=[tp,tp] 
--Relt(tq,[2,2,2,2,2])
--R
--Rv:=[2,3] 
--Rtv:CartesianTensor(1,2,Integer):=v 
--Rtm:CartesianTensor(1,2,Integer):=[tv,tv] 
--Rtn:CartesianTensor(1,2,Integer):=[tm,tm] 
--Rtp:CartesianTensor(1,2,Integer):=[tn,tn] 
--Relt(tp,2,2,2,2) 
--Rtp[2,2,2,2]
--R
--Rv:=[2,3] 
--Rtv:CartesianTensor(1,2,Integer):=v 
--Rtm:CartesianTensor(1,2,Integer):=[tv,tv] 
--Rtn:CartesianTensor(1,2,Integer):=[tm,tm] 
--Relt(tn,2,2,2) 
--Rtn[2,2,2]
--R
--Rv:=[2,3] 
--Rtv:CartesianTensor(1,2,Integer):=v 
--Rtm:CartesianTensor(1,2,Integer):=[tv,tv] 
--Relt(tm,2,2) 
--Rtm[2,2]
--R
--Rv:=[2,3] 
--Rtv:CartesianTensor(1,2,Integer):=v 
--Relt(tv,2) 
--Rtv[2]
--R
--Rtv:CartesianTensor(1,2,Integer):=8 
--Relt(tv) 
--Rtv[]
--R
--R
--RExamples of elt from Database
--R
--R
--RExamples of elt from DataList
--R
--R
--RExamples of elt from Eltable
--R
--R
--RExamples of elt from EltableAggregate
--R
--R
--RExamples of elt from EuclideanModularRing
--R
--R
--RExamples of elt from ExpressionSpace
--R
--R
--RExamples of elt from FunctionFieldCategory
--R
--R
--RExamples of elt from FramedNonAssociativeAlgebra
--R
--R
--RExamples of elt from IndexCard
--R
--R
--RExamples of elt from Library
--R
--R
--RExamples of elt from LinearAggregate
--R
--R
--RExamples of elt from ThreeDimensionalMatrix
--R
--R
--RExamples of elt from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Relt(m,3,3)
--R
--R
--RExamples of elt from OutputForm
--R
--R
--RExamples of elt from Pattern
--R
--R
--RExamples of elt from PermutationCategory
--R
--R
--RExamples of elt from PermutationGroup
--R
--R
--RExamples of elt from PlacesCategory
--R
--R
--RExamples of elt from ProjectiveSpaceCategory
--R
--R
--RExamples of elt from QuadraticForm
--R
--R
--RExamples of elt from RecursiveAggregate
--R
--R
--RExamples of elt from Reference
--R
--R
--RExamples of elt from RectangularMatrixCategory
--R
--R
--RExamples of elt from RewriteRule
--R
--R
--RExamples of elt from Ruleset
--R
--R
--RExamples of elt from SparseEchelonMatrix
--R
--R
--RExamples of elt from SExpressionCategory
--R
--R
--RExamples of elt from StringAggregate
--R
--R
--RExamples of elt from Symbol
--R
--Relt(S,[a1,a2]) 
--Rs([a1,a2])
--R
--R
--RExamples of elt from UnivariatePolynomialCategory
--R
--R
--RExamples of elt from UnivariatePowerSeriesCategory
--R
--R
--RExamples of elt from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rt1.last
--R
--Rt1:=[1,2,3] 
--Rt1.rest
--R
--Rt1:=[1,2,3] 
--Rt1.first
--R
--E 827

--S 828 of 3320
)d op empty
--R 
--R
--RThere are 8 exposed functions called empty :
--R   [1]  -> D from D if D has AGG
--R   [2]  -> ArrayStack(D1) from ArrayStack(D1) if D1 has SETCAT
--R   [3]  -> Dequeue(D1) from Dequeue(D1) if D1 has SETCAT
--R   [4]  -> Heap(D1) from Heap(D1) if D1 has ORDSET
--R   [5]  -> Queue(D1) from Queue(D1) if D1 has SETCAT
--R   [6]  -> Stack(D1) from Stack(D1) if D1 has SETCAT
--R   [7]  -> TheSymbolTable from TheSymbolTable
--R   [8]  -> SymbolTable from SymbolTable
--R
--RThere are 3 unexposed functions called empty :
--R   [1]  -> OutputForm from OutputForm
--R   [2]  -> QuasiAlgebraicSet(D1,D2,D3,D4) from QuasiAlgebraicSet(D1,D2,
--R            D3,D4)
--R             if D1 has GCDDOM and D2 has ORDSET and D3 has OAMONS and 
--R            D4 has POLYCAT(D1,D3,D2)
--R   [3]  -> SplittingNode(D1,D2) from SplittingNode(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of empty from Aggregate
--R
--R
--RExamples of empty from ArrayStack
--R
--Rb:=empty()$(ArrayStack INT)
--R
--R
--RExamples of empty from Dequeue
--R
--Rb:=empty()$(Dequeue INT)
--R
--R
--RExamples of empty from Heap
--R
--Rb:=empty()$(Heap INT)
--R
--R
--RExamples of empty from OutputForm
--R
--R
--RExamples of empty from QuasiAlgebraicSet
--R
--R
--RExamples of empty from Queue
--R
--Rb:=empty()$(Queue INT)
--R
--R
--RExamples of empty from SplittingNode
--R
--R
--RExamples of empty from Stack
--R
--Rb:=empty()$(Stack INT)
--R
--R
--RExamples of empty from TheSymbolTable
--R
--R
--RExamples of empty from SymbolTable
--R
--E 828

--S 829 of 3320
)d op empty?
--R 
--R
--RThere are 6 exposed functions called empty? :
--R   [1] D -> Boolean from D if D has AGG
--R   [2] ArrayStack(D2) -> Boolean from ArrayStack(D2) if D2 has SETCAT
--R         
--R   [3] Dequeue(D2) -> Boolean from Dequeue(D2) if D2 has SETCAT
--R   [4] Heap(D2) -> Boolean from Heap(D2) if D2 has ORDSET
--R   [5] Queue(D2) -> Boolean from Queue(D2) if D2 has SETCAT
--R   [6] Stack(D2) -> Boolean from Stack(D2) if D2 has SETCAT
--R
--RThere are 2 unexposed functions called empty? :
--R   [1] QuasiAlgebraicSet(D2,D3,D4,D5) -> Boolean
--R             from QuasiAlgebraicSet(D2,D3,D4,D5)
--R             if D2 has GCDDOM and D3 has ORDSET and D4 has OAMONS and 
--R            D5 has POLYCAT(D2,D4,D3)
--R   [2] SplittingNode(D2,D3) -> Boolean from SplittingNode(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of empty? from Aggregate
--R
--R
--RExamples of empty? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rempty? a
--R
--R
--RExamples of empty? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rempty? a
--R
--R
--RExamples of empty? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rempty? a
--R
--R
--RExamples of empty? from QuasiAlgebraicSet
--R
--R
--RExamples of empty? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rempty? a
--R
--R
--RExamples of empty? from SplittingNode
--R
--R
--RExamples of empty? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rempty? a
--R
--E 829

--S 830 of 3320
)d op En
--R 
--R
--RThere is one exposed function called En :
--R   [1] (Integer,DoubleFloat) -> OnePointCompletion(DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of En from DoubleFloatSpecialFunctions
--R
--E 830

--S 831 of 3320
)d op encode
--R 
--R
--RThere is one exposed function called encode :
--R   [1] DesingTree(D2) -> String from DesingTree(D2) if D2 has SETCAT
--R         
--R
--RExamples of encode from DesingTree
--R
--E 831

--S 832 of 3320
)d op endOfFile?
--R 
--R
--RThere is one exposed function called endOfFile? :
--R   [1] TextFile -> Boolean from TextFile
--R
--RExamples of endOfFile? from TextFile
--R
--E 832

--S 833 of 3320
)d op endSubProgram
--R 
--R
--RThere is one exposed function called endSubProgram :
--R   [1]  -> Symbol from TheSymbolTable
--R
--RExamples of endSubProgram from TheSymbolTable
--R
--E 833

--S 834 of 3320
)d op enqueue!
--R 
--R
--RThere are 3 exposed functions called enqueue! :
--R   [1] (D1,Dequeue(D1)) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] (D1,D) -> D1 from D if D has QUAGG(D1) and D1 has TYPE
--R   [3] (D1,Queue(D1)) -> D1 from Queue(D1) if D1 has SETCAT
--R
--RExamples of enqueue! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Renqueue! (9,a) 
--Ra
--R
--R
--RExamples of enqueue! from QueueAggregate
--R
--R
--RExamples of enqueue! from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Renqueue! (9,a) 
--Ra
--R
--E 834

--S 835 of 3320
)d op enterInCache
--R 
--R
--RThere are 2 unexposed functions called enterInCache :
--R   [1] (D1,(D1 -> Boolean)) -> D1 from SortedCache(D1) if D1 has 
--R            CACHSET
--R   [2] (D1,((D1,D1) -> Integer)) -> D1 from SortedCache(D1) if D1 has 
--R            CACHSET
--R
--RExamples of enterInCache from SortedCache
--R
--E 835

--S 836 of 3320
)d op enterPointData
--R 
--R
--RThere is one exposed function called enterPointData :
--R   [1] (D,List(Point(D3))) -> NonNegativeInteger from D
--R             if D has SPACEC(D3) and D3 has RING
--R
--RExamples of enterPointData from ThreeSpaceCategory
--R
--E 836

--S 837 of 3320
)d op entries
--R 
--R
--RThere are 2 exposed functions called entries :
--R   [1] IntegrationFunctionsTable -> List(Record(key: Record(var: Symbol
--R            ,fn: Expression(DoubleFloat),range: Segment(OrderedCompletion(
--R            DoubleFloat)),abserr: DoubleFloat,relerr: DoubleFloat),entry: 
--R            Record(endPointContinuity: Union(continuous: 
--R            Continuous at the end points,lowerSingular: 
--R            There is a singularity at the lower end point,upperSingular: 
--R            There is a singularity at the upper end point,bothSingular: 
--R            There are singularities at both end points,notEvaluated: 
--R            End point continuity not yet evaluated),singularitiesStream: 
--R            Union(str: Stream(DoubleFloat),notEvaluated: 
--R            Internal singularities not yet evaluated),range: Union(finite: 
--R            The range is finite,lowerInfinite: 
--R            The bottom of range is infinite,upperInfinite: 
--R            The top of range is infinite,bothInfinite: 
--R            Both top and bottom points are infinite,notEvaluated: 
--R            Range not yet evaluated))))
--R             from IntegrationFunctionsTable
--R   [2] D -> List(D3) from D if D has IXAGG(D2,D3) and D2 has SETCAT and
--R            D3 has TYPE
--R
--RExamples of entries from IntegrationFunctionsTable
--R
--R
--RExamples of entries from IndexedAggregate
--R
--E 837

--S 838 of 3320
)d op entry
--R 
--R
--RThere is one exposed function called entry :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Record(endPointContinuity: Union(continuous: 
--R            Continuous at the end points,lowerSingular: 
--R            There is a singularity at the lower end point,upperSingular: 
--R            There is a singularity at the upper end point,bothSingular: 
--R            There are singularities at both end points,notEvaluated: 
--R            End point continuity not yet evaluated),singularitiesStream: 
--R            Union(str: Stream(DoubleFloat),notEvaluated: 
--R            Internal singularities not yet evaluated),range: Union(finite: 
--R            The range is finite,lowerInfinite: 
--R            The bottom of range is infinite,upperInfinite: 
--R            The top of range is infinite,bothInfinite: 
--R            Both top and bottom points are infinite,notEvaluated: 
--R            Range not yet evaluated))
--R             from IntegrationFunctionsTable
--R
--RExamples of entry from IntegrationFunctionsTable
--R
--E 838

--S 839 of 3320
)d op entry?
--R 
--R
--RThere is one exposed function called entry? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has finiteAggregate and D has IXAGG(D3,D2) and D3
--R             has SETCAT and D2 has TYPE and D2 has SETCAT
--R
--RExamples of entry? from IndexedAggregate
--R
--E 839

--S 840 of 3320
)d op enumerate
--R 
--R
--RThere is one exposed function called enumerate :
--R   [1]  -> List(D) from D if D has FINITE
--R
--RThere is one unexposed function called enumerate :
--R   [1]  -> Vector(SetOfMIntegersInOneToN(D2,D3))
--R             from SetOfMIntegersInOneToN(D2,D3) if D2: PI and D3: PI
--R         
--R
--RExamples of enumerate from Finite
--R
--Renumerate()$OrderedVariableList([p,q])
--R
--R
--RExamples of enumerate from SetOfMIntegersInOneToN
--R
--E 840

--S 841 of 3320
)d op epilogue
--R 
--R
--RThere are 2 exposed functions called epilogue :
--R   [1] ScriptFormulaFormat -> List(String) from ScriptFormulaFormat
--R   [2] TexFormat -> List(String) from TexFormat
--R
--RExamples of epilogue from ScriptFormulaFormat
--R
--R
--RExamples of epilogue from TexFormat
--R
--E 841

--S 842 of 3320
)d op eq
--R 
--R
--RThere is one exposed function called eq :
--R   [1] (D,D) -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of eq from SExpressionCategory
--R
--E 842

--S 843 of 3320
)d op eq?
--R 
--R
--RThere are 6 exposed functions called eq? :
--R   [1] (D,D) -> Boolean from D if D has AGG
--R   [2] (ArrayStack(D2),ArrayStack(D2)) -> Boolean from ArrayStack(D2)
--R             if D2 has SETCAT
--R   [3] (Dequeue(D2),Dequeue(D2)) -> Boolean from Dequeue(D2) if D2 has 
--R            SETCAT
--R   [4] (Heap(D2),Heap(D2)) -> Boolean from Heap(D2) if D2 has ORDSET
--R         
--R   [5] (Queue(D2),Queue(D2)) -> Boolean from Queue(D2) if D2 has SETCAT
--R            
--R   [6] (Stack(D2),Stack(D2)) -> Boolean from Stack(D2) if D2 has SETCAT
--R            
--R
--RExamples of eq? from Aggregate
--R
--R
--RExamples of eq? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rb:=copy a 
--Req?(a,b)
--R
--R
--RExamples of eq? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rb:=copy a 
--Req?(a,b)
--R
--R
--RExamples of eq? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rb:=copy a 
--Req?(a,b)
--R
--R
--RExamples of eq? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rb:=copy a 
--Req?(a,b)
--R
--R
--RExamples of eq? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rb:=copy a 
--Req?(a,b)
--R
--E 843

--S 844 of 3320
)d op EQ
--R 
--R
--RThere is one exposed function called EQ :
--R   [1] (Union(I: Expression(Integer),F: Expression(Float),CF: 
--R            Expression(Complex(Float)),switch: Switch),Union(I: Expression(
--R            Integer),F: Expression(Float),CF: Expression(Complex(Float)),
--R            switch: Switch)) -> Switch
--R             from Switch
--R
--RExamples of EQ from Switch
--R
--E 844

--S 845 of 3320
)d op equality
--R 
--R
--RThere is one exposed function called equality :
--R   [1] (BasicOperator,((BasicOperator,BasicOperator) -> Boolean)) -> 
--R            BasicOperator
--R             from BasicOperator
--R
--RExamples of equality from BasicOperator
--R
--E 845

--S 846 of 3320
)d op equation
--R 
--R
--RThere are 5 exposed functions called equation :
--R   [1] (D1,D1) -> Equation(D1) from Equation(D1) if D1 has TYPE
--R   [2] (Symbol,String) -> QueryEquation from QueryEquation
--R   [3] (D2,StochasticDifferential(D2)) -> Union(Equation(
--R            StochasticDifferential(D2)),"failed")
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R   [4] (StochasticDifferential(D2),D2) -> Union(Equation(
--R            StochasticDifferential(D2)),"failed")
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R   [5] (Symbol,Segment(D3)) -> SegmentBinding(D3) from SegmentBinding(
--R            D3)
--R             if D3 has TYPE
--R
--RExamples of equation from Equation
--R
--R
--RExamples of equation from QueryEquation
--R
--R
--RExamples of equation from StochasticDifferential
--R
--R
--RExamples of equation from SegmentBinding
--R
--E 846

--S 847 of 3320
)d op erf
--R 
--R
--RThere is one exposed function called erf :
--R   [1] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called erf :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of erf from LiouvillianFunctionCategory
--R
--R
--RExamples of erf from LiouvillianFunction
--R
--E 847

--S 848 of 3320
)d op error
--R 
--R
--RThere are 4 exposed functions called error :
--R   [1] String -> Exit from ErrorFunctions
--R   [2] List(String) -> Exit from ErrorFunctions
--R   [3] (String,String) -> Exit from ErrorFunctions
--R   [4] (String,List(String)) -> Exit from ErrorFunctions
--R
--RExamples of error from ErrorFunctions
--R
--E 848

--S 849 of 3320
)d op errorInfo
--R 
--R
--RThere is one exposed function called errorInfo :
--R   [1] OpenMathError -> List(Symbol) from OpenMathError
--R
--RExamples of errorInfo from OpenMathError
--R
--E 849

--S 850 of 3320
)d op errorKind
--R 
--R
--RThere is one exposed function called errorKind :
--R   [1] OpenMathError -> OpenMathErrorKind from OpenMathError
--R
--RExamples of errorKind from OpenMathError
--R
--E 850

--S 851 of 33 done20
)d op escape
--R 
--R
--RThere is one exposed function called escape :
--R   [1]  -> Character from Character
--R
--RExamples of escape from Character
--R
--Rescape()
--R
--E 851

--S 852 of 3320 done
)d op euclideanGroebner
--R 
--R
--RThere are 3 exposed functions called euclideanGroebner :
--R   [1] List(D5) -> List(D5) from EuclideanGroebnerBasisPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has POLYCAT(D2,D3,D4) and D2 has EUCDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [2] (List(D6),String) -> List(D6)
--R             from EuclideanGroebnerBasisPackage(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D3 has EUCDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [3] (List(D6),String,String) -> List(D6)
--R             from EuclideanGroebnerBasisPackage(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D3 has EUCDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of euclideanGroebner from EuclideanGroebnerBasisPackage
--R
--Ra1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1) 
--Ra2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1) 
--Ra3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2) 
--Ran:=[a1,a2,a3] 
--ReuclideanGroebner(an,"info","redcrit")
--R
--Ra1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1) 
--Ra2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1) 
--Ra3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2) 
--Ran:=[a1,a2,a3] 
--ReuclideanGroebner(an,"redcrit") 
--ReuclideanGroebner(an,"info")
--R
--Ra1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1) 
--Ra2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1) 
--Ra3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2) 
--Ran:=[a1,a2,a3] 
--ReuclideanGroebner(an)
--R
--E 852

--S 853 of 3320
)d op euclideanNormalForm
--R 
--R
--RThere is one exposed function called euclideanNormalForm :
--R   [1] (D1,List(D1)) -> D1 from EuclideanGroebnerBasisPackage(D3,D4,D5,
--R            D1)
--R             if D1 has POLYCAT(D3,D4,D5) and D3 has EUCDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of euclideanNormalForm from EuclideanGroebnerBasisPackage
--R
--E 853

--S 854 of 3320
)d op euclideanSize
--R 
--R
--RThere is one exposed function called euclideanSize :
--R   [1] D -> NonNegativeInteger from D if D has EUCDOM
--R
--RExamples of euclideanSize from EuclideanDomain
--R
--E 854

--S 855 of 3320
)d op euler
--R 
--R
--RThere is one exposed function called euler :
--R   [1] Integer -> Integer from IntegerNumberTheoryFunctions
--R
--RThere is one unexposed function called euler :
--R   [1] Integer -> SparseUnivariatePolynomial(Fraction(Integer))
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of euler from IntegerNumberTheoryFunctions
--R
--R
--RExamples of euler from PolynomialNumberTheoryFunctions
--R
--E 855

--S 856 of 3320
)d op eulerE
--R 
--R
--RThere is one exposed function called eulerE :
--R   [1] (NonNegativeInteger,D1) -> D1 from 
--R            NumberTheoreticPolynomialFunctions(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has COMRING
--R
--RExamples of eulerE from NumberTheoreticPolynomialFunctions
--R
--E 856

--S 857 of 3320
)d op eulerPhi
--R 
--R
--RThere is one exposed function called eulerPhi :
--R   [1] Integer -> Integer from IntegerNumberTheoryFunctions
--R
--RExamples of eulerPhi from IntegerNumberTheoryFunctions
--R
--E 857

--S 858 of 3320
)d op eval
--R 
--R
--RThere are 43 exposed functions called eval :
--R   [1] SymmetricPolynomial(Fraction(Integer)) -> Fraction(Integer)
--R             from CycleIndicators
--R   [2] (Matrix(Expression(DoubleFloat)),List(Symbol),Vector(Expression(
--R            DoubleFloat))) -> Matrix(Expression(DoubleFloat))
--R             from d02AgentsPackage
--R   [3] (Equation(D2),List(Equation(D2))) -> Equation(D2) from Equation(
--R            D2)
--R             if D2 has EVALAB(D2) and D2 has SETCAT and D2 has TYPE
--R   [4] (Equation(D1),Equation(D1)) -> Equation(D1) from Equation(D1)
--R             if D1 has EVALAB(D1) and D1 has SETCAT and D1 has TYPE
--R   [5] (D,BasicOperator,(D -> D)) -> D from D if D has ES
--R   [6] (D,BasicOperator,(List(D) -> D)) -> D from D if D has ES
--R   [7] (D,List(BasicOperator),List((List(D) -> D))) -> D from D if D
--R             has ES
--R   [8] (D,List(BasicOperator),List((D -> D))) -> D from D if D has ES
--R         
--R   [9] (D,Symbol,(D -> D)) -> D from D if D has ES
--R   [10] (D,Symbol,(List(D) -> D)) -> D from D if D has ES
--R   [11] (D,List(Symbol),List((List(D) -> D))) -> D from D if D has ES
--R         
--R   [12] (D,List(Symbol),List((D -> D))) -> D from D if D has ES
--R   [13] (D,List(Equation(D2))) -> D from D if D has EVALAB(D2) and D2
--R             has SETCAT
--R   [14] (D,Equation(D2)) -> D from D if D has EVALAB(D2) and D2 has 
--R            SETCAT
--R   [15] (D,List(D3),List(D)) -> D from D
--R             if D has FLALG(D3,D4) and D3 has ORDSET and D4 has COMRING
--R            
--R   [16] (D,D1,D) -> D from D
--R             if D has FLALG(D1,D2) and D1 has ORDSET and D2 has COMRING
--R            
--R   [17] (D,Symbol,NonNegativeInteger,(D -> D)) -> D from D
--R             if D has FS(D4) and D4 has ORDSET and D4 has RING
--R   [18] (D,Symbol,NonNegativeInteger,(List(D) -> D)) -> D from D
--R             if D has FS(D4) and D4 has ORDSET and D4 has RING
--R   [19] (D,List(Symbol),List(NonNegativeInteger),List((List(D) -> D)))
--R             -> D
--R             from D if D has FS(D4) and D4 has ORDSET and D4 has RING
--R         
--R   [20] (D,List(Symbol),List(NonNegativeInteger),List((D -> D))) -> D
--R             from D
--R             if D has FS(D4) and D4 has ORDSET and D4 has RING
--R   [21] (D,List(BasicOperator),List(D),Symbol) -> D from D
--R             if D has FS(D4) and D4 has ORDSET and D4 has KONVERT(
--R            INFORM)
--R   [22] (D,BasicOperator,D,Symbol) -> D from D
--R             if D has FS(D3) and D3 has ORDSET and D3 has KONVERT(
--R            INFORM)
--R   [23] D -> D from D if D has FS(D1) and D1 has ORDSET and D1 has 
--R            KONVERT(INFORM)
--R   [24] (D,List(Symbol)) -> D from D
--R             if D has FS(D2) and D2 has ORDSET and D2 has KONVERT(
--R            INFORM)
--R   [25] (D,Symbol) -> D from D
--R             if D has FS(D2) and D2 has ORDSET and D2 has KONVERT(
--R            INFORM)
--R   [26] (D5,D6) -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D4,D7,D5,D8,
--R            D9,D10,D6,D11,D1,D2,D3)
--R             if D7: LIST(SYMBOL) and D5 has POLYCAT(D4,D8,OVAR(D7)) and
--R            D8 has DIRPCAT(#(D7),NNI) and D9 has PRSPCAT(D4) and D10
--R             has LOCPOWC(D4) and D6 has PLACESC(D4,D10) and D11 has 
--R            DIVCAT(D6) and D1 has INFCLCT(D4,D7,D5,D8,D9,D10,D6,D11,D3)
--R            and D3 has BLMETCT and D4 has FIELD and D2 has DSTRCAT(D1)
--R            
--R   [27] (D5,D5,D6) -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D4,D7,D5,D8,
--R            D9,D10,D6,D11,D1,D2,D3)
--R             if D7: LIST(SYMBOL) and D5 has POLYCAT(D4,D8,OVAR(D7)) and
--R            D8 has DIRPCAT(#(D7),NNI) and D9 has PRSPCAT(D4) and D10
--R             has LOCPOWC(D4) and D6 has PLACESC(D4,D10) and D11 has 
--R            DIVCAT(D6) and D1 has INFCLCT(D4,D7,D5,D8,D9,D10,D6,D11,D3)
--R            and D3 has BLMETCT and D4 has FIELD and D2 has DSTRCAT(D1)
--R            
--R   [28] (Fraction(D9),D7) -> D5
--R             from GeneralPackageForAlgebraicFunctionField(D5,D8,D9,D10,
--R            D11,D12,D7,D1,D2,D3,D4)
--R             if D9 has POLYCAT(D5,D10,OVAR(D8)) and D10 has DIRPCAT(#(
--R            D8),NNI) and D8: LIST(SYMBOL) and D11 has PRSPCAT(D5) and 
--R            D12 has LOCPOWC(D5) and D7 has PLACESC(D5,D12) and D1 has 
--R            DIVCAT(D7) and D2 has INFCLCT(D5,D8,D9,D10,D11,D12,D7,D1,D4
--R            ) and D4 has BLMETCT and D5 has FIELD and D3 has DSTRCAT(D2
--R            )
--R   [29] (D,D1,D2) -> D from D
--R             if D has IEVALAB(D1,D2) and D1 has SETCAT and D2 has TYPE
--R            
--R   [30] (D,List(D3),List(D4)) -> D from D
--R             if D has IEVALAB(D3,D4) and D3 has SETCAT and D4 has TYPE
--R            
--R   [31] (DistributedMultivariatePolynomial(D4,D1),
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D1)) -> D1
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D1,D4
--R            ,D5)
--R             if D4: LIST(SYMBOL) and D1 has FFIELDC and D5 has BLMETCT
--R            
--R   [32] (DistributedMultivariatePolynomial(D4,D1),
--R            DistributedMultivariatePolynomial(D4,D1),
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D1)) -> D1
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D1,D4
--R            ,D5)
--R             if D4: LIST(SYMBOL) and D1 has FFIELDC and D5 has BLMETCT
--R            
--R   [33] (Fraction(DistributedMultivariatePolynomial(D4,D1)),
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D1)) -> D1
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D1,D4
--R            ,D5)
--R             if D4: LIST(SYMBOL) and D1 has FFIELDC and D5 has BLMETCT
--R            
--R   [34] (DistributedMultivariatePolynomial(D4,D1),Places(D1)) -> D1
--R             from PackageForAlgebraicFunctionField(D1,D4,D5)
--R             if D4: LIST(SYMBOL) and D1 has FIELD and D5 has BLMETCT
--R         
--R   [35] (DistributedMultivariatePolynomial(D4,D1),
--R            DistributedMultivariatePolynomial(D4,D1),Places(D1)) -> D1
--R             from PackageForAlgebraicFunctionField(D1,D4,D5)
--R             if D4: LIST(SYMBOL) and D1 has FIELD and D5 has BLMETCT
--R         
--R   [36] (Fraction(DistributedMultivariatePolynomial(D4,D1)),Places(D1))
--R             -> D1
--R             from PackageForAlgebraicFunctionField(D1,D4,D5)
--R             if D4: LIST(SYMBOL) and D1 has FIELD and D5 has BLMETCT
--R         
--R   [37] (D,D1) -> D1 from D if D has PERMCAT(D1) and D1 has SETCAT
--R   [38] (D2,D3) -> D1 from PolynomialPackageForCurve(D1,D2,D4,D5,D3)
--R             if D4 has DIRPCAT(D5,NNI) and D5: NNI and D1 has FIELD and
--R            D2 has FAMR(D1,D4) and D3 has PRSPCAT(D1)
--R   [39] (Fraction(Polynomial(D3)),Symbol,Fraction(Polynomial(D3))) -> 
--R            Fraction(Polynomial(D3))
--R             from RationalFunction(D3) if D3 has INTDOM
--R   [40] (Fraction(Polynomial(D4)),List(Symbol),List(Fraction(Polynomial
--R            (D4)))) -> Fraction(Polynomial(D4))
--R             from RationalFunction(D4) if D4 has INTDOM
--R   [41] (Fraction(Polynomial(D3)),Equation(Fraction(Polynomial(D3))))
--R             -> Fraction(Polynomial(D3))
--R             from RationalFunction(D3) if D3 has INTDOM
--R   [42] (Fraction(Polynomial(D3)),List(Equation(Fraction(Polynomial(D3)
--R            )))) -> Fraction(Polynomial(D3))
--R             from RationalFunction(D3) if D3 has INTDOM
--R   [43] (D1,D3) -> Stream(D3) from D1
--R             if D1 has UPSCAT(D3,D4) and D3 has RING and D4 has OAMON 
--R            and D3 has D: (D3,D4) -> D3
--R
--RThere are 5 unexposed functions called eval :
--R   [1] (D1,Fraction(D4),Fraction(D4)) -> D1 from ChangeOfVariable(D3,D4
--R            ,D1)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D1 has UPOLYC(FRAC
--R            (D4))
--R   [2] ((Integer -> D1),SymmetricPolynomial(Fraction(Integer))) -> D1
--R             from EvaluateCycleIndicators(D1) if D1 has ALGEBRA(FRAC(
--R            INT))
--R   [3] (MoebiusTransform(D2),OnePointCompletion(D2)) -> 
--R            OnePointCompletion(D2)
--R             from MoebiusTransform(D2) if D2 has FIELD
--R   [4] (MoebiusTransform(D1),D1) -> D1 from MoebiusTransform(D1) if D1
--R             has FIELD
--R   [5] (Stream(D2),D2) -> Stream(D2) from StreamTaylorSeriesOperations(
--R            D2)
--R             if D2 has RING
--R
--RExamples of eval from ChangeOfVariable
--R
--R
--RExamples of eval from CycleIndicators
--R
--R
--RExamples of eval from d02AgentsPackage
--R
--R
--RExamples of eval from Equation
--R
--R
--RExamples of eval from ExpressionSpace
--R
--R
--RExamples of eval from Evalable
--R
--R
--RExamples of eval from EvaluateCycleIndicators
--R
--R
--RExamples of eval from FreeLieAlgebra
--R
--R
--RExamples of eval from FunctionSpace
--R
--R
--RExamples of eval from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of eval from InnerEvalable
--R
--R
--RExamples of eval from MoebiusTransform
--R
--R
--RExamples of eval from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of eval from PackageForAlgebraicFunctionField
--R
--R
--RExamples of eval from PermutationCategory
--R
--R
--RExamples of eval from PolynomialPackageForCurve
--R
--R
--RExamples of eval from RationalFunction
--R
--R
--RExamples of eval from StreamTaylorSeriesOperations
--R
--R
--RExamples of eval from UnivariatePowerSeriesCategory
--R
--E 858

--S 859 of 3320
)d op evalADE
--R 
--R
--RThere is one exposed function called evalADE :
--R   [1] (BasicOperator,Symbol,D1,D1,D1,List(D1)) -> D1
--R             from RecurrenceOperator(D5,D1)
--R             if D1 has Join(FunctionSpace(D5),AbelianMonoid,
--R            RetractableTo(Integer),RetractableTo(Symbol),
--R            PartialDifferentialRing(Symbol),CombinatorialOpsCategory) 
--R            and D5 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
--R            InputForm))
--R
--RExamples of evalADE from RecurrenceOperator
--R
--E 859

--S 860 of 3320
--R--------------------------- )d op eval_at (fix this)
--E 860

--S 861 of 3320
)d op evalIfCan
--R 
--R
--RThere are 9 exposed functions called evalIfCan :
--R   [1] (D5,D6) -> Union(D4,"failed")
--R             from GeneralPackageForAlgebraicFunctionField(D4,D7,D5,D8,
--R            D9,D10,D6,D11,D1,D2,D3)
--R             if D7: LIST(SYMBOL) and D5 has POLYCAT(D4,D8,OVAR(D7)) and
--R            D8 has DIRPCAT(#(D7),NNI) and D9 has PRSPCAT(D4) and D10
--R             has LOCPOWC(D4) and D6 has PLACESC(D4,D10) and D11 has 
--R            DIVCAT(D6) and D1 has INFCLCT(D4,D7,D5,D8,D9,D10,D6,D11,D3)
--R            and D3 has BLMETCT and D4 has FIELD and D2 has DSTRCAT(D1)
--R            
--R   [2] (D5,D5,D6) -> Union(D4,"failed")
--R             from GeneralPackageForAlgebraicFunctionField(D4,D7,D5,D8,
--R            D9,D10,D6,D11,D1,D2,D3)
--R             if D7: LIST(SYMBOL) and D5 has POLYCAT(D4,D8,OVAR(D7)) and
--R            D8 has DIRPCAT(#(D7),NNI) and D9 has PRSPCAT(D4) and D10
--R             has LOCPOWC(D4) and D6 has PLACESC(D4,D10) and D11 has 
--R            DIVCAT(D6) and D1 has INFCLCT(D4,D7,D5,D8,D9,D10,D6,D11,D3)
--R            and D3 has BLMETCT and D4 has FIELD and D2 has DSTRCAT(D1)
--R            
--R   [3] (Fraction(D9),D7) -> Union(D5,"failed")
--R             from GeneralPackageForAlgebraicFunctionField(D5,D8,D9,D10,
--R            D11,D12,D7,D1,D2,D3,D4)
--R             if D9 has POLYCAT(D5,D10,OVAR(D8)) and D10 has DIRPCAT(#(
--R            D8),NNI) and D8: LIST(SYMBOL) and D11 has PRSPCAT(D5) and 
--R            D12 has LOCPOWC(D5) and D7 has PLACESC(D5,D12) and D1 has 
--R            DIVCAT(D7) and D2 has INFCLCT(D5,D8,D9,D10,D11,D12,D7,D1,D4
--R            ) and D4 has BLMETCT and D5 has FIELD and D3 has DSTRCAT(D2
--R            )
--R   [4] (DistributedMultivariatePolynomial(D4,D1),
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D1)) -> Union(D1,
--R            "failed")
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D1,D4
--R            ,D5)
--R             if D4: LIST(SYMBOL) and D1 has FFIELDC and D5 has BLMETCT
--R            
--R   [5] (DistributedMultivariatePolynomial(D4,D1),
--R            DistributedMultivariatePolynomial(D4,D1),
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D1)) -> Union(D1,
--R            "failed")
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D1,D4
--R            ,D5)
--R             if D4: LIST(SYMBOL) and D1 has FFIELDC and D5 has BLMETCT
--R            
--R   [6] (Fraction(DistributedMultivariatePolynomial(D4,D1)),
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D1)) -> Union(D1,
--R            "failed")
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D1,D4
--R            ,D5)
--R             if D4: LIST(SYMBOL) and D1 has FFIELDC and D5 has BLMETCT
--R            
--R   [7] (DistributedMultivariatePolynomial(D4,D1),Places(D1)) -> Union(
--R            D1,"failed")
--R             from PackageForAlgebraicFunctionField(D1,D4,D5)
--R             if D4: LIST(SYMBOL) and D1 has FIELD and D5 has BLMETCT
--R         
--R   [8] (DistributedMultivariatePolynomial(D4,D1),
--R            DistributedMultivariatePolynomial(D4,D1),Places(D1)) -> Union(D1,
--R            "failed")
--R             from PackageForAlgebraicFunctionField(D1,D4,D5)
--R             if D4: LIST(SYMBOL) and D1 has FIELD and D5 has BLMETCT
--R         
--R   [9] (Fraction(DistributedMultivariatePolynomial(D4,D1)),Places(D1))
--R             -> Union(D1,"failed")
--R             from PackageForAlgebraicFunctionField(D1,D4,D5)
--R             if D4: LIST(SYMBOL) and D1 has FIELD and D5 has BLMETCT
--R         
--R
--RExamples of evalIfCan from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of evalIfCan from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of evalIfCan from PackageForAlgebraicFunctionField
--R
--E 861

--S 862 of 3320
)d op evalRec
--R 
--R
--RThere is one exposed function called evalRec :
--R   [1] (BasicOperator,Symbol,D1,D1,D1,List(D1)) -> D1
--R             from RecurrenceOperator(D5,D1)
--R             if D1 has Join(FunctionSpace(D5),AbelianMonoid,
--R            RetractableTo(Integer),RetractableTo(Symbol),
--R            PartialDifferentialRing(Symbol),CombinatorialOpsCategory) 
--R            and D5 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
--R            InputForm))
--R
--RExamples of evalRec from RecurrenceOperator
--R
--E 862

--S 863 of 3320
)d op evaluate
--R 
--R
--RThere are 5 exposed functions called evaluate :
--R   [1] (BasicOperator,List(D1)) -> Union(D1,"failed")
--R             from BasicOperatorFunctions1(D1) if D1 has SETCAT
--R   [2] (BasicOperator,(List(D3) -> D3)) -> BasicOperator
--R             from BasicOperatorFunctions1(D3) if D3 has SETCAT
--R   [3] (BasicOperator,(D3 -> D3)) -> BasicOperator
--R             from BasicOperatorFunctions1(D3) if D3 has SETCAT
--R   [4] BasicOperator -> Union((List(D3) -> D3),"failed")
--R             from BasicOperatorFunctions1(D3) if D3 has SETCAT
--R   [5] (ModuleOperator(D2,D3),(D3 -> D3)) -> ModuleOperator(D2,D3)
--R             from ModuleOperator(D2,D3) if D3 has LMODULE(D2) and D2
--R             has RING
--R
--RThere is one unexposed function called evaluate :
--R   [1] (Operator(D2),(D2 -> D2)) -> Operator(D2) from Operator(D2) if 
--R            D2 has RING
--R
--RExamples of evaluate from BasicOperatorFunctions1
--R
--R
--RExamples of evaluate from ModuleOperator
--R
--R
--RExamples of evaluate from Operator
--R
--E 863

--S 864 of 3320
)d op evaluateInverse
--R 
--R
--RThere is one exposed function called evaluateInverse :
--R   [1] (ModuleOperator(D2,D3),(D3 -> D3)) -> ModuleOperator(D2,D3)
--R             from ModuleOperator(D2,D3) if D3 has LMODULE(D2) and D2
--R             has RING
--R
--RThere is one unexposed function called evaluateInverse :
--R   [1] (Operator(D2),(D2 -> D2)) -> Operator(D2) from Operator(D2) if 
--R            D2 has RING
--R
--RExamples of evaluateInverse from ModuleOperator
--R
--R
--RExamples of evaluateInverse from Operator
--R
--E 864

--S 865 of 3320
)d op even?
--R 
--R
--RThere are 3 exposed functions called even? :
--R   [1] D -> Boolean from D if D has RETRACT(INT) and D has ES
--R   [2] D -> Boolean from D if D has INS
--R   [3] Permutation(D2) -> Boolean from Permutation(D2) if D2 has SETCAT
--R            
--R
--RExamples of even? from RetractableTo
--R
--R
--RExamples of even? from IntegerNumberSystem
--R
--R
--RExamples of even? from Permutation
--R
--Rp := coercePreimagesImages([[1,2,3],[1,2,3]]) 
--Reven? p
--R
--E 865

--S 866 of 3320
)d op evenInfiniteProduct
--R 
--R
--RThere are 3 exposed functions called evenInfiniteProduct :
--R   [1] D1 -> D1 from InfiniteProductCharacteristicZero(D2,D1)
--R             if D2 has Join(IntegralDomain,CharacteristicZero) and D1
--R             has UTSCAT(D2)
--R   [2] D1 -> D1 from InfiniteProductFiniteField(D2,D3,D4,D1)
--R             if D2 has Join(Field,Finite,ConvertibleTo(Integer)) and D3
--R             has UPOLYC(D2) and D4 has MONOGEN(D2,D3) and D1 has UTSCAT
--R            (D4)
--R   [3] D1 -> D1 from InfiniteProductPrimeField(D2,D1)
--R             if D2 has Join(Field,Finite,ConvertibleTo(Integer)) and D1
--R             has UTSCAT(D2)
--R
--RThere is one unexposed function called evenInfiniteProduct :
--R   [1] Stream(D2) -> Stream(D2) from StreamInfiniteProduct(D2)
--R             if D2 has Join(IntegralDomain,CharacteristicZero)
--R
--RExamples of evenInfiniteProduct from InfiniteProductCharacteristicZero
--R
--R
--RExamples of evenInfiniteProduct from InfiniteProductFiniteField
--R
--R
--RExamples of evenInfiniteProduct from InfiniteProductPrimeField
--R
--R
--RExamples of evenInfiniteProduct from StreamInfiniteProduct
--R
--E 866

--S 867 of 3320
)d op evenlambert
--R 
--R
--RThere are 2 exposed functions called evenlambert :
--R   [1] UnivariateFormalPowerSeries(D1) -> UnivariateFormalPowerSeries(
--R            D1)
--R             from UnivariateFormalPowerSeries(D1) if D1 has RING
--R   [2] UnivariateTaylorSeriesCZero(D1,D2) -> 
--R            UnivariateTaylorSeriesCZero(D1,D2)
--R             from UnivariateTaylorSeriesCZero(D1,D2) if D1 has RING and
--R            D2: SYMBOL
--R
--RThere are 2 unexposed functions called evenlambert :
--R   [1] Stream(D2) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R   [2] UnivariateTaylorSeries(D1,D2,D3) -> UnivariateTaylorSeries(D1,D2
--R            ,D3)
--R             from UnivariateTaylorSeries(D1,D2,D3)
--R             if D1 has RING and D2: SYMBOL and D3: D1
--R
--RExamples of evenlambert from StreamTaylorSeriesOperations
--R
--R
--RExamples of evenlambert from UnivariateFormalPowerSeries
--R
--R
--RExamples of evenlambert from UnivariateTaylorSeries
--R
--R
--RExamples of evenlambert from UnivariateTaylorSeriesCZero
--R
--E 867

--S 868 of 3320
)d op every?
--R 
--R
--RThere are 6 exposed functions called every? :
--R   [1] ((D3 -> Boolean),ArrayStack(D3)) -> Boolean from ArrayStack(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [2] ((D3 -> Boolean),Dequeue(D3)) -> Boolean from Dequeue(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [3] ((D3 -> Boolean),Heap(D3)) -> Boolean from Heap(D3)
--R             if $ has finiteAggregate and D3 has ORDSET
--R   [4] ((D3 -> Boolean),D) -> Boolean from D
--R             if D has finiteAggregate and D has HOAGG(D3) and D3 has 
--R            TYPE
--R   [5] ((D3 -> Boolean),Queue(D3)) -> Boolean from Queue(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R   [6] ((D3 -> Boolean),Stack(D3)) -> Boolean from Stack(D3)
--R             if $ has finiteAggregate and D3 has SETCAT
--R
--RExamples of every? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Revery?(x+->(x=4),a)
--R
--R
--RExamples of every? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Revery?(x+->(x=4),a)
--R
--R
--RExamples of every? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Revery?(x+->(x=4),a)
--R
--R
--RExamples of every? from HomogeneousAggregate
--R
--R
--RExamples of every? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Revery?(x+->(x=4),a)
--R
--R
--RExamples of every? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Revery?(x+->(x=4),a)
--R
--E 868

--S 869 of 3320
)d op exactQuotient
--R 
--R
--RThere are 2 exposed functions called exactQuotient :
--R   [1] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R   [2] (D,D1) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R
--RExamples of exactQuotient from RecursivePolynomialCategory
--R
--E 869

--S 870 of 3320
)d op exactQuotient!
--R 
--R
--RThere are 2 exposed functions called exactQuotient! :
--R   [1] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R   [2] (D,D1) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R
--RExamples of exactQuotient! from RecursivePolynomialCategory
--R
--E 870

--S 871 of 3320
)d op excepCoord
--R 
--R
--RThere is one exposed function called excepCoord :
--R   [1] D -> Integer from D if D has BLMETCT
--R
--RExamples of excepCoord from BlowUpMethodCategory
--R
--E 871

--S 872 of 3320
)d op excpDivV
--R 
--R
--RThere is one exposed function called excpDivV :
--R   [1] D -> DIVISOR from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of excpDivV from InfinitlyClosePointCategory
--R
--E 872

--S 873 of 3320
)d op exists?
--R 
--R
--RThere is one exposed function called exists? :
--R   [1] D -> Boolean from D if D has FNCAT
--R
--RExamples of exists? from FileNameCategory
--R
--E 873

--S 874 of 3320
)d op exp
--R 
--R
--RThere are 2 exposed functions called exp :
--R   [1] D -> D from D if D has ELEMFUN
--R   [2] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R
--RThere are 9 unexposed functions called exp :
--R   [1] List(Integer) -> AntiSymm(D2,D3) from AntiSymm(D2,D3)
--R             if D2 has RING and D3: LIST(SYMBOL)
--R   [2] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [4] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [5] LiePolynomial(D2,D3) -> LieExponentials(D2,D3,D4)
--R             from LieExponentials(D2,D3,D4)
--R             if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D4: PI
--R   [6] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [7] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [8] (D1,NonNegativeInteger) -> D1 from XExponentialPackage(D3,D4,D1)
--R             if D3 has Join(Ring,Module(Fraction(Integer))) and D4 has 
--R            ORDSET and D1 has XPOLYC(D4,D3)
--R   [9] (XPBWPolynomial(D2,D3),NonNegativeInteger) -> XPBWPolynomial(D2,
--R            D3)
--R             from XPBWPolynomial(D2,D3)
--R             if D3 has MODULE(FRAC(INT)) and D2 has ORDSET and D3 has 
--R            COMRING
--R
--RExamples of exp from AntiSymm
--R
--R
--RExamples of exp from ElementaryFunction
--R
--R
--RExamples of exp from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of exp from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of exp from ElementaryFunctionCategory
--R
--R
--RExamples of exp from FortranExpression
--R
--R
--RExamples of exp from LieExponentials
--R
--R
--RExamples of exp from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of exp from StreamTranscendentalFunctions
--R
--R
--RExamples of exp from XExponentialPackage
--R
--R
--RExamples of exp from XPBWPolynomial
--R
--E 874

--S 875 of 3320
)d op exp1
--R 
--R
--RThere are 2 exposed functions called exp1 :
--R   [1]  -> DoubleFloat from DoubleFloat
--R   [2]  -> Float from Float
--R
--RExamples of exp1 from DoubleFloat
--R
--R
--RExamples of exp1 from Float
--R
--E 875

--S 876 of 3320
)d op expand
--R 
--R
--RThere are 6 exposed functions called expand :
--R   [1] Factored(D1) -> D1 from Factored(D1) if D1 has INTDOM
--R   [2] IntegrationResult(D4) -> List(D4) from 
--R            IntegrationResultToFunction(D3,D4)
--R             if D4 has Join(AlgebraicallyClosedFunctionSpace(D3),
--R            TranscendentalFunctionCategory) and D3 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,LinearlyExplicitRingOver(
--R            Integer))
--R   [3] IntegrationResult(Fraction(Polynomial(D3))) -> List(Expression(
--R            D3))
--R             from IntegrationResultRFToFunction(D3)
--R             if D3 has Join(GcdDomain,RetractableTo(Integer),OrderedSet
--R            ,LinearlyExplicitRingOver(Integer))
--R   [4] D -> D1 from D if D has SEGXCAT(D2,D1) and D2 has ORDRING and D1
--R             has STAGG(D2)
--R   [5] List(D) -> D1 from D
--R             if D has SEGXCAT(D3,D1) and D3 has ORDRING and D1 has 
--R            STAGG(D3)
--R   [6] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RThere are 3 unexposed functions called expand :
--R   [1] (Expression(D5),PositiveInteger) -> List(Expression(D5))
--R             from DegreeReductionPackage(D4,D5)
--R             if D5 has Join(IntegralDomain,OrderedSet) and D4 has RING
--R            
--R   [2] XPolynomial(D2) -> XDistributedPolynomial(Symbol,D2) from 
--R            XPolynomial(D2)
--R             if D2 has RING
--R   [3] XRecursivePolynomial(D2,D3) -> XDistributedPolynomial(D2,D3)
--R             from XRecursivePolynomial(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of expand from DegreeReductionPackage
--R
--R
--RExamples of expand from Factored
--R
--Rf:=nilFactor(y-x,3) 
--Rexpand(f)
--R
--R
--RExamples of expand from IntegrationResultToFunction
--R
--R
--RExamples of expand from IntegrationResultRFToFunction
--R
--R
--RExamples of expand from SegmentExpansionCategory
--R
--R
--RExamples of expand from TranscendentalManipulations
--R
--R
--RExamples of expand from XPolynomial
--R
--R
--RExamples of expand from XRecursivePolynomial
--R
--E 876

--S 877 of 3320
)d op expandLog
--R 
--R
--RThere is one exposed function called expandLog :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of expandLog from TranscendentalManipulations
--R
--E 877

--S 878 of 3320
)d op expandPower
--R 
--R
--RThere is one exposed function called expandPower :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of expandPower from TranscendentalManipulations
--R
--E 878

--S 879 of 3320
)d op expandTrigProducts
--R 
--R
--RThere is one exposed function called expandTrigProducts :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has KONVERT(PATTERN(D2)) and D2 has PATMAB(D2) and 
--R            D2 has Join(OrderedSet,GcdDomain) and D1 has KONVERT(
--R            PATTERN(D2)) and D1 has PATMAB(D2) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of expandTrigProducts from TranscendentalManipulations
--R
--E 879

--S 880 of 3320
)d op expenseOfEvaluation
--R 
--R
--RThere are 2 exposed functions called expenseOfEvaluation :
--R   [1] Record(lfn: List(Expression(DoubleFloat)),init: List(DoubleFloat
--R            )) -> Float
--R             from e04AgentsPackage
--R   [2] Vector(Expression(DoubleFloat)) -> Float from 
--R            ExpertSystemToolsPackage
--R
--RExamples of expenseOfEvaluation from e04AgentsPackage
--R
--R
--RExamples of expenseOfEvaluation from ExpertSystemToolsPackage
--R
--E 880

--S 881 of 3320
)d op expenseOfEvaluationIF
--R 
--R
--RThere is one exposed function called expenseOfEvaluationIF :
--R   [1] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
--R            Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
--R            DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
--R            relerr: DoubleFloat) -> Float
--R             from d02AgentsPackage
--R
--RExamples of expenseOfEvaluationIF from d02AgentsPackage
--R
--E 881

--S 882 of 3320
)d op expextendedint
--R 
--R
--RThere is one unexposed function called expextendedint :
--R   [1] (Fraction(D6),(D6 -> D6),((Integer,D5) -> Record(ans: D5,right: 
--R            D5,sol?: Boolean)),Fraction(D6)) -> Union(Record(answer: Fraction
--R            (D6),a0: D5),Record(ratpart: Fraction(D6),coeff: Fraction(D6)),
--R            "failed")
--R             from TranscendentalIntegration(D5,D6)
--R             if D5 has FIELD and D6 has UPOLYC(D5)
--R
--RExamples of expextendedint from TranscendentalIntegration
--R
--E 882

--S 883 of 3320
)d op expIfCan
--R 
--R
--RThere is one exposed function called expIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of expIfCan from PartialTranscendentalFunctions
--R
--E 883

--S 884 of 3320
)d op expint
--R 
--R
--RThere is one unexposed function called expint :
--R   [1] (D1,Symbol) -> D1 from ODEIntegration(D3,D1)
--R             if D3 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D1 has Join(
--R            AlgebraicallyClosedFunctionSpace(D3),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory)
--R         
--R
--RExamples of expint from ODEIntegration
--R
--E 884

--S 885 of 3320
)d op expintegrate
--R 
--R
--RThere is one unexposed function called expintegrate :
--R   [1] (Fraction(D6),(D6 -> D6),((Integer,D5) -> Record(ans: D5,right: 
--R            D5,sol?: Boolean))) -> Record(answer: IntegrationResult(Fraction(
--R            D6)),a0: D5)
--R             from TranscendentalIntegration(D5,D6)
--R             if D5 has FIELD and D6 has UPOLYC(D5)
--R
--RExamples of expintegrate from TranscendentalIntegration
--R
--E 885

--S 886 of 3320
)d op expintfldpoly
--R 
--R
--RThere is one unexposed function called expintfldpoly :
--R   [1] (LaurentPolynomial(D3,D4),((Integer,D3) -> Record(ans: D3,right
--R            : D3,sol?: Boolean))) -> Union(LaurentPolynomial(D3,D4),"failed")
--R             from TranscendentalIntegration(D3,D4)
--R             if D3 has FIELD and D4 has UPOLYC(D3)
--R
--RExamples of expintfldpoly from TranscendentalIntegration
--R
--E 886

--S 887 of 3320 done
)d op explicitEntries?
--R 
--R
--RThere is one exposed function called explicitEntries? :
--R   [1] D -> Boolean from D if D has LZSTAGG(D2) and D2 has TYPE
--R
--RExamples of explicitEntries? from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--RexplicitEntries? m
--R
--E 887

--S 888 of 3320 done
)d op explicitlyEmpty?
--R 
--R
--RThere is one exposed function called explicitlyEmpty? :
--R   [1] D -> Boolean from D if D has LZSTAGG(D2) and D2 has TYPE
--R
--RExamples of explicitlyEmpty? from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--RexplicitlyEmpty? m
--R
--E 888

--S 889 of 3320
)d op explicitlyFinite?
--R 
--R
--RThere is one exposed function called explicitlyFinite? :
--R   [1] D -> Boolean from D if D has STAGG(D2) and D2 has TYPE
--R
--RExamples of explicitlyFinite? from StreamAggregate
--R
--E 889

--S 890 of 3320
)d op explimitedint
--R 
--R
--RThere is one unexposed function called explimitedint :
--R   [1] (Fraction(D7),(D7 -> D7),((Integer,D6) -> Record(ans: D6,right: 
--R            D6,sol?: Boolean)),List(Fraction(D7))) -> Union(Record(answer: 
--R            Record(mainpart: Fraction(D7),limitedlogs: List(Record(coeff: 
--R            Fraction(D7),logand: Fraction(D7)))),a0: D6),"failed")
--R             from TranscendentalIntegration(D6,D7)
--R             if D6 has FIELD and D7 has UPOLYC(D6)
--R
--RExamples of explimitedint from TranscendentalIntegration
--R
--E 890

--S 891 of 3320
)d op explogs2trigs
--R 
--R
--RThere is one unexposed function called explogs2trigs :
--R   [1] D2 -> Complex(D4) from InnerTrigonometricManipulations(D3,D4,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet) and D4 has Join(
--R            FunctionSpace(D3),RadicalCategory,
--R            TranscendentalFunctionCategory) and D2 has Join(
--R            FunctionSpace(Complex(D3)),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of explogs2trigs from InnerTrigonometricManipulations
--R
--E 891

--S 892 of 3320
)d op exponent
--R 
--R
--RThere are 3 exposed functions called exponent :
--R   [1] D -> Integer from D if D has FPS
--R   [2] Factored(D2) -> Integer from Factored(D2) if D2 has INTDOM
--R   [3] MachineFloat -> Integer from MachineFloat
--R
--RThere are 2 unexposed functions called exponent :
--R   [1] ExponentialOfUnivariatePuiseuxSeries(D2,D3,D4) -> 
--R            UnivariatePuiseuxSeries(D2,D3,D4)
--R             from ExponentialOfUnivariatePuiseuxSeries(D2,D3,D4)
--R             if D2 has Join(Field,OrderedSet) and D3: SYMBOL and D4: D2
--R            
--R   [2] ModuleMonomial(D2,D1,D3) -> D1 from ModuleMonomial(D2,D1,D3)
--R             if D1 has SETCAT and D2 has ORDSET and D3: ((Record(index
--R            : D2,exponent: D1),Record(index: D2,exponent: D1)) -> 
--R            Boolean)
--R
--RExamples of exponent from ExponentialOfUnivariatePuiseuxSeries
--R
--R
--RExamples of exponent from FloatingPointSystem
--R
--R
--RExamples of exponent from Factored
--R
--Rf:=nilFactor(y-x,3) 
--Rexponent(f)
--R
--R
--RExamples of exponent from MachineFloat
--R
--R
--RExamples of exponent from ModuleMonomial
--R
--E 892

--S 893 of 3320
)d op exponential
--R 
--R
--RThere are 2 unexposed functions called exponential :
--R   [1] UnivariatePuiseuxSeries(D2,D3,D4) -> 
--R            ExponentialOfUnivariatePuiseuxSeries(D2,D3,D4)
--R             from ExponentialOfUnivariatePuiseuxSeries(D2,D3,D4)
--R             if D2 has Join(Field,OrderedSet) and D3: SYMBOL and D4: D2
--R            
--R   [2] Float -> (() -> Float) from RandomFloatDistributions
--R
--RExamples of exponential from ExponentialOfUnivariatePuiseuxSeries
--R
--R
--RExamples of exponential from RandomFloatDistributions
--R
--E 893

--S 894 of 3320
)d op exponential1
--R 
--R
--RThere is one unexposed function called exponential1 :
--R   [1]  -> Float from RandomFloatDistributions
--R
--RExamples of exponential1 from RandomFloatDistributions
--R
--E 894

--S 895 of 3320
)d op exponentialOrder
--R 
--R
--RThere is one unexposed function called exponentialOrder :
--R   [1] ExponentialOfUnivariatePuiseuxSeries(D2,D3,D4) -> Fraction(
--R            Integer)
--R             from ExponentialOfUnivariatePuiseuxSeries(D2,D3,D4)
--R             if D2 has Join(Field,OrderedSet) and D3: SYMBOL and D4: D2
--R            
--R
--RExamples of exponentialOrder from ExponentialOfUnivariatePuiseuxSeries
--R
--E 895

--S 896 of 3320
)d op exponents
--R 
--R
--RThere is one unexposed function called exponents :
--R   [1] ExtAlgBasis -> List(Integer) from ExtAlgBasis
--R
--RExamples of exponents from ExtAlgBasis
--R
--E 896

--S 897 of 3320
)d op expPot
--R 
--R
--RThere is one unexposed function called expPot :
--R   [1] (Vector(D3),SingleInteger,SingleInteger) -> Vector(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of expPot from InnerNormalBasisFieldFunctions
--R
--E 897

--S 898 of 3320
)d op expr
--R 
--R
--RThere is one exposed function called expr :
--R   [1] D -> D1 from D
--R             if D has SEXCAT(D2,D3,D4,D5,D1) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D1 has 
--R            SETCAT
--R
--RExamples of expr from SExpressionCategory
--R
--E 898

--S 899 of 3320
)d op expressIdealMember
--R 
--R
--RThere is one exposed function called expressIdealMember :
--R   [1] (List(D),D) -> Union(List(D),"failed") from D if D has PID
--R
--RExamples of expressIdealMember from PrincipalIdealDomain
--R
--E 899

--S 900 of 3320
)d op exprex
--R 
--R
--RThere are 2 exposed functions called exprex :
--R   [1] OutputForm -> String from HTMLFormat
--R   [2] OutputForm -> String from MathMLFormat
--R
--RExamples of exprex from HTMLFormat
--R
--Rexprex(sqrt(3+x)::OutputForm)$HTMLFORM
--R
--R
--RExamples of exprex from MathMLFormat
--R
--E 900

--S 901 of 3320
)d op exprHasAlgebraicWeight
--R 
--R
--RThere is one exposed function called exprHasAlgebraicWeight :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Union(List(DoubleFloat),"failed")
--R             from d01WeightsPackage
--R
--RExamples of exprHasAlgebraicWeight from d01WeightsPackage
--R
--E 901

--S 902 of 3320
)d op exprHasLogarithmicWeights
--R 
--R
--RThere is one exposed function called exprHasLogarithmicWeights :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Integer
--R             from d01WeightsPackage
--R
--RExamples of exprHasLogarithmicWeights from d01WeightsPackage
--R
--E 902

--S 903 of 3320
)d op exprHasWeightCosWXorSinWX
--R 
--R
--RThere is one exposed function called exprHasWeightCosWXorSinWX :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Union(Record(op: BasicOperator,w: DoubleFloat),
--R            "failed")
--R             from d01WeightsPackage
--R
--RExamples of exprHasWeightCosWXorSinWX from d01WeightsPackage
--R
--E 903

--S 904 of 3320
)d op exprToGenUPS
--R 
--R
--RThere is one unexposed function called exprToGenUPS :
--R   [1] (D3,Boolean,String) -> Union(%series: D8,%problem: Record(func: 
--R            String,prob: String))
--R             from FunctionSpaceToUnivariatePowerSeries(D6,D3,D7,D8,D9,
--R            D1)
--R             if D6 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D3 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D6))with
--R               coerce : D7 -> %and D7 has ORDRING and D8 has Join(
--R            UnivariatePowerSeriesCategory(D3,D7),Field,
--R            TranscendentalFunctionCategory)with
--R               differentiate : % -> %
--R               integrate : % -> %and D9 has PTRANFN(D8) and D1: 
--R            SYMBOL
--R
--RExamples of exprToGenUPS from FunctionSpaceToUnivariatePowerSeries
--R
--E 904

--S 905 of 3320
)d op exprToUPS
--R 
--R
--RThere is one unexposed function called exprToUPS :
--R   [1] (D3,Boolean,String) -> Union(%series: D8,%problem: Record(func: 
--R            String,prob: String))
--R             from FunctionSpaceToUnivariatePowerSeries(D6,D3,D7,D8,D9,
--R            D1)
--R             if D6 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D3 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D6))with
--R               coerce : D7 -> %and D7 has ORDRING and D8 has Join(
--R            UnivariatePowerSeriesCategory(D3,D7),Field,
--R            TranscendentalFunctionCategory)with
--R               differentiate : % -> %
--R               integrate : % -> %and D9 has PTRANFN(D8) and D1: 
--R            SYMBOL
--R
--RExamples of exprToUPS from FunctionSpaceToUnivariatePowerSeries
--R
--E 905

--S 906 of 3320
)d op exprToXXP
--R 
--R
--RThere is one unexposed function called exprToXXP :
--R   [1] (D2,Boolean) -> Union(%expansion: ExponentialExpansion(D4,D2,D5,
--R            D6),%problem: Record(func: String,prob: String))
--R             from FunctionSpaceToExponentialExpansion(D4,D2,D5,D6)
--R             if D4 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4)) and D5: SYMBOL and D6: D2
--R
--RExamples of exprToXXP from FunctionSpaceToExponentialExpansion
--R
--E 906

--S 907 of 3320
)d op expt
--R 
--R
--RThere is one unexposed function called expt :
--R   [1] (D1,PositiveInteger) -> D1 from RepeatedSquaring(D1)
--R             if D1 has SetCategorywith
--R               ?*? : (%,%) -> %
--R
--RExamples of expt from RepeatedSquaring
--R
--E 907

--S 908 of 3320
)d op exptMod
--R 
--R
--RThere are 2 exposed functions called exptMod :
--R   [1] (D1,NonNegativeInteger,D1) -> D1 from DistinctDegreeFactorize(D3
--R            ,D1)
--R             if D3 has FFIELDC and D1 has UPOLYC(D3)
--R   [2] (D1,Integer,D1,Integer) -> D1 from 
--R            ModularDistinctDegreeFactorizer(D1)
--R             if D1 has UPOLYC(INT)
--R
--RExamples of exptMod from DistinctDegreeFactorize
--R
--R
--RExamples of exptMod from ModularDistinctDegreeFactorizer
--R
--E 908

--S 909 of 3320
)d op exquo
--R 
--R
--RThere are 7 exposed functions called exquo :
--R   [1] (D,D1) -> Union(D,"failed") from D
--R             if D has COMPCAT(D1) and D1 has COMRING and D1 has INTDOM
--R            
--R   [2] (D,D1) -> Union(D,"failed") from D
--R             if D has FAMR(D1,D2) and D1 has RING and D2 has OAMON and 
--R            D1 has INTDOM
--R   [3] (D,D) -> Union(D,"failed") from D if D has INTDOM
--R   [4] (D,D1) -> Union(D,"failed") from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1) and D1 has INTDOM
--R   [5] (NonNegativeInteger,NonNegativeInteger) -> Union(
--R            NonNegativeInteger,"failed")
--R             from NonNegativeInteger
--R   [6] (D,D1) -> Union(D,"failed") from D
--R             if D has OREPCAT(D1) and D1 has RING and D1 has INTDOM
--R   [7] (D,D1) -> Union(D,"failed") from D
--R             if D has RMATCAT(D2,D3,D1,D4,D5) and D1 has RING and D4
--R             has DIRPCAT(D3,D1) and D5 has DIRPCAT(D2,D1) and D1 has 
--R            INTDOM
--R
--RThere are 3 unexposed functions called exquo :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [2] (Vector(D3),D2) -> Vector(D3) from PseudoRemainderSequence(D2,D3
--R            )
--R             if D3 has UPOLYC(D2) and D2 has INTDOM
--R   [3] (Stream(D2),Stream(D2)) -> Union(Stream(D2),"failed")
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R
--RExamples of exquo from ComplexCategory
--R
--R
--RExamples of exquo from FiniteAbelianMonoidRing
--R
--R
--RExamples of exquo from IntegralDomain
--R
--R
--RExamples of exquo from MatrixCategory
--R
--Rm:=matrix [[2**i for i in 2..4] for j in 1..5] 
--Rexquo(m,2)
--R
--R
--RExamples of exquo from NonNegativeInteger
--R
--R
--RExamples of exquo from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of exquo from OutputForm
--R
--R
--RExamples of exquo from PseudoRemainderSequence
--R
--R
--RExamples of exquo from RectangularMatrixCategory
--R
--R
--RExamples of exquo from StreamTaylorSeriesOperations
--R
--E 909

--S 910 of 3320
)d op exQuo
--R 
--R
--RThere are 3 unexposed functions called exQuo :
--R   [1] (EuclideanModularRing(D1,D2,D3,D4,D5,D6),EuclideanModularRing(D1
--R            ,D2,D3,D4,D5,D6)) -> Union(EuclideanModularRing(D1,D2,D3,D4,D5,D6
--R            ),"failed")
--R             from EuclideanModularRing(D1,D2,D3,D4,D5,D6)
--R             if D1 has COMRING and D2 has UPOLYC(D1) and D3 has ABELMON
--R            and D4: ((D2,D3) -> D2) and D5: ((D3,D3) -> Union(D3,
--R            "failed")) and D6: ((D2,D2,D3) -> Union(D2,"failed"))
--R   [2] (ModularField(D1,D2,D3,D4,D5),ModularField(D1,D2,D3,D4,D5)) -> 
--R            Union(ModularField(D1,D2,D3,D4,D5),"failed")
--R             from ModularField(D1,D2,D3,D4,D5)
--R             if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) -> 
--R            D1) and D4: ((D2,D2) -> Union(D2,"failed")) and D5: ((D1,D1
--R            ,D2) -> Union(D1,"failed"))
--R   [3] (ModularRing(D1,D2,D3,D4,D5),ModularRing(D1,D2,D3,D4,D5)) -> 
--R            Union(ModularRing(D1,D2,D3,D4,D5),"failed")
--R             from ModularRing(D1,D2,D3,D4,D5)
--R             if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) -> 
--R            D1) and D4: ((D2,D2) -> Union(D2,"failed")) and D5: ((D1,D1
--R            ,D2) -> Union(D1,"failed"))
--R
--RExamples of exQuo from EuclideanModularRing
--R
--R
--RExamples of exQuo from ModularField
--R
--R
--RExamples of exQuo from ModularRing
--R
--E 910

--S 911 of 3320
)d op extDegree
--R 
--R
--RThere is one exposed function called extDegree :
--R   [1] D -> PositiveInteger from D if D has PACPERC
--R
--RExamples of extDegree from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--E 911

--S 912 of 3320
)d op extend
--R 
--R
--RThere are 11 exposed functions called extend :
--R   [1] (ContinuedFraction(D2),Integer) -> ContinuedFraction(D2)
--R             from ContinuedFraction(D2) if D2 has EUCDOM
--R   [2] (D,Integer) -> D from D if D has LZSTAGG(D2) and D2 has TYPE
--R   [3] (D,NonNegativeInteger) -> D from D
--R             if D has MTSCAT(D2,D3) and D2 has RING and D3 has ORDSET
--R         
--R   [4] (D,Integer) -> D from D if D has PADICCT(D2)
--R   [5] (D,List(D2)) -> D from D if D has PTCAT(D2) and D2 has RING
--R   [6] (List(D6),List(D)) -> List(D) from D
--R             if D has RSETCAT(D3,D4,D5,D6) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D6 has RPOLCAT(D3,D4,D5)
--R            
--R   [7] (List(D6),D) -> List(D) from D
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D has RSETCAT(D3,D4,D5,D6)
--R   [8] (D2,List(D)) -> List(D) from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R   [9] (D2,D) -> List(D) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R   [10] (D,D1) -> D from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R   [11] (D,D1) -> D from D if D has UPSCAT(D2,D1) and D2 has RING and 
--R            D1 has OAMON
--R
--RExamples of extend from ContinuedFraction
--R
--R
--RExamples of extend from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--RnumberOfComputedEntries m 
--Rextend(m,20) 
--RnumberOfComputedEntries m
--R
--R
--RExamples of extend from MultivariateTaylorSeriesCategory
--R
--R
--RExamples of extend from PAdicIntegerCategory
--R
--R
--RExamples of extend from PointCategory
--R
--R
--RExamples of extend from RegularTriangularSetCategory
--R
--R
--RExamples of extend from TriangularSetCategory
--R
--R
--RExamples of extend from UnivariatePowerSeriesCategory
--R
--E 912

--S 913 of 3320
)d op extendedEuclidean
--R 
--R
--RThere are 2 exposed functions called extendedEuclidean :
--R   [1] (D,D,D) -> Union(Record(coef1: D,coef2: D),"failed") from D if D
--R             has EUCDOM
--R   [2] (D,D) -> Record(coef1: D,coef2: D,generator: D) from D if D has 
--R            EUCDOM
--R
--RExamples of extendedEuclidean from EuclideanDomain
--R
--E 913

--S 914 of 3320
--R------------------- )d op extended_gcd (fix this)
--E 914

--S 915 of 3320
)d op extendedint
--R 
--R
--RThere is one unexposed function called extendedint :
--R   [1] (Fraction(D4),Fraction(D4)) -> Union(Record(ratpart: Fraction(D4
--R            ),coeff: Fraction(D4)),"failed")
--R             from RationalIntegration(D3,D4)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer)) and D4 has UPOLYC(D3)
--R
--RExamples of extendedint from RationalIntegration
--R
--E 915

--S 916 of 3320
)d op extendedIntegrate
--R 
--R
--RThere is one exposed function called extendedIntegrate :
--R   [1] (Fraction(Polynomial(D4)),Symbol,Fraction(Polynomial(D4))) -> 
--R            Union(Record(ratpart: Fraction(Polynomial(D4)),coeff: Fraction(
--R            Polynomial(D4))),"failed")
--R             from RationalFunctionIntegration(D4)
--R             if D4 has Join(IntegralDomain,RetractableTo(Integer),
--R            CharacteristicZero)
--R
--RExamples of extendedIntegrate from RationalFunctionIntegration
--R
--E 916

--S 917 of 3320
)d op extendedResultant
--R 
--R
--RThere is one unexposed function called extendedResultant :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(resultant: D2,coef1: 
--R            NewSparseUnivariatePolynomial(D2),coef2: 
--R            NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has INTDOM 
--R            and D2 has RING
--R
--RExamples of extendedResultant from NewSparseUnivariatePolynomial
--R
--E 917

--S 918 of 3320
)d op extendedSubResultantGcd
--R 
--R
--RThere is one exposed function called extendedSubResultantGcd :
--R   [1] (D,D) -> Record(gcd: D,coef1: D,coef2: D) from D
--R             if D2 has INTDOM and D2 has RING and D3 has OAMONS and D4
--R             has ORDSET and D has RPOLCAT(D2,D3,D4)
--R
--RThere is one unexposed function called extendedSubResultantGcd :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(gcd: NewSparseUnivariatePolynomial(D2),coef1: 
--R            NewSparseUnivariatePolynomial(D2),coef2: 
--R            NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has INTDOM 
--R            and D2 has RING
--R
--RExamples of extendedSubResultantGcd from NewSparseUnivariatePolynomial
--R
--R
--RExamples of extendedSubResultantGcd from RecursivePolynomialCategory
--R
--E 918

--S 919 of 3320
)d op extendIfCan
--R 
--R
--RThere is one exposed function called extendIfCan :
--R   [1] (D,D1) -> Union(D,"failed") from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of extendIfCan from TriangularSetCategory
--R
--E 919

--S 920 of 3320
)d op extension
--R 
--R
--RThere is one exposed function called extension :
--R   [1] D -> String from D if D has FNCAT
--R
--RExamples of extension from FileNameCategory
--R
--E 920

--S 921 of 3320
)d op extensionDegree
--R 
--R
--RThere are 2 exposed functions called extensionDegree :
--R   [1]  -> PositiveInteger from D if D has FAXF(D2) and D2 has FIELD
--R         
--R   [2]  -> OnePointCompletion(PositiveInteger) from D
--R             if D has XF(D2) and D2 has FIELD
--R
--RThere are 2 unexposed functions called extensionDegree :
--R   [1]  -> PositiveInteger from FiniteAlgebraicExtensionField&(D2,D3)
--R             if D3 has FIELD and D2 has FAXF(D3)
--R   [2]  -> OnePointCompletion(PositiveInteger)
--R             from FiniteAlgebraicExtensionField&(D2,D3)
--R             if D3 has FIELD and D2 has FAXF(D3)
--R
--RExamples of extensionDegree from FiniteAlgebraicExtensionField&
--R
--R
--RExamples of extensionDegree from FiniteAlgebraicExtensionField
--R
--R
--RExamples of extensionDegree from ExtensionField
--R
--E 921

--S 922 of 3320 done
)d op exteriorDifferential
--R 
--R
--RThere is one unexposed function called exteriorDifferential :
--R   [1] DeRhamComplex(D1,D2) -> DeRhamComplex(D1,D2) from DeRhamComplex(
--R            D1,D2)
--R             if D1 has Join(Ring,OrderedSet) and D2: LIST(SYMBOL)
--R
--RExamples of exteriorDifferential from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--RR := Expression(Integer) 
--R[dx,dy,dz] := [generator(i)$der for i in 1..3] 
--Rf : R := x**2*y*z-5*x**3*y**2*z**5 
--Rg : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2 
--Rh : R :=x*y*z-2*x**3*y*z**2 
--Ralpha : der := f*dx + g*dy + h*dz 
--RexteriorDifferential alpha
--R
--E 922

--S 923 of 3320
)d op external?
--R 
--R
--RThere is one exposed function called external? :
--R   [1] FortranType -> Boolean from FortranType
--R
--RExamples of external? from FortranType
--R
--E 923

--S 924 of 3320
)d op externalList
--R 
--R
--RThere is one exposed function called externalList :
--R   [1] SymbolTable -> List(Symbol) from SymbolTable
--R
--RExamples of externalList from SymbolTable
--R
--E 924

--S 925 of 3320
)d op extract
--R 
--R
--RThere is one exposed function called extract :
--R   [1] (SparseEchelonMatrix(D2,D3),Integer,Integer) -> 
--R            SparseEchelonMatrix(D2,D3)
--R             from SparseEchelonMatrix(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of extract from SparseEchelonMatrix
--R
--E 925

--S 926 of 3320
)d op extract!
--R 
--R
--RThere are 6 exposed functions called extract! :
--R   [1] ArrayStack(D1) -> D1 from ArrayStack(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has BGAGG(D1) and D1 has TYPE
--R   [3] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [4] Heap(D1) -> D1 from Heap(D1) if D1 has ORDSET
--R   [5] Queue(D1) -> D1 from Queue(D1) if D1 has SETCAT
--R   [6] Stack(D1) -> D1 from Stack(D1) if D1 has SETCAT
--R
--RExamples of extract! from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rextract! a 
--Ra
--R
--R
--RExamples of extract! from BagAggregate
--R
--R
--RExamples of extract! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rextract! a 
--Ra
--R
--R
--RExamples of extract! from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rextract! a 
--Ra
--R
--R
--RExamples of extract! from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rextract! a 
--Ra
--R
--R
--RExamples of extract! from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rextract! a 
--Ra
--R
--E 926

--S 927 of 3320
)d op extractBottom!
--R 
--R
--RThere are 2 exposed functions called extractBottom! :
--R   [1] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has DQAGG(D1) and D1 has TYPE
--R
--RExamples of extractBottom! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--RextractBottom! a 
--Ra
--R
--R
--RExamples of extractBottom! from DequeueAggregate
--R
--E 927

--S 928 of 3320
)d op extractClosed
--R 
--R
--RThere is one unexposed function called extractClosed :
--R   [1] SubSpace(D2,D3) -> Boolean from SubSpace(D2,D3) if D2: PI and D3
--R             has RING
--R
--RExamples of extractClosed from SubSpace
--R
--E 928

--S 929 of 3320
)d op extractIfCan
--R 
--R
--RThere is one unexposed function called extractIfCan :
--R   [1] D2 -> Union(D1,"failed") from TabulatedComputationPackage(D2,D1)
--R             if D1 has SETCAT and D2 has SETCAT
--R
--RExamples of extractIfCan from TabulatedComputationPackage
--R
--E 929

--S 930 of 3320
)d op extractIndex
--R 
--R
--RThere is one unexposed function called extractIndex :
--R   [1] SubSpace(D2,D3) -> NonNegativeInteger from SubSpace(D2,D3)
--R             if D2: PI and D3 has RING
--R
--RExamples of extractIndex from SubSpace
--R
--E 930

--S 931 of 3320
)d op extractPoint
--R 
--R
--RThere is one unexposed function called extractPoint :
--R   [1] SubSpace(D2,D3) -> Point(D3) from SubSpace(D2,D3) if D2: PI and 
--R            D3 has RING
--R
--RExamples of extractPoint from SubSpace
--R
--E 931

--S 932 of 3320
)d op extractProperty
--R 
--R
--RThere is one unexposed function called extractProperty :
--R   [1] SubSpace(D2,D3) -> SubSpaceComponentProperty from SubSpace(D2,D3
--R            )
--R             if D2: PI and D3 has RING
--R
--RExamples of extractProperty from SubSpace
--R
--E 932

--S 933 of 3320
)d op extractSplittingLeaf
--R 
--R
--RThere is one unexposed function called extractSplittingLeaf :
--R   [1] SplittingTree(D1,D2) -> Union(SplittingTree(D1,D2),"failed")
--R             from SplittingTree(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of extractSplittingLeaf from SplittingTree
--R
--E 933

--S 934 of 3320
)d op extractTop!
--R 
--R
--RThere are 2 exposed functions called extractTop! :
--R   [1] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has DQAGG(D1) and D1 has TYPE
--R
--RExamples of extractTop! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--RextractTop! a 
--Ra
--R
--R
--RExamples of extractTop! from DequeueAggregate
--R
--E 934

--S 935 of 3320
)d op eyeDistance
--R 
--R
--RThere is one exposed function called eyeDistance :
--R   [1] (ThreeDimensionalViewport,Float) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of eyeDistance from ThreeDimensionalViewport
--R
--E 935

--S 936 of 3320
)d op F
--R 
--R
--RThere is one unexposed function called F :
--R   [1] (NonNegativeInteger,NonNegativeInteger) -> (() -> Float)
--R             from RandomFloatDistributions
--R
--RExamples of F from RandomFloatDistributions
--R
--E 936

--S 937 of 3320
)d op f01brf
--R 
--R
--RThere is one exposed function called f01brf :
--R   [1] (Integer,Integer,Integer,Integer,DoubleFloat,Boolean,Boolean,
--R            List(Boolean),Matrix(DoubleFloat),Matrix(Integer),Matrix(Integer)
--R            ,Integer) -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01brf from NagMatrixOperationsPackage
--R
--E 937

--S 938 of 3320
)d op f01bsf
--R 
--R
--RThere is one exposed function called f01bsf :
--R   [1] (Integer,Integer,Integer,Matrix(Integer),Matrix(Integer),Matrix(
--R            Integer),Matrix(Integer),Boolean,DoubleFloat,Boolean,Matrix(
--R            Integer),Matrix(DoubleFloat),Integer) -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01bsf from NagMatrixOperationsPackage
--R
--E 938

--S 939 of 3320
)d op f01maf
--R 
--R
--RThere is one exposed function called f01maf :
--R   [1] (Integer,Integer,Integer,Integer,List(Boolean),Matrix(
--R            DoubleFloat),Matrix(Integer),Matrix(Integer),DoubleFloat,
--R            DoubleFloat,Integer) -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01maf from NagMatrixOperationsPackage
--R
--E 939

--S 940 of 3320
)d op f01mcf
--R 
--R
--RThere is one exposed function called f01mcf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer,Matrix(Integer),Integer)
--R             -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01mcf from NagMatrixOperationsPackage
--R
--E 940

--S 941 of 3320
)d op f01qcf
--R 
--R
--RThere is one exposed function called f01qcf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01qcf from NagMatrixOperationsPackage
--R
--E 941

--S 942 of 3320
)d op f01qdf
--R 
--R
--RThere is one exposed function called f01qdf :
--R   [1] (String,String,Integer,Integer,Matrix(DoubleFloat),Integer,
--R            Matrix(DoubleFloat),Integer,Integer,Matrix(DoubleFloat),Integer)
--R             -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01qdf from NagMatrixOperationsPackage
--R
--E 942

--S 943 of 3320
)d op f01qef
--R 
--R
--RThere is one exposed function called f01qef :
--R   [1] (String,Integer,Integer,Integer,Integer,Matrix(DoubleFloat),
--R            Matrix(DoubleFloat),Integer) -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01qef from NagMatrixOperationsPackage
--R
--E 943

--S 944 of 3320
)d op f01rcf
--R 
--R
--RThere is one exposed function called f01rcf :
--R   [1] (Integer,Integer,Integer,Matrix(Complex(DoubleFloat)),Integer)
--R             -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01rcf from NagMatrixOperationsPackage
--R
--E 944

--S 945 of 3320
)d op f01rdf
--R 
--R
--RThere is one exposed function called f01rdf :
--R   [1] (String,String,Integer,Integer,Matrix(Complex(DoubleFloat)),
--R            Integer,Matrix(Complex(DoubleFloat)),Integer,Integer,Matrix(
--R            Complex(DoubleFloat)),Integer) -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01rdf from NagMatrixOperationsPackage
--R
--E 945

--S 946 of 3320
)d op f01ref
--R 
--R
--RThere is one exposed function called f01ref :
--R   [1] (String,Integer,Integer,Integer,Integer,Matrix(Complex(
--R            DoubleFloat)),Matrix(Complex(DoubleFloat)),Integer) -> Result
--R             from NagMatrixOperationsPackage
--R
--RExamples of f01ref from NagMatrixOperationsPackage
--R
--E 946

--S 947 of 3320
)d op f02aaf
--R 
--R
--RThere is one exposed function called f02aaf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02aaf from NagEigenPackage
--R
--E 947

--S 948 of 3320
)d op f02abf
--R 
--R
--RThere is one exposed function called f02abf :
--R   [1] (Matrix(DoubleFloat),Integer,Integer,Integer,Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02abf from NagEigenPackage
--R
--E 948

--S 949 of 3320
)d op f02adf
--R 
--R
--RThere is one exposed function called f02adf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat)
--R            ,Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02adf from NagEigenPackage
--R
--E 949

--S 950 of 3320
)d op f02aef
--R 
--R
--RThere is one exposed function called f02aef :
--R   [1] (Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02aef from NagEigenPackage
--R
--E 950

--S 951 of 3320
)d op f02aff
--R 
--R
--RThere is one exposed function called f02aff :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02aff from NagEigenPackage
--R
--E 951

--S 952 of 3320
)d op f02agf
--R 
--R
--RThere is one exposed function called f02agf :
--R   [1] (Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Integer)
--R             -> Result
--R             from NagEigenPackage
--R
--RExamples of f02agf from NagEigenPackage
--R
--E 952

--S 953 of 3320
)d op f02ajf
--R 
--R
--RThere is one exposed function called f02ajf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat)
--R            ,Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02ajf from NagEigenPackage
--R
--E 953

--S 954 of 3320
)d op f02akf
--R 
--R
--RThere is one exposed function called f02akf :
--R   [1] (Integer,Integer,Integer,Integer,Integer,Matrix(DoubleFloat),
--R            Matrix(DoubleFloat),Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02akf from NagEigenPackage
--R
--E 954

--S 955 of 3320
)d op f02awf
--R 
--R
--RThere is one exposed function called f02awf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat)
--R            ,Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02awf from NagEigenPackage
--R
--E 955

--S 956 of 3320
)d op f02axf
--R 
--R
--RThere is one exposed function called f02axf :
--R   [1] (Matrix(DoubleFloat),Integer,Matrix(DoubleFloat),Integer,Integer
--R            ,Integer,Integer,Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02axf from NagEigenPackage
--R
--E 956

--S 957 of 3320
)d op f02bbf
--R 
--R
--RThere is one exposed function called f02bbf :
--R   [1] (Integer,Integer,DoubleFloat,DoubleFloat,Integer,Integer,Matrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02bbf from NagEigenPackage
--R
--E 957

--S 958 of 3320
)d op f02bjf
--R 
--R
--RThere is one exposed function called f02bjf :
--R   [1] (Integer,Integer,Integer,DoubleFloat,Boolean,Integer,Matrix(
--R            DoubleFloat),Matrix(DoubleFloat),Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02bjf from NagEigenPackage
--R
--E 958

--S 959 of 3320
)d op f02fjf
--R 
--R
--RThere are 2 exposed functions called f02fjf :
--R   [1] (Integer,Integer,DoubleFloat,Integer,Integer,Integer,Integer,
--R            Integer,Integer,Integer,Matrix(DoubleFloat),Integer,Union(fn: 
--R            FileName,fp: Asp27(DOT)),Union(fn: FileName,fp: Asp28(IMAGE)))
--R             -> Result
--R             from NagEigenPackage
--R   [2] (Integer,Integer,DoubleFloat,Integer,Integer,Integer,Integer,
--R            Integer,Integer,Integer,Matrix(DoubleFloat),Integer,Union(fn: 
--R            FileName,fp: Asp27(DOT)),Union(fn: FileName,fp: Asp28(IMAGE)),
--R            FileName) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02fjf from NagEigenPackage
--R
--E 959

--S 960 of 3320
)d op f02wef
--R 
--R
--RThere is one exposed function called f02wef :
--R   [1] (Integer,Integer,Integer,Integer,Integer,Boolean,Integer,Boolean
--R            ,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Integer) -> 
--R            Result
--R             from NagEigenPackage
--R
--RExamples of f02wef from NagEigenPackage
--R
--E 960

--S 961 of 3320
)d op f02xef
--R 
--R
--RThere is one exposed function called f02xef :
--R   [1] (Integer,Integer,Integer,Integer,Integer,Boolean,Integer,Boolean
--R            ,Integer,Matrix(Complex(DoubleFloat)),Matrix(Complex(DoubleFloat)
--R            ),Integer) -> Result
--R             from NagEigenPackage
--R
--RExamples of f02xef from NagEigenPackage
--R
--E 961

--S 962 of 3320
)d op f04adf
--R 
--R
--RThere is one exposed function called f04adf :
--R   [1] (Integer,Matrix(Complex(DoubleFloat)),Integer,Integer,Integer,
--R            Integer,Matrix(Complex(DoubleFloat)),Integer) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04adf from NagLinearEquationSolvingPackage
--R
--E 962

--S 963 of 3320
)d op f04arf
--R 
--R
--RThere is one exposed function called f04arf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer,Matrix(DoubleFloat),Integer
--R            ) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04arf from NagLinearEquationSolvingPackage
--R
--E 963

--S 964 of 3320
)d op f04asf
--R 
--R
--RThere is one exposed function called f04asf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer,Matrix(DoubleFloat),Integer
--R            ) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04asf from NagLinearEquationSolvingPackage
--R
--E 964

--S 965 of 3320
)d op f04atf
--R 
--R
--RThere is one exposed function called f04atf :
--R   [1] (Matrix(DoubleFloat),Integer,Matrix(DoubleFloat),Integer,Integer
--R            ,Integer) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04atf from NagLinearEquationSolvingPackage
--R
--E 965

--S 966 of 3320
)d op f04axf
--R 
--R
--RThere is one exposed function called f04axf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer,Matrix(Integer),Matrix(
--R            Integer),Integer,Matrix(Integer),Matrix(DoubleFloat)) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04axf from NagLinearEquationSolvingPackage
--R
--E 966

--S 967 of 3320
)d op f04faf
--R 
--R
--RThere is one exposed function called f04faf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            DoubleFloat),Integer) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04faf from NagLinearEquationSolvingPackage
--R
--E 967

--S 968 of 3320
)d op f04jgf
--R 
--R
--RThere is one exposed function called f04jgf :
--R   [1] (Integer,Integer,Integer,DoubleFloat,Integer,Matrix(DoubleFloat)
--R            ,Matrix(DoubleFloat),Integer) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04jgf from NagLinearEquationSolvingPackage
--R
--E 968

--S 969 of 3320
)d op f04maf
--R 
--R
--RThere is one exposed function called f04maf :
--R   [1] (Integer,Integer,Matrix(DoubleFloat),Integer,Matrix(Integer),
--R            Integer,Matrix(Integer),Matrix(DoubleFloat),Matrix(Integer),
--R            Matrix(Integer),Matrix(DoubleFloat),Matrix(DoubleFloat),Matrix(
--R            Integer),Integer) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04maf from NagLinearEquationSolvingPackage
--R
--E 969

--S 970 of 3320
)d op f04mbf
--R 
--R
--RThere is one exposed function called f04mbf :
--R   [1] (Integer,Matrix(DoubleFloat),Boolean,DoubleFloat,Integer,Integer
--R            ,Integer,Integer,DoubleFloat,Integer,Union(fn: FileName,fp: Asp28
--R            (APROD)),Union(fn: FileName,fp: Asp34(MSOLVE))) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04mbf from NagLinearEquationSolvingPackage
--R
--E 970

--S 971 of 3320
)d op f04mcf
--R 
--R
--RThere is one exposed function called f04mcf :
--R   [1] (Integer,Matrix(DoubleFloat),Integer,Matrix(DoubleFloat),Matrix(
--R            Integer),Integer,Matrix(DoubleFloat),Integer,Integer,Integer,
--R            Integer) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04mcf from NagLinearEquationSolvingPackage
--R
--E 971

--S 972 of 3320
)d op f04qaf
--R 
--R
--RThere is one exposed function called f04qaf :
--R   [1] (Integer,Integer,DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat
--R            ,Integer,Integer,Integer,Integer,Matrix(DoubleFloat),Integer,
--R            Union(fn: FileName,fp: Asp30(APROD))) -> Result
--R             from NagLinearEquationSolvingPackage
--R
--RExamples of f04qaf from NagLinearEquationSolvingPackage
--R
--E 972

--S 973 of 3320
)d op f07adf
--R 
--R
--RThere is one exposed function called f07adf :
--R   [1] (Integer,Integer,Integer,Matrix(DoubleFloat)) -> Result from 
--R            NagLapack
--R
--RExamples of f07adf from NagLapack
--R
--E 973

--S 974 of 3320
)d op f07aef
--R 
--R
--RThere is one exposed function called f07aef :
--R   [1] (String,Integer,Integer,Matrix(DoubleFloat),Integer,Matrix(
--R            Integer),Integer,Matrix(DoubleFloat)) -> Result
--R             from NagLapack
--R
--RExamples of f07aef from NagLapack
--R
--E 974

--S 975 of 3320
)d op f07fdf
--R 
--R
--RThere is one exposed function called f07fdf :
--R   [1] (String,Integer,Integer,Matrix(DoubleFloat)) -> Result from 
--R            NagLapack
--R
--RExamples of f07fdf from NagLapack
--R
--E 975

--S 976 of 3320
)d op f07fef
--R 
--R
--RThere is one exposed function called f07fef :
--R   [1] (String,Integer,Integer,Matrix(DoubleFloat),Integer,Integer,
--R            Matrix(DoubleFloat)) -> Result
--R             from NagLapack
--R
--RExamples of f07fef from NagLapack
--R
--E 976

--S 977 of 3320
)d op f2df
--R 
--R
--RThere is one exposed function called f2df :
--R   [1] Float -> DoubleFloat from ExpertSystemToolsPackage
--R
--RExamples of f2df from ExpertSystemToolsPackage
--R
--E 977

--S 978 of 3320
)d op F2EXPRR
--R 
--R
--RThere is one exposed function called F2EXPRR :
--R   [1] D2 -> Expression(Integer) from GuessFiniteFunctions(D2)
--R             if D2 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R
--RExamples of F2EXPRR from GuessFiniteFunctions
--R
--E 978

--S 979 of 3320
)d op F2FG
--R 
--R
--RThere is one unexposed function called F2FG :
--R   [1] D2 -> D1 from InnerTrigonometricManipulations(D3,D2,D1)
--R             if D3 has Join(IntegralDomain,OrderedSet) and D1 has Join(
--R            FunctionSpace(Complex(D3)),RadicalCategory,
--R            TranscendentalFunctionCategory) and D2 has Join(
--R            FunctionSpace(D3),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of F2FG from InnerTrigonometricManipulations
--R
--E 979

--S 980 of 3320
)d op f2st
--R 
--R
--RThere is one exposed function called f2st :
--R   [1] Float -> String from ExpertSystemToolsPackage
--R
--RExamples of f2st from ExpertSystemToolsPackage
--R
--E 980

--S 981 of 3320
)d op factor
--R 
--R
--RThere are 21 exposed functions called factor :
--R   [1] (D2,List(AlgebraicNumber)) -> Factored(D2) from AlgFactor(D2)
--R             if D2 has UPOLYC(AN)
--R   [2] D2 -> Factored(D2) from AlgFactor(D2) if D2 has UPOLYC(AN)
--R   [3] (D2,List(AlgebraicNumber)) -> Factored(D2)
--R             from AlgebraicMultFact(D4,D5,D2)
--R             if D4 has ORDSET and D5 has OAMONS and D2 has POLYCAT(AN,
--R            D5,D4)
--R   [4] (SparseUnivariatePolynomial(D6),List(AlgebraicNumber)) -> 
--R            Factored(SparseUnivariatePolynomial(D6))
--R             from AlgebraicMultFact(D4,D5,D6)
--R             if D4 has ORDSET and D5 has OAMONS and D6 has POLYCAT(AN,
--R            D5,D4)
--R   [5] D2 -> Factored(D2) from ComplexFactorization(D3,D2)
--R             if D3 has EUCDOM and D2 has UPOLYC(COMPLEX(D3))
--R   [6] D2 -> Factored(D2) from DistinctDegreeFactorize(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [7] (SparseUnivariatePolynomial(D3),D3) -> Factored(
--R            SparseUnivariatePolynomial(D3))
--R             from 
--R            FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber
--R            (D3)
--R             if D3 has PACEXTC
--R   [8] (SparseUnivariatePolynomial(D3),D3) -> Factored(
--R            SparseUnivariatePolynomial(D3))
--R             from 
--R            FactorisationOverPseudoAlgebraicClosureOfRationalNumber(D3)
--R             if D3 has PACRATC
--R   [9] D2 -> Factored(D2) from FiniteFieldFactorization(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [10] D2 -> Factored(D2)
--R             from FiniteFieldFactorizationWithSizeParseBySideEffect(D3,
--R            D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [11] Complex(Integer) -> Factored(Complex(Integer))
--R             from GaussianFactorizationPackage
--R   [12] (D2,Integer) -> List(D2) from ModularDistinctDegreeFactorizer(
--R            D2)
--R             if D2 has UPOLYC(INT)
--R   [13] D2 -> Factored(D2) from MultFiniteFactorize(D3,D4,D5,D2)
--R             if D3 has ORDSET and D4 has OAMONS and D5 has FFIELDC and 
--R            D2 has POLYCAT(D5,D4,D3)
--R   [14] SparseUnivariatePolynomial(D6) -> Factored(
--R            SparseUnivariatePolynomial(D6))
--R             from MultFiniteFactorize(D3,D4,D5,D6)
--R             if D3 has ORDSET and D4 has OAMONS and D5 has FFIELDC and 
--R            D6 has POLYCAT(D5,D4,D3)
--R   [15] D2 -> Factored(D2) from MPolyCatRationalFunctionFactorizer(D3,
--R            D4,D5,D2)
--R             if D3 has OAMONS and D4 has OrderedSetwith
--R               convert : % -> Symboland D5 has INTDOM and D2 has 
--R            POLYCAT(FRAC(POLY(D5)),D3,D4)
--R   [16] D2 -> Factored(D2) from MultivariateFactorize(D3,D4,D5,D2)
--R             if D3 has ORDSET and D4 has OAMONS and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D2 has POLYCAT(D5,
--R            D4,D3)
--R   [17] SparseUnivariatePolynomial(D6) -> Factored(
--R            SparseUnivariatePolynomial(D6))
--R             from MultivariateFactorize(D3,D4,D5,D6)
--R             if D3 has ORDSET and D4 has OAMONS and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D6 has POLYCAT(D5,
--R            D4,D3)
--R   [18] D2 -> Factored(D2) from RationalFunctionFactor(D2)
--R             if D2 has UPOLYC(FRAC(POLY(INT)))
--R   [19] D2 -> Factored(D2) from SimpleAlgebraicExtensionAlgFactor(D3,D4
--R            ,D2)
--R             if D3 has UPOLYC(FRAC(INT)) and D4 has Join(Field,
--R            CharacteristicZero,MonogenicAlgebra(Fraction(Integer),D3)) 
--R            and D2 has UPOLYC(D4)
--R   [20] D2 -> Factored(D2) from SAERationalFunctionAlgFactor(D3,D4,D2)
--R             if D3 has UPOLYC(FRAC(POLY(INT))) and D4 has Join(Field,
--R            CharacteristicZero,MonogenicAlgebra(Fraction(Polynomial(
--R            Integer)),D3)) and D2 has UPOLYC(D4)
--R   [21] D -> Factored(D) from D if D has UFD
--R
--RThere are 22 unexposed functions called factor :
--R   [1] (D2,D3,Boolean) -> Factored(D2) from ComplexRootFindingPackage(
--R            D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R   [2] (D2,D3) -> Factored(D2) from ComplexRootFindingPackage(D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R   [3] D2 -> Factored(D2) from ComplexRootFindingPackage(D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R   [4] D2 -> Factored(D2) from GaloisGroupFactorizer(D2) if D2 has 
--R            UPOLYC(INT)
--R   [5] (D2,NonNegativeInteger) -> Factored(D2) from 
--R            GaloisGroupFactorizer(D2)
--R             if D2 has UPOLYC(INT)
--R   [6] (D2,List(NonNegativeInteger)) -> Factored(D2)
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R   [7] (D2,List(NonNegativeInteger),NonNegativeInteger) -> Factored(D2)
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R   [8] (D2,NonNegativeInteger,NonNegativeInteger) -> Factored(D2)
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R   [9] D2 -> Factored(D2) from GeneralizedMultivariateFactorize(D3,D4,
--R            D5,D6,D2)
--R             if D3 has OrderedSetwith
--R               convert : % -> Symbol
--R               variable : Symbol -> Union(%,"failed")and D4 has 
--R            OAMONS and D6 has INTDOM and D5 has INTDOM and D2 has 
--R            POLYCAT(D6,D4,D3)
--R   [10] SparseUnivariatePolynomial(D3) -> Factored(
--R            SparseUnivariatePolynomial(D3))
--R             from GenUFactorize(D3) if D3 has EUCDOM
--R   [11] (D2,(D5 -> Factored(D5))) -> Factored(D2)
--R             from InnerAlgFactor(D4,D5,D6,D2)
--R             if D5 has UPOLYC(D4) and D4 has FIELD and D6 has Join(
--R            Field,CharacteristicZero,MonogenicAlgebra(D4,D5)) and D2
--R             has UPOLYC(D6)
--R   [12] (D2,(SparseUnivariatePolynomial(D6) -> Factored(
--R            SparseUnivariatePolynomial(D6)))) -> Factored(D2)
--R             from InnerMultFact(D4,D5,D6,D2)
--R             if D6 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has ORDSET and D5 has OAMONS and D2 has POLYCAT(D6,D5,D4)
--R            
--R   [13] (SparseUnivariatePolynomial(D7),(SparseUnivariatePolynomial(D6)
--R             -> Factored(SparseUnivariatePolynomial(D6)))) -> Factored(
--R            SparseUnivariatePolynomial(D7))
--R             from InnerMultFact(D4,D5,D6,D7)
--R             if D6 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has ORDSET and D5 has OAMONS and D7 has POLYCAT(D6,D5,D4)
--R            
--R   [14] D2 -> Factored(D2) from IntegerFactorizationPackage(D2) if D2
--R             has INS
--R   [15] (LinearOrdinaryDifferentialOperator1(Fraction(D5)),(D5 -> List(
--R            D4))) -> List(LinearOrdinaryDifferentialOperator1(Fraction(D5)))
--R             from LinearOrdinaryDifferentialOperatorFactorizer(D4,D5)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer),RetractableTo(Fraction(Integer))) and D5 has 
--R            UPOLYC(D4)
--R   [16] LinearOrdinaryDifferentialOperator1(Fraction(D4)) -> List(
--R            LinearOrdinaryDifferentialOperator1(Fraction(D4)))
--R             from LinearOrdinaryDifferentialOperatorFactorizer(D3,D4)
--R             if D3 has ACF and D3 has Join(Field,CharacteristicZero,
--R            RetractableTo(Integer),RetractableTo(Fraction(Integer))) 
--R            and D4 has UPOLYC(D3)
--R   [17] OrderedFreeMonoid(D3) -> List(LyndonWord(D3)) from LyndonWord(
--R            D3)
--R             if D3 has ORDSET
--R   [18] D2 -> Factored(D2) from MPolyCatPolyFactorizer(D3,D4,D5,D2)
--R             if D3 has OAMONS and D4 has OrderedSetwith
--R               convert : % -> Symbol
--R               variable : Symbol -> Union(%,"failed")and D5 has 
--R            EUCDOM and D2 has POLYCAT(POLY(D5),D3,D4)
--R   [19] D2 -> Factored(D2) from MRationalFactorize(D3,D4,D5,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D2 has POLYCAT(FRAC
--R            (D5),D3,D4)
--R   [20] D2 -> Factored(D2) from RationalFactorize(D2) if D2 has UPOLYC(
--R            FRAC(INT))
--R   [21] SparseUnivariatePolynomial(Fraction(D6)) -> Factored(
--R            SparseUnivariatePolynomial(Fraction(D6)))
--R             from SupFractionFactorizer(D3,D4,D5,D6)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has GCDDOM and 
--R            D6 has POLYCAT(D5,D3,D4)
--R   [22] D2 -> Factored(D2) from UnivariateFactorize(D2) if D2 has 
--R            UPOLYC(INT)
--R
--RExamples of factor from AlgFactor
--R
--R
--RExamples of factor from AlgebraicMultFact
--R
--R
--RExamples of factor from ComplexFactorization
--R
--R
--RExamples of factor from ComplexRootFindingPackage
--R
--R
--RExamples of factor from DistinctDegreeFactorize
--R
--R
--RExamples of factor from FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber
--R
--R
--RExamples of factor from FactorisationOverPseudoAlgebraicClosureOfRationalNumber
--R
--R
--RExamples of factor from FiniteFieldFactorization
--R
--R
--RExamples of factor from FiniteFieldFactorizationWithSizeParseBySideEffect
--R
--R
--RExamples of factor from GaloisGroupFactorizer
--R
--R
--RExamples of factor from GaussianFactorizationPackage
--R
--R
--RExamples of factor from GeneralizedMultivariateFactorize
--R
--R
--RExamples of factor from GenUFactorize
--R
--R
--RExamples of factor from InnerAlgFactor
--R
--R
--RExamples of factor from InnerMultFact
--R
--R
--RExamples of factor from IntegerFactorizationPackage
--R
--R
--RExamples of factor from LinearOrdinaryDifferentialOperatorFactorizer
--R
--R
--RExamples of factor from LyndonWord
--R
--R
--RExamples of factor from ModularDistinctDegreeFactorizer
--R
--R
--RExamples of factor from MultFiniteFactorize
--R
--R
--RExamples of factor from MPolyCatPolyFactorizer
--R
--R
--RExamples of factor from MPolyCatRationalFunctionFactorizer
--R
--R
--RExamples of factor from MRationalFactorize
--R
--R
--RExamples of factor from MultivariateFactorize
--R
--R
--RExamples of factor from RationalFactorize
--R
--R
--RExamples of factor from RationalFunctionFactor
--R
--R
--RExamples of factor from SimpleAlgebraicExtensionAlgFactor
--R
--R
--RExamples of factor from SAERationalFunctionAlgFactor
--R
--R
--RExamples of factor from SupFractionFactorizer
--R
--R
--RExamples of factor from UniqueFactorizationDomain
--R
--R
--RExamples of factor from UnivariateFactorize
--R
--E 981

--S 982 of 3320
)d op factor1
--R 
--R
--RThere is one unexposed function called factor1 :
--R   [1] LinearOrdinaryDifferentialOperator1(Fraction(D4)) -> List(
--R            LinearOrdinaryDifferentialOperator1(Fraction(D4)))
--R             from LinearOrdinaryDifferentialOperatorFactorizer(D3,D4)
--R             if D3 has ACF and D3 has Join(Field,CharacteristicZero,
--R            RetractableTo(Integer),RetractableTo(Fraction(Integer))) 
--R            and D4 has UPOLYC(D3)
--R
--RExamples of factor1 from LinearOrdinaryDifferentialOperatorFactorizer
--R
--E 982

--S 983 of 3320
)d op factorAndSplit
--R 
--R
--RThere is one exposed function called factorAndSplit :
--R   [1] Equation(D2) -> List(Equation(D2)) from Equation(D2)
--R             if D2 has INTDOM and D2 has TYPE
--R
--RExamples of factorAndSplit from Equation
--R
--E 983

--S 984 of 3320
)d op factorByRecursion
--R 
--R
--RThere are 2 unexposed functions called factorByRecursion :
--R   [1] SparseUnivariatePolynomial(D6) -> Factored(
--R            SparseUnivariatePolynomial(D6))
--R             from PolynomialFactorizationByRecursion(D3,D4,D5,D6)
--R             if D3 has PFECAT and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has POLYCAT(D3,D4,D5)
--R   [2] SparseUnivariatePolynomial(D4) -> Factored(
--R            SparseUnivariatePolynomial(D4))
--R             from PolynomialFactorizationByRecursionUnivariate(D3,D4)
--R             if D3 has PFECAT and D4 has UPOLYC(D3)
--R
--RExamples of factorByRecursion from PolynomialFactorizationByRecursion
--R
--R
--RExamples of factorByRecursion from PolynomialFactorizationByRecursionUnivariate
--R
--E 984

--S 985 of 3320
)d op factorCantorZassenhaus
--R 
--R
--RThere are 2 exposed functions called factorCantorZassenhaus :
--R   [1] (D2,NonNegativeInteger) -> List(D2) from 
--R            FiniteFieldFactorization(D4,D2)
--R             if D4 has FFIELDC and D2 has UPOLYC(D4)
--R   [2] (D2,NonNegativeInteger) -> List(D2)
--R             from FiniteFieldFactorizationWithSizeParseBySideEffect(D4,
--R            D2)
--R             if D4 has FFIELDC and D2 has UPOLYC(D4)
--R
--RExamples of factorCantorZassenhaus from FiniteFieldFactorization
--R
--R
--RExamples of factorCantorZassenhaus from FiniteFieldFactorizationWithSizeParseBySideEffect
--R
--E 985

--S 986 of 3320
)d op factorFraction
--R 
--R
--RThere is one exposed function called factorFraction :
--R   [1] Fraction(Polynomial(D3)) -> Fraction(Factored(Polynomial(D3)))
--R             from RationalFunctionFactorizer(D3) if D3 has EUCDOM
--R
--RExamples of factorFraction from RationalFunctionFactorizer
--R
--E 986

--S 987 of 3320
)d op factorGroebnerBasis
--R 
--R
--RThere are 2 exposed functions called factorGroebnerBasis :
--R   [1] List(D6) -> List(List(D6)) from GroebnerFactorizationPackage(D3,
--R            D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has OAMONS and D5 has ORDSET and D6 has POLYCAT(D3,D4,D5)
--R            
--R   [2] (List(D7),Boolean) -> List(List(D7))
--R             from GroebnerFactorizationPackage(D4,D5,D6,D7)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero) and D5
--R             has OAMONS and D6 has ORDSET and D7 has POLYCAT(D4,D5,D6)
--R            
--R
--RExamples of factorGroebnerBasis from GroebnerFactorizationPackage
--R
--E 987

--S 988 of 3320
)d op factorial
--R 
--R
--RThere are 2 exposed functions called factorial :
--R   [1] D -> D from D if D has CFCAT
--R   [2] D1 -> D1 from IntegerCombinatoricFunctions(D1) if D1 has INS
--R
--RThere is one unexposed function called factorial :
--R   [1] D1 -> D1 from CombinatorialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of factorial from CombinatorialFunctionCategory
--R
--R
--RExamples of factorial from CombinatorialFunction
--R
--R
--RExamples of factorial from IntegerCombinatoricFunctions
--R
--E 988

--S 989 of 3320
)d op factorials
--R 
--R
--RThere are 2 exposed functions called factorials :
--R   [1] (D,Symbol) -> D from D if D has COMBOPC
--R   [2] D -> D from D if D has COMBOPC
--R
--RThere are 2 unexposed functions called factorials :
--R   [1] D1 -> D1 from CombinatorialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R   [2] (D1,Symbol) -> D1 from CombinatorialFunction(D3,D1)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D1 has FS(D3
--R            )
--R
--RExamples of factorials from CombinatorialFunction
--R
--R
--RExamples of factorials from CombinatorialOpsCategory
--R
--E 989

--S 990 of 3320
)d op factorList
--R 
--R
--RThere is one exposed function called factorList :
--R   [1] Factored(D2) -> List(Record(flg: Union("nil","sqfr","irred",
--R            "prime"),fctr: D2,xpnt: Integer))
--R             from Factored(D2) if D2 has INTDOM
--R
--RThere is one unexposed function called factorList :
--R   [1] (D2,NonNegativeInteger,NonNegativeInteger,NonNegativeInteger)
--R             -> List(SparseUnivariatePolynomial(D2))
--R             from ChineseRemainderToolsForIntegralBases(D2,D4,D5)
--R             if D2 has FFIELDC and D4 has UPOLYC(D2) and D5 has UPOLYC(
--R            D4)
--R
--RExamples of factorList from Factored
--R
--Rf:=nilFactor(x-y,3) 
--RfactorList f
--R
--R
--RExamples of factorList from ChineseRemainderToolsForIntegralBases
--R
--E 990

--S 991 of 3320
)d op factorOfDegree
--R 
--R
--RThere are 6 unexposed functions called factorOfDegree :
--R   [1] (PositiveInteger,D1) -> Union(D1,"failed") from 
--R            GaloisGroupFactorizer(D1)
--R             if D1 has UPOLYC(INT)
--R   [2] (PositiveInteger,D1,NonNegativeInteger) -> Union(D1,"failed")
--R             from GaloisGroupFactorizer(D1) if D1 has UPOLYC(INT)
--R   [3] (PositiveInteger,D1,List(NonNegativeInteger)) -> Union(D1,
--R            "failed")
--R             from GaloisGroupFactorizer(D1) if D1 has UPOLYC(INT)
--R   [4] (PositiveInteger,D1,List(NonNegativeInteger),NonNegativeInteger)
--R             -> Union(D1,"failed")
--R             from GaloisGroupFactorizer(D1) if D1 has UPOLYC(INT)
--R   [5] (PositiveInteger,D1,List(NonNegativeInteger),NonNegativeInteger,
--R            Boolean) -> Union(D1,"failed")
--R             from GaloisGroupFactorizer(D1) if D1 has UPOLYC(INT)
--R   [6] (PositiveInteger,Factored(D1)) -> D1
--R             from GaloisGroupPolynomialUtilities(D4,D1)
--R             if D1 has UPOLYC(D4) and D4 has RING
--R
--RExamples of factorOfDegree from GaloisGroupFactorizer
--R
--R
--RExamples of factorOfDegree from GaloisGroupPolynomialUtilities
--R
--E 991

--S 992 of 3320
)d op factorPolynomial
--R 
--R
--RThere are 2 exposed functions called factorPolynomial :
--R   [1] SparseUnivariatePolynomial(Expression(D3)) -> Factored(
--R            SparseUnivariatePolynomial(Expression(D3)))
--R             from Expression(D3) if D3 has GCDDOM and D3 has INTDOM and
--R            D3 has ORDSET
--R   [2] SparseUnivariatePolynomial(D) -> Factored(
--R            SparseUnivariatePolynomial(D))
--R             from D if D has PFECAT
--R
--RExamples of factorPolynomial from Expression
--R
--R
--RExamples of factorPolynomial from PolynomialFactorizationExplicit
--R
--E 992

--S 993 of 3320
)d op factors
--R 
--R
--RThere is one exposed function called factors :
--R   [1] Factored(D2) -> List(Record(factor: D2,exponent: Integer))
--R             from Factored(D2) if D2 has INTDOM
--R
--RThere are 3 unexposed functions called factors :
--R   [1] FreeGroup(D2) -> List(Record(gen: D2,exp: Integer)) from 
--R            FreeGroup(D2)
--R             if D2 has SETCAT
--R   [2] FreeMonoid(D2) -> List(Record(gen: D2,exp: NonNegativeInteger))
--R             from FreeMonoid(D2) if D2 has SETCAT
--R   [3] OrderedFreeMonoid(D2) -> List(Record(gen: D2,exp: 
--R            NonNegativeInteger))
--R             from OrderedFreeMonoid(D2) if D2 has ORDSET
--R
--RExamples of factors from FreeGroup
--R
--R
--RExamples of factors from FreeMonoid
--R
--R
--RExamples of factors from Factored
--R
--Rf:=x*y^3-3*x^2*y^2+3*x^3*y-x^4 
--Rfactors f 
--Rg:=makeFR(z,factorList f) 
--Rfactors g
--R
--R
--RExamples of factors from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rfactors m1
--R
--E 993

--S 994 of 3320
)d op factorset
--R 
--R
--RThere is one unexposed function called factorset :
--R   [1] D2 -> List(D2) from ParametricLinearEquations(D3,D4,D5,D2)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D2 has POLYCAT(D3,D5,D4)
--R
--RExamples of factorset from ParametricLinearEquations
--R
--E 994

--S 995 of 3320
)d op factorSFBRlcUnit
--R 
--R
--RThere are 2 unexposed functions called factorSFBRlcUnit :
--R   [1] (List(D6),SparseUnivariatePolynomial(D7)) -> Factored(
--R            SparseUnivariatePolynomial(D7))
--R             from PolynomialFactorizationByRecursion(D4,D5,D6,D7)
--R             if D6 has ORDSET and D4 has PFECAT and D5 has OAMONS and 
--R            D7 has POLYCAT(D4,D5,D6)
--R   [2] SparseUnivariatePolynomial(D4) -> Factored(
--R            SparseUnivariatePolynomial(D4))
--R             from PolynomialFactorizationByRecursionUnivariate(D3,D4)
--R             if D3 has PFECAT and D4 has UPOLYC(D3)
--R
--RExamples of factorSFBRlcUnit from PolynomialFactorizationByRecursion
--R
--R
--RExamples of factorSFBRlcUnit from PolynomialFactorizationByRecursionUnivariate
--R
--E 995

--S 996 of 3320
)d op factorsOfCyclicGroupSize
--R 
--R
--RThere is one exposed function called factorsOfCyclicGroupSize :
--R   [1]  -> List(Record(factor: Integer,exponent: Integer)) from D if D
--R             has FFIELDC
--R
--RExamples of factorsOfCyclicGroupSize from FiniteFieldCategory
--R
--E 996

--S 997 of 3320
)d op factorsOfDegree
--R 
--R
--RThere is one unexposed function called factorsOfDegree :
--R   [1] (PositiveInteger,Factored(D5)) -> List(D5)
--R             from GaloisGroupPolynomialUtilities(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has RING
--R
--RExamples of factorsOfDegree from GaloisGroupPolynomialUtilities
--R
--E 997

--S 998 of 3320
)d op factorSqFree
--R 
--R
--RThere are 2 exposed functions called factorSqFree :
--R   [1] (SparseUnivariatePolynomial(D3),D3) -> Factored(
--R            SparseUnivariatePolynomial(D3))
--R             from 
--R            FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber
--R            (D3)
--R             if D3 has PACEXTC
--R   [2] (SparseUnivariatePolynomial(D3),D3) -> Factored(
--R            SparseUnivariatePolynomial(D3))
--R             from 
--R            FactorisationOverPseudoAlgebraicClosureOfRationalNumber(D3)
--R             if D3 has PACRATC
--R
--RExamples of factorSqFree from FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber
--R
--R
--RExamples of factorSqFree from FactorisationOverPseudoAlgebraicClosureOfRationalNumber
--R
--E 998

--S 999 of 3320
)d op factorSquareFree
--R 
--R
--RThere are 3 exposed functions called factorSquareFree :
--R   [1] D2 -> Factored(D2) from DistinctDegreeFactorize(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [2] D2 -> List(D2) from FiniteFieldFactorization(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [3] D2 -> List(D2)
--R             from FiniteFieldFactorizationWithSizeParseBySideEffect(D3,
--R            D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R
--RThere are 7 unexposed functions called factorSquareFree :
--R   [1] D2 -> Factored(D2) from GaloisGroupFactorizer(D2) if D2 has 
--R            UPOLYC(INT)
--R   [2] (D2,NonNegativeInteger) -> Factored(D2) from 
--R            GaloisGroupFactorizer(D2)
--R             if D2 has UPOLYC(INT)
--R   [3] (D2,List(NonNegativeInteger)) -> Factored(D2)
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R   [4] (D2,List(NonNegativeInteger),NonNegativeInteger) -> Factored(D2)
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R   [5] (D2,NonNegativeInteger,NonNegativeInteger) -> Factored(D2)
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R   [6] D2 -> Factored(D2) from RationalFactorize(D2) if D2 has UPOLYC(
--R            FRAC(INT))
--R   [7] D2 -> Factored(D2) from UnivariateFactorize(D2) if D2 has UPOLYC
--R            (INT)
--R
--RExamples of factorSquareFree from DistinctDegreeFactorize
--R
--R
--RExamples of factorSquareFree from FiniteFieldFactorization
--R
--R
--RExamples of factorSquareFree from FiniteFieldFactorizationWithSizeParseBySideEffect
--R
--R
--RExamples of factorSquareFree from GaloisGroupFactorizer
--R
--R
--RExamples of factorSquareFree from RationalFactorize
--R
--R
--RExamples of factorSquareFree from UnivariateFactorize
--R
--E 999

--S 1000 of 3320
)d op factorSquareFreeByRecursion
--R 
--R
--RThere are 2 unexposed functions called factorSquareFreeByRecursion :
--R   [1] SparseUnivariatePolynomial(D6) -> Factored(
--R            SparseUnivariatePolynomial(D6))
--R             from PolynomialFactorizationByRecursion(D3,D4,D5,D6)
--R             if D3 has PFECAT and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has POLYCAT(D3,D4,D5)
--R   [2] SparseUnivariatePolynomial(D4) -> Factored(
--R            SparseUnivariatePolynomial(D4))
--R             from PolynomialFactorizationByRecursionUnivariate(D3,D4)
--R             if D3 has PFECAT and D4 has UPOLYC(D3)
--R
--RExamples of factorSquareFreeByRecursion from PolynomialFactorizationByRecursion
--R
--R
--RExamples of factorSquareFreeByRecursion from PolynomialFactorizationByRecursionUnivariate
--R
--E 1000

--S 1001 of 3320
)d op factorSquareFreePolynomial
--R 
--R
--RThere is one exposed function called factorSquareFreePolynomial :
--R   [1] SparseUnivariatePolynomial(D) -> Factored(
--R            SparseUnivariatePolynomial(D))
--R             from D if D has PFECAT
--R
--RExamples of factorSquareFreePolynomial from PolynomialFactorizationExplicit
--R
--E 1001

--S 1002 of 3320
)d op factorUsingMusser
--R 
--R
--RThere are 2 exposed functions called factorUsingMusser :
--R   [1] D2 -> Factored(D2) from FiniteFieldFactorization(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [2] D2 -> Factored(D2)
--R             from FiniteFieldFactorizationWithSizeParseBySideEffect(D3,
--R            D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R
--RExamples of factorUsingMusser from FiniteFieldFactorization
--R
--R
--RExamples of factorUsingMusser from FiniteFieldFactorizationWithSizeParseBySideEffect
--R
--E 1002

--S 1003 of 3320
)d op factorUsingYun
--R 
--R
--RThere are 2 exposed functions called factorUsingYun :
--R   [1] D2 -> Factored(D2) from FiniteFieldFactorization(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [2] D2 -> Factored(D2)
--R             from FiniteFieldFactorizationWithSizeParseBySideEffect(D3,
--R            D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R
--RExamples of factorUsingYun from FiniteFieldFactorization
--R
--R
--RExamples of factorUsingYun from FiniteFieldFactorizationWithSizeParseBySideEffect
--R
--E 1003

--S 1004 of 3320
)d op failed
--R 
--R
--RThere are 2 unexposed functions called failed :
--R   [1]  -> PatternMatchListResult(D1,D2,D3)
--R             from PatternMatchListResult(D1,D2,D3)
--R             if D2 has SETCAT and D1 has SETCAT and D3 has LSAGG(D2)
--R         
--R   [2]  -> PatternMatchResult(D1,D2) from PatternMatchResult(D1,D2)
--R             if D1 has SETCAT and D2 has SETCAT
--R
--RExamples of failed from PatternMatchListResult
--R
--R
--RExamples of failed from PatternMatchResult
--R
--E 1004

--S 1005 of 3320
)d op failed?
--R 
--R
--RThere are 2 unexposed functions called failed? :
--R   [1] PatternMatchListResult(D2,D3,D4) -> Boolean
--R             from PatternMatchListResult(D2,D3,D4)
--R             if D3 has SETCAT and D2 has SETCAT and D4 has LSAGG(D3)
--R         
--R   [2] PatternMatchResult(D2,D3) -> Boolean from PatternMatchResult(D2,
--R            D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of failed? from PatternMatchListResult
--R
--R
--RExamples of failed? from PatternMatchResult
--R
--E 1005

--S 1006 of 3320
)d op false
--R 
--R
--RThere is one exposed function called false :
--R   [1]  -> Boolean from Boolean
--R
--RExamples of false from Boolean
--R
--E 1006

--S 1007 of 3320
)d op ffactor
--R 
--R
--RThere is one unexposed function called ffactor :
--R   [1] D2 -> Factored(D2) from FunctionSpaceUnivariatePolynomialFactor(
--R            D3,D4,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D4 has FS(D3) and D2 has UPOLYC(D4)
--R
--RExamples of ffactor from FunctionSpaceUnivariatePolynomialFactor
--R
--E 1007

--S 1008 of 3320
)d op fffg
--R 
--R
--RThere is one exposed function called fffg :
--R   [1] (List(D5),((NonNegativeInteger,Vector(SparseUnivariatePolynomial
--R            (D5))) -> D5),List(NonNegativeInteger)) -> Matrix(
--R            SparseUnivariatePolynomial(D5))
--R             from FractionFreeFastGaussian(D5,D6)
--R             if D5 has Join(IntegralDomain,GcdDomain) and D6 has AMR(D5
--R            ,NNI)
--R
--RExamples of fffg from FractionFreeFastGaussian
--R
--E 1008

--S 1009 of 3320
)d op FG2F
--R 
--R
--RThere is one unexposed function called FG2F :
--R   [1] D2 -> D1 from InnerTrigonometricManipulations(D3,D1,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet) and D1 has Join(
--R            FunctionSpace(D3),RadicalCategory,
--R            TranscendentalFunctionCategory) and D2 has Join(
--R            FunctionSpace(Complex(D3)),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of FG2F from InnerTrigonometricManipulations
--R
--E 1009

--S 1010 of 3320
)d op fglmIfCan
--R 
--R
--RThere are 2 unexposed functions called fglmIfCan :
--R   [1] List(Polynomial(D2)) -> Union(List(Polynomial(D2)),"failed")
--R             from FGLMIfCanPackage(D2,D3) if D2 has GCDDOM and D3: LIST
--R            (SYMBOL)
--R   [2] List(NewSparseMultivariatePolynomial(D2,OrderedVariableList(D3))
--R            ) -> Union(List(NewSparseMultivariatePolynomial(D2,
--R            OrderedVariableList(D3))),"failed")
--R             from LexTriangularPackage(D2,D3) if D2 has GCDDOM and D3: 
--R            LIST(SYMBOL)
--R
--RExamples of fglmIfCan from FGLMIfCanPackage
--R
--R
--RExamples of fglmIfCan from LexTriangularPackage
--R
--E 1010

--S 1011 of 3320
)d op fi2df
--R 
--R
--RThere is one exposed function called fi2df :
--R   [1] Fraction(Integer) -> DoubleFloat from ExpertSystemToolsPackage
--R         
--R
--RExamples of fi2df from ExpertSystemToolsPackage
--R
--E 1011

--S 1012 of 3320
)d op fibonacci
--R 
--R
--RThere is one exposed function called fibonacci :
--R   [1] Integer -> Integer from IntegerNumberTheoryFunctions
--R
--RExamples of fibonacci from IntegerNumberTheoryFunctions
--R
--E 1012

--S 1013 of 3320
)d op figureUnits
--R 
--R
--RThere is one unexposed function called figureUnits :
--R   [1] List(List(Point(DoubleFloat))) -> List(DoubleFloat) from 
--R            GraphImage
--R
--RExamples of figureUnits from GraphImage
--R
--E 1013

--S 1014 of 3320
)d op filename
--R 
--R
--RThere is one exposed function called filename :
--R   [1] (String,String,String) -> D from D if D has FNCAT
--R
--RExamples of filename from FileNameCategory
--R
--E 1014

--S 1015 of 3320
)d op fill!
--R 
--R
--RThere are 2 exposed functions called fill! :
--R   [1] (D,D1) -> D from D
--R             if D has ARR2CAT(D1,D2,D3) and D1 has TYPE and D2 has 
--R            FLAGG(D1) and D3 has FLAGG(D1)
--R   [2] (D,D1) -> D from D
--R             if D has shallowlyMutable and D has IXAGG(D2,D1) and D2
--R             has SETCAT and D1 has TYPE
--R
--RExamples of fill! from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,0) 
--Rfill!(arr,10)
--R
--R
--RExamples of fill! from IndexedAggregate
--R
--E 1015

--S 1016 of 3320
)d op fillPascalTriangle
--R 
--R
--RThere is one unexposed function called fillPascalTriangle :
--R   [1]  -> Void from GaloisGroupUtilities(D2) if D2 has RING
--R
--RExamples of fillPascalTriangle from GaloisGroupUtilities
--R
--E 1016

--S 1017 of 3320
)d op filterUntil
--R 
--R
--RThere are 2 exposed functions called filterUntil :
--R   [1] ((D2 -> Boolean),InfiniteTuple(D2)) -> InfiniteTuple(D2)
--R             from InfiniteTuple(D2) if D2 has TYPE
--R   [2] ((D2 -> Boolean),Stream(D2)) -> Stream(D2) from Stream(D2) if D2
--R             has TYPE
--R
--RExamples of filterUntil from InfiniteTuple
--R
--R
--RExamples of filterUntil from Stream
--R
--Rm:=[i for i in 1..] 
--Rf(x:PositiveInteger):Boolean == x < 5 
--RfilterUntil(f,m)
--R
--E 1017

--S 1018 of 3320
)d op filterUpTo
--R 
--R
--RThere is one exposed function called filterUpTo :
--R   [1] (D,Integer) -> D from D if D has LOCPOWC(D2) and D2 has FIELD
--R         
--R
--RExamples of filterUpTo from LocalPowerSeriesCategory
--R
--E 1018

--S 1019 of 3320
)d op filterWhile
--R 
--R
--RThere are 2 exposed functions called filterWhile :
--R   [1] ((D2 -> Boolean),InfiniteTuple(D2)) -> InfiniteTuple(D2)
--R             from InfiniteTuple(D2) if D2 has TYPE
--R   [2] ((D2 -> Boolean),Stream(D2)) -> Stream(D2) from Stream(D2) if D2
--R             has TYPE
--R
--RExamples of filterWhile from InfiniteTuple
--R
--R
--RExamples of filterWhile from Stream
--R
--Rm:=[i for i in 1..] 
--Rf(x:PositiveInteger):Boolean == x < 5 
--RfilterWhile(f,m)
--R
--E 1019

--S 1020 of 3320
)d op find
--R 
--R
--RThere is one exposed function called find :
--R   [1] ((D1 -> Boolean),D) -> Union(D1,"failed") from D
--R             if D has CLAGG(D1) and D1 has TYPE
--R
--RExamples of find from Collection
--R
--E 1020

--S 1021 of 3320
)d op findCoef
--R 
--R
--RThere is one exposed function called findCoef :
--R   [1] (D,Integer) -> D1 from D if D has LOCPOWC(D1) and D1 has FIELD
--R         
--R
--RExamples of findCoef from LocalPowerSeriesCategory
--R
--E 1021

--S 1022 of 3320 done
)d op findCycle
--R 
--R
--RThere is one exposed function called findCycle :
--R   [1] (NonNegativeInteger,Stream(D3)) -> Record(cycle?: Boolean,prefix
--R            : NonNegativeInteger,period: NonNegativeInteger)
--R             from Stream(D3) if D3 has TYPE
--R
--RExamples of findCycle from Stream
--R
--Rm:=[1,2,3] 
--Rn:=repeating(m) 
--RfindCycle(3,n) 
--RfindCycle(2,n)
--R
--E 1022

--S 1023 of 3320
)d op findOrderOfDivisor
--R 
--R
--RThere are 3 exposed functions called findOrderOfDivisor :
--R   [1] (D7,Integer,Integer) -> Record(ord: Integer,num: D11,den: D11,
--R            upTo: Integer)
--R             from GeneralPackageForAlgebraicFunctionField(D9,D10,D11,
--R            D12,D13,D1,D2,D7,D3,D4,D5)
--R             if D9 has FIELD and D10: LIST(SYMBOL) and D11 has POLYCAT(
--R            D9,D12,OVAR(D10)) and D12 has DIRPCAT(#(D10),NNI) and D13
--R             has PRSPCAT(D9) and D1 has LOCPOWC(D9) and D2 has PLACESC(
--R            D9,D1) and D7 has DIVCAT(D2) and D3 has INFCLCT(D9,D10,D11,
--R            D12,D13,D1,D2,D7,D5) and D5 has BLMETCT and D4 has DSTRCAT(
--R            D3)
--R   [2] (Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D4)),
--R            Integer,Integer) -> Record(ord: Integer,num: 
--R            DistributedMultivariatePolynomial(D5,D4),den: 
--R            DistributedMultivariatePolynomial(D5,D4),upTo: Integer)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D4,D5
--R            ,D6)
--R             if D4 has FFIELDC and D5: LIST(SYMBOL) and D6 has BLMETCT
--R            
--R   [3] (Divisor(Places(D4)),Integer,Integer) -> Record(ord: Integer,num
--R            : DistributedMultivariatePolynomial(D5,D4),den: 
--R            DistributedMultivariatePolynomial(D5,D4),upTo: Integer)
--R             from PackageForAlgebraicFunctionField(D4,D5,D6)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has BLMETCT
--R         
--R
--RExamples of findOrderOfDivisor from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of findOrderOfDivisor from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of findOrderOfDivisor from PackageForAlgebraicFunctionField
--R
--E 1023

--S 1024 of 3320
)d op findTerm
--R 
--R
--RThere is one exposed function called findTerm :
--R   [1] (NeitherSparseOrDensePowerSeries(D3),Integer) -> Record(k: 
--R            Integer,c: D3)
--R             from NeitherSparseOrDensePowerSeries(D3) if D3 has FIELD
--R         
--R
--RExamples of findTerm from NeitherSparseOrDensePowerSeries
--R
--E 1024

--S 1025 of 3320
)d op finite?
--R 
--R
--RThere are 3 exposed functions called finite? :
--R   [1] CardinalNumber -> Boolean from CardinalNumber
--R   [2] OnePointCompletion(D2) -> Boolean from OnePointCompletion(D2)
--R             if D2 has SETCAT
--R   [3] OrderedCompletion(D2) -> Boolean from OrderedCompletion(D2) if 
--R            D2 has SETCAT
--R
--RExamples of finite? from CardinalNumber
--R
--Rc2:=2::CardinalNumber 
--Rfinite? c2 
--RA0:=Aleph 0 
--Rfinite? A0
--R
--R
--RExamples of finite? from OnePointCompletion
--R
--R
--RExamples of finite? from OrderedCompletion
--R
--E 1025

--S 1026 of 3320
)d op finiteBasis
--R 
--R
--RThere is one unexposed function called finiteBasis :
--R   [1] FiniteDivisor(D2,D3,D4,D5) -> Vector(D5) from FiniteDivisor(D2,
--R            D3,D4,D5)
--R             if D2 has FIELD and D3 has UPOLYC(D2) and D4 has UPOLYC(
--R            FRAC(D3)) and D5 has FFCAT(D2,D3,D4)
--R
--RExamples of finiteBasis from FiniteDivisor
--R
--E 1026

--S 1027 of 3320
)d op finiteBound
--R 
--R
--RThere is one exposed function called finiteBound :
--R   [1] (List(OrderedCompletion(DoubleFloat)),DoubleFloat) -> List(
--R            DoubleFloat)
--R             from e04AgentsPackage
--R
--RExamples of finiteBound from e04AgentsPackage
--R
--E 1027

--S 1028 of 3320
)d op finiteSeries2LinSys
--R 
--R
--RThere is one exposed function called finiteSeries2LinSys :
--R   [1] (List(D5),Integer) -> Matrix(D4)
--R             from LinearSystemFromPowerSeriesPackage(D4,D5)
--R             if D5 has LOCPOWC(D4) and D4 has FIELD
--R
--RExamples of finiteSeries2LinSys from LinearSystemFromPowerSeriesPackage
--R
--E 1028

--S 1029 of 3320
)d op finiteSeries2LinSysWOVectorise
--R 
--R
--RThere is one exposed function called finiteSeries2LinSysWOVectorise :
--R   [1] (List(D5),Integer) -> Matrix(D4)
--R             from LinearSystemFromPowerSeriesPackage(D4,D5)
--R             if D5 has LOCPOWC(D4) and D4 has FIELD
--R
--RExamples of finiteSeries2LinSysWOVectorise from LinearSystemFromPowerSeriesPackage
--R
--E 1029

--S 1030 of 3320
)d op finiteSeries2Vector
--R 
--R
--RThere is one exposed function called finiteSeries2Vector :
--R   [1] (D2,Integer) -> List(D4) from LinearSystemFromPowerSeriesPackage
--R            (D4,D2)
--R             if D4 has FIELD and D2 has LOCPOWC(D4)
--R
--RExamples of finiteSeries2Vector from LinearSystemFromPowerSeriesPackage
--R
--E 1030

--S 1031 of 3320
)d op fintegrate
--R 
--R
--RThere is one exposed function called fintegrate :
--R   [1] ((() -> TaylorSeries(D3)),Symbol,D3) -> TaylorSeries(D3)
--R             from TaylorSeries(D3) if D3 has ALGEBRA(FRAC(INT)) and D3
--R             has RING
--R
--RThere is one unexposed function called fintegrate :
--R   [1] ((() -> SparseMultivariateTaylorSeries(D3,D2,D4)),D2,D3) -> 
--R            SparseMultivariateTaylorSeries(D3,D2,D4)
--R             from SparseMultivariateTaylorSeries(D3,D2,D4)
--R             if D3 has ALGEBRA(FRAC(INT)) and D3 has RING and D2 has 
--R            ORDSET and D4 has POLYCAT(D3,INDE(D2),D2)
--R
--RExamples of fintegrate from SparseMultivariateTaylorSeries
--R
--R
--RExamples of fintegrate from TaylorSeries
--R
--E 1031

--S 1032 of 3320
)d op first
--R 
--R
--RThere are 4 exposed functions called first :
--R   [1] D -> D1 from D
--R             if D has IXAGG(D2,D1) and D2 has SETCAT and D2 has ORDSET 
--R            and D1 has TYPE
--R   [2] D -> Union(D1,"failed") from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R   [3] (D,NonNegativeInteger) -> D from D if D has URAGG(D2) and D2
--R             has TYPE
--R   [4] D -> D1 from D if D has URAGG(D1) and D1 has TYPE
--R
--RThere are 3 unexposed functions called first :
--R   [1] Magma(D1) -> D1 from Magma(D1) if D1 has ORDSET
--R   [2] OrderedFreeMonoid(D1) -> D1 from OrderedFreeMonoid(D1) if D1
--R             has ORDSET
--R   [3] PoincareBirkhoffWittLyndonBasis(D2) -> LyndonWord(D2)
--R             from PoincareBirkhoffWittLyndonBasis(D2) if D2 has ORDSET
--R            
--R
--RExamples of first from IndexedAggregate
--R
--R
--RExamples of first from Magma
--R
--R
--RExamples of first from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rfirst m1
--R
--R
--RExamples of first from PoincareBirkhoffWittLyndonBasis
--R
--R
--RExamples of first from TriangularSetCategory
--R
--R
--RExamples of first from UnaryRecursiveAggregate
--R
--Rfirst [1,4,2,-6,0,3,5,4,2,3]
--R
--E 1032

--S 1033 of 3320 done
)d op firstDenom
--R 
--R
--RThere is one exposed function called firstDenom :
--R   [1] PartialFraction(D2) -> Factored(D2) from PartialFraction(D2) if 
--R            D2 has EUCDOM
--R
--RExamples of firstDenom from PartialFraction
--R
--Ra:=partialFraction(1,factorial 10) 
--RfirstDenom(a)
--R
--E 1033

--S 1034 of 3320
)d op firstExponent
--R 
--R
--RThere is one exposed function called firstExponent :
--R   [1] D2 -> D1 from PackageForPoly(D3,D2,D1,D4)
--R             if D3 has RING and D1 has DIRPCAT(D4,NNI) and D2 has FAMR(
--R            D3,D1) and D4: NNI
--R
--RExamples of firstExponent from PackageForPoly
--R
--E 1034

--S 1035 of 3320 done
)d op firstNumer
--R 
--R
--RThere is one exposed function called firstNumer :
--R   [1] PartialFraction(D1) -> D1 from PartialFraction(D1) if D1 has 
--R            EUCDOM
--R
--RExamples of firstNumer from PartialFraction
--R
--Ra:=partialFraction(1,factorial 10) 
--RfirstNumer(a)
--R
--E 1035

--S 1036 of 3320
)d op firstSubsetGray
--R 
--R
--RThere is one unexposed function called firstSubsetGray :
--R   [1] PositiveInteger -> Vector(Vector(Integer)) from GrayCode
--R
--RExamples of firstSubsetGray from GrayCode
--R
--E 1036

--S 1037 of 3320
)d op firstUncouplingMatrix
--R 
--R
--RThere is one unexposed function called firstUncouplingMatrix :
--R   [1] (D2,PositiveInteger) -> Union(Matrix(D4),"failed")
--R             from PrecomputedAssociatedEquations(D4,D2)
--R             if D4 has INTDOM and D2 has LODOCAT(D4)
--R
--RExamples of firstUncouplingMatrix from PrecomputedAssociatedEquations
--R
--E 1037

--S 1038 of 3320
)d op fixedDivisor
--R 
--R
--RThere is one unexposed function called fixedDivisor :
--R   [1] SparseUnivariatePolynomial(Integer) -> Integer
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of fixedDivisor from PolynomialNumberTheoryFunctions
--R
--E 1038

--S 1039 of 3320
)d op fixedPoint
--R 
--R
--RThere are 2 exposed functions called fixedPoint :
--R   [1] (D1 -> D1) -> D1 from MappingPackage1(D1) if D1 has SETCAT
--R   [2] ((List(D4) -> List(D4)),Integer) -> List(D4) from 
--R            MappingPackage1(D4)
--R             if D4 has SETCAT
--R
--RExamples of fixedPoint from MappingPackage1
--R
--E 1039

--S 1040 of 3320
)d op fixedPointExquo
--R 
--R
--RThere is one unexposed function called fixedPointExquo :
--R   [1] (D1,D1) -> D1 from UnivariateTaylorSeriesODESolver(D2,D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D1 has UTSCAT(D2)
--R
--RExamples of fixedPointExquo from UnivariateTaylorSeriesODESolver
--R
--E 1040

--S 1041 of 3320 done
)d op fixedPoints
--R 
--R
--RThere is one exposed function called fixedPoints :
--R   [1] Permutation(D2) -> Set(D2) from Permutation(D2)
--R             if D2 has FINITE and D2 has SETCAT
--R
--RExamples of fixedPoints from Permutation
--R
--Rp := coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4 
--RfixedPoints p
--R
--E 1041

--S 1042 of 3320
)d op fixPredicate
--R 
--R
--RThere is one unexposed function called fixPredicate :
--R   [1] (D5 -> Boolean) -> (D4 -> Boolean) from PatternMatchPushDown(D3,
--R            D4,D5)
--R             if D5 has Join(SetCategory,RetractableTo(D4)) and D4 has 
--R            PATMAB(D3) and D3 has SETCAT
--R
--RExamples of fixPredicate from PatternMatchPushDown
--R
--E 1042

--S 1043 of 3320
)d op flagFactor
--R 
--R
--RThere is one exposed function called flagFactor :
--R   [1] (D1,Integer,Union("nil","sqfr","irred","prime")) -> Factored(D1)
--R             from Factored(D1) if D1 has INTDOM
--R
--RExamples of flagFactor from Factored
--R
--E 1043

--S 1044 of 3320
)d op flatten
--R 
--R
--RThere is one unexposed function called flatten :
--R   [1] InputForm -> InputForm from InputForm
--R
--RExamples of flatten from InputForm
--R
--E 1044

--S 1045 of 3320
)d op flexible?
--R 
--R
--RThere is one exposed function called flexible? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called flexible? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of flexible? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of flexible? from FiniteRankNonAssociativeAlgebra
--R
--E 1045

--S 1046 of 3320
)d op flexibleArray
--R 
--R
--RThere is one exposed function called flexibleArray :
--R   [1] List(D2) -> FlexibleArray(D2) from FlexibleArray(D2) if D2 has 
--R            TYPE
--R
--RThere is one unexposed function called flexibleArray :
--R   [1] List(D2) -> IndexedFlexibleArray(D2,D3) from 
--R            IndexedFlexibleArray(D2,D3)
--R             if D2 has TYPE and D3: INT
--R
--RExamples of flexibleArray from FlexibleArray
--R
--R
--RExamples of flexibleArray from IndexedFlexibleArray
--R
--RT1:=IndexedFlexibleArray(Integer,20) 
--RflexibleArray([i for i in 1..10])$T1
--R
--E 1046

--S 1047 of 3320
)d op float
--R 
--R
--RThere are 3 exposed functions called float :
--R   [1] (Integer,Integer,PositiveInteger) -> D from D if D has FPS
--R   [2] (Integer,Integer) -> D from D if D has FPS
--R   [3] D -> D1 from D
--R             if D has SEXCAT(D2,D3,D4,D1,D5) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D1 has 
--R            SETCAT
--R
--RExamples of float from FloatingPointSystem
--R
--R
--RExamples of float from SExpressionCategory
--R
--E 1047

--S 1048 of 3320
)d op float?
--R 
--R
--RThere is one exposed function called float? :
--R   [1] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of float? from SExpressionCategory
--R
--E 1048

--S 1049 of 3320
)d op floor
--R 
--R
--RThere are 2 exposed functions called floor :
--R   [1] D -> D1 from D if D has QFCAT(D1) and D1 has INTDOM and D1 has 
--R            INS
--R   [2] D -> D from D if D has RNS
--R
--RExamples of floor from QuotientFieldCategory
--R
--R
--RExamples of floor from RealNumberSystem
--R
--E 1049

--S 1050 of 3320
)d op flush
--R 
--R
--RThere is one exposed function called flush :
--R   [1] D -> Void from D if D has FILECAT(D2,D3) and D2 has SETCAT and 
--R            D3 has SETCAT
--R
--RExamples of flush from FileCategory
--R
--E 1050

--S 1051 of 3320
)d op fmecg
--R 
--R
--RThere are 2 exposed functions called fmecg :
--R   [1] (MyUnivariatePolynomial(D3,D2),NonNegativeInteger,D2,
--R            MyUnivariatePolynomial(D3,D2)) -> MyUnivariatePolynomial(D3,D2)
--R             from MyUnivariatePolynomial(D3,D2) if D3: SYMBOL and D2
--R             has RING
--R   [2] (UnivariatePolynomial(D3,D2),NonNegativeInteger,D2,
--R            UnivariatePolynomial(D3,D2)) -> UnivariatePolynomial(D3,D2)
--R             from UnivariatePolynomial(D3,D2) if D3: SYMBOL and D2 has 
--R            RING
--R
--RThere are 4 unexposed functions called fmecg :
--R   [1] (NewSparseUnivariatePolynomial(D2),NonNegativeInteger,D2,
--R            NewSparseUnivariatePolynomial(D2)) -> 
--R            NewSparseUnivariatePolynomial(D2)
--R             from NewSparseUnivariatePolynomial(D2) if D2 has RING
--R   [2] (PolynomialRing(D2,D1),D1,D2,PolynomialRing(D2,D1)) -> 
--R            PolynomialRing(D2,D1)
--R             from PolynomialRing(D2,D1)
--R             if D1 has CABMON and D2 has INTDOM and D2 has RING and D1
--R             has OAMON
--R   [3] (SparseUnivariatePolynomial(D2),NonNegativeInteger,D2,
--R            SparseUnivariatePolynomial(D2)) -> SparseUnivariatePolynomial(D2)
--R             from SparseUnivariatePolynomial(D2) if D2 has RING
--R   [4] (SymmetricPolynomial(D2),Partition,D2,SymmetricPolynomial(D2))
--R             -> SymmetricPolynomial(D2)
--R             from SymmetricPolynomial(D2)
--R             if Partition has CABMON and D2 has INTDOM and D2 has RING
--R            
--R
--RExamples of fmecg from MyUnivariatePolynomial
--R
--R
--RExamples of fmecg from NewSparseUnivariatePolynomial
--R
--R
--RExamples of fmecg from PolynomialRing
--R
--R
--RExamples of fmecg from SparseUnivariatePolynomial
--R
--R
--RExamples of fmecg from SymmetricPolynomial
--R
--R
--RExamples of fmecg from UnivariatePolynomial
--R
--E 1051

--S 1052 of 3320
)d op forLoop
--R 
--R
--RThere are 2 exposed functions called forLoop :
--R   [1] (SegmentBinding(Polynomial(Integer)),Polynomial(Integer),
--R            FortranCode) -> FortranCode
--R             from FortranCode
--R   [2] (SegmentBinding(Polynomial(Integer)),FortranCode) -> FortranCode
--R             from FortranCode
--R
--RExamples of forLoop from FortranCode
--R
--E 1052

--S 1053 of 3320
)d op FormatArabic
--R 
--R
--RThere is one unexposed function called FormatArabic :
--R   [1] PositiveInteger -> String from NumberFormats
--R
--RExamples of FormatArabic from NumberFormats
--R
--E 1053

--S 1054 of 3320
)d op FormatRoman
--R 
--R
--RThere is one unexposed function called FormatRoman :
--R   [1] PositiveInteger -> String from NumberFormats
--R
--RExamples of FormatRoman from NumberFormats
--R
--E 1054

--S 1055 of 3320
)d op formula
--R 
--R
--RThere is one exposed function called formula :
--R   [1] ScriptFormulaFormat -> List(String) from ScriptFormulaFormat
--R
--RExamples of formula from ScriptFormulaFormat
--R
--E 1055

--S 1056 of 3320
)d op fortran
--R 
--R
--RThere is one exposed function called fortran :
--R   [1] (Symbol,FortranScalarType,D3) -> SimpleFortranProgram(D4,D3)
--R             from SimpleFortranProgram(D4,D3) if D4 has ORDSET and D3
--R             has FS(D4)
--R
--RExamples of fortran from SimpleFortranProgram
--R
--E 1056

--S 1057 of 3320
)d op fortranCarriageReturn
--R 
--R
--RThere is one exposed function called fortranCarriageReturn :
--R   [1]  -> Void from FortranTemplate
--R
--RExamples of fortranCarriageReturn from FortranTemplate
--R
--E 1057

--S 1058 of 3320
)d op fortranCharacter
--R 
--R
--RThere is one exposed function called fortranCharacter :
--R   [1]  -> FortranType from FortranType
--R
--RExamples of fortranCharacter from FortranType
--R
--E 1058

--S 1059 of 3320
)d op fortranCompilerName
--R 
--R
--RThere is one exposed function called fortranCompilerName :
--R   [1]  -> String from NAGLinkSupportPackage
--R
--RExamples of fortranCompilerName from NAGLinkSupportPackage
--R
--E 1059

--S 1060 of 3320
)d op fortranComplex
--R 
--R
--RThere is one exposed function called fortranComplex :
--R   [1]  -> FortranType from FortranType
--R
--RExamples of fortranComplex from FortranType
--R
--E 1060

--S 1061 of 3320
)d op fortranDouble
--R 
--R
--RThere is one exposed function called fortranDouble :
--R   [1]  -> FortranType from FortranType
--R
--RExamples of fortranDouble from FortranType
--R
--E 1061

--S 1062 of 3320
)d op fortranDoubleComplex
--R 
--R
--RThere is one exposed function called fortranDoubleComplex :
--R   [1]  -> FortranType from FortranType
--R
--RExamples of fortranDoubleComplex from FortranType
--R
--E 1062

--S 1063 of 3320
)d op fortranInteger
--R 
--R
--RThere is one exposed function called fortranInteger :
--R   [1]  -> FortranType from FortranType
--R
--RExamples of fortranInteger from FortranType
--R
--E 1063

--S 1064 of 3320
)d op fortranLinkerArgs
--R 
--R
--RThere is one exposed function called fortranLinkerArgs :
--R   [1]  -> String from NAGLinkSupportPackage
--R
--RExamples of fortranLinkerArgs from NAGLinkSupportPackage
--R
--E 1064

--S 1065 of 3320
)d op fortranLiteral
--R 
--R
--RThere is one exposed function called fortranLiteral :
--R   [1] String -> Void from FortranTemplate
--R
--RExamples of fortranLiteral from FortranTemplate
--R
--E 1065

--S 1066 of 3320
)d op fortranLiteralLine
--R 
--R
--RThere is one exposed function called fortranLiteralLine :
--R   [1] String -> Void from FortranTemplate
--R
--RExamples of fortranLiteralLine from FortranTemplate
--R
--E 1066

--S 1067 of 3320
)d op fortranLogical
--R 
--R
--RThere is one exposed function called fortranLogical :
--R   [1]  -> FortranType from FortranType
--R
--RExamples of fortranLogical from FortranType
--R
--E 1067

--S 1068 of 3320
)d op fortranReal
--R 
--R
--RThere is one exposed function called fortranReal :
--R   [1]  -> FortranType from FortranType
--R
--RExamples of fortranReal from FortranType
--R
--E 1068

--S 1069 of 3320
)d op fortranTypeOf
--R 
--R
--RThere is one exposed function called fortranTypeOf :
--R   [1] (Symbol,SymbolTable) -> FortranType from SymbolTable
--R
--RExamples of fortranTypeOf from SymbolTable
--R
--E 1069

--S 1070 of 3320
)d op foundPlaces
--R 
--R
--RThere is one exposed function called foundPlaces :
--R   [1]  -> List(D) from D
--R             if D2 has FIELD and D3 has LOCPOWC(D2) and D has PLACESC(
--R            D2,D3)
--R
--RExamples of foundPlaces from PlacesCategory
--R
--E 1070

--S 1071 of 3320
)d op foundZeroes
--R 
--R
--RThere is one exposed function called foundZeroes :
--R   [1]  -> List(D2) from RootsFindingPackage(D2) if D2 has FIELD
--R
--RExamples of foundZeroes from RootsFindingPackage
--R
--E 1071

--S 1072 of 3320
--R------------------------------)d op fp (what?)
--E 1072

--S 1073 of 3320
--R------------------------------)d op fprindINFO (what?)
--E 1073

--S 1074 of 3320
)d op fracPart
--R 
--R
--RThere is one exposed function called fracPart :
--R   [1] FullPartialFractionExpansion(D2,D3) -> List(Record(exponent: 
--R            NonNegativeInteger,center: D3,num: D3))
--R             from FullPartialFractionExpansion(D2,D3)
--R             if D2 has Join(Field,CharacteristicZero) and D3 has UPOLYC
--R            (D2)
--R
--RExamples of fracPart from FullPartialFractionExpansion
--R
--E 1074

--S 1075 of 3320
)d op fractionFreeGauss!
--R 
--R
--RThere is one exposed function called fractionFreeGauss! :
--R   [1] D1 -> D1 from MatrixLinearAlgebraFunctions(D2,D3,D4,D1)
--R             if D2 has INTDOM and D2 has COMRING and D3 has FLAGG(D2) 
--R            and D4 has FLAGG(D2) and D1 has MATCAT(D2,D3,D4)
--R
--RExamples of fractionFreeGauss! from MatrixLinearAlgebraFunctions
--R
--E 1075

--S 1076 of 3320
)d op fractionPart
--R 
--R
--RThere are 6 exposed functions called fractionPart :
--R   [1] BinaryExpansion -> Fraction(Integer) from BinaryExpansion
--R   [2] DecimalExpansion -> Fraction(Integer) from DecimalExpansion
--R   [3] HexadecimalExpansion -> Fraction(Integer) from 
--R            HexadecimalExpansion
--R   [4] D -> D from D if D has QFCAT(D1) and D1 has INTDOM and D1 has 
--R            EUCDOM
--R   [5] RadixExpansion(D2) -> Fraction(Integer) from RadixExpansion(D2)
--R             if D2: INT
--R   [6] D -> D from D if D has RNS
--R
--RExamples of fractionPart from BinaryExpansion
--R
--R
--RExamples of fractionPart from DecimalExpansion
--R
--R
--RExamples of fractionPart from HexadecimalExpansion
--R
--R
--RExamples of fractionPart from QuotientFieldCategory
--R
--R
--RExamples of fractionPart from RadixExpansion
--R
--R
--RExamples of fractionPart from RealNumberSystem
--R
--E 1076

--S 1077 of 3320
)d op fractRadix
--R 
--R
--RThere is one exposed function called fractRadix :
--R   [1] (List(Integer),List(Integer)) -> RadixExpansion(D2)
--R             from RadixExpansion(D2) if D2: INT
--R
--RExamples of fractRadix from RadixExpansion
--R
--E 1077

--S 1078 of 3320
)d op fractRagits
--R 
--R
--RThere is one exposed function called fractRagits :
--R   [1] RadixExpansion(D2) -> Stream(Integer) from RadixExpansion(D2)
--R             if D2: INT
--R
--RExamples of fractRagits from RadixExpansion
--R
--E 1078

--S 1079 of 3320
)d op freeOf?
--R 
--R
--RThere are 3 exposed functions called freeOf? :
--R   [1] (D,Symbol) -> Boolean from D if D has ES
--R   [2] (D,D) -> Boolean from D if D has ES
--R   [3] (StochasticDifferential(D3),BasicStochasticDifferential) -> 
--R            Boolean
--R             from StochasticDifferential(D3)
--R             if D3 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of freeOf? from ExpressionSpace
--R
--R
--RExamples of freeOf? from StochasticDifferential
--R
--E 1079

--S 1080 of 3320
)d op fresnelC
--R 
--R
--RThere are 2 exposed functions called fresnelC :
--R   [1] Float -> Float from DoubleFloatSpecialFunctions
--R   [2] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called fresnelC :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of fresnelC from DoubleFloatSpecialFunctions
--R
--RfresnelC(1.5)
--R
--R
--RExamples of fresnelC from LiouvillianFunctionCategory
--R
--R
--RExamples of fresnelC from LiouvillianFunction
--R
--E 1080

--S 1081 of 3320
)d op fresnelS
--R 
--R
--RThere are 2 exposed functions called fresnelS :
--R   [1] Float -> Float from DoubleFloatSpecialFunctions
--R   [2] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called fresnelS :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of fresnelS from DoubleFloatSpecialFunctions
--R
--RfresnelS(1.5)
--R
--R
--RExamples of fresnelS from LiouvillianFunctionCategory
--R
--R
--RExamples of fresnelS from LiouvillianFunction
--R
--E 1081

--S 1082 of 3320
)d op frobenius
--R 
--R
--RThere is one unexposed function called frobenius :
--R   [1] ModMonic(D1,D2) -> ModMonic(D1,D2) from ModMonic(D1,D2)
--R             if D1 has FFIELDC and D1 has RING and D2 has UPOLYC(D1)
--R         
--R
--RExamples of frobenius from ModMonic
--R
--E 1082

--S 1083 of 3320
)d op Frobenius
--R 
--R
--RThere are 2 exposed functions called Frobenius :
--R   [1] (D,NonNegativeInteger) -> D from D
--R             if D has XF(D2) and D2 has FIELD and D2 has FINITE
--R   [2] D -> D from D if D has XF(D1) and D1 has FIELD and D1 has FINITE
--R            
--R
--RThere is one unexposed function called Frobenius :
--R   [1] D1 -> D1 from NormRetractPackage(D2,D3,D4,D1,D5)
--R             if D2 has FFIELDC and D3 has FAXF(D2) and D4 has UPOLYC(D3
--R            ) and D1 has UPOLYC(D4) and D5: PI
--R
--RExamples of Frobenius from NormRetractPackage
--R
--R
--RExamples of Frobenius from ExtensionField
--R
--E 1083

--S 1084 of 3320
)d op front
--R 
--R
--RThere are 3 exposed functions called front :
--R   [1] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has QUAGG(D1) and D1 has TYPE
--R   [3] Queue(D1) -> D1 from Queue(D1) if D1 has SETCAT
--R
--RExamples of front from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rfront a
--R
--R
--RExamples of front from QueueAggregate
--R
--R
--RExamples of front from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rfront a
--R
--E 1084

--S 1085 of 3320
)d op froot
--R 
--R
--RThere is one unexposed function called froot :
--R   [1] (D2,NonNegativeInteger) -> Record(exponent: NonNegativeInteger,
--R            coef: D2,radicand: D2)
--R             from PolynomialRoots(D4,D5,D6,D7,D2)
--R             if D6 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has INTDOM and D7 has POLYCAT(D6,D4,D5) and D2 has Field
--R            with
--R               numer : % -> D7
--R               denom : % -> D7
--R               coerce : D7 -> %
--R
--RExamples of froot from PolynomialRoots
--R
--E 1085

--S 1086 of 3320 done
)d op frst
--R 
--R
--RThere is one exposed function called frst :
--R   [1] D -> D1 from D if D has LZSTAGG(D1) and D1 has TYPE
--R
--RExamples of frst from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--Rfrst m
--R
--E 1086

--S 1087 of 3320
)d op fTable
--R 
--R
--RThere is one exposed function called fTable :
--R   [1] List(Record(key: Record(var: Symbol,fn: Expression(DoubleFloat),
--R            range: Segment(OrderedCompletion(DoubleFloat)),abserr: 
--R            DoubleFloat,relerr: DoubleFloat),entry: Record(endPointContinuity
--R            : Union(continuous: Continuous at the end points,lowerSingular: 
--R            There is a singularity at the lower end point,upperSingular: 
--R            There is a singularity at the upper end point,bothSingular: 
--R            There are singularities at both end points,notEvaluated: 
--R            End point continuity not yet evaluated),singularitiesStream: 
--R            Union(str: Stream(DoubleFloat),notEvaluated: 
--R            Internal singularities not yet evaluated),range: Union(finite: 
--R            The range is finite,lowerInfinite: 
--R            The bottom of range is infinite,upperInfinite: 
--R            The top of range is infinite,bothInfinite: 
--R            Both top and bottom points are infinite,notEvaluated: 
--R            Range not yet evaluated)))) -> IntegrationFunctionsTable
--R             from IntegrationFunctionsTable
--R
--RExamples of fTable from IntegrationFunctionsTable
--R
--E 1087

--S 1088 of 3320
)d op fullDesTree
--R 
--R
--RThere are 2 exposed functions called fullDesTree :
--R   [1]  -> Void from PackageForAlgebraicFunctionFieldOverFiniteField(D2
--R            ,D3,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [2]  -> Void from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of fullDesTree from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of fullDesTree from PackageForAlgebraicFunctionField
--R
--E 1088

--S 1089 of 3320
)d op fullDisplay
--R 
--R
--RThere are 3 exposed functions called fullDisplay :
--R   [1] (Database(D3),PositiveInteger,PositiveInteger) -> Void from 
--R            Database(D3)
--R             if D3 has OrderedSetwith
--R               ?.? : (%,Symbol) -> String
--R               display : % -> Void
--R               fullDisplay : % -> Void
--R   [2] Database(D2) -> Void from Database(D2)
--R             if D2 has OrderedSetwith
--R               ?.? : (%,Symbol) -> String
--R               display : % -> Void
--R               fullDisplay : % -> Void
--R   [3] IndexCard -> Void from IndexCard
--R
--RExamples of fullDisplay from Database
--R
--R
--RExamples of fullDisplay from IndexCard
--R
--E 1089

--S 1090 of 3320
)d op fullInfClsPt
--R 
--R
--RThere are 2 exposed functions called fullInfClsPt :
--R   [1]  -> Void from PackageForAlgebraicFunctionFieldOverFiniteField(D2
--R            ,D3,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [2]  -> Void from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of fullInfClsPt from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of fullInfClsPt from PackageForAlgebraicFunctionField
--R
--E 1090

--S 1091 of 3320
)d op fullOut
--R 
--R
--RThere are 4 exposed functions called fullOut :
--R   [1] DesingTree(D2) -> OutputForm from DesingTree(D2) if D2 has 
--R            SETCAT
--R   [2] InfClsPt(D2,D3,D4) -> OutputForm from InfClsPt(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R   [3] InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(D2,D3
--R            ,D4) -> OutputForm
--R             from 
--R            InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(
--R            D2,D3,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [4] InfinitlyClosePoint(D4,D5,D6,D7,D8,D9,D10,D1,D2) -> OutputForm
--R             from InfinitlyClosePoint(D4,D5,D6,D7,D8,D9,D10,D1,D2)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D7 has DIRPCAT(#(
--R            D5),NNI) and D9 has LOCPOWC(D4) and D10 has PLACESC(D4,D9) 
--R            and D6 has POLYCAT(D4,D7,OVAR(D5)) and D8 has PRSPCAT(D4) 
--R            and D1 has DIVCAT(D10) and D2 has BLMETCT
--R
--RExamples of fullOut from DesingTree
--R
--R
--RExamples of fullOut from InfClsPt
--R
--R
--RExamples of fullOut from InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField
--R
--R
--RExamples of fullOut from InfinitlyClosePoint
--R
--E 1091

--S 1092 of 3320
)d op fullOutput
--R 
--R
--RThere are 12 exposed functions called fullOutput :
--R   [1]  -> Boolean from DesingTree(D2) if D2 has SETCAT
--R   [2] Boolean -> Boolean from DesingTree(D2) if D2 has SETCAT
--R   [3]  -> Boolean from InfClsPt(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R   [4] Boolean -> Boolean from InfClsPt(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R   [5]  -> Boolean
--R             from 
--R            InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(
--R            D2,D3,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [6] Boolean -> Boolean
--R             from 
--R            InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(
--R            D2,D3,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [7]  -> Boolean from InfinitlyClosePoint(D4,D5,D6,D7,D8,D9,D10,D1,D2
--R            )
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D7 has DIRPCAT(#(
--R            D5),NNI) and D9 has LOCPOWC(D4) and D10 has PLACESC(D4,D9) 
--R            and D6 has POLYCAT(D4,D7,OVAR(D5)) and D8 has PRSPCAT(D4) 
--R            and D1 has DIVCAT(D10) and D2 has BLMETCT
--R   [8] Boolean -> Boolean from InfinitlyClosePoint(D4,D5,D6,D7,D8,D9,
--R            D10,D1,D2)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D7 has DIRPCAT(#(
--R            D5),NNI) and D9 has LOCPOWC(D4) and D10 has PLACESC(D4,D9) 
--R            and D6 has POLYCAT(D4,D7,OVAR(D5)) and D8 has PRSPCAT(D4) 
--R            and D1 has DIVCAT(D10) and D2 has BLMETCT
--R   [9] PseudoAlgebraicClosureOfAlgExtOfRationalNumber(D2) -> OutputForm
--R             from PseudoAlgebraicClosureOfAlgExtOfRationalNumber(D2)
--R             if D2: PACRAT
--R   [10] PseudoAlgebraicClosureOfFiniteField(D2) -> OutputForm
--R             from PseudoAlgebraicClosureOfFiniteField(D2) if D2 has 
--R            FFIELDC
--R   [11] D -> OutputForm from D if D has PACPERC
--R   [12] PseudoAlgebraicClosureOfRationalNumber -> OutputForm
--R             from PseudoAlgebraicClosureOfRationalNumber
--R
--RExamples of fullOutput from DesingTree
--R
--R
--RExamples of fullOutput from InfClsPt
--R
--R
--RExamples of fullOutput from InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField
--R
--R
--RExamples of fullOutput from InfinitlyClosePoint
--R
--R
--RExamples of fullOutput from PseudoAlgebraicClosureOfAlgExtOfRationalNumber
--R
--R
--RExamples of fullOutput from PseudoAlgebraicClosureOfFiniteField
--R
--R
--RExamples of fullOutput from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of fullOutput from PseudoAlgebraicClosureOfRationalNumber
--R
--E 1092

--S 1093 of 3320
)d op fullParamInit
--R 
--R
--RThere is one exposed function called fullParamInit :
--R   [1] D6 -> Void from DesingTreePackage(D7,D8,D9,D10,D11,D12,D1,D2,D3,
--R            D6,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D9 has POLYCAT(D7
--R            ,D10,OVAR(D8)) and D10 has DIRPCAT(#(D8),NNI) and D11 has 
--R            PRSPCAT(D7) and D12 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D12) and D2 has DIVCAT(D1) and D3 has INFCLCT(D7,D8,D9,D10,
--R            D11,D12,D1,D2,D4) and D4 has BLMETCT and D6 has DSTRCAT(D3)
--R            
--R
--RExamples of fullParamInit from DesingTreePackage
--R
--E 1093

--S 1094 of 3320
)d op fullPartialFraction
--R 
--R
--RThere is one exposed function called fullPartialFraction :
--R   [1] Fraction(D3) -> FullPartialFractionExpansion(D2,D3)
--R             from FullPartialFractionExpansion(D2,D3)
--R             if D3 has UPOLYC(D2) and D2 has Join(Field,
--R            CharacteristicZero)
--R
--RExamples of fullPartialFraction from FullPartialFractionExpansion
--R
--E 1094

--S 1095 of 3320
)d op function
--R 
--R
--RThere are 4 exposed functions called function :
--R   [1] (D2,Symbol) -> Symbol from MakeFunction(D2) if D2 has KONVERT(
--R            INFORM)
--R   [2] (D2,Symbol,Symbol) -> Symbol from MakeFunction(D2) if D2 has 
--R            KONVERT(INFORM)
--R   [3] (D2,Symbol,Symbol,Symbol) -> Symbol from MakeFunction(D2)
--R             if D2 has KONVERT(INFORM)
--R   [4] (D2,Symbol,List(Symbol)) -> Symbol from MakeFunction(D2)
--R             if D2 has KONVERT(INFORM)
--R
--RThere is one unexposed function called function :
--R   [1] (InputForm,List(Symbol),Symbol) -> InputForm from InputForm
--R
--RExamples of function from InputForm
--R
--R
--RExamples of function from MakeFunction
--R
--E 1095

--S 1096 of 3320
)d op functionIsContinuousAtEndPoints
--R 
--R
--RThere is one exposed function called functionIsContinuousAtEndPoints :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Union(continuous: Continuous at the end points,
--R            lowerSingular: There is a singularity at the lower end point,
--R            upperSingular: There is a singularity at the upper end point,
--R            bothSingular: There are singularities at both end points,
--R            notEvaluated: End point continuity not yet evaluated)
--R             from d01AgentsPackage
--R
--RExamples of functionIsContinuousAtEndPoints from d01AgentsPackage
--R
--E 1096

--S 1097 of 3320
)d op functionIsFracPolynomial?
--R 
--R
--RThere is one exposed function called functionIsFracPolynomial? :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Boolean
--R             from ExpertSystemContinuityPackage
--R
--RExamples of functionIsFracPolynomial? from ExpertSystemContinuityPackage
--R
--E 1097

--S 1098 of 3320
)d op functionIsOscillatory
--R 
--R
--RThere is one exposed function called functionIsOscillatory :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Float
--R             from d01AgentsPackage
--R
--RExamples of functionIsOscillatory from d01AgentsPackage
--R
--E 1098

--S 1099 of 3320
)d op functionName
--R 
--R
--RThere is one exposed function called functionName :
--R   [1] Symbol -> GuessOption from GuessOption
--R
--RThere is one unexposed function called functionName :
--R   [1] List(GuessOption) -> Symbol from GuessOptionFunctions0
--R
--RExamples of functionName from GuessOptionFunctions0
--R
--R
--RExamples of functionName from GuessOption
--R
--E 1099

--S 1100 of 3320
)d op functionNames
--R 
--R
--RThere is one exposed function called functionNames :
--R   [1] List(Symbol) -> GuessOption from GuessOption
--R
--RExamples of functionNames from GuessOption
--R
--E 1100

--S 1101 of 3320
)d op Gamma
--R 
--R
--RThere are 7 exposed functions called Gamma :
--R   [1] DoubleFloat -> DoubleFloat from DoubleFloat
--R   [2] DoubleFloat -> DoubleFloat from DoubleFloatSpecialFunctions
--R   [3] Complex(DoubleFloat) -> Complex(DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [4] Float -> Float from FloatSpecialFunctions
--R   [5] Complex(Float) -> Complex(Float) from FloatSpecialFunctions
--R   [6] D -> D from D if D has SPFCAT
--R   [7] (D,D) -> D from D if D has SPFCAT
--R
--RThere are 2 unexposed functions called Gamma :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R   [2] (D1,D1) -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of Gamma from DoubleFloat
--R
--R
--RExamples of Gamma from DoubleFloatSpecialFunctions
--R
--R
--RExamples of Gamma from FloatSpecialFunctions
--R
--Ra:Complex(Float):=3.5*%i 
--RGamma(a)
--R
--RGamma(3.5)
--R
--R
--RExamples of Gamma from FunctionalSpecialFunction
--R
--R
--RExamples of Gamma from SpecialFunctionCategory
--R
--E 1101

--S 1102 of 3320
)d op gbasis
--R 
--R
--RThere is one unexposed function called gbasis :
--R   [1] (List(D6),Integer,Integer) -> List(D6)
--R             from GroebnerInternalPackage(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of gbasis from GroebnerInternalPackage
--R
--E 1102

--S 1103 of 3320
)d op gcd
--R 
--R
--RThere are 8 exposed functions called gcd :
--R   [1] List(D) -> D from D if D has GCDDOM
--R   [2] (D,D) -> D from D if D has GCDDOM
--R   [3] (D1,D1,Integer) -> D1 from ModularDistinctDegreeFactorizer(D1)
--R             if D1 has UPOLYC(INT)
--R   [4] (NonNegativeInteger,NonNegativeInteger) -> NonNegativeInteger
--R             from NonNegativeInteger
--R   [5] (PositiveInteger,PositiveInteger) -> PositiveInteger from 
--R            PositiveInteger
--R   [6] (U32Vector,U32Vector,Integer) -> U32Vector
--R             from U32VectorPolynomialOperations
--R   [7] (PrimitiveArray(U32Vector),Integer,Integer,Integer) -> U32Vector
--R             from U32VectorPolynomialOperations
--R   [8] (D1,D) -> D1 from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has GCDDOM
--R
--RThere are 6 unexposed functions called gcd :
--R   [1] List(D1) -> D1 from HeuGcd(D1) if D1 has UPOLYC(INT)
--R   [2] (D1,D1) -> D1 from PolynomialGcdPackage(D2,D3,D4,D1)
--R             if D2 has OAMONS and D3 has ORDSET and D4 has EUCDOM and 
--R            D1 has POLYCAT(D4,D2,D3)
--R   [3] List(D1) -> D1 from PolynomialGcdPackage(D3,D4,D5,D1)
--R             if D1 has POLYCAT(D5,D3,D4) and D3 has OAMONS and D4 has 
--R            ORDSET and D5 has EUCDOM
--R   [4] (SparseUnivariatePolynomial(D5),SparseUnivariatePolynomial(D5))
--R             -> SparseUnivariatePolynomial(D5)
--R             from PolynomialGcdPackage(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D4,D2,D3) and D2 has OAMONS and D3 has 
--R            ORDSET and D4 has EUCDOM
--R   [5] List(SparseUnivariatePolynomial(D6)) -> 
--R            SparseUnivariatePolynomial(D6)
--R             from PolynomialGcdPackage(D3,D4,D5,D6)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has EUCDOM and 
--R            D6 has POLYCAT(D5,D3,D4)
--R   [6] (D1,D1) -> D1 from PseudoRemainderSequence(D2,D1)
--R             if D2 has GCDDOM and D2 has INTDOM and D1 has UPOLYC(D2)
--R         
--R
--RExamples of gcd from GcdDomain
--R
--R
--RExamples of gcd from HeuGcd
--R
--Rgcd([671*671*x^2-1,671*671*x^2+2*671*x+1]) 
--Rgcd([7*x^2+1,(7*x^2+1)^2])
--R
--R
--RExamples of gcd from ModularDistinctDegreeFactorizer
--R
--R
--RExamples of gcd from NonNegativeInteger
--R
--R
--RExamples of gcd from PolynomialGcdPackage
--R
--Rp1:=(x+1)*(x+6) 
--Rp2:=(x+1)*(x-6) 
--Rgcd(p1,p2)
--R
--R
--RExamples of gcd from PositiveInteger
--R
--R
--RExamples of gcd from U32VectorPolynomialOperations
--R
--R
--RExamples of gcd from PseudoRemainderSequence
--R
--R
--RExamples of gcd from RecursivePolynomialCategory
--R
--E 1103

--S 1104 of 3320
)d op gcdBasis
--R 
--R
--RThere is one exposed function called gcdBasis :
--R   [1] List(D3) -> List(D3)
--R             from CylindricalAlgebraicDecompositionUtilities(D2,D3)
--R             if D3 has UPOLYC(D2) and D2 has GCDDOM
--R
--RExamples of gcdBasis from CylindricalAlgebraicDecompositionUtilities
--R
--E 1104

--S 1105 of 3320
)d op gcdBasisAdd
--R 
--R
--RThere is one exposed function called gcdBasisAdd :
--R   [1] (D2,List(D2)) -> List(D2)
--R             from CylindricalAlgebraicDecompositionUtilities(D3,D2)
--R             if D2 has UPOLYC(D3) and D3 has GCDDOM
--R
--RExamples of gcdBasisAdd from CylindricalAlgebraicDecompositionUtilities
--R
--E 1105

--S 1106 of 3320
)d op gcdcofact
--R 
--R
--RThere is one unexposed function called gcdcofact :
--R   [1] List(D2) -> List(D2) from HeuGcd(D2) if D2 has UPOLYC(INT)
--R
--RExamples of gcdcofact from HeuGcd
--R
--E 1106

--S 1107 of 3320
)d op gcdcofactprim
--R 
--R
--RThere is one unexposed function called gcdcofactprim :
--R   [1] List(D2) -> List(D2) from HeuGcd(D2) if D2 has UPOLYC(INT)
--R
--RExamples of gcdcofactprim from HeuGcd
--R
--E 1107

--S 1108 of 3320
)d op gcdPolynomial
--R 
--R
--RThere are 2 exposed functions called gcdPolynomial :
--R   [1] (SparseUnivariatePolynomial(D),SparseUnivariatePolynomial(D))
--R             -> SparseUnivariatePolynomial(D)
--R             from D if D has GCDDOM
--R   [2] (SparseUnivariatePolynomial(D),SparseUnivariatePolynomial(D))
--R             -> SparseUnivariatePolynomial(D)
--R             from D if D has PFECAT
--R
--RThere is one unexposed function called gcdPolynomial :
--R   [1] (SparseUnivariatePolynomial(D5),SparseUnivariatePolynomial(D5))
--R             -> SparseUnivariatePolynomial(D5)
--R             from GeneralPolynomialGcdPackage(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D4,D2,D3) and D2 has OAMONS and D3 has 
--R            ORDSET and D4 has PFECAT
--R
--RExamples of gcdPolynomial from GcdDomain
--R
--R
--RExamples of gcdPolynomial from GeneralPolynomialGcdPackage
--R
--R
--RExamples of gcdPolynomial from PolynomialFactorizationExplicit
--R
--E 1108

--S 1109 of 3320
)d op gcdprim
--R 
--R
--RThere is one unexposed function called gcdprim :
--R   [1] List(D1) -> D1 from HeuGcd(D1) if D1 has UPOLYC(INT)
--R
--RExamples of gcdprim from HeuGcd
--R
--E 1109

--S 1110 of 3320
)d op gcdPrimitive
--R 
--R
--RThere are 3 unexposed functions called gcdPrimitive :
--R   [1] (D1,D1) -> D1 from PolynomialGcdPackage(D2,D3,D4,D1)
--R             if D2 has OAMONS and D3 has ORDSET and D4 has EUCDOM and 
--R            D1 has POLYCAT(D4,D2,D3)
--R   [2] (SparseUnivariatePolynomial(D5),SparseUnivariatePolynomial(D5))
--R             -> SparseUnivariatePolynomial(D5)
--R             from PolynomialGcdPackage(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D4,D2,D3) and D2 has OAMONS and D3 has 
--R            ORDSET and D4 has EUCDOM
--R   [3] List(D1) -> D1 from PolynomialGcdPackage(D3,D4,D5,D1)
--R             if D1 has POLYCAT(D5,D3,D4) and D3 has OAMONS and D4 has 
--R            ORDSET and D5 has EUCDOM
--R
--RExamples of gcdPrimitive from PolynomialGcdPackage
--R
--E 1110

--S 1111 of 3320
)d op gderiv
--R 
--R
--RThere is one unexposed function called gderiv :
--R   [1] ((Integer -> D3),Stream(D3)) -> Stream(D3)
--R             from StreamTaylorSeriesOperations(D3) if D3 has RING
--R
--RExamples of gderiv from StreamTaylorSeriesOperations
--R
--E 1111

--S 1112 of 3320
)d op GE
--R 
--R
--RThere is one exposed function called GE :
--R   [1] (Union(I: Expression(Integer),F: Expression(Float),CF: 
--R            Expression(Complex(Float)),switch: Switch),Union(I: Expression(
--R            Integer),F: Expression(Float),CF: Expression(Complex(Float)),
--R            switch: Switch)) -> Switch
--R             from Switch
--R
--RExamples of GE from Switch
--R
--E 1112

--S 1113 of 3320
)d op generalCoefficient
--R 
--R
--RThere is one exposed function called generalCoefficient :
--R   [1] (((NonNegativeInteger,NonNegativeInteger,D6) -> D1),Vector(D6),
--R            NonNegativeInteger,Vector(SparseUnivariatePolynomial(D1))) -> D1
--R             from FractionFreeFastGaussian(D1,D6)
--R             if D6 has AMR(D1,NNI) and D1 has Join(IntegralDomain,
--R            GcdDomain)
--R
--RExamples of generalCoefficient from FractionFreeFastGaussian
--R
--E 1113

--S 1114 of 3320
)d op generalInfiniteProduct
--R 
--R
--RThere are 3 exposed functions called generalInfiniteProduct :
--R   [1] (D1,Integer,Integer) -> D1 from 
--R            InfiniteProductCharacteristicZero(D3,D1)
--R             if D3 has Join(IntegralDomain,CharacteristicZero) and D1
--R             has UTSCAT(D3)
--R   [2] (D1,Integer,Integer) -> D1 from InfiniteProductFiniteField(D3,D4
--R            ,D5,D1)
--R             if D3 has Join(Field,Finite,ConvertibleTo(Integer)) and D4
--R             has UPOLYC(D3) and D5 has MONOGEN(D3,D4) and D1 has UTSCAT
--R            (D5)
--R   [3] (D1,Integer,Integer) -> D1 from InfiniteProductPrimeField(D3,D1)
--R             if D3 has Join(Field,Finite,ConvertibleTo(Integer)) and D1
--R             has UTSCAT(D3)
--R
--RThere is one unexposed function called generalInfiniteProduct :
--R   [1] (Stream(D3),Integer,Integer) -> Stream(D3) from 
--R            StreamInfiniteProduct(D3)
--R             if D3 has Join(IntegralDomain,CharacteristicZero)
--R
--RExamples of generalInfiniteProduct from InfiniteProductCharacteristicZero
--R
--R
--RExamples of generalInfiniteProduct from InfiniteProductFiniteField
--R
--R
--RExamples of generalInfiniteProduct from InfiniteProductPrimeField
--R
--R
--RExamples of generalInfiniteProduct from StreamInfiniteProduct
--R
--E 1114

--S 1115 of 3320
)d op generalInterpolation
--R 
--R
--RThere are 4 exposed functions called generalInterpolation :
--R   [1] (List(D6),((NonNegativeInteger,NonNegativeInteger,D7) -> D6),
--R            Vector(D8),List(NonNegativeInteger)) -> Matrix(
--R            SparseUnivariatePolynomial(D6))
--R             from FractionFreeFastGaussianFractions(D6,D7,D8)
--R             if D6 has Join(IntegralDomain,GcdDomain) and D7 has FAMR(
--R            D6,NNI) and D8 has FAMR(FRAC(D6),NNI)
--R   [2] (List(D6),((NonNegativeInteger,NonNegativeInteger,D7) -> D6),
--R            Vector(D8),NonNegativeInteger,NonNegativeInteger) -> Stream(
--R            Matrix(SparseUnivariatePolynomial(D6)))
--R             from FractionFreeFastGaussianFractions(D6,D7,D8)
--R             if D6 has Join(IntegralDomain,GcdDomain) and D7 has FAMR(
--R            D6,NNI) and D8 has FAMR(FRAC(D6),NNI)
--R   [3] (List(D6),((NonNegativeInteger,NonNegativeInteger,D7) -> D6),
--R            Vector(D7),List(NonNegativeInteger)) -> Matrix(
--R            SparseUnivariatePolynomial(D6))
--R             from FractionFreeFastGaussian(D6,D7)
--R             if D6 has Join(IntegralDomain,GcdDomain) and D7 has AMR(D6
--R            ,NNI)
--R   [4] (List(D6),((NonNegativeInteger,NonNegativeInteger,D7) -> D6),
--R            Vector(D7),NonNegativeInteger,NonNegativeInteger) -> Stream(
--R            Matrix(SparseUnivariatePolynomial(D6)))
--R             from FractionFreeFastGaussian(D6,D7)
--R             if D6 has Join(IntegralDomain,GcdDomain) and D7 has AMR(D6
--R            ,NNI)
--R
--RExamples of generalInterpolation from FractionFreeFastGaussianFractions
--R
--R
--RExamples of generalInterpolation from FractionFreeFastGaussian
--R
--E 1115

--S 1116 of 3320 done
)d op generalizedContinuumHypothesisAssumed
--R 
--R
--RThere is one exposed function called generalizedContinuumHypothesisAssumed :
--R   [1] Boolean -> Boolean from CardinalNumber
--R
--RExamples of generalizedContinuumHypothesisAssumed from CardinalNumber
--R
--RgeneralizedContinuumHypothesisAssumed true 
--Ra:=Aleph 0 
--Rc:=2**a 
--Rf:=2**c
--R
--E 1116

--S 1117 of 3320
)d op generalizedContinuumHypothesisAssumed?
--R 
--R
--RThere is one exposed function called generalizedContinuumHypothesisAssumed? :
--R   [1]  -> Boolean from CardinalNumber
--R
--RExamples of generalizedContinuumHypothesisAssumed? from CardinalNumber
--R
--RgeneralizedContinuumHypothesisAssumed?
--R
--E 1117

--S 1118 of 3320
)d op generalizedEigenvector
--R 
--R
--RThere are 2 exposed functions called generalizedEigenvector :
--R   [1] (Union(Fraction(Polynomial(D5)),SuchThat(Symbol,Polynomial(D5)))
--R            ,Matrix(Fraction(Polynomial(D5))),NonNegativeInteger,
--R            NonNegativeInteger) -> List(Matrix(Fraction(Polynomial(D5))))
--R             from EigenPackage(D5) if D5 has GCDDOM
--R   [2] (Record(eigval: Union(Fraction(Polynomial(D4)),SuchThat(Symbol,
--R            Polynomial(D4))),eigmult: NonNegativeInteger,eigvec: List(Matrix(
--R            Fraction(Polynomial(D4))))),Matrix(Fraction(Polynomial(D4)))) -> 
--R            List(Matrix(Fraction(Polynomial(D4))))
--R             from EigenPackage(D4) if D4 has GCDDOM
--R
--RExamples of generalizedEigenvector from EigenPackage
--R
--E 1118

--S 1119 of 3320
)d op generalizedEigenvectors
--R 
--R
--RThere is one exposed function called generalizedEigenvectors :
--R   [1] Matrix(Fraction(Polynomial(D3))) -> List(Record(eigval: Union(
--R            Fraction(Polynomial(D3)),SuchThat(Symbol,Polynomial(D3))),
--R            geneigvec: List(Matrix(Fraction(Polynomial(D3))))))
--R             from EigenPackage(D3) if D3 has GCDDOM
--R
--RExamples of generalizedEigenvectors from EigenPackage
--R
--E 1119

--S 1120 of 3320
)d op generalizedInverse
--R 
--R
--RThere is one unexposed function called generalizedInverse :
--R   [1] D1 -> D1 from InnerMatrixLinearAlgebraFunctions(D2,D3,D4,D1)
--R             if D2 has FIELD and D3 has FLAGG(D2) and D4 has FLAGG(D2) 
--R            and D1 has MATCAT(D2,D3,D4)
--R
--RExamples of generalizedInverse from InnerMatrixLinearAlgebraFunctions
--R
--E 1120

--S 1121 of 3320
)d op generalLambert
--R 
--R
--RThere are 2 exposed functions called generalLambert :
--R   [1] (UnivariateFormalPowerSeries(D2),Integer,Integer) -> 
--R            UnivariateFormalPowerSeries(D2)
--R             from UnivariateFormalPowerSeries(D2) if D2 has RING
--R   [2] (UnivariateTaylorSeriesCZero(D2,D3),Integer,Integer) -> 
--R            UnivariateTaylorSeriesCZero(D2,D3)
--R             from UnivariateTaylorSeriesCZero(D2,D3) if D2 has RING and
--R            D3: SYMBOL
--R
--RThere are 2 unexposed functions called generalLambert :
--R   [1] (Stream(D3),Integer,Integer) -> Stream(D3)
--R             from StreamTaylorSeriesOperations(D3) if D3 has RING
--R   [2] (UnivariateTaylorSeries(D2,D3,D4),Integer,Integer) -> 
--R            UnivariateTaylorSeries(D2,D3,D4)
--R             from UnivariateTaylorSeries(D2,D3,D4)
--R             if D2 has RING and D3: SYMBOL and D4: D2
--R
--RExamples of generalLambert from StreamTaylorSeriesOperations
--R
--R
--RExamples of generalLambert from UnivariateFormalPowerSeries
--R
--R
--RExamples of generalLambert from UnivariateTaylorSeries
--R
--R
--RExamples of generalLambert from UnivariateTaylorSeriesCZero
--R
--E 1121

--S 1122 of 3320
)d op generalPosition
--R 
--R
--RThere is one exposed function called generalPosition :
--R   [1] (PolynomialIdeals(D3,D4,D5,D6),List(D5)) -> Record(mval: Matrix(
--R            D3),invmval: Matrix(D3),genIdeal: PolynomialIdeals(D3,D4,D5,D6))
--R             from PolynomialIdeals(D3,D4,D5,D6)
--R             if D5 has ORDSET and D3 has FIELD and D4 has OAMONS and D6
--R             has POLYCAT(D3,D4,D5)
--R
--RExamples of generalPosition from PolynomialIdeals
--R
--E 1122

--S 1123 of 3320
)d op generalSqFr
--R 
--R
--RThere is one unexposed function called generalSqFr :
--R   [1] SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3)) -> 
--R            Factored(SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3
--R            )))
--R             from TwoFactorize(D3) if D3 has FFIELDC
--R
--RExamples of generalSqFr from TwoFactorize
--R
--E 1123

--S 1124 of 3320
)d op generalTwoFactor
--R 
--R
--RThere is one unexposed function called generalTwoFactor :
--R   [1] SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3)) -> 
--R            Factored(SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3
--R            )))
--R             from TwoFactorize(D3) if D3 has FFIELDC
--R
--RExamples of generalTwoFactor from TwoFactorize
--R
--E 1124

--S 1125 of 3320
)d op generate
--R 
--R
--RThere are 4 exposed functions called generate :
--R   [1] (NonNegativeInteger,NonNegativeInteger) -> Vector(List(Integer))
--R             from HallBasis
--R   [2] ((D2 -> D2),D2) -> InfiniteTuple(D2) from InfiniteTuple(D2) if 
--R            D2 has TYPE
--R   [3] ((D2 -> D2),D2) -> Stream(D2) from Stream(D2) if D2 has TYPE
--R   [4] (() -> D2) -> Stream(D2) from Stream(D2) if D2 has TYPE
--R
--RExamples of generate from HallBasis
--R
--R
--RExamples of generate from InfiniteTuple
--R
--R
--RExamples of generate from Stream
--R
--Rf(x:Integer):Integer == x+10 
--Rgenerate(f,10)
--R
--Rf():Integer == 1 
--Rgenerate(f)
--R
--E 1125

--S 1126 of 3320
)d op generateIrredPoly
--R 
--R
--RThere is one unexposed function called generateIrredPoly :
--R   [1] PositiveInteger -> SparseUnivariatePolynomial(D3)
--R             from IrredPolyOverFiniteField(D3) if D3 has FFIELDC
--R
--RExamples of generateIrredPoly from IrredPolyOverFiniteField
--R
--E 1126

--S 1127 of 3320
)d op generator
--R 
--R
--RThere are 4 exposed functions called generator :
--R   [1]  -> D from D if D has FAXF(D1) and D1 has FINITE and D1 has 
--R            FIELD
--R   [2] D -> Union(D1,"failed") from D
--R             if D has FDIVCAT(D2,D3,D4,D1) and D2 has FIELD and D3 has 
--R            UPOLYC(D2) and D4 has UPOLYC(FRAC(D3)) and D1 has FFCAT(D2,
--R            D3,D4)
--R   [3] NonNegativeInteger -> FreeNilpotentLie(D2,D3,D4)
--R             from FreeNilpotentLie(D2,D3,D4)
--R             if D2: NNI and D3: NNI and D4 has COMRING
--R   [4]  -> D from D if D1 has COMRING and D has MONOGEN(D1,D2) and D2
--R             has UPOLYC(D1)
--R
--RThere are 2 unexposed functions called generator :
--R   [1] NonNegativeInteger -> AntiSymm(D2,D3) from AntiSymm(D2,D3)
--R             if D2 has RING and D3: LIST(SYMBOL)
--R   [2] NonNegativeInteger -> DeRhamComplex(D2,D3) from DeRhamComplex(D2
--R            ,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R
--RExamples of generator from AntiSymm
--R
--RAS:=AntiSymm(Integer,[x,y,z]) 
--R[dx,dy,dz]:=[generator(i)$AS for i in 1..3]
--R
--R
--RExamples of generator from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--R[dx,dy,dz] := [generator(i)$der for i in 1..3]
--R
--R
--RExamples of generator from FiniteAlgebraicExtensionField
--R
--R
--RExamples of generator from FiniteDivisorCategory
--R
--R
--RExamples of generator from FreeNilpotentLie
--R
--R
--RExamples of generator from MonogenicAlgebra
--R
--E 1127

--S 1128 of 3320
)d op generators
--R 
--R
--RThere are 2 exposed functions called generators :
--R   [1] PolynomialIdeals(D2,D3,D4,D5) -> List(D5)
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R   [2] PermutationGroup(D2) -> List(Permutation(D2)) from 
--R            PermutationGroup(D2)
--R             if D2 has SETCAT
--R
--RExamples of generators from PolynomialIdeals
--R
--R
--RExamples of generators from PermutationGroup
--R
--E 1128

--S 1129 of 3320
--R------------------------------)d op generic (System Error)
--E 1129

--S 1130 of 3320
)d op generic?
--R 
--R
--RThere is one unexposed function called generic? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of generic? from Pattern
--R
--E 1130

--S 1131 of 3320
--R---------------------------)d op genericLeftDiscriminant (System Error)
--E 1131

--S 1132 of 3320
--R---------------------------)d op genericLeftMinimalPolynomial (System Error)
--E 1132

--S 1133 of 3320
--R---------------------------)d op genericLeftNorm (System Error)
--E 1133

--S 1134 of 3320
--R---------------------------)d op genericLeftTrace (System Error)
--E 1134

--S 1135 of 3320
--R---------------------------)d op genericLeftTraceForm (System Error)
--E 1135

--S 1136 of 3320
)d op genericPosition
--R 
--R
--RThere is one unexposed function called genericPosition :
--R   [1] (List(DistributedMultivariatePolynomial(D4,D5)),List(
--R            OrderedVariableList(D4))) -> Record(dpolys: List(
--R            DistributedMultivariatePolynomial(D4,D5)),coords: List(Integer))
--R             from GroebnerSolve(D4,D5,D6)
--R             if D4: LIST(SYMBOL) and D5 has GCDDOM and D6 has GCDDOM
--R         
--R
--RExamples of genericPosition from GroebnerSolve
--R
--E 1136

--S 1137 of 3320
--R---------------------------)d op genericRightDiscriminant (System Error)
--E 1137

--S 1138 of 3320
--R------------------------)d op genericRightMinimalPolynomial (System Error)
--E 1138

--S 1139 of 3320
--R------------------------)d op genericRightNorm (System Error)
--E 1139

--S 1140 of 3320
--R------------------------)d op genericRightTrace (System Error)
--E 1140

--S 1141 of 3320
--R------------------------)d op genericRightTraceForm (System Error)
--E 1141

--S 1142 of 3320
)d op genus
--R 
--R
--RThere are 5 exposed functions called genus :
--R   [1] D6 -> NonNegativeInteger
--R             from DesingTreePackage(D7,D8,D6,D9,D10,D11,D12,D1,D2,D3,D4
--R            )
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D6 has POLYCAT(D7
--R            ,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8),NNI) and D10 has 
--R            PRSPCAT(D7) and D11 has LOCPOWC(D7) and D12 has PLACESC(D7,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D7,D8,D6,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2]  -> NonNegativeInteger from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R   [3]  -> NonNegativeInteger
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12 has PLACESC(D6,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [4]  -> NonNegativeInteger
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [5]  -> NonNegativeInteger from PackageForAlgebraicFunctionField(D2,
--R            D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RThere is one unexposed function called genus :
--R   [1]  -> NonNegativeInteger from FunctionFieldCategory&(D2,D3,D4,D5)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D5 has UPOLYC(FRAC
--R            (D4)) and D2 has FFCAT(D3,D4,D5)
--R
--RExamples of genus from DesingTreePackage
--R
--R
--RExamples of genus from FunctionFieldCategory&
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--Rgenus()$R
--R
--R
--RExamples of genus from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--Rgenus()$R
--R
--R
--RExamples of genus from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of genus from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of genus from PackageForAlgebraicFunctionField
--R
--E 1142

--S 1143 of 3320
)d op genusNeg
--R 
--R
--RThere are 4 exposed functions called genusNeg :
--R   [1] D6 -> Integer from DesingTreePackage(D7,D8,D6,D9,D10,D11,D12,D1,
--R            D2,D3,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D6 has POLYCAT(D7
--R            ,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8),NNI) and D10 has 
--R            PRSPCAT(D7) and D11 has LOCPOWC(D7) and D12 has PLACESC(D7,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D7,D8,D6,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2]  -> Integer
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12 has PLACESC(D6,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [3]  -> Integer
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [4]  -> Integer from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of genusNeg from DesingTreePackage
--R
--R
--RExamples of genusNeg from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of genusNeg from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of genusNeg from PackageForAlgebraicFunctionField
--R
--E 1143

--S 1144 of 3320
)d op genusTree
--R 
--R
--RThere is one exposed function called genusTree :
--R   [1] (NonNegativeInteger,List(D4)) -> NonNegativeInteger
--R             from DesingTreePackage(D8,D9,D10,D11,D12,D13,D1,D2,D3,D4,
--R            D5)
--R             if D4 has DSTRCAT(D3) and D3 has INFCLCT(D8,D9,D10,D11,D12
--R            ,D13,D1,D2,D5) and D5 has BLMETCT and D8 has FIELD and D9: 
--R            LIST(SYMBOL) and D10 has POLYCAT(D8,D11,OVAR(D9)) and D11
--R             has DIRPCAT(#(D9),NNI) and D12 has PRSPCAT(D8) and D13
--R             has LOCPOWC(D8) and D1 has PLACESC(D8,D13) and D2 has 
--R            DIVCAT(D1)
--R
--RExamples of genusTree from DesingTreePackage
--R
--E 1144

--S 1145 of 3320
)d op genusTreeNeg
--R 
--R
--RThere is one exposed function called genusTreeNeg :
--R   [1] (NonNegativeInteger,List(D5)) -> Integer
--R             from DesingTreePackage(D10,D11,D12,D13,D14,D1,D2,D3,D4,D5,
--R            D6)
--R             if D5 has DSTRCAT(D4) and D4 has INFCLCT(D10,D11,D12,D13,
--R            D14,D1,D2,D3,D6) and D6 has BLMETCT and D10 has FIELD and 
--R            D11: LIST(SYMBOL) and D12 has POLYCAT(D10,D13,OVAR(D11)) 
--R            and D13 has DIRPCAT(#(D11),NNI) and D14 has PRSPCAT(D10) 
--R            and D1 has LOCPOWC(D10) and D2 has PLACESC(D10,D1) and D3
--R             has DIVCAT(D2)
--R
--RExamples of genusTreeNeg from DesingTreePackage
--R
--E 1145

--S 1146 of 3320
)d op geometric
--R 
--R
--RThere is one unexposed function called geometric :
--R   [1] RationalNumber -> (() -> Integer) from 
--R            RandomIntegerDistributions
--R
--RExamples of geometric from RandomIntegerDistributions
--R
--E 1146

--S 1147 of 3320 done
)d op getAncestors
--R 
--R
--RThere is one exposed function called getAncestors :
--R   [1] Symbol -> Set(Symbol) from ApplicationProgramInterface
--R
--RExamples of getAncestors from ApplicationProgramInterface
--R
--RgetAncestors 'IndexedAggregate
--R
--E 1147

--S 1148 of 3320
)d op getBadValues
--R 
--R
--RThere is one unexposed function called getBadValues :
--R   [1] Pattern(D2) -> List(Any) from Pattern(D2) if D2 has SETCAT
--R
--RExamples of getBadValues from Pattern
--R
--E 1148

--S 1149 of 3320
)d op getButtonValue
--R 
--R
--RThere is one exposed function called getButtonValue :
--R   [1] (String,String) -> Float from AttributeButtons
--R
--RExamples of getButtonValue from AttributeButtons
--R
--E 1149

--S 1150 of 3320
)d op getCode
--R 
--R
--RThere is one exposed function called getCode :
--R   [1] FortranCode -> SExpression from FortranCode
--R
--RExamples of getCode from FortranCode
--R
--E 1150

--S 1151 of 3320
)d op getCurve
--R 
--R
--RThere is one unexposed function called getCurve :
--R   [1] TubePlot(D1) -> D1 from TubePlot(D1) if D1 has PSCURVE
--R
--RExamples of getCurve from TubePlot
--R
--E 1151

--S 1152 of 3320
)d op getDatabase
--R 
--R
--RThere are 2 exposed functions called getDatabase :
--R   [1] (String,String) -> String from AxiomServer
--R   [2] String -> Database(IndexCard) from OperationsQuery
--R
--RExamples of getDatabase from AxiomServer
--R
--R
--RExamples of getDatabase from OperationsQuery
--R
--E 1152

--S 1153 of 3320 done
)d op getDomains
--R 
--R
--RThere is one exposed function called getDomains :
--R   [1] Symbol -> Set(Symbol) from ApplicationProgramInterface
--R
--RExamples of getDomains from ApplicationProgramInterface
--R
--RgetDomains 'IndexedAggregate
--R
--E 1153

--S 1154 of 3320
)d op getEq
--R 
--R
--RThere is one exposed function called getEq :
--R   [1] D1 -> D1 from RecurrenceOperator(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
--R            InputForm)) and D1 has Join(FunctionSpace(D2),AbelianMonoid
--R            ,RetractableTo(Integer),RetractableTo(Symbol),
--R            PartialDifferentialRing(Symbol),CombinatorialOpsCategory)
--R         
--R
--RExamples of getEq from RecurrenceOperator
--R
--E 1154

--S 1155 of 3320
)d op getExplanations
--R 
--R
--RThere is one exposed function called getExplanations :
--R   [1] (RoutinesTable,String) -> List(String) from RoutinesTable
--R
--RExamples of getExplanations from RoutinesTable
--R
--E 1155

--S 1156 of 3320
)d op getGoodPrime
--R 
--R
--RThere is one unexposed function called getGoodPrime :
--R   [1] Integer -> PositiveInteger from PointsOfFiniteOrderTools(D3,D4)
--R             if D3 has UPOLYC(FRAC(INT)) and D4 has UPOLYC(FRAC(D3))
--R         
--R
--RExamples of getGoodPrime from PointsOfFiniteOrderTools
--R
--E 1156

--S 1157 of 3320
)d op getGraph
--R 
--R
--RThere is one unexposed function called getGraph :
--R   [1] (TwoDimensionalViewport,PositiveInteger) -> GraphImage
--R             from TwoDimensionalViewport
--R
--RExamples of getGraph from TwoDimensionalViewport
--R
--E 1157

--S 1158 of 3320
)d op gethi
--R 
--R
--RThere are 3 exposed functions called gethi :
--R   [1] Segment(OrderedCompletion(DoubleFloat)) -> DoubleFloat
--R             from d01AgentsPackage
--R   [2] Segment(OrderedCompletion(DoubleFloat)) -> DoubleFloat
--R             from ExpertSystemContinuityPackage
--R   [3] Segment(OrderedCompletion(DoubleFloat)) -> DoubleFloat
--R             from ExpertSystemToolsPackage
--R
--RExamples of gethi from d01AgentsPackage
--R
--R
--RExamples of gethi from ExpertSystemContinuityPackage
--R
--R
--RExamples of gethi from ExpertSystemToolsPackage
--R
--E 1158

--S 1159 of 3320
)d op getlo
--R 
--R
--RThere are 3 exposed functions called getlo :
--R   [1] Segment(OrderedCompletion(DoubleFloat)) -> DoubleFloat
--R             from d01AgentsPackage
--R   [2] Segment(OrderedCompletion(DoubleFloat)) -> DoubleFloat
--R             from ExpertSystemContinuityPackage
--R   [3] Segment(OrderedCompletion(DoubleFloat)) -> DoubleFloat
--R             from ExpertSystemToolsPackage
--R
--RExamples of getlo from d01AgentsPackage
--R
--R
--RExamples of getlo from ExpertSystemContinuityPackage
--R
--R
--RExamples of getlo from ExpertSystemToolsPackage
--R
--E 1159

--S 1160 of 3320
)d op getMatch
--R 
--R
--RThere is one unexposed function called getMatch :
--R   [1] (Pattern(D3),PatternMatchResult(D3,D1)) -> Union(D1,"failed")
--R             from PatternMatchResult(D3,D1) if D3 has SETCAT and D1
--R             has SETCAT
--R
--RExamples of getMatch from PatternMatchResult
--R
--E 1160

--S 1161 of 3320
)d op getMeasure
--R 
--R
--RThere is one exposed function called getMeasure :
--R   [1] (RoutinesTable,Symbol) -> Float from RoutinesTable
--R
--RExamples of getMeasure from RoutinesTable
--R
--E 1161

--S 1162 of 3320
)d op getMultiplicationMatrix
--R 
--R
--RThere is one exposed function called getMultiplicationMatrix :
--R   [1]  -> Matrix(PrimeField(D2)) from FiniteFieldNormalBasis(D2,D3)
--R             if D2: PI and D3: PI
--R
--RThere are 2 unexposed functions called getMultiplicationMatrix :
--R   [1]  -> Matrix(D2) from FiniteFieldNormalBasisExtensionByPolynomial(
--R            D2,D3)
--R             if D2 has FFIELDC and D3: Union(SUP(D2),VECTOR(LIST(
--R            Record(value: D2,index: SingleInteger))))
--R   [2]  -> Matrix(D2) from FiniteFieldNormalBasisExtension(D2,D3)
--R             if D2 has FFIELDC and D3: PI
--R
--RExamples of getMultiplicationMatrix from FiniteFieldNormalBasis
--R
--R
--RExamples of getMultiplicationMatrix from FiniteFieldNormalBasisExtensionByPolynomial
--R
--R
--RExamples of getMultiplicationMatrix from FiniteFieldNormalBasisExtension
--R
--E 1162

--S 1163 of 3320
)d op getMultiplicationTable
--R 
--R
--RThere is one exposed function called getMultiplicationTable :
--R   [1]  -> Vector(List(Record(value: PrimeField(D2),index: 
--R            SingleInteger)))
--R             from FiniteFieldNormalBasis(D2,D3) if D2: PI and D3: PI
--R         
--R
--RThere are 2 unexposed functions called getMultiplicationTable :
--R   [1]  -> Vector(List(Record(value: D2,index: SingleInteger)))
--R             from FiniteFieldNormalBasisExtensionByPolynomial(D2,D3)
--R             if D2 has FFIELDC and D3: Union(SUP(D2),VECTOR(LIST(
--R            Record(value: D2,index: SingleInteger))))
--R   [2]  -> Vector(List(Record(value: D2,index: SingleInteger)))
--R             from FiniteFieldNormalBasisExtension(D2,D3) if D2 has 
--R            FFIELDC and D3: PI
--R
--RExamples of getMultiplicationTable from FiniteFieldNormalBasis
--R
--R
--RExamples of getMultiplicationTable from FiniteFieldNormalBasisExtensionByPolynomial
--R
--R
--RExamples of getMultiplicationTable from FiniteFieldNormalBasisExtension
--R
--E 1163

--S 1164 of 3320
)d op getOp
--R 
--R
--RThere is one exposed function called getOp :
--R   [1] D2 -> BasicOperator from RecurrenceOperator(D3,D2)
--R             if D3 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
--R            InputForm)) and D2 has Join(FunctionSpace(D3),AbelianMonoid
--R            ,RetractableTo(Integer),RetractableTo(Symbol),
--R            PartialDifferentialRing(Symbol),CombinatorialOpsCategory)
--R         
--R
--RExamples of getOp from RecurrenceOperator
--R
--E 1164

--S 1165 of 3320
)d op getOrder
--R 
--R
--RThere is one unexposed function called getOrder :
--R   [1]  -> Record(low: List(D2),high: List(D2))
--R             from UserDefinedPartialOrdering(D2) if D2 has SETCAT
--R
--RExamples of getOrder from UserDefinedPartialOrdering
--R
--E 1165

--S 1166 of 3320
)d op getPickedPoints
--R 
--R
--RThere is one unexposed function called getPickedPoints :
--R   [1] TwoDimensionalViewport -> List(Point(DoubleFloat))
--R             from TwoDimensionalViewport
--R
--RExamples of getPickedPoints from TwoDimensionalViewport
--R
--E 1166

--S 1167 of 3320
)d op getRef
--R 
--R
--RThere is one unexposed function called getRef :
--R   [1] InnerSparseUnivariatePowerSeries(D2) -> Reference(
--R            OrderedCompletion(Integer))
--R             from InnerSparseUnivariatePowerSeries(D2) if D2 has RING
--R         
--R
--RExamples of getRef from InnerSparseUnivariatePowerSeries
--R
--E 1167

--S 1168 of 3320
)d op getShiftRec
--R 
--R
--RThere is one exposed function called getShiftRec :
--R   [1] (BasicOperator,Kernel(D6),Symbol) -> Union(Integer,"failed")
--R             from RecurrenceOperator(D5,D6)
--R             if D6 has Join(FunctionSpace(D5),AbelianMonoid,
--R            RetractableTo(Integer),RetractableTo(Symbol),
--R            PartialDifferentialRing(Symbol),CombinatorialOpsCategory) 
--R            and D5 has RING and D5 has Join(OrderedSet,IntegralDomain,
--R            ConvertibleTo(InputForm))
--R
--RExamples of getShiftRec from RecurrenceOperator
--R
--E 1168

--S 1169 of 3320 done
)d op getSmgl
--R 
--R
--RThere is one exposed function called getSmgl :
--R   [1] BasicStochasticDifferential -> Union(Symbol,"failed")
--R             from BasicStochasticDifferential
--R
--RExamples of getSmgl from BasicStochasticDifferential
--R
--Rintroduce!(t,dt) -- dt is a new stochastic differential 
--RgetSmgl(dt::BSD)
--R
--E 1169

--S 1170 of 3320
)d op getStream
--R 
--R
--RThere is one unexposed function called getStream :
--R   [1] InnerSparseUnivariatePowerSeries(D2) -> Stream(Record(k: Integer
--R            ,c: D2))
--R             from InnerSparseUnivariatePowerSeries(D2) if D2 has RING
--R         
--R
--RExamples of getStream from InnerSparseUnivariatePowerSeries
--R
--E 1170

--S 1171 of 3320
)d op getVariableOrder
--R 
--R
--RThere is one exposed function called getVariableOrder :
--R   [1]  -> Record(high: List(Symbol),low: List(Symbol))
--R             from UserDefinedVariableOrdering
--R
--RExamples of getVariableOrder from UserDefinedVariableOrdering
--R
--E 1171

--S 1172 of 3320
)d op getZechTable
--R 
--R
--RThere is one exposed function called getZechTable :
--R   [1]  -> PrimitiveArray(SingleInteger) from FiniteFieldCyclicGroup(D2
--R            ,D3)
--R             if D2: PI and D3: PI
--R
--RThere are 2 unexposed functions called getZechTable :
--R   [1]  -> PrimitiveArray(SingleInteger)
--R             from FiniteFieldCyclicGroupExtensionByPolynomial(D2,D3)
--R             if D2 has FFIELDC and D3: SUP(D2)
--R   [2]  -> PrimitiveArray(SingleInteger)
--R             from FiniteFieldCyclicGroupExtension(D2,D3) if D2 has 
--R            FFIELDC and D3: PI
--R
--RExamples of getZechTable from FiniteFieldCyclicGroup
--R
--R
--RExamples of getZechTable from FiniteFieldCyclicGroupExtensionByPolynomial
--R
--R
--RExamples of getZechTable from FiniteFieldCyclicGroupExtension
--R
--E 1172

--S 1173 of 3320
)d op GF2FG
--R 
--R
--RThere is one unexposed function called GF2FG :
--R   [1] Complex(D4) -> D1 from InnerTrigonometricManipulations(D3,D4,D1)
--R             if D4 has Join(FunctionSpace(D3),RadicalCategory,
--R            TranscendentalFunctionCategory) and D3 has Join(
--R            IntegralDomain,OrderedSet) and D1 has Join(FunctionSpace(
--R            Complex(D3)),RadicalCategory,TranscendentalFunctionCategory
--R            )
--R
--RExamples of GF2FG from InnerTrigonometricManipulations
--R
--E 1173

--S 1174 of 3320 done
)d op gnuDraw
--R 
--R
--RThere are 4 exposed functions called gnuDraw :
--R   [1] (Expression(Float),SegmentBinding(Float),String,List(DrawOption)
--R            ) -> Void
--R             from GnuDraw
--R   [2] (Expression(Float),SegmentBinding(Float),String) -> Void from 
--R            GnuDraw
--R   [3] (Expression(Float),SegmentBinding(Float),SegmentBinding(Float),
--R            String,List(DrawOption)) -> Void
--R             from GnuDraw
--R   [4] (Expression(Float),SegmentBinding(Float),SegmentBinding(Float),
--R            String) -> Void
--R             from GnuDraw
--R
--RExamples of gnuDraw from GnuDraw
--R
--RgnuDraw(sin(x)*cos(y),x=-6..4,y=-4..6,"out3d.dat") 
--R)sys gnuplot -persist out3d.dat 
--R)sys evince out2d.dat.ps -- linux 
--R)sys open out2d.dat.ps -- mac 
--R)sys firefox out2d.dat.ps -- everywhere
--R
--RgnuDraw(sin(x)*cos(y),x=-6..4,y=-4..6,"out3d.dat",title=="out3d") 
--R)sys gnuplot -persist out3d.dat 
--R)sys evince out2d.dat.ps -- linux 
--R)sys open out2d.dat.ps -- mac 
--R)sys firefox out2d.dat.ps -- everywhere
--R
--RgnuDraw(D(cos(exp(z))/exp(z^2),z),z=-5..5,"out2d.dat") 
--R)sys gnuplot -persist out2d.dat 
--R)sys evince out2d.dat.ps -- linux 
--R)sys open out2d.dat.ps -- mac 
--R)sys firefox out2d.dat.ps -- everywhere
--R
--RgnuDraw(D(cos(exp(z))/exp(z^2),z),z=-5..5,"out2d.dat",title=="out2d") 
--R)sys gnuplot -persist out2d.dat 
--R)sys evince out2d.dat.ps -- linux 
--R)sys open out2d.dat.ps -- mac 
--R)sys firefox out2d.dat.ps -- everywhere
--R
--E 1174

--S 1175 of 3320
)d op goodnessOfFit
--R 
--R
--RThere are 2 exposed functions called goodnessOfFit :
--R   [1] NumericalOptimizationProblem -> Result
--R             from AnnaNumericalOptimizationPackage
--R   [2] (List(Expression(Float)),List(Float)) -> Result
--R             from AnnaNumericalOptimizationPackage
--R
--RExamples of goodnessOfFit from AnnaNumericalOptimizationPackage
--R
--E 1175

--S 1176 of 3320
)d op goodPoint
--R 
--R
--RThere is one unexposed function called goodPoint :
--R   [1] (D2,D2) -> D1 from ChangeOfVariable(D1,D3,D2)
--R             if D3 has UPOLYC(D1) and D1 has UFD and D2 has UPOLYC(FRAC
--R            (D3))
--R
--RExamples of goodPoint from ChangeOfVariable
--R
--E 1176

--S 1177 of 3320
)d op goppaCode
--R 
--R
--RThere are 4 exposed functions called goppaCode :
--R   [1] (Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D3)),
--R            Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D3))) -> 
--R            Matrix(D3)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R            
--R   [2] (Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D4)),List
--R            (PlacesOverPseudoAlgebraicClosureOfFiniteField(D4))) -> Matrix(D4
--R            )
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D4,D5
--R            ,D6)
--R             if D4 has FFIELDC and D5: LIST(SYMBOL) and D6 has BLMETCT
--R            
--R   [3] (Divisor(Places(D3)),Divisor(Places(D3))) -> Matrix(D3)
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R   [4] (Divisor(Places(D4)),List(Places(D4))) -> Matrix(D4)
--R             from PackageForAlgebraicFunctionField(D4,D5,D6)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has BLMETCT
--R         
--R
--RExamples of goppaCode from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of goppaCode from PackageForAlgebraicFunctionField
--R
--E 1177

--S 1178 of 3320
)d op GospersMethod
--R 
--R
--RThere is one unexposed function called GospersMethod :
--R   [1] (D1,D2,(() -> D2)) -> Union(D1,"failed")
--R             from GosperSummationMethod(D4,D2,D5,D6,D1)
--R             if D2 has ORDSET and D4 has OAMONS and D5 has INTDOM and 
--R            D6 has POLYCAT(D5,D4,D2) and D1 has Join(RetractableTo(
--R            Fraction(Integer)),Field)with
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6
--R
--RExamples of GospersMethod from GosperSummationMethod
--R
--E 1178

--S 1179 of 3320
)d op goto
--R 
--R
--RThere is one exposed function called goto :
--R   [1] SingleInteger -> FortranCode from FortranCode
--R
--RExamples of goto from FortranCode
--R
--E 1179

--S 1180 of 3320
)d op gradient
--R 
--R
--RThere is one exposed function called gradient :
--R   [1] (D2,D3) -> Vector(D2) from MultiVariableCalculusFunctions(D4,D2,
--R            D5,D3)
--R             if D4 has SETCAT and D2 has PDRING(D4) and D5 has FLAGG(D2
--R            ) and D3 has FiniteLinearAggregate(D4)with
--R                 finiteAggregate
--R
--RExamples of gradient from MultiVariableCalculusFunctions
--R
--E 1180

--S 1181 of 3320
)d op graeffe
--R 
--R
--RThere is one unexposed function called graeffe :
--R   [1] D1 -> D1 from ComplexRootFindingPackage(D2,D1)
--R             if D2 has Join(Field,OrderedRing) and D1 has UPOLYC(
--R            COMPLEX(D2))
--R
--RExamples of graeffe from ComplexRootFindingPackage
--R
--E 1181

--S 1182 of 3320
)d op gramschmidt
--R 
--R
--RThere is one exposed function called gramschmidt :
--R   [1] List(Matrix(Expression(Integer))) -> List(Matrix(Expression(
--R            Integer)))
--R             from RadicalEigenPackage
--R
--RExamples of gramschmidt from RadicalEigenPackage
--R
--E 1182

--S 1183 of 3320
)d op graphCurves
--R 
--R
--RThere are 3 unexposed functions called graphCurves :
--R   [1] (List(List(Point(DoubleFloat))),Palette,Palette,PositiveInteger,
--R            List(DrawOption)) -> GraphImage
--R             from ViewportPackage
--R   [2] List(List(Point(DoubleFloat))) -> GraphImage from 
--R            ViewportPackage
--R   [3] (List(List(Point(DoubleFloat))),List(DrawOption)) -> GraphImage
--R             from ViewportPackage
--R
--RExamples of graphCurves from ViewportPackage
--R
--E 1183

--S 1184 of 3320
)d op graphImage
--R 
--R
--RThere is one unexposed function called graphImage :
--R   [1]  -> GraphImage from GraphImage
--R
--RExamples of graphImage from GraphImage
--R
--E 1184

--S 1185 of 3320
)d op graphs
--R 
--R
--RThere is one exposed function called graphs :
--R   [1] Integer -> SymmetricPolynomial(Fraction(Integer)) from 
--R            CycleIndicators
--R
--RThere is one unexposed function called graphs :
--R   [1] TwoDimensionalViewport -> Vector(Union(GraphImage,undefined))
--R             from TwoDimensionalViewport
--R
--RExamples of graphs from CycleIndicators
--R
--R
--RExamples of graphs from TwoDimensionalViewport
--R
--E 1185

--S 1186 of 3320
)d op graphState
--R 
--R
--RThere is one unexposed function called graphState :
--R   [1] (TwoDimensionalViewport,PositiveInteger,DoubleFloat,DoubleFloat,
--R            DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,Palette,
--R            Integer,Palette,Integer) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of graphState from TwoDimensionalViewport
--R
--E 1186

--S 1187 of 3320
)d op graphStates
--R 
--R
--RThere is one unexposed function called graphStates :
--R   [1] TwoDimensionalViewport -> Vector(Record(scaleX: DoubleFloat,
--R            scaleY: DoubleFloat,deltaX: DoubleFloat,deltaY: DoubleFloat,
--R            points: Integer,connect: Integer,spline: Integer,axes: Integer,
--R            axesColor: Palette,units: Integer,unitsColor: Palette,showing: 
--R            Integer))
--R             from TwoDimensionalViewport
--R
--RExamples of graphStates from TwoDimensionalViewport
--R
--E 1187

--S 1188 of 3320
)d op green
--R 
--R
--RThere is one exposed function called green :
--R   [1]  -> Color from Color
--R
--RExamples of green from Color
--R
--E 1188

--S 1189 of 3320
)d op groebgen
--R 
--R
--RThere is one unexposed function called groebgen :
--R   [1] List(DistributedMultivariatePolynomial(D3,D4)) -> Record(glbase
--R            : List(DistributedMultivariatePolynomial(D3,D4)),glval: List(
--R            Integer))
--R             from LinGroebnerPackage(D3,D4) if D3: LIST(SYMBOL) and D4
--R             has GCDDOM
--R
--RExamples of groebgen from LinGroebnerPackage
--R
--E 1189

--S 1190 of 3320
)d op groebner
--R 
--R
--RThere are 5 exposed functions called groebner :
--R   [1] List(D5) -> List(D5) from GroebnerPackage(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D2,D3,D4) and D2 has GCDDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [2] (List(D6),String) -> List(D6) from GroebnerPackage(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [3] (List(D6),String,String) -> List(D6) from GroebnerPackage(D3,D4,
--R            D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [4] PolynomialIdeals(D1,D2,D3,D4) -> PolynomialIdeals(D1,D2,D3,D4)
--R             from PolynomialIdeals(D1,D2,D3,D4)
--R             if D1 has FIELD and D2 has OAMONS and D3 has ORDSET and D4
--R             has POLYCAT(D1,D2,D3)
--R   [5] List(D6) -> List(D6) from InterfaceGroebnerPackage(D2,D3,D4,D5,
--R            D6)
--R             if D6 has POLYCAT(D2,D4,D5) and D2 has FIELD and D4 has 
--R            OAMONS and D5 has ORDSET and D3: LIST(SYMBOL)
--R
--RThere are 2 unexposed functions called groebner :
--R   [1] List(Polynomial(D2)) -> List(Polynomial(D2)) from 
--R            FGLMIfCanPackage(D2,D3)
--R             if D2 has GCDDOM and D3: LIST(SYMBOL)
--R   [2] List(NewSparseMultivariatePolynomial(D2,OrderedVariableList(D3))
--R            ) -> List(NewSparseMultivariatePolynomial(D2,OrderedVariableList(
--R            D3)))
--R             from LexTriangularPackage(D2,D3) if D2 has GCDDOM and D3: 
--R            LIST(SYMBOL)
--R
--RExamples of groebner from FGLMIfCanPackage
--R
--R
--RExamples of groebner from GroebnerPackage
--R
--Rs1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 
--Rs2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s 
--Rs3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w + 25*p*s + 30*z - 18*t - 165*b**2 
--Rs4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s 
--Rs5:DMP([w,p,z,t,s,b],FRAC(INT)):= w*p + 2*z*t - 11*b**3 
--Rs6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 
--Rs7:DMP([w,p,z,t,s,b],FRAC(INT)):= b**2 + 33/50*b + 2673/10000 
--Rsn7:=[s1,s2,s3,s4,s5,s6,s7] 
--Rgroebner(sn7,"info","redcrit")
--R
--Rs1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 
--Rs2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s 
--Rs3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w + 25*p*s + 30*z - 18*t - 165*b**2 
--Rs4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s 
--Rs5:DMP([w,p,z,t,s,b],FRAC(INT)):= w*p + 2*z*t - 11*b**3 
--Rs6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 
--Rs7:DMP([w,p,z,t,s,b],FRAC(INT)):= b**2 + 33/50*b + 2673/10000 
--Rsn7:=[s1,s2,s3,s4,s5,s6,s7] 
--Rgroebner(sn7,"info") 
--Rgroebner(sn7,"redcrit")
--R
--Rs1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 
--Rs2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s 
--Rs3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w + 25*p*s + 30*z - 18*t - 165*b**2 
--Rs4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s 
--Rs5:DMP([w,p,z,t,s,b],FRAC(INT)):= w*p + 2*z*t - 11*b**3 
--Rs6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 
--Rs7:DMP([w,p,z,t,s,b],FRAC(INT)):= b**2 + 33/50*b + 2673/10000 
--Rsn7:=[s1,s2,s3,s4,s5,s6,s7] 
--Rgroebner(sn7)
--R
--R
--RExamples of groebner from PolynomialIdeals
--R
--R
--RExamples of groebner from InterfaceGroebnerPackage
--R
--R
--RExamples of groebner from LexTriangularPackage
--R
--E 1190

--S 1191 of 3320
)d op groebner?
--R 
--R
--RThere is one exposed function called groebner? :
--R   [1] PolynomialIdeals(D2,D3,D4,D5) -> Boolean
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R
--RExamples of groebner? from PolynomialIdeals
--R
--E 1191

--S 1192 of 3320 done
)d op groebnerFactorize
--R 
--R
--RThere are 4 exposed functions called groebnerFactorize :
--R   [1] (List(D6),List(D6)) -> List(List(D6))
--R             from GroebnerFactorizationPackage(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has OAMONS and D5 has ORDSET and D6 has POLYCAT(D3,D4,D5)
--R            
--R   [2] (List(D7),List(D7),Boolean) -> List(List(D7))
--R             from GroebnerFactorizationPackage(D4,D5,D6,D7)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero) and D5
--R             has OAMONS and D6 has ORDSET and D7 has POLYCAT(D4,D5,D6)
--R            
--R   [3] List(D6) -> List(List(D6)) from GroebnerFactorizationPackage(D3,
--R            D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has OAMONS and D5 has ORDSET and D6 has POLYCAT(D3,D4,D5)
--R            
--R   [4] (List(D7),Boolean) -> List(List(D7))
--R             from GroebnerFactorizationPackage(D4,D5,D6,D7)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero) and D5
--R             has OAMONS and D6 has ORDSET and D7 has POLYCAT(D4,D5,D6)
--R            
--R
--RExamples of groebnerFactorize from GroebnerFactorizationPackage
--R
--Rmfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) := 
--R[ [0,1,1,1,1,1], [1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y], 
--R[1,8/3,1,0,1,8/3], [1,x,8/3,1,0,1], [1,8/3,y,8/3,1,0] ] 
--Req := determinant mfzn 
--RgroebnerFactorize 
--R[eq,eval(eq, [x,y,z],[y,z,x]), eval(eq,[x,y,z],[z,x,y])]
--R
--E 1192

--S 1193 of 3320
)d op groebnerIdeal
--R 
--R
--RThere is one exposed function called groebnerIdeal :
--R   [1] List(D5) -> PolynomialIdeals(D2,D3,D4,D5)
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D2,D3,D4) and D2 has FIELD and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of groebnerIdeal from PolynomialIdeals
--R
--E 1193

--S 1194 of 3320
)d op groebSolve
--R 
--R
--RThere is one unexposed function called groebSolve :
--R   [1] (List(DistributedMultivariatePolynomial(D4,D5)),List(
--R            OrderedVariableList(D4))) -> List(List(
--R            DistributedMultivariatePolynomial(D4,D5)))
--R             from GroebnerSolve(D4,D5,D6)
--R             if D4: LIST(SYMBOL) and D5 has GCDDOM and D6 has GCDDOM
--R         
--R
--RExamples of groebSolve from GroebnerSolve
--R
--E 1194

--S 1195 of 3320
)d op ground
--R 
--R
--RThere are 2 exposed functions called ground :
--R   [1] D -> D1 from D if D has FAMR(D1,D2) and D2 has OAMON and D1 has 
--R            RING
--R   [2] D -> D1 from D if D has FS(D1) and D1 has ORDSET
--R
--RExamples of ground from FiniteAbelianMonoidRing
--R
--R
--RExamples of ground from FunctionSpace
--R
--E 1195

--S 1196 of 3320
)d op ground?
--R 
--R
--RThere are 4 exposed functions called ground? :
--R   [1] D -> Boolean from D if D has FAMR(D2,D3) and D2 has RING and D3
--R             has OAMON
--R   [2] D -> Boolean from D if D has FS(D2) and D2 has ORDSET
--R   [3] MyExpression(D2,D3) -> Boolean from MyExpression(D2,D3)
--R             if D2: SYMBOL and D3 has Join(Ring,OrderedSet,
--R            IntegralDomain)
--R   [4] D -> Boolean from D if D has PACPERC
--R
--RExamples of ground? from FiniteAbelianMonoidRing
--R
--R
--RExamples of ground? from FunctionSpace
--R
--R
--RExamples of ground? from MyExpression
--R
--R
--RExamples of ground? from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--E 1196

--S 1197 of 3320
)d op GT
--R 
--R
--RThere is one exposed function called GT :
--R   [1] (Union(I: Expression(Integer),F: Expression(Float),CF: 
--R            Expression(Complex(Float)),switch: Switch),Union(I: Expression(
--R            Integer),F: Expression(Float),CF: Expression(Complex(Float)),
--R            switch: Switch)) -> Switch
--R             from Switch
--R
--RExamples of GT from Switch
--R
--E 1197

--S 1198 of 3320
)d op guess
--R 
--R
--RThere are 24 exposed functions called guess :
--R   [1] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] (List(AlgebraicNumber),List(((List(AlgebraicNumber),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))),List(Symbol)) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [4] (List(AlgebraicNumber),List(((List(AlgebraicNumber),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))),List(Symbol),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [5] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [6] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [7] (List(D5),List(((List(D5),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger)))),List(
--R            Symbol)) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D5)
--R             if D5 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [8] (List(D6),List(((List(D6),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger)))),List(
--R            Symbol),List(GuessOption)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessFinite(D6)
--R             if D6 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [9] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [10] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [11] (List(Fraction(Integer)),List(((List(Fraction(Integer)),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))),List(Symbol)) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [12] (List(Fraction(Integer)),List(((List(Fraction(Integer)),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))),List(Symbol),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [13] List(D4) -> List(Record(function: D6,order: NonNegativeInteger)
--R            )
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [14] (List(D6),List(GuessOption)) -> List(Record(function: D8,order
--R            : NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [15] (List(D8),List(((List(D8),List(GuessOption)) -> List(Record(
--R            function: D10,order: NonNegativeInteger)))),List(Symbol)) -> List
--R            (Record(function: D10,order: NonNegativeInteger))
--R             from Guess(D8,D9,D10,D11,D2,D3)
--R             if D8 has FIELD and D3: (D8 -> D10) and D11 has Join(
--R            OrderedSet,IntegralDomain) and D2: (D11 -> D8) and D9 has 
--R            GCDDOM and D10 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D11),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [16] (List(D10),List(((List(D10),List(GuessOption)) -> List(Record(
--R            function: D12,order: NonNegativeInteger)))),List(Symbol),List(
--R            GuessOption)) -> List(Record(function: D12,order: 
--R            NonNegativeInteger))
--R             from Guess(D10,D11,D12,D2,D3,D4)
--R             if D10 has FIELD and D4: (D10 -> D12) and D2 has Join(
--R            OrderedSet,IntegralDomain) and D3: (D2 -> D10) and D11 has 
--R            GCDDOM and D12 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D2),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [17] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [18] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [19] (List(Fraction(Polynomial(Integer))),List(((List(Fraction(
--R            Polynomial(Integer))),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))),List(Symbol))
--R             -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessPolynomial
--R   [20] (List(Fraction(Polynomial(Integer))),List(((List(Fraction(
--R            Polynomial(Integer))),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))),List(Symbol),
--R            List(GuessOption)) -> List(Record(function: Expression(Integer),
--R            order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [21] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [22] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [23] (List(Fraction(MyUnivariatePolynomial(D5,Integer))),List(((List
--R            (Fraction(MyUnivariatePolynomial(D5,Integer))),List(GuessOption))
--R             -> List(Record(function: MyExpression(D5,Integer),order: 
--R            NonNegativeInteger)))),List(Symbol)) -> List(Record(function: 
--R            MyExpression(D5,Integer),order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D5) if D5: SYMBOL
--R   [24] (List(Fraction(MyUnivariatePolynomial(D6,Integer))),List(((List
--R            (Fraction(MyUnivariatePolynomial(D6,Integer))),List(GuessOption))
--R             -> List(Record(function: MyExpression(D6,Integer),order: 
--R            NonNegativeInteger)))),List(Symbol),List(GuessOption)) -> List(
--R            Record(function: MyExpression(D6,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D6) if D6: SYMBOL
--R
--RExamples of guess from GuessAlgebraicNumber
--R
--R
--RExamples of guess from GuessFinite
--R
--R
--RExamples of guess from GuessInteger
--R
--R
--RExamples of guess from Guess
--R
--R
--RExamples of guess from GuessPolynomial
--R
--R
--RExamples of guess from GuessUnivariatePolynomial
--R
--E 1198

--S 1199 of 3320
)d op guessADE
--R 
--R
--RThere are 18 exposed functions called guessADE :
--R   [1] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] Symbol -> ((List(AlgebraicNumber),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [4] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [6] Symbol -> ((List(D3),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [7] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [8] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [9] Symbol -> ((List(Fraction(Integer)),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [10] List(D4) -> List(Record(function: D6,order: NonNegativeInteger)
--R            )
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [11] (List(D6),List(GuessOption)) -> List(Record(function: D8,order
--R            : NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [12] Symbol -> ((List(D4),List(GuessOption)) -> List(Record(function
--R            : D6,order: NonNegativeInteger)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [13] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [14] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [15] Symbol -> ((List(Fraction(Polynomial(Integer))),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [16] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [17] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [18] Symbol -> ((List(Fraction(MyUnivariatePolynomial(D3,Integer))),
--R            List(GuessOption)) -> List(Record(function: MyExpression(D3,
--R            Integer),order: NonNegativeInteger)))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessADE from GuessAlgebraicNumber
--R
--R
--RExamples of guessADE from GuessFinite
--R
--R
--RExamples of guessADE from GuessInteger
--R
--R
--RExamples of guessADE from Guess
--R
--R
--RExamples of guessADE from GuessPolynomial
--R
--R
--RExamples of guessADE from GuessUnivariatePolynomial
--R
--E 1199

--S 1200 of 3320
)d op guessAlg
--R 
--R
--RThere are 12 exposed functions called guessAlg :
--R   [1] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [4] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [6] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [7] List(D4) -> List(Record(function: D6,order: NonNegativeInteger))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [8] (List(D6),List(GuessOption)) -> List(Record(function: D8,order: 
--R            NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [9] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [10] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [11] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [12] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R
--RExamples of guessAlg from GuessAlgebraicNumber
--R
--R
--RExamples of guessAlg from GuessFinite
--R
--R
--RExamples of guessAlg from GuessInteger
--R
--R
--RExamples of guessAlg from Guess
--R
--R
--RExamples of guessAlg from GuessPolynomial
--R
--R
--RExamples of guessAlg from GuessUnivariatePolynomial
--R
--E 1200

--S 1201 of 3320
)d op guessBinRat
--R 
--R
--RThere are 18 exposed functions called guessBinRat :
--R   [1] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] Symbol -> ((List(AlgebraicNumber),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [4] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [6] Symbol -> ((List(D3),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [7] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [8] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [9] Symbol -> ((List(Fraction(Integer)),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [10] List(D4) -> List(Record(function: D6,order: NonNegativeInteger)
--R            )
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [11] (List(D6),List(GuessOption)) -> List(Record(function: D8,order
--R            : NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [12] Symbol -> ((List(D4),List(GuessOption)) -> List(Record(function
--R            : D6,order: NonNegativeInteger)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [13] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [14] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [15] Symbol -> ((List(Fraction(Polynomial(Integer))),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [16] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [17] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [18] Symbol -> ((List(Fraction(MyUnivariatePolynomial(D3,Integer))),
--R            List(GuessOption)) -> List(Record(function: MyExpression(D3,
--R            Integer),order: NonNegativeInteger)))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessBinRat from GuessAlgebraicNumber
--R
--R
--RExamples of guessBinRat from GuessFinite
--R
--R
--RExamples of guessBinRat from GuessInteger
--R
--R
--RExamples of guessBinRat from Guess
--R
--R
--RExamples of guessBinRat from GuessPolynomial
--R
--R
--RExamples of guessBinRat from GuessUnivariatePolynomial
--R
--E 1201

--S 1202 of 3320
)d op guessExpRat
--R 
--R
--RThere are 18 exposed functions called guessExpRat :
--R   [1] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] Symbol -> ((List(AlgebraicNumber),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [4] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [6] Symbol -> ((List(D3),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [7] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [8] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [9] Symbol -> ((List(Fraction(Integer)),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [10] List(D4) -> List(Record(function: D6,order: NonNegativeInteger)
--R            )
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [11] (List(D6),List(GuessOption)) -> List(Record(function: D8,order
--R            : NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [12] Symbol -> ((List(D4),List(GuessOption)) -> List(Record(function
--R            : D6,order: NonNegativeInteger)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [13] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [14] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [15] Symbol -> ((List(Fraction(Polynomial(Integer))),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [16] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [17] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [18] Symbol -> ((List(Fraction(MyUnivariatePolynomial(D3,Integer))),
--R            List(GuessOption)) -> List(Record(function: MyExpression(D3,
--R            Integer),order: NonNegativeInteger)))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessExpRat from GuessAlgebraicNumber
--R
--R
--RExamples of guessExpRat from GuessFinite
--R
--R
--RExamples of guessExpRat from GuessInteger
--R
--R
--RExamples of guessExpRat from Guess
--R
--R
--RExamples of guessExpRat from GuessPolynomial
--R
--R
--RExamples of guessExpRat from GuessUnivariatePolynomial
--R
--E 1202

--S 1203 of 3320
)d op guessHolo
--R 
--R
--RThere are 12 exposed functions called guessHolo :
--R   [1] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [4] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [6] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [7] List(D4) -> List(Record(function: D6,order: NonNegativeInteger))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [8] (List(D6),List(GuessOption)) -> List(Record(function: D8,order: 
--R            NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [9] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [10] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [11] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [12] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R
--RExamples of guessHolo from GuessAlgebraicNumber
--R
--R
--RExamples of guessHolo from GuessFinite
--R
--R
--RExamples of guessHolo from GuessInteger
--R
--R
--RExamples of guessHolo from Guess
--R
--R
--RExamples of guessHolo from GuessPolynomial
--R
--R
--RExamples of guessHolo from GuessUnivariatePolynomial
--R
--E 1203

--S 1204 of 3320
)d op guessHP
--R 
--R
--RThere are 6 exposed functions called guessHP :
--R   [1] (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(AlgebraicNumber) -> Stream(
--R            UnivariateFormalPowerSeries(AlgebraicNumber))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber)))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> AlgebraicNumber),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber))) -> 
--R            SparseUnivariatePolynomial(AlgebraicNumber)),AX: ((
--R            NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(AlgebraicNumber)))) -> (
--R            (List(AlgebraicNumber),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))
--R             from GuessAlgebraicNumber
--R   [2] (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D3) -> Stream(
--R            UnivariateFormalPowerSeries(D3))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D3)))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(D3)) -> D3),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3))) -> SparseUnivariatePolynomial(D3
--R            )),AX: ((NonNegativeInteger,Symbol,Expression(Integer)) -> 
--R            Expression(Integer)),C: (NonNegativeInteger -> List(D3)))) -> ((
--R            List(D3),List(GuessOption)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger)))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [3] (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Integer)) -> Stream(
--R            UnivariateFormalPowerSeries(Fraction(Integer)))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Integer))))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            Integer)) -> Integer),AF: ((NonNegativeInteger,NonNegativeInteger
--R            ,UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer)))) -> SparseUnivariatePolynomial(Fraction(Integer))),AX
--R            : ((NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(Integer)))) -> ((List(
--R            Fraction(Integer)),List(GuessOption)) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger)))
--R             from GuessInteger
--R   [4] (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D4) -> Stream(
--R            UnivariateFormalPowerSeries(D4))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D4)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D4)))),
--R            exprStream: ((D6,Symbol) -> Stream(D6)),A: ((NonNegativeInteger,
--R            NonNegativeInteger,SparseUnivariatePolynomial(D5)) -> D5),AF: ((
--R            NonNegativeInteger,NonNegativeInteger,UnivariateFormalPowerSeries
--R            (SparseUnivariatePolynomial(D4))) -> SparseUnivariatePolynomial(
--R            D4)),AX: ((NonNegativeInteger,Symbol,D6) -> D6),C: (
--R            NonNegativeInteger -> List(D5)))) -> ((List(D4),List(GuessOption)
--R            ) -> List(Record(function: D6,order: NonNegativeInteger)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D7 has Join(OrderedSet,
--R            IntegralDomain) and D8: (D7 -> D4) and D9: (D4 -> D6)
--R         
--R   [5] (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Polynomial(Integer))) -> 
--R            Stream(UnivariateFormalPowerSeries(Fraction(Polynomial(Integer)))
--R            )),degreeStream: Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Polynomial(Integer)))))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(Polynomial(Integer))) -> Polynomial(
--R            Integer)),AF: ((NonNegativeInteger,NonNegativeInteger,
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer))))) -> SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))),AX: ((NonNegativeInteger,Symbol,Expression
--R            (Integer)) -> Expression(Integer)),C: (NonNegativeInteger -> List
--R            (Polynomial(Integer))))) -> ((List(Fraction(Polynomial(Integer)))
--R            ,List(GuessOption)) -> List(Record(function: Expression(Integer),
--R            order: NonNegativeInteger)))
--R             from GuessPolynomial
--R   [6] (List(GuessOption) -> HPSPEC) -> ((List(Fraction(
--R            MyUnivariatePolynomial(D3,Integer))),List(GuessOption)) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger)))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessHP from GuessAlgebraicNumber
--R
--R
--RExamples of guessHP from GuessFinite
--R
--R
--RExamples of guessHP from GuessInteger
--R
--R
--RExamples of guessHP from Guess
--R
--R
--RExamples of guessHP from GuessPolynomial
--R
--R
--RExamples of guessHP from GuessUnivariatePolynomial
--R
--E 1204

--S 1205 of 3320
)d op guessPade
--R 
--R
--RThere are 12 exposed functions called guessPade :
--R   [1] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [4] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [6] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [7] (List(D6),List(GuessOption)) -> List(Record(function: D8,order: 
--R            NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [8] List(D4) -> List(Record(function: D6,order: NonNegativeInteger))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [9] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [10] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [11] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [12] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessPade from GuessAlgebraicNumber
--R
--R
--RExamples of guessPade from GuessFinite
--R
--R
--RExamples of guessPade from GuessInteger
--R
--R
--RExamples of guessPade from Guess
--R
--R
--RExamples of guessPade from GuessPolynomial
--R
--R
--RExamples of guessPade from GuessUnivariatePolynomial
--R
--E 1205

--S 1206 of 3320
)d op guessPRec
--R 
--R
--RThere are 18 exposed functions called guessPRec :
--R   [1] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] Symbol -> ((List(AlgebraicNumber),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [4] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [6] Symbol -> ((List(D3),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [7] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [8] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [9] Symbol -> ((List(Fraction(Integer)),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [10] (List(D6),List(GuessOption)) -> List(Record(function: D8,order
--R            : NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [11] List(D4) -> List(Record(function: D6,order: NonNegativeInteger)
--R            )
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [12] Symbol -> ((List(D4),List(GuessOption)) -> List(Record(function
--R            : D6,order: NonNegativeInteger)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [13] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [14] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [15] Symbol -> ((List(Fraction(Polynomial(Integer))),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [16] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [17] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [18] Symbol -> ((List(Fraction(MyUnivariatePolynomial(D3,Integer))),
--R            List(GuessOption)) -> List(Record(function: MyExpression(D3,
--R            Integer),order: NonNegativeInteger)))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessPRec from GuessAlgebraicNumber
--R
--R
--RExamples of guessPRec from GuessFinite
--R
--R
--RExamples of guessPRec from GuessInteger
--R
--R
--RExamples of guessPRec from Guess
--R
--R
--RExamples of guessPRec from GuessPolynomial
--R
--R
--RExamples of guessPRec from GuessUnivariatePolynomial
--R
--E 1206

--S 1207 of 3320
)d op guessRat
--R 
--R
--RThere are 18 exposed functions called guessRat :
--R   [1] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] Symbol -> ((List(AlgebraicNumber),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [4] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [6] Symbol -> ((List(D3),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [7] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [8] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [9] Symbol -> ((List(Fraction(Integer)),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [10] (List(D6),List(GuessOption)) -> List(Record(function: D8,order
--R            : NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [11] List(D4) -> List(Record(function: D6,order: NonNegativeInteger)
--R            )
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [12] Symbol -> ((List(D4),List(GuessOption)) -> List(Record(function
--R            : D6,order: NonNegativeInteger)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [13] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [14] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [15] Symbol -> ((List(Fraction(Polynomial(Integer))),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [16] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [17] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [18] Symbol -> ((List(Fraction(MyUnivariatePolynomial(D3,Integer))),
--R            List(GuessOption)) -> List(Record(function: MyExpression(D3,
--R            Integer),order: NonNegativeInteger)))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessRat from GuessAlgebraicNumber
--R
--R
--RExamples of guessRat from GuessFinite
--R
--R
--RExamples of guessRat from GuessInteger
--R
--R
--RExamples of guessRat from Guess
--R
--R
--RExamples of guessRat from GuessPolynomial
--R
--R
--RExamples of guessRat from GuessUnivariatePolynomial
--R
--E 1207

--S 1208 of 3320
)d op guessRec
--R 
--R
--RThere are 18 exposed functions called guessRec :
--R   [1] List(AlgebraicNumber) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [2] (List(AlgebraicNumber),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessAlgebraicNumber
--R   [3] Symbol -> ((List(AlgebraicNumber),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [4] List(D3) -> List(Record(function: Expression(Integer),order: 
--R            NonNegativeInteger))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [5] (List(D4),List(GuessOption)) -> List(Record(function: Expression
--R            (Integer),order: NonNegativeInteger))
--R             from GuessFinite(D4)
--R             if D4 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [6] Symbol -> ((List(D3),List(GuessOption)) -> List(Record(function
--R            : Expression(Integer),order: NonNegativeInteger)))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [7] List(Fraction(Integer)) -> List(Record(function: Expression(
--R            Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [8] (List(Fraction(Integer)),List(GuessOption)) -> List(Record(
--R            function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessInteger
--R   [9] Symbol -> ((List(Fraction(Integer)),List(GuessOption)) -> List(
--R            Record(function: Expression(Integer),order: NonNegativeInteger)))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [10] List(D4) -> List(Record(function: D6,order: NonNegativeInteger)
--R            )
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D4 has FIELD and D9: (D4 -> D6) and D7 has Join(
--R            OrderedSet,IntegralDomain) and D8: (D7 -> D4) and D5 has 
--R            GCDDOM and D6 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D7),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [11] (List(D6),List(GuessOption)) -> List(Record(function: D8,order
--R            : NonNegativeInteger))
--R             from Guess(D6,D7,D8,D9,D10,D2)
--R             if D6 has FIELD and D2: (D6 -> D8) and D9 has Join(
--R            OrderedSet,IntegralDomain) and D10: (D9 -> D6) and D7 has 
--R            GCDDOM and D8 has Join(FunctionSpace(Integer),
--R            IntegralDomain,RetractableTo(D9),RetractableTo(Symbol),
--R            RetractableTo(Integer),CombinatorialOpsCategory,
--R            PartialDifferentialRing(Symbol))with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Boolean
--R   [12] Symbol -> ((List(D4),List(GuessOption)) -> List(Record(function
--R            : D6,order: NonNegativeInteger)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [13] List(Fraction(Polynomial(Integer))) -> List(Record(function: 
--R            Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [14] (List(Fraction(Polynomial(Integer))),List(GuessOption)) -> List
--R            (Record(function: Expression(Integer),order: NonNegativeInteger))
--R             from GuessPolynomial
--R   [15] Symbol -> ((List(Fraction(Polynomial(Integer))),List(
--R            GuessOption)) -> List(Record(function: Expression(Integer),order
--R            : NonNegativeInteger)))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [16] List(Fraction(MyUnivariatePolynomial(D3,Integer))) -> List(
--R            Record(function: MyExpression(D3,Integer),order: 
--R            NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R   [17] (List(Fraction(MyUnivariatePolynomial(D4,Integer))),List(
--R            GuessOption)) -> List(Record(function: MyExpression(D4,Integer),
--R            order: NonNegativeInteger))
--R             from GuessUnivariatePolynomial(D4) if D4: SYMBOL
--R   [18] Symbol -> ((List(Fraction(MyUnivariatePolynomial(D3,Integer))),
--R            List(GuessOption)) -> List(Record(function: MyExpression(D3,
--R            Integer),order: NonNegativeInteger)))
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of guessRec from GuessAlgebraicNumber
--R
--R
--RExamples of guessRec from GuessFinite
--R
--R
--RExamples of guessRec from GuessInteger
--R
--R
--RExamples of guessRec from Guess
--R
--R
--RExamples of guessRec from GuessPolynomial
--R
--R
--RExamples of guessRec from GuessUnivariatePolynomial
--R
--E 1208

--S 1209 of 3320
)d op halfExtendedResultant1
--R 
--R
--RThere is one unexposed function called halfExtendedResultant1 :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(resultant: D2,coef1: 
--R            NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has INTDOM 
--R            and D2 has RING
--R
--RExamples of halfExtendedResultant1 from NewSparseUnivariatePolynomial
--R
--E 1209

--S 1210 of 3320
)d op halfExtendedResultant2
--R 
--R
--RThere is one unexposed function called halfExtendedResultant2 :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(resultant: D2,coef2: 
--R            NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has INTDOM 
--R            and D2 has RING
--R
--RExamples of halfExtendedResultant2 from NewSparseUnivariatePolynomial
--R
--E 1210

--S 1211 of 3320
)d op halfExtendedSubResultantGcd1
--R 
--R
--RThere is one exposed function called halfExtendedSubResultantGcd1 :
--R   [1] (D,D) -> Record(gcd: D,coef1: D) from D
--R             if D2 has INTDOM and D2 has RING and D3 has OAMONS and D4
--R             has ORDSET and D has RPOLCAT(D2,D3,D4)
--R
--RThere is one unexposed function called halfExtendedSubResultantGcd1 :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(gcd: NewSparseUnivariatePolynomial(D2),coef1: 
--R            NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has INTDOM 
--R            and D2 has RING
--R
--RExamples of halfExtendedSubResultantGcd1 from NewSparseUnivariatePolynomial
--R
--R
--RExamples of halfExtendedSubResultantGcd1 from RecursivePolynomialCategory
--R
--E 1211

--S 1212 of 3320
)d op halfExtendedSubResultantGcd2
--R 
--R
--RThere is one exposed function called halfExtendedSubResultantGcd2 :
--R   [1] (D,D) -> Record(gcd: D,coef2: D) from D
--R             if D2 has INTDOM and D2 has RING and D3 has OAMONS and D4
--R             has ORDSET and D has RPOLCAT(D2,D3,D4)
--R
--RThere is one unexposed function called halfExtendedSubResultantGcd2 :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(gcd: NewSparseUnivariatePolynomial(D2),coef2: 
--R            NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has INTDOM 
--R            and D2 has RING
--R
--RExamples of halfExtendedSubResultantGcd2 from NewSparseUnivariatePolynomial
--R
--R
--RExamples of halfExtendedSubResultantGcd2 from RecursivePolynomialCategory
--R
--E 1212

--S 1213 of 3320
)d op harmonic
--R 
--R
--RThere is one exposed function called harmonic :
--R   [1] Integer -> Fraction(Integer) from IntegerNumberTheoryFunctions
--R         
--R
--RExamples of harmonic from IntegerNumberTheoryFunctions
--R
--E 1213

--S 1214 of 3320
)d op has?
--R 
--R
--RThere is one exposed function called has? :
--R   [1] (BasicOperator,String) -> Boolean from BasicOperator
--R
--RExamples of has? from BasicOperator
--R
--E 1214

--S 1215 of 3320
)d op hasDimension?
--R 
--R
--RThere are 2 exposed functions called hasDimension? :
--R   [1] (Cell(D3),Symbol) -> Boolean from Cell(D3) if D3 has RCFIELD
--R   [2] SimpleCell(D2,D3) -> Boolean from SimpleCell(D2,D3)
--R             if D2 has RCFIELD and D3 has UPOLYC(D2)
--R
--RExamples of hasDimension? from Cell
--R
--R
--RExamples of hasDimension? from SimpleCell
--R
--E 1215

--S 1216 of 3320
)d op hash
--R 
--R
--RThere are 8 exposed functions called hash :
--R   [1] ArrayStack(D2) -> SingleInteger from ArrayStack(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [2] Dequeue(D2) -> SingleInteger from Dequeue(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [3] DoubleFloat -> Integer from DoubleFloat
--R   [4] Heap(D2) -> SingleInteger from Heap(D2) if D2 has SETCAT and D2
--R             has ORDSET
--R   [5] D -> D from D if D has INS
--R   [6] Queue(D2) -> SingleInteger from Queue(D2) if D2 has SETCAT and 
--R            D2 has SETCAT
--R   [7] D -> SingleInteger from D if D has SETCAT
--R   [8] Stack(D2) -> SingleInteger from Stack(D2) if D2 has SETCAT and 
--R            D2 has SETCAT
--R
--RThere is one unexposed function called hash :
--R   [1] IndexedString(D2) -> Integer from IndexedString(D2) if D2: INT
--R         
--R
--RExamples of hash from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rhash a
--R
--R
--RExamples of hash from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rhash a
--R
--R
--RExamples of hash from DoubleFloat
--R
--R
--RExamples of hash from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rhash a
--R
--R
--RExamples of hash from IntegerNumberSystem
--R
--R
--RExamples of hash from IndexedString
--R
--R
--RExamples of hash from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rhash a
--R
--R
--RExamples of hash from SetCategory
--R
--R
--RExamples of hash from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rhash a
--R
--E 1216

--S 1217 of 3320
)d op hasHi
--R 
--R
--RThere is one exposed function called hasHi :
--R   [1] UniversalSegment(D2) -> Boolean from UniversalSegment(D2) if D2
--R             has TYPE
--R
--RExamples of hasHi from UniversalSegment
--R
--E 1217

--S 1218 of 3320
)d op hasoln
--R 
--R
--RThere is one unexposed function called hasoln :
--R   [1] (List(D6),List(D6)) -> Record(sysok: Boolean,z0: List(D6),n0: 
--R            List(D6))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D6 has POLYCAT(D3,D5,D4)
--R
--RExamples of hasoln from ParametricLinearEquations
--R
--E 1218

--S 1219 of 3320
)d op hasPredicate?
--R 
--R
--RThere is one unexposed function called hasPredicate? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of hasPredicate? from Pattern
--R
--E 1219

--S 1220 of 3320
)d op hasSolution?
--R 
--R
--RThere are 2 exposed functions called hasSolution? :
--R   [1] (Matrix(D4),Vector(D4)) -> Boolean from 
--R            LinearSystemMatrixPackage1(D4)
--R             if D4 has FIELD
--R   [2] (D2,D3) -> Boolean from LinearSystemMatrixPackage(D4,D5,D3,D2)
--R             if D4 has FIELD and D5 has FiniteLinearAggregate(D4)with
--R                 shallowlyMutableand D3 has FiniteLinearAggregate(D4)
--R            with
--R                 shallowlyMutableand D2 has MATCAT(D4,D5,D3)
--R
--RExamples of hasSolution? from LinearSystemMatrixPackage1
--R
--R
--RExamples of hasSolution? from LinearSystemMatrixPackage
--R
--E 1220

--S 1221 of 3320
)d op hasTopPredicate?
--R 
--R
--RThere is one unexposed function called hasTopPredicate? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of hasTopPredicate? from Pattern
--R
--E 1221

--S 1222 of 3320
)d op Hausdorff
--R 
--R
--RThere is one unexposed function called Hausdorff :
--R   [1] (D1,D1,NonNegativeInteger) -> D1 from XExponentialPackage(D3,D4,
--R            D1)
--R             if D3 has Join(Ring,Module(Fraction(Integer))) and D4 has 
--R            ORDSET and D1 has XPOLYC(D4,D3)
--R
--RExamples of Hausdorff from XExponentialPackage
--R
--E 1222

--S 1223 of 3320
)d op hclf
--R 
--R
--RThere are 2 unexposed functions called hclf :
--R   [1] (FreeMonoid(D1),FreeMonoid(D1)) -> FreeMonoid(D1) from 
--R            FreeMonoid(D1)
--R             if D1 has SETCAT
--R   [2] (OrderedFreeMonoid(D1),OrderedFreeMonoid(D1)) -> 
--R            OrderedFreeMonoid(D1)
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R
--RExamples of hclf from FreeMonoid
--R
--R
--RExamples of hclf from OrderedFreeMonoid
--R
--Rm1:=(x*y*z)$OFMONOID(Symbol) 
--Rm2:=(x*y)$OFMONOID(Symbol) 
--Rhclf(m1,m2)
--R
--E 1223

--S 1224 of 3320
)d op hconcat
--R 
--R
--RThere are 2 unexposed functions called hconcat :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R   [2] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of hconcat from OutputForm
--R
--E 1224

--S 1225 of 3320
)d op hcrf
--R 
--R
--RThere are 2 unexposed functions called hcrf :
--R   [1] (FreeMonoid(D1),FreeMonoid(D1)) -> FreeMonoid(D1) from 
--R            FreeMonoid(D1)
--R             if D1 has SETCAT
--R   [2] (OrderedFreeMonoid(D1),OrderedFreeMonoid(D1)) -> 
--R            OrderedFreeMonoid(D1)
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R
--RExamples of hcrf from FreeMonoid
--R
--R
--RExamples of hcrf from OrderedFreeMonoid
--R
--Rm1:=(x*y*z)$OFMONOID(Symbol) 
--Rm2:=(y*z)$OFMONOID(Symbol) 
--Rhcrf(m1,m2)
--R
--E 1225

--S 1226 of 3320
)d op hdmpToDmp
--R 
--R
--RThere is one unexposed function called hdmpToDmp :
--R   [1] HomogeneousDistributedMultivariatePolynomial(D3,D4) -> 
--R            DistributedMultivariatePolynomial(D3,D4)
--R             from PolToPol(D3,D4) if D3: LIST(SYMBOL) and D4 has RING
--R         
--R
--RExamples of hdmpToDmp from PolToPol
--R
--E 1226

--S 1227 of 3320
)d op hdmpToP
--R 
--R
--RThere is one unexposed function called hdmpToP :
--R   [1] HomogeneousDistributedMultivariatePolynomial(D3,D4) -> 
--R            Polynomial(D4)
--R             from PolToPol(D3,D4) if D3: LIST(SYMBOL) and D4 has RING
--R         
--R
--RExamples of hdmpToP from PolToPol
--R
--E 1227

--S 1228 of 3320
)d op head
--R 
--R
--RThere are 3 exposed functions called head :
--R   [1] Divisor(D2) -> Record(gen: D2,exp: Integer) from Divisor(D2) if 
--R            D2 has SETCATD
--R   [2] D -> D from D if D has DLAGG(D1) and D1 has TYPE
--R   [3] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of head from Divisor
--R
--R
--RExamples of head from DoublyLinkedAggregate
--R
--R
--RExamples of head from RecursivePolynomialCategory
--R
--E 1228

--S 1229 of 3320
)d op headReduce
--R 
--R
--RThere are 2 exposed functions called headReduce :
--R   [1] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R   [2] (D1,D) -> D1 from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of headReduce from RecursivePolynomialCategory
--R
--R
--RExamples of headReduce from TriangularSetCategory
--R
--E 1229

--S 1230 of 3320
)d op headReduced?
--R 
--R
--RThere are 4 exposed functions called headReduced? :
--R   [1] (D,List(D)) -> Boolean from D
--R             if D has RPOLCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [2] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] D -> Boolean from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [4] (D2,D) -> Boolean from D
--R             if D has TSETCAT(D3,D4,D5,D2) and D3 has INTDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of headReduced? from RecursivePolynomialCategory
--R
--R
--RExamples of headReduced? from TriangularSetCategory
--R
--E 1230

--S 1231 of 3320
)d op headRemainder
--R 
--R
--RThere is one exposed function called headRemainder :
--R   [1] (D2,D) -> Record(num: D2,den: D3) from D
--R             if D has PSETCAT(D3,D4,D5,D2) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5) and 
--R            D3 has INTDOM
--R
--RExamples of headRemainder from PolynomialSetCategory
--R
--E 1231

--S 1232 of 3320 done
)d op heap
--R 
--R
--RThere is one exposed function called heap :
--R   [1] List(D2) -> Heap(D2) from Heap(D2) if D2 has ORDSET
--R
--RExamples of heap from Heap
--R
--Ri:Heap INT := heap [1,6,3,7,5,2,4]
--R
--E 1232

--S 1233 of 3320
)d op heapSort
--R 
--R
--RThere is one exposed function called heapSort :
--R   [1] (((D3,D3) -> Boolean),D1) -> D1 from FiniteLinearAggregateSort(
--R            D3,D1)
--R             if D3 has TYPE and D1 has FiniteLinearAggregate(D3)with
--R                 shallowlyMutable
--R
--RExamples of heapSort from FiniteLinearAggregateSort
--R
--E 1233

--S 1234 of 3320
)d op height
--R 
--R
--RThere are 3 exposed functions called height :
--R   [1] Dequeue(D2) -> NonNegativeInteger from Dequeue(D2) if D2 has 
--R            SETCAT
--R   [2] D -> NonNegativeInteger from D if D has DQAGG(D2) and D2 has 
--R            TYPE
--R   [3] D -> NonNegativeInteger from D if D has ES
--R
--RThere are 4 unexposed functions called height :
--R   [1] D2 -> D1 from GaloisGroupFactorizationUtilities(D3,D2,D1)
--R             if D3 has RING and D1 has Join(FloatingPointSystem,
--R            RetractableTo(D3),Field,TranscendentalFunctionCategory,
--R            ElementaryFunctionCategory) and D2 has UPOLYC(D3)
--R   [2] Kernel(D2) -> NonNegativeInteger from Kernel(D2) if D2 has 
--R            ORDSET
--R   [3]  -> Integer from OutputForm
--R   [4] OutputForm -> Integer from OutputForm
--R
--RExamples of height from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rheight a
--R
--R
--RExamples of height from DequeueAggregate
--R
--R
--RExamples of height from ExpressionSpace
--R
--R
--RExamples of height from GaloisGroupFactorizationUtilities
--R
--R
--RExamples of height from Kernel
--R
--R
--RExamples of height from OutputForm
--R
--E 1234

--S 1235 of 3320
)d op henselFact
--R 
--R
--RThere are 2 unexposed functions called henselFact :
--R   [1] (D2,Boolean) -> Record(contp: Integer,factors: List(Record(irr: 
--R            D2,pow: Integer)))
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R   [2] (D2,Boolean) -> Record(contp: Integer,factors: List(Record(irr: 
--R            D2,pow: Integer)))
--R             from UnivariateFactorize(D2) if D2 has UPOLYC(INT)
--R
--RExamples of henselFact from GaloisGroupFactorizer
--R
--R
--RExamples of henselFact from UnivariateFactorize
--R
--E 1235

--S 1236 of 3320
)d op HenselLift
--R 
--R
--RThere is one unexposed function called HenselLift :
--R   [1] (D2,List(D2),D4,PositiveInteger) -> Record(plist: List(D2),
--R            modulo: D4)
--R             from GeneralHenselPackage(D4,D2) if D4 has EUCDOM and D2
--R             has UPOLYC(D4)
--R
--RExamples of HenselLift from GeneralHenselPackage
--R
--E 1236

--S 1237 of 3320
)d op hermite
--R 
--R
--RThere is one exposed function called hermite :
--R   [1] D1 -> D1 from SmithNormalForm(D2,D3,D4,D1)
--R             if D2 has EUCDOM and D3 has FLAGG(D2) and D4 has FLAGG(D2)
--R            and D1 has MATCAT(D2,D3,D4)
--R
--RThere is one unexposed function called hermite :
--R   [1] Integer -> SparseUnivariatePolynomial(Integer)
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of hermite from PolynomialNumberTheoryFunctions
--R
--R
--RExamples of hermite from SmithNormalForm
--R
--E 1237

--S 1238 of 3320
)d op hermiteH
--R 
--R
--RThere is one exposed function called hermiteH :
--R   [1] (NonNegativeInteger,D1) -> D1 from OrthogonalPolynomialFunctions
--R            (D1)
--R             if D1 has COMRING
--R
--RExamples of hermiteH from OrthogonalPolynomialFunctions
--R
--E 1238

--S 1239 of 3320
)d op HermiteIntegrate
--R 
--R
--RThere are 2 unexposed functions called HermiteIntegrate :
--R   [1] (D2,(D5 -> D5)) -> Record(answer: D2,logpart: D2)
--R             from AlgebraicHermiteIntegration(D4,D5,D6,D2)
--R             if D5 has UPOLYC(D4) and D4 has FIELD and D6 has UPOLYC(
--R            FRAC(D5)) and D2 has FFCAT(D4,D5,D6)
--R   [2] (Fraction(D5),(D5 -> D5)) -> Record(answer: Fraction(D5),logpart
--R            : Fraction(D5),specpart: Fraction(D5),polypart: D5)
--R             from TranscendentalHermiteIntegration(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has FIELD
--R
--RExamples of HermiteIntegrate from AlgebraicHermiteIntegration
--R
--R
--RExamples of HermiteIntegrate from TranscendentalHermiteIntegration
--R
--E 1239

--S 1240 of 3320
)d op hessian
--R 
--R
--RThere is one exposed function called hessian :
--R   [1] (D2,D3) -> Matrix(D2) from MultiVariableCalculusFunctions(D4,D2,
--R            D5,D3)
--R             if D4 has SETCAT and D2 has PDRING(D4) and D5 has FLAGG(D2
--R            ) and D3 has FiniteLinearAggregate(D4)with
--R                 finiteAggregate
--R
--RExamples of hessian from MultiVariableCalculusFunctions
--R
--E 1240

--S 1241 of 3320
)d op hex
--R 
--R
--RThere is one exposed function called hex :
--R   [1] Fraction(Integer) -> HexadecimalExpansion from 
--R            HexadecimalExpansion
--R
--RExamples of hex from HexadecimalExpansion
--R
--E 1241

--S 1242 of 3320
)d op hexDigit
--R 
--R
--RThere is one exposed function called hexDigit :
--R   [1]  -> CharacterClass from CharacterClass
--R
--RExamples of hexDigit from CharacterClass
--R
--E 1242

--S 1243 of 3320 done
)d op hexDigit?
--R 
--R
--RThere is one exposed function called hexDigit? :
--R   [1] Character -> Boolean from Character
--R
--RExamples of hexDigit? from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[hexDigit? c for c in chars]
--R
--E 1243

--S 1244 of 3320
)d op hi
--R 
--R
--RThere is one exposed function called hi :
--R   [1] D -> D1 from D if D has SEGCAT(D1) and D1 has TYPE
--R
--RExamples of hi from SegmentCategory
--R
--E 1244

--S 1245 of 3320
)d op high
--R 
--R
--RThere is one exposed function called high :
--R   [1] D -> D1 from D if D has SEGCAT(D1) and D1 has TYPE
--R
--RExamples of high from SegmentCategory
--R
--E 1245

--S 1246 of 3320
)d op highCommonTerms
--R 
--R
--RThere is one exposed function called highCommonTerms :
--R   [1] (D,D) -> D from D
--R             if D has FAMONC(D1,D2) and D1 has SETCAT and D2 has CABMON
--R            and D2 has OAMON
--R
--RExamples of highCommonTerms from FreeAbelianMonoidCategory
--R
--E 1246

--S 1247 of 3320
)d op hitherPlane
--R 
--R
--RThere is one exposed function called hitherPlane :
--R   [1] (ThreeDimensionalViewport,Float) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of hitherPlane from ThreeDimensionalViewport
--R
--E 1247

--S 1248 of 3320
)d op hMonic
--R 
--R
--RThere is one unexposed function called hMonic :
--R   [1] D1 -> D1 from GroebnerInternalPackage(D2,D3,D4,D1)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D1 has POLYCAT(D2,D3,D4)
--R
--RExamples of hMonic from GroebnerInternalPackage
--R
--E 1248

--S 1249 of 3320 done
)d op hodgeStar
--R 
--R
--RThere is one unexposed function called hodgeStar :
--R   [1] (DeRhamComplex(D2,D3),SquareMatrix(#(D3),Expression(D2))) -> 
--R            DeRhamComplex(D2,D3)
--R             from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R
--RExamples of hodgeStar from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--RG:SquareMatrix(3,Integer):=diagonalMatrix([1,1,1]) 
--RhodgeStar(sigma,G)
--R
--E 1249

--S 1250 of 3320
)d op homogeneous
--R 
--R
--RThere is one exposed function called homogeneous :
--R   [1] Union(PositiveInteger,Boolean) -> GuessOption from GuessOption
--R         
--R
--RThere is one unexposed function called homogeneous :
--R   [1] List(GuessOption) -> Union(PositiveInteger,Boolean)
--R             from GuessOptionFunctions0
--R
--RExamples of homogeneous from GuessOptionFunctions0
--R
--R
--RExamples of homogeneous from GuessOption
--R
--E 1250

--S 1251 of 3320
)d op homogeneous?
--R 
--R
--RThere are 2 unexposed functions called homogeneous? :
--R   [1] AntiSymm(D2,D3) -> Boolean from AntiSymm(D2,D3)
--R             if D2 has RING and D3: LIST(SYMBOL)
--R   [2] DeRhamComplex(D2,D3) -> Boolean from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R
--RExamples of homogeneous? from AntiSymm
--R
--R
--RExamples of homogeneous? from DeRhamComplex
--R
--Rder:=DERHAM(Integer,[x,y,z]) 
--R[dx,dy,dz]:=[generator(i)$der for i in 1..3] 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--Rhomogeneous? sigma 
--Ra:BOP:=operator('a) 
--Rb:BOP:=operator('b) 
--Rc:BOP:=operator('c) 
--Rtheta:=a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz 
--Rhomogeneous? (sigma+theta)
--R
--E 1251

--S 1252 of 3320
)d op homogenize
--R 
--R
--RThere are 6 exposed functions called homogenize :
--R   [1] (D5,Integer) -> D5
--R             from GeneralPackageForAlgebraicFunctionField(D7,D8,D5,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D5 has POLYCAT(D7
--R            ,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8),NNI) and D10 has 
--R            PRSPCAT(D7) and D11 has LOCPOWC(D7) and D12 has PLACESC(D7,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D7,D8,D5,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2] (DistributedMultivariatePolynomial(D4,D3),Integer) -> 
--R            DistributedMultivariatePolynomial(D4,D3)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R            
--R   [3] (DistributedMultivariatePolynomial(D4,D3),Integer) -> 
--R            DistributedMultivariatePolynomial(D4,D3)
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R   [4] (D1,Integer) -> D1 from PackageForPoly(D3,D1,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D1 has FAMR(D3,D4)
--R   [5] D -> D from D if D has PRSPCAT(D1) and D1 has FIELD
--R   [6] (D,Integer) -> D from D if D has PRSPCAT(D2) and D2 has FIELD
--R         
--R
--RExamples of homogenize from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of homogenize from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of homogenize from PackageForAlgebraicFunctionField
--R
--R
--RExamples of homogenize from PackageForPoly
--R
--R
--RExamples of homogenize from ProjectiveSpaceCategory
--R
--E 1252

--S 1253 of 3320 done
)d op horizConcat
--R 
--R
--RThere are 2 exposed functions called horizConcat :
--R   [1] List(D1) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D1 has MATCAT(D3,D4,D5) and D4 has 
--R            FLAGG(D3) and D5 has FLAGG(D3)
--R   [2] (D,D) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R
--RExamples of horizConcat from MatrixManipulation
--R
--RA := matrix([[a]]) 
--RB := matrix([[b]]) 
--RC := matrix([[c]]) 
--RA12 := horizConcat([A,B,C])
--R
--R
--RExamples of horizConcat from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--RhorizConcat(m,m)
--R
--E 1253

--S 1254 of 3320
)d op horizJoin
--R 
--R
--RThere is one exposed function called horizJoin :
--R   [1] (SparseEchelonMatrix(D1,D2),SparseEchelonMatrix(D1,D2)) -> 
--R            SparseEchelonMatrix(D1,D2)
--R             from SparseEchelonMatrix(D1,D2) if D1 has ORDSET and D2
--R             has RING
--R
--RExamples of horizJoin from SparseEchelonMatrix
--R
--E 1254

--S 1255 of 3320
)d op horizSplit
--R 
--R
--RThere are 3 exposed functions called horizSplit :
--R   [1] (D2,PositiveInteger) -> List(D2) from MatrixManipulation(D4,D5,
--R            D6,D2)
--R             if D4 has FIELD and D5 has FLAGG(D4) and D6 has FLAGG(D4) 
--R            and D2 has MATCAT(D4,D5,D6)
--R   [2] (D2,List(PositiveInteger)) -> List(D2)
--R             from MatrixManipulation(D4,D5,D6,D2)
--R             if D4 has FIELD and D5 has FLAGG(D4) and D6 has FLAGG(D4) 
--R            and D2 has MATCAT(D4,D5,D6)
--R   [3] (SparseEchelonMatrix(D2,D3),D2) -> Record(Left: 
--R            SparseEchelonMatrix(D2,D3),Right: SparseEchelonMatrix(D2,D3))
--R             from SparseEchelonMatrix(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of horizSplit from MatrixManipulation
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= horizSplit(E, [2,2]) 
--Rt2:= horizSplit(E, [1,2,1])
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= horizSplit(E, 2)
--R
--R
--RExamples of horizSplit from SparseEchelonMatrix
--R
--E 1255

--S 1256 of 3320
)d op hspace
--R 
--R
--RThere is one unexposed function called hspace :
--R   [1] Integer -> OutputForm from OutputForm
--R
--RExamples of hspace from OutputForm
--R
--E 1256

--S 1257 of 3320
)d op htrigs
--R 
--R
--RThere is one exposed function called htrigs :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of htrigs from TranscendentalManipulations
--R
--E 1257

--S 1258 of 3320
)d op hue
--R 
--R
--RThere are 2 exposed functions called hue :
--R   [1] Color -> Integer from Color
--R   [2] Palette -> Color from Palette
--R
--RThere is one unexposed function called hue :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of hue from Color
--R
--R
--RExamples of hue from Palette
--R
--R
--RExamples of hue from PointPackage
--R
--E 1258

--S 1259 of 3320
)d op hyperelliptic
--R 
--R
--RThere is one exposed function called hyperelliptic :
--R   [1]  -> Union(D1,"failed") from D
--R             if D has FFCAT(D2,D1,D3) and D2 has UFD and D3 has UPOLYC(
--R            FRAC(D1)) and D1 has UPOLYC(D2)
--R
--RThere is one unexposed function called hyperelliptic :
--R   [1]  -> Union(D1,"failed") from FunctionFieldCategory&(D2,D3,D1,D4)
--R             if D3 has UFD and D4 has UPOLYC(FRAC(D1)) and D1 has 
--R            UPOLYC(D3) and D2 has FFCAT(D3,D1,D4)
--R
--RExamples of hyperelliptic from FunctionFieldCategory&
--R
--R
--RExamples of hyperelliptic from FunctionFieldCategory
--R
--E 1259

--S 1260 of 3320
)d op hypergeometric0F1
--R 
--R
--RThere are 2 exposed functions called hypergeometric0F1 :
--R   [1] (DoubleFloat,DoubleFloat) -> DoubleFloat from 
--R            DoubleFloatSpecialFunctions
--R   [2] (Complex(DoubleFloat),Complex(DoubleFloat)) -> Complex(
--R            DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R
--RExamples of hypergeometric0F1 from DoubleFloatSpecialFunctions
--R
--E 1260

--S 1261 of 3320
)d op iCompose
--R 
--R
--RThere is one unexposed function called iCompose :
--R   [1] (InnerSparseUnivariatePowerSeries(D1),
--R            InnerSparseUnivariatePowerSeries(D1)) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1) if D1 has RING
--R         
--R
--RExamples of iCompose from InnerSparseUnivariatePowerSeries
--R
--E 1261

--S 1262 of 3320
)d op id
--R 
--R
--RThere is one exposed function called id :
--R   [1] D1 -> D1 from MappingPackage1(D1) if D1 has SETCAT
--R
--RExamples of id from MappingPackage1
--R
--E 1262

--S 1263 of 3320
)d op ideal
--R 
--R
--RThere are 2 exposed functions called ideal :
--R   [1] D -> FractionalIdeal(D3,Fraction(D3),D4,D5) from D
--R             if D has FDIVCAT(D2,D3,D4,D5) and D2 has FIELD and D3 has 
--R            UPOLYC(D2) and D4 has UPOLYC(FRAC(D3)) and D5 has FFCAT(D2,
--R            D3,D4)
--R   [2] List(D5) -> PolynomialIdeals(D2,D3,D4,D5)
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D2,D3,D4) and D2 has FIELD and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RThere is one unexposed function called ideal :
--R   [1] Vector(D5) -> FractionalIdeal(D2,D3,D4,D5)
--R             from FractionalIdeal(D2,D3,D4,D5)
--R             if D5 has Join(FramedAlgebra(D3,D4),RetractableTo(D3)) and
--R            D3 has QFCAT(D2) and D4 has UPOLYC(D3) and D2 has EUCDOM
--R         
--R
--RExamples of ideal from FiniteDivisorCategory
--R
--R
--RExamples of ideal from FractionalIdeal
--R
--R
--RExamples of ideal from PolynomialIdeals
--R
--E 1263

--S 1264 of 3320
)d op idealiser
--R 
--R
--RThere are 2 unexposed functions called idealiser :
--R   [1] (Matrix(D2),Matrix(D2)) -> Matrix(D2) from IntegralBasisTools(D2
--R            ,D3,D4)
--R             if D2 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D3 has UPOLYC(D2) 
--R            and D4 has FRAMALG(D2,D3)
--R   [2] (Matrix(D2),Matrix(D2),D2) -> Matrix(D2)
--R             from IntegralBasisTools(D2,D3,D4)
--R             if D2 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D3 has UPOLYC(D2) 
--R            and D4 has FRAMALG(D2,D3)
--R
--RExamples of idealiser from IntegralBasisTools
--R
--E 1264

--S 1265 of 3320
)d op idealiserMatrix
--R 
--R
--RThere is one unexposed function called idealiserMatrix :
--R   [1] (Matrix(D2),Matrix(D2)) -> Matrix(D2) from IntegralBasisTools(D2
--R            ,D3,D4)
--R             if D2 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D3 has UPOLYC(D2) 
--R            and D4 has FRAMALG(D2,D3)
--R
--RExamples of idealiserMatrix from IntegralBasisTools
--R
--E 1265

--S 1266 of 3320
)d op idealSimplify
--R 
--R
--RThere is one unexposed function called idealSimplify :
--R   [1] QuasiAlgebraicSet(D1,D2,D3,D4) -> QuasiAlgebraicSet(D1,D2,D3,D4)
--R             from QuasiAlgebraicSet(D1,D2,D3,D4)
--R             if D1 has GCDDOM and D2 has ORDSET and D3 has OAMONS and 
--R            D4 has POLYCAT(D1,D3,D2)
--R
--RExamples of idealSimplify from QuasiAlgebraicSet
--R
--E 1266

--S 1267 of 3320
)d op identification
--R 
--R
--RThere is one unexposed function called identification :
--R   [1] (LieExponentials(D2,D3,D4),LieExponentials(D2,D3,D4)) -> List(
--R            Equation(D3))
--R             from LieExponentials(D2,D3,D4)
--R             if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D4: PI
--R
--RExamples of identification from LieExponentials
--R
--E 1267

--S 1268 of 3320
)d op identity
--R 
--R
--RThere is one exposed function called identity :
--R   [1]  -> DenavitHartenbergMatrix(D1) from DenavitHartenbergMatrix(D1)
--R             if D1 has Join(Field,TranscendentalFunctionCategory)
--R
--RExamples of identity from DenavitHartenbergMatrix
--R
--E 1268

--S 1269 of 3320
)d op identityMatrix
--R 
--R
--RThere is one exposed function called identityMatrix :
--R   [1] NonNegativeInteger -> ThreeDimensionalMatrix(D2)
--R             from ThreeDimensionalMatrix(D2) if D2 has RING and D2 has 
--R            SETCAT
--R
--RExamples of identityMatrix from ThreeDimensionalMatrix
--R
--E 1269

--S 1270 of 3320
)d op identitySquareMatrix
--R 
--R
--RThere is one exposed function called identitySquareMatrix :
--R   [1] (Symbol,Polynomial(Integer)) -> FortranCode from 
--R            FortranCodePackage1
--R
--RExamples of identitySquareMatrix from FortranCodePackage1
--R
--E 1270

--S 1271 of 3320
)d op iExquo
--R 
--R
--RThere is one unexposed function called iExquo :
--R   [1] (InnerSparseUnivariatePowerSeries(D2),
--R            InnerSparseUnivariatePowerSeries(D2),Boolean) -> Union(
--R            InnerSparseUnivariatePowerSeries(D2),"failed")
--R             from InnerSparseUnivariatePowerSeries(D2) if D2 has RING
--R         
--R
--RExamples of iExquo from InnerSparseUnivariatePowerSeries
--R
--E 1271

--S 1272 of 3320
)d op iFTable
--R 
--R
--RThere is one exposed function called iFTable :
--R   [1] List(Record(key: Record(xinit: DoubleFloat,xend: DoubleFloat,fn
--R            : Vector(Expression(DoubleFloat)),yinit: List(DoubleFloat),
--R            intvals: List(DoubleFloat),g: Expression(DoubleFloat),abserr: 
--R            DoubleFloat,relerr: DoubleFloat),entry: Record(stiffness: Float,
--R            stability: Float,expense: Float,accuracy: Float,
--R            intermediateResults: Float))) -> ODEIntensityFunctionsTable
--R             from ODEIntensityFunctionsTable
--R
--RExamples of iFTable from ODEIntensityFunctionsTable
--R
--E 1272

--S 1273 of 3320
)d op ignore?
--R 
--R
--RThere is one unexposed function called ignore? :
--R   [1] String -> Boolean from DefiniteIntegrationTools(D3,D4)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D4 has Join(
--R            TranscendentalFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D3))
--R
--RExamples of ignore? from DefiniteIntegrationTools
--R
--E 1273

--S 1274 of 3320
)d op iiabs   
--R 
--R
--RThere is one unexposed function called iiabs :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of iiabs from FunctionalSpecialFunction
--R
--E 1274

--S 1275 of 3320
)d op iiacos
--R 
--R
--RThere is one unexposed function called iiacos :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiacos from ElementaryFunction
--R
--E 1275

--S 1276 of 3320
)d op iiacosh
--R 
--R
--RThere is one unexposed function called iiacosh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiacosh from ElementaryFunction
--R
--E 1276

--S 1277 of 3320
)d op iiacot
--R 
--R
--RThere is one unexposed function called iiacot :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiacot from ElementaryFunction
--R
--E 1277

--S 1278 of 3320
)d op iiacoth
--R 
--R
--RThere is one unexposed function called iiacoth :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiacoth from ElementaryFunction
--R
--E 1278

--S 1279 of 3320
)d op iiacsc
--R 
--R
--RThere is one unexposed function called iiacsc :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiacsc from ElementaryFunction
--R
--E 1279

--S 1280 of 3320
)d op iiacsch
--R 
--R
--RThere is one unexposed function called iiacsch :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiacsch from ElementaryFunction
--R
--E 1280

--S 1281 of 3320
)d op iiAiryAi 
--R 
--R
--RThere is one unexposed function called iiAiryAi :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of iiAiryAi from FunctionalSpecialFunction
--R
--E 1281

--S 1282 of 3320
)d op iiAiryBi 
--R 
--R
--RThere is one unexposed function called iiAiryBi :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of iiAiryBi from FunctionalSpecialFunction
--R
--E 1282

--S 1283 of 3320
)d op iiasec
--R 
--R
--RThere is one unexposed function called iiasec :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiasec from ElementaryFunction
--R
--E 1283

--S 1284 of 3320
)d op iiasech
--R 
--R
--RThere is one unexposed function called iiasech :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiasech from ElementaryFunction
--R
--E 1284

--S 1285 of 3320
)d op iiasin
--R 
--R
--RThere is one unexposed function called iiasin :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiasin from ElementaryFunction
--R
--E 1285

--S 1286 of 3320
)d op iiasinh
--R 
--R
--RThere is one unexposed function called iiasinh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiasinh from ElementaryFunction
--R
--E 1286

--S 1287 of 3320
)d op iiatan
--R 
--R
--RThere is one unexposed function called iiatan :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiatan from ElementaryFunction
--R
--E 1287

--S 1288 of 3320
)d op iiatanh
--R 
--R
--RThere is one unexposed function called iiatanh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiatanh from ElementaryFunction
--R
--E 1288

--S 1289 of 3320
)d op iiBesselI
--R 
--R
--RThere is one unexposed function called iiBesselI :
--R   [1] List(D1) -> D1 from FunctionalSpecialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iiBesselI from FunctionalSpecialFunction
--R
--E 1289

--S 1290 of 3320
)d op iiBesselJ
--R 
--R
--RThere is one unexposed function called iiBesselJ :
--R   [1] List(D1) -> D1 from FunctionalSpecialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iiBesselJ from FunctionalSpecialFunction
--R
--E 1290

--S 1291 of 3320
)d op iiBesselK
--R 
--R
--RThere is one unexposed function called iiBesselK :
--R   [1] List(D1) -> D1 from FunctionalSpecialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iiBesselK from FunctionalSpecialFunction
--R
--E 1291

--S 1292 of 3320
)d op iiBesselY
--R 
--R
--RThere is one unexposed function called iiBesselY :
--R   [1] List(D1) -> D1 from FunctionalSpecialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iiBesselY from FunctionalSpecialFunction
--R
--E 1292

--S 1293 of 3320
)d op iiBeta   
--R 
--R
--RThere is one unexposed function called iiBeta :
--R   [1] List(D1) -> D1 from FunctionalSpecialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iiBeta from FunctionalSpecialFunction
--R
--E 1293

--S 1294 of 3320
)d op iibinom
--R 
--R
--RThere is one unexposed function called iibinom :
--R   [1] List(D1) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iibinom from CombinatorialFunction
--R
--E 1294

--S 1295 of 3320
)d op iicos
--R 
--R
--RThere is one unexposed function called iicos :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iicos from ElementaryFunction
--R
--E 1295

--S 1296 of 3320
)d op iicosh
--R 
--R
--RThere is one unexposed function called iicosh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iicosh from ElementaryFunction
--R
--E 1296

--S 1297 of 3320
)d op iicot
--R 
--R
--RThere is one unexposed function called iicot :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iicot from ElementaryFunction
--R
--E 1297

--S 1298 of 3320
)d op iicoth
--R 
--R
--RThere is one unexposed function called iicoth :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iicoth from ElementaryFunction
--R
--E 1298

--S 1299 of 3320
)d op iicsc
--R 
--R
--RThere is one unexposed function called iicsc :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iicsc from ElementaryFunction
--R
--E 1299

--S 1300 of 3320
)d op iicsch
--R 
--R
--RThere is one unexposed function called iicsch :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iicsch from ElementaryFunction
--R
--E 1300

--S 1301 of 3320
)d op iidigamma
--R 
--R
--RThere is one unexposed function called iidigamma :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of iidigamma from FunctionalSpecialFunction
--R
--E 1301

--S 1302 of 3320
)d op iidprod
--R 
--R
--RThere is one unexposed function called iidprod :
--R   [1] List(D1) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iidprod from CombinatorialFunction
--R
--E 1302

--S 1303 of 3320
)d op iidsum
--R 
--R
--RThere is one unexposed function called iidsum :
--R   [1] List(D1) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iidsum from CombinatorialFunction
--R
--E 1303

--S 1304 of 3320
)d op iiexp
--R 
--R
--RThere is one unexposed function called iiexp :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iiexp from ElementaryFunction
--R
--E 1304

--S 1305 of 3320
)d op iifact
--R 
--R
--RThere is one unexposed function called iifact :
--R   [1] D1 -> D1 from CombinatorialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of iifact from CombinatorialFunction
--R
--E 1305

--S 1306 of 3320
)d op iiGamma
--R 
--R
--RThere is one unexposed function called iiGamma :
--R   [1] D1 -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of iiGamma from FunctionalSpecialFunction
--R
--E 1306

--S 1307 of 3320
)d op iilog
--R 
--R
--RThere is one unexposed function called iilog :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iilog from ElementaryFunction
--R
--E 1307

--S 1308 of 3320
)d op iiperm
--R 
--R
--RThere is one unexposed function called iiperm :
--R   [1] List(D1) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iiperm from CombinatorialFunction
--R
--E 1308

--S 1309 of 3320
)d op iipolygamma
--R 
--R
--RThere is one unexposed function called iipolygamma :
--R   [1] List(D1) -> D1 from FunctionalSpecialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iipolygamma from FunctionalSpecialFunction
--R
--E 1309

--S 1310 of 3320
)d op iipow
--R 
--R
--RThere is one unexposed function called iipow :
--R   [1] List(D1) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of iipow from CombinatorialFunction
--R
--E 1310

--S 1311 of 3320
)d op iisec
--R 
--R
--RThere is one unexposed function called iisec :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iisec from ElementaryFunction
--R
--E 1311

--S 1312 of 3320
)d op iisech
--R 
--R
--RThere is one unexposed function called iisech :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iisech from ElementaryFunction
--R
--E 1312

--S 1313 of 3320
)d op iisin
--R 
--R
--RThere is one unexposed function called iisin :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iisin from ElementaryFunction
--R
--E 1313

--S 1314 of 3320
)d op iisinh
--R 
--R
--RThere is one unexposed function called iisinh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iisinh from ElementaryFunction
--R
--E 1314

--S 1315 of 3320
)d op iisqrt2
--R 
--R
--RThere is one unexposed function called iisqrt2 :
--R   [1]  -> D1 from ElementaryFunction(D2,D1)
--R             if D1 has Join(FunctionSpace(D2),RadicalCategory) and D2
--R             has Join(OrderedSet,IntegralDomain)
--R
--RExamples of iisqrt2 from ElementaryFunction
--R
--E 1315

--S 1316 of 3320
)d op iisqrt3
--R 
--R
--RThere is one unexposed function called iisqrt3 :
--R   [1]  -> D1 from ElementaryFunction(D2,D1)
--R             if D1 has Join(FunctionSpace(D2),RadicalCategory) and D2
--R             has Join(OrderedSet,IntegralDomain)
--R
--RExamples of iisqrt3 from ElementaryFunction
--R
--E 1316

--S 1317 of 3320
)d op iitan
--R 
--R
--RThere is one unexposed function called iitan :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iitan from ElementaryFunction
--R
--E 1317

--S 1318 of 3320
)d op iitanh
--R 
--R
--RThere is one unexposed function called iitanh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R
--RExamples of iitanh from ElementaryFunction
--R
--E 1318

--S 1319 of 3320
)d op imag
--R 
--R
--RThere are 3 exposed functions called imag :
--R   [1] D -> D1 from D if D has COMPCAT(D1) and D1 has COMRING
--R   [2] D2 -> Expression(D3) from ComplexTrigonometricManipulations(D3,
--R            D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D3)))
--R            
--R   [3] D1 -> D1 from TrigonometricManipulations(D2,D1)
--R             if D2 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))
--R
--RExamples of imag from ComplexCategory
--R
--R
--RExamples of imag from ComplexTrigonometricManipulations
--R
--R
--RExamples of imag from TrigonometricManipulations
--R
--E 1319

--S 1320 of 3320
)d op imagE
--R 
--R
--RThere is one exposed function called imagE :
--R   [1] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R
--RExamples of imagE from OctonionCategory
--R
--E 1320

--S 1321 of 3320
)d op imagi
--R 
--R
--RThere is one exposed function called imagi :
--R   [1] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R
--RExamples of imagi from OctonionCategory
--R
--E 1321

--S 1322 of 3320
)d op imagI
--R 
--R
--RThere are 2 exposed functions called imagI :
--R   [1] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R   [2] D -> D1 from D if D has QUATCAT(D1) and D1 has COMRING
--R
--RExamples of imagI from OctonionCategory
--R
--R
--RExamples of imagI from QuaternionCategory
--R
--E 1322

--S 1323 of 3320
)d op imaginary
--R 
--R
--RThere is one exposed function called imaginary :
--R   [1]  -> D from D if D has COMPCAT(D1) and D1 has COMRING
--R
--RExamples of imaginary from ComplexCategory
--R
--E 1323

--S 1324 of 3320
)d op imagj
--R 
--R
--RThere is one exposed function called imagj :
--R   [1] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R
--RExamples of imagj from OctonionCategory
--R
--E 1324

--S 1325 of 3320
)d op imagJ
--R 
--R
--RThere are 2 exposed functions called imagJ :
--R   [1] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R   [2] D -> D1 from D if D has QUATCAT(D1) and D1 has COMRING
--R
--RExamples of imagJ from OctonionCategory
--R
--R
--RExamples of imagJ from QuaternionCategory
--R
--E 1325

--S 1326 of 3320
)d op imagk
--R 
--R
--RThere is one exposed function called imagk :
--R   [1] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R
--RExamples of imagk from OctonionCategory
--R
--E 1326

--S 1327 of 3320
)d op imagK
--R 
--R
--RThere are 2 exposed functions called imagK :
--R   [1] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R   [2] D -> D1 from D if D has QUATCAT(D1) and D1 has COMRING
--R
--RExamples of imagK from OctonionCategory
--R
--R
--RExamples of imagK from QuaternionCategory
--R
--E 1327

--S 1328 of 3320
)d op implies
--R 
--R
--RThere is one exposed function called implies :
--R   [1] (Boolean,Boolean) -> Boolean from Boolean
--R
--RExamples of implies from Boolean
--R
--E 1328

--S 1329 of 3320
)d op in?
--R 
--R
--RThere are 3 exposed functions called in? :
--R   [1] DoubleFloat -> Boolean from ExpertSystemContinuityPackage1(D3,D4
--R            )
--R             if D3: DFLOAT and D4: DFLOAT
--R   [2] (DoubleFloat,Segment(OrderedCompletion(DoubleFloat))) -> Boolean
--R             from ExpertSystemToolsPackage
--R   [3] (PolynomialIdeals(D2,D3,D4,D5),PolynomialIdeals(D2,D3,D4,D5))
--R             -> Boolean
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R
--RExamples of in? from ExpertSystemContinuityPackage1
--R
--R
--RExamples of in? from ExpertSystemToolsPackage
--R
--R
--RExamples of in? from PolynomialIdeals
--R
--E 1329

--S 1330 of 3320
)d op inBetweenExcpDiv
--R 
--R
--RThere is one exposed function called inBetweenExcpDiv :
--R   [1] D5 -> D4 from DesingTreePackage(D6,D7,D8,D9,D10,D11,D1,D4,D2,D5,
--R            D3)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D1 has PLACESC(D6,
--R            D11) and D2 has INFCLCT(D6,D7,D8,D9,D10,D11,D1,D4,D3) and 
--R            D3 has BLMETCT and D4 has DIVCAT(D1) and D5 has DSTRCAT(D2)
--R            
--R
--RExamples of inBetweenExcpDiv from DesingTreePackage
--R
--E 1330

--S 1331 of 3320
)d op inc
--R 
--R
--RThere is one exposed function called inc :
--R   [1] D -> D from D if D has INS
--R
--RExamples of inc from IntegerNumberSystem
--R
--E 1331

--S 1332 of 3320
)d op inconsistent?
--R 
--R
--RThere are 2 unexposed functions called inconsistent? :
--R   [1] List(D6) -> Boolean from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D5,D4) and D3 has Join(
--R            EuclideanDomain,CharacteristicZero) and D4 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D5 has OAMONS
--R   [2] List(Polynomial(D3)) -> Boolean
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D6 has POLYCAT(D3,D5,D4)
--R
--RExamples of inconsistent? from ParametricLinearEquations
--R
--E 1332

--S 1333 of 3320
)d op incr
--R 
--R
--RThere are 2 exposed functions called incr :
--R   [1] D -> D from D if D has DIVCAT(D1) and D1 has SETCAT
--R   [2] D -> Integer from D if D has SEGCAT(D2) and D2 has TYPE
--R
--RExamples of incr from DivisorCategory
--R
--R
--RExamples of incr from SegmentCategory
--R
--E 1333

--S 1334 of 3320
)d op increase
--R 
--R
--RThere are 2 exposed functions called increase :
--R   [1] String -> Float from AttributeButtons
--R   [2] (String,String) -> Float from AttributeButtons
--R
--RExamples of increase from AttributeButtons
--R
--E 1334

--S 1335 of 3320
)d op increasePrecision
--R 
--R
--RThere is one exposed function called increasePrecision :
--R   [1] Integer -> PositiveInteger from D if D has arbitraryPrecision 
--R            and D has FPS
--R
--RExamples of increasePrecision from FloatingPointSystem
--R
--E 1335

--S 1336 of 3320
)d op increment
--R 
--R
--RThere is one unexposed function called increment :
--R   [1]  -> (D2 -> D2) from IncrementingMaps(D2)
--R             if D2 has Join(Monoid,AbelianSemiGroup)
--R
--RExamples of increment from IncrementingMaps
--R
--E 1336

--S 1337 of 3320
)d op incrementBy
--R 
--R
--RThere is one unexposed function called incrementBy :
--R   [1] D2 -> (D2 -> D2) from IncrementingMaps(D2)
--R             if D2 has Join(Monoid,AbelianSemiGroup)
--R
--RExamples of incrementBy from IncrementingMaps
--R
--E 1337

--S 1338 of 3320
)d op incrementKthElement
--R 
--R
--RThere is one unexposed function called incrementKthElement :
--R   [1] (SetOfMIntegersInOneToN(D2,D3),PositiveInteger) -> Union(
--R            SetOfMIntegersInOneToN(D2,D3),"failed")
--R             from SetOfMIntegersInOneToN(D2,D3) if D2: PI and D3: PI
--R         
--R
--RExamples of incrementKthElement from SetOfMIntegersInOneToN
--R
--E 1338

--S 1339 of 3320
)d op index
--R 
--R
--RThere is one exposed function called index :
--R   [1] PositiveInteger -> D from D if D has FINITE
--R
--RThere are 2 unexposed functions called index :
--R   [1] (PositiveInteger,PositiveInteger) -> Vector(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R   [2] ModuleMonomial(D1,D2,D3) -> D1 from ModuleMonomial(D1,D2,D3)
--R             if D1 has ORDSET and D2 has SETCAT and D3: ((Record(index
--R            : D1,exponent: D2),Record(index: D1,exponent: D2)) -> 
--R            Boolean)
--R
--RExamples of index from Finite
--R
--R
--RExamples of index from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of index from ModuleMonomial
--R
--E 1339

--S 1340 of 3320
)d op index?
--R 
--R
--RThere is one exposed function called index? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has IXAGG(D2,D3) and D2 has SETCAT and D3 has TYPE
--R         
--R
--RExamples of index? from IndexedAggregate
--R
--E 1340

--S 1341 of 3320
)d op indexName
--R 
--R
--RThere is one exposed function called indexName :
--R   [1] Symbol -> GuessOption from GuessOption
--R
--RThere is one unexposed function called indexName :
--R   [1] List(GuessOption) -> Symbol from GuessOptionFunctions0
--R
--RExamples of indexName from GuessOptionFunctions0
--R
--R
--RExamples of indexName from GuessOption
--R
--E 1341

--S 1342 of 3320
)d op indices
--R 
--R
--RThere is one exposed function called indices :
--R   [1] D -> List(D2) from D if D has IXAGG(D2,D3) and D2 has SETCAT and
--R            D3 has TYPE
--R
--RExamples of indices from IndexedAggregate
--R
--E 1342

--S 1343 of 3320
)d op indiceSubResultant
--R 
--R
--RThere is one unexposed function called indiceSubResultant :
--R   [1] (D1,D1,NonNegativeInteger) -> D1 from PseudoRemainderSequence(D3
--R            ,D1)
--R             if D3 has INTDOM and D1 has UPOLYC(D3)
--R
--RExamples of indiceSubResultant from PseudoRemainderSequence
--R
--E 1343

--S 1344 of 3320
)d op indiceSubResultantEuclidean
--R 
--R
--RThere is one unexposed function called indiceSubResultantEuclidean :
--R   [1] (D2,D2,NonNegativeInteger) -> Record(coef1: D2,coef2: D2,
--R            subResultant: D2)
--R             from PseudoRemainderSequence(D4,D2)
--R             if D4 has INTDOM and D2 has UPOLYC(D4)
--R
--RExamples of indiceSubResultantEuclidean from PseudoRemainderSequence
--R
--E 1344

--S 1345 of 3320
)d op indicialEquation
--R 
--R
--RThere are 2 unexposed functions called indicialEquation :
--R   [1] (D2,D3) -> D1 from PrimitiveRatDE(D3,D1,D2,D4)
--R             if D1 has UPOLYC(D3) and D3 has Join(Field,
--R            CharacteristicZero,RetractableTo(Fraction(Integer))) and D2
--R             has LODOCAT(D1) and D4 has LODOCAT(FRAC(D1))
--R   [2] (D2,D3) -> D1 from PrimitiveRatDE(D3,D1,D4,D2)
--R             if D1 has UPOLYC(D3) and D3 has Join(Field,
--R            CharacteristicZero,RetractableTo(Fraction(Integer))) and D4
--R             has LODOCAT(D1) and D2 has LODOCAT(FRAC(D1))
--R
--RExamples of indicialEquation from PrimitiveRatDE
--R
--E 1345

--S 1346 of 3320
)d op indicialEquationAtInfinity
--R 
--R
--RThere are 2 unexposed functions called indicialEquationAtInfinity :
--R   [1] LinearOrdinaryDifferentialOperator1(Fraction(D1)) -> D1
--R             from RationalLODE(D3,D1)
--R             if D1 has UPOLYC(D3) and D3 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R   [2] LinearOrdinaryDifferentialOperator2(D1,Fraction(D1)) -> D1
--R             from RationalLODE(D3,D1)
--R             if D1 has UPOLYC(D3) and D3 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R
--RExamples of indicialEquationAtInfinity from RationalLODE
--R
--E 1346

--S 1347 of 3320
)d op indicialEquations
--R 
--R
--RThere are 4 unexposed functions called indicialEquations :
--R   [1] D2 -> List(Record(center: D4,equation: D4))
--R             from PrimitiveRatDE(D3,D4,D2,D5)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D4 has UPOLYC(D3) and D2 has 
--R            LODOCAT(D4) and D5 has LODOCAT(FRAC(D4))
--R   [2] (D2,D3) -> List(Record(center: D3,equation: D3))
--R             from PrimitiveRatDE(D4,D3,D2,D5)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D3 has UPOLYC(D4) and D2 has 
--R            LODOCAT(D3) and D5 has LODOCAT(FRAC(D3))
--R   [3] D2 -> List(Record(center: D4,equation: D4))
--R             from PrimitiveRatDE(D3,D4,D5,D2)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D4 has UPOLYC(D3) and D5 has 
--R            LODOCAT(D4) and D2 has LODOCAT(FRAC(D4))
--R   [4] (D2,D3) -> List(Record(center: D3,equation: D3))
--R             from PrimitiveRatDE(D4,D3,D5,D2)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D3 has UPOLYC(D4) and D5 has 
--R            LODOCAT(D3) and D2 has LODOCAT(FRAC(D3))
--R
--RExamples of indicialEquations from PrimitiveRatDE
--R
--E 1347

--S 1348 of 3320
)d op inf
--R 
--R
--RThere is one exposed function called inf :
--R   [1] D -> D1 from D
--R             if D has INTCAT(D1) and D1 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R
--RExamples of inf from IntervalCategory
--R
--E 1348

--S 1349 of 3320
)d op infClsPt?
--R 
--R
--RThere is one exposed function called infClsPt? :
--R   [1] D -> Boolean from D if D has BLMETCT
--R
--RExamples of infClsPt? from BlowUpMethodCategory
--R
--E 1349

--S 1350 of 3320
)d op infieldint
--R 
--R
--RThere is one unexposed function called infieldint :
--R   [1] Fraction(D3) -> Union(Fraction(D3),"failed")
--R             from RationalIntegration(D2,D3)
--R             if D3 has UPOLYC(D2) and D2 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer))
--R
--RExamples of infieldint from RationalIntegration
--R
--E 1350

--S 1351 of 3320
)d op infieldIntegrate
--R 
--R
--RThere is one exposed function called infieldIntegrate :
--R   [1] (Fraction(Polynomial(D3)),Symbol) -> Union(Fraction(Polynomial(
--R            D3)),"failed")
--R             from RationalFunctionIntegration(D3)
--R             if D3 has Join(IntegralDomain,RetractableTo(Integer),
--R            CharacteristicZero)
--R
--RExamples of infieldIntegrate from RationalFunctionIntegration
--R
--E 1351

--S 1352 of 3320
)d op infinite?
--R 
--R
--RThere are 2 exposed functions called infinite? :
--R   [1] OnePointCompletion(D2) -> Boolean from OnePointCompletion(D2)
--R             if D2 has SETCAT
--R   [2] OrderedCompletion(D2) -> Boolean from OrderedCompletion(D2) if 
--R            D2 has SETCAT
--R
--RExamples of infinite? from OnePointCompletion
--R
--R
--RExamples of infinite? from OrderedCompletion
--R
--E 1352

--S 1353 of 3320
)d op infiniteProduct
--R 
--R
--RThere are 3 exposed functions called infiniteProduct :
--R   [1] D1 -> D1 from InfiniteProductCharacteristicZero(D2,D1)
--R             if D2 has Join(IntegralDomain,CharacteristicZero) and D1
--R             has UTSCAT(D2)
--R   [2] D1 -> D1 from InfiniteProductFiniteField(D2,D3,D4,D1)
--R             if D2 has Join(Field,Finite,ConvertibleTo(Integer)) and D3
--R             has UPOLYC(D2) and D4 has MONOGEN(D2,D3) and D1 has UTSCAT
--R            (D4)
--R   [3] D1 -> D1 from InfiniteProductPrimeField(D2,D1)
--R             if D2 has Join(Field,Finite,ConvertibleTo(Integer)) and D1
--R             has UTSCAT(D2)
--R
--RThere is one unexposed function called infiniteProduct :
--R   [1] Stream(D2) -> Stream(D2) from StreamInfiniteProduct(D2)
--R             if D2 has Join(IntegralDomain,CharacteristicZero)
--R
--RExamples of infiniteProduct from InfiniteProductCharacteristicZero
--R
--R
--RExamples of infiniteProduct from InfiniteProductFiniteField
--R
--R
--RExamples of infiniteProduct from InfiniteProductPrimeField
--R
--R
--RExamples of infiniteProduct from StreamInfiniteProduct
--R
--E 1353

--S 1354 of 3320
)d op infinity
--R 
--R
--RThere are 2 exposed functions called infinity :
--R   [1]  -> OnePointCompletion(Integer) from Infinity
--R   [2]  -> OnePointCompletion(D1) from OnePointCompletion(D1) if D1
--R             has SETCAT
--R
--RExamples of infinity from Infinity
--R
--R
--RExamples of infinity from OnePointCompletion
--R
--E 1354

--S 1355 of 3320
)d op infinityNorm
--R 
--R
--RThere is one unexposed function called infinityNorm :
--R   [1] D2 -> D1 from GaloisGroupFactorizationUtilities(D3,D2,D1)
--R             if D3 has RING and D1 has Join(FloatingPointSystem,
--R            RetractableTo(D3),Field,TranscendentalFunctionCategory,
--R            ElementaryFunctionCategory) and D2 has UPOLYC(D3)
--R
--RExamples of infinityNorm from GaloisGroupFactorizationUtilities
--R
--E 1355

--S 1356 of 3320
)d op infix
--R 
--R
--RThere are 2 unexposed functions called infix :
--R   [1] (OutputForm,OutputForm,OutputForm) -> OutputForm from OutputForm
--R            
--R   [2] (OutputForm,List(OutputForm)) -> OutputForm from OutputForm
--R
--RExamples of infix from OutputForm
--R
--E 1356

--S 1357 of 3320
)d op infix?
--R 
--R
--RThere is one unexposed function called infix? :
--R   [1] OutputForm -> Boolean from OutputForm
--R
--RExamples of infix? from OutputForm
--R
--E 1357

--S 1358 of 3320
)d op infLex?
--R 
--R
--RThere is one unexposed function called infLex? :
--R   [1] (SplittingNode(D4,D5),SplittingNode(D4,D5),((D4,D4) -> Boolean),
--R            ((D5,D5) -> Boolean)) -> Boolean
--R             from SplittingNode(D4,D5)
--R             if D4 has Join(SetCategory,Aggregate) and D5 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of infLex? from SplittingNode
--R
--E 1358

--S 1359 of 3320
)d op infRittWu?
--R 
--R
--RThere are 4 exposed functions called infRittWu? :
--R   [1] (List(D6),List(D6)) -> Boolean from QuasiComponentPackage(D3,D4,
--R            D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] (List(D6),List(D6)) -> Boolean
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [4] (D,D) -> Boolean from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of infRittWu? from QuasiComponentPackage
--R
--R
--RExamples of infRittWu? from RecursivePolynomialCategory
--R
--R
--RExamples of infRittWu? from SquareFreeQuasiComponentPackage
--R
--R
--RExamples of infRittWu? from TriangularSetCategory
--R
--E 1359

--S 1360 of 3320
)d op infRittWu?
--R 
--R
--RThere are 4 exposed functions called infRittWu? :
--R   [1] (List(D6),List(D6)) -> Boolean from QuasiComponentPackage(D3,D4,
--R            D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] (List(D6),List(D6)) -> Boolean
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [4] (D,D) -> Boolean from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of infRittWu? from QuasiComponentPackage
--R
--R
--RExamples of infRittWu? from RecursivePolynomialCategory
--R
--R
--RExamples of infRittWu? from SquareFreeQuasiComponentPackage
--R
--R
--RExamples of infRittWu? from TriangularSetCategory
--R
--E 1360

--S 1361 of 3320
)d op inGroundField?
--R 
--R
--RThere is one exposed function called inGroundField? :
--R   [1] D -> Boolean from D if D has XF(D2) and D2 has FIELD
--R
--RExamples of inGroundField? from ExtensionField
--R
--E 1361

--S 1362 of 3320
)d op inHallBasis?
--R 
--R
--RThere is one exposed function called inHallBasis? :
--R   [1] (Integer,Integer,Integer,Integer) -> Boolean from HallBasis
--R
--RExamples of inHallBasis? from HallBasis
--R
--E 1362

--S 1363 of 3320
)d op init
--R 
--R
--RThere are 2 exposed functions called init :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R   [2]  -> D from D if D has STEP
--R
--RExamples of init from RecursivePolynomialCategory
--R
--R
--RExamples of init from StepThrough
--R
--E 1363

--S 1364 of 3320
)d op initial
--R 
--R
--RThere is one exposed function called initial :
--R   [1] D -> D from D
--R             if D has DPOLCAT(D1,D2,D3,D4) and D1 has RING and D2 has 
--R            ORDSET and D3 has DVARCAT(D2) and D4 has OAMONS
--R
--RExamples of initial from DifferentialPolynomialCategory
--R
--E 1364

--S 1365 of 3320
)d op initializeGroupForWordProblem
--R 
--R
--RThere are 2 exposed functions called initializeGroupForWordProblem :
--R   [1] (PermutationGroup(D3),Integer,Integer) -> Void from 
--R            PermutationGroup(D3)
--R             if D3 has SETCAT
--R   [2] PermutationGroup(D2) -> Void from PermutationGroup(D2) if D2
--R             has SETCAT
--R
--RExamples of initializeGroupForWordProblem from PermutationGroup
--R
--E 1365

--S 1366 of 3320
)d op initializeParamOfPlaces
--R 
--R
--RThere are 2 exposed functions called initializeParamOfPlaces :
--R   [1] D6 -> Void from DesingTreePackage(D7,D8,D9,D10,D11,D12,D1,D2,D3,
--R            D6,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D9 has POLYCAT(D7
--R            ,D10,OVAR(D8)) and D10 has DIRPCAT(#(D8),NNI) and D11 has 
--R            PRSPCAT(D7) and D12 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D12) and D2 has DIVCAT(D1) and D3 has INFCLCT(D7,D8,D9,D10,
--R            D11,D12,D1,D2,D4) and D4 has BLMETCT and D6 has DSTRCAT(D3)
--R            
--R   [2] (D7,List(D11)) -> Void
--R             from DesingTreePackage(D9,D10,D11,D12,D13,D1,D2,D3,D4,D7,
--R            D5)
--R             if D11 has POLYCAT(D9,D12,OVAR(D10)) and D12 has DIRPCAT(#
--R            (D10),NNI) and D9 has FIELD and D10: LIST(SYMBOL) and D13
--R             has PRSPCAT(D9) and D1 has LOCPOWC(D9) and D2 has PLACESC(
--R            D9,D1) and D3 has DIVCAT(D2) and D4 has INFCLCT(D9,D10,D11,
--R            D12,D13,D1,D2,D3,D5) and D5 has BLMETCT and D7 has DSTRCAT(
--R            D4)
--R
--RExamples of initializeParamOfPlaces from DesingTreePackage
--R
--E 1366

--S 1367 of 3320
)d op initiallyReduce
--R 
--R
--RThere are 2 exposed functions called initiallyReduce :
--R   [1] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R   [2] (D1,D) -> D1 from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of initiallyReduce from RecursivePolynomialCategory
--R
--R
--RExamples of initiallyReduce from TriangularSetCategory
--R
--E 1367

--S 1368 of 3320
)d op initiallyReduced?
--R 
--R
--RThere are 4 exposed functions called initiallyReduced? :
--R   [1] (D,List(D)) -> Boolean from D
--R             if D has RPOLCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [2] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] D -> Boolean from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [4] (D2,D) -> Boolean from D
--R             if D has TSETCAT(D3,D4,D5,D2) and D3 has INTDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of initiallyReduced? from RecursivePolynomialCategory
--R
--R
--RExamples of initiallyReduced? from TriangularSetCategory
--R
--E 1368

--S 1369 of 3320
)d op initiallyReduced?
--R 
--R
--RThere are 4 exposed functions called initiallyReduced? :
--R   [1] (D,List(D)) -> Boolean from D
--R             if D has RPOLCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [2] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] D -> Boolean from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [4] (D2,D) -> Boolean from D
--R             if D has TSETCAT(D3,D4,D5,D2) and D3 has INTDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of initiallyReduced? from RecursivePolynomialCategory
--R
--R
--RExamples of initiallyReduced? from TriangularSetCategory
--R
--E 1369

--S 1370 of 3320
)d op initials
--R 
--R
--RThere is one exposed function called initials :
--R   [1] D -> List(D5) from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of initials from TriangularSetCategory
--R
--E 1370

--S 1371 of 3320
)d op initParLocLeaves
--R 
--R
--RThere is one exposed function called initParLocLeaves :
--R   [1] D6 -> Void from DesingTreePackage(D7,D8,D9,D10,D11,D12,D1,D2,D3,
--R            D6,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D9 has POLYCAT(D7
--R            ,D10,OVAR(D8)) and D10 has DIRPCAT(#(D8),NNI) and D11 has 
--R            PRSPCAT(D7) and D12 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D12) and D2 has DIVCAT(D1) and D3 has INFCLCT(D7,D8,D9,D10,
--R            D11,D12,D1,D2,D4) and D4 has BLMETCT and D6 has DSTRCAT(D3)
--R            
--R
--RExamples of initParLocLeaves from DesingTreePackage
--R
--E 1371

--S 1372 of 3320
)d op initTable!
--R 
--R
--RThere is one unexposed function called initTable! :
--R   [1]  -> Void from TabulatedComputationPackage(D2,D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of initTable! from TabulatedComputationPackage
--R
--E 1372

--S 1373 of 3320
)d op innerint
--R 
--R
--RThere is one exposed function called innerint :
--R   [1] (D2,Symbol,OrderedCompletion(D2),OrderedCompletion(D2),Boolean)
--R             -> Union(f1: OrderedCompletion(D2),f2: List(OrderedCompletion(D2
--R            )),fail: failed,pole: potentialPole)
--R             from ElementaryFunctionDefiniteIntegration(D6,D2)
--R             if D6 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D6))
--R
--RExamples of innerint from ElementaryFunctionDefiniteIntegration
--R
--E 1373

--S 1374 of 3320
)d op input
--R 
--R
--RThere are 2 exposed functions called input :
--R   [1] BasicOperator -> Union((List(InputForm) -> InputForm),"failed")
--R             from BasicOperator
--R   [2] (BasicOperator,(List(InputForm) -> InputForm)) -> BasicOperator
--R             from BasicOperator
--R
--RExamples of input from BasicOperator
--R
--E 1374

--S 1375 of 3320
)d op inR?
--R 
--R
--RThere is one unexposed function called inR? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of inR? from Pattern
--R
--E 1375

--S 1376 of 3320
)d op inRadical?
--R 
--R
--RThere is one exposed function called inRadical? :
--R   [1] (D2,PolynomialIdeals(D3,D4,D5,D2)) -> Boolean
--R             from PolynomialIdeals(D3,D4,D5,D2)
--R             if D3 has FIELD and D4 has OAMONS and D5 has ORDSET and D2
--R             has POLYCAT(D3,D4,D5)
--R
--RExamples of inRadical? from PolynomialIdeals
--R
--E 1376

--S 1377 of 3320
)d op inrootof
--R 
--R
--RThere is one unexposed function called inrootof :
--R   [1] (SparseUnivariatePolynomial(D1),D1) -> D1 from AlgebraicFunction
--R            (D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of inrootof from AlgebraicFunction
--R
--E 1377

--S 1378 of 3320
)d op insert
--R 
--R
--RThere are 2 exposed functions called insert :
--R   [1] (D,D,Integer) -> D from D if D has LNAGG(D2) and D2 has TYPE
--R   [2] (D1,D,Integer) -> D from D if D has LNAGG(D1) and D1 has TYPE
--R         
--R
--RExamples of insert from LinearAggregate
--R
--E 1378

--S 1379 of 3320
)d op insert!
--R 
--R
--RThere are 13 exposed functions called insert! :
--R   [1] (D1,ArrayStack(D1)) -> ArrayStack(D1) from ArrayStack(D1) if D1
--R             has SETCAT
--R   [2] (D1,D) -> D from D if D has BGAGG(D1) and D1 has TYPE
--R   [3] (D1,BinarySearchTree(D1)) -> BinarySearchTree(D1)
--R             from BinarySearchTree(D1) if D1 has ORDSET
--R   [4] (D1,BinaryTournament(D1)) -> BinaryTournament(D1)
--R             from BinaryTournament(D1) if D1 has ORDSET
--R   [5] (D1,Dequeue(D1)) -> Dequeue(D1) from Dequeue(D1) if D1 has 
--R            SETCAT
--R   [6] (D,D,Integer) -> D from D if D has ELAGG(D2) and D2 has TYPE
--R   [7] (D1,D,Integer) -> D from D if D has ELAGG(D1) and D1 has TYPE
--R         
--R   [8] (D1,Heap(D1)) -> Heap(D1) from Heap(D1) if D1 has ORDSET
--R   [9] Record(key: Record(var: Symbol,fn: Expression(DoubleFloat),range
--R            : Segment(OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,
--R            relerr: DoubleFloat),entry: Record(endPointContinuity: Union(
--R            continuous: Continuous at the end points,lowerSingular: 
--R            There is a singularity at the lower end point,upperSingular: 
--R            There is a singularity at the upper end point,bothSingular: 
--R            There are singularities at both end points,notEvaluated: 
--R            End point continuity not yet evaluated),singularitiesStream: 
--R            Union(str: Stream(DoubleFloat),notEvaluated: 
--R            Internal singularities not yet evaluated),range: Union(finite: 
--R            The range is finite,lowerInfinite: 
--R            The bottom of range is infinite,upperInfinite: 
--R            The top of range is infinite,bothInfinite: 
--R            Both top and bottom points are infinite,notEvaluated: 
--R            Range not yet evaluated))) -> IntegrationFunctionsTable
--R             from IntegrationFunctionsTable
--R   [10] (D1,D,NonNegativeInteger) -> D from D if D has MDAGG(D1) and D1
--R             has SETCAT
--R   [11] Record(key: Record(xinit: DoubleFloat,xend: DoubleFloat,fn: 
--R            Vector(Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals
--R            : List(DoubleFloat),g: Expression(DoubleFloat),abserr: 
--R            DoubleFloat,relerr: DoubleFloat),entry: Record(stiffness: Float,
--R            stability: Float,expense: Float,accuracy: Float,
--R            intermediateResults: Float)) -> ODEIntensityFunctionsTable
--R             from ODEIntensityFunctionsTable
--R   [12] (D1,Queue(D1)) -> Queue(D1) from Queue(D1) if D1 has SETCAT
--R   [13] (D1,Stack(D1)) -> Stack(D1) from Stack(D1) if D1 has SETCAT
--R
--RThere is one unexposed function called insert! :
--R   [1] (D2,D3) -> Void from TabulatedComputationPackage(D2,D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of insert! from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rinsert!(8,a) 
--Ra
--R
--R
--RExamples of insert! from BagAggregate
--R
--R
--RExamples of insert! from BinarySearchTree
--R
--Rt1:=binarySearchTree [1,2,3,4] 
--Rinsert!(5,t1)
--R
--R
--RExamples of insert! from BinaryTournament
--R
--Rt1:=binaryTournament [1,2,3,4] 
--Rinsert!(5,t1) 
--Rt1
--R
--R
--RExamples of insert! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rinsert! (8,a) 
--Ra
--R
--R
--RExamples of insert! from ExtensibleLinearAggregate
--R
--R
--RExamples of insert! from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rinsert!(8,a) 
--Ra
--R
--R
--RExamples of insert! from IntegrationFunctionsTable
--R
--R
--RExamples of insert! from MultiDictionary
--R
--R
--RExamples of insert! from ODEIntensityFunctionsTable
--R
--R
--RExamples of insert! from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rinsert! (8,a) 
--Ra
--R
--R
--RExamples of insert! from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rinsert!(8,a) 
--Ra
--R
--R
--RExamples of insert! from TabulatedComputationPackage
--R
--E 1379

--S 1380 of 3320
)d op insertBottom!
--R 
--R
--RThere are 2 exposed functions called insertBottom! :
--R   [1] (D1,Dequeue(D1)) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] (D1,D) -> D1 from D if D has DQAGG(D1) and D1 has TYPE
--R
--RExamples of insertBottom! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--RinsertBottom! a 
--Ra
--R
--R
--RExamples of insertBottom! from DequeueAggregate
--R
--E 1380

--S 1381 of 3320
)d op insertionSort!
--R 
--R
--RThere are 2 unexposed functions called insertionSort! :
--R   [1] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)
--R             if D3 has TYPE and D1 has IndexedAggregate(Integer,D3)with
--R                 finiteAggregate
--R                 shallowlyMutable
--R   [2] D1 -> D1 from SortPackage(D2,D1)
--R             if D2 has ORDSET and D2 has TYPE and D1 has 
--R            IndexedAggregate(Integer,D2)with
--R                 finiteAggregate
--R                 shallowlyMutable
--R
--RExamples of insertionSort! from SortPackage
--R
--E 1381

--S 1382 of 3320
)d op insertMatch
--R 
--R
--RThere is one unexposed function called insertMatch :
--R   [1] (Pattern(D3),D2,PatternMatchResult(D3,D2)) -> PatternMatchResult
--R            (D3,D2)
--R             from PatternMatchResult(D3,D2) if D3 has SETCAT and D2
--R             has SETCAT
--R
--RExamples of insertMatch from PatternMatchResult
--R
--E 1382

--S 1383 of 3320 done
)d op insertRoot!
--R 
--R
--RThere is one exposed function called insertRoot! :
--R   [1] (D1,BinarySearchTree(D1)) -> BinarySearchTree(D1)
--R             from BinarySearchTree(D1) if D1 has ORDSET
--R
--RExamples of insertRoot! from BinarySearchTree
--R
--Rt1:=binarySearchTree [1,2,3,4] 
--RinsertRoot!(5,t1)
--R
--E 1383

--S 1384 of 3320
)d op insertTop!
--R 
--R
--RThere are 2 exposed functions called insertTop! :
--R   [1] (D1,Dequeue(D1)) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] (D1,D) -> D1 from D if D has DQAGG(D1) and D1 has TYPE
--R
--RExamples of insertTop! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--RinsertTop! a 
--Ra
--R
--R
--RExamples of insertTop! from DequeueAggregate
--R
--E 1384

--S 1385 of 3320
)d op inspect
--R 
--R
--RThere are 6 exposed functions called inspect :
--R   [1] ArrayStack(D1) -> D1 from ArrayStack(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has BGAGG(D1) and D1 has TYPE
--R   [3] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [4] Heap(D1) -> D1 from Heap(D1) if D1 has ORDSET
--R   [5] Queue(D1) -> D1 from Queue(D1) if D1 has SETCAT
--R   [6] Stack(D1) -> D1 from Stack(D1) if D1 has SETCAT
--R
--RExamples of inspect from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rinspect a
--R
--R
--RExamples of inspect from BagAggregate
--R
--R
--RExamples of inspect from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rinspect a
--R
--R
--RExamples of inspect from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rinspect a
--R
--R
--RExamples of inspect from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rinspect a
--R
--R
--RExamples of inspect from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rinspect a
--R
--E 1385

--S 1386 of 3320
)d op int
--R 
--R
--RThere are 5 unexposed functions called int :
--R   [1] (D1,Symbol) -> D1 from ODEIntegration(D3,D1)
--R             if D3 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D1 has Join(
--R            AlgebraicallyClosedFunctionSpace(D3),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory)
--R         
--R   [2] (OutputForm,OutputForm,OutputForm) -> OutputForm from OutputForm
--R            
--R   [3] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [4] OutputForm -> OutputForm from OutputForm
--R   [5] D2 -> Stream(D2) from StreamTaylorSeriesOperations(D2) if D2
--R             has RING
--R
--RExamples of int from ODEIntegration
--R
--R
--RExamples of int from OutputForm
--R
--R
--RExamples of int from StreamTaylorSeriesOperations
--R
--E 1386

--S 1387 of 3320
)d op intChoose
--R 
--R
--RThere is one unexposed function called intChoose :
--R   [1] (SparseUnivariatePolynomial(D8),List(D6),List(List(D7))) -> 
--R            Record(upol: SparseUnivariatePolynomial(D7),Lval: List(D7),Lfact
--R            : List(Record(factor: SparseUnivariatePolynomial(D7),exponent: 
--R            Integer)),ctpol: D7)
--R             from MultivariateSquareFree(D5,D6,D7,D8)
--R             if D6 has ORDSET and D7 has EUCDOM and D8 has POLYCAT(D7,
--R            D5,D6) and D5 has OAMONS
--R
--RExamples of intChoose from MultivariateSquareFree
--R
--E 1387

--S 1388 of 3320
)d op intcompBasis
--R 
--R
--RThere is one unexposed function called intcompBasis :
--R   [1] (OrderedVariableList(D3),List(
--R            HomogeneousDistributedMultivariatePolynomial(D3,D4)),List(
--R            HomogeneousDistributedMultivariatePolynomial(D3,D4))) -> List(
--R            HomogeneousDistributedMultivariatePolynomial(D3,D4))
--R             from LinGroebnerPackage(D3,D4) if D3: LIST(SYMBOL) and D4
--R             has GCDDOM
--R
--RExamples of intcompBasis from LinGroebnerPackage
--R
--E 1388

--S 1389 of 3320
)d op integer
--R 
--R
--RThere are 2 exposed functions called integer :
--R   [1] D2 -> Integer from IntegerRetractions(D2) if D2 has RETRACT(INT)
--R            
--R   [2] D -> D1 from D
--R             if D has SEXCAT(D2,D3,D1,D4,D5) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D1 has 
--R            SETCAT
--R
--RExamples of integer from IntegerRetractions
--R
--R
--RExamples of integer from SExpressionCategory
--R
--E 1389

--S 1390 of 3320
)d op integer?
--R 
--R
--RThere are 3 exposed functions called integer? :
--R   [1] FortranScalarType -> Boolean from FortranScalarType
--R   [2] D2 -> Boolean from IntegerRetractions(D2) if D2 has RETRACT(INT)
--R            
--R   [3] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of integer? from FortranScalarType
--R
--R
--RExamples of integer? from IntegerRetractions
--R
--R
--RExamples of integer? from SExpressionCategory
--R
--E 1390

--S 1391 of 3320
)d op integers
--R 
--R
--RThere is one unexposed function called integers :
--R   [1] Integer -> Stream(Integer) from StreamTaylorSeriesOperations(D3)
--R             if D3 has RING
--R
--RExamples of integers from StreamTaylorSeriesOperations
--R
--E 1391

--S 1392 of 3320
)d op integral
--R 
--R
--RThere are 2 exposed functions called integral :
--R   [1] (D,Symbol) -> D from D if D has PRIMCAT
--R   [2] (D,SegmentBinding(D)) -> D from D if D has PRIMCAT
--R
--RThere are 4 unexposed functions called integral :
--R   [1] (D1,Symbol) -> IntegrationResult(D1) from IntegrationResult(D1)
--R             if D1 has RETRACT(SYMBOL) and D1 has FIELD
--R   [2] (D1,D1) -> IntegrationResult(D1) from IntegrationResult(D1) if 
--R            D1 has FIELD
--R   [3] (D1,Symbol) -> D1 from LiouvillianFunction(D3,D1)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D3),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R   [4] (D1,SegmentBinding(D1)) -> D1 from LiouvillianFunction(D3,D1)
--R             if D1 has Join(FunctionSpace(D3),RadicalCategory,
--R            TranscendentalFunctionCategory) and D3 has Join(OrderedSet,
--R            IntegralDomain)
--R
--RExamples of integral from IntegrationResult
--R
--R
--RExamples of integral from LiouvillianFunction
--R
--R
--RExamples of integral from PrimitiveFunctionCategory
--R
--E 1392

--S 1393 of 3320
)d op integral?
--R 
--R
--RThere are 3 exposed functions called integral? :
--R   [1] (D,D2) -> Boolean from D
--R             if D has FFCAT(D3,D2,D4) and D3 has UFD and D2 has UPOLYC(
--R            D3) and D4 has UPOLYC(FRAC(D2))
--R   [2] (D,D2) -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R   [3] D -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of integral? from FunctionFieldCategory
--R
--E 1393

--S 1394 of 3320
)d op integralAtInfinity?
--R 
--R
--RThere is one exposed function called integralAtInfinity? :
--R   [1] D -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of integralAtInfinity? from FunctionFieldCategory
--R
--E 1394

--S 1395 of 3320
)d op integralBasis
--R 
--R
--RThere is one exposed function called integralBasis :
--R   [1]  -> Vector(D) from D
--R             if D2 has UFD and D3 has UPOLYC(D2) and D4 has UPOLYC(FRAC
--R            (D3)) and D has FFCAT(D2,D3,D4)
--R
--RThere are 4 unexposed functions called integralBasis :
--R   [1]  -> Record(basis: Matrix(D2),basisDen: D2,basisInv: Matrix(D2))
--R             from FunctionFieldIntegralBasis(D2,D3,D4)
--R             if D2 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D3 has UPOLYC(D2) 
--R            and D4 has FRAMALG(D2,D3)
--R   [2]  -> Record(basis: Matrix(Integer),basisDen: Integer,basisInv: 
--R            Matrix(Integer))
--R             from NumberFieldIntegralBasis(D2,D3)
--R             if D2 has UPOLYC(INT) and D3 has FRAMALG(INT,D2)
--R   [3]  -> Record(basis: Matrix(D3),basisDen: D3,basisInv: Matrix(D3))
--R             from PAdicWildFunctionFieldIntegralBasis(D2,D3,D4,D5)
--R             if D2 has FFIELDC and D3 has UPOLYC(D2) and D4 has UPOLYC(
--R            D3) and D5 has MONOGEN(D3,D4)
--R   [4]  -> Record(basis: Matrix(D3),basisDen: D3,basisInv: Matrix(D3))
--R             from WildFunctionFieldIntegralBasis(D2,D3,D4,D5)
--R             if D2 has FFIELDC and D3 has UPOLYC(D2) and D4 has UPOLYC(
--R            D3) and D5 has FRAMALG(D3,D4)
--R
--RExamples of integralBasis from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RintegralBasis()$R
--R
--R
--RExamples of integralBasis from FunctionFieldIntegralBasis
--R
--R
--RExamples of integralBasis from NumberFieldIntegralBasis
--R
--R
--RExamples of integralBasis from PAdicWildFunctionFieldIntegralBasis
--R
--R
--RExamples of integralBasis from WildFunctionFieldIntegralBasis
--R
--E 1395

--S 1396 of 3320 done
)d op integralBasisAtInfinity
--R 
--R
--RThere is one exposed function called integralBasisAtInfinity :
--R   [1]  -> Vector(D) from D
--R             if D2 has UFD and D3 has UPOLYC(D2) and D4 has UPOLYC(FRAC
--R            (D3)) and D has FFCAT(D2,D3,D4)
--R
--RExamples of integralBasisAtInfinity from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RintegralBasisAtInfinity()$R
--R
--E 1396

--S 1397 of 3320
)d op integralCoordinates
--R 
--R
--RThere is one exposed function called integralCoordinates :
--R   [1] D -> Record(num: Vector(D3),den: D3) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of integralCoordinates from FunctionFieldCategory
--R
--E 1397

--S 1398 of 3320
)d op integralDerivationMatrix
--R 
--R
--RThere is one exposed function called integralDerivationMatrix :
--R   [1] (D4 -> D4) -> Record(num: Matrix(D4),den: D4) from D
--R             if D has FFCAT(D3,D4,D5) and D3 has UFD and D4 has UPOLYC(
--R            D3) and D5 has UPOLYC(FRAC(D4))
--R
--RExamples of integralDerivationMatrix from FunctionFieldCategory
--R
--E 1398

--S 1399 of 3320
)d op integralLastSubResultant
--R 
--R
--RThere is one exposed function called integralLastSubResultant :
--R   [1] (D2,D2,D3) -> List(Record(val: D2,tower: D3))
--R             from RegularTriangularSetGcdPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of integralLastSubResultant from RegularTriangularSetGcdPackage
--R
--E 1399

--S 1400 of 3320 done
)d op integralMatrix
--R 
--R
--RThere is one exposed function called integralMatrix :
--R   [1]  -> Matrix(Fraction(D3)) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of integralMatrix from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RintegralMatrix()$R
--R
--E 1400

--S 1401 of 3320 done
)d op integralMatrixAtInfinity
--R 
--R
--RThere is one exposed function called integralMatrixAtInfinity :
--R   [1]  -> Matrix(Fraction(D3)) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of integralMatrixAtInfinity from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RintegralMatrixAtInfinity()$R
--R
--E 1401

--S 1402 of 3320
)d op integralRepresents
--R 
--R
--RThere is one exposed function called integralRepresents :
--R   [1] (Vector(D2),D2) -> D from D
--R             if D2 has UPOLYC(D3) and D3 has UFD and D has FFCAT(D3,D2,
--R            D4) and D4 has UPOLYC(FRAC(D2))
--R
--RExamples of integralRepresents from FunctionFieldCategory
--R
--E 1402

--S 1403 of 3320
)d op integrate
--R 
--R
--RThere are 32 exposed functions called integrate :
--R   [1] (D2,SegmentBinding(OrderedCompletion(D2))) -> Union(f1: 
--R            OrderedCompletion(D2),f2: List(OrderedCompletion(D2)),fail: 
--R            failed,pole: potentialPole)
--R             from ElementaryFunctionDefiniteIntegration(D4,D2)
--R             if D2 has Join(TranscendentalFunctionCategory,
--R            PrimitiveFunctionCategory,AlgebraicallyClosedFunctionSpace(
--R            D4)) and D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [2] (D2,SegmentBinding(OrderedCompletion(D2)),String) -> Union(f1: 
--R            OrderedCompletion(D2),f2: List(OrderedCompletion(D2)),fail: 
--R            failed,pole: potentialPole)
--R             from ElementaryFunctionDefiniteIntegration(D5,D2)
--R             if D2 has Join(TranscendentalFunctionCategory,
--R            PrimitiveFunctionCategory,AlgebraicallyClosedFunctionSpace(
--R            D5)) and D5 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [3] (Fraction(Polynomial(D4)),SegmentBinding(OrderedCompletion(
--R            Expression(D4)))) -> Union(f1: OrderedCompletion(Expression(D4)),
--R            f2: List(OrderedCompletion(Expression(D4))),fail: failed,pole: 
--R            potentialPole)
--R             from RationalFunctionDefiniteIntegration(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [4] (Fraction(Polynomial(D5)),SegmentBinding(OrderedCompletion(
--R            Expression(D5))),String) -> Union(f1: OrderedCompletion(
--R            Expression(D5)),f2: List(OrderedCompletion(Expression(D5))),fail
--R            : failed,pole: potentialPole)
--R             from RationalFunctionDefiniteIntegration(D5)
--R             if D5 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [5] (Fraction(Polynomial(D4)),SegmentBinding(OrderedCompletion(
--R            Fraction(Polynomial(D4))))) -> Union(f1: OrderedCompletion(
--R            Expression(D4)),f2: List(OrderedCompletion(Expression(D4))),fail
--R            : failed,pole: potentialPole)
--R             from RationalFunctionDefiniteIntegration(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [6] (Fraction(Polynomial(D5)),SegmentBinding(OrderedCompletion(
--R            Fraction(Polynomial(D5)))),String) -> Union(f1: OrderedCompletion
--R            (Expression(D5)),f2: List(OrderedCompletion(Expression(D5))),fail
--R            : failed,pole: potentialPole)
--R             from RationalFunctionDefiniteIntegration(D5)
--R             if D5 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [7] (D2,Symbol) -> Union(D2,List(D2)) from FunctionSpaceIntegration(
--R            D4,D2)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D4))
--R   [8] (GeneralUnivariatePowerSeries(D2,D3,D4),Variable(D3)) -> 
--R            GeneralUnivariatePowerSeries(D2,D3,D4)
--R             from GeneralUnivariatePowerSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [9] (Expression(Float),Segment(OrderedCompletion(Float)),Float,Float
--R            ,RoutinesTable) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [10] NumericalIntegrationProblem -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [11] (Expression(Float),Segment(OrderedCompletion(Float)),Float,
--R            Float) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [12] (Expression(Float),Segment(OrderedCompletion(Float)),Float) -> 
--R            Result
--R             from AnnaNumericalIntegrationPackage
--R   [13] (Expression(Float),Segment(OrderedCompletion(Float))) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [14] (Expression(Float),List(Segment(OrderedCompletion(Float)))) -> 
--R            Result
--R             from AnnaNumericalIntegrationPackage
--R   [15] (Expression(Float),List(Segment(OrderedCompletion(Float))),
--R            Float) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [16] (Expression(Float),List(Segment(OrderedCompletion(Float))),
--R            Float,Float) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [17] (Expression(Float),List(Segment(OrderedCompletion(Float))),
--R            Float,Float,RoutinesTable) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [18] (Expression(Float),SegmentBinding(OrderedCompletion(Float)),
--R            String) -> Union(Result,"failed")
--R             from AnnaNumericalIntegrationPackage
--R   [19] (Expression(Float),SegmentBinding(OrderedCompletion(Float)),
--R            Symbol) -> Union(Result,"failed")
--R             from AnnaNumericalIntegrationPackage
--R   [20] (Fraction(Polynomial(D4)),Symbol) -> Union(Expression(D4),List(
--R            Expression(D4)))
--R             from IntegrationResultRFToFunction(D4)
--R             if D4 has CHARZ and D4 has Join(GcdDomain,RetractableTo(
--R            Integer),OrderedSet,LinearlyExplicitRingOver(Integer))
--R   [21] (D,D1) -> D from D
--R             if D has MTSCAT(D2,D1) and D2 has RING and D1 has ORDSET 
--R            and D2 has ALGEBRA(FRAC(INT))
--R   [22] (Polynomial(D2),Symbol) -> Polynomial(D2) from Polynomial(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [23] (TaylorSeries(D2),Symbol,D2) -> TaylorSeries(D2) from 
--R            TaylorSeries(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [24] (UnivariateFormalPowerSeries(D2),Variable(QUOTE(x))) -> 
--R            UnivariateFormalPowerSeries(D2)
--R             from UnivariateFormalPowerSeries(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [25] (D,D1) -> D from D
--R             if D1 = SYMBOL and D has ULSCAT(D2) and D2 has RING and D2
--R             has ACFS(INT) and D2 has PRIMCAT and D2 has TRANFUN and D2
--R             has ALGEBRA(FRAC(INT)) or D1 = SYMBOL and D has ULSCAT(D2)
--R            and D2 has RING and D2 has variables: D2 -> List(D1) and D2
--R             has integrate: (D2,D1) -> D2 and D2 has ALGEBRA(FRAC(INT))
--R            
--R   [26] D -> D from D
--R             if D has ULSCAT(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [27] D -> D from D
--R             if D has UPOLYC(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [28] (D,D1) -> D from D
--R             if D1 = SYMBOL and D has UPXSCAT(D2) and D2 has RING and 
--R            D2 has ACFS(INT) and D2 has PRIMCAT and D2 has TRANFUN and 
--R            D2 has ALGEBRA(FRAC(INT)) or D1 = SYMBOL and D has UPXSCAT(
--R            D2) and D2 has RING and D2 has variables: D2 -> List(D1) 
--R            and D2 has integrate: (D2,D1) -> D2 and D2 has ALGEBRA(FRAC
--R            (INT))
--R   [29] D -> D from D
--R             if D has UPXSCAT(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [30] (D,D1) -> D from D
--R             if D1 = SYMBOL and D has UTSCAT(D2) and D2 has RING and D2
--R             has ACFS(INT) and D2 has PRIMCAT and D2 has TRANFUN and D2
--R             has ALGEBRA(FRAC(INT)) or D1 = SYMBOL and D has UTSCAT(D2)
--R            and D2 has RING and D2 has variables: D2 -> List(D1) and D2
--R             has integrate: (D2,D1) -> D2 and D2 has ALGEBRA(FRAC(INT))
--R            
--R   [31] D -> D from D
--R             if D has UTSCAT(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [32] (UnivariateTaylorSeriesCZero(D2,D3),Variable(D3)) -> 
--R            UnivariateTaylorSeriesCZero(D2,D3)
--R             from UnivariateTaylorSeriesCZero(D2,D3)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING
--R
--RThere are 10 unexposed functions called integrate :
--R   [1] Fraction(D4) -> IntegrationResult(Fraction(D4))
--R             from RationalIntegration(D3,D4)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer)) and D4 has UPOLYC(D3)
--R   [2] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R   [3] (SparseMultivariateTaylorSeries(D2,D1,D3),D1,D2) -> 
--R            SparseMultivariateTaylorSeries(D2,D1,D3)
--R             from SparseMultivariateTaylorSeries(D2,D1,D3)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING and D1 has 
--R            ORDSET and D3 has POLYCAT(D2,INDE(D1),D1)
--R   [4] (D2,Stream(D2)) -> Stream(D2) from StreamTaylorSeriesOperations(
--R            D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [5] (SparseUnivariateLaurentSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariateLaurentSeries(D2,D3,D4)
--R             from SparseUnivariateLaurentSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [6] (SparseUnivariatePuiseuxSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariatePuiseuxSeries(D2,D3,D4)
--R             from SparseUnivariatePuiseuxSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [7] (SparseUnivariateTaylorSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariateTaylorSeries(D2,D3,D4)
--R             from SparseUnivariateTaylorSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [8] (UnivariateLaurentSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariateLaurentSeries(D2,D3,D4)
--R             from UnivariateLaurentSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [9] (UnivariatePuiseuxSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariatePuiseuxSeries(D2,D3,D4)
--R             from UnivariatePuiseuxSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [10] (UnivariateTaylorSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariateTaylorSeries(D2,D3,D4)
--R             from UnivariateTaylorSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R
--RExamples of integrate from ElementaryFunctionDefiniteIntegration
--R
--R
--RExamples of integrate from RationalFunctionDefiniteIntegration
--R
--R
--RExamples of integrate from FunctionSpaceIntegration
--R
--R
--RExamples of integrate from GeneralUnivariatePowerSeries
--R
--R
--RExamples of integrate from AnnaNumericalIntegrationPackage
--R
--R
--RExamples of integrate from RationalIntegration
--R
--R
--RExamples of integrate from IntegrationResultRFToFunction
--R
--R
--RExamples of integrate from InnerSparseUnivariatePowerSeries
--R
--R
--RExamples of integrate from MultivariateTaylorSeriesCategory
--R
--R
--RExamples of integrate from Polynomial
--R
--R
--RExamples of integrate from SparseMultivariateTaylorSeries
--R
--R
--RExamples of integrate from StreamTaylorSeriesOperations
--R
--R
--RExamples of integrate from SparseUnivariateLaurentSeries
--R
--R
--RExamples of integrate from SparseUnivariatePuiseuxSeries
--R
--R
--RExamples of integrate from SparseUnivariateTaylorSeries
--R
--R
--RExamples of integrate from TaylorSeries
--R
--R
--RExamples of integrate from UnivariateFormalPowerSeries
--R
--R
--RExamples of integrate from UnivariateLaurentSeriesCategory
--R
--R
--RExamples of integrate from UnivariateLaurentSeries
--R
--R
--RExamples of integrate from UnivariatePolynomialCategory
--R
--R
--RExamples of integrate from UnivariatePuiseuxSeriesCategory
--R
--R
--RExamples of integrate from UnivariatePuiseuxSeries
--R
--R
--RExamples of integrate from UnivariateTaylorSeriesCategory
--R
--R
--RExamples of integrate from UnivariateTaylorSeries
--R
--R
--RExamples of integrate from UnivariateTaylorSeriesCZero
--R
--E 1403

--S 1404 of 3320
)d op integrate
--R 
--R
--RThere are 32 exposed functions called integrate :
--R   [1] (D2,SegmentBinding(OrderedCompletion(D2))) -> Union(f1: 
--R            OrderedCompletion(D2),f2: List(OrderedCompletion(D2)),fail: 
--R            failed,pole: potentialPole)
--R             from ElementaryFunctionDefiniteIntegration(D4,D2)
--R             if D2 has Join(TranscendentalFunctionCategory,
--R            PrimitiveFunctionCategory,AlgebraicallyClosedFunctionSpace(
--R            D4)) and D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [2] (D2,SegmentBinding(OrderedCompletion(D2)),String) -> Union(f1: 
--R            OrderedCompletion(D2),f2: List(OrderedCompletion(D2)),fail: 
--R            failed,pole: potentialPole)
--R             from ElementaryFunctionDefiniteIntegration(D5,D2)
--R             if D2 has Join(TranscendentalFunctionCategory,
--R            PrimitiveFunctionCategory,AlgebraicallyClosedFunctionSpace(
--R            D5)) and D5 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [3] (Fraction(Polynomial(D4)),SegmentBinding(OrderedCompletion(
--R            Expression(D4)))) -> Union(f1: OrderedCompletion(Expression(D4)),
--R            f2: List(OrderedCompletion(Expression(D4))),fail: failed,pole: 
--R            potentialPole)
--R             from RationalFunctionDefiniteIntegration(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [4] (Fraction(Polynomial(D5)),SegmentBinding(OrderedCompletion(
--R            Expression(D5))),String) -> Union(f1: OrderedCompletion(
--R            Expression(D5)),f2: List(OrderedCompletion(Expression(D5))),fail
--R            : failed,pole: potentialPole)
--R             from RationalFunctionDefiniteIntegration(D5)
--R             if D5 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [5] (Fraction(Polynomial(D4)),SegmentBinding(OrderedCompletion(
--R            Fraction(Polynomial(D4))))) -> Union(f1: OrderedCompletion(
--R            Expression(D4)),f2: List(OrderedCompletion(Expression(D4))),fail
--R            : failed,pole: potentialPole)
--R             from RationalFunctionDefiniteIntegration(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [6] (Fraction(Polynomial(D5)),SegmentBinding(OrderedCompletion(
--R            Fraction(Polynomial(D5)))),String) -> Union(f1: OrderedCompletion
--R            (Expression(D5)),f2: List(OrderedCompletion(Expression(D5))),fail
--R            : failed,pole: potentialPole)
--R             from RationalFunctionDefiniteIntegration(D5)
--R             if D5 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [7] (D2,Symbol) -> Union(D2,List(D2)) from FunctionSpaceIntegration(
--R            D4,D2)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D4))
--R   [8] (GeneralUnivariatePowerSeries(D2,D3,D4),Variable(D3)) -> 
--R            GeneralUnivariatePowerSeries(D2,D3,D4)
--R             from GeneralUnivariatePowerSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [9] (Expression(Float),Segment(OrderedCompletion(Float)),Float,Float
--R            ,RoutinesTable) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [10] NumericalIntegrationProblem -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [11] (Expression(Float),Segment(OrderedCompletion(Float)),Float,
--R            Float) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [12] (Expression(Float),Segment(OrderedCompletion(Float)),Float) -> 
--R            Result
--R             from AnnaNumericalIntegrationPackage
--R   [13] (Expression(Float),Segment(OrderedCompletion(Float))) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [14] (Expression(Float),List(Segment(OrderedCompletion(Float)))) -> 
--R            Result
--R             from AnnaNumericalIntegrationPackage
--R   [15] (Expression(Float),List(Segment(OrderedCompletion(Float))),
--R            Float) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [16] (Expression(Float),List(Segment(OrderedCompletion(Float))),
--R            Float,Float) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [17] (Expression(Float),List(Segment(OrderedCompletion(Float))),
--R            Float,Float,RoutinesTable) -> Result
--R             from AnnaNumericalIntegrationPackage
--R   [18] (Expression(Float),SegmentBinding(OrderedCompletion(Float)),
--R            String) -> Union(Result,"failed")
--R             from AnnaNumericalIntegrationPackage
--R   [19] (Expression(Float),SegmentBinding(OrderedCompletion(Float)),
--R            Symbol) -> Union(Result,"failed")
--R             from AnnaNumericalIntegrationPackage
--R   [20] (Fraction(Polynomial(D4)),Symbol) -> Union(Expression(D4),List(
--R            Expression(D4)))
--R             from IntegrationResultRFToFunction(D4)
--R             if D4 has CHARZ and D4 has Join(GcdDomain,RetractableTo(
--R            Integer),OrderedSet,LinearlyExplicitRingOver(Integer))
--R   [21] (D,D1) -> D from D
--R             if D has MTSCAT(D2,D1) and D2 has RING and D1 has ORDSET 
--R            and D2 has ALGEBRA(FRAC(INT))
--R   [22] (Polynomial(D2),Symbol) -> Polynomial(D2) from Polynomial(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [23] (TaylorSeries(D2),Symbol,D2) -> TaylorSeries(D2) from 
--R            TaylorSeries(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [24] (UnivariateFormalPowerSeries(D2),Variable(QUOTE(x))) -> 
--R            UnivariateFormalPowerSeries(D2)
--R             from UnivariateFormalPowerSeries(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [25] (D,D1) -> D from D
--R             if D1 = SYMBOL and D has ULSCAT(D2) and D2 has RING and D2
--R             has ACFS(INT) and D2 has PRIMCAT and D2 has TRANFUN and D2
--R             has ALGEBRA(FRAC(INT)) or D1 = SYMBOL and D has ULSCAT(D2)
--R            and D2 has RING and D2 has variables: D2 -> List(D1) and D2
--R             has integrate: (D2,D1) -> D2 and D2 has ALGEBRA(FRAC(INT))
--R            
--R   [26] D -> D from D
--R             if D has ULSCAT(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [27] D -> D from D
--R             if D has UPOLYC(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [28] (D,D1) -> D from D
--R             if D1 = SYMBOL and D has UPXSCAT(D2) and D2 has RING and 
--R            D2 has ACFS(INT) and D2 has PRIMCAT and D2 has TRANFUN and 
--R            D2 has ALGEBRA(FRAC(INT)) or D1 = SYMBOL and D has UPXSCAT(
--R            D2) and D2 has RING and D2 has variables: D2 -> List(D1) 
--R            and D2 has integrate: (D2,D1) -> D2 and D2 has ALGEBRA(FRAC
--R            (INT))
--R   [29] D -> D from D
--R             if D has UPXSCAT(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [30] (D,D1) -> D from D
--R             if D1 = SYMBOL and D has UTSCAT(D2) and D2 has RING and D2
--R             has ACFS(INT) and D2 has PRIMCAT and D2 has TRANFUN and D2
--R             has ALGEBRA(FRAC(INT)) or D1 = SYMBOL and D has UTSCAT(D2)
--R            and D2 has RING and D2 has variables: D2 -> List(D1) and D2
--R             has integrate: (D2,D1) -> D2 and D2 has ALGEBRA(FRAC(INT))
--R            
--R   [31] D -> D from D
--R             if D has UTSCAT(D1) and D1 has RING and D1 has ALGEBRA(
--R            FRAC(INT))
--R   [32] (UnivariateTaylorSeriesCZero(D2,D3),Variable(D3)) -> 
--R            UnivariateTaylorSeriesCZero(D2,D3)
--R             from UnivariateTaylorSeriesCZero(D2,D3)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING
--R
--RThere are 10 unexposed functions called integrate :
--R   [1] Fraction(D4) -> IntegrationResult(Fraction(D4))
--R             from RationalIntegration(D3,D4)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer)) and D4 has UPOLYC(D3)
--R   [2] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has RING
--R   [3] (SparseMultivariateTaylorSeries(D2,D1,D3),D1,D2) -> 
--R            SparseMultivariateTaylorSeries(D2,D1,D3)
--R             from SparseMultivariateTaylorSeries(D2,D1,D3)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING and D1 has 
--R            ORDSET and D3 has POLYCAT(D2,INDE(D1),D1)
--R   [4] (D2,Stream(D2)) -> Stream(D2) from StreamTaylorSeriesOperations(
--R            D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R   [5] (SparseUnivariateLaurentSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariateLaurentSeries(D2,D3,D4)
--R             from SparseUnivariateLaurentSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [6] (SparseUnivariatePuiseuxSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariatePuiseuxSeries(D2,D3,D4)
--R             from SparseUnivariatePuiseuxSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [7] (SparseUnivariateTaylorSeries(D2,D3,D4),Variable(D3)) -> 
--R            SparseUnivariateTaylorSeries(D2,D3,D4)
--R             from SparseUnivariateTaylorSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [8] (UnivariateLaurentSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariateLaurentSeries(D2,D3,D4)
--R             from UnivariateLaurentSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [9] (UnivariatePuiseuxSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariatePuiseuxSeries(D2,D3,D4)
--R             from UnivariatePuiseuxSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R   [10] (UnivariateTaylorSeries(D2,D3,D4),Variable(D3)) -> 
--R            UnivariateTaylorSeries(D2,D3,D4)
--R             from UnivariateTaylorSeries(D2,D3,D4)
--R             if D3: SYMBOL and D2 has ALGEBRA(FRAC(INT)) and D2 has 
--R            RING and D4: D2
--R
--RExamples of integrate from ElementaryFunctionDefiniteIntegration
--R
--R
--RExamples of integrate from RationalFunctionDefiniteIntegration
--R
--R
--RExamples of integrate from FunctionSpaceIntegration
--R
--R
--RExamples of integrate from GeneralUnivariatePowerSeries
--R
--R
--RExamples of integrate from AnnaNumericalIntegrationPackage
--R
--R
--RExamples of integrate from RationalIntegration
--R
--R
--RExamples of integrate from IntegrationResultRFToFunction
--R
--R
--RExamples of integrate from InnerSparseUnivariatePowerSeries
--R
--R
--RExamples of integrate from MultivariateTaylorSeriesCategory
--R
--R
--RExamples of integrate from Polynomial
--R
--R
--RExamples of integrate from SparseMultivariateTaylorSeries
--R
--R
--RExamples of integrate from StreamTaylorSeriesOperations
--R
--R
--RExamples of integrate from SparseUnivariateLaurentSeries
--R
--R
--RExamples of integrate from SparseUnivariatePuiseuxSeries
--R
--R
--RExamples of integrate from SparseUnivariateTaylorSeries
--R
--R
--RExamples of integrate from TaylorSeries
--R
--R
--RExamples of integrate from UnivariateFormalPowerSeries
--R
--R
--RExamples of integrate from UnivariateLaurentSeriesCategory
--R
--R
--RExamples of integrate from UnivariateLaurentSeries
--R
--R
--RExamples of integrate from UnivariatePolynomialCategory
--R
--R
--RExamples of integrate from UnivariatePuiseuxSeriesCategory
--R
--R
--RExamples of integrate from UnivariatePuiseuxSeries
--R
--R
--RExamples of integrate from UnivariateTaylorSeriesCategory
--R
--R
--RExamples of integrate from UnivariateTaylorSeries
--R
--R
--RExamples of integrate from UnivariateTaylorSeriesCZero
--R
--E 1404

--S 1405 of 3320
)d op intensity
--R 
--R
--RThere is one exposed function called intensity :
--R   [1] (ThreeDimensionalViewport,Float) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of intensity from ThreeDimensionalViewport
--R
--E 1405

--S 1406 of 3320 done
)d op interiorProduct
--R 
--R
--RThere is one unexposed function called interiorProduct :
--R   [1] (Vector(Expression(D3)),DeRhamComplex(D3,D4),SquareMatrix(#(D4),
--R            Expression(D3))) -> DeRhamComplex(D3,D4)
--R             from DeRhamComplex(D3,D4)
--R             if D3 has Join(Ring,OrderedSet) and D4: LIST(SYMBOL)
--R
--RExamples of interiorProduct from DeRhamComplex
--R
--R indented{1}{with the differential form a (w.r.t. metric g)} blankline 
--RcoefRing := Integer 
--RR3 : List Symbol := [x,y,z] 
--RD := DERHAM(coefRing,R3) 
--R[dx,dy,dz] := [generator(i)$D for i in 1..3] 
--Rf : BOP := operator('f) 
--Rg : BOP := operator('g) 
--Rh : BOP := operator('h) 
--Ra : BOP := operator('a) 
--Rb : BOP := operator('b) 
--Rc : BOP := operator('c) 
--RU : BOP := operator('U) 
--RV : BOP := operator('V) 
--RW : BOP := operator('W) 
--Rv := vector[U(x,y,z),V(x,y,z),W(x,y,z)] 
--Rsigma := f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--Rtheta := a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz 
--RG := diagonalMatrix([1,1,1]) 
--RinteriorProduct(v,sigma,G) 
--RinteriorProduct(v,theta,G)
--R
--E 1406

--S 1407 of 3320
)d op intermediateResultsIF
--R 
--R
--RThere is one exposed function called intermediateResultsIF :
--R   [1] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
--R            Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
--R            DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
--R            relerr: DoubleFloat) -> Float
--R             from d02AgentsPackage
--R
--RExamples of intermediateResultsIF from d02AgentsPackage
--R
--E 1407

--S 1408 of 3320
)d op internal?
--R 
--R
--RThere is one unexposed function called internal? :
--R   [1] SubSpace(D2,D3) -> Boolean from SubSpace(D2,D3) if D2: PI and D3
--R             has RING
--R
--RExamples of internal? from SubSpace
--R
--E 1408

--S 1409 of 3320
)d op internalAugment
--R 
--R
--RThere are 4 exposed functions called internalAugment :
--R   [1] (D2,RegularTriangularSet(D4,D5,D6,D2),Boolean,Boolean,Boolean,
--R            Boolean,Boolean) -> List(RegularTriangularSet(D4,D5,D6,D2))
--R             from RegularTriangularSet(D4,D5,D6,D2)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6)
--R   [2] (List(D5),D) -> D from D
--R             if D has RSETCAT(D2,D3,D4,D5) and D2 has GCDDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [3] (D1,D) -> D from D
--R             if D has RSETCAT(D2,D3,D4,D1) and D2 has GCDDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R   [4] (D2,SquareFreeRegularTriangularSet(D4,D5,D6,D2),Boolean,Boolean,
--R            Boolean,Boolean,Boolean) -> List(SquareFreeRegularTriangularSet(
--R            D4,D5,D6,D2))
--R             from SquareFreeRegularTriangularSet(D4,D5,D6,D2)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6)
--R
--RExamples of internalAugment from RegularTriangularSet
--R
--R
--RExamples of internalAugment from RegularTriangularSetCategory
--R
--R
--RExamples of internalAugment from SquareFreeRegularTriangularSet
--R
--E 1409

--S 1410 of 3320
)d op internalDecompose
--R 
--R
--RThere are 6 exposed functions called internalDecompose :
--R   [1] (D2,D3,NonNegativeInteger,Boolean) -> Record(done: List(D3),todo
--R            : List(Record(val: List(D2),tower: D3)))
--R             from RegularSetDecompositionPackage(D6,D7,D8,D2,D3)
--R             if D6 has GCDDOM and D7 has OAMONS and D8 has ORDSET and 
--R            D2 has RPOLCAT(D6,D7,D8) and D3 has RSETCAT(D6,D7,D8,D2)
--R         
--R   [2] (D2,D3,NonNegativeInteger) -> Record(done: List(D3),todo: List(
--R            Record(val: List(D2),tower: D3)))
--R             from RegularSetDecompositionPackage(D5,D6,D7,D2,D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D2 has RPOLCAT(D5,D6,D7) and D3 has RSETCAT(D5,D6,D7,D2)
--R         
--R   [3] (D2,D3) -> Record(done: List(D3),todo: List(Record(val: List(D2)
--R            ,tower: D3)))
--R             from RegularSetDecompositionPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R   [4] (D2,D3,NonNegativeInteger,Boolean) -> Record(done: List(D3),todo
--R            : List(Record(val: List(D2),tower: D3)))
--R             from SquareFreeRegularSetDecompositionPackage(D6,D7,D8,D2,
--R            D3)
--R             if D6 has GCDDOM and D7 has OAMONS and D8 has ORDSET and 
--R            D2 has RPOLCAT(D6,D7,D8) and D3 has SFRTCAT(D6,D7,D8,D2)
--R         
--R   [5] (D2,D3,NonNegativeInteger) -> Record(done: List(D3),todo: List(
--R            Record(val: List(D2),tower: D3)))
--R             from SquareFreeRegularSetDecompositionPackage(D5,D6,D7,D2,
--R            D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D2 has RPOLCAT(D5,D6,D7) and D3 has SFRTCAT(D5,D6,D7,D2)
--R         
--R   [6] (D2,D3) -> Record(done: List(D3),todo: List(Record(val: List(D2)
--R            ,tower: D3)))
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has SFRTCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of internalDecompose from RegularSetDecompositionPackage
--R
--R
--RExamples of internalDecompose from SquareFreeRegularSetDecompositionPackage
--R
--E 1410

--S 1411 of 3320
)d op internalInfRittWu?
--R 
--R
--RThere are 2 exposed functions called internalInfRittWu? :
--R   [1] (List(D6),List(D6)) -> Boolean from QuasiComponentPackage(D3,D4,
--R            D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (List(D6),List(D6)) -> Boolean
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of internalInfRittWu? from QuasiComponentPackage
--R
--R
--RExamples of internalInfRittWu? from SquareFreeQuasiComponentPackage
--R
--E 1411

--S 1412 of 3320
)d op internalIntegrate
--R 
--R
--RThere are 2 exposed functions called internalIntegrate :
--R   [1] (D2,Symbol) -> IntegrationResult(D2)
--R             from FunctionSpaceComplexIntegration(D4,D2)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            TranscendentalFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D4))
--R   [2] (Fraction(Polynomial(D4)),Symbol) -> IntegrationResult(Fraction(
--R            Polynomial(D4)))
--R             from RationalFunctionIntegration(D4)
--R             if D4 has Join(IntegralDomain,RetractableTo(Integer),
--R            CharacteristicZero)
--R
--RExamples of internalIntegrate from FunctionSpaceComplexIntegration
--R
--R
--RExamples of internalIntegrate from RationalFunctionIntegration
--R
--E 1412

--S 1413 of 3320
)d op internalIntegrate0
--R 
--R
--RThere is one exposed function called internalIntegrate0 :
--R   [1] (D2,Symbol) -> IntegrationResult(D2)
--R             from FunctionSpaceComplexIntegration(D4,D2)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            TranscendentalFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D4))
--R
--RExamples of internalIntegrate0 from FunctionSpaceComplexIntegration
--R
--E 1413

--S 1414 of 3320
)d op internalLastSubResultant
--R 
--R
--RThere are 2 exposed functions called internalLastSubResultant :
--R   [1] (D2,D2,D3,Boolean,Boolean) -> List(Record(val: D2,tower: D3))
--R             from RegularTriangularSetGcdPackage(D5,D6,D7,D2,D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D2 has RPOLCAT(D5,D6,D7) and D3 has RSETCAT(D5,D6,D7,D2)
--R         
--R   [2] (List(Record(val: List(D7),tower: D8)),D3,Boolean) -> List(
--R            Record(val: D7,tower: D8))
--R             from RegularTriangularSetGcdPackage(D5,D6,D3,D7,D8)
--R             if D7 has RPOLCAT(D5,D6,D3) and D8 has RSETCAT(D5,D6,D3,D7
--R            ) and D5 has GCDDOM and D6 has OAMONS and D3 has ORDSET
--R
--RExamples of internalLastSubResultant from RegularTriangularSetGcdPackage
--R
--E 1414

--S 1415 of 3320
)d op internalSubPolSet?
--R 
--R
--RThere are 2 exposed functions called internalSubPolSet? :
--R   [1] (List(D6),List(D6)) -> Boolean from QuasiComponentPackage(D3,D4,
--R            D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (List(D6),List(D6)) -> Boolean
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of internalSubPolSet? from QuasiComponentPackage
--R
--R
--RExamples of internalSubPolSet? from SquareFreeQuasiComponentPackage
--R
--E 1415

--S 1416 of 3320
)d op internalSubQuasiComponent?
--R 
--R
--RThere are 2 exposed functions called internalSubQuasiComponent? :
--R   [1] (D2,D2) -> Union(Boolean,"failed")
--R             from QuasiComponentPackage(D3,D4,D5,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (D2,D2) -> Union(Boolean,"failed")
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of internalSubQuasiComponent? from QuasiComponentPackage
--R
--R
--RExamples of internalSubQuasiComponent? from SquareFreeQuasiComponentPackage
--R
--E 1416

--S 1417 of 3320
)d op internalZeroSetSplit
--R 
--R
--RThere are 2 exposed functions called internalZeroSetSplit :
--R   [1] (List(D7),Boolean,Boolean,Boolean) -> List(RegularTriangularSet(
--R            D4,D5,D6,D7))
--R             from RegularTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R   [2] (List(D7),Boolean,Boolean,Boolean) -> List(
--R            SquareFreeRegularTriangularSet(D4,D5,D6,D7))
--R             from SquareFreeRegularTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of internalZeroSetSplit from RegularTriangularSet
--R
--R
--RExamples of internalZeroSetSplit from SquareFreeRegularTriangularSet
--R
--E 1417

--S 1418 of 3320
)d op interpolate
--R 
--R
--RThere are 2 exposed functions called interpolate :
--R   [1] (List(D4),List(D4),NonNegativeInteger) -> Fraction(
--R            SparseUnivariatePolynomial(D4))
--R             from FractionFreeFastGaussian(D4,D5)
--R             if D4 has Join(IntegralDomain,GcdDomain) and D5 has AMR(D4
--R            ,NNI)
--R   [2] (List(Fraction(D4)),List(Fraction(D4)),NonNegativeInteger) -> 
--R            Fraction(SparseUnivariatePolynomial(D4))
--R             from FractionFreeFastGaussian(D4,D5)
--R             if D4 has Join(IntegralDomain,GcdDomain) and D5 has AMR(D4
--R            ,NNI)
--R
--RThere are 3 unexposed functions called interpolate :
--R   [1] (UnivariatePolynomial(D3,D4),List(D4),List(D4)) -> 
--R            UnivariatePolynomial(D3,D4)
--R             from PolynomialInterpolation(D3,D4) if D3: SYMBOL and D4
--R             has FIELD
--R   [2] (List(D4),List(D4)) -> SparseUnivariatePolynomial(D4)
--R             from PolynomialInterpolation(D3,D4) if D4 has FIELD and D3
--R            : SYMBOL
--R   [3] (List(D5),List(D5),NonNegativeInteger,NonNegativeInteger) -> 
--R            Fraction(Polynomial(D5))
--R             from RationalInterpolation(D4,D5) if D5 has FIELD and D4: 
--R            SYMBOL
--R
--RExamples of interpolate from FractionFreeFastGaussian
--R
--R
--RExamples of interpolate from PolynomialInterpolation
--R
--R
--RExamples of interpolate from RationalInterpolation
--R
--E 1418

--S 1419 of 3320
)d op interpolateForms
--R 
--R
--RThere are 4 exposed functions called interpolateForms :
--R   [1] (D7,NonNegativeInteger) -> List(D11)
--R             from GeneralPackageForAlgebraicFunctionField(D9,D10,D11,
--R            D12,D13,D1,D2,D7,D3,D4,D5)
--R             if D9 has FIELD and D10: LIST(SYMBOL) and D11 has POLYCAT(
--R            D9,D12,OVAR(D10)) and D12 has DIRPCAT(#(D10),NNI) and D13
--R             has PRSPCAT(D9) and D1 has LOCPOWC(D9) and D2 has PLACESC(
--R            D9,D1) and D7 has DIVCAT(D2) and D3 has INFCLCT(D9,D10,D11,
--R            D12,D13,D1,D2,D7,D5) and D5 has BLMETCT and D4 has DSTRCAT(
--R            D3)
--R   [2] (D4,NonNegativeInteger,D6,List(D6)) -> List(D6)
--R             from InterpolateFormsPackage(D7,D8,D6,D9,D10,D1,D2,D4)
--R             if D6 has POLYCAT(D7,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8)
--R            ,NNI) and D7 has FIELD and D8: LIST(SYMBOL) and D1 has 
--R            LOCPOWC(D7) and D2 has PLACESC(D7,D1) and D10 has PRSPCAT(
--R            D7) and D4 has DIVCAT(D2)
--R   [3] (Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D4)),
--R            NonNegativeInteger) -> List(DistributedMultivariatePolynomial(D5,
--R            D4))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D4,D5
--R            ,D6)
--R             if D4 has FFIELDC and D5: LIST(SYMBOL) and D6 has BLMETCT
--R            
--R   [4] (Divisor(Places(D4)),NonNegativeInteger) -> List(
--R            DistributedMultivariatePolynomial(D5,D4))
--R             from PackageForAlgebraicFunctionField(D4,D5,D6)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has BLMETCT
--R         
--R
--RExamples of interpolateForms from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of interpolateForms from InterpolateFormsPackage
--R
--R
--RExamples of interpolateForms from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of interpolateForms from PackageForAlgebraicFunctionField
--R
--E 1419

--S 1420 of 3320
)d op interpolateFormsForFact
--R 
--R
--RThere are 4 exposed functions called interpolateFormsForFact :
--R   [1] (D6,List(D9)) -> List(D9)
--R             from GeneralPackageForAlgebraicFunctionField(D7,D8,D9,D10,
--R            D11,D12,D1,D6,D2,D3,D4)
--R             if D9 has POLYCAT(D7,D10,OVAR(D8)) and D10 has DIRPCAT(#(
--R            D8),NNI) and D7 has FIELD and D8: LIST(SYMBOL) and D11 has 
--R            PRSPCAT(D7) and D12 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D12) and D6 has DIVCAT(D1) and D2 has INFCLCT(D7,D8,D9,D10,
--R            D11,D12,D1,D6,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2)
--R            
--R   [2] (D3,List(D6)) -> List(D6)
--R             from InterpolateFormsPackage(D4,D5,D6,D7,D8,D9,D1,D3)
--R             if D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT(#(D5)
--R            ,NNI) and D4 has FIELD and D5: LIST(SYMBOL) and D9 has 
--R            LOCPOWC(D4) and D1 has PLACESC(D4,D9) and D8 has PRSPCAT(D4
--R            ) and D3 has DIVCAT(D1)
--R   [3] (Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D4)),List
--R            (DistributedMultivariatePolynomial(D5,D4))) -> List(
--R            DistributedMultivariatePolynomial(D5,
--R            PseudoAlgebraicClosureOfFiniteField(D4)))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D4,D5
--R            ,D6)
--R             if D4 has FFIELDC and D5: LIST(SYMBOL) and D6 has BLMETCT
--R            
--R   [4] (Divisor(Places(D3)),List(DistributedMultivariatePolynomial(D4,
--R            D3))) -> List(DistributedMultivariatePolynomial(D4,D3))
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R
--RExamples of interpolateFormsForFact from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of interpolateFormsForFact from InterpolateFormsPackage
--R
--R
--RExamples of interpolateFormsForFact from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of interpolateFormsForFact from PackageForAlgebraicFunctionField
--R
--E 1420

--S 1421 of 3320
)d op interpret
--R 
--R
--RThere are 2 unexposed functions called interpret :
--R   [1] InputForm -> D1 from InputFormFunctions1(D1) if D1 has TYPE
--R   [2] InputForm -> Any from InputForm
--R
--RExamples of interpret from InputFormFunctions1
--R
--R
--RExamples of interpret from InputForm
--R
--E 1421

--S 1422 of 3320
)d op interpretString
--R 
--R
--RThere is one exposed function called interpretString :
--R   [1] String -> Any from TemplateUtilities
--R
--RExamples of interpretString from TemplateUtilities
--R
--E 1422

--S 1423 of 3320
)d op interReduce
--R 
--R
--RThere is one unexposed function called interReduce :
--R   [1] List(D5) -> List(D5) from PolynomialSetUtilitiesPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of interReduce from PolynomialSetUtilitiesPackage
--R
--E 1423

--S 1424 of 3320
)d op intersect
--R 
--R
--RThere are 7 exposed functions called intersect :
--R   [1] List(PolynomialIdeals(D2,D3,D4,D5)) -> PolynomialIdeals(D2,D3,D4
--R            ,D5)
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R   [2] (PolynomialIdeals(D1,D2,D3,D4),PolynomialIdeals(D1,D2,D3,D4))
--R             -> PolynomialIdeals(D1,D2,D3,D4)
--R             from PolynomialIdeals(D1,D2,D3,D4)
--R             if D1 has FIELD and D2 has OAMONS and D3 has ORDSET and D4
--R             has POLYCAT(D1,D2,D3)
--R   [3] (D2,List(D)) -> List(D) from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R   [4] (List(D6),List(D)) -> List(D) from D
--R             if D has RSETCAT(D3,D4,D5,D6) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D6 has RPOLCAT(D3,D4,D5)
--R            
--R   [5] (List(D6),D) -> List(D) from D
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D has RSETCAT(D3,D4,D5,D6)
--R   [6] (D2,D) -> List(D) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R   [7] (D,D) -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R
--RExamples of intersect from PolynomialIdeals
--R
--R
--RExamples of intersect from RegularTriangularSetCategory
--R
--R
--RExamples of intersect from SetAggregate
--R
--E 1424

--S 1425 of 3320
)d op intersectionDivisor
--R 
--R
--RThere are 4 exposed functions called intersectionDivisor :
--R   [1] D5 -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D5,D8,
--R            D9,D10,D11,D4,D1,D2,D3)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D5 has POLYCAT(D6
--R            ,D8,OVAR(D7)) and D8 has DIRPCAT(#(D7),NNI) and D9 has 
--R            PRSPCAT(D6) and D10 has LOCPOWC(D6) and D11 has PLACESC(D6,
--R            D10) and D1 has INFCLCT(D6,D7,D5,D8,D9,D10,D11,D4,D3) and 
--R            D3 has BLMETCT and D4 has DIVCAT(D11) and D2 has DSTRCAT(D1
--R            )
--R   [2] (D7,D7,List(D4),List(D13)) -> D6
--R             from IntersectionDivisorPackage(D10,D11,D7,D12,D13,D1,D2,
--R            D6,D3,D4,D5)
--R             if D13 has PRSPCAT(D10) and D4 has DSTRCAT(D3) and D10
--R             has FIELD and D3 has INFCLCT(D10,D11,D7,D12,D13,D1,D2,D6,
--R            D5) and D5 has BLMETCT and D11: LIST(SYMBOL) and D7 has 
--R            POLYCAT(D10,D12,OVAR(D11)) and D12 has DIRPCAT(#(D11),NNI) 
--R            and D1 has LOCPOWC(D10) and D2 has PLACESC(D10,D1) and D6
--R             has DIVCAT(D2)
--R   [3] DistributedMultivariatePolynomial(D4,D3) -> Divisor(
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D3))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R            
--R   [4] DistributedMultivariatePolynomial(D4,D3) -> Divisor(Places(D3))
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R
--RExamples of intersectionDivisor from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of intersectionDivisor from IntersectionDivisorPackage
--R
--R
--RExamples of intersectionDivisor from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of intersectionDivisor from PackageForAlgebraicFunctionField
--R
--E 1425

--S 1426 of 3320
)d op interval
--R 
--R
--RThere are 3 exposed functions called interval :
--R   [1] Fraction(Integer) -> D from D
--R             if D has INTCAT(D2) and D2 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R   [2] D1 -> D from D
--R             if D has INTCAT(D1) and D1 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R   [3] (D1,D1) -> D from D
--R             if D has INTCAT(D1) and D1 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R
--RExamples of interval from IntervalCategory
--R
--E 1426

--S 1427 of 3320
)d op intPatternMatch
--R 
--R
--RThere is one unexposed function called intPatternMatch :
--R   [1] (D2,Symbol,((D2,Symbol) -> IntegrationResult(D2)),((D2,Symbol)
--R             -> Union(Record(special: D2,integrand: D2),"failed"))) -> 
--R            IntegrationResult(D2)
--R             from IntegrationTools(D6,D2)
--R             if D2 has ELEMFUN and D2 has LFCAT and D2 has RETRACT(
--R            SYMBOL) and D2 has FS(D6) and D6 has KONVERT(PATTERN(INT)) 
--R            and D6 has GCDDOM and D6 has PATMAB(INT) and D6 has ORDSET
--R            
--R
--RExamples of intPatternMatch from IntegrationTools
--R
--E 1427

--S 1428 of 3320 done
)d op introduce!
--R 
--R
--RThere is one exposed function called introduce! :
--R   [1] (Symbol,Symbol) -> Union(BasicStochasticDifferential,"failed")
--R             from BasicStochasticDifferential
--R
--RExamples of introduce! from BasicStochasticDifferential
--R
--Rintroduce!(t,dt) -- dt is a new stochastic differential 
--RcopyBSD()
--R
--E 1428

--S 1429 of 3320
)d op inv
--R 
--R
--RThere are 4 exposed functions called inv :
--R   [1] D -> D from D if D has DIVRING
--R   [2] D -> D from D
--R             if D = EQ(D1) and D1 has FIELD and D1 has TYPE or D = EQ(
--R            D1) and D1 has GROUP and D1 has TYPE
--R   [3] D -> D from D if D has GROUP
--R   [4] D -> D from D if D has OC(D1) and D1 has COMRING and D1 has 
--R            FIELD
--R
--RThere are 3 unexposed functions called inv :
--R   [1] EuclideanModularRing(D1,D2,D3,D4,D5,D6) -> EuclideanModularRing(
--R            D1,D2,D3,D4,D5,D6)
--R             from EuclideanModularRing(D1,D2,D3,D4,D5,D6)
--R             if D1 has COMRING and D2 has UPOLYC(D1) and D3 has ABELMON
--R            and D4: ((D2,D3) -> D2) and D5: ((D3,D3) -> Union(D3,
--R            "failed")) and D6: ((D2,D2,D3) -> Union(D2,"failed"))
--R   [2] Vector(D2) -> Vector(D2) from InnerNormalBasisFieldFunctions(D2)
--R             if D2 has FFIELDC
--R   [3] ModularRing(D1,D2,D3,D4,D5) -> ModularRing(D1,D2,D3,D4,D5)
--R             from ModularRing(D1,D2,D3,D4,D5)
--R             if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) -> 
--R            D1) and D4: ((D2,D2) -> Union(D2,"failed")) and D5: ((D1,D1
--R            ,D2) -> Union(D1,"failed"))
--R
--RExamples of inv from DivisionRing
--R
--R
--RExamples of inv from EuclideanModularRing
--R
--R
--RExamples of inv from Equation
--R
--R
--RExamples of inv from Group
--R
--R
--RExamples of inv from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of inv from ModularRing
--R
--R
--RExamples of inv from OctonionCategory
--R
--E 1429

--S 1430 of 3320
)d op inverse
--R 
--R
--RThere are 4 exposed functions called inverse :
--R   [1] D -> Union(D,"failed") from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1) and D1 has FIELD
--R   [2] D1 -> Union(D1,"failed") from MatrixLinearAlgebraFunctions(D2,D3
--R            ,D4,D1)
--R             if D2 has FIELD and D2 has COMRING and D3 has FLAGG(D2) 
--R            and D4 has FLAGG(D2) and D1 has MATCAT(D2,D3,D4)
--R   [3] Matrix(D1) -> Union(Matrix(D1),"failed") from Matrix(D1)
--R             if D1 has FIELD and D1 has RING
--R   [4] D -> Union(D,"failed") from D
--R             if D has SMATCAT(D1,D2,D3,D4) and D2 has RING and D3 has 
--R            DIRPCAT(D1,D2) and D4 has DIRPCAT(D1,D2) and D2 has FIELD
--R         
--R
--RThere are 3 unexposed functions called inverse :
--R   [1] D1 -> Union(D1,"failed")
--R             from InnerMatrixLinearAlgebraFunctions(D2,D3,D4,D1)
--R             if D2 has FIELD and D3 has FLAGG(D2) and D4 has FLAGG(D2) 
--R            and D1 has MATCAT(D2,D3,D4)
--R   [2] D2 -> Union(D1,"failed")
--R             from InnerMatrixQuotientFieldFunctions(D3,D4,D5,D2,D6,D7,
--R            D8,D1)
--R             if D3 has INTDOM and D4 has FLAGG(D3) and D5 has FLAGG(D3)
--R            and D6 has QFCAT(D3) and D1 has MATCAT(D6,D7,D8) and D2
--R             has MATCAT(D3,D4,D5) and D7 has FLAGG(D6) and D8 has FLAGG
--R            (D6)
--R   [3] List(D2) -> List(D2) from TableauxBumpers(D2) if D2 has ORDSET
--R         
--R
--RExamples of inverse from InnerMatrixLinearAlgebraFunctions
--R
--R
--RExamples of inverse from InnerMatrixQuotientFieldFunctions
--R
--R
--RExamples of inverse from MatrixCategory
--R
--Rinverse matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of inverse from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of inverse from Matrix
--R
--R
--RExamples of inverse from SquareMatrixCategory
--R
--R
--RExamples of inverse from TableauxBumpers
--R
--E 1430

--S 1431 of 3320
)d op inverseColeman
--R 
--R
--RThere is one exposed function called inverseColeman :
--R   [1] (List(Integer),List(Integer),Matrix(Integer)) -> List(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of inverseColeman from SymmetricGroupCombinatoricFunctions
--R
--E 1431

--S 1432 of 3320 done
)d op inverseIntegralMatrix
--R 
--R
--RThere is one exposed function called inverseIntegralMatrix :
--R   [1]  -> Matrix(Fraction(D3)) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of inverseIntegralMatrix from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RinverseIntegralMatrix()$R
--R
--E 1432

--S 1433 of 3320 done
)d op inverseIntegralMatrixAtInfinity
--R 
--R
--RThere is one exposed function called inverseIntegralMatrixAtInfinity :
--R   [1]  -> Matrix(Fraction(D3)) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of inverseIntegralMatrixAtInfinity from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RinverseIntegralMatrixAtInfinity()$R
--R
--E 1433

--S 1434 of 3320
)d op inverseLaplace
--R 
--R
--RThere is one exposed function called inverseLaplace :
--R   [1] (D1,Symbol,Symbol) -> Union(D1,"failed")
--R             from InverseLaplaceTransform(D3,D1)
--R             if D3 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory,
--R            SpecialFunctionCategory,AlgebraicallyClosedFunctionSpace(D3
--R            ))
--R
--RExamples of inverseLaplace from InverseLaplaceTransform
--R
--E 1434

--S 1435 of 3320
)d op invertible?
--R 
--R
--RThere are 2 exposed functions called invertible? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R   [2] (D2,D) -> List(Record(val: Boolean,tower: D)) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R
--RExamples of invertible? from RegularTriangularSetCategory
--R
--E 1435

--S 1436 of 3320
)d op invertibleElseSplit?
--R 
--R
--RThere is one exposed function called invertibleElseSplit? :
--R   [1] (D2,D) -> Union(Boolean,List(D)) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R
--RExamples of invertibleElseSplit? from RegularTriangularSetCategory
--R
--E 1436

--S 1437 of 3320
)d op invertibleSet
--R 
--R
--RThere is one exposed function called invertibleSet :
--R   [1] (D2,D) -> List(D) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R
--RExamples of invertibleSet from RegularTriangularSetCategory
--R
--E 1437

--S 1438 of 3320
)d op invertIfCan
--R 
--R
--RThere is one exposed function called invertIfCan :
--R   [1] D1 -> Union(D1,"failed") from MatrixLinearAlgebraFunctions(D2,D3
--R            ,D4,D1)
--R             if D2 has INTDOM and D2 has COMRING and D3 has FLAGG(D2) 
--R            and D4 has FLAGG(D2) and D1 has MATCAT(D2,D3,D4)
--R
--RExamples of invertIfCan from MatrixLinearAlgebraFunctions
--R
--E 1438

--S 1439 of 3320
)d op invmod
--R 
--R
--RThere is one exposed function called invmod :
--R   [1] (D,D) -> D from D if D has INS
--R
--RExamples of invmod from IntegerNumberSystem
--R
--E 1439

--S 1440 of 3320
)d op invmultisect
--R 
--R
--RThere are 2 exposed functions called invmultisect :
--R   [1] (Integer,Integer,UnivariateFormalPowerSeries(D2)) -> 
--R            UnivariateFormalPowerSeries(D2)
--R             from UnivariateFormalPowerSeries(D2) if D2 has RING
--R   [2] (Integer,Integer,UnivariateTaylorSeriesCZero(D2,D3)) -> 
--R            UnivariateTaylorSeriesCZero(D2,D3)
--R             from UnivariateTaylorSeriesCZero(D2,D3) if D2 has RING and
--R            D3: SYMBOL
--R
--RThere are 2 unexposed functions called invmultisect :
--R   [1] (Integer,Integer,Stream(D3)) -> Stream(D3)
--R             from StreamTaylorSeriesOperations(D3) if D3 has RING
--R   [2] (Integer,Integer,UnivariateTaylorSeries(D2,D3,D4)) -> 
--R            UnivariateTaylorSeries(D2,D3,D4)
--R             from UnivariateTaylorSeries(D2,D3,D4)
--R             if D2 has RING and D3: SYMBOL and D4: D2
--R
--RExamples of invmultisect from StreamTaylorSeriesOperations
--R
--R
--RExamples of invmultisect from UnivariateFormalPowerSeries
--R
--R
--RExamples of invmultisect from UnivariateTaylorSeries
--R
--R
--RExamples of invmultisect from UnivariateTaylorSeriesCZero
--R
--E 1440

--S 1441 of 3320
)d op iomode
--R 
--R
--RThere is one exposed function called iomode :
--R   [1] D -> String from D if D has FILECAT(D2,D3) and D2 has SETCAT and
--R            D3 has SETCAT
--R
--RExamples of iomode from FileCategory
--R
--E 1441

--S 1442 of 3320
)d op ipow
--R 
--R
--RThere is one unexposed function called ipow :
--R   [1] List(D1) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of ipow from CombinatorialFunction
--R
--E 1442

--S 1443 of 3320
)d op iprint
--R 
--R
--RThere is one unexposed function called iprint :
--R   [1] String -> Void from InternalPrintPackage
--R
--RExamples of iprint from InternalPrintPackage
--R
--E 1443

--S 1444 of 3320
)d op iroot
--R 
--R
--RThere is one unexposed function called iroot :
--R   [1] (D2,Integer) -> D1 from AlgebraicFunction(D2,D1)
--R             if D1 has FS(D2) and D2 has RETRACT(INT) and D2 has Join(
--R            OrderedSet,IntegralDomain)
--R
--RExamples of iroot from AlgebraicFunction
--R
--E 1444

--S 1445 of 3320
)d op irreducible?
--R 
--R
--RThere are 3 exposed functions called irreducible? :
--R   [1] D2 -> Boolean from DistinctDegreeFactorize(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [2] D2 -> Boolean from FiniteFieldFactorization(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R   [3] D2 -> Boolean
--R             from FiniteFieldFactorizationWithSizeParseBySideEffect(D3,
--R            D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R
--RExamples of irreducible? from DistinctDegreeFactorize
--R
--R
--RExamples of irreducible? from FiniteFieldFactorization
--R
--R
--RExamples of irreducible? from FiniteFieldFactorizationWithSizeParseBySideEffect
--R
--E 1445

--S 1446 of 3320 done
)d op irreducibleFactor
--R 
--R
--RThere is one exposed function called irreducibleFactor :
--R   [1] (D1,Integer) -> Factored(D1) from Factored(D1) if D1 has INTDOM
--R            
--R
--RExamples of irreducibleFactor from Factored
--R
--Ra:=irreducibleFactor(3,1) 
--RnthFlag(a,1)
--R
--E 1446

--S 1447 of 3320
)d op irreducibleFactors
--R 
--R
--RThere is one unexposed function called irreducibleFactors :
--R   [1] List(D5) -> List(D5) from PolynomialSetUtilitiesPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has CHARZ and D2 has 
--R            EUCDOM and D2 has INTDOM and D3 has OAMONS and D4 has 
--R            ORDSET
--R
--RExamples of irreducibleFactors from PolynomialSetUtilitiesPackage
--R
--E 1447

--S 1448 of 3320
)d op irreducibleRepresentation
--R 
--R
--RThere are 3 exposed functions called irreducibleRepresentation :
--R   [1] (List(Integer),Permutation(Integer)) -> Matrix(Integer)
--R             from IrrRepSymNatPackage
--R   [2] List(Integer) -> List(Matrix(Integer)) from IrrRepSymNatPackage
--R            
--R   [3] (List(Integer),List(Permutation(Integer))) -> List(Matrix(
--R            Integer))
--R             from IrrRepSymNatPackage
--R
--RExamples of irreducibleRepresentation from IrrRepSymNatPackage
--R
--E 1448

--S 1449 of 3320
)d op is?
--R 
--R
--RThere are 5 exposed functions called is? :
--R   [1] (BasicOperator,Symbol) -> Boolean from BasicOperator
--R   [2] (D,Symbol) -> Boolean from D if D has ES
--R   [3] (D,BasicOperator) -> Boolean from D if D has ES
--R   [4] (D2,D3) -> Boolean from PatternMatch(D4,D2,D3)
--R             if D4 has SETCAT and D2 has PATMAB(D4) and D3 has KONVERT(
--R            PATTERN(D4))
--R   [5] (List(D5),D3) -> Boolean from PatternMatch(D4,D5,D3)
--R             if D5 has PATMAB(D4) and D4 has SETCAT and D3 has KONVERT(
--R            PATTERN(D4))
--R
--RThere are 2 unexposed functions called is? :
--R   [1] (Kernel(D3),Symbol) -> Boolean from Kernel(D3) if D3 has ORDSET
--R            
--R   [2] (Kernel(D3),BasicOperator) -> Boolean from Kernel(D3) if D3 has 
--R            ORDSET
--R
--RExamples of is? from BasicOperator
--R
--R
--RExamples of is? from ExpressionSpace
--R
--R
--RExamples of is? from Kernel
--R
--R
--RExamples of is? from PatternMatch
--R
--E 1449

--S 1450 of 3320
)d op Is
--R 
--R
--RThere are 4 exposed functions called Is :
--R   [1] (List(D5),D3) -> PatternMatchListResult(D4,D5,List(D5))
--R             from PatternMatch(D4,D5,D3)
--R             if D4 has SETCAT and D5 has PATMAB(D4) and D3 has KONVERT(
--R            PATTERN(D4))
--R   [2] (D2,D3) -> List(Equation(D2)) from PatternMatch(D4,D2,D3)
--R             if D4 has SETCAT and D2 has RETRACT(SYMBOL) and D2 has 
--R            PATMAB(D4) and D3 has KONVERT(PATTERN(D4))
--R   [3] (D2,D3) -> List(Equation(Polynomial(D2))) from PatternMatch(D4,
--R            D2,D3)
--R             if D4 has SETCAT and D2 has RING and not(ofCategory(D2,
--R            RetractableTo(Symbol))) and D2 has PATMAB(D4) and D3 has 
--R            KONVERT(PATTERN(D4))
--R   [4] (D2,D3) -> PatternMatchResult(D4,D2) from PatternMatch(D4,D2,D3)
--R             if D4 has SETCAT and not(ofCategory(D2,RetractableTo(
--R            Symbol))) and not(ofCategory(D2,Ring)) and D2 has PATMAB(D4
--R            ) and D3 has KONVERT(PATTERN(D4))
--R
--RExamples of Is from PatternMatch
--R
--E 1450

--S 1451 of 3320
)d op isAbsolutelyIrreducible?
--R 
--R
--RThere are 2 exposed functions called isAbsolutelyIrreducible? :
--R   [1] (List(Matrix(D4)),Integer) -> Boolean from 
--R            RepresentationPackage2(D4)
--R             if D4 has FIELD and D4 has RING
--R   [2] List(Matrix(D3)) -> Boolean from RepresentationPackage2(D3)
--R             if D3 has FIELD and D3 has RING
--R
--RExamples of isAbsolutelyIrreducible? from RepresentationPackage2
--R
--E 1451

--S 1452 of 3320
)d op isExpt
--R 
--R
--RThere are 4 exposed functions called isExpt :
--R   [1] (D,Symbol) -> Union(Record(var: Kernel(D),exponent: Integer),
--R            "failed")
--R             from D if D3 has RING and D3 has ORDSET and D has FS(D3)
--R         
--R   [2] (D,BasicOperator) -> Union(Record(var: Kernel(D),exponent: 
--R            Integer),"failed")
--R             from D if D3 has RING and D3 has ORDSET and D has FS(D3)
--R         
--R   [3] D -> Union(Record(var: Kernel(D),exponent: Integer),"failed")
--R             from D
--R             if D2 has SGROUP and D2 has ORDSET and D has FS(D2)
--R   [4] D -> Union(Record(var: D4,exponent: NonNegativeInteger),"failed"
--R            ) from D
--R             if D has POLYCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RThere are 2 unexposed functions called isExpt :
--R   [1] Pattern(D2) -> Union(Record(val: Pattern(D2),exponent: 
--R            NonNegativeInteger),"failed")
--R             from Pattern(D2) if D2 has SETCAT
--R   [2] D2 -> Union(Record(var: D4,exponent: Integer),"failed")
--R             from PolynomialCategoryQuotientFunctions(D3,D4,D5,D6,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has RING and D6
--R             has POLYCAT(D5,D3,D4) and D2 has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6
--R
--RExamples of isExpt from FunctionSpace
--R
--R
--RExamples of isExpt from Pattern
--R
--R
--RExamples of isExpt from PolynomialCategory
--R
--R
--RExamples of isExpt from PolynomialCategoryQuotientFunctions
--R
--E 1452

--S 1453 of 3320
)d op isList
--R 
--R
--RThere is one unexposed function called isList :
--R   [1] Pattern(D2) -> Union(List(Pattern(D2)),"failed") from Pattern(D2
--R            )
--R             if D2 has SETCAT
--R
--RExamples of isList from Pattern
--R
--E 1453

--S 1454 of 3320
)d op isMult
--R 
--R
--RThere is one exposed function called isMult :
--R   [1] D -> Union(Record(coef: Integer,var: Kernel(D)),"failed") from D
--R             if D2 has ABELSG and D2 has ORDSET and D has FS(D2)
--R
--RExamples of isMult from FunctionSpace
--R
--E 1454

--S 1455 of 3320
)d op isobaric?
--R 
--R
--RThere is one exposed function called isobaric? :
--R   [1] D -> Boolean from D
--R             if D has DPOLCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            ORDSET and D4 has DVARCAT(D3) and D5 has OAMONS
--R
--RExamples of isobaric? from DifferentialPolynomialCategory
--R
--E 1455

--S 1456 of 3320
)d op isOp
--R 
--R
--RThere are 2 unexposed functions called isOp :
--R   [1] Pattern(D2) -> Union(Record(op: BasicOperator,arg: List(Pattern(
--R            D2))),"failed")
--R             from Pattern(D2) if D2 has SETCAT
--R   [2] (Pattern(D3),BasicOperator) -> Union(List(Pattern(D3)),"failed")
--R             from Pattern(D3) if D3 has SETCAT
--R
--RExamples of isOp from Pattern
--R
--E 1456

--S 1457 of 3320
)d op isPlus
--R 
--R
--RThere are 2 exposed functions called isPlus :
--R   [1] D -> Union(List(D),"failed") from D
--R             if D2 has ABELSG and D2 has ORDSET and D has FS(D2)
--R   [2] D -> Union(List(D),"failed") from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has POLYCAT(D2,D3,D4)
--R
--RThere are 2 unexposed functions called isPlus :
--R   [1] Pattern(D2) -> Union(List(Pattern(D2)),"failed") from Pattern(D2
--R            )
--R             if D2 has SETCAT
--R   [2] D2 -> Union(List(D2),"failed")
--R             from PolynomialCategoryQuotientFunctions(D3,D4,D5,D6,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has RING and D6
--R             has POLYCAT(D5,D3,D4) and D2 has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6
--R
--RExamples of isPlus from FunctionSpace
--R
--R
--RExamples of isPlus from Pattern
--R
--R
--RExamples of isPlus from PolynomialCategory
--R
--R
--RExamples of isPlus from PolynomialCategoryQuotientFunctions
--R
--E 1457

--S 1458 of 3320
)d op isPower
--R 
--R
--RThere is one exposed function called isPower :
--R   [1] D -> Union(Record(val: D,exponent: Integer),"failed") from D
--R             if D2 has RING and D2 has ORDSET and D has FS(D2)
--R
--RThere are 2 unexposed functions called isPower :
--R   [1] Pattern(D2) -> Union(Record(val: Pattern(D2),exponent: Pattern(
--R            D2)),"failed")
--R             from Pattern(D2) if D2 has SETCAT
--R   [2] D2 -> Union(Record(val: D2,exponent: Integer),"failed")
--R             from PolynomialCategoryQuotientFunctions(D3,D4,D5,D6,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has RING and D6
--R             has POLYCAT(D5,D3,D4) and D2 has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6
--R
--RExamples of isPower from FunctionSpace
--R
--R
--RExamples of isPower from Pattern
--R
--R
--RExamples of isPower from PolynomialCategoryQuotientFunctions
--R
--E 1458

--S 1459 of 3320
)d op isQuotient
--R 
--R
--RThere is one exposed function called isQuotient :
--R   [1] Expression(DoubleFloat) -> Union(Expression(DoubleFloat),
--R            "failed")
--R             from ExpertSystemToolsPackage
--R
--RThere is one unexposed function called isQuotient :
--R   [1] Pattern(D2) -> Union(Record(num: Pattern(D2),den: Pattern(D2)),
--R            "failed")
--R             from Pattern(D2) if D2 has SETCAT
--R
--RExamples of isQuotient from ExpertSystemToolsPackage
--R
--R
--RExamples of isQuotient from Pattern
--R
--E 1459

--S 1460 of 3320
)d op isTimes
--R 
--R
--RThere are 2 exposed functions called isTimes :
--R   [1] D -> Union(List(D),"failed") from D
--R             if D2 has SGROUP and D2 has ORDSET and D has FS(D2)
--R   [2] D -> Union(List(D),"failed") from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has POLYCAT(D2,D3,D4)
--R
--RThere are 2 unexposed functions called isTimes :
--R   [1] Pattern(D2) -> Union(List(Pattern(D2)),"failed") from Pattern(D2
--R            )
--R             if D2 has SETCAT
--R   [2] D2 -> Union(List(D2),"failed")
--R             from PolynomialCategoryQuotientFunctions(D3,D4,D5,D6,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has RING and D6
--R             has POLYCAT(D5,D3,D4) and D2 has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6
--R
--RExamples of isTimes from FunctionSpace
--R
--R
--RExamples of isTimes from Pattern
--R
--R
--RExamples of isTimes from PolynomialCategory
--R
--R
--RExamples of isTimes from PolynomialCategoryQuotientFunctions
--R
--E 1460

--S 1461 of 3320
)d op iter
--R 
--R
--RThere is one unexposed function called iter :
--R   [1] ((D1 -> D1),NonNegativeInteger,D1) -> D1
--R             from MappingPackageInternalHacks1(D1) if D1 has SETCAT
--R
--RExamples of iter from MappingPackageInternalHacks1
--R
--E 1461

--S 1462 of 3320
)d op iteratedInitials
--R 
--R
--RThere is one exposed function called iteratedInitials :
--R   [1] D -> List(D) from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has RPOLCAT(D2,D3,D4)
--R
--RExamples of iteratedInitials from RecursivePolynomialCategory
--R
--E 1462

--S 1463 of 3320
)d op itsALeaf!
--R 
--R
--RThere is one exposed function called itsALeaf! :
--R   [1] D -> Void from D
--R             if D has PLACESC(D2,D3) and D2 has FIELD and D3 has 
--R            LOCPOWC(D2)
--R
--RExamples of itsALeaf! from PlacesCategory
--R
--E 1463

--S 1464 of 3320
)d op jacobi
--R 
--R
--RThere is one exposed function called jacobi :
--R   [1] (Integer,Integer) -> Integer from IntegerNumberTheoryFunctions
--R         
--R
--RExamples of jacobi from IntegerNumberTheoryFunctions
--R
--E 1464

--S 1465 of 3320
)d op jacobian
--R 
--R
--RThere are 2 exposed functions called jacobian :
--R   [1] (Vector(Expression(DoubleFloat)),List(Symbol)) -> Matrix(
--R            Expression(DoubleFloat))
--R             from d02AgentsPackage
--R   [2] (D2,D3) -> Matrix(D5) from MultiVariableCalculusFunctions(D4,D5,
--R            D2,D3)
--R             if D4 has SETCAT and D5 has PDRING(D4) and D2 has FLAGG(D5
--R            ) and D3 has FiniteLinearAggregate(D4)with
--R                 finiteAggregate
--R
--RExamples of jacobian from d02AgentsPackage
--R
--R
--RExamples of jacobian from MultiVariableCalculusFunctions
--R
--E 1465

--S 1466 of 3320
)d op jacobiIdentity?
--R 
--R
--RThere is one exposed function called jacobiIdentity? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called jacobiIdentity? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of jacobiIdentity? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of jacobiIdentity? from FiniteRankNonAssociativeAlgebra
--R
--E 1466

--S 1467 of 3320
)d op janko2
--R 
--R
--RThere are 2 exposed functions called janko2 :
--R   [1] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R   [2]  -> PermutationGroup(Integer) from PermutationGroupExamples
--R
--RExamples of janko2 from PermutationGroupExamples
--R
--E 1467

--S 1468 of 3320
)d op join
--R 
--R
--RThere is one exposed function called join :
--R   [1] (SparseEchelonMatrix(D1,D2),SparseEchelonMatrix(D1,D2)) -> 
--R            SparseEchelonMatrix(D1,D2)
--R             from SparseEchelonMatrix(D1,D2) if D1 has ORDSET and D2
--R             has RING
--R
--RExamples of join from SparseEchelonMatrix
--R
--E 1468

--S 1469 of 3320
)d op jordanAdmissible?
--R 
--R
--RThere is one exposed function called jordanAdmissible? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called jordanAdmissible? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of jordanAdmissible? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of jordanAdmissible? from FiniteRankNonAssociativeAlgebra
--R
--E 1469

--S 1470 of 3320
)d op jordanAlgebra?
--R 
--R
--RThere is one exposed function called jordanAlgebra? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called jordanAlgebra? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of jordanAlgebra? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of jordanAlgebra? from FiniteRankNonAssociativeAlgebra
--R
--E 1470

--S 1471 of 3320
)d op karatsuba
--R 
--R
--RThere is one exposed function called karatsuba :
--R   [1] (D1,D1,NonNegativeInteger,NonNegativeInteger) -> D1
--R             from UnivariatePolynomialMultiplicationPackage(D3,D1)
--R             if D3 has RING and D1 has UPOLYC(D3)
--R
--RExamples of karatsuba from UnivariatePolynomialMultiplicationPackage
--R
--E 1471

--S 1472 of 3320
)d op karatsubaDivide
--R 
--R
--RThere is one exposed function called karatsubaDivide :
--R   [1] (D,NonNegativeInteger) -> Record(quotient: D,remainder: D) from 
--R            D
--R             if D3 has RING and D has UPOLYC(D3)
--R
--RExamples of karatsubaDivide from UnivariatePolynomialCategory
--R
--E 1472

--S 1473 of 3320
)d op karatsubaOnce
--R 
--R
--RThere is one exposed function called karatsubaOnce :
--R   [1] (D1,D1) -> D1 from UnivariatePolynomialMultiplicationPackage(D2,
--R            D1)
--R             if D2 has RING and D1 has UPOLYC(D2)
--R
--RExamples of karatsubaOnce from UnivariatePolynomialMultiplicationPackage
--R
--E 1473

--S 1474 of 3320
)d op kernel
--R 
--R
--RThere are 2 exposed functions called kernel :
--R   [1] (BasicOperator,List(D)) -> D from D if D has ES
--R   [2] (BasicOperator,D) -> D from D if D has ES
--R
--RThere are 2 unexposed functions called kernel :
--R   [1] Symbol -> Kernel(D2) from Kernel(D2) if D2 has ORDSET
--R   [2] (BasicOperator,List(D4),NonNegativeInteger) -> Kernel(D4) from 
--R            Kernel(D4)
--R             if D4 has ORDSET
--R
--RExamples of kernel from ExpressionSpace
--R
--R
--RExamples of kernel from Kernel
--R
--E 1474

--S 1475 of 3320
)d op kernels
--R 
--R
--RThere is one exposed function called kernels :
--R   [1] D -> List(Kernel(D)) from D if D has ES
--R
--RExamples of kernels from ExpressionSpace
--R
--E 1475

--S 1476 of 3320
)d op key
--R 
--R
--RThere is one exposed function called key :
--R   [1] ThreeDimensionalViewport -> Integer from 
--R            ThreeDimensionalViewport
--R
--RThere are 2 unexposed functions called key :
--R   [1] GraphImage -> Integer from GraphImage
--R   [2] TwoDimensionalViewport -> Integer from TwoDimensionalViewport
--R         
--R
--RExamples of key from GraphImage
--R
--R
--RExamples of key from TwoDimensionalViewport
--R
--R
--RExamples of key from ThreeDimensionalViewport
--R
--E 1476

--S 1477 of 3320
)d op key?
--R 
--R
--RThere is one exposed function called key? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has KDAGG(D2,D3) and D2 has SETCAT and D3 has SETCAT
--R            
--R
--RExamples of key? from KeyedDictionary
--R
--E 1477

--S 1478 of 3320
)d op keys
--R 
--R
--RThere are 3 exposed functions called keys :
--R   [1] IntegrationFunctionsTable -> List(Record(var: Symbol,fn: 
--R            Expression(DoubleFloat),range: Segment(OrderedCompletion(
--R            DoubleFloat)),abserr: DoubleFloat,relerr: DoubleFloat))
--R             from IntegrationFunctionsTable
--R   [2] D -> List(D2) from D if D has KDAGG(D2,D3) and D2 has SETCAT and
--R            D3 has SETCAT
--R   [3] ODEIntensityFunctionsTable -> List(Record(xinit: DoubleFloat,
--R            xend: DoubleFloat,fn: Vector(Expression(DoubleFloat)),yinit: List
--R            (DoubleFloat),intvals: List(DoubleFloat),g: Expression(
--R            DoubleFloat),abserr: DoubleFloat,relerr: DoubleFloat))
--R             from ODEIntensityFunctionsTable
--R
--RExamples of keys from IntegrationFunctionsTable
--R
--R
--RExamples of keys from KeyedDictionary
--R
--R
--RExamples of keys from ODEIntensityFunctionsTable
--R
--E 1478

--S 1479 of 3320
)d op kmax
--R 
--R
--RThere is one unexposed function called kmax :
--R   [1] List(Kernel(D4)) -> Kernel(D4) from IntegrationTools(D3,D4)
--R             if D3 has ORDSET and D4 has FS(D3)
--R
--RExamples of kmax from IntegrationTools
--R
--E 1479

--S 1480 of 3320
)d op knownInfBasis
--R 
--R
--RThere is one unexposed function called knownInfBasis :
--R   [1] NonNegativeInteger -> Void from AlgebraicFunctionField(D3,D4,D5,
--R            D6)
--R             if D3 has FIELD and D4 has UPOLYC(D3) and D5 has UPOLYC(
--R            FRAC(D4)) and D6: D5
--R
--RExamples of knownInfBasis from AlgebraicFunctionField
--R
--E 1480

--S 1481 of 3320
)d op kovacic
--R 
--R
--RThere are 2 unexposed functions called kovacic :
--R   [1] (Fraction(D4),Fraction(D4),Fraction(D4)) -> Union(
--R            SparseUnivariatePolynomial(Fraction(D4)),"failed")
--R             from Kovacic(D3,D4)
--R             if D3 has Join(CharacteristicZero,AlgebraicallyClosedField
--R            ,RetractableTo(Integer),RetractableTo(Fraction(Integer))) 
--R            and D4 has UPOLYC(D3)
--R   [2] (Fraction(D5),Fraction(D5),Fraction(D5),(D5 -> Factored(D5)))
--R             -> Union(SparseUnivariatePolynomial(Fraction(D5)),"failed")
--R             from Kovacic(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(CharacteristicZero,
--R            AlgebraicallyClosedField,RetractableTo(Integer),
--R            RetractableTo(Fraction(Integer)))
--R
--RExamples of kovacic from Kovacic
--R
--E 1481

--S 1482 of 3320 done
)d op kroneckerDelta
--R 
--R
--RThere is one exposed function called kroneckerDelta :
--R   [1]  -> CartesianTensor(D1,D2,D3) from CartesianTensor(D1,D2,D3)
--R             if D1: INT and D2: NNI and D3 has COMRING
--R
--RExamples of kroneckerDelta from CartesianTensor
--R
--Rdelta:CartesianTensor(1,2,Integer):=kroneckerDelta()
--R
--E 1482

--S 1483 of 3320
)d op KrullNumber
--R 
--R
--RThere are 2 exposed functions called KrullNumber :
--R   [1] (List(D7),List(D8)) -> NonNegativeInteger
--R             from RegularSetDecompositionPackage(D4,D5,D6,D7,D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has RSETCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [2] (List(D7),List(D8)) -> NonNegativeInteger
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D7,
--R            D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has SFRTCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R
--RExamples of KrullNumber from RegularSetDecompositionPackage
--R
--R
--RExamples of KrullNumber from SquareFreeRegularSetDecompositionPackage
--R
--E 1483

--S 1484 of 3320
)d op ksec
--R 
--R
--RThere is one unexposed function called ksec :
--R   [1] (Kernel(D5),List(Kernel(D5)),Symbol) -> Kernel(D5)
--R             from IntegrationTools(D4,D5) if D5 has FS(D4) and D4 has 
--R            ORDSET
--R
--RExamples of ksec from IntegrationTools
--R
--E 1484

--S 1485 of 3320
)d op label
--R 
--R
--RThere is one unexposed function called label :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of label from OutputForm
--R
--E 1485

--S 1486 of 3320
)d op lagrange
--R 
--R
--RThere are 2 exposed functions called lagrange :
--R   [1] UnivariateFormalPowerSeries(D1) -> UnivariateFormalPowerSeries(
--R            D1)
--R             from UnivariateFormalPowerSeries(D1) if D1 has RING
--R   [2] UnivariateTaylorSeriesCZero(D1,D2) -> 
--R            UnivariateTaylorSeriesCZero(D1,D2)
--R             from UnivariateTaylorSeriesCZero(D1,D2) if D1 has RING and
--R            D2: SYMBOL
--R
--RThere are 2 unexposed functions called lagrange :
--R   [1] Stream(D2) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R   [2] UnivariateTaylorSeries(D1,D2,D3) -> UnivariateTaylorSeries(D1,D2
--R            ,D3)
--R             from UnivariateTaylorSeries(D1,D2,D3)
--R             if D1 has RING and D2: SYMBOL and D3: D1
--R
--RExamples of lagrange from StreamTaylorSeriesOperations
--R
--R
--RExamples of lagrange from UnivariateFormalPowerSeries
--R
--R
--RExamples of lagrange from UnivariateTaylorSeries
--R
--R
--RExamples of lagrange from UnivariateTaylorSeriesCZero
--R
--E 1486

--S 1487 of 3320
)d op LagrangeInterpolation
--R 
--R
--RThere is one unexposed function called LagrangeInterpolation :
--R   [1] (List(D3),List(D3)) -> D1 from PolynomialInterpolationAlgorithms
--R            (D3,D1)
--R             if D3 has FIELD and D1 has UPOLYC(D3)
--R
--RExamples of LagrangeInterpolation from PolynomialInterpolationAlgorithms
--R
--E 1487

--S 1488 of 3320
)d op laguerre
--R 
--R
--RThere is one unexposed function called laguerre :
--R   [1] Integer -> SparseUnivariatePolynomial(Integer)
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of laguerre from PolynomialNumberTheoryFunctions
--R
--E 1488

--S 1489 of 3320
)d op laguerreL
--R 
--R
--RThere are 2 exposed functions called laguerreL :
--R   [1] (NonNegativeInteger,D1) -> D1 from OrthogonalPolynomialFunctions
--R            (D1)
--R             if D1 has COMRING
--R   [2] (NonNegativeInteger,NonNegativeInteger,D1) -> D1
--R             from OrthogonalPolynomialFunctions(D1) if D1 has COMRING
--R         
--R
--RExamples of laguerreL from OrthogonalPolynomialFunctions
--R
--E 1489

--S 1490 of 3320
)d op lambda
--R 
--R
--RThere is one unexposed function called lambda :
--R   [1] (InputForm,List(Symbol)) -> InputForm from InputForm
--R
--RExamples of lambda from InputForm
--R
--E 1490

--S 1491 of 3320
)d op lambert
--R 
--R
--RThere are 2 exposed functions called lambert :
--R   [1] UnivariateFormalPowerSeries(D1) -> UnivariateFormalPowerSeries(
--R            D1)
--R             from UnivariateFormalPowerSeries(D1) if D1 has RING
--R   [2] UnivariateTaylorSeriesCZero(D1,D2) -> 
--R            UnivariateTaylorSeriesCZero(D1,D2)
--R             from UnivariateTaylorSeriesCZero(D1,D2) if D1 has RING and
--R            D2: SYMBOL
--R
--RThere are 2 unexposed functions called lambert :
--R   [1] Stream(D2) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R   [2] UnivariateTaylorSeries(D1,D2,D3) -> UnivariateTaylorSeries(D1,D2
--R            ,D3)
--R             from UnivariateTaylorSeries(D1,D2,D3)
--R             if D1 has RING and D2: SYMBOL and D3: D1
--R
--RExamples of lambert from StreamTaylorSeriesOperations
--R
--R
--RExamples of lambert from UnivariateFormalPowerSeries
--R
--R
--RExamples of lambert from UnivariateTaylorSeries
--R
--R
--RExamples of lambert from UnivariateTaylorSeriesCZero
--R
--E 1491

--S 1492 of 3320
)d op laplace
--R 
--R
--RThere is one exposed function called laplace :
--R   [1] (D1,Symbol,Symbol) -> D1 from LaplaceTransform(D3,D1)
--R             if D3 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory,
--R            AlgebraicallyClosedFunctionSpace(D3))
--R
--RExamples of laplace from LaplaceTransform
--R
--E 1492

--S 1493 of 3320
)d op laplacian
--R 
--R
--RThere is one exposed function called laplacian :
--R   [1] (D1,D2) -> D1 from MultiVariableCalculusFunctions(D3,D1,D4,D2)
--R             if D3 has SETCAT and D1 has PDRING(D3) and D4 has FLAGG(D1
--R            ) and D2 has FiniteLinearAggregate(D3)with
--R                 finiteAggregate
--R
--RExamples of laplacian from MultiVariableCalculusFunctions
--R
--E 1493

--S 1494 of 3320
)d op largest
--R 
--R
--RThere are 2 unexposed functions called largest :
--R   [1] (List(D1),((D1,D1) -> Boolean)) -> D1 from 
--R            UserDefinedPartialOrdering(D1)
--R             if D1 has SETCAT
--R   [2] List(D1) -> D1 from UserDefinedPartialOrdering(D1)
--R             if D1 has SETCAT and D1 has ORDSET
--R
--RExamples of largest from UserDefinedPartialOrdering
--R
--E 1494

--S 1495 of 3320
)d op last
--R 
--R
--RThere are 4 exposed functions called last :
--R   [1] D -> D1 from D if D has DLAGG(D1) and D1 has TYPE
--R   [2] D -> Union(D1,"failed") from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R   [3] (D,NonNegativeInteger) -> D from D if D has URAGG(D2) and D2
--R             has TYPE
--R   [4] D -> D1 from D if D has URAGG(D1) and D1 has TYPE
--R
--RExamples of last from DoublyLinkedAggregate
--R
--R
--RExamples of last from TriangularSetCategory
--R
--R
--RExamples of last from UnaryRecursiveAggregate
--R
--Rlast([1,4,2,-6,0,3,5,4,2,3],3)
--R
--Rlast [1,4,2,-6,0,3,5,4,2,3]
--R
--E 1495

--S 1496 of 3320
)d op lastNonNul
--R 
--R
--RThere is one exposed function called lastNonNul :
--R   [1] D -> Integer from D if D has PRSPCAT(D2) and D2 has FIELD
--R
--RExamples of lastNonNul from ProjectiveSpaceCategory
--R
--E 1496

--S 1497 of 3320
)d op lastNonNull
--R 
--R
--RThere is one exposed function called lastNonNull :
--R   [1] D -> Integer from D if D has PRSPCAT(D2) and D2 has FIELD
--R
--RExamples of lastNonNull from ProjectiveSpaceCategory
--R
--E 1497

--S 1498 of 3320
)d op lastSubResultant
--R 
--R
--RThere are 2 exposed functions called lastSubResultant :
--R   [1] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R   [2] (D2,D2,D) -> List(Record(val: D2,tower: D)) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R
--RThere are 2 unexposed functions called lastSubResultant :
--R   [1] (NewSparseUnivariatePolynomial(D1),NewSparseUnivariatePolynomial
--R            (D1)) -> NewSparseUnivariatePolynomial(D1)
--R             from NewSparseUnivariatePolynomial(D1) if D1 has INTDOM 
--R            and D1 has RING
--R   [2] (D1,D1) -> D1 from PseudoRemainderSequence(D2,D1)
--R             if D2 has INTDOM and D1 has UPOLYC(D2)
--R
--RExamples of lastSubResultant from NewSparseUnivariatePolynomial
--R
--R
--RExamples of lastSubResultant from PseudoRemainderSequence
--R
--R
--RExamples of lastSubResultant from RecursivePolynomialCategory
--R
--R
--RExamples of lastSubResultant from RegularTriangularSetCategory
--R
--E 1498

--S 1499 of 3320
)d op lastSubResultantElseSplit
--R 
--R
--RThere is one exposed function called lastSubResultantElseSplit :
--R   [1] (D2,D2,D) -> Union(D2,List(D)) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R
--RExamples of lastSubResultantElseSplit from RegularTriangularSetCategory
--R
--E 1499

--S 1500 of 3320
)d op lastSubResultantEuclidean
--R 
--R
--RThere is one unexposed function called lastSubResultantEuclidean :
--R   [1] (D2,D2) -> Record(coef1: D2,coef2: D2,subResultant: D2)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of lastSubResultantEuclidean from PseudoRemainderSequence
--R
--E 1500

--S 1501 of 3320
)d op latex
--R 
--R
--RThere are 6 exposed functions called latex :
--R   [1] ArrayStack(D2) -> String from ArrayStack(D2)
--R             if D2 has SETCAT and D2 has SETCAT
--R   [2] Dequeue(D2) -> String from Dequeue(D2) if D2 has SETCAT and D2
--R             has SETCAT
--R   [3] Heap(D2) -> String from Heap(D2) if D2 has SETCAT and D2 has 
--R            ORDSET
--R   [4] Queue(D2) -> String from Queue(D2) if D2 has SETCAT and D2 has 
--R            SETCAT
--R   [5] D -> String from D if D has SETCAT
--R   [6] Stack(D2) -> String from Stack(D2) if D2 has SETCAT and D2 has 
--R            SETCAT
--R
--RExamples of latex from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rlatex a
--R
--R
--RExamples of latex from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rlatex a
--R
--R
--RExamples of latex from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rlatex a
--R
--R
--RExamples of latex from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rlatex a
--R
--R
--RExamples of latex from SetCategory
--R
--R
--RExamples of latex from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rlatex a
--R
--E 1501

--S 1502 of 3320
)d op laurent
--R 
--R
--RThere are 9 exposed functions called laurent :
--R   [1] Symbol -> Any from ExpressionToUnivariatePowerSeries(D3,D4)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D4 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [2] D2 -> Any from ExpressionToUnivariatePowerSeries(D3,D2)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [3] (D2,Integer) -> Any from ExpressionToUnivariatePowerSeries(D4,D2
--R            )
--R             if D4 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4))
--R   [4] (D2,Equation(D2)) -> Any from ExpressionToUnivariatePowerSeries(
--R            D4,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [5] (D2,Equation(D2),Integer) -> Any
--R             from ExpressionToUnivariatePowerSeries(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [6] ((Integer -> D6),Equation(D6),UniversalSegment(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D5,D6)
--R             if D6 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [7] (D2,Symbol,Equation(D2),UniversalSegment(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D6,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D6)) and D6
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [8] (Integer,D2) -> D from D
--R             if D3 has RING and D has ULSCCAT(D3,D2) and D2 has UTSCAT(
--R            D3)
--R   [9] D -> D1 from D if D has UPXSCCA(D2,D1) and D2 has RING and D1
--R             has ULSCAT(D2)
--R
--RExamples of laurent from ExpressionToUnivariatePowerSeries
--R
--R
--RExamples of laurent from GenerateUnivariatePowerSeries
--R
--R
--RExamples of laurent from UnivariateLaurentSeriesConstructorCategory
--R
--R
--RExamples of laurent from UnivariatePuiseuxSeriesConstructorCategory
--R
--E 1502

--S 1503 of 3320
)d op laurentIfCan
--R 
--R
--RThere is one exposed function called laurentIfCan :
--R   [1] D -> Union(D1,"failed") from D
--R             if D has UPXSCCA(D2,D1) and D2 has RING and D1 has ULSCAT(
--R            D2)
--R
--RExamples of laurentIfCan from UnivariatePuiseuxSeriesConstructorCategory
--R
--E 1503

--S 1504 of 3320
)d op laurentRep
--R 
--R
--RThere is one exposed function called laurentRep :
--R   [1] D -> D1 from D if D has UPXSCCA(D2,D1) and D2 has RING and D1
--R             has ULSCAT(D2)
--R
--RExamples of laurentRep from UnivariatePuiseuxSeriesConstructorCategory
--R
--E 1504

--S 1505 of 3320
)d op Lazard
--R 
--R
--RThere is one unexposed function called Lazard :
--R   [1] (D1,D1,NonNegativeInteger) -> D1 from PseudoRemainderSequence(D1
--R            ,D3)
--R             if D1 has INTDOM and D3 has UPOLYC(D1)
--R
--RExamples of Lazard from PseudoRemainderSequence
--R
--E 1505

--S 1506 of 3320
)d op Lazard2
--R 
--R
--RThere is one unexposed function called Lazard2 :
--R   [1] (D1,D2,D2,NonNegativeInteger) -> D1 from PseudoRemainderSequence
--R            (D2,D1)
--R             if D2 has INTDOM and D1 has UPOLYC(D2)
--R
--RExamples of Lazard2 from PseudoRemainderSequence
--R
--E 1506

--S 1507 of 3320
)d op LazardQuotient
--R 
--R
--RThere is one exposed function called LazardQuotient :
--R   [1] (D,D,NonNegativeInteger) -> D from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D2 has INTDOM
--R
--RExamples of LazardQuotient from RecursivePolynomialCategory
--R
--E 1507

--S 1508 of 3320
)d op LazardQuotient2
--R 
--R
--RThere is one exposed function called LazardQuotient2 :
--R   [1] (D,D,D,NonNegativeInteger) -> D from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D2 has INTDOM
--R
--RExamples of LazardQuotient2 from RecursivePolynomialCategory
--R
--E 1508

--S 1509 of 3320 done
)d op lazy?
--R 
--R
--RThere is one exposed function called lazy? :
--R   [1] D -> Boolean from D if D has LZSTAGG(D2) and D2 has TYPE
--R
--RExamples of lazy? from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--Rlazy? m
--R
--E 1509

--S 1510 of 3320
)d op lazyEvaluate
--R 
--R
--RThere is one exposed function called lazyEvaluate :
--R   [1] D -> D from D if D has LZSTAGG(D1) and D1 has TYPE
--R
--RExamples of lazyEvaluate from LazyStreamAggregate
--R
--E 1510

--S 1511 of 3320
)d op lazyGintegrate
--R 
--R
--RThere is one unexposed function called lazyGintegrate :
--R   [1] ((Integer -> D3),D3,(() -> Stream(D3))) -> Stream(D3)
--R             from StreamTaylorSeriesOperations(D3) if D3 has FIELD and 
--R            D3 has RING
--R
--RExamples of lazyGintegrate from StreamTaylorSeriesOperations
--R
--E 1511

--S 1512 of 3320
)d op lazyIntegrate
--R 
--R
--RThere is one unexposed function called lazyIntegrate :
--R   [1] (D2,(() -> Stream(D2))) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2)
--R             if D2 has ALGEBRA(FRAC(INT)) and D2 has RING
--R
--RExamples of lazyIntegrate from StreamTaylorSeriesOperations
--R
--E 1512

--S 1513 of 3320
)d op lazyIrreducibleFactors
--R 
--R
--RThere is one unexposed function called lazyIrreducibleFactors :
--R   [1] List(D5) -> List(D5) from PolynomialSetUtilitiesPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has CHARZ and D2 has 
--R            EUCDOM and D2 has INTDOM and D3 has OAMONS and D4 has 
--R            ORDSET
--R
--RExamples of lazyIrreducibleFactors from PolynomialSetUtilitiesPackage
--R
--E 1513

--S 1514 of 3320
)d op lazyPquo
--R 
--R
--RThere are 2 exposed functions called lazyPquo :
--R   [1] (D,D,D1) -> D from D
--R             if D has RPOLCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R   [2] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of lazyPquo from RecursivePolynomialCategory
--R
--E 1514

--S 1515 of 3320
)d op lazyPrem
--R 
--R
--RThere are 2 exposed functions called lazyPrem :
--R   [1] (D,D,D1) -> D from D
--R             if D has RPOLCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R   [2] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of lazyPrem from RecursivePolynomialCategory
--R
--E 1515

--S 1516 of 3320
)d op lazyPremWithDefault
--R 
--R
--RThere are 2 exposed functions called lazyPremWithDefault :
--R   [1] (D,D,D2) -> Record(coef: D,gap: NonNegativeInteger,remainder: D)
--R             from D
--R             if D3 has RING and D4 has OAMONS and D2 has ORDSET and D
--R             has RPOLCAT(D3,D4,D2)
--R   [2] (D,D) -> Record(coef: D,gap: NonNegativeInteger,remainder: D)
--R             from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has RPOLCAT(D2,D3,D4)
--R
--RExamples of lazyPremWithDefault from RecursivePolynomialCategory
--R
--E 1516

--S 1517 of 3320
)d op lazyPseudoDivide
--R 
--R
--RThere are 2 exposed functions called lazyPseudoDivide :
--R   [1] (D,D,D2) -> Record(coef: D,gap: NonNegativeInteger,quotient: D,
--R            remainder: D)
--R             from D
--R             if D3 has RING and D4 has OAMONS and D2 has ORDSET and D
--R             has RPOLCAT(D3,D4,D2)
--R   [2] (D,D) -> Record(coef: D,gap: NonNegativeInteger,quotient: D,
--R            remainder: D)
--R             from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has RPOLCAT(D2,D3,D4)
--R
--RThere is one unexposed function called lazyPseudoDivide :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(coef: D2,gap: NonNegativeInteger,quotient: 
--R            NewSparseUnivariatePolynomial(D2),remainder: 
--R            NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has RING
--R
--RExamples of lazyPseudoDivide from NewSparseUnivariatePolynomial
--R
--R
--RExamples of lazyPseudoDivide from RecursivePolynomialCategory
--R
--E 1517

--S 1518 of 3320
)d op lazyPseudoQuotient
--R 
--R
--RThere is one unexposed function called lazyPseudoQuotient :
--R   [1] (NewSparseUnivariatePolynomial(D1),NewSparseUnivariatePolynomial
--R            (D1)) -> NewSparseUnivariatePolynomial(D1)
--R             from NewSparseUnivariatePolynomial(D1) if D1 has RING
--R
--RExamples of lazyPseudoQuotient from NewSparseUnivariatePolynomial
--R
--E 1518

--S 1519 of 3320
)d op lazyPseudoRemainder
--R 
--R
--RThere is one unexposed function called lazyPseudoRemainder :
--R   [1] (NewSparseUnivariatePolynomial(D1),NewSparseUnivariatePolynomial
--R            (D1)) -> NewSparseUnivariatePolynomial(D1)
--R             from NewSparseUnivariatePolynomial(D1) if D1 has RING
--R
--RExamples of lazyPseudoRemainder from NewSparseUnivariatePolynomial
--R
--E 1519

--S 1520 of 3320
)d op lazyResidueClass
--R 
--R
--RThere is one exposed function called lazyResidueClass :
--R   [1] (D,D) -> Record(polnum: D,polden: D,power: NonNegativeInteger)
--R             from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has RPOLCAT(D2,D3,D4)
--R
--RThere is one unexposed function called lazyResidueClass :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> Record(polnum: NewSparseUnivariatePolynomial(D2),polden
--R            : D2,power: NonNegativeInteger)
--R             from NewSparseUnivariatePolynomial(D2) if D2 has RING
--R
--RExamples of lazyResidueClass from NewSparseUnivariatePolynomial
--R
--R
--RExamples of lazyResidueClass from RecursivePolynomialCategory
--R
--E 1520

--S 1521 of 3320
)d op lazyVariations
--R 
--R
--RThere is one exposed function called lazyVariations :
--R   [1] (List(D4),Integer,Integer) -> NonNegativeInteger
--R             from RealPolynomialUtilitiesPackage(D4,D5)
--R             if D4 has ORDRING and D4 has FIELD and D5 has UPOLYC(D4)
--R         
--R
--RExamples of lazyVariations from RealPolynomialUtilitiesPackage
--R
--E 1521

--S 1522 of 3320
)d op lBasis
--R 
--R
--RThere are 5 exposed functions called lBasis :
--R   [1] D6 -> Record(num: List(D9),den: D9)
--R             from GeneralPackageForAlgebraicFunctionField(D7,D8,D9,D10,
--R            D11,D12,D1,D6,D2,D3,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D9 has POLYCAT(D7
--R            ,D10,OVAR(D8)) and D10 has DIRPCAT(#(D8),NNI) and D11 has 
--R            PRSPCAT(D7) and D12 has LOCPOWC(D7) and D1 has PLACESC(D7,
--R            D12) and D6 has DIVCAT(D1) and D2 has INFCLCT(D7,D8,D9,D10,
--R            D11,D12,D1,D6,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2)
--R            
--R   [2] (Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D4)),
--R            NonNegativeInteger) -> List(Fraction(
--R            DistributedMultivariatePolynomial(D5,D4)))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D4,D5
--R            ,D6)
--R             if D4 has FFIELDC and D5: LIST(SYMBOL) and D6 has BLMETCT
--R            
--R   [3] Divisor(PlacesOverPseudoAlgebraicClosureOfFiniteField(D3)) -> 
--R            Record(num: List(DistributedMultivariatePolynomial(D4,D3)),den: 
--R            DistributedMultivariatePolynomial(D4,D3))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R            
--R   [4] (Divisor(Places(D4)),NonNegativeInteger) -> List(Fraction(
--R            DistributedMultivariatePolynomial(D5,D4)))
--R             from PackageForAlgebraicFunctionField(D4,D5,D6)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has BLMETCT
--R         
--R   [5] Divisor(Places(D3)) -> Record(num: List(
--R            DistributedMultivariatePolynomial(D4,D3)),den: 
--R            DistributedMultivariatePolynomial(D4,D3))
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R
--RExamples of lBasis from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of lBasis from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of lBasis from PackageForAlgebraicFunctionField
--R
--E 1522

--S 1523 of 3320
)d op lcm
--R 
--R
--RThere are 3 exposed functions called lcm :
--R   [1] List(D) -> D from D if D has GCDDOM
--R   [2] (D,D) -> D from D if D has GCDDOM
--R   [3] (PrimitiveArray(U32Vector),Integer,Integer,Integer) -> U32Vector
--R             from U32VectorPolynomialOperations
--R
--RExamples of lcm from GcdDomain
--R
--R
--RExamples of lcm from U32VectorPolynomialOperations
--R
--E 1523

--S 1524 of 3320
)d op lcmCoef
--R 
--R
--RThere is one exposed function called lcmCoef :
--R   [1] (D,D) -> Record(llcmres: D,coeff1: D,coeff2: D) from D if D has 
--R            LORER
--R
--RExamples of lcmCoef from LeftOreRing
--R
--E 1524

--S 1525 of 3320
)d op ldf2lst
--R 
--R
--RThere are 3 exposed functions called ldf2lst :
--R   [1] List(DoubleFloat) -> List(String) from d01AgentsPackage
--R   [2] List(DoubleFloat) -> List(String) from 
--R            ExpertSystemContinuityPackage
--R   [3] List(DoubleFloat) -> List(String) from ExpertSystemToolsPackage
--R            
--R
--RExamples of ldf2lst from d01AgentsPackage
--R
--R
--RExamples of ldf2lst from ExpertSystemContinuityPackage
--R
--R
--RExamples of ldf2lst from ExpertSystemToolsPackage
--R
--E 1525

--S 1526 of 3320
)d op ldf2vmf
--R 
--R
--RThere is one exposed function called ldf2vmf :
--R   [1] List(DoubleFloat) -> Vector(MachineFloat) from 
--R            ExpertSystemToolsPackage
--R
--RExamples of ldf2vmf from ExpertSystemToolsPackage
--R
--E 1526

--S 1527 of 3320
)d op LE
--R 
--R
--RThere is one exposed function called LE :
--R   [1] (Union(I: Expression(Integer),F: Expression(Float),CF: 
--R            Expression(Complex(Float)),switch: Switch),Union(I: Expression(
--R            Integer),F: Expression(Float),CF: Expression(Complex(Float)),
--R            switch: Switch)) -> Switch
--R             from Switch
--R
--RExamples of LE from Switch
--R
--E 1527

--S 1528 of 3320
)d op leader
--R 
--R
--RThere is one exposed function called leader :
--R   [1] D -> D1 from D
--R             if D has DPOLCAT(D2,D3,D1,D4) and D2 has RING and D3 has 
--R            ORDSET and D4 has OAMONS and D1 has DVARCAT(D3)
--R
--RExamples of leader from DifferentialPolynomialCategory
--R
--E 1528

--S 1529 of 3320
)d op leadingBasisTerm
--R 
--R
--RThere are 2 unexposed functions called leadingBasisTerm :
--R   [1] AntiSymm(D1,D2) -> AntiSymm(D1,D2) from AntiSymm(D1,D2)
--R             if D1 has RING and D2: LIST(SYMBOL)
--R   [2] DeRhamComplex(D1,D2) -> DeRhamComplex(D1,D2) from DeRhamComplex(
--R            D1,D2)
--R             if D1 has Join(Ring,OrderedSet) and D2: LIST(SYMBOL)
--R
--RExamples of leadingBasisTerm from AntiSymm
--R
--R
--RExamples of leadingBasisTerm from DeRhamComplex
--R
--Rder:=DERHAM(Integer,[x,y,z]) 
--R[dx,dy,dz]:=[generator(i)$der for i in 1..3] 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--RleadingBasisTerm sigma
--R
--E 1529

--S 1530 of 3320
)d op leadingCoefficient
--R 
--R
--RThere are 7 exposed functions called leadingCoefficient :
--R   [1] D -> D1 from D if D has AMR(D1,D2) and D2 has OAMON and D1 has 
--R            RING
--R   [2] D -> D1 from D if D has FMCAT(D1,D2) and D2 has SETCAT and D1
--R             has RING
--R   [3] D -> D1 from D if D has IDPC(D1,D2) and D2 has ORDSET and D1
--R             has SETCAT
--R   [4] D -> D1 from D if D has MLO(D1) and D1 has RING
--R   [5] D -> D1 from D if D has OREPCAT(D1) and D1 has RING
--R   [6] D -> D1 from D
--R             if D has PSCAT(D1,D2,D3) and D2 has OAMON and D3 has 
--R            ORDSET and D1 has RING
--R   [7] (D,D1) -> D from D
--R             if D has RPOLCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R
--RThere are 5 unexposed functions called leadingCoefficient :
--R   [1] AntiSymm(D1,D2) -> D1 from AntiSymm(D1,D2) if D1 has RING and D2
--R            : LIST(SYMBOL)
--R   [2] DeRhamComplex(D2,D3) -> Expression(D2) from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R   [3] GeneralModulePolynomial(D2,D1,D3,D4,D5,D6) -> D1
--R             from GeneralModulePolynomial(D2,D1,D3,D4,D5,D6)
--R             if D2: LIST(SYMBOL) and D4 has DIRPCAT(#(D2),NNI) and D5: 
--R            ((Record(index: D3,exponent: D4),Record(index: D3,exponent
--R            : D4)) -> Boolean) and D1 has COMRING and D3 has ORDSET and
--R            D6 has POLYCAT(D1,D4,OVAR(D2))
--R   [4] LaurentPolynomial(D1,D2) -> D1 from LaurentPolynomial(D1,D2)
--R             if D1 has INTDOM and D2 has UPOLYC(D1)
--R   [5] MonoidRing(D1,D2) -> D1 from MonoidRing(D1,D2)
--R             if D1 has RING and D2 has ORDSET and D2 has MONOID
--R
--RExamples of leadingCoefficient from AbelianMonoidRing
--R
--R
--RExamples of leadingCoefficient from AntiSymm
--R
--R
--RExamples of leadingCoefficient from DeRhamComplex
--R
--Rder:=DERHAM(Integer,[x,y,z]) 
--R[dx,dy,dz]:=[generator(i)$der for i in 1..3] 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--RleadingCoefficient sigma
--R
--R
--RExamples of leadingCoefficient from FreeModuleCat
--R
--R
--RExamples of leadingCoefficient from GeneralModulePolynomial
--R
--R
--RExamples of leadingCoefficient from IndexedDirectProductCategory
--R
--R
--RExamples of leadingCoefficient from LaurentPolynomial
--R
--R
--RExamples of leadingCoefficient from MonogenicLinearOperator
--R
--R
--RExamples of leadingCoefficient from MonoidRing
--R
--R
--RExamples of leadingCoefficient from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of leadingCoefficient from PowerSeriesCategory
--R
--R
--RExamples of leadingCoefficient from RecursivePolynomialCategory
--R
--E 1530

--S 1531 of 3320
)d op leadingCoefficientRicDE
--R 
--R
--RThere is one unexposed function called leadingCoefficientRicDE :
--R   [1] D2 -> List(Record(deg: NonNegativeInteger,eq: D4))
--R             from PrimitiveRatRicDE(D3,D4,D2,D5)
--R             if D3 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D4 has UPOLYC(D3) and D2 has 
--R            LODOCAT(D4) and D5 has LODOCAT(FRAC(D4))
--R
--RExamples of leadingCoefficientRicDE from PrimitiveRatRicDE
--R
--E 1531

--S 1532 of 3320
)d op leadingExponent
--R 
--R
--RThere is one unexposed function called leadingExponent :
--R   [1] GeneralModulePolynomial(D2,D3,D4,D1,D5,D6) -> D1
--R             from GeneralModulePolynomial(D2,D3,D4,D1,D5,D6)
--R             if D2: LIST(SYMBOL) and D3 has COMRING and D5: ((Record(
--R            index: D4,exponent: D1),Record(index: D4,exponent: D1)) -> 
--R            Boolean) and D1 has DIRPCAT(#(D2),NNI) and D4 has ORDSET 
--R            and D6 has POLYCAT(D3,D1,OVAR(D2))
--R
--RExamples of leadingExponent from GeneralModulePolynomial
--R
--E 1532

--S 1533 of 3320
)d op leadingIdeal
--R 
--R
--RThere is one exposed function called leadingIdeal :
--R   [1] PolynomialIdeals(D1,D2,D3,D4) -> PolynomialIdeals(D1,D2,D3,D4)
--R             from PolynomialIdeals(D1,D2,D3,D4)
--R             if D1 has FIELD and D2 has OAMONS and D3 has ORDSET and D4
--R             has POLYCAT(D1,D2,D3)
--R
--RExamples of leadingIdeal from PolynomialIdeals
--R
--E 1533

--S 1534 of 3320
)d op leadingIndex
--R 
--R
--RThere is one unexposed function called leadingIndex :
--R   [1] GeneralModulePolynomial(D2,D3,D1,D4,D5,D6) -> D1
--R             from GeneralModulePolynomial(D2,D3,D1,D4,D5,D6)
--R             if D2: LIST(SYMBOL) and D3 has COMRING and D4 has DIRPCAT(
--R            #(D2),NNI) and D5: ((Record(index: D1,exponent: D4),Record(
--R            index: D1,exponent: D4)) -> Boolean) and D1 has ORDSET and 
--R            D6 has POLYCAT(D3,D4,OVAR(D2))
--R
--RExamples of leadingIndex from GeneralModulePolynomial
--R
--E 1534

--S 1535 of 3320
)d op leadingMonomial
--R 
--R
--RThere are 3 exposed functions called leadingMonomial :
--R   [1] D -> D from D if D has AMR(D1,D2) and D1 has RING and D2 has 
--R            OAMON
--R   [2] D -> D1 from D if D has FMCAT(D2,D1) and D2 has RING and D1 has 
--R            SETCAT
--R   [3] D -> D from D
--R             if D has PSCAT(D1,D2,D3) and D1 has RING and D2 has OAMON 
--R            and D3 has ORDSET
--R
--RThere are 2 unexposed functions called leadingMonomial :
--R   [1] GeneralModulePolynomial(D2,D3,D4,D5,D6,D7) -> ModuleMonomial(D4,
--R            D5,D6)
--R             from GeneralModulePolynomial(D2,D3,D4,D5,D6,D7)
--R             if D2: LIST(SYMBOL) and D3 has COMRING and D5 has DIRPCAT(
--R            #(D2),NNI) and D6: ((Record(index: D4,exponent: D5),Record(
--R            index: D4,exponent: D5)) -> Boolean) and D4 has ORDSET and 
--R            D7 has POLYCAT(D3,D5,OVAR(D2))
--R   [2] MonoidRing(D2,D1) -> D1 from MonoidRing(D2,D1)
--R             if D1 has MONOID and D1 has ORDSET and D2 has RING
--R
--RExamples of leadingMonomial from AbelianMonoidRing
--R
--R
--RExamples of leadingMonomial from FreeModuleCat
--R
--R
--RExamples of leadingMonomial from GeneralModulePolynomial
--R
--R
--RExamples of leadingMonomial from MonoidRing
--R
--R
--RExamples of leadingMonomial from PowerSeriesCategory
--R
--E 1535

--S 1536 of 3320
)d op leadingSupport
--R 
--R
--RThere is one exposed function called leadingSupport :
--R   [1] D -> D1 from D if D has IDPC(D2,D1) and D2 has SETCAT and D1
--R             has ORDSET
--R
--RExamples of leadingSupport from IndexedDirectProductCategory
--R
--E 1536

--S 1537 of 3320
)d op leadingTerm
--R 
--R
--RThere is one exposed function called leadingTerm :
--R   [1] D -> Record(k: D3,c: D2) from D
--R             if D has FMCAT(D2,D3) and D2 has RING and D3 has SETCAT
--R         
--R
--RExamples of leadingTerm from FreeModuleCat
--R
--E 1537

--S 1538 of 3320
)d op leaf?
--R 
--R
--RThere are 2 exposed functions called leaf? :
--R   [1] D -> Boolean from D
--R             if D has PLACESC(D2,D3) and D2 has FIELD and D3 has 
--R            LOCPOWC(D2)
--R   [2] D -> Boolean from D if D has RCAGG(D2) and D2 has TYPE
--R
--RThere is one unexposed function called leaf? :
--R   [1] SubSpace(D2,D3) -> Boolean from SubSpace(D2,D3) if D2: PI and D3
--R             has RING
--R
--RExamples of leaf? from PlacesCategory
--R
--R
--RExamples of leaf? from RecursiveAggregate
--R
--R
--RExamples of leaf? from SubSpace
--R
--E 1538

--S 1539 of 3320
)d op leastAffineMultiple
--R 
--R
--RThere is one unexposed function called leastAffineMultiple :
--R   [1] SparseUnivariatePolynomial(D2) -> SparseUnivariatePolynomial(D2)
--R             from FiniteFieldPolynomialPackage(D2) if D2 has FFIELDC
--R         
--R
--RExamples of leastAffineMultiple from FiniteFieldPolynomialPackage
--R
--E 1539

--S 1540 of 3320
)d op leastMonomial
--R 
--R
--RThere is one exposed function called leastMonomial :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of leastMonomial from RecursivePolynomialCategory
--R
--E 1540

--S 1541 of 3320
)d op leastPower
--R 
--R
--RThere is one unexposed function called leastPower :
--R   [1] (NonNegativeInteger,NonNegativeInteger) -> NonNegativeInteger
--R             from IntegralBasisTools(D2,D3,D4)
--R             if D2 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D3 has UPOLYC(D2) 
--R            and D4 has FRAMALG(D2,D3)
--R
--RExamples of leastPower from IntegralBasisTools
--R
--E 1541

--S 1542 of 3320
)d op leaves
--R 
--R
--RThere is one exposed function called leaves :
--R   [1] D -> List(D2) from D if D has RCAGG(D2) and D2 has TYPE
--R
--RExamples of leaves from RecursiveAggregate
--R
--E 1542

--S 1543 of 3320
)d op left
--R 
--R
--RThere are 2 exposed functions called left :
--R   [1] D -> D from D if D has BRAGG(D1) and D1 has TYPE
--R   [2] RightOpenIntervalRootCharacterization(D1,D2) -> D1
--R             from RightOpenIntervalRootCharacterization(D1,D2)
--R             if D1 has Join(OrderedRing,Field) and D2 has UPOLYC(D1)
--R         
--R
--RThere are 4 unexposed functions called left :
--R   [1] LyndonWord(D1) -> LyndonWord(D1) from LyndonWord(D1) if D1 has 
--R            ORDSET
--R   [2] Magma(D1) -> Magma(D1) from Magma(D1) if D1 has ORDSET
--R   [3] OutputForm -> OutputForm from OutputForm
--R   [4] (OutputForm,Integer) -> OutputForm from OutputForm
--R
--RExamples of left from BinaryRecursiveAggregate
--R
--R
--RExamples of left from LyndonWord
--R
--R
--RExamples of left from Magma
--R
--R
--RExamples of left from OutputForm
--R
--R
--RExamples of left from RightOpenIntervalRootCharacterization
--R
--E 1543

--S 1544 of 3320
)d op leftAlternative?
--R 
--R
--RThere is one exposed function called leftAlternative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called leftAlternative? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of leftAlternative? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of leftAlternative? from FiniteRankNonAssociativeAlgebra
--R
--E 1544

--S 1545 of 3320
)d op leftCharacteristicPolynomial
--R 
--R
--RThere is one exposed function called leftCharacteristicPolynomial :
--R   [1] D -> SparseUnivariatePolynomial(D2) from D
--R             if D has FINAALG(D2) and D2 has COMRING
--R
--RExamples of leftCharacteristicPolynomial from FiniteRankNonAssociativeAlgebra
--R
--E 1545

--S 1546 of 3320
)d op leftDiscriminant
--R 
--R
--RThere are 2 exposed functions called leftDiscriminant :
--R   [1] Vector(D) -> D1 from D if D has FINAALG(D1) and D1 has COMRING
--R         
--R   [2]  -> D1 from D if D has FRNAALG(D1) and D1 has COMRING
--R
--RThere is one unexposed function called leftDiscriminant :
--R   [1]  -> D1 from FramedNonAssociativeAlgebra&(D2,D1)
--R             if D1 has COMRING and D2 has FRNAALG(D1)
--R
--RExamples of leftDiscriminant from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of leftDiscriminant from FramedNonAssociativeAlgebra&
--R
--R
--RExamples of leftDiscriminant from FramedNonAssociativeAlgebra
--R
--E 1546

--S 1547 of 3320
)d op leftDivide
--R 
--R
--RThere is one exposed function called leftDivide :
--R   [1] (D,D) -> Record(quotient: D,remainder: D) from D
--R             if D2 has FIELD and D2 has RING and D has OREPCAT(D2)
--R
--RThere are 2 unexposed functions called leftDivide :
--R   [1] (D2,D2) -> Record(quotient: D2,remainder: D2)
--R             from NonCommutativeOperatorDivision(D2,D3)
--R             if D3 has FIELD and D2 has MLO(D3)
--R   [2] (D2,D2,Automorphism(D4)) -> Record(quotient: D2,remainder: D2)
--R             from UnivariateSkewPolynomialCategoryOps(D4,D2)
--R             if D4 has FIELD and D4 has RING and D2 has OREPCAT(D4)
--R
--RExamples of leftDivide from NonCommutativeOperatorDivision
--R
--R
--RExamples of leftDivide from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of leftDivide from UnivariateSkewPolynomialCategoryOps
--R
--E 1547

--S 1548 of 3320
)d op leftExactQuotient
--R 
--R
--RThere is one exposed function called leftExactQuotient :
--R   [1] (D,D) -> Union(D,"failed") from D
--R             if D has OREPCAT(D1) and D1 has RING and D1 has FIELD
--R
--RThere is one unexposed function called leftExactQuotient :
--R   [1] (D1,D1) -> Union(D1,"failed") from 
--R            NonCommutativeOperatorDivision(D1,D2)
--R             if D2 has FIELD and D1 has MLO(D2)
--R
--RExamples of leftExactQuotient from NonCommutativeOperatorDivision
--R
--R
--RExamples of leftExactQuotient from UnivariateSkewPolynomialCategory
--R
--E 1548

--S 1549 of 3320
)d op leftExtendedGcd
--R 
--R
--RThere is one exposed function called leftExtendedGcd :
--R   [1] (D,D) -> Record(coef1: D,coef2: D,generator: D) from D
--R             if D2 has FIELD and D2 has RING and D has OREPCAT(D2)
--R
--RExamples of leftExtendedGcd from UnivariateSkewPolynomialCategory
--R
--E 1549

--S 1550 of 3320
)d op leftFactor
--R 
--R
--RThere is one exposed function called leftFactor :
--R   [1] (D1,D1) -> Union(D1,"failed") from PolynomialDecomposition(D1,D2
--R            )
--R             if D2 has FIELD and D1 has UPOLYC(D2)
--R
--RExamples of leftFactor from PolynomialDecomposition
--R
--E 1550

--S 1551 of 3320
)d op leftFactorIfCan
--R 
--R
--RThere is one unexposed function called leftFactorIfCan :
--R   [1] (D1,D1) -> Union(D1,"failed")
--R             from UnivariatePolynomialDecompositionPackage(D2,D1)
--R             if D2 has Join(IntegralDomain,CharacteristicZero) and D1
--R             has UPOLYC(D2)
--R
--RExamples of leftFactorIfCan from UnivariatePolynomialDecompositionPackage
--R
--E 1551

--S 1552 of 3320
)d op leftGcd
--R 
--R
--RThere is one exposed function called leftGcd :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RThere is one unexposed function called leftGcd :
--R   [1] (D1,D1) -> D1 from NonCommutativeOperatorDivision(D1,D2)
--R             if D2 has FIELD and D1 has MLO(D2)
--R
--RExamples of leftGcd from NonCommutativeOperatorDivision
--R
--R
--RExamples of leftGcd from UnivariateSkewPolynomialCategory
--R
--E 1552

--S 1553 of 3320
)d op leftLcm
--R 
--R
--RThere is one exposed function called leftLcm :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RThere is one unexposed function called leftLcm :
--R   [1] (D1,D1) -> D1 from NonCommutativeOperatorDivision(D1,D2)
--R             if D2 has FIELD and D1 has MLO(D2)
--R
--RExamples of leftLcm from NonCommutativeOperatorDivision
--R
--R
--RExamples of leftLcm from UnivariateSkewPolynomialCategory
--R
--E 1553

--S 1554 of 3320
)d op leftMinimalPolynomial
--R 
--R
--RThere is one exposed function called leftMinimalPolynomial :
--R   [1] D -> SparseUnivariatePolynomial(D2) from D
--R             if D has FINAALG(D2) and D2 has COMRING and D2 has INTDOM
--R            
--R
--RExamples of leftMinimalPolynomial from FiniteRankNonAssociativeAlgebra
--R
--E 1554

--S 1555 of 3320
)d op leftMult
--R 
--R
--RThere is one unexposed function called leftMult :
--R   [1] (D1,ListMonoidOps(D1,D2,D3)) -> ListMonoidOps(D1,D2,D3)
--R             from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R
--RExamples of leftMult from ListMonoidOps
--R
--E 1555

--S 1556 of 3320
)d op leftNorm
--R 
--R
--RThere is one exposed function called leftNorm :
--R   [1] D -> D1 from D if D has FINAALG(D1) and D1 has COMRING
--R
--RExamples of leftNorm from FiniteRankNonAssociativeAlgebra
--R
--E 1556

--S 1557 of 3320
)d op leftOne
--R 
--R
--RThere is one exposed function called leftOne :
--R   [1] Equation(D1) -> Union(Equation(D1),"failed") from Equation(D1)
--R             if D1 has MONOID and D1 has TYPE
--R
--RExamples of leftOne from Equation
--R
--E 1557

--S 1558 of 3320
)d op leftPower
--R 
--R
--RThere are 2 exposed functions called leftPower :
--R   [1] (D,PositiveInteger) -> D from D if D has MONAD
--R   [2] (D,NonNegativeInteger) -> D from D if D has MONADWU
--R
--RExamples of leftPower from Monad
--R
--R
--RExamples of leftPower from MonadWithUnit
--R
--E 1558

--S 1559 of 3320
)d op leftQuotient
--R 
--R
--RThere is one exposed function called leftQuotient :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RThere is one unexposed function called leftQuotient :
--R   [1] (D1,D1) -> D1 from NonCommutativeOperatorDivision(D1,D2)
--R             if D2 has FIELD and D1 has MLO(D2)
--R
--RExamples of leftQuotient from NonCommutativeOperatorDivision
--R
--R
--RExamples of leftQuotient from UnivariateSkewPolynomialCategory
--R
--E 1559

--S 1560 of 3320
)d op leftRank
--R 
--R
--RThere is one exposed function called leftRank :
--R   [1] D2 -> NonNegativeInteger from AlgebraPackage(D3,D2)
--R             if D3 has INTDOM and D2 has FRNAALG(D3)
--R
--RExamples of leftRank from AlgebraPackage
--R
--E 1560

--S 1561 of 3320
--R--------------------------)d op leftRankPolynomial (System Error)
--E 1561

--S 1562 of 3320
)d op leftRecip
--R 
--R
--RThere are 2 exposed functions called leftRecip :
--R   [1] D -> Union(D,"failed") from D
--R             if D has FINAALG(D1) and D1 has COMRING and D1 has INTDOM
--R            
--R   [2] D -> Union(D,"failed") from D if D has MONADWU
--R
--RExamples of leftRecip from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of leftRecip from MonadWithUnit
--R
--E 1562

--S 1563 of 3320
)d op leftRegularRepresentation
--R 
--R
--RThere are 2 exposed functions called leftRegularRepresentation :
--R   [1] (D,Vector(D)) -> Matrix(D3) from D if D has FINAALG(D3) and D3
--R             has COMRING
--R   [2] D -> Matrix(D2) from D if D has FRNAALG(D2) and D2 has COMRING
--R         
--R
--RExamples of leftRegularRepresentation from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of leftRegularRepresentation from FramedNonAssociativeAlgebra
--R
--E 1563

--S 1564 of 3320
)d op leftRemainder
--R 
--R
--RThere is one exposed function called leftRemainder :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RThere is one unexposed function called leftRemainder :
--R   [1] (D1,D1) -> D1 from NonCommutativeOperatorDivision(D1,D2)
--R             if D2 has FIELD and D1 has MLO(D2)
--R
--RExamples of leftRemainder from NonCommutativeOperatorDivision
--R
--R
--RExamples of leftRemainder from UnivariateSkewPolynomialCategory
--R
--E 1564

--S 1565 of 3320
)d op leftScalarTimes!
--R 
--R
--RThere is one unexposed function called leftScalarTimes! :
--R   [1] (Matrix(D2),D2,Matrix(D2)) -> Matrix(D2)
--R             from StorageEfficientMatrixOperations(D2) if D2 has RING
--R         
--R
--RExamples of leftScalarTimes! from StorageEfficientMatrixOperations
--R
--E 1565

--S 1566 of 3320
)d op leftTrace
--R 
--R
--RThere is one exposed function called leftTrace :
--R   [1] D -> D1 from D if D has FINAALG(D1) and D1 has COMRING
--R
--RExamples of leftTrace from FiniteRankNonAssociativeAlgebra
--R
--E 1566

--S 1567 of 3320
)d op leftTraceMatrix
--R 
--R
--RThere are 2 exposed functions called leftTraceMatrix :
--R   [1] Vector(D) -> Matrix(D3) from D if D has FINAALG(D3) and D3 has 
--R            COMRING
--R   [2]  -> Matrix(D2) from D if D has FRNAALG(D2) and D2 has COMRING
--R         
--R
--RThere is one unexposed function called leftTraceMatrix :
--R   [1]  -> Matrix(D3) from FramedNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FRNAALG(D3)
--R
--RExamples of leftTraceMatrix from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of leftTraceMatrix from FramedNonAssociativeAlgebra&
--R
--R
--RExamples of leftTraceMatrix from FramedNonAssociativeAlgebra
--R
--E 1567

--S 1568 of 3320
)d op leftTrim
--R 
--R
--RThere are 2 exposed functions called leftTrim :
--R   [1] (D,CharacterClass) -> D from D if D has SRAGG
--R   [2] (D,Character) -> D from D if D has SRAGG
--R
--RExamples of leftTrim from StringAggregate
--R
--E 1568

--S 1569 of 3320
)d op leftUnit
--R 
--R
--RThere is one exposed function called leftUnit :
--R   [1]  -> Union(D,"failed") from D
--R             if D has FINAALG(D1) and D1 has INTDOM and D1 has COMRING
--R            
--R
--RExamples of leftUnit from FiniteRankNonAssociativeAlgebra
--R
--E 1569

--S 1570 of 3320
--R-------------------------)d op leftUnits (System Error)
--E 1570

--S 1571 of 3320
)d op leftZero
--R 
--R
--RThere is one exposed function called leftZero :
--R   [1] Equation(D1) -> Equation(D1) from Equation(D1)
--R             if D1 has ABELGRP and D1 has TYPE
--R
--RExamples of leftZero from Equation
--R
--E 1571

--S 1572 of 3320
)d op legendre
--R 
--R
--RThere is one exposed function called legendre :
--R   [1] (Integer,Integer) -> Integer from IntegerNumberTheoryFunctions
--R         
--R
--RThere is one unexposed function called legendre :
--R   [1] Integer -> SparseUnivariatePolynomial(Fraction(Integer))
--R             from PolynomialNumberTheoryFunctions
--R
--RExamples of legendre from IntegerNumberTheoryFunctions
--R
--R
--RExamples of legendre from PolynomialNumberTheoryFunctions
--R
--E 1572

--S 1573 of 3320
)d op legendreP
--R 
--R
--RThere is one exposed function called legendreP :
--R   [1] (NonNegativeInteger,D1) -> D1 from OrthogonalPolynomialFunctions
--R            (D1)
--R             if D1 has ALGEBRA(FRAC(INT)) and D1 has COMRING
--R
--RExamples of legendreP from OrthogonalPolynomialFunctions
--R
--E 1573

--S 1574 of 3320
)d op length
--R 
--R
--RThere are 5 exposed functions called length :
--R   [1] Dequeue(D2) -> NonNegativeInteger from Dequeue(D2) if D2 has 
--R            SETCAT
--R   [2] D -> D from D if D has INS
--R   [3] D -> NonNegativeInteger from D if D has QUAGG(D2) and D2 has 
--R            TYPE
--R   [4] Queue(D2) -> NonNegativeInteger from Queue(D2) if D2 has SETCAT
--R            
--R   [5] D -> D1 from D
--R             if D has VECTCAT(D1) and D1 has TYPE and D1 has RADCAT and
--R            D1 has RING
--R
--RThere are 6 unexposed functions called length :
--R   [1] D2 -> D1 from GaloisGroupFactorizationUtilities(D3,D2,D1)
--R             if D3 has RING and D1 has Join(FloatingPointSystem,
--R            RetractableTo(D3),Field,TranscendentalFunctionCategory,
--R            ElementaryFunctionCategory) and D2 has UPOLYC(D3)
--R   [2] LyndonWord(D2) -> PositiveInteger from LyndonWord(D2) if D2 has 
--R            ORDSET
--R   [3] Magma(D2) -> PositiveInteger from Magma(D2) if D2 has ORDSET
--R   [4] OrderedFreeMonoid(D2) -> NonNegativeInteger from 
--R            OrderedFreeMonoid(D2)
--R             if D2 has ORDSET
--R   [5] PoincareBirkhoffWittLyndonBasis(D2) -> NonNegativeInteger
--R             from PoincareBirkhoffWittLyndonBasis(D2) if D2 has ORDSET
--R            
--R   [6] Tuple(D2) -> NonNegativeInteger from Tuple(D2) if D2 has TYPE
--R         
--R
--RExamples of length from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rlength a
--R
--R
--RExamples of length from GaloisGroupFactorizationUtilities
--R
--R
--RExamples of length from IntegerNumberSystem
--R
--R
--RExamples of length from LyndonWord
--R
--R
--RExamples of length from Magma
--R
--R
--RExamples of length from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rlength m1
--R
--R
--RExamples of length from PoincareBirkhoffWittLyndonBasis
--R
--R
--RExamples of length from QueueAggregate
--R
--R
--RExamples of length from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rlength a
--R
--R
--RExamples of length from Tuple
--R
--Rt1:PrimitiveArray(Integer):= [i for i in 1..10] 
--Rt2:=coerce(t1)$Tuple(Integer) 
--Rlength(t2)
--R
--R
--RExamples of length from VectorCategory
--R
--E 1574

--S 1575 of 3320
)d op lepol
--R 
--R
--RThere is one unexposed function called lepol :
--R   [1] D2 -> Integer from GroebnerInternalPackage(D3,D4,D5,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has POLYCAT(D3,D4,D5)
--R
--RExamples of lepol from GroebnerInternalPackage
--R
--E 1575

--S 1576 of 3320
)d op less?
--R 
--R
--RThere are 6 exposed functions called less? :
--R   [1] (D,NonNegativeInteger) -> Boolean from D if D has AGG
--R   [2] (ArrayStack(D3),NonNegativeInteger) -> Boolean from ArrayStack(
--R            D3)
--R             if D3 has SETCAT
--R   [3] (Dequeue(D3),NonNegativeInteger) -> Boolean from Dequeue(D3) if 
--R            D3 has SETCAT
--R   [4] (Heap(D3),NonNegativeInteger) -> Boolean from Heap(D3) if D3
--R             has ORDSET
--R   [5] (Queue(D3),NonNegativeInteger) -> Boolean from Queue(D3) if D3
--R             has SETCAT
--R   [6] (Stack(D3),NonNegativeInteger) -> Boolean from Stack(D3) if D3
--R             has SETCAT
--R
--RThere are 2 unexposed functions called less? :
--R   [1] (D2,D2) -> Union(Boolean,"failed") from 
--R            UserDefinedPartialOrdering(D2)
--R             if D2 has SETCAT
--R   [2] (D2,D2,((D2,D2) -> Boolean)) -> Boolean
--R             from UserDefinedPartialOrdering(D2) if D2 has SETCAT
--R
--RExamples of less? from Aggregate
--R
--R
--RExamples of less? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rless?(a,9)
--R
--R
--RExamples of less? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rless?(a,9)
--R
--R
--RExamples of less? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rless?(a,9)
--R
--R
--RExamples of less? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rless?(a,9)
--R
--R
--RExamples of less? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rless?(a,9)
--R
--R
--RExamples of less? from UserDefinedPartialOrdering
--R
--E 1576

--S 1577 of 3320
)d op level
--R 
--R
--RThere is one unexposed function called level :
--R   [1] SubSpace(D2,D3) -> NonNegativeInteger from SubSpace(D2,D3)
--R             if D2: PI and D3 has RING
--R
--RExamples of level from SubSpace
--R
--E 1577

--S 1578 of 3320 done
)d op leviCivitaSymbol
--R 
--R
--RThere is one exposed function called leviCivitaSymbol :
--R   [1]  -> CartesianTensor(D1,D2,D3) from CartesianTensor(D1,D2,D3)
--R             if D1: INT and D2: NNI and D3 has COMRING
--R
--RExamples of leviCivitaSymbol from CartesianTensor
--R
--Rlcs:CartesianTensor(1,2,Integer):=leviCivitaSymbol()
--R
--E 1578

--S 1579 of 3320
)d op lex
--R 
--R
--RThere is one unexposed function called lex :
--R   [1] List(List(D2)) -> List(List(D2)) from TableauxBumpers(D2) if D2
--R             has ORDSET
--R
--RExamples of lex from TableauxBumpers
--R
--E 1579

--S 1580 of 3320
)d op lexGroebner
--R 
--R
--RThere is one exposed function called lexGroebner :
--R   [1] (List(Polynomial(D3)),List(Symbol)) -> List(Polynomial(D3))
--R             from PolyGroebner(D3) if D3 has GCDDOM
--R
--RExamples of lexGroebner from PolyGroebner
--R
--E 1580

--S 1581 of 3320
)d op lexico
--R 
--R
--RThere are 3 unexposed functions called lexico :
--R   [1] (LyndonWord(D2),LyndonWord(D2)) -> Boolean from LyndonWord(D2)
--R             if D2 has ORDSET
--R   [2] (Magma(D2),Magma(D2)) -> Boolean from Magma(D2) if D2 has ORDSET
--R            
--R   [3] (OrderedFreeMonoid(D2),OrderedFreeMonoid(D2)) -> Boolean
--R             from OrderedFreeMonoid(D2) if D2 has ORDSET
--R
--RExamples of lexico from LyndonWord
--R
--R
--RExamples of lexico from Magma
--R
--R
--RExamples of lexico from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rm2:=(x*y)$OFMONOID(Symbol) 
--Rlexico(m1,m2) 
--Rlexico(m2,m1)
--R
--E 1581

--S 1582 of 3320
)d op lexTriangular
--R 
--R
--RThere is one unexposed function called lexTriangular :
--R   [1] (List(NewSparseMultivariatePolynomial(D4,OrderedVariableList(D5)
--R            )),Boolean) -> List(RegularChain(D4,D5))
--R             from LexTriangularPackage(D4,D5) if D4 has GCDDOM and D5: 
--R            LIST(SYMBOL)
--R
--RExamples of lexTriangular from LexTriangularPackage
--R
--E 1582

--S 1583 of 3320
)d op lfextendedint
--R 
--R
--RThere is one unexposed function called lfextendedint :
--R   [1] (D2,Symbol,D2) -> Union(Record(ratpart: D2,coeff: D2),"failed")
--R             from ElementaryIntegration(D4,D2)
--R             if D4 has Join(GcdDomain,OrderedSet,CharacteristicZero,
--R            RetractableTo(Integer),LinearlyExplicitRingOver(Integer)) 
--R            and D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4))
--R
--RExamples of lfextendedint from ElementaryIntegration
--R
--E 1583

--S 1584 of 3320
)d op lfextlimint
--R 
--R
--RThere is one unexposed function called lfextlimint :
--R   [1] (D2,Symbol,Kernel(D2),List(Kernel(D2))) -> Union(Record(ratpart
--R            : D2,coeff: D2),"failed")
--R             from ElementaryIntegration(D6,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D6)) and D6
--R             has Join(GcdDomain,OrderedSet,CharacteristicZero,
--R            RetractableTo(Integer),LinearlyExplicitRingOver(Integer))
--R         
--R
--RExamples of lfextlimint from ElementaryIntegration
--R
--E 1584

--S 1585 of 3320
)d op lfinfieldint
--R 
--R
--RThere is one unexposed function called lfinfieldint :
--R   [1] (D1,Symbol) -> Union(D1,"failed") from ElementaryIntegration(D3,
--R            D1)
--R             if D3 has Join(GcdDomain,OrderedSet,CharacteristicZero,
--R            RetractableTo(Integer),LinearlyExplicitRingOver(Integer)) 
--R            and D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D3))
--R
--RExamples of lfinfieldint from ElementaryIntegration
--R
--E 1585

--S 1586 of 3320
)d op lfintegrate
--R 
--R
--RThere is one unexposed function called lfintegrate :
--R   [1] (D2,Symbol) -> IntegrationResult(D2) from ElementaryIntegration(
--R            D4,D2)
--R             if D4 has Join(GcdDomain,OrderedSet,CharacteristicZero,
--R            RetractableTo(Integer),LinearlyExplicitRingOver(Integer)) 
--R            and D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4))
--R
--RExamples of lfintegrate from ElementaryIntegration
--R
--E 1586

--S 1587 of 3320
)d op lflimitedint
--R 
--R
--RThere is one unexposed function called lflimitedint :
--R   [1] (D2,Symbol,List(D2)) -> Union(Record(mainpart: D2,limitedlogs: 
--R            List(Record(coeff: D2,logand: D2))),"failed")
--R             from ElementaryIntegration(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(GcdDomain,OrderedSet,CharacteristicZero,
--R            RetractableTo(Integer),LinearlyExplicitRingOver(Integer))
--R         
--R
--RExamples of lflimitedint from ElementaryIntegration
--R
--E 1587

--S 1588 of 3320
)d op lfunc
--R 
--R
--RThere is one exposed function called lfunc :
--R   [1] (Integer,Integer) -> Integer from HallBasis
--R
--RExamples of lfunc from HallBasis
--R
--E 1588

--S 1589 of 3320
)d op lhs
--R 
--R
--RThere are 2 exposed functions called lhs :
--R   [1] Equation(D1) -> D1 from Equation(D1) if D1 has TYPE
--R   [2] RewriteRule(D2,D3,D1) -> D1 from RewriteRule(D2,D3,D1)
--R             if D2 has SETCAT and D1 has Join(FunctionSpace(D3),
--R            PatternMatchable(D2),ConvertibleTo(Pattern(D2))) and D3
--R             has Join(Ring,PatternMatchable(D2),OrderedSet,
--R            ConvertibleTo(Pattern(D2)))
--R
--RThere is one unexposed function called lhs :
--R   [1] SuchThat(D1,D2) -> D1 from SuchThat(D1,D2) if D1 has SETCAT and 
--R            D2 has SETCAT
--R
--RExamples of lhs from Equation
--R
--R
--RExamples of lhs from RewriteRule
--R
--R
--RExamples of lhs from SuchThat
--R
--E 1589

--S 1590 of 3320
)d op li
--R 
--R
--RThere is one exposed function called li :
--R   [1] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called li :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of li from LiouvillianFunctionCategory
--R
--R
--RExamples of li from LiouvillianFunction
--R
--E 1590

--S 1591 of 3320
)d op library
--R 
--R
--RThere is one exposed function called library :
--R   [1] FileName -> Library from Library
--R
--RExamples of library from Library
--R
--E 1591

--S 1592 of 3320
)d op lieAdmissible?
--R 
--R
--RThere is one exposed function called lieAdmissible? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called lieAdmissible? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of lieAdmissible? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of lieAdmissible? from FiniteRankNonAssociativeAlgebra
--R
--E 1592

--S 1593 of 3320
)d op lieAlgebra?
--R 
--R
--RThere is one exposed function called lieAlgebra? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called lieAlgebra? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of lieAlgebra? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of lieAlgebra? from FiniteRankNonAssociativeAlgebra
--R
--E 1593

--S 1594 of 3320 done
)d op lieDerivative
--R 
--R
--RThere is one unexposed function called lieDerivative :
--R   [1] (Vector(Expression(D3)),DeRhamComplex(D3,D4),SquareMatrix(#(D4),
--R            Expression(D3))) -> DeRhamComplex(D3,D4)
--R             from DeRhamComplex(D3,D4)
--R             if D3 has Join(Ring,OrderedSet) and D4: LIST(SYMBOL)
--R
--RExamples of lieDerivative from DeRhamComplex
--R
--R(w.r.t. metric g)} blankline 
--RcoefRing := Integer 
--RR3 : List Symbol := [x,y,z] 
--RD := DERHAM(coefRing,R3) 
--R[dx,dy,dz] := [generator(i)$D for i in 1..3] 
--Ra : BOP := operator('a) 
--Rb : BOP := operator('b) 
--Rc : BOP := operator('c) 
--RU : BOP := operator('U) 
--RV : BOP := operator('V) 
--RW : BOP := operator('W) 
--Rv := vector[U(x,y,z),V(x,y,z),W(x,y,z)] 
--Rtheta := a(x,y,z)*dx*dy + b(x,y,z)*dx*dz + c(x,y,z)*dy*dz 
--RG := diagonalMatrix([1,1,1]) 
--Reta := lieDerivative(v,theta,G)
--R
--E 1594

--S 1595 of 3320
)d op LiePoly
--R 
--R
--RThere is one exposed function called LiePoly :
--R   [1] LyndonWord(D2) -> D from D
--R             if D2 has ORDSET and D has FLALG(D2,D3) and D3 has COMRING
--R            
--R
--RExamples of LiePoly from FreeLieAlgebra
--R
--E 1595

--S 1596 of 3320
)d op LiePolyIfCan
--R 
--R
--RThere are 2 unexposed functions called LiePolyIfCan :
--R   [1] XDistributedPolynomial(D2,D3) -> Union(LiePolynomial(D2,D3),
--R            "failed")
--R             from LiePolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R   [2] XPBWPolynomial(D2,D3) -> Union(LiePolynomial(D2,D3),"failed")
--R             from XPBWPolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R
--RExamples of LiePolyIfCan from LiePolynomial
--R
--R
--RExamples of LiePolyIfCan from XPBWPolynomial
--R
--E 1596

--S 1597 of 3320
)d op lift
--R 
--R
--RThere are 3 exposed functions called lift :
--R   [1] D -> D1 from D
--R             if D has MONOGEN(D2,D1) and D2 has COMRING and D1 has 
--R            UPOLYC(D2)
--R   [2] (D,D) -> SparseUnivariatePolynomial(D) from D if D has PACPERC
--R         
--R   [3] D -> SparseUnivariatePolynomial(D) from D if D has PACPERC
--R
--RThere are 4 unexposed functions called lift :
--R   [1] (SparseUnivariatePolynomial(D5),Kernel(D5)) -> 
--R            SparseUnivariatePolynomial(Fraction(SparseUnivariatePolynomial(D5
--R            )))
--R             from GenusZeroIntegration(D4,D5,D6)
--R             if D5 has Join(FunctionSpace(D4),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D4 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R   [2] ModMonic(D2,D1) -> D1 from ModMonic(D2,D1)
--R             if D1 has UPOLYC(D2) and D2 has RING
--R   [3] (SparseUnivariatePolynomial(D6),SparseUnivariatePolynomial(D2),
--R            SparseUnivariatePolynomial(D2),D6,List(D1),List(
--R            NonNegativeInteger),List(D2)) -> Union(List(
--R            SparseUnivariatePolynomial(D6)),"failed")
--R             from MultivariateSquareFree(D10,D1,D2,D6)
--R             if D1 has ORDSET and D2 has EUCDOM and D10 has OAMONS and 
--R            D6 has POLYCAT(D2,D10,D1)
--R   [4] ResidueRing(D2,D3,D4,D1,D5) -> D1 from ResidueRing(D2,D3,D4,D1,
--R            D5)
--R             if D1 has POLYCAT(D2,D3,D4) and D2 has FIELD and D3 has 
--R            OAMONS and D4 has ORDSET and D5: LIST(D1)
--R
--RExamples of lift from GenusZeroIntegration
--R
--R
--RExamples of lift from ModMonic
--R
--R
--RExamples of lift from MonogenicAlgebra
--R
--R
--RExamples of lift from MultivariateSquareFree
--R
--R
--RExamples of lift from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of lift from ResidueRing
--R
--E 1597

--S 1598 of 3320
)d op lifting
--R 
--R
--RThere is one unexposed function called lifting :
--R   [1] (SparseUnivariatePolynomial(D3),List(D2),List(
--R            SparseUnivariatePolynomial(D11)),List(D11),List(D3),List(
--R            NonNegativeInteger),D11) -> Union(List(SparseUnivariatePolynomial
--R            (D3)),"failed")
--R             from MultivariateLifting(D1,D2,D11,D3)
--R             if D2 has ORDSET and D11 has EUCDOM and D3 has POLYCAT(D11
--R            ,D1,D2) and D1 has OAMONS
--R
--RExamples of lifting from MultivariateLifting
--R
--E 1598

--S 1599 of 3320
)d op lifting1
--R 
--R
--RThere is one unexposed function called lifting1 :
--R   [1] (SparseUnivariatePolynomial(D4),List(D3),List(
--R            SparseUnivariatePolynomial(D4)),List(D1),List(D4),List(List(
--R            Record(expt: NonNegativeInteger,pcoef: D4))),List(
--R            NonNegativeInteger),Vector(List(SparseUnivariatePolynomial(D1))),
--R            D1) -> Union(List(SparseUnivariatePolynomial(D4)),"failed")
--R             from MultivariateLifting(D2,D3,D1,D4)
--R             if D3 has ORDSET and D1 has EUCDOM and D4 has POLYCAT(D1,
--R            D2,D3) and D2 has OAMONS
--R
--RExamples of lifting1 from MultivariateLifting
--R
--E 1599

--S 1600 of 3320
)d op light
--R 
--R
--RThere is one exposed function called light :
--R   [1] Color -> Palette from Palette
--R
--RExamples of light from Palette
--R
--E 1600

--S 1601 of 3320
)d op lighting
--R 
--R
--RThere is one exposed function called lighting :
--R   [1] (ThreeDimensionalViewport,Float,Float,Float) -> Void
--R             from ThreeDimensionalViewport
--R
--RExamples of lighting from ThreeDimensionalViewport
--R
--E 1601

--S 1602 of 3320
)d op limit
--R 
--R
--RThere are 5 exposed functions called limit :
--R   [1] (D2,Equation(OrderedCompletion(D2))) -> Union(OrderedCompletion(
--R            D2),Record(leftHandLimit: Union(OrderedCompletion(D2),"failed"),
--R            rightHandLimit: Union(OrderedCompletion(D2),"failed")),"failed")
--R             from PowerSeriesLimitPackage(D4,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [2] (D2,Equation(D2),String) -> Union(OrderedCompletion(D2),"failed"
--R            )
--R             from PowerSeriesLimitPackage(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [3] (Fraction(Polynomial(D4)),Equation(OrderedCompletion(Polynomial(
--R            D4)))) -> Union(OrderedCompletion(Fraction(Polynomial(D4))),
--R            Record(leftHandLimit: Union(OrderedCompletion(Fraction(Polynomial
--R            (D4))),"failed"),rightHandLimit: Union(OrderedCompletion(Fraction
--R            (Polynomial(D4))),"failed")),"failed")
--R             from RationalFunctionLimitPackage(D4) if D4 has GCDDOM
--R   [4] (Fraction(Polynomial(D4)),Equation(Fraction(Polynomial(D4))))
--R             -> Union(OrderedCompletion(Fraction(Polynomial(D4))),Record(
--R            leftHandLimit: Union(OrderedCompletion(Fraction(Polynomial(D4))),
--R            "failed"),rightHandLimit: Union(OrderedCompletion(Fraction(
--R            Polynomial(D4))),"failed")),"failed")
--R             from RationalFunctionLimitPackage(D4) if D4 has GCDDOM
--R   [5] (Fraction(Polynomial(D5)),Equation(Fraction(Polynomial(D5))),
--R            String) -> Union(OrderedCompletion(Fraction(Polynomial(D5))),
--R            "failed")
--R             from RationalFunctionLimitPackage(D5) if D5 has GCDDOM
--R
--RExamples of limit from PowerSeriesLimitPackage
--R
--R
--RExamples of limit from RationalFunctionLimitPackage
--R
--E 1602

--S 1603 of 3320
)d op limitedint
--R 
--R
--RThere is one unexposed function called limitedint :
--R   [1] (Fraction(D5),List(Fraction(D5))) -> Union(Record(mainpart: 
--R            Fraction(D5),limitedlogs: List(Record(coeff: Fraction(D5),logand
--R            : Fraction(D5)))),"failed")
--R             from RationalIntegration(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer))
--R
--RExamples of limitedint from RationalIntegration
--R
--E 1603

--S 1604 of 3320
)d op limitedIntegrate
--R 
--R
--RThere is one exposed function called limitedIntegrate :
--R   [1] (Fraction(Polynomial(D5)),Symbol,List(Fraction(Polynomial(D5))))
--R             -> Union(Record(mainpart: Fraction(Polynomial(D5)),limitedlogs: 
--R            List(Record(coeff: Fraction(Polynomial(D5)),logand: Fraction(
--R            Polynomial(D5))))),"failed")
--R             from RationalFunctionIntegration(D5)
--R             if D5 has Join(IntegralDomain,RetractableTo(Integer),
--R            CharacteristicZero)
--R
--RExamples of limitedIntegrate from RationalFunctionIntegration
--R
--E 1604

--S 1605 of 3320
)d op limitPlus
--R 
--R
--RThere are 2 unexposed functions called limitPlus :
--R   [1] ExponentialExpansion(D2,D3,D4,D5) -> Union(OrderedCompletion(D3)
--R            ,"failed")
--R             from ExponentialExpansion(D2,D3,D4,D5)
--R             if D2 has Join(OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer),GcdDomain) and D3 has 
--R            Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D2)) and D4: 
--R            SYMBOL and D5: D3
--R   [2] UnivariatePuiseuxSeriesWithExponentialSingularity(D2,D3,D4,D5)
--R             -> Union(OrderedCompletion(D3),"failed")
--R             from UnivariatePuiseuxSeriesWithExponentialSingularity(D2,
--R            D3,D4,D5)
--R             if D2 has Join(OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer),GcdDomain) and D3 has 
--R            Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D2)) and D4: 
--R            SYMBOL and D5: D3
--R
--RExamples of limitPlus from ExponentialExpansion
--R
--R
--RExamples of limitPlus from UnivariatePuiseuxSeriesWithExponentialSingularity
--R
--E 1605

--S 1606 of 3320
)d op linear
--R 
--R
--RThere are 2 unexposed functions called linear :
--R   [1] D3 -> List(D4) from PolynomialSolveByFormulas(D3,D4)
--R             if D4 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D4)
--R            
--R   [2] (D3,D3) -> List(D3) from PolynomialSolveByFormulas(D4,D3)
--R             if D3 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D4 has UPOLYC(D3)
--R            
--R
--RExamples of linear from PolynomialSolveByFormulas
--R
--E 1606

--S 1607 of 3320
)d op linear?
--R 
--R
--RThere are 2 exposed functions called linear? :
--R   [1] List(Expression(DoubleFloat)) -> Boolean from e04AgentsPackage
--R         
--R   [2] Expression(DoubleFloat) -> Boolean from e04AgentsPackage
--R
--RThere is one unexposed function called linear? :
--R   [1] D2 -> Boolean from PolynomialSetUtilitiesPackage(D3,D4,D5,D2)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5)
--R
--RExamples of linear? from e04AgentsPackage
--R
--R
--RExamples of linear? from PolynomialSetUtilitiesPackage
--R
--E 1607

--S 1608 of 3320
)d op linearAssociatedExp
--R 
--R
--RThere is one exposed function called linearAssociatedExp :
--R   [1] (D,SparseUnivariatePolynomial(D2)) -> D from D
--R             if D2 has FINITE and D has FAXF(D2) and D2 has FIELD
--R
--RExamples of linearAssociatedExp from FiniteAlgebraicExtensionField
--R
--E 1608

--S 1609 of 3320
)d op linearAssociatedLog
--R 
--R
--RThere are 2 exposed functions called linearAssociatedLog :
--R   [1] (D,D) -> Union(SparseUnivariatePolynomial(D2),"failed") from D
--R             if D has FAXF(D2) and D2 has FIELD and D2 has FINITE
--R   [2] D -> SparseUnivariatePolynomial(D2) from D
--R             if D has FAXF(D2) and D2 has FIELD and D2 has FINITE
--R
--RExamples of linearAssociatedLog from FiniteAlgebraicExtensionField
--R
--E 1609

--S 1610 of 3320
)d op linearAssociatedOrder
--R 
--R
--RThere is one exposed function called linearAssociatedOrder :
--R   [1] D -> SparseUnivariatePolynomial(D2) from D
--R             if D has FAXF(D2) and D2 has FIELD and D2 has FINITE
--R
--RExamples of linearAssociatedOrder from FiniteAlgebraicExtensionField
--R
--E 1610

--S 1611 of 3320 done
)d op linearBezier
--R 
--R
--RThere is one exposed function called linearBezier :
--R   [1] (List(D3),List(D3)) -> (D3 -> List(D3)) from Bezier(D3) if D3
--R             has RING
--R
--RExamples of linearBezier from Bezier
--R
--Rn:=linearBezier([2.0,2.0],[4.0,4.0]) 
--R[n(t/10.0) for t in 0..10 by 1]
--R
--E 1611

--S 1612 of 3320
)d op linearDependence
--R 
--R
--RThere is one unexposed function called linearDependence :
--R   [1] Vector(D4) -> Union(Vector(D3),"failed") from LinearDependence(
--R            D3,D4)
--R             if D4 has LINEXP(D3) and D3 has INTDOM
--R
--RExamples of linearDependence from LinearDependence
--R
--E 1612

--S 1613 of 3320
)d op linearDependenceOverZ
--R 
--R
--RThere is one exposed function called linearDependenceOverZ :
--R   [1] Vector(D3) -> Union(Vector(Integer),"failed")
--R             from IntegerLinearDependence(D3) if D3 has LINEXP(INT)
--R
--RExamples of linearDependenceOverZ from IntegerLinearDependence
--R
--E 1613

--S 1614 of 3320
)d op linearlyDependent?
--R 
--R
--RThere is one unexposed function called linearlyDependent? :
--R   [1] Vector(D4) -> Boolean from LinearDependence(D3,D4)
--R             if D4 has LINEXP(D3) and D3 has INTDOM
--R
--RExamples of linearlyDependent? from LinearDependence
--R
--E 1614

--S 1615 of 3320
)d op linearlyDependentOverZ?
--R 
--R
--RThere is one exposed function called linearlyDependentOverZ? :
--R   [1] Vector(D3) -> Boolean from IntegerLinearDependence(D3) if D3
--R             has LINEXP(INT)
--R
--RExamples of linearlyDependentOverZ? from IntegerLinearDependence
--R
--E 1615

--S 1616 of 3320
)d op linearMatrix
--R 
--R
--RThere is one exposed function called linearMatrix :
--R   [1] (List(Expression(DoubleFloat)),NonNegativeInteger) -> Matrix(
--R            DoubleFloat)
--R             from e04AgentsPackage
--R
--RExamples of linearMatrix from e04AgentsPackage
--R
--E 1616

--S 1617 of 3320
)d op linearPart
--R 
--R
--RThere is one exposed function called linearPart :
--R   [1] List(Expression(DoubleFloat)) -> List(Expression(DoubleFloat))
--R             from e04AgentsPackage
--R
--RExamples of linearPart from e04AgentsPackage
--R
--E 1617

--S 1618 of 3320
)d op linearPolynomials
--R 
--R
--RThere is one unexposed function called linearPolynomials :
--R   [1] List(D6) -> Record(goodPols: List(D6),badPols: List(D6))
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5)
--R
--RExamples of linearPolynomials from PolynomialSetUtilitiesPackage
--R
--E 1618

--S 1619 of 3320
)d op linears
--R 
--R
--RThere is one exposed function called linears :
--R   [1] (D1,Integer) -> D1 from ModularDistinctDegreeFactorizer(D1)
--R             if D1 has UPOLYC(INT)
--R
--RExamples of linears from ModularDistinctDegreeFactorizer
--R
--E 1619

--S 1620 of 3320
)d op lineColorDefault
--R 
--R
--RThere are 2 exposed functions called lineColorDefault :
--R   [1]  -> Palette from ViewDefaultsPackage
--R   [2] Palette -> Palette from ViewDefaultsPackage
--R
--RExamples of lineColorDefault from ViewDefaultsPackage
--R
--E 1620

--S 1621 of 3320
)d op linGenPos
--R 
--R
--RThere is one unexposed function called linGenPos :
--R   [1] List(HomogeneousDistributedMultivariatePolynomial(D3,D4)) -> 
--R            Record(gblist: List(DistributedMultivariatePolynomial(D3,D4)),
--R            gvlist: List(Integer))
--R             from LinGroebnerPackage(D3,D4) if D3: LIST(SYMBOL) and D4
--R             has GCDDOM
--R
--RExamples of linGenPos from LinGroebnerPackage
--R
--E 1621

--S 1622 of 3320
)d op linkToFortran
--R 
--R
--RThere are 3 exposed functions called linkToFortran :
--R   [1] (Symbol,List(Union(array: List(Symbol),scalar: Symbol)),List(
--R            List(Union(array: List(Symbol),scalar: Symbol))),List(Symbol))
--R             -> SExpression
--R             from FortranPackage
--R   [2] (Symbol,List(Union(array: List(Symbol),scalar: Symbol)),List(
--R            List(Union(array: List(Symbol),scalar: Symbol))),List(Symbol),
--R            Symbol) -> SExpression
--R             from FortranPackage
--R   [3] (Symbol,List(Symbol),TheSymbolTable,List(Symbol)) -> SExpression
--R             from FortranPackage
--R
--RExamples of linkToFortran from FortranPackage
--R
--E 1622

--S 1623 of 3320
)d op linSolve
--R 
--R
--RThere is one exposed function called linSolve :
--R   [1] (List(D7),List(D6)) -> Record(particular: Union(Vector(Fraction(
--R            D7)),"failed"),basis: List(Vector(Fraction(D7))))
--R             from LinearSystemPolynomialPackage(D4,D5,D6,D7)
--R             if D6 has ORDSET and D7 has POLYCAT(D4,D5,D6) and D4 has 
--R            INTDOM and D5 has OAMONS
--R
--RExamples of linSolve from LinearSystemPolynomialPackage
--R
--E 1623

--S 1624 of 3320
)d op lintgcd
--R 
--R
--RThere is one unexposed function called lintgcd :
--R   [1] List(Integer) -> Integer from HeuGcd(D3) if D3 has UPOLYC(INT)
--R         
--R
--RExamples of lintgcd from HeuGcd
--R
--E 1624

--S 1625 of 3320
)d op list
--R 
--R
--RThere are 4 exposed functions called list :
--R   [1] D -> List(D2) from D if D has AFSPCAT(D2) and D2 has FIELD
--R   [2] D1 -> D from D if D has LSAGG(D1) and D1 has TYPE
--R   [3] D -> List(D2) from D if D has PRSPCAT(D2) and D2 has FIELD
--R   [4] Symbol -> List(Symbol) from Symbol
--R
--RExamples of list from AffineSpaceCategory
--R
--R
--RExamples of list from ListAggregate
--R
--R
--RExamples of list from ProjectiveSpaceCategory
--R
--R
--RExamples of list from Symbol
--R
--Rm:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) 
--R(list m)$Symbol
--R
--E 1625

--S 1626 of 3320
)d op list?
--R 
--R
--RThere is one exposed function called list? :
--R   [1] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of list? from SExpressionCategory
--R
--E 1626

--S 1627 of 3320
)d op listAllMono
--R 
--R
--RThere is one exposed function called listAllMono :
--R   [1] NonNegativeInteger -> List(D4) from PackageForPoly(D3,D4,D5,D6)
--R             if D3 has RING and D5 has DIRPCAT(D6,NNI) and D6: NNI and 
--R            D4 has FAMR(D3,D5)
--R
--RExamples of listAllMono from PackageForPoly
--R
--E 1627

--S 1628 of 3320
)d op listAllMonoExp
--R 
--R
--RThere is one exposed function called listAllMonoExp :
--R   [1] Integer -> List(D5) from PackageForPoly(D3,D4,D5,D6)
--R             if D3 has RING and D5 has DIRPCAT(D6,NNI) and D6: NNI and 
--R            D4 has FAMR(D3,D5)
--R
--RExamples of listAllMonoExp from PackageForPoly
--R
--E 1628

--S 1629 of 3320
)d op listBranches
--R 
--R
--RThere are 2 exposed functions called listBranches :
--R   [1] D -> List(List(Point(DoubleFloat))) from D if D has PPCURVE
--R   [2] D -> List(List(Point(DoubleFloat))) from D if D has PSCURVE
--R
--RExamples of listBranches from PlottablePlaneCurveCategory
--R
--R
--RExamples of listBranches from PlottableSpaceCurveCategory
--R
--E 1629

--S 1630 of 3320
)d op listConjugateBases
--R 
--R
--RThere is one unexposed function called listConjugateBases :
--R   [1] (Record(basis: Matrix(D5),basisDen: D5,basisInv: Matrix(D5)),
--R            NonNegativeInteger,NonNegativeInteger) -> List(Record(basis: 
--R            Matrix(D5),basisDen: D5,basisInv: Matrix(D5)))
--R             from ChineseRemainderToolsForIntegralBases(D4,D5,D6)
--R             if D4 has FFIELDC and D5 has UPOLYC(D4) and D6 has UPOLYC(
--R            D5)
--R
--RExamples of listConjugateBases from ChineseRemainderToolsForIntegralBases
--R
--E 1630

--S 1631 of 3320
)d op listexp
--R 
--R
--RThere is one unexposed function called listexp :
--R   [1] D2 -> List(NonNegativeInteger) from NPCoef(D2,D3,D4,D5,D6)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has EUCDOM and 
--R            D2 has UPOLYC(D5) and D6 has POLYCAT(D5,D3,D4)
--R
--RExamples of listexp from NPCoef
--R
--E 1631

--S 1632 of 3320
)d op listLoops
--R 
--R
--RThere is one unexposed function called listLoops :
--R   [1] TubePlot(D2) -> List(List(Point(DoubleFloat))) from TubePlot(D2)
--R             if D2 has PSCURVE
--R
--RExamples of listLoops from TubePlot
--R
--E 1632

--S 1633 of 3320
)d op listOfLists
--R 
--R
--RThere are 3 exposed functions called listOfLists :
--R   [1] D -> List(List(D2)) from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [2] D -> List(List(D4)) from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R   [3] Tableau(D2) -> List(List(D2)) from Tableau(D2) if D2 has SETCAT
--R            
--R
--RExamples of listOfLists from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--RlistOfLists m
--R
--R
--RExamples of listOfLists from RectangularMatrixCategory
--R
--R
--RExamples of listOfLists from Tableau
--R
--E 1633

--S 1634 of 3320
)d op listOfMonoms
--R 
--R
--RThere is one unexposed function called listOfMonoms :
--R   [1] ListMonoidOps(D2,D3,D4) -> List(Record(gen: D2,exp: D3))
--R             from ListMonoidOps(D2,D3,D4)
--R             if D2 has SETCAT and D3 has ABELMON and D4: D3
--R
--RExamples of listOfMonoms from ListMonoidOps
--R
--E 1634

--S 1635 of 3320
)d op listOfTerms
--R 
--R
--RThere is one exposed function called listOfTerms :
--R   [1] D -> List(Record(k: D3,c: D2)) from D
--R             if D has FMCAT(D2,D3) and D2 has RING and D3 has SETCAT
--R         
--R
--RThere are 2 unexposed functions called listOfTerms :
--R   [1] LieExponentials(D2,D3,D4) -> List(Record(k: 
--R            PoincareBirkhoffWittLyndonBasis(D2),c: D3))
--R             from LieExponentials(D2,D3,D4)
--R             if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D4: PI
--R   [2] PoincareBirkhoffWittLyndonBasis(D2) -> List(LyndonWord(D2))
--R             from PoincareBirkhoffWittLyndonBasis(D2) if D2 has ORDSET
--R            
--R
--RExamples of listOfTerms from FreeModuleCat
--R
--R
--RExamples of listOfTerms from LieExponentials
--R
--R
--RExamples of listOfTerms from PoincareBirkhoffWittLyndonBasis
--R
--E 1635

--S 1636 of 3320
)d op listRepresentation
--R 
--R
--RThere is one exposed function called listRepresentation :
--R   [1] Permutation(D2) -> Record(preimage: List(D2),image: List(D2))
--R             from Permutation(D2) if D2 has SETCAT
--R
--RExamples of listRepresentation from Permutation
--R
--E 1636

--S 1637 of 3320
)d op lists
--R 
--R
--RThere is one unexposed function called lists :
--R   [1] PatternMatchListResult(D2,D3,D4) -> PatternMatchResult(D2,D4)
--R             from PatternMatchListResult(D2,D3,D4)
--R             if D3 has SETCAT and D2 has SETCAT and D4 has LSAGG(D3)
--R         
--R
--RExamples of lists from PatternMatchListResult
--R
--E 1637

--S 1638 of 3320
)d op listSD
--R 
--R
--RThere is one exposed function called listSD :
--R   [1] StochasticDifferential(D2) -> List(BasicStochasticDifferential)
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of listSD from StochasticDifferential
--R
--E 1638

--S 1639 of 3320
)d op listVariable
--R 
--R
--RThere is one exposed function called listVariable :
--R   [1]  -> List(D3) from PackageForPoly(D2,D3,D4,D5)
--R             if D2 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D3 has FAMR(D2,D4)
--R
--RExamples of listVariable from PackageForPoly
--R
--E 1639

--S 1640 of 3320
)d op listYoungTableaus
--R 
--R
--RThere is one exposed function called listYoungTableaus :
--R   [1] List(Integer) -> List(Matrix(Integer))
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of listYoungTableaus from SymmetricGroupCombinatoricFunctions
--R
--E 1640

--S 1641 of 3320
)d op lllip
--R 
--R
--RThere is one exposed function called lllip :
--R   [1] D -> List(List(List(NonNegativeInteger))) from D
--R             if D has SPACEC(D2) and D2 has RING
--R
--RExamples of lllip from ThreeSpaceCategory
--R
--E 1641

--S 1642 of 3320
)d op lllp
--R 
--R
--RThere is one exposed function called lllp :
--R   [1] D -> List(List(List(Point(D2)))) from D if D has SPACEC(D2) and 
--R            D2 has RING
--R
--RExamples of lllp from ThreeSpaceCategory
--R
--E 1642

--S 1643 of 3320
)d op llprop
--R 
--R
--RThere is one exposed function called llprop :
--R   [1] D -> List(List(SubSpaceComponentProperty)) from D
--R             if D has SPACEC(D2) and D2 has RING
--R
--RExamples of llprop from ThreeSpaceCategory
--R
--E 1643

--S 1644 of 3320
)d op lo
--R 
--R
--RThere is one exposed function called lo :
--R   [1] D -> D1 from D if D has SEGCAT(D1) and D1 has TYPE
--R
--RExamples of lo from SegmentCategory
--R
--E 1644

--S 1645 of 3320
)d op localAbs
--R 
--R
--RThere are 2 unexposed functions called localAbs :
--R   [1] D1 -> D1 from FunctionSpaceToExponentialExpansion(D2,D1,D3,D4)
--R             if D2 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2)) and D3: SYMBOL and D4: D1
--R   [2] D1 -> D1 from FunctionSpaceToUnivariatePowerSeries(D2,D1,D3,D4,
--R            D5,D6)
--R             if D2 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))with
--R               coerce : D3 -> %and D3 has ORDRING and D4 has Join(
--R            UnivariatePowerSeriesCategory(D1,D3),Field,
--R            TranscendentalFunctionCategory)with
--R               differentiate : % -> %
--R               integrate : % -> %and D5 has PTRANFN(D4) and D6: 
--R            SYMBOL
--R
--RExamples of localAbs from FunctionSpaceToExponentialExpansion
--R
--R
--RExamples of localAbs from FunctionSpaceToUnivariatePowerSeries
--R
--E 1645

--S 1646 of 3320
)d op localIntegralBasis
--R 
--R
--RThere are 4 unexposed functions called localIntegralBasis :
--R   [1] D2 -> Record(basis: Matrix(D2),basisDen: D2,basisInv: Matrix(D2)
--R            )
--R             from FunctionFieldIntegralBasis(D2,D3,D4)
--R             if D2 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D3 has UPOLYC(D2) 
--R            and D4 has FRAMALG(D2,D3)
--R   [2] Integer -> Record(basis: Matrix(Integer),basisDen: Integer,
--R            basisInv: Matrix(Integer))
--R             from NumberFieldIntegralBasis(D3,D4)
--R             if D3 has UPOLYC(INT) and D4 has FRAMALG(INT,D3)
--R   [3] D2 -> Record(basis: Matrix(D2),basisDen: D2,basisInv: Matrix(D2)
--R            )
--R             from PAdicWildFunctionFieldIntegralBasis(D3,D2,D4,D5)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3) and D4 has UPOLYC(
--R            D2) and D5 has MONOGEN(D2,D4)
--R   [4] D2 -> Record(basis: Matrix(D2),basisDen: D2,basisInv: Matrix(D2)
--R            )
--R             from WildFunctionFieldIntegralBasis(D3,D2,D4,D5)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3) and D4 has UPOLYC(
--R            D2) and D5 has FRAMALG(D2,D4)
--R
--RExamples of localIntegralBasis from FunctionFieldIntegralBasis
--R
--R
--RExamples of localIntegralBasis from NumberFieldIntegralBasis
--R
--R
--RExamples of localIntegralBasis from PAdicWildFunctionFieldIntegralBasis
--R
--R
--RExamples of localIntegralBasis from WildFunctionFieldIntegralBasis
--R
--E 1646

--S 1647 of 3320
)d op localize
--R 
--R
--RThere is one exposed function called localize :
--R   [1] (D3,D4,D3,Integer) -> Record(fnc: D3,crv: D3,chart: List(Integer
--R            ))
--R             from LocalParametrizationOfSimplePointPackage(D6,D7,D3,D8,
--R            D4,D9,D1)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has DIRPCAT(#(
--R            D7),NNI) and D9 has LOCPOWC(D6) and D3 has POLYCAT(D6,D8,
--R            OVAR(D7)) and D4 has PRSPCAT(D6) and D1 has PLACESC(D6,D9)
--R            
--R
--RExamples of localize from LocalParametrizationOfSimplePointPackage
--R
--E 1647

--S 1648 of 3320
)d op localParam
--R 
--R
--RThere is one exposed function called localParam :
--R   [1] D -> List(D3) from D
--R             if D has PLACESC(D2,D3) and D2 has FIELD and D3 has 
--R            LOCPOWC(D2)
--R
--RExamples of localParam from PlacesCategory
--R
--E 1648

--S 1649 of 3320
)d op localParamOfSimplePt
--R 
--R
--RThere is one exposed function called localParamOfSimplePt :
--R   [1] (D3,D4,Integer) -> List(D9)
--R             from LocalParametrizationOfSimplePointPackage(D6,D7,D4,D8,
--R            D3,D9,D1)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has DIRPCAT(#(
--R            D7),NNI) and D9 has LOCPOWC(D6) and D4 has POLYCAT(D6,D8,
--R            OVAR(D7)) and D3 has PRSPCAT(D6) and D1 has PLACESC(D6,D9)
--R            
--R
--RExamples of localParamOfSimplePt from LocalParametrizationOfSimplePointPackage
--R
--E 1649

--S 1650 of 3320
)d op localParamV
--R 
--R
--RThere is one exposed function called localParamV :
--R   [1] D -> List(D9) from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of localParamV from InfinitlyClosePointCategory
--R
--E 1650

--S 1651 of 3320
)d op localPointV
--R 
--R
--RThere is one exposed function called localPointV :
--R   [1] D -> AffinePlane(D4) from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of localPointV from InfinitlyClosePointCategory
--R
--E 1651

--S 1652 of 3320
)d op localReal?
--R 
--R
--RThere is one unexposed function called localReal? :
--R   [1] D2 -> Boolean from ElementaryFunction(D3,D2)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D2 has Join(
--R            FunctionSpace(D3),RadicalCategory)
--R
--RExamples of localReal? from ElementaryFunction
--R
--E 1652

--S 1653 of 3320
)d op localUnquote
--R 
--R
--RThere is one unexposed function called localUnquote :
--R   [1] (D1,List(Symbol)) -> D1 from ApplyRules(D3,D4,D1)
--R             if D3 has SETCAT and D4 has Join(Ring,PatternMatchable(D3)
--R            ,OrderedSet,ConvertibleTo(Pattern(D3))) and D1 has Join(
--R            FunctionSpace(D4),PatternMatchable(D3),ConvertibleTo(
--R            Pattern(D3)))
--R
--RExamples of localUnquote from ApplyRules
--R
--E 1653

--S 1654 of 3320
)d op LODO2FUN
--R 
--R
--RThere is one unexposed function called LODO2FUN :
--R   [1] D2 -> (List(D5) -> D5) from UTSodetools(D3,D4,D2,D5)
--R             if D3 has RING and D4 has UPOLYC(D3) and D2 has LODOCAT(D4
--R            ) and D5 has UTSCAT(D3)
--R
--RExamples of LODO2FUN from UTSodetools
--R
--E 1654

--S 1655 of 3320
)d op log
--R 
--R
--RThere are 2 exposed functions called log :
--R   [1] D -> D from D if D has ELEMFUN
--R   [2] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R
--RThere are 9 unexposed functions called log :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Factored(D3) -> List(Record(coef: NonNegativeInteger,logand: D3)
--R            )
--R             from FactoredFunctions(D3) if D3 has INTDOM
--R   [5] LieExponentials(D2,D3,D4) -> LiePolynomial(D2,D3)
--R             from LieExponentials(D2,D3,D4)
--R             if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D4: PI
--R   [6] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [7] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [8] (D1,NonNegativeInteger) -> D1 from XExponentialPackage(D3,D4,D1)
--R             if D3 has Join(Ring,Module(Fraction(Integer))) and D4 has 
--R            ORDSET and D1 has XPOLYC(D4,D3)
--R   [9] (XPBWPolynomial(D2,D3),NonNegativeInteger) -> XPBWPolynomial(D2,
--R            D3)
--R             from XPBWPolynomial(D2,D3)
--R             if D3 has MODULE(FRAC(INT)) and D2 has ORDSET and D3 has 
--R            COMRING
--R
--RExamples of log from ElementaryFunction
--R
--R
--RExamples of log from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of log from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of log from ElementaryFunctionCategory
--R
--R
--RExamples of log from FactoredFunctions
--R
--R
--RExamples of log from FortranExpression
--R
--R
--RExamples of log from LieExponentials
--R
--R
--RExamples of log from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of log from StreamTranscendentalFunctions
--R
--R
--RExamples of log from XExponentialPackage
--R
--R
--RExamples of log from XPBWPolynomial
--R
--E 1655

--S 1656 of 3320
)d op log10
--R 
--R
--RThere are 4 exposed functions called log10 :
--R   [1] DoubleFloat -> DoubleFloat from DoubleFloat
--R   [2] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [3] Float -> Float from Float
--R   [4]  -> Float from Float
--R
--RExamples of log10 from DoubleFloat
--R
--R
--RExamples of log10 from FortranExpression
--R
--R
--RExamples of log10 from Float
--R
--E 1656

--S 1657 of 3320
)d op log2
--R 
--R
--RThere are 3 exposed functions called log2 :
--R   [1] DoubleFloat -> DoubleFloat from DoubleFloat
--R   [2] Float -> Float from Float
--R   [3]  -> Float from Float
--R
--RExamples of log2 from DoubleFloat
--R
--R
--RExamples of log2 from Float
--R
--E 1657

--S 1658 of 3320 done
)d op logGamma
--R 
--R
--RThere are 4 exposed functions called logGamma :
--R   [1] DoubleFloat -> DoubleFloat from DoubleFloatSpecialFunctions
--R   [2] Complex(DoubleFloat) -> Complex(DoubleFloat)
--R             from DoubleFloatSpecialFunctions
--R   [3] Float -> Float from FloatSpecialFunctions
--R   [4] Complex(Float) -> Complex(Float) from FloatSpecialFunctions
--R
--RExamples of logGamma from DoubleFloatSpecialFunctions
--R
--Ra:Complex(DoubleFloat):=3.5*%i 
--RlogGamma(a)
--R
--Ra:DoubleFloat:=3.5 
--RlogGamma(a)
--R
--R
--RExamples of logGamma from FloatSpecialFunctions
--R
--Ra:Complex(Float):=3.5*%i 
--RlogGamma(a)
--R
--RlogGamma(3.5)
--R
--E 1658

--S 1659 of 3320
)d op logical?
--R 
--R
--RThere is one exposed function called logical? :
--R   [1] FortranScalarType -> Boolean from FortranScalarType
--R
--RExamples of logical? from FortranScalarType
--R
--E 1659

--S 1660 of 3320
)d op logIfCan
--R 
--R
--RThere is one exposed function called logIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of logIfCan from PartialTranscendentalFunctions
--R
--E 1660

--S 1661 of 3320
)d op logpart
--R 
--R
--RThere is one unexposed function called logpart :
--R   [1] IntegrationResult(D2) -> List(Record(scalar: Fraction(Integer),
--R            coeff: SparseUnivariatePolynomial(D2),logand: 
--R            SparseUnivariatePolynomial(D2)))
--R             from IntegrationResult(D2) if D2 has FIELD
--R
--RExamples of logpart from IntegrationResult
--R
--E 1661

--S 1662 of 3320
)d op lookup
--R 
--R
--RThere is one exposed function called lookup :
--R   [1] D -> PositiveInteger from D if D has FINITE
--R
--RThere is one unexposed function called lookup :
--R   [1] Vector(D3) -> PositiveInteger from 
--R            InnerNormalBasisFieldFunctions(D3)
--R             if D3 has FFIELDC
--R
--RExamples of lookup from Finite
--R
--R
--RExamples of lookup from InnerNormalBasisFieldFunctions
--R
--E 1662

--S 1663 of 3320
)d op loopPoints
--R 
--R
--RThere is one unexposed function called loopPoints :
--R   [1] (Point(DoubleFloat),Point(DoubleFloat),Point(DoubleFloat),
--R            DoubleFloat,List(List(DoubleFloat))) -> List(Point(DoubleFloat))
--R             from TubePlotTools
--R
--RExamples of loopPoints from TubePlotTools
--R
--E 1663

--S 1664 of 3320
)d op low
--R 
--R
--RThere is one exposed function called low :
--R   [1] D -> D1 from D if D has SEGCAT(D1) and D1 has TYPE
--R
--RExamples of low from SegmentCategory
--R
--E 1664

--S 1665 of 3320
)d op lowerCase
--R 
--R
--RThere are 3 exposed functions called lowerCase :
--R   [1]  -> CharacterClass from CharacterClass
--R   [2] Character -> Character from Character
--R   [3] D -> D from D if D has SRAGG
--R
--RExamples of lowerCase from CharacterClass
--R
--R
--RExamples of lowerCase from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[lowerCase c for c in chars]
--R
--R
--RExamples of lowerCase from StringAggregate
--R
--E 1665

--S 1666 of 3320
)d op lowerCase!
--R 
--R
--RThere is one exposed function called lowerCase! :
--R   [1] D -> D from D if D has SRAGG
--R
--RExamples of lowerCase! from StringAggregate
--R
--E 1666

--S 1667 of 3320 done
)d op lowerCase?
--R 
--R
--RThere is one exposed function called lowerCase? :
--R   [1] Character -> Boolean from Character
--R
--RExamples of lowerCase? from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[lowerCase? c for c in chars]
--R
--E 1667

--S 1668 of 3320
)d op lowerPolynomial
--R 
--R
--RThere is one unexposed function called lowerPolynomial :
--R   [1] SparseUnivariatePolynomial(D6) -> SparseUnivariatePolynomial(D5)
--R             from FactoringUtilities(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D5,D3,D4) and D3 has OAMONS and D4 has 
--R            ORDSET and D5 has RING
--R
--RExamples of lowerPolynomial from FactoringUtilities
--R
--E 1668

--S 1669 of 3320
)d op LowTriBddDenomInv
--R 
--R
--RThere is one unexposed function called LowTriBddDenomInv :
--R   [1] (D1,D2) -> D1 from TriangularMatrixOperations(D2,D3,D4,D1)
--R             if D2 has INTDOM and D3 has FLAGG(D2) and D4 has FLAGG(D2)
--R            and D1 has MATCAT(D2,D3,D4)
--R
--RExamples of LowTriBddDenomInv from TriangularMatrixOperations
--R
--E 1669

--S 1670 of 3320
)d op lp
--R 
--R
--RThere is one exposed function called lp :
--R   [1] D -> List(Point(D2)) from D if D has SPACEC(D2) and D2 has RING
--R            
--R
--RExamples of lp from ThreeSpaceCategory
--R
--E 1670

--S 1671 of 3320
)d op LPolynomial
--R 
--R
--RThere are 6 exposed functions called LPolynomial :
--R   [1]  -> SparseUnivariatePolynomial(Integer)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FINITE and D6 has FIELD and D7: LIST(SYMBOL) and
--R            D8 has POLYCAT(D6,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI
--R            ) and D10 has PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12
--R             has PLACESC(D6,D11) and D1 has DIVCAT(D12) and D2 has 
--R            INFCLCT(D6,D7,D8,D9,D10,D11,D12,D1,D4) and D4 has BLMETCT 
--R            and D3 has DSTRCAT(D2)
--R   [2] PositiveInteger -> SparseUnivariatePolynomial(Integer)
--R             from GeneralPackageForAlgebraicFunctionField(D8,D9,D10,D11
--R            ,D12,D13,D1,D2,D3,D4,D5)
--R             if D8 has FINITE and D8 has FIELD and D9: LIST(SYMBOL) and
--R            D10 has POLYCAT(D8,D11,OVAR(D9)) and D11 has DIRPCAT(#(D9),
--R            NNI) and D12 has PRSPCAT(D8) and D13 has LOCPOWC(D8) and D1
--R             has PLACESC(D8,D13) and D2 has DIVCAT(D1) and D3 has 
--R            INFCLCT(D8,D9,D10,D11,D12,D13,D1,D2,D5) and D5 has BLMETCT 
--R            and D4 has DSTRCAT(D3)
--R   [3]  -> SparseUnivariatePolynomial(Integer)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if PseudoAlgebraicClosureOfFiniteField(D2) has FINITE and 
--R            D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R   [4] PositiveInteger -> SparseUnivariatePolynomial(Integer)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if PseudoAlgebraicClosureOfFiniteField(D3) has FINITE and 
--R            D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R   [5]  -> SparseUnivariatePolynomial(Integer)
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FINITE and D2 has FIELD and D3: LIST(SYMBOL) and
--R            D4 has BLMETCT
--R   [6] PositiveInteger -> SparseUnivariatePolynomial(Integer)
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FINITE and D3 has FIELD and D4: LIST(SYMBOL) and
--R            D5 has BLMETCT
--R
--RExamples of LPolynomial from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of LPolynomial from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of LPolynomial from PackageForAlgebraicFunctionField
--R
--E 1671

--S 1672 of 3320
)d op lprop
--R 
--R
--RThere is one exposed function called lprop :
--R   [1] D -> List(SubSpaceComponentProperty) from D
--R             if D has SPACEC(D2) and D2 has RING
--R
--RExamples of lprop from ThreeSpaceCategory
--R
--E 1672

--S 1673 of 3320
)d op lquo
--R 
--R
--RThere are 4 exposed functions called lquo :
--R   [1] (XRecursivePolynomial(D2,D3),D) -> XRecursivePolynomial(D2,D3)
--R             from D
--R             if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
--R            
--R   [2] (D,D) -> D from D if D has XFALG(D1,D2) and D1 has ORDSET and D2
--R             has RING
--R   [3] (D,OrderedFreeMonoid(D2)) -> D from D
--R             if D has XFALG(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R   [4] (D,D1) -> D from D if D has XFALG(D1,D2) and D1 has ORDSET and 
--R            D2 has RING
--R
--RThere are 3 unexposed functions called lquo :
--R   [1] (FreeMonoid(D1),FreeMonoid(D1)) -> Union(FreeMonoid(D1),"failed"
--R            )
--R             from FreeMonoid(D1) if D1 has SETCAT
--R   [2] (OrderedFreeMonoid(D1),D1) -> Union(OrderedFreeMonoid(D1),
--R            "failed")
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R   [3] (OrderedFreeMonoid(D1),OrderedFreeMonoid(D1)) -> Union(
--R            OrderedFreeMonoid(D1),"failed")
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R
--RExamples of lquo from FreeLieAlgebra
--R
--R
--RExamples of lquo from FreeMonoid
--R
--R
--RExamples of lquo from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rlquo(m1,x)
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rm2:=(x*y)$OFMONOID(Symbol) 
--Rlquo(m1,m2)
--R
--R
--RExamples of lquo from XFreeAlgebra
--R
--E 1673

--S 1674 of 3320
)d op lSpaceBasis
--R 
--R
--RThere is one unexposed function called lSpaceBasis :
--R   [1] FiniteDivisor(D2,D3,D4,D5) -> Vector(D5) from FiniteDivisor(D2,
--R            D3,D4,D5)
--R             if D2 has FIELD and D3 has UPOLYC(D2) and D4 has UPOLYC(
--R            FRAC(D3)) and D5 has FFCAT(D2,D3,D4)
--R
--RExamples of lSpaceBasis from FiniteDivisor
--R
--E 1674

--S 1675 of 3320
)d op LT
--R 
--R
--RThere is one exposed function called LT :
--R   [1] (Union(I: Expression(Integer),F: Expression(Float),CF: 
--R            Expression(Complex(Float)),switch: Switch),Union(I: Expression(
--R            Integer),F: Expression(Float),CF: Expression(Complex(Float)),
--R            switch: Switch)) -> Switch
--R             from Switch
--R
--RExamples of LT from Switch
--R
--E 1675

--S 1676 of 3320
)d op lyndon
--R 
--R
--RThere is one unexposed function called lyndon :
--R   [1] OrderedFreeMonoid(D2) -> LyndonWord(D2) from LyndonWord(D2) if 
--R            D2 has ORDSET
--R
--RExamples of lyndon from LyndonWord
--R
--E 1676

--S 1677 of 3320
)d op lyndon?
--R 
--R
--RThere is one unexposed function called lyndon? :
--R   [1] OrderedFreeMonoid(D3) -> Boolean from LyndonWord(D3) if D3 has 
--R            ORDSET
--R
--RExamples of lyndon? from LyndonWord
--R
--E 1677

--S 1678 of 3320
)d op LyndonBasis
--R 
--R
--RThere is one unexposed function called LyndonBasis :
--R   [1] List(D3) -> List(LiePolynomial(D3,D4)) from LieExponentials(D3,
--R            D4,D5)
--R             if D3 has ORDSET and D4 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D5: PI
--R
--RExamples of LyndonBasis from LieExponentials
--R
--E 1678

--S 1679 of 3320
)d op LyndonCoordinates
--R 
--R
--RThere is one unexposed function called LyndonCoordinates :
--R   [1] LieExponentials(D2,D3,D4) -> List(Record(k: LyndonWord(D2),c: D3
--R            ))
--R             from LieExponentials(D2,D3,D4)
--R             if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D4: PI
--R
--RExamples of LyndonCoordinates from LieExponentials
--R
--E 1679

--S 1680 of 3320
)d op lyndonIfCan
--R 
--R
--RThere is one unexposed function called lyndonIfCan :
--R   [1] OrderedFreeMonoid(D2) -> Union(LyndonWord(D2),"failed")
--R             from LyndonWord(D2) if D2 has ORDSET
--R
--RExamples of lyndonIfCan from LyndonWord
--R
--E 1680

--S 1681 of 3320
)d op machineFraction
--R 
--R
--RThere is one exposed function called machineFraction :
--R   [1] DoubleFloat -> Fraction(Integer) from DoubleFloat
--R
--RExamples of machineFraction from DoubleFloat
--R
--Ra:DFLOAT:=-1.0/3.0 
--RmachineFraction a
--R
--E 1681

--S 1682 of 3320
)d op magnitude
--R 
--R
--RThere is one exposed function called magnitude :
--R   [1] D -> D1 from D
--R             if D has VECTCAT(D1) and D1 has TYPE and D1 has RADCAT and
--R            D1 has RING
--R
--RExamples of magnitude from VectorCategory
--R
--E 1682

--S 1683 of 3320
)d op mainCharacterization
--R 
--R
--RThere is one exposed function called mainCharacterization :
--R   [1] RealClosure(D2) -> Union(RightOpenIntervalRootCharacterization(
--R            RealClosure(D2),SparseUnivariatePolynomial(RealClosure(D2))),
--R            "failed")
--R             from RealClosure(D2) if D2 has Join(OrderedRing,Field,
--R            RealConstant)
--R
--RExamples of mainCharacterization from RealClosure
--R
--E 1683

--S 1684 of 3320
)d op mainCoefficients
--R 
--R
--RThere is one exposed function called mainCoefficients :
--R   [1] D -> List(D) from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has RPOLCAT(D2,D3,D4)
--R
--RExamples of mainCoefficients from RecursivePolynomialCategory
--R
--E 1684

--S 1685 of 3320
)d op mainContent
--R 
--R
--RThere is one exposed function called mainContent :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has GCDDOM
--R
--RExamples of mainContent from RecursivePolynomialCategory
--R
--E 1685

--S 1686 of 3320
)d op mainDefiningPolynomial
--R 
--R
--RThere is one exposed function called mainDefiningPolynomial :
--R   [1] D -> Union(SparseUnivariatePolynomial(D),"failed") from D if D
--R             has RCFIELD
--R
--RExamples of mainDefiningPolynomial from RealClosedField
--R
--E 1686

--S 1687 of 3320
)d op mainForm
--R 
--R
--RThere is one exposed function called mainForm :
--R   [1] D -> Union(OutputForm,"failed") from D if D has RCFIELD
--R
--RExamples of mainForm from RealClosedField
--R
--E 1687

--S 1688 of 3320
)d op mainKernel
--R 
--R
--RThere is one exposed function called mainKernel :
--R   [1] D -> Union(Kernel(D),"failed") from D if D has ES
--R
--RExamples of mainKernel from ExpressionSpace
--R
--E 1688

--S 1689 of 3320
)d op mainMonomial
--R 
--R
--RThere is one exposed function called mainMonomial :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of mainMonomial from RecursivePolynomialCategory
--R
--E 1689

--S 1690 of 3320
)d op mainMonomials
--R 
--R
--RThere is one exposed function called mainMonomials :
--R   [1] D -> List(D) from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has RPOLCAT(D2,D3,D4)
--R
--RExamples of mainMonomials from RecursivePolynomialCategory
--R
--E 1690

--S 1691 of 3320
)d op mainPrimitivePart
--R 
--R
--RThere is one exposed function called mainPrimitivePart :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has GCDDOM
--R
--RExamples of mainPrimitivePart from RecursivePolynomialCategory
--R
--E 1691

--S 1692 of 3320
)d op mainSquareFreePart
--R 
--R
--RThere is one exposed function called mainSquareFreePart :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has GCDDOM
--R
--RExamples of mainSquareFreePart from RecursivePolynomialCategory
--R
--E 1692

--S 1693 of 3320
)d op mainValue
--R 
--R
--RThere is one exposed function called mainValue :
--R   [1] D -> Union(SparseUnivariatePolynomial(D),"failed") from D if D
--R             has RCFIELD
--R
--RExamples of mainValue from RealClosedField
--R
--E 1693

--S 1694 of 3320
)d op mainVariable
--R 
--R
--RThere are 2 exposed functions called mainVariable :
--R   [1] D -> Union(D1,"failed") from D
--R             if D has POLYCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R   [2] Fraction(Polynomial(D3)) -> Union(Symbol,"failed")
--R             from RationalFunction(D3) if D3 has INTDOM
--R
--RThere is one unexposed function called mainVariable :
--R   [1] D2 -> Union(D1,"failed")
--R             from PolynomialCategoryQuotientFunctions(D3,D1,D4,D5,D2)
--R             if D3 has OAMONS and D4 has RING and D5 has POLYCAT(D4,D3,
--R            D1) and D1 has ORDSET and D2 has Fieldwith
--R               coerce : D5 -> %
--R               numer : % -> D5
--R               denom : % -> D5
--R
--RExamples of mainVariable from PolynomialCategory
--R
--R
--RExamples of mainVariable from PolynomialCategoryQuotientFunctions
--R
--R
--RExamples of mainVariable from RationalFunction
--R
--E 1694

--S 1695 of 3320
)d op mainVariable?
--R 
--R
--RThere is one exposed function called mainVariable? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has PSETCAT(D3,D4,D2,D5) and D3 has RING and D4 has 
--R            OAMONS and D2 has ORDSET and D5 has RPOLCAT(D3,D4,D2)
--R
--RExamples of mainVariable? from PolynomialSetCategory
--R
--E 1695

--S 1696 of 3320
)d op mainVariableOf
--R 
--R
--RThere is one exposed function called mainVariableOf :
--R   [1] Cell(D2) -> Symbol from Cell(D2) if D2 has RCFIELD
--R
--RExamples of mainVariableOf from Cell
--R
--E 1696

--S 1697 of 3320
)d op mainVariables
--R 
--R
--RThere is one exposed function called mainVariables :
--R   [1] D -> List(D4) from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R
--RExamples of mainVariables from PolynomialSetCategory
--R
--E 1697

--S 1698 of 3320
)d op makeCell
--R 
--R
--RThere are 2 exposed functions called makeCell :
--R   [1] (SimpleCell(D2,SparseUnivariatePolynomial(D2)),Cell(D2)) -> Cell
--R            (D2)
--R             from Cell(D2) if D2 has RCFIELD
--R   [2] List(SimpleCell(D2,SparseUnivariatePolynomial(D2))) -> Cell(D2)
--R             from Cell(D2) if D2 has RCFIELD
--R
--RExamples of makeCell from Cell
--R
--E 1698

--S 1699 of 3320
)d op makeCos
--R 
--R
--RThere is one exposed function called makeCos :
--R   [1] (D1,D2) -> FourierSeries(D2,D1) from FourierSeries(D2,D1)
--R             if D2 has Join(CommutativeRing,Algebra(Fraction(Integer)))
--R            and D1 has Join(OrderedSet,AbelianGroup)
--R
--RExamples of makeCos from FourierSeries
--R
--E 1699

--S 1700 of 3320
)d op makeCrit
--R 
--R
--RThere is one unexposed function called makeCrit :
--R   [1] (Record(totdeg: NonNegativeInteger,pol: D3),D3,
--R            NonNegativeInteger) -> Record(lcmfij: D6,totdeg: 
--R            NonNegativeInteger,poli: D3,polj: D3)
--R             from GroebnerInternalPackage(D5,D6,D7,D3)
--R             if D3 has POLYCAT(D5,D6,D7) and D5 has GCDDOM and D6 has 
--R            OAMONS and D7 has ORDSET
--R
--RExamples of makeCrit from GroebnerInternalPackage
--R
--E 1700

--S 1701 of 3320
)d op makeEq
--R 
--R
--RThere is one unexposed function called makeEq :
--R   [1] (List(D5),List(Symbol)) -> List(Equation(Polynomial(D5)))
--R             from InnerNumericFloatSolvePackage(D4,D5,D6)
--R             if D5 has FIELD and D4 has GCDDOM and D6 has Join(Field,
--R            OrderedRing)
--R
--RExamples of makeEq from InnerNumericFloatSolvePackage
--R
--E 1701

--S 1702 of 3320
)d op makeFloatFunction
--R 
--R
--RThere are 2 exposed functions called makeFloatFunction :
--R   [1] (D2,Symbol) -> (DoubleFloat -> DoubleFloat)
--R             from MakeFloatCompiledFunction(D2) if D2 has KONVERT(
--R            INFORM)
--R   [2] (D2,Symbol,Symbol) -> ((DoubleFloat,DoubleFloat) -> DoubleFloat)
--R             from MakeFloatCompiledFunction(D2) if D2 has KONVERT(
--R            INFORM)
--R
--RExamples of makeFloatFunction from MakeFloatCompiledFunction
--R
--E 1702

--S 1703 of 3320
)d op makeFR
--R 
--R
--RThere is one exposed function called makeFR :
--R   [1] (D1,List(Record(flg: Union("nil","sqfr","irred","prime"),fctr: 
--R            D1,xpnt: Integer))) -> Factored(D1)
--R             from Factored(D1) if D1 has INTDOM
--R
--RThere is one unexposed function called makeFR :
--R   [1] Record(contp: Integer,factors: List(Record(irr: D3,pow: Integer)
--R            )) -> Factored(D3)
--R             from GaloisGroupFactorizer(D3) if D3 has UPOLYC(INT)
--R
--RExamples of makeFR from Factored
--R
--Rf:=nilFactor(x-y,3) 
--Rg:=factorList f 
--RmakeFR(z,g)
--R
--R
--RExamples of makeFR from GaloisGroupFactorizer
--R
--E 1703

--S 1704 of 3320
)d op makeGraphImage
--R 
--R
--RThere are 4 unexposed functions called makeGraphImage :
--R   [1] (List(List(Point(DoubleFloat))),List(Palette),List(Palette),List
--R            (PositiveInteger),List(DrawOption)) -> GraphImage
--R             from GraphImage
--R   [2] (List(List(Point(DoubleFloat))),List(Palette),List(Palette),List
--R            (PositiveInteger)) -> GraphImage
--R             from GraphImage
--R   [3] List(List(Point(DoubleFloat))) -> GraphImage from GraphImage
--R   [4] GraphImage -> GraphImage from GraphImage
--R
--RExamples of makeGraphImage from GraphImage
--R
--E 1704

--S 1705 of 3320
)d op makeMulti
--R 
--R
--RThere is one unexposed function called makeMulti :
--R   [1] List(Record(gen: D2,exp: D3)) -> ListMonoidOps(D2,D3,D4)
--R             from ListMonoidOps(D2,D3,D4)
--R             if D2 has SETCAT and D3 has ABELMON and D4: D3
--R
--RExamples of makeMulti from ListMonoidOps
--R
--E 1705

--S 1706 of 3320
)d op makeObject
--R 
--R
--RThere are 16 exposed functions called makeObject :
--R   [1] (ParametricSpaceCurve((DoubleFloat -> DoubleFloat)),Segment(
--R            Float),List(DrawOption)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [2] (ParametricSpaceCurve((DoubleFloat -> DoubleFloat)),Segment(
--R            Float)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [3] ((DoubleFloat -> Point(DoubleFloat)),Segment(Float),List(
--R            DrawOption)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [4] ((DoubleFloat -> Point(DoubleFloat)),Segment(Float)) -> 
--R            ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [5] (((DoubleFloat,DoubleFloat) -> DoubleFloat),Segment(Float),
--R            Segment(Float),List(DrawOption)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [6] (((DoubleFloat,DoubleFloat) -> DoubleFloat),Segment(Float),
--R            Segment(Float)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [7] (((DoubleFloat,DoubleFloat) -> Point(DoubleFloat)),Segment(Float
--R            ),Segment(Float),List(DrawOption)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [8] (((DoubleFloat,DoubleFloat) -> Point(DoubleFloat)),Segment(Float
--R            ),Segment(Float)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [9] (ParametricSurface(((DoubleFloat,DoubleFloat) -> DoubleFloat)),
--R            Segment(Float),Segment(Float),List(DrawOption)) -> ThreeSpace(
--R            DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [10] (ParametricSurface(((DoubleFloat,DoubleFloat) -> DoubleFloat)),
--R            Segment(Float),Segment(Float)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R   [11] (ParametricSpaceCurve(D5),SegmentBinding(Float),List(DrawOption
--R            )) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctions(D5)
--R             if D5 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [12] (ParametricSpaceCurve(D4),SegmentBinding(Float)) -> ThreeSpace(
--R            DoubleFloat)
--R             from TopLevelDrawFunctions(D4)
--R             if D4 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [13] (D2,SegmentBinding(Float),SegmentBinding(Float),List(DrawOption
--R            )) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctions(D2)
--R             if D2 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [14] (D2,SegmentBinding(Float),SegmentBinding(Float)) -> ThreeSpace(
--R            DoubleFloat)
--R             from TopLevelDrawFunctions(D2)
--R             if D2 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [15] (ParametricSurface(D5),SegmentBinding(Float),SegmentBinding(
--R            Float),List(DrawOption)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctions(D5)
--R             if D5 has Join(ConvertibleTo(InputForm),SetCategory)
--R   [16] (ParametricSurface(D4),SegmentBinding(Float),SegmentBinding(
--R            Float)) -> ThreeSpace(DoubleFloat)
--R             from TopLevelDrawFunctions(D4)
--R             if D4 has Join(ConvertibleTo(InputForm),SetCategory)
--R
--RExamples of makeObject from TopLevelDrawFunctionsForCompiledFunctions
--R
--R
--RExamples of makeObject from TopLevelDrawFunctions
--R
--E 1706

--S 1707 of 3320
)d op makeop
--R 
--R
--RThere is one exposed function called makeop :
--R   [1] (D1,FreeGroup(BasicOperator)) -> ModuleOperator(D1,D3)
--R             from ModuleOperator(D1,D3) if D1 has RING and D3 has 
--R            LMODULE(D1)
--R
--RThere is one unexposed function called makeop :
--R   [1] (D1,FreeGroup(BasicOperator)) -> Operator(D1) from Operator(D1)
--R             if D1 has RING
--R
--RExamples of makeop from ModuleOperator
--R
--R
--RExamples of makeop from Operator
--R
--E 1707

--S 1708 of 3320 done
)d op makeprod
--R 
--R
--RThere is one unexposed function called makeprod :
--R   [1] (D1,D2) -> Product(D1,D2) from Product(D1,D2)
--R             if D1 has SETCAT and D2 has SETCAT
--R
--RExamples of makeprod from Product
--R
--Rf:=(x:INT):INT +-> 3*x 
--Rg:=(x:INT):INT +-> x^3 
--Rh(x:INT):Product(INT,INT) == makeprod(f x, g x) 
--Rh(3)
--R
--E 1708

--S 1709 of 3320
)d op makeRecord
--R 
--R
--RThere is one exposed function called makeRecord :
--R   [1] (D2,D3) -> Record(part1: D2,part2: D3) from MakeRecord(D2,D3)
--R             if D2 has TYPE and D3 has TYPE
--R
--RExamples of makeRecord from MakeRecord
--R
--E 1709

--S 1710 of 3320
)d op makeResult
--R 
--R
--RThere is one unexposed function called makeResult :
--R   [1] (PatternMatchResult(D3,D4),PatternMatchResult(D3,D5)) -> 
--R            PatternMatchListResult(D3,D4,D5)
--R             from PatternMatchListResult(D3,D4,D5)
--R             if D3 has SETCAT and D4 has SETCAT and D5 has LSAGG(D4)
--R         
--R
--RExamples of makeResult from PatternMatchListResult
--R
--E 1710

--S 1711 of 3320
)d op makeSeries
--R 
--R
--RThere is one unexposed function called makeSeries :
--R   [1] (Reference(OrderedCompletion(Integer)),Stream(Record(k: Integer,
--R            c: D3))) -> InnerSparseUnivariatePowerSeries(D3)
--R             from InnerSparseUnivariatePowerSeries(D3) if D3 has RING
--R         
--R
--RExamples of makeSeries from InnerSparseUnivariatePowerSeries
--R
--E 1711

--S 1712 of 3320
)d op makeSin
--R 
--R
--RThere is one exposed function called makeSin :
--R   [1] (D1,D2) -> FourierSeries(D2,D1) from FourierSeries(D2,D1)
--R             if D2 has Join(CommutativeRing,Algebra(Fraction(Integer)))
--R            and D1 has Join(OrderedSet,AbelianGroup)
--R
--RExamples of makeSin from FourierSeries
--R
--E 1712

--S 1713 of 3320 done
)d op makeSketch
--R 
--R
--RThere is one unexposed function called makeSketch :
--R   [1] (Polynomial(Integer),Symbol,Symbol,Segment(Fraction(Integer)),
--R            Segment(Fraction(Integer))) -> PlaneAlgebraicCurvePlot
--R             from PlaneAlgebraicCurvePlot
--R
--RExamples of makeSketch from PlaneAlgebraicCurvePlot
--R
--RmakeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT
--R
--E 1713

--S 1714 of 3320
)d op makeSUP
--R 
--R
--RThere is one exposed function called makeSUP :
--R   [1] D -> SparseUnivariatePolynomial(D2) from D if D has UPOLYC(D2) 
--R            and D2 has RING
--R
--RExamples of makeSUP from UnivariatePolynomialCategory
--R
--E 1714

--S 1715 of 3320
)d op makeTerm
--R 
--R
--RThere is one unexposed function called makeTerm :
--R   [1] (D1,D2) -> ListMonoidOps(D1,D2,D3) from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R
--RExamples of makeTerm from ListMonoidOps
--R
--E 1715

--S 1716 of 3320
)d op makeUnit
--R 
--R
--RThere is one unexposed function called makeUnit :
--R   [1]  -> ListMonoidOps(D1,D2,D3) from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R
--RExamples of makeUnit from ListMonoidOps
--R
--E 1716

--S 1717 of 3320
)d op makeVariable
--R 
--R
--RThere are 3 exposed functions called makeVariable :
--R   [1] D -> (NonNegativeInteger -> D) from D
--R             if D2 has DIFRING and D2 has RING and D3 has ORDSET and D4
--R             has DVARCAT(D3) and D5 has OAMONS and D has DPOLCAT(D2,D3,
--R            D4,D5)
--R   [2] D2 -> (NonNegativeInteger -> D) from D
--R             if D3 has RING and D2 has ORDSET and D4 has DVARCAT(D2) 
--R            and D5 has OAMONS and D has DPOLCAT(D3,D2,D4,D5)
--R   [3] (D1,NonNegativeInteger) -> D from D if D has DVARCAT(D1) and D1
--R             has ORDSET
--R
--RExamples of makeVariable from DifferentialPolynomialCategory
--R
--R
--RExamples of makeVariable from DifferentialVariableCategory
--R
--E 1717

--S 1718 of 3320
)d op makeViewport2D
--R 
--R
--RThere are 2 unexposed functions called makeViewport2D :
--R   [1] (GraphImage,List(DrawOption)) -> TwoDimensionalViewport
--R             from TwoDimensionalViewport
--R   [2] TwoDimensionalViewport -> TwoDimensionalViewport
--R             from TwoDimensionalViewport
--R
--RExamples of makeViewport2D from TwoDimensionalViewport
--R
--E 1718

--S 1719 of 3320
)d op makeViewport3D
--R 
--R
--RThere are 3 exposed functions called makeViewport3D :
--R   [1] (ThreeSpace(DoubleFloat),List(DrawOption)) -> 
--R            ThreeDimensionalViewport
--R             from ThreeDimensionalViewport
--R   [2] (ThreeSpace(DoubleFloat),String) -> ThreeDimensionalViewport
--R             from ThreeDimensionalViewport
--R   [3] ThreeDimensionalViewport -> ThreeDimensionalViewport
--R             from ThreeDimensionalViewport
--R
--RExamples of makeViewport3D from ThreeDimensionalViewport
--R
--E 1719

--S 1720 of 3320
)d op makeYoungTableau
--R 
--R
--RThere is one exposed function called makeYoungTableau :
--R   [1] (List(Integer),List(Integer)) -> Matrix(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of makeYoungTableau from SymmetricGroupCombinatoricFunctions
--R
--E 1720

--S 1721 of 3320
)d op makingStats?
--R 
--R
--RThere is one unexposed function called makingStats? :
--R   [1]  -> Boolean from TabulatedComputationPackage(D2,D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of makingStats? from TabulatedComputationPackage
--R
--E 1721

--S 1722 of 3320
)d op mantissa
--R 
--R
--RThere are 2 exposed functions called mantissa :
--R   [1] D -> Integer from D if D has FPS
--R   [2] MachineFloat -> Integer from MachineFloat
--R
--RExamples of mantissa from FloatingPointSystem
--R
--R
--RExamples of mantissa from MachineFloat
--R
--E 1722

--S 1723 of 3320
)d op map
--R 
--R
--RThere are 86 exposed functions called map :
--R   [1] ((D2 -> D2),D) -> D from D
--R             if D has AMR(D2,D3) and D2 has RING and D3 has OAMON
--R   [2] (((D2,D2) -> D2),D,D,D2) -> D from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [3] (((D2,D2) -> D2),D,D) -> D from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [4] ((D2 -> D2),D) -> D from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [5] ((D4 -> D5),OneDimensionalArray(D4)) -> OneDimensionalArray(D5)
--R             from OneDimensionalArrayFunctions2(D4,D5) if D4 has TYPE 
--R            and D5 has TYPE
--R   [6] ((D2 -> D2),ArrayStack(D2)) -> ArrayStack(D2) from ArrayStack(D2
--R            )
--R             if D2 has SETCAT
--R   [7] ((D6 -> D7),CartesianTensor(D4,D5,D6)) -> CartesianTensor(D4,D5,
--R            D7)
--R             from CartesianTensorFunctions2(D4,D5,D6,D7)
--R             if D4: INT and D5: NNI and D6 has COMRING and D7 has 
--R            COMRING
--R   [8] ((D4 -> D5),Complex(D4)) -> Complex(D5) from ComplexFunctions2(
--R            D4,D5)
--R             if D4 has COMRING and D5 has COMRING
--R   [9] ((D2 -> D2),Dequeue(D2)) -> Dequeue(D2) from Dequeue(D2) if D2
--R             has SETCAT
--R   [10] ((D5 -> D6),DirectProduct(D4,D5)) -> DirectProduct(D4,D6)
--R             from DirectProductFunctions2(D4,D5,D6)
--R             if D4: NNI and D5 has TYPE and D6 has TYPE
--R   [11] ((D4 -> D5),Equation(D4)) -> Equation(D5) from 
--R            EquationFunctions2(D4,D5)
--R             if D4 has TYPE and D5 has TYPE
--R   [12] ((D2 -> D2),Equation(D2)) -> Equation(D2) from Equation(D2) if 
--R            D2 has TYPE
--R   [13] ((D4 -> D1),Kernel(D4)) -> D1 from ExpressionSpaceFunctions2(D4
--R            ,D1)
--R             if D4 has ES and D1 has ES
--R   [14] ((D -> D),Kernel(D)) -> D from D if D has ES
--R   [15] ((D4 -> D5),Matrix(D4)) -> Matrix(D5)
--R             from ExpertSystemToolsPackage2(D4,D5) if D4 has RING and 
--R            D5 has RING
--R   [16] ((D4 -> D5),Expression(D4)) -> Expression(D5)
--R             from ExpressionFunctions2(D4,D5) if D4 has ORDSET and D5
--R             has ORDSET
--R   [17] ((D5 -> D6),D3) -> D1
--R             from FiniteAbelianMonoidRingFunctions2(D4,D5,D3,D6,D1)
--R             if D5 has RING and D6 has RING and D4 has OAMON and D1
--R             has FAMR(D6,D4) and D3 has FAMR(D5,D4)
--R   [18] ((D7 -> D11),FiniteDivisor(D7,D8,D9,D10)) -> FiniteDivisor(D11,
--R            D1,D2,D3)
--R             from FiniteDivisorFunctions2(D7,D8,D9,D10,D11,D1,D2,D3)
--R             if D7 has FIELD and D8 has UPOLYC(D7) and D9 has UPOLYC(
--R            FRAC(D8)) and D10 has FFCAT(D7,D8,D9) and D11 has FIELD and
--R            D1 has UPOLYC(D11) and D2 has UPOLYC(FRAC(D1)) and D3 has 
--R            FFCAT(D11,D1,D2)
--R   [19] ((D2 -> D2),D) -> D from D if D has FEVALAB(D2) and D2 has 
--R            SETCAT
--R   [20] ((D5 -> D8),D4) -> D2
--R             from FunctionFieldCategoryFunctions2(D5,D6,D7,D4,D8,D9,D1,
--R            D2)
--R             if D5 has UFD and D8 has UFD and D6 has UPOLYC(D5) and D7
--R             has UPOLYC(FRAC(D6)) and D9 has UPOLYC(D8) and D2 has 
--R            FFCAT(D8,D9,D1) and D4 has FFCAT(D5,D6,D7) and D1 has 
--R            UPOLYC(FRAC(D9))
--R   [21] ((D4 -> D5),D3) -> D1 from FiniteLinearAggregateFunctions2(D4,
--R            D3,D5,D1)
--R             if D4 has TYPE and D5 has TYPE and D1 has FLAGG(D5) and D3
--R             has FLAGG(D4)
--R   [22] ((D2 -> D2),D) -> D from D
--R             if D has FMCAT(D2,D3) and D2 has RING and D3 has SETCAT
--R         
--R   [23] ((D4 -> D5),Factored(D4)) -> Factored(D5) from 
--R            FactoredFunctions2(D4,D5)
--R             if D4 has INTDOM and D5 has INTDOM
--R   [24] ((D4 -> D5),Fraction(D4)) -> Fraction(D5) from 
--R            FractionFunctions2(D4,D5)
--R             if D4 has INTDOM and D5 has INTDOM
--R   [25] ((D7 -> D11),FractionalIdeal(D7,D8,D9,D10)) -> FractionalIdeal(
--R            D11,D1,D2,D3)
--R             from FractionalIdealFunctions2(D7,D8,D9,D10,D11,D1,D2,D3)
--R             if D7 has EUCDOM and D8 has QFCAT(D7) and D9 has UPOLYC(D8
--R            ) and D10 has Join(FramedAlgebra(D8,D9),RetractableTo(D8)) 
--R            and D11 has EUCDOM and D1 has QFCAT(D11) and D2 has UPOLYC(
--R            D1) and D3 has Join(FramedAlgebra(D1,D2),RetractableTo(D1))
--R            
--R   [26] ((D4 -> D5),D3) -> D1
--R             from FramedNonAssociativeAlgebraFunctions2(D3,D4,D1,D5)
--R             if D4 has COMRING and D5 has COMRING and D1 has FRNAALG(D5
--R            ) and D3 has FRNAALG(D4)
--R   [27] ((D2 -> D2),Factored(D2)) -> Factored(D2) from Factored(D2) if 
--R            D2 has INTDOM
--R   [28] ((D4 -> D5),D3) -> D1 from FunctionSpaceFunctions2(D4,D3,D5,D1)
--R             if D4 has Join(Ring,OrderedSet) and D5 has Join(Ring,
--R            OrderedSet) and D1 has FS(D5) and D3 has FS(D4)
--R   [29] ((D4 -> D5),D3) -> D1 from FiniteSetAggregateFunctions2(D4,D3,
--R            D5,D1)
--R             if D4 has SETCAT and D5 has SETCAT and D1 has FSAGG(D5) 
--R            and D3 has FSAGG(D4)
--R   [30] ((D2 -> D2),Heap(D2)) -> Heap(D2) from Heap(D2) if D2 has 
--R            ORDSET
--R   [31] ((D2 -> D2),D) -> D from D if D has HOAGG(D2) and D2 has TYPE
--R         
--R   [32] ((D2 -> D2),D) -> D from D
--R             if D has IDPC(D2,D3) and D2 has SETCAT and D3 has ORDSET
--R         
--R   [33] ((D4 -> D5),IntegrationResult(D4)) -> IntegrationResult(D5)
--R             from IntegrationResultFunctions2(D4,D5) if D4 has FIELD 
--R            and D5 has FIELD
--R   [34] ((D4 -> D5),Union(Record(ratpart: D4,coeff: D4),"failed")) -> 
--R            Union(Record(ratpart: D5,coeff: D5),"failed")
--R             from IntegrationResultFunctions2(D4,D5) if D4 has FIELD 
--R            and D5 has FIELD
--R   [35] ((D4 -> D1),Union(D4,"failed")) -> Union(D1,"failed")
--R             from IntegrationResultFunctions2(D4,D1) if D4 has FIELD 
--R            and D1 has FIELD
--R   [36] ((D4 -> D5),Union(Record(mainpart: D4,limitedlogs: List(Record(
--R            coeff: D4,logand: D4))),"failed")) -> Union(Record(mainpart: D5,
--R            limitedlogs: List(Record(coeff: D5,logand: D5))),"failed")
--R             from IntegrationResultFunctions2(D4,D5) if D4 has FIELD 
--R            and D5 has FIELD
--R   [37] ((D4 -> D5),InfiniteTuple(D4)) -> InfiniteTuple(D5)
--R             from InfiniteTupleFunctions2(D4,D5) if D4 has TYPE and D5
--R             has TYPE
--R   [38] (((D5,D6) -> D7),InfiniteTuple(D5),InfiniteTuple(D6)) -> 
--R            InfiniteTuple(D7)
--R             from InfiniteTupleFunctions3(D5,D6,D7)
--R             if D5 has TYPE and D6 has TYPE and D7 has TYPE
--R   [39] (((D5,D6) -> D7),Stream(D5),InfiniteTuple(D6)) -> Stream(D7)
--R             from InfiniteTupleFunctions3(D5,D6,D7)
--R             if D5 has TYPE and D6 has TYPE and D7 has TYPE
--R   [40] (((D5,D6) -> D7),InfiniteTuple(D5),Stream(D6)) -> Stream(D7)
--R             from InfiniteTupleFunctions3(D5,D6,D7)
--R             if D5 has TYPE and D6 has TYPE and D7 has TYPE
--R   [41] ((D2 -> D2),InfiniteTuple(D2)) -> InfiniteTuple(D2)
--R             from InfiniteTuple(D2) if D2 has TYPE
--R   [42] ((D4 -> D5),List(D4)) -> List(D5) from ListFunctions2(D4,D5)
--R             if D4 has TYPE and D5 has TYPE
--R   [43] (((D5,D6) -> D7),List(D5),List(D6)) -> List(D7)
--R             from ListFunctions3(D5,D6,D7)
--R             if D5 has TYPE and D6 has TYPE and D7 has TYPE
--R   [44] (((D2,D2) -> D2),D,D) -> D from D if D has LNAGG(D2) and D2
--R             has TYPE
--R   [45] ((D5 -> D8),D4) -> D2
--R             from MatrixCategoryFunctions2(D5,D6,D7,D4,D8,D9,D1,D2)
--R             if D5 has RING and D8 has RING and D6 has FLAGG(D5) and D7
--R             has FLAGG(D5) and D2 has MATCAT(D8,D9,D1) and D4 has 
--R            MATCAT(D5,D6,D7) and D9 has FLAGG(D8) and D1 has FLAGG(D8)
--R            
--R   [46] ((D5 -> Union(D8,"failed")),D4) -> Union(D2,"failed")
--R             from MatrixCategoryFunctions2(D5,D6,D7,D4,D8,D9,D1,D2)
--R             if D5 has RING and D8 has RING and D6 has FLAGG(D5) and D7
--R             has FLAGG(D5) and D2 has MATCAT(D8,D9,D1) and D4 has 
--R            MATCAT(D5,D6,D7) and D9 has FLAGG(D8) and D1 has FLAGG(D8)
--R            
--R   [47] ((D7 -> D8),D3) -> D1 from MPolyCatFunctions2(D4,D5,D6,D7,D8,D3
--R            ,D1)
--R             if D7 has RING and D8 has RING and D4 has ORDSET and D5
--R             has OAMONS and D1 has POLYCAT(D8,D6,D4) and D6 has OAMONS 
--R            and D3 has POLYCAT(D7,D5,D4)
--R   [48] ((D4 -> D5),MonoidRing(D4,D6)) -> MonoidRing(D5,D6)
--R             from MonoidRingFunctions2(D4,D5,D6)
--R             if D4 has RING and D5 has RING and D6 has MONOID
--R   [49] ((D4 -> D5),D3) -> D1 from OctonionCategoryFunctions2(D3,D4,D1,
--R            D5)
--R             if D4 has COMRING and D5 has COMRING and D1 has OC(D5) and
--R            D3 has OC(D4)
--R   [50] ((D4 -> D5),OnePointCompletion(D4)) -> OnePointCompletion(D5)
--R             from OnePointCompletionFunctions2(D4,D5)
--R             if D4 has SETCAT and D5 has SETCAT
--R   [51] ((D4 -> D5),OnePointCompletion(D4),OnePointCompletion(D5)) -> 
--R            OnePointCompletion(D5)
--R             from OnePointCompletionFunctions2(D4,D5)
--R             if D4 has SETCAT and D5 has SETCAT
--R   [52] ((D4 -> D5),OrderedCompletion(D4)) -> OrderedCompletion(D5)
--R             from OrderedCompletionFunctions2(D4,D5)
--R             if D4 has SETCAT and D5 has SETCAT
--R   [53] ((D4 -> D5),OrderedCompletion(D4),OrderedCompletion(D5),
--R            OrderedCompletion(D5)) -> OrderedCompletion(D5)
--R             from OrderedCompletionFunctions2(D4,D5)
--R             if D4 has SETCAT and D5 has SETCAT
--R   [54] ((D4 -> D5),ParametricPlaneCurve(D4)) -> ParametricPlaneCurve(
--R            D5)
--R             from ParametricPlaneCurveFunctions2(D4,D5)
--R             if D4 has TYPE and D5 has TYPE
--R   [55] ((D4 -> D5),ParametricSpaceCurve(D4)) -> ParametricSpaceCurve(
--R            D5)
--R             from ParametricSpaceCurveFunctions2(D4,D5)
--R             if D4 has TYPE and D5 has TYPE
--R   [56] ((D4 -> D5),ParametricSurface(D4)) -> ParametricSurface(D5)
--R             from ParametricSurfaceFunctions2(D4,D5) if D4 has TYPE and
--R            D5 has TYPE
--R   [57] ((D5 -> D6),PatternMatchResult(D4,D5)) -> PatternMatchResult(D4
--R            ,D6)
--R             from PatternMatchResultFunctions2(D4,D5,D6)
--R             if D4 has SETCAT and D5 has SETCAT and D6 has SETCAT
--R   [58] ((D4 -> D5),Pattern(D4)) -> Pattern(D5) from PatternFunctions2(
--R            D4,D5)
--R             if D4 has SETCAT and D5 has SETCAT
--R   [59] ((D4 -> D5),Polynomial(D4)) -> Polynomial(D5)
--R             from PolynomialFunctions2(D4,D5) if D4 has RING and D5
--R             has RING
--R   [60] ((D4 -> D5),PrimitiveArray(D4)) -> PrimitiveArray(D5)
--R             from PrimitiveArrayFunctions2(D4,D5) if D4 has TYPE and D5
--R             has TYPE
--R   [61] ((D4 -> D5),Point(D4)) -> Point(D5) from PointFunctions2(D4,D5)
--R             if D4 has RING and D5 has RING
--R   [62] ((D4 -> D5),D3) -> D1 from QuotientFieldCategoryFunctions2(D4,
--R            D5,D3,D1)
--R             if D4 has INTDOM and D5 has INTDOM and D1 has QFCAT(D5) 
--R            and D3 has QFCAT(D4)
--R   [63] ((D4 -> D5),D3) -> D1 from QuaternionCategoryFunctions2(D3,D4,
--R            D1,D5)
--R             if D4 has COMRING and D5 has COMRING and D1 has QUATCAT(D5
--R            ) and D3 has QUATCAT(D4)
--R   [64] ((D2 -> D2),Queue(D2)) -> Queue(D2) from Queue(D2) if D2 has 
--R            SETCAT
--R   [65] (((D4,D4) -> D4),D,D) -> D from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R   [66] ((D4 -> D4),D) -> D from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R   [67] ((D9 -> D1),D6) -> D4
--R             from RectangularMatrixCategoryFunctions2(D7,D8,D9,D10,D11,
--R            D6,D1,D2,D3,D4)
--R             if D9 has RING and D1 has RING and D7: NNI and D8: NNI and
--R            D10 has DIRPCAT(D8,D9) and D11 has DIRPCAT(D7,D9) and D4
--R             has RMATCAT(D7,D8,D1,D2,D3) and D6 has RMATCAT(D7,D8,D9,
--R            D10,D11) and D2 has DIRPCAT(D8,D1) and D3 has DIRPCAT(D7,D1
--R            )
--R   [68] ((D4 -> D5),Segment(D4)) -> Segment(D5) from SegmentFunctions2(
--R            D4,D5)
--R             if D4 has TYPE and D5 has TYPE
--R   [69] ((D4 -> D5),Segment(D4)) -> List(D5) from SegmentFunctions2(D4,
--R            D5)
--R             if D4 has ORDRING and D4 has TYPE and D5 has TYPE
--R   [70] ((D4 -> D5),SegmentBinding(D4)) -> SegmentBinding(D5)
--R             from SegmentBindingFunctions2(D4,D5) if D4 has TYPE and D5
--R             has TYPE
--R   [71] ((D3 -> D3),D) -> D1 from D
--R             if D has SEGXCAT(D3,D1) and D3 has ORDRING and D1 has 
--R            STAGG(D3)
--R   [72] ((D2 -> D2),Stack(D2)) -> Stack(D2) from Stack(D2) if D2 has 
--R            SETCAT
--R   [73] ((D4 -> D5),Stream(D4)) -> Stream(D5) from StreamFunctions2(D4,
--R            D5)
--R             if D4 has TYPE and D5 has TYPE
--R   [74] (((D5,D6) -> D7),Stream(D5),Stream(D6)) -> Stream(D7)
--R             from StreamFunctions3(D5,D6,D7)
--R             if D5 has TYPE and D6 has TYPE and D7 has TYPE
--R   [75] ((D4 -> D5),SparseUnivariatePolynomial(D4)) -> 
--R            SparseUnivariatePolynomial(D5)
--R             from SparseUnivariatePolynomialFunctions2(D4,D5)
--R             if D4 has RING and D5 has RING
--R   [76] (((D3,D3) -> D3),D,D) -> D from D
--R             if D has TBAGG(D2,D3) and D2 has SETCAT and D3 has SETCAT
--R            
--R   [77] ((D5 -> D6),UnivariateLaurentSeries(D5,D7,D9)) -> 
--R            UnivariateLaurentSeries(D6,D8,D1)
--R             from UnivariateLaurentSeriesFunctions2(D5,D6,D7,D8,D9,D1)
--R             if D5 has RING and D6 has RING and D7: SYMBOL and D9: D5 
--R            and D1: D6 and D8: SYMBOL
--R   [78] ((D4 -> D5),UniversalSegment(D4)) -> UniversalSegment(D5)
--R             from UniversalSegmentFunctions2(D4,D5) if D4 has TYPE and 
--R            D5 has TYPE
--R   [79] ((D4 -> D5),UniversalSegment(D4)) -> Stream(D5)
--R             from UniversalSegmentFunctions2(D4,D5)
--R             if D4 has ORDRING and D4 has TYPE and D5 has TYPE
--R   [80] ((D5 -> D7),UnivariatePolynomial(D4,D5)) -> 
--R            UnivariatePolynomial(D6,D7)
--R             from UnivariatePolynomialFunctions2(D4,D5,D6,D7)
--R             if D4: SYMBOL and D5 has RING and D7 has RING and D6: 
--R            SYMBOL
--R   [81] ((D4 -> D5),D3) -> D1
--R             from UnivariatePolynomialCategoryFunctions2(D4,D3,D5,D1)
--R             if D4 has RING and D5 has RING and D1 has UPOLYC(D5) and 
--R            D3 has UPOLYC(D4)
--R   [82] ((D5 -> D6),UnivariatePuiseuxSeries(D5,D7,D9)) -> 
--R            UnivariatePuiseuxSeries(D6,D8,D1)
--R             from UnivariatePuiseuxSeriesFunctions2(D5,D6,D7,D8,D9,D1)
--R             if D5 has RING and D6 has RING and D7: SYMBOL and D9: D5 
--R            and D1: D6 and D8: SYMBOL
--R   [83] ((D4 -> D5),D3) -> D1 from UnivariateTaylorSeriesFunctions2(D4,
--R            D5,D3,D1)
--R             if D4 has RING and D5 has RING and D1 has UTSCAT(D5) and 
--R            D3 has UTSCAT(D4)
--R   [84] ((D4 -> D5),Vector(D4)) -> Vector(D5) from VectorFunctions2(D4,
--R            D5)
--R             if D4 has TYPE and D5 has TYPE
--R   [85] ((D4 -> Union(D5,"failed")),Vector(D4)) -> Union(Vector(D5),
--R            "failed")
--R             from VectorFunctions2(D4,D5) if D4 has TYPE and D5 has 
--R            TYPE
--R   [86] ((D3 -> D3),D) -> D from D
--R             if D has XFALG(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R
--RThere are 10 unexposed functions called map :
--R   [1] ((D2 -> D2),AntiSymm(D2,D3)) -> AntiSymm(D2,D3) from AntiSymm(D2
--R            ,D3)
--R             if D2 has RING and D3: LIST(SYMBOL)
--R   [2] ((Expression(D2) -> Expression(D2)),DeRhamComplex(D2,D3)) -> 
--R            DeRhamComplex(D2,D3)
--R             from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R   [3] ((D5 -> D1),String,Kernel(D5)) -> D1
--R             from ExpressionSpaceFunctions1(D5,D1) if D5 has ES and D1
--R             has TYPE
--R   [4] ((D4 -> D6),D3) -> D1 from MultipleMap(D4,D5,D3,D6,D7,D1)
--R             if D4 has INTDOM and D6 has INTDOM and D5 has UPOLYC(D4) 
--R            and D1 has UPOLYC(FRAC(D7)) and D3 has UPOLYC(FRAC(D5)) and
--R            D7 has UPOLYC(D6)
--R   [5] ((D4 -> D5),D3) -> D1 from MPolyCatFunctions3(D4,D5,D6,D7,D8,D3,
--R            D1)
--R             if D4 has ORDSET and D5 has ORDSET and D6 has OAMONS and 
--R            D8 has RING and D1 has POLYCAT(D8,D7,D5) and D7 has OAMONS 
--R            and D3 has POLYCAT(D8,D6,D4)
--R   [6] ((D2 -> D2),MonoidRing(D2,D3)) -> MonoidRing(D2,D3)
--R             from MonoidRing(D2,D3) if D2 has RING and D3 has MONOID
--R         
--R   [7] ((D4 -> D5),NewSparseUnivariatePolynomial(D4)) -> 
--R            NewSparseUnivariatePolynomial(D5)
--R             from NewSparseUnivariatePolynomialFunctions2(D4,D5)
--R             if D4 has RING and D5 has RING
--R   [8] ((D7 -> D2),(D8 -> D2),D5) -> D2
--R             from PolynomialCategoryLifting(D6,D7,D8,D5,D2)
--R             if D7 has ORDSET and D8 has RING and D6 has OAMONS and D2
--R             has SetCategorywith
--R               ?+? : (%,%) -> %
--R               ?*? : (%,%) -> %
--R               D : (%,NonNegativeInteger) -> %and D5 has POLYCAT(D8
--R            ,D6,D7)
--R   [9] ((Polynomial(D3) -> D1),D1) -> D1 from PushVariables(D3,D4,D5,D1
--R            )
--R             if D3 has RING and D1 has POLYCAT(POLY(D3),D4,D5) and D4
--R             has OAMONS and D5 has OrderedSetwith
--R               convert : % -> Symbol
--R               variable : Symbol -> Union(%,"failed")
--R   [10] ((D2 -> D2),XPolynomialRing(D2,D3)) -> XPolynomialRing(D2,D3)
--R             from XPolynomialRing(D2,D3) if D2 has RING and D3 has 
--R            ORDMON
--R
--RExamples of map from AbelianMonoidRing
--R
--R
--RExamples of map from AntiSymm
--R
--R
--RExamples of map from TwoDimensionalArrayCategory
--R
--Radder(a:Integer,b:Integer):Integer == a+b 
--Rarr1 : ARRAY2 INT := new(5,4,10) 
--Rarr2 : ARRAY2 INT := new(3,3,10) 
--Rmap(adder,arr1,arr2,17)
--R
--Radder(a:Integer,b:Integer):Integer == a+b 
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rmap(adder,arr,arr)
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rmap(-,arr) 
--Rmap((x +-> x + x),arr)
--R
--R
--RExamples of map from OneDimensionalArrayFunctions2
--R
--RT1:=OneDimensionalArrayFunctions2(Integer,Integer) 
--Rmap(x+->x+2,[i for i in 1..10])$T1
--R
--R
--RExamples of map from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rmap(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map from CartesianTensorFunctions2
--R
--R
--RExamples of map from ComplexFunctions2
--R
--R
--RExamples of map from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rmap(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:der:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--RR := Expression(Integer) 
--RT(x:R):R == x^2 
--Rmap(T,sigma)
--R
--R
--RExamples of map from DirectProductFunctions2
--R
--R
--RExamples of map from EquationFunctions2
--R
--R
--RExamples of map from Equation
--R
--R
--RExamples of map from ExpressionSpaceFunctions1
--R
--R
--RExamples of map from ExpressionSpaceFunctions2
--R
--R
--RExamples of map from ExpressionSpace
--R
--R
--RExamples of map from ExpertSystemToolsPackage2
--R
--R
--RExamples of map from ExpressionFunctions2
--R
--R
--RExamples of map from FiniteAbelianMonoidRingFunctions2
--R
--R
--RExamples of map from FiniteDivisorFunctions2
--R
--R
--RExamples of map from FullyEvalableOver
--R
--R
--RExamples of map from FunctionFieldCategoryFunctions2
--R
--R
--RExamples of map from FiniteLinearAggregateFunctions2
--R
--R
--RExamples of map from FreeModuleCat
--R
--R
--RExamples of map from FactoredFunctions2
--R
--R
--RExamples of map from FractionFunctions2
--R
--R
--RExamples of map from FractionalIdealFunctions2
--R
--R
--RExamples of map from FramedNonAssociativeAlgebraFunctions2
--R
--R
--RExamples of map from Factored
--R
--Rm(a:Factored Polynomial Integer):Factored Polynomial Integer == a^2 
--Rf:=x*y^3-3*x^2*y^2+3*x^3*y-x^4 
--Rmap(m,f) 
--Rg:=makeFR(z,factorList f) 
--Rmap(m,g)
--R
--R
--RExamples of map from FunctionSpaceFunctions2
--R
--R
--RExamples of map from FiniteSetAggregateFunctions2
--R
--R
--RExamples of map from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rmap(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map from HomogeneousAggregate
--R
--R
--RExamples of map from IndexedDirectProductCategory
--R
--R
--RExamples of map from IntegrationResultFunctions2
--R
--R
--RExamples of map from InfiniteTupleFunctions2
--R
--R
--RExamples of map from InfiniteTupleFunctions3
--R
--R
--RExamples of map from InfiniteTuple
--R
--R
--RExamples of map from ListFunctions2
--R
--R
--RExamples of map from ListFunctions3
--R
--R
--RExamples of map from LinearAggregate
--R
--R
--RExamples of map from MatrixCategoryFunctions2
--R
--R
--RExamples of map from MultipleMap
--R
--R
--RExamples of map from MPolyCatFunctions2
--R
--R
--RExamples of map from MPolyCatFunctions3
--R
--R
--RExamples of map from MonoidRingFunctions2
--R
--R
--RExamples of map from MonoidRing
--R
--R
--RExamples of map from NewSparseUnivariatePolynomialFunctions2
--R
--R
--RExamples of map from OctonionCategoryFunctions2
--R
--R
--RExamples of map from OnePointCompletionFunctions2
--R
--R
--RExamples of map from OrderedCompletionFunctions2
--R
--R
--RExamples of map from ParametricPlaneCurveFunctions2
--R
--R
--RExamples of map from ParametricSpaceCurveFunctions2
--R
--R
--RExamples of map from ParametricSurfaceFunctions2
--R
--R
--RExamples of map from PatternMatchResultFunctions2
--R
--R
--RExamples of map from PatternFunctions2
--R
--R
--RExamples of map from PolynomialFunctions2
--R
--R
--RExamples of map from PolynomialCategoryLifting
--R
--R
--RExamples of map from PrimitiveArrayFunctions2
--R
--RT1:=PrimitiveArrayFunctions2(Integer,Integer) 
--Rmap(x+->x+2,[i for i in 1..10])$T1
--R
--R
--RExamples of map from PointFunctions2
--R
--R
--RExamples of map from PushVariables
--R
--R
--RExamples of map from QuotientFieldCategoryFunctions2
--R
--R
--RExamples of map from QuaternionCategoryFunctions2
--R
--Rf(a:FRAC(INT)):COMPLEX(FRAC(INT)) == a::COMPLEX(FRAC(INT)) 
--Rq:=quatern(2/11,-8,3/4,1) 
--Rmap(f,q)
--R
--R
--RExamples of map from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rmap(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map from RectangularMatrixCategory
--R
--R
--RExamples of map from RectangularMatrixCategoryFunctions2
--R
--R
--RExamples of map from SegmentFunctions2
--R
--R
--RExamples of map from SegmentBindingFunctions2
--R
--R
--RExamples of map from SegmentExpansionCategory
--R
--R
--RExamples of map from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rmap(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map from StreamFunctions2
--R
--Rm:=[i for i in 1..] 
--Rf(i:PositiveInteger):PositiveInteger==i**2 
--Rmap(f,m)
--R
--R
--RExamples of map from StreamFunctions3
--R
--Rm:=[i for i in 1..]::Stream(Integer) 
--Rn:=[i for i in 1..]::Stream(Integer) 
--Rf(i:Integer,j:Integer):Integer == i+j 
--Rmap(f,m,n)
--R
--R
--RExamples of map from SparseUnivariatePolynomialFunctions2
--R
--R
--RExamples of map from TableAggregate
--R
--R
--RExamples of map from UnivariateLaurentSeriesFunctions2
--R
--R
--RExamples of map from UniversalSegmentFunctions2
--R
--R
--RExamples of map from UnivariatePolynomialFunctions2
--R
--R
--RExamples of map from UnivariatePolynomialCategoryFunctions2
--R
--R
--RExamples of map from UnivariatePuiseuxSeriesFunctions2
--R
--R
--RExamples of map from UnivariateTaylorSeriesFunctions2
--R
--R
--RExamples of map from VectorFunctions2
--R
--R
--RExamples of map from XFreeAlgebra
--R
--R
--RExamples of map from XPolynomialRing
--R
--E 1723

--S 1724 of 3320
)d op map!
--R 
--R
--RThere are 7 exposed functions called map! :
--R   [1] ((D2 -> D2),D) -> D from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] ((D2 -> D2),ArrayStack(D2)) -> ArrayStack(D2) from ArrayStack(D2
--R            )
--R             if $ has shallowlyMutable and D2 has SETCAT
--R   [3] ((D2 -> D2),Dequeue(D2)) -> Dequeue(D2) from Dequeue(D2)
--R             if $ has shallowlyMutable and D2 has SETCAT
--R   [4] ((D2 -> D2),Heap(D2)) -> Heap(D2) from Heap(D2)
--R             if $ has shallowlyMutable and D2 has ORDSET
--R   [5] ((D2 -> D2),D) -> D from D
--R             if D has shallowlyMutable and D has HOAGG(D2) and D2 has 
--R            TYPE
--R   [6] ((D2 -> D2),Queue(D2)) -> Queue(D2) from Queue(D2)
--R             if $ has shallowlyMutable and D2 has SETCAT
--R   [7] ((D2 -> D2),Stack(D2)) -> Stack(D2) from Stack(D2)
--R             if $ has shallowlyMutable and D2 has SETCAT
--R
--RExamples of map! from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rmap!(-,arr)
--R
--R
--RExamples of map! from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rmap!(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rmap!(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map! from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rmap!(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map! from HomogeneousAggregate
--R
--R
--RExamples of map! from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rmap!(x+->x+10,a) 
--Ra
--R
--R
--RExamples of map! from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rmap!(x+->x+10,a) 
--Ra
--R
--E 1724

--S 1725 of 3320
)d op mapBivariate
--R 
--R
--RThere is one unexposed function called mapBivariate :
--R   [1] ((D4 -> D6),D3) -> SparseUnivariatePolynomial(
--R            SparseUnivariatePolynomial(D6))
--R             from IntegralBasisPolynomialTools(D4,D5,D3,D6)
--R             if D4 has RING and D6 has RING and D5 has UPOLYC(D4) and 
--R            D3 has UPOLYC(D5)
--R
--RExamples of mapBivariate from IntegralBasisPolynomialTools
--R
--E 1725

--S 1726 of 3320
)d op mapCoef
--R 
--R
--RThere is one exposed function called mapCoef :
--R   [1] ((D3 -> D3),D) -> D from D
--R             if D has FAMONC(D2,D3) and D2 has SETCAT and D3 has CABMON
--R            
--R
--RExamples of mapCoef from FreeAbelianMonoidCategory
--R
--E 1726

--S 1727 of 3320
)d op mapdiv
--R 
--R
--RThere is one unexposed function called mapdiv :
--R   [1] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2) if D2 has FIELD and 
--R            D2 has RING
--R
--RExamples of mapdiv from StreamTaylorSeriesOperations
--R
--E 1727

--S 1728 of 3320 done
)d op mapDown!
--R 
--R
--RThere are 2 exposed functions called mapDown! :
--R   [1] (BalancedBinaryTree(D1),D1,((D1,D1,D1) -> List(D1))) -> 
--R            BalancedBinaryTree(D1)
--R             from BalancedBinaryTree(D1) if D1 has SETCAT
--R   [2] (BalancedBinaryTree(D1),D1,((D1,D1) -> D1)) -> 
--R            BalancedBinaryTree(D1)
--R             from BalancedBinaryTree(D1) if D1 has SETCAT
--R
--RExamples of mapDown! from BalancedBinaryTree
--R
--RT1:=BalancedBinaryTree Integer 
--Rt2:=balancedBinaryTree(4, 0)$T1 
--Rsetleaves!(t2,[1,2,3,4]::List(Integer)) 
--Radder3(i:Integer,j:Integer,k:Integer):List Integer == [i+j,j+k] 
--RmapDown!(t2,4::INT,adder3) 
--Rt2
--R
--RT1:=BalancedBinaryTree Integer 
--Rt2:=balancedBinaryTree(4, 0)$T1 
--Rsetleaves!(t2,[1,2,3,4]::List(Integer)) 
--Radder(i:Integer,j:Integer):Integer == i+j 
--RmapDown!(t2,4::INT,adder) 
--Rt2
--R
--E 1728

--S 1729 of 3320
)d op mapExpon
--R 
--R
--RThere are 3 unexposed functions called mapExpon :
--R   [1] ((Integer -> Integer),FreeGroup(D2)) -> FreeGroup(D2) from 
--R            FreeGroup(D2)
--R             if D2 has SETCAT
--R   [2] ((NonNegativeInteger -> NonNegativeInteger),FreeMonoid(D2)) -> 
--R            FreeMonoid(D2)
--R             from FreeMonoid(D2) if D2 has SETCAT
--R   [3] ((D3 -> D3),ListMonoidOps(D2,D3,D4)) -> ListMonoidOps(D2,D3,D4)
--R             from ListMonoidOps(D2,D3,D4)
--R             if D3 has ABELMON and D4: D3 and D2 has SETCAT
--R
--RExamples of mapExpon from FreeGroup
--R
--R
--RExamples of mapExpon from FreeMonoid
--R
--R
--RExamples of mapExpon from ListMonoidOps
--R
--E 1729

--S 1730 of 3320
)d op mapExponents
--R 
--R
--RThere are 2 exposed functions called mapExponents :
--R   [1] ((D3 -> D3),D) -> D from D
--R             if D has FAMR(D2,D3) and D2 has RING and D3 has OAMON
--R   [2] ((D4 -> D4),D1) -> D1 from PackageForPoly(D3,D1,D4,D5)
--R             if D4 has DIRPCAT(D5,NNI) and D5: NNI and D3 has RING and 
--R            D1 has FAMR(D3,D4)
--R
--RExamples of mapExponents from FiniteAbelianMonoidRing
--R
--R
--RExamples of mapExponents from PackageForPoly
--R
--E 1730

--S 1731 of 3320
)d op mapGen
--R 
--R
--RThere is one exposed function called mapGen :
--R   [1] ((D2 -> D2),D) -> D from D
--R             if D has FAMONC(D2,D3) and D2 has SETCAT and D3 has CABMON
--R            
--R
--RThere are 3 unexposed functions called mapGen :
--R   [1] ((D2 -> D2),FreeGroup(D2)) -> FreeGroup(D2) from FreeGroup(D2)
--R             if D2 has SETCAT
--R   [2] ((D2 -> D2),FreeMonoid(D2)) -> FreeMonoid(D2) from FreeMonoid(D2
--R            )
--R             if D2 has SETCAT
--R   [3] ((D2 -> D2),ListMonoidOps(D2,D3,D4)) -> ListMonoidOps(D2,D3,D4)
--R             from ListMonoidOps(D2,D3,D4)
--R             if D2 has SETCAT and D3 has ABELMON and D4: D3
--R
--RExamples of mapGen from FreeAbelianMonoidCategory
--R
--R
--RExamples of mapGen from FreeGroup
--R
--R
--RExamples of mapGen from FreeMonoid
--R
--R
--RExamples of mapGen from ListMonoidOps
--R
--E 1731

--S 1732 of 3320
)d op mapMatrixIfCan
--R 
--R
--RThere is one unexposed function called mapMatrixIfCan :
--R   [1] ((D7 -> Union(D4,"failed")),Matrix(SparseUnivariatePolynomial(D7
--R            ))) -> Union(Matrix(D5),"failed")
--R             from IntegralBasisPolynomialTools(D4,D5,D6,D7)
--R             if D4 has RING and D7 has RING and D5 has UPOLYC(D4) and 
--R            D6 has UPOLYC(D5)
--R
--RExamples of mapMatrixIfCan from IntegralBasisPolynomialTools
--R
--E 1732

--S 1733 of 3320
)d op mapmult
--R 
--R
--RThere is one unexposed function called mapmult :
--R   [1] (Stream(D2),Stream(D2)) -> Stream(D2)
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R
--RExamples of mapmult from StreamTaylorSeriesOperations
--R
--E 1733

--S 1734 of 3320
)d op mapSolve
--R 
--R
--RThere is one unexposed function called mapSolve :
--R   [1] (D3,(D5 -> D5)) -> Record(solns: List(D5),maps: List(Record(arg
--R            : D5,res: D5)))
--R             from PolynomialSolveByFormulas(D3,D5)
--R             if D5 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D5)
--R            
--R
--RExamples of mapSolve from PolynomialSolveByFormulas
--R
--E 1734

--S 1735 of 3320
)d op mapUnivariate
--R 
--R
--RThere are 2 unexposed functions called mapUnivariate :
--R   [1] ((D6 -> D4),SparseUnivariatePolynomial(D6)) -> D1
--R             from IntegralBasisPolynomialTools(D4,D1,D5,D6)
--R             if D4 has RING and D6 has RING and D1 has UPOLYC(D4) and 
--R            D5 has UPOLYC(D1)
--R   [2] ((D4 -> D6),D3) -> SparseUnivariatePolynomial(D6)
--R             from IntegralBasisPolynomialTools(D4,D3,D5,D6)
--R             if D4 has RING and D6 has RING and D3 has UPOLYC(D4) and 
--R            D5 has UPOLYC(D3)
--R
--RExamples of mapUnivariate from IntegralBasisPolynomialTools
--R
--E 1735

--S 1736 of 3320
)d op mapUnivariateIfCan
--R 
--R
--RThere is one unexposed function called mapUnivariateIfCan :
--R   [1] ((D6 -> Union(D4,"failed")),SparseUnivariatePolynomial(D6)) -> 
--R            Union(D1,"failed")
--R             from IntegralBasisPolynomialTools(D4,D1,D5,D6)
--R             if D4 has RING and D6 has RING and D1 has UPOLYC(D4) and 
--R            D5 has UPOLYC(D1)
--R
--RExamples of mapUnivariateIfCan from IntegralBasisPolynomialTools
--R
--E 1736

--S 1737 of 3320 done
)d op mapUp!
--R 
--R
--RThere are 2 exposed functions called mapUp! :
--R   [1] (BalancedBinaryTree(D2),BalancedBinaryTree(D2),((D2,D2,D2,D2)
--R             -> D2)) -> BalancedBinaryTree(D2)
--R             from BalancedBinaryTree(D2) if D2 has SETCAT
--R   [2] (BalancedBinaryTree(D1),((D1,D1) -> D1)) -> D1
--R             from BalancedBinaryTree(D1) if D1 has SETCAT
--R
--RExamples of mapUp! from BalancedBinaryTree
--R
--RT1:=BalancedBinaryTree Integer 
--Rt2:=balancedBinaryTree(4, 0)$T1 
--Rsetleaves!(t2,[1,2,3,4]::List(Integer)) 
--Radder4(i:INT,j:INT,k:INT,l:INT):INT == i+j+k+l 
--RmapUp!(t2,t2,adder4) 
--Rt2
--R
--RT1:=BalancedBinaryTree Integer 
--Rt2:=balancedBinaryTree(4, 0)$T1 
--Rsetleaves!(t2,[1,2,3,4]::List(Integer)) 
--Radder(a:Integer,b:Integer):Integer == a+b 
--RmapUp!(t2,adder) 
--Rt2
--R
--E 1737

--S 1738 of 3320
)d op mask
--R 
--R
--RThere is one exposed function called mask :
--R   [1] D -> D from D if D has INS
--R
--RExamples of mask from IntegerNumberSystem
--R
--E 1738

--S 1739 of 3320
)d op mat
--R 
--R
--RThere is one exposed function called mat :
--R   [1] (List(DoubleFloat),NonNegativeInteger) -> Matrix(DoubleFloat)
--R             from ExpertSystemToolsPackage
--R
--RExamples of mat from ExpertSystemToolsPackage
--R
--E 1739

--S 1740 of 3320
)d op match
--R 
--R
--RThere are 7 exposed functions called match :
--R   [1] (List(D4),List(D5)) -> (D4 -> D5) from ListToMap(D4,D5)
--R             if D4 has SETCAT and D5 has TYPE
--R   [2] (List(D4),List(D1),D4) -> D1 from ListToMap(D4,D1)
--R             if D4 has SETCAT and D1 has TYPE
--R   [3] (List(D5),List(D4),D4) -> (D5 -> D4) from ListToMap(D5,D4)
--R             if D5 has SETCAT and D4 has TYPE
--R   [4] (List(D4),List(D1),D4,D1) -> D1 from ListToMap(D4,D1)
--R             if D4 has SETCAT and D1 has TYPE
--R   [5] (List(D4),List(D5),(D4 -> D5)) -> (D4 -> D5) from ListToMap(D4,
--R            D5)
--R             if D4 has SETCAT and D5 has TYPE
--R   [6] (List(D4),List(D1),D4,(D4 -> D1)) -> D1 from ListToMap(D4,D1)
--R             if D4 has SETCAT and D1 has TYPE
--R   [7] (D,D,Character) -> NonNegativeInteger from D if D has SRAGG
--R
--RExamples of match from ListToMap
--R
--R
--RExamples of match from StringAggregate
--R
--E 1740

--S 1741 of 3320
)d op match?
--R 
--R
--RThere is one exposed function called match? :
--R   [1] (D,D,Character) -> Boolean from D if D has SRAGG
--R
--RExamples of match? from StringAggregate
--R
--E 1741

--S 1742 of 3320
)d op mathieu11
--R 
--R
--RThere are 2 exposed functions called mathieu11 :
--R   [1] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R   [2]  -> PermutationGroup(Integer) from PermutationGroupExamples
--R
--RExamples of mathieu11 from PermutationGroupExamples
--R
--E 1742

--S 1743 of 3320
)d op mathieu12
--R 
--R
--RThere are 2 exposed functions called mathieu12 :
--R   [1] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R   [2]  -> PermutationGroup(Integer) from PermutationGroupExamples
--R
--RExamples of mathieu12 from PermutationGroupExamples
--R
--E 1743

--S 1744 of 3320
)d op mathieu22
--R 
--R
--RThere are 2 exposed functions called mathieu22 :
--R   [1] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R   [2]  -> PermutationGroup(Integer) from PermutationGroupExamples
--R
--RExamples of mathieu22 from PermutationGroupExamples
--R
--E 1744

--S 1745 of 3320
)d op mathieu23
--R 
--R
--RThere are 2 exposed functions called mathieu23 :
--R   [1] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R   [2]  -> PermutationGroup(Integer) from PermutationGroupExamples
--R
--RExamples of mathieu23 from PermutationGroupExamples
--R
--E 1745

--S 1746 of 3320
)d op mathieu24
--R 
--R
--RThere are 2 exposed functions called mathieu24 :
--R   [1] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R   [2]  -> PermutationGroup(Integer) from PermutationGroupExamples
--R
--RExamples of mathieu24 from PermutationGroupExamples
--R
--E 1746

--S 1747 of 3320
)d op matrix
--R 
--R
--RThere are 4 exposed functions called matrix :
--R   [1] (NonNegativeInteger,NonNegativeInteger,((Integer,Integer) -> D3)
--R            ) -> D
--R             from D
--R             if D3 has RING and D has MATCAT(D3,D4,D5) and D4 has FLAGG
--R            (D3) and D5 has FLAGG(D3)
--R   [2] List(List(D2)) -> D from D
--R             if D2 has RING and D has MATCAT(D2,D3,D4) and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [3] QuadraticForm(D2,D3) -> SquareMatrix(D2,D3) from QuadraticForm(
--R            D2,D3)
--R             if D2: PI and D3 has FIELD
--R   [4] List(List(D4)) -> D from D
--R             if D4 has RING and D has RMATCAT(D2,D3,D4,D5,D6) and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RThere is one unexposed function called matrix :
--R   [1] List(List(OutputForm)) -> OutputForm from OutputForm
--R
--RExamples of matrix from MatrixCategory
--R
--Rf(i:INT,j:INT):INT == i+j 
--Rmatrix(3,4,f)
--R
--Rmatrix [[1,2,3],[4,5,6],[7,8,9],[1,1,1]]
--R
--R
--RExamples of matrix from OutputForm
--R
--R
--RExamples of matrix from QuadraticForm
--R
--R
--RExamples of matrix from RectangularMatrixCategory
--R
--E 1747

--S 1748 of 3320
)d op matrixConcat3D
--R 
--R
--RThere is one exposed function called matrixConcat3D :
--R   [1] (Symbol,ThreeDimensionalMatrix(D2),ThreeDimensionalMatrix(D2))
--R             -> ThreeDimensionalMatrix(D2)
--R             from ThreeDimensionalMatrix(D2) if D2 has SETCAT
--R
--RExamples of matrixConcat3D from ThreeDimensionalMatrix
--R
--E 1748

--S 1749 of 3320
)d op matrixDimensions
--R 
--R
--RThere is one exposed function called matrixDimensions :
--R   [1] ThreeDimensionalMatrix(D2) -> Vector(NonNegativeInteger)
--R             from ThreeDimensionalMatrix(D2) if D2 has SETCAT
--R
--RExamples of matrixDimensions from ThreeDimensionalMatrix
--R
--E 1749

--S 1750 of 3320
)d op matrixGcd
--R 
--R
--RThere is one unexposed function called matrixGcd :
--R   [1] (Matrix(D1),D1,NonNegativeInteger) -> D1
--R             from IntegralBasisTools(D1,D4,D5)
--R             if D1 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D4 has UPOLYC(D1) 
--R            and D5 has FRAMALG(D1,D4)
--R
--RExamples of matrixGcd from IntegralBasisTools
--R
--E 1750

--S 1751 of 3320
)d op max
--R 
--R
--RThere are 6 exposed functions called max :
--R   [1]  -> D from D
--R             if D has FPS and not(has(D,arbitraryPrecision)) and not(
--R            has(D,arbitraryExponent))
--R   [2] D -> D1 from D if D has FSAGG(D1) and D1 has SETCAT and D1 has 
--R            ORDSET
--R   [3] Heap(D1) -> D1 from Heap(D1) if D1 has ORDSET
--R   [4] (D,D) -> D from D if D has ORDSET
--R   [5] D -> D1 from D if D has PRQAGG(D1)
--R   [6]  -> SingleInteger from SingleInteger
--R
--RExamples of max from FloatingPointSystem
--R
--R
--RExamples of max from FiniteSetAggregate
--R
--R
--RExamples of max from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rmax a
--R
--R
--RExamples of max from OrderedSet
--R
--R
--RExamples of max from PriorityQueueAggregate
--R
--R
--RExamples of max from SingleInteger
--R
--E 1751

--S 1752 of 3320
)d op maxColIndex
--R 
--R
--RThere are 2 exposed functions called maxColIndex :
--R   [1] D -> Integer from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] D -> Integer from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of maxColIndex from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--RmaxColIndex(arr)
--R
--R
--RExamples of maxColIndex from RectangularMatrixCategory
--R
--E 1752

--S 1753 of 3320
)d op maxdeg
--R 
--R
--RThere is one exposed function called maxdeg :
--R   [1] D -> OrderedFreeMonoid(D2) from D
--R             if D has XPOLYC(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R
--RThere is one unexposed function called maxdeg :
--R   [1] XPolynomialRing(D2,D1) -> D1 from XPolynomialRing(D2,D1)
--R             if D1 has ORDMON and D2 has RING
--R
--RExamples of maxdeg from XPolynomialsCat
--R
--R
--RExamples of maxdeg from XPolynomialRing
--R
--E 1753

--S 1754 of 3320
)d op maxDegree
--R 
--R
--RThere is one exposed function called maxDegree :
--R   [1] Union(NonNegativeInteger,arbitrary) -> GuessOption from 
--R            GuessOption
--R
--RThere is one unexposed function called maxDegree :
--R   [1] List(GuessOption) -> Union(NonNegativeInteger,arbitrary)
--R             from GuessOptionFunctions0
--R
--RExamples of maxDegree from GuessOptionFunctions0
--R
--R
--RExamples of maxDegree from GuessOption
--R
--E 1754

--S 1755 of 3320
)d op maxDerivative
--R 
--R
--RThere is one exposed function called maxDerivative :
--R   [1] Union(NonNegativeInteger,arbitrary) -> GuessOption from 
--R            GuessOption
--R
--RThere is one unexposed function called maxDerivative :
--R   [1] List(GuessOption) -> Union(NonNegativeInteger,arbitrary)
--R             from GuessOptionFunctions0
--R
--RExamples of maxDerivative from GuessOptionFunctions0
--R
--R
--RExamples of maxDerivative from GuessOption
--R
--E 1755

--S 1756 of 3320
)d op maximumExponent
--R 
--R
--RThere are 2 exposed functions called maximumExponent :
--R   [1]  -> Integer from MachineFloat
--R   [2] Integer -> Integer from MachineFloat
--R
--RExamples of maximumExponent from MachineFloat
--R
--E 1756

--S 1757 of 3320
)d op maxIndex
--R 
--R
--RThere is one exposed function called maxIndex :
--R   [1] D -> D1 from D
--R             if D has IXAGG(D1,D2) and D2 has TYPE and D1 has SETCAT 
--R            and D1 has ORDSET
--R
--RExamples of maxIndex from IndexedAggregate
--R
--E 1757

--S 1758 of 3320
)d op maxint
--R 
--R
--RThere are 2 exposed functions called maxint :
--R   [1]  -> PositiveInteger from MachineInteger
--R   [2] PositiveInteger -> PositiveInteger from MachineInteger
--R
--RExamples of maxint from MachineInteger
--R
--E 1758

--S 1759 of 3320
)d op maxLevel
--R 
--R
--RThere is one exposed function called maxLevel :
--R   [1] Union(NonNegativeInteger,arbitrary) -> GuessOption from 
--R            GuessOption
--R
--RThere is one unexposed function called maxLevel :
--R   [1] List(GuessOption) -> Union(NonNegativeInteger,arbitrary)
--R             from GuessOptionFunctions0
--R
--RExamples of maxLevel from GuessOptionFunctions0
--R
--R
--RExamples of maxLevel from GuessOption
--R
--E 1759

--S 1760 of 3320
)d op maxMixedDegree
--R 
--R
--RThere is one exposed function called maxMixedDegree :
--R   [1] NonNegativeInteger -> GuessOption from GuessOption
--R
--RThere is one unexposed function called maxMixedDegree :
--R   [1] List(GuessOption) -> NonNegativeInteger from 
--R            GuessOptionFunctions0
--R
--RExamples of maxMixedDegree from GuessOptionFunctions0
--R
--R
--RExamples of maxMixedDegree from GuessOption
--R
--E 1760

--S 1761 of 3320
)d op maxPoints
--R 
--R
--RThere are 2 exposed functions called maxPoints :
--R   [1]  -> Integer from GraphicsDefaults
--R   [2] Integer -> Integer from GraphicsDefaults
--R
--RThere is one unexposed function called maxPoints :
--R   [1]  -> Integer from Plot
--R
--RExamples of maxPoints from GraphicsDefaults
--R
--R
--RExamples of maxPoints from Plot
--R
--E 1761

--S 1762 of 3320
)d op maxPoints3D
--R 
--R
--RThere is one unexposed function called maxPoints3D :
--R   [1]  -> Integer from Plot3D
--R
--RExamples of maxPoints3D from Plot3D
--R
--E 1762

--S 1763 of 3320
)d op maxPower
--R 
--R
--RThere is one exposed function called maxPower :
--R   [1] Union(PositiveInteger,arbitrary) -> GuessOption from GuessOption
--R            
--R
--RThere is one unexposed function called maxPower :
--R   [1] List(GuessOption) -> Union(PositiveInteger,arbitrary)
--R             from GuessOptionFunctions0
--R
--RExamples of maxPower from GuessOptionFunctions0
--R
--R
--RExamples of maxPower from GuessOption
--R
--E 1763

--S 1764 of 3320
)d op maxrank
--R 
--R
--RThere is one unexposed function called maxrank :
--R   [1] List(Record(rank: NonNegativeInteger,eqns: List(Record(det: D6,
--R            rows: List(Integer),cols: List(Integer))),fgb: List(D6))) -> 
--R            NonNegativeInteger
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D5,D4) and D3 has Join(
--R            EuclideanDomain,CharacteristicZero) and D4 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D5 has OAMONS
--R
--RExamples of maxrank from ParametricLinearEquations
--R
--E 1764

--S 1765 of 3320
)d op maxrow
--R 
--R
--RThere is one unexposed function called maxrow :
--R   [1] (List(D5),List(List(List(D5))),List(List(D5)),List(List(List(D5)
--R            )),List(List(List(D5))),List(List(List(D5)))) -> Record(f1: List(
--R            D5),f2: List(List(List(D5))),f3: List(List(D5)),f4: List(List(
--R            List(D5))))
--R             from TableauxBumpers(D5) if D5 has ORDSET
--R
--RExamples of maxrow from TableauxBumpers
--R
--E 1765

--S 1766 of 3320
)d op maxRowIndex
--R 
--R
--RThere are 2 exposed functions called maxRowIndex :
--R   [1] D -> Integer from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] D -> Integer from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of maxRowIndex from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--RmaxRowIndex(arr)
--R
--R
--RExamples of maxRowIndex from RectangularMatrixCategory
--R
--E 1766

--S 1767 of 3320
)d op maxShift
--R 
--R
--RThere is one exposed function called maxShift :
--R   [1] Union(NonNegativeInteger,arbitrary) -> GuessOption from 
--R            GuessOption
--R
--RThere is one unexposed function called maxShift :
--R   [1] List(GuessOption) -> Union(NonNegativeInteger,arbitrary)
--R             from GuessOptionFunctions0
--R
--RExamples of maxShift from GuessOptionFunctions0
--R
--R
--RExamples of maxShift from GuessOption
--R
--E 1767

--S 1768 of 3320
)d op maxSubst
--R 
--R
--RThere is one exposed function called maxSubst :
--R   [1] Union(PositiveInteger,arbitrary) -> GuessOption from GuessOption
--R            
--R
--RThere is one unexposed function called maxSubst :
--R   [1] List(GuessOption) -> Union(PositiveInteger,arbitrary)
--R             from GuessOptionFunctions0
--R
--RExamples of maxSubst from GuessOptionFunctions0
--R
--R
--RExamples of maxSubst from GuessOption
--R
--E 1768

--S 1769 of 3320
)d op maxTower
--R 
--R
--RThere is one exposed function called maxTower :
--R   [1] List(D) -> D from D if D has PACPERC
--R
--RExamples of maxTower from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--E 1769

--S 1770 of 3320
)d op mdeg
--R 
--R
--RThere is one exposed function called mdeg :
--R   [1] D -> NonNegativeInteger from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of mdeg from RecursivePolynomialCategory
--R
--E 1770

--S 1771 of 3320
)d op measure
--R 
--R
--RThere are 14 exposed functions called measure :
--R   [1] NumericalIntegrationProblem -> Record(measure: Float,name: 
--R            String,explanations: List(String),extra: Result)
--R             from AnnaNumericalIntegrationPackage
--R   [2] (NumericalIntegrationProblem,RoutinesTable) -> Record(measure: 
--R            Float,name: String,explanations: List(String),extra: Result)
--R             from AnnaNumericalIntegrationPackage
--R   [3] (RoutinesTable,Record(fn: Expression(DoubleFloat),range: List(
--R            Segment(OrderedCompletion(DoubleFloat))),abserr: DoubleFloat,
--R            relerr: DoubleFloat)) -> Record(measure: Float,explanations: 
--R            String,extra: Result)
--R             from D if D has NUMINT
--R   [4] (RoutinesTable,Record(var: Symbol,fn: Expression(DoubleFloat),
--R            range: Segment(OrderedCompletion(DoubleFloat)),abserr: 
--R            DoubleFloat,relerr: DoubleFloat)) -> Record(measure: Float,
--R            explanations: String,extra: Result)
--R             from D if D has NUMINT
--R   [5] (RoutinesTable,Record(xinit: DoubleFloat,xend: DoubleFloat,fn: 
--R            Vector(Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals
--R            : List(DoubleFloat),g: Expression(DoubleFloat),abserr: 
--R            DoubleFloat,relerr: DoubleFloat)) -> Record(measure: Float,
--R            explanations: String)
--R             from D if D has ODECAT
--R   [6] NumericalODEProblem -> Record(measure: Float,name: String,
--R            explanations: List(String))
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [7] (NumericalODEProblem,RoutinesTable) -> Record(measure: Float,
--R            name: String,explanations: List(String))
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [8] (RoutinesTable,Record(lfn: List(Expression(DoubleFloat)),init: 
--R            List(DoubleFloat))) -> Record(measure: Float,explanations: String
--R            )
--R             from D if D has OPTCAT
--R   [9] (RoutinesTable,Record(fn: Expression(DoubleFloat),init: List(
--R            DoubleFloat),lb: List(OrderedCompletion(DoubleFloat)),cf: List(
--R            Expression(DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))
--R            )) -> Record(measure: Float,explanations: String)
--R             from D if D has OPTCAT
--R   [10] NumericalOptimizationProblem -> Record(measure: Float,name: 
--R            String,explanations: List(String))
--R             from AnnaNumericalOptimizationPackage
--R   [11] (NumericalOptimizationProblem,RoutinesTable) -> Record(measure
--R            : Float,name: String,explanations: List(String))
--R             from AnnaNumericalOptimizationPackage
--R   [12] (RoutinesTable,Record(pde: List(Expression(DoubleFloat)),
--R            constraints: List(Record(start: DoubleFloat,finish: DoubleFloat,
--R            grid: NonNegativeInteger,boundaryType: Integer,dStart: Matrix(
--R            DoubleFloat),dFinish: Matrix(DoubleFloat))),f: List(List(
--R            Expression(DoubleFloat))),st: String,tol: DoubleFloat)) -> 
--R            Record(measure: Float,explanations: String)
--R             from D if D has PDECAT
--R   [13] NumericalPDEProblem -> Record(measure: Float,name: String,
--R            explanations: List(String))
--R             from AnnaPartialDifferentialEquationPackage
--R   [14] (NumericalPDEProblem,RoutinesTable) -> Record(measure: Float,
--R            name: String,explanations: List(String))
--R             from AnnaPartialDifferentialEquationPackage
--R
--RExamples of measure from AnnaNumericalIntegrationPackage
--R
--R
--RExamples of measure from NumericalIntegrationCategory
--R
--R
--RExamples of measure from OrdinaryDifferentialEquationsSolverCategory
--R
--R
--RExamples of measure from AnnaOrdinaryDifferentialEquationPackage
--R
--R
--RExamples of measure from NumericalOptimizationCategory
--R
--R
--RExamples of measure from AnnaNumericalOptimizationPackage
--R
--R
--RExamples of measure from PartialDifferentialEquationsSolverCategory
--R
--R
--RExamples of measure from AnnaPartialDifferentialEquationPackage
--R
--E 1771

--S 1772 of 3320
)d op measure2Result
--R 
--R
--RThere are 2 exposed functions called measure2Result :
--R   [1] Record(measure: Float,name: String,explanations: List(String))
--R             -> Result
--R             from ExpertSystemToolsPackage
--R   [2] Record(measure: Float,name: String,explanations: List(String),
--R            extra: Result) -> Result
--R             from ExpertSystemToolsPackage
--R
--RExamples of measure2Result from ExpertSystemToolsPackage
--R
--E 1772

--S 1773 of 3320
)d op meatAxe
--R 
--R
--RThere are 4 exposed functions called meatAxe :
--R   [1] (List(Matrix(D5)),Boolean,Integer,Integer) -> List(List(Matrix(
--R            D5)))
--R             from RepresentationPackage2(D5)
--R             if D5 has FIELD and D5 has FINITE and D5 has RING
--R   [2] List(Matrix(D3)) -> List(List(Matrix(D3)))
--R             from RepresentationPackage2(D3)
--R             if D3 has FIELD and D3 has FINITE and D3 has RING
--R   [3] (List(Matrix(D4)),Boolean) -> List(List(Matrix(D4)))
--R             from RepresentationPackage2(D4)
--R             if D4 has FIELD and D4 has FINITE and D4 has RING
--R   [4] (List(Matrix(D4)),PositiveInteger) -> List(List(Matrix(D4)))
--R             from RepresentationPackage2(D4)
--R             if D4 has FIELD and D4 has FINITE and D4 has RING
--R
--RExamples of meatAxe from RepresentationPackage2
--R
--E 1773

--S 1774 of 3320
)d op meatAxe
--R 
--R
--RThere are 4 exposed functions called meatAxe :
--R   [1] (List(Matrix(D5)),Boolean,Integer,Integer) -> List(List(Matrix(
--R            D5)))
--R             from RepresentationPackage2(D5)
--R             if D5 has FIELD and D5 has FINITE and D5 has RING
--R   [2] List(Matrix(D3)) -> List(List(Matrix(D3)))
--R             from RepresentationPackage2(D3)
--R             if D3 has FIELD and D3 has FINITE and D3 has RING
--R   [3] (List(Matrix(D4)),Boolean) -> List(List(Matrix(D4)))
--R             from RepresentationPackage2(D4)
--R             if D4 has FIELD and D4 has FINITE and D4 has RING
--R   [4] (List(Matrix(D4)),PositiveInteger) -> List(List(Matrix(D4)))
--R             from RepresentationPackage2(D4)
--R             if D4 has FIELD and D4 has FINITE and D4 has RING
--R
--RExamples of meatAxe from RepresentationPackage2
--R
--E 1774

--S 1775 of 3320
)d op medialSet
--R 
--R
--RThere are 2 exposed functions called medialSet :
--R   [1] List(D5) -> Union(WuWenTsunTriangularSet(D2,D3,D4,D5),"failed")
--R             from WuWenTsunTriangularSet(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [2] (List(D7),((D7,D7) -> Boolean),((D7,D7) -> D7)) -> Union(
--R            WuWenTsunTriangularSet(D4,D5,D6,D7),"failed")
--R             from WuWenTsunTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of medialSet from WuWenTsunTriangularSet
--R
--E 1775

--S 1776 of 3320
)d op member?
--R 
--R
--RThere are 7 exposed functions called member? :
--R   [1] (D2,ArrayStack(D2)) -> Boolean from ArrayStack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R   [2] (D2,Dequeue(D2)) -> Boolean from Dequeue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R   [3] (D2,Heap(D2)) -> Boolean from Heap(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            ORDSET
--R   [4] (D2,D) -> Boolean from D
--R             if D has finiteAggregate and D has HOAGG(D2) and D2 has 
--R            TYPE and D2 has SETCAT
--R   [5] (Permutation(D3),PermutationGroup(D3)) -> Boolean
--R             from PermutationGroup(D3) if D3 has SETCAT
--R   [6] (D2,Queue(D2)) -> Boolean from Queue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R   [7] (D2,Stack(D2)) -> Boolean from Stack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT and D2 has 
--R            SETCAT
--R
--RThere is one unexposed function called member? :
--R   [1] (PositiveInteger,SetOfMIntegersInOneToN(D3,D4)) -> Boolean
--R             from SetOfMIntegersInOneToN(D3,D4) if D3: PI and D4: PI
--R         
--R
--RExamples of member? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rmember?(3,a)
--R
--R
--RExamples of member? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rmember?(3,a)
--R
--R
--RExamples of member? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rmember?(3,a)
--R
--R
--RExamples of member? from HomogeneousAggregate
--R
--R
--RExamples of member? from PermutationGroup
--R
--Rx : PERM INT := [[1,3,5],[7,11,9]] 
--Ry : PERM INT := [[3,5,7,9]] 
--Rz : PERM INT := [1,3,11] 
--Rg : PERMGRP INT := [ x , z ] 
--Rmember? ( y , g )
--R
--R
--RExamples of member? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rmember?(3,a)
--R
--R
--RExamples of member? from SetOfMIntegersInOneToN
--R
--R
--RExamples of member? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rmember?(3,a)
--R
--E 1776

--S 1777 of 3320
)d op members
--R 
--R
--RThere are 7 exposed functions called members :
--R   [1] ArrayStack(D2) -> List(D2) from ArrayStack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [2] Dequeue(D2) -> List(D2) from Dequeue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [3] Heap(D2) -> List(D2) from Heap(D2) if $ has finiteAggregate and 
--R            D2 has ORDSET
--R   [4] D -> List(D2) from D
--R             if D has finiteAggregate and D has HOAGG(D2) and D2 has 
--R            TYPE
--R   [5] Multiset(D2) -> List(D2) from Multiset(D2) if D2 has SETCAT
--R   [6] Queue(D2) -> List(D2) from Queue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [7] Stack(D2) -> List(D2) from Stack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R
--RExamples of members from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rmembers a
--R
--R
--RExamples of members from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rmembers a
--R
--R
--RExamples of members from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rmembers a
--R
--R
--RExamples of members from HomogeneousAggregate
--R
--R
--RExamples of members from Multiset
--R
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rmembers(s)
--R
--R
--RExamples of members from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rmembers a
--R
--R
--RExamples of members from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rmembers a
--R
--E 1777

--S 1778 of 3320
)d op merge
--R 
--R
--RThere are 6 exposed functions called merge :
--R   [1] (D,D) -> D from D if D has FLAGG(D1) and D1 has TYPE and D1 has 
--R            ORDSET
--R   [2] (((D2,D2) -> Boolean),D,D) -> D from D if D has FLAGG(D2) and D2
--R             has TYPE
--R   [3] (Heap(D1),Heap(D1)) -> Heap(D1) from Heap(D1) if D1 has ORDSET
--R         
--R   [4] (D,D) -> D from D if D has PRQAGG(D1)
--R   [5] (D,D) -> D from D if D has SPACEC(D1) and D1 has RING
--R   [6] List(D) -> D from D if D has SPACEC(D2) and D2 has RING
--R
--RThere are 2 unexposed functions called merge :
--R   [1] List(SubSpace(D2,D3)) -> SubSpace(D2,D3) from SubSpace(D2,D3)
--R             if D2: PI and D3 has RING
--R   [2] (SubSpace(D1,D2),SubSpace(D1,D2)) -> SubSpace(D1,D2) from 
--R            SubSpace(D1,D2)
--R             if D1: PI and D2 has RING
--R
--RExamples of merge from FiniteLinearAggregate
--R
--R
--RExamples of merge from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rb:Heap INT:= heap [6,7,8,9,10] 
--Rmerge(a,b)
--R
--R
--RExamples of merge from PriorityQueueAggregate
--R
--R
--RExamples of merge from ThreeSpaceCategory
--R
--R
--RExamples of merge from SubSpace
--R
--E 1778

--S 1779 of 3320
)d op merge!
--R 
--R
--RThere are 4 exposed functions called merge! :
--R   [1] (D,D) -> D from D if D has ELAGG(D1) and D1 has TYPE and D1 has 
--R            ORDSET
--R   [2] (((D2,D2) -> Boolean),D,D) -> D from D if D has ELAGG(D2) and D2
--R             has TYPE
--R   [3] (Heap(D1),Heap(D1)) -> Heap(D1) from Heap(D1) if D1 has ORDSET
--R         
--R   [4] (D,D) -> D from D if D has PRQAGG(D1)
--R
--RExamples of merge! from ExtensibleLinearAggregate
--R
--R
--RExamples of merge! from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rb:Heap INT:= heap [6,7,8,9,10] 
--Rmerge!(a,b) 
--Ra 
--Rb
--R
--R
--RExamples of merge! from PriorityQueueAggregate
--R
--E 1779

--S 1780 of 3320
)d op mergeDifference
--R 
--R
--RThere is one exposed function called mergeDifference :
--R   [1] (List(D2),List(D2)) -> List(D2) from MergeThing(D2) if D2 has 
--R            ORDSET
--R
--RExamples of mergeDifference from MergeThing
--R
--E 1780

--S 1781 of 3320
)d op mergeFactors
--R 
--R
--RThere is one unexposed function called mergeFactors :
--R   [1] (Factored(D2),Factored(D2)) -> Factored(D2)
--R             from FactoredFunctionUtilities(D2) if D2 has INTDOM
--R
--RExamples of mergeFactors from FactoredFunctionUtilities
--R
--E 1781

--S 1782 of 3320
)d op mesh
--R 
--R
--RThere are 7 exposed functions called mesh :
--R   [1] D -> List(List(Point(D2))) from D if D has SPACEC(D2) and D2
--R             has RING
--R   [2] (List(List(Point(D3))),Boolean,Boolean) -> D from D
--R             if D3 has RING and D has SPACEC(D3)
--R   [3] List(List(Point(D2))) -> D from D if D2 has RING and D has 
--R            SPACEC(D2)
--R   [4] (D,List(List(List(D3))),Boolean,Boolean) -> D from D
--R             if D has SPACEC(D3) and D3 has RING
--R   [5] (D,List(List(Point(D3))),Boolean,Boolean) -> D from D
--R             if D has SPACEC(D3) and D3 has RING
--R   [6] (D,List(List(List(D4))),List(SubSpaceComponentProperty),
--R            SubSpaceComponentProperty) -> D
--R             from D if D has SPACEC(D4) and D4 has RING
--R   [7] (D,List(List(Point(D4))),List(SubSpaceComponentProperty),
--R            SubSpaceComponentProperty) -> D
--R             from D if D has SPACEC(D4) and D4 has RING
--R
--RExamples of mesh from ThreeSpaceCategory
--R
--E 1782

--S 1783 of 3320
)d op mesh?
--R 
--R
--RThere is one exposed function called mesh? :
--R   [1] D -> Boolean from D if D has SPACEC(D2) and D2 has RING
--R
--RExamples of mesh? from ThreeSpaceCategory
--R
--E 1783

--S 1784 of 3320
)d op meshFun2Var
--R 
--R
--RThere is one unexposed function called meshFun2Var :
--R   [1] (((DoubleFloat,DoubleFloat) -> DoubleFloat),Union(((DoubleFloat,
--R            DoubleFloat,DoubleFloat) -> DoubleFloat),undefined),Segment(
--R            DoubleFloat),Segment(DoubleFloat),List(DrawOption)) -> ThreeSpace
--R            (DoubleFloat)
--R             from MeshCreationRoutinesForThreeDimensions
--R
--RExamples of meshFun2Var from MeshCreationRoutinesForThreeDimensions
--R
--E 1784

--S 1785 of 3320
)d op meshPar1Var
--R 
--R
--RThere is one unexposed function called meshPar1Var :
--R   [1] (Expression(Integer),Expression(Integer),Expression(Integer),(
--R            DoubleFloat -> DoubleFloat),Segment(DoubleFloat),List(DrawOption)
--R            ) -> ThreeSpace(DoubleFloat)
--R             from MeshCreationRoutinesForThreeDimensions
--R
--RExamples of meshPar1Var from MeshCreationRoutinesForThreeDimensions
--R
--E 1785

--S 1786 of 3320
)d op meshPar2Var
--R 
--R
--RThere are 3 unexposed functions called meshPar2Var :
--R   [1] (((DoubleFloat,DoubleFloat) -> DoubleFloat),((DoubleFloat,
--R            DoubleFloat) -> DoubleFloat),((DoubleFloat,DoubleFloat) -> 
--R            DoubleFloat),Union(((DoubleFloat,DoubleFloat,DoubleFloat) -> 
--R            DoubleFloat),undefined),Segment(DoubleFloat),Segment(DoubleFloat)
--R            ,List(DrawOption)) -> ThreeSpace(DoubleFloat)
--R             from MeshCreationRoutinesForThreeDimensions
--R   [2] (((DoubleFloat,DoubleFloat) -> Point(DoubleFloat)),Segment(
--R            DoubleFloat),Segment(DoubleFloat),List(DrawOption)) -> ThreeSpace
--R            (DoubleFloat)
--R             from MeshCreationRoutinesForThreeDimensions
--R   [3] (ThreeSpace(DoubleFloat),((DoubleFloat,DoubleFloat) -> Point(
--R            DoubleFloat)),Segment(DoubleFloat),Segment(DoubleFloat),List(
--R            DrawOption)) -> ThreeSpace(DoubleFloat)
--R             from MeshCreationRoutinesForThreeDimensions
--R
--RExamples of meshPar2Var from MeshCreationRoutinesForThreeDimensions
--R
--E 1786

--S 1787 of 3320
)d op message
--R 
--R
--RThere is one unexposed function called message :
--R   [1] String -> OutputForm from OutputForm
--R
--RExamples of message from OutputForm
--R
--E 1787

--S 1788 of 3320
)d op messagePrint
--R 
--R
--RThere is one unexposed function called messagePrint :
--R   [1] String -> Void from OutputForm
--R
--RExamples of messagePrint from OutputForm
--R
--E 1788

--S 1789 of 3320
)d op middle
--R 
--R
--RThere is one exposed function called middle :
--R   [1] RightOpenIntervalRootCharacterization(D1,D2) -> D1
--R             from RightOpenIntervalRootCharacterization(D1,D2)
--R             if D1 has Join(OrderedRing,Field) and D2 has UPOLYC(D1)
--R         
--R
--RExamples of middle from RightOpenIntervalRootCharacterization
--R
--E 1789

--S 1790 of 3320
)d op midpoint
--R 
--R
--RThere is one exposed function called midpoint :
--R   [1] Record(left: Fraction(Integer),right: Fraction(Integer)) -> 
--R            Fraction(Integer)
--R             from RealZeroPackage(D3) if D3 has UPOLYC(INT)
--R
--RExamples of midpoint from RealZeroPackage
--R
--E 1790

--S 1791 of 3320
)d op midpoints
--R 
--R
--RThere is one exposed function called midpoints :
--R   [1] List(Record(left: Fraction(Integer),right: Fraction(Integer)))
--R             -> List(Fraction(Integer))
--R             from RealZeroPackage(D3) if D3 has UPOLYC(INT)
--R
--RExamples of midpoints from RealZeroPackage
--R
--E 1791

--S 1792 of 3320
)d op mightHaveRoots
--R 
--R
--RThere is one exposed function called mightHaveRoots :
--R   [1] (D2,RightOpenIntervalRootCharacterization(D3,D2)) -> Boolean
--R             from RightOpenIntervalRootCharacterization(D3,D2)
--R             if D3 has Join(OrderedRing,Field) and D2 has UPOLYC(D3)
--R         
--R
--RExamples of mightHaveRoots from RightOpenIntervalRootCharacterization
--R
--E 1792

--S 1793 of 3320
)d op min
--R 
--R
--RThere are 5 exposed functions called min :
--R   [1]  -> D from D
--R             if D has FPS and not(has(D,arbitraryPrecision)) and not(
--R            has(D,arbitraryExponent))
--R   [2] D -> D1 from D if D has FSAGG(D1) and D1 has SETCAT and D1 has 
--R            ORDSET
--R   [3] D -> D1 from D if D has OMSAGG(D1) and D1 has ORDSET
--R   [4] (D,D) -> D from D if D has ORDSET
--R   [5]  -> SingleInteger from SingleInteger
--R
--RExamples of min from FloatingPointSystem
--R
--R
--RExamples of min from FiniteSetAggregate
--R
--R
--RExamples of min from OrderedMultisetAggregate
--R
--R
--RExamples of min from OrderedSet
--R
--R
--RExamples of min from SingleInteger
--R
--E 1793

--S 1794 of 3320
)d op minColIndex
--R 
--R
--RThere are 2 exposed functions called minColIndex :
--R   [1] D -> Integer from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] D -> Integer from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of minColIndex from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--RminColIndex(arr)
--R
--R
--RExamples of minColIndex from RectangularMatrixCategory
--R
--E 1794

--S 1795 of 3320
)d op mindeg
--R 
--R
--RThere is one exposed function called mindeg :
--R   [1] D -> OrderedFreeMonoid(D2) from D
--R             if D has XFALG(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R
--RThere is one unexposed function called mindeg :
--R   [1] XPolynomialRing(D2,D1) -> D1 from XPolynomialRing(D2,D1)
--R             if D1 has ORDMON and D2 has RING
--R
--RExamples of mindeg from XFreeAlgebra
--R
--R
--RExamples of mindeg from XPolynomialRing
--R
--E 1795

--S 1796 of 3320
)d op mindegTerm
--R 
--R
--RThere is one exposed function called mindegTerm :
--R   [1] D -> Record(k: OrderedFreeMonoid(D2),c: D3) from D
--R             if D has XFALG(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R
--RExamples of mindegTerm from XFreeAlgebra
--R
--E 1796

--S 1797 of 3320
)d op minGbasis
--R 
--R
--RThere is one unexposed function called minGbasis :
--R   [1] List(D5) -> List(D5) from GroebnerInternalPackage(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D2,D3,D4) and D2 has GCDDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of minGbasis from GroebnerInternalPackage
--R
--E 1797

--S 1798 of 3320
)d op minimalForm
--R 
--R
--RThere are 3 exposed functions called minimalForm :
--R   [1] D1 -> D1 from PackageForPoly(D2,D1,D3,D4)
--R             if D2 has RING and D3 has DIRPCAT(D4,NNI) and D4: NNI and 
--R            D1 has FAMR(D2,D3)
--R   [2] (D1,D2) -> D1 from PolynomialPackageForCurve(D3,D1,D4,D5,D2)
--R             if D3 has FIELD and D4 has DIRPCAT(D5,NNI) and D5: NNI and
--R            D1 has FAMR(D3,D4) and D2 has PRSPCAT(D3)
--R   [3] (D1,D2,Integer) -> D1 from PolynomialPackageForCurve(D4,D1,D5,D6
--R            ,D2)
--R             if D4 has FIELD and D5 has DIRPCAT(D6,NNI) and D6: NNI and
--R            D1 has FAMR(D4,D5) and D2 has PRSPCAT(D4)
--R
--RExamples of minimalForm from PackageForPoly
--R
--R
--RExamples of minimalForm from PolynomialPackageForCurve
--R
--E 1798

--S 1799 of 3320
)d op minimalPolynomial
--R 
--R
--RThere are 3 exposed functions called minimalPolynomial :
--R   [1] (D,PositiveInteger) -> SparseUnivariatePolynomial(D) from D
--R             if D3 has FINITE and D3 has FIELD and D has FAXF(D3)
--R   [2] D -> SparseUnivariatePolynomial(D2) from D if D has FAXF(D2) and
--R            D2 has FIELD
--R   [3] D -> D1 from D
--R             if D has FINRALG(D2,D1) and D2 has COMRING and D2 has 
--R            FIELD and D1 has UPOLYC(D2)
--R
--RThere is one unexposed function called minimalPolynomial :
--R   [1] Vector(D3) -> SparseUnivariatePolynomial(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of minimalPolynomial from FiniteAlgebraicExtensionField
--R
--R
--RExamples of minimalPolynomial from FiniteRankAlgebra
--R
--R
--RExamples of minimalPolynomial from InnerNormalBasisFieldFunctions
--R
--E 1799

--S 1800 of 3320
)d op minimize
--R 
--R
--RThere is one unexposed function called minimize :
--R   [1] FractionalIdeal(D1,D2,D3,D4) -> FractionalIdeal(D1,D2,D3,D4)
--R             from FractionalIdeal(D1,D2,D3,D4)
--R             if D1 has EUCDOM and D2 has QFCAT(D1) and D3 has UPOLYC(D2
--R            ) and D4 has Join(FramedAlgebra(D2,D3),RetractableTo(D2))
--R         
--R
--RExamples of minimize from FractionalIdeal
--R
--E 1800

--S 1801 of 3320
)d op minimumDegree
--R 
--R
--RThere are 5 exposed functions called minimumDegree :
--R   [1] D -> D1 from D if D has FAMR(D2,D1) and D2 has RING and D1 has 
--R            OAMON
--R   [2] D -> NonNegativeInteger from D if D has MLO(D2) and D2 has RING
--R            
--R   [3] D -> NonNegativeInteger from D if D has OREPCAT(D2) and D2 has 
--R            RING
--R   [4] (D,List(D5)) -> List(NonNegativeInteger) from D
--R             if D has POLYCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [5] (D,D2) -> NonNegativeInteger from D
--R             if D has POLYCAT(D3,D4,D2) and D3 has RING and D4 has 
--R            OAMONS and D2 has ORDSET
--R
--RExamples of minimumDegree from FiniteAbelianMonoidRing
--R
--R
--RExamples of minimumDegree from MonogenicLinearOperator
--R
--R
--RExamples of minimumDegree from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of minimumDegree from PolynomialCategory
--R
--E 1801

--S 1802 of 3320
)d op minimumExponent
--R 
--R
--RThere are 2 exposed functions called minimumExponent :
--R   [1]  -> Integer from MachineFloat
--R   [2] Integer -> Integer from MachineFloat
--R
--RExamples of minimumExponent from MachineFloat
--R
--E 1802

--S 1803 of 3320
)d op minIndex
--R 
--R
--RThere is one exposed function called minIndex :
--R   [1] D -> D1 from D
--R             if D has IXAGG(D1,D2) and D2 has TYPE and D1 has SETCAT 
--R            and D1 has ORDSET
--R
--RExamples of minIndex from IndexedAggregate
--R
--E 1803

--S 1804 of 3320
)d op minordet
--R 
--R
--RThere are 3 exposed functions called minordet :
--R   [1] D -> D1 from D
--R             if D has MATCAT(D1,D2,D3) and D2 has FLAGG(D1) and D3 has 
--R            FLAGG(D1) and D1 has commutative(*) and D1 has RING
--R   [2] D2 -> D1 from MatrixLinearAlgebraFunctions(D1,D3,D4,D2)
--R             if D3 has FLAGG(D1) and D4 has FLAGG(D1) and D1 has 
--R            COMRING and D2 has MATCAT(D1,D3,D4)
--R   [3] D -> D1 from D
--R             if D has SMATCAT(D2,D1,D3,D4) and D3 has DIRPCAT(D2,D1) 
--R            and D4 has DIRPCAT(D2,D1) and D1 has commutative(*) and D1
--R             has RING
--R
--RExamples of minordet from MatrixCategory
--R
--Rminordet matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of minordet from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of minordet from SquareMatrixCategory
--R
--E 1804

--S 1805 of 3320
)d op minPoints
--R 
--R
--RThere are 2 exposed functions called minPoints :
--R   [1]  -> Integer from GraphicsDefaults
--R   [2] Integer -> Integer from GraphicsDefaults
--R
--RThere is one unexposed function called minPoints :
--R   [1]  -> Integer from Plot
--R
--RExamples of minPoints from GraphicsDefaults
--R
--R
--RExamples of minPoints from Plot
--R
--E 1805

--S 1806 of 3320
)d op minPoints3D
--R 
--R
--RThere is one unexposed function called minPoints3D :
--R   [1]  -> Integer from Plot3D
--R
--RExamples of minPoints3D from Plot3D
--R
--E 1806

--S 1807 of 3320
)d op minPol
--R 
--R
--RThere are 2 unexposed functions called minPol :
--R   [1] (List(HomogeneousDistributedMultivariatePolynomial(D4,D5)),List(
--R            HomogeneousDistributedMultivariatePolynomial(D4,D5)),
--R            OrderedVariableList(D4)) -> 
--R            HomogeneousDistributedMultivariatePolynomial(D4,D5)
--R             from LinGroebnerPackage(D4,D5) if D4: LIST(SYMBOL) and D5
--R             has GCDDOM
--R   [2] (List(HomogeneousDistributedMultivariatePolynomial(D4,D5)),
--R            OrderedVariableList(D4)) -> 
--R            HomogeneousDistributedMultivariatePolynomial(D4,D5)
--R             from LinGroebnerPackage(D4,D5) if D4: LIST(SYMBOL) and D5
--R             has GCDDOM
--R
--RExamples of minPol from LinGroebnerPackage
--R
--E 1807

--S 1808 of 3320
)d op minPoly
--R 
--R
--RThere is one exposed function called minPoly :
--R   [1] Kernel(D) -> SparseUnivariatePolynomial(D) from D if D has RING 
--R            and D has ES
--R
--RThere is one unexposed function called minPoly :
--R   [1] Kernel(D4) -> SparseUnivariatePolynomial(D4)
--R             from AlgebraicFunction(D3,D4)
--R             if D4 has FS(D3) and D3 has RETRACT(INT) and D3 has Join(
--R            OrderedSet,IntegralDomain)
--R
--RExamples of minPoly from AlgebraicFunction
--R
--R
--RExamples of minPoly from Ring
--R
--E 1808

--S 1809 of 3320
)d op minrank
--R 
--R
--RThere is one unexposed function called minrank :
--R   [1] List(Record(rank: NonNegativeInteger,eqns: List(Record(det: D6,
--R            rows: List(Integer),cols: List(Integer))),fgb: List(D6))) -> 
--R            NonNegativeInteger
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D5,D4) and D3 has Join(
--R            EuclideanDomain,CharacteristicZero) and D4 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D5 has OAMONS
--R
--RExamples of minrank from ParametricLinearEquations
--R
--E 1809

--S 1810 of 3320
)d op minRowIndex
--R 
--R
--RThere are 2 exposed functions called minRowIndex :
--R   [1] D -> Integer from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] D -> Integer from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of minRowIndex from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--RminRowIndex(arr)
--R
--R
--RExamples of minRowIndex from RectangularMatrixCategory
--R
--E 1810

--S 1811 of 3320
)d op minset
--R 
--R
--RThere is one unexposed function called minset :
--R   [1] List(List(D5)) -> List(List(D5))
--R             from ParametricLinearEquations(D2,D3,D4,D5)
--R             if D5 has POLYCAT(D2,D4,D3) and D2 has Join(
--R            EuclideanDomain,CharacteristicZero) and D3 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D4 has OAMONS
--R
--RExamples of minset from ParametricLinearEquations
--R
--E 1811

--S 1812 of 3320
)d op minus!
--R 
--R
--RThere are 2 unexposed functions called minus! :
--R   [1] (Matrix(D2),Matrix(D2)) -> Matrix(D2)
--R             from StorageEfficientMatrixOperations(D2) if D2 has RING
--R         
--R   [2] (Matrix(D2),Matrix(D2),Matrix(D2)) -> Matrix(D2)
--R             from StorageEfficientMatrixOperations(D2) if D2 has RING
--R         
--R
--RExamples of minus! from StorageEfficientMatrixOperations
--R
--E 1812

--S 1813 of 3320
)d op minusInfinity
--R 
--R
--RThere are 2 exposed functions called minusInfinity :
--R   [1]  -> OrderedCompletion(Integer) from Infinity
--R   [2]  -> OrderedCompletion(D1) from OrderedCompletion(D1) if D1 has 
--R            SETCAT
--R
--RExamples of minusInfinity from Infinity
--R
--R
--RExamples of minusInfinity from OrderedCompletion
--R
--E 1813

--S 1814 of 3320
)d op mirror
--R 
--R
--RThere are 2 exposed functions called mirror :
--R   [1] D -> D from D if D has FLALG(D1,D2) and D1 has ORDSET and D2
--R             has COMRING
--R   [2] D -> D from D if D has XFALG(D1,D2) and D1 has ORDSET and D2
--R             has RING
--R
--RThere are 3 unexposed functions called mirror :
--R   [1] LieExponentials(D1,D2,D3) -> LieExponentials(D1,D2,D3)
--R             from LieExponentials(D1,D2,D3)
--R             if D1 has ORDSET and D2 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D3: PI
--R   [2] Magma(D1) -> Magma(D1) from Magma(D1) if D1 has ORDSET
--R   [3] OrderedFreeMonoid(D1) -> OrderedFreeMonoid(D1) from 
--R            OrderedFreeMonoid(D1)
--R             if D1 has ORDSET
--R
--RExamples of mirror from FreeLieAlgebra
--R
--R
--RExamples of mirror from LieExponentials
--R
--R
--RExamples of mirror from Magma
--R
--R
--RExamples of mirror from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rmirror m1
--R
--R
--RExamples of mirror from XFreeAlgebra
--R
--E 1814

--S 1815 of 3320
)d op mix
--R 
--R
--RThere is one unexposed function called mix :
--R   [1] List(Record(den: Integer,gcdnum: Integer)) -> Integer
--R             from PointsOfFiniteOrderTools(D3,D4)
--R             if D3 has UPOLYC(FRAC(INT)) and D4 has UPOLYC(FRAC(D3))
--R         
--R
--RExamples of mix from PointsOfFiniteOrderTools
--R
--E 1815

--S 1816 of 3320
)d op mkAnswer
--R 
--R
--RThere is one unexposed function called mkAnswer :
--R   [1] (D1,List(Record(scalar: Fraction(Integer),coeff: 
--R            SparseUnivariatePolynomial(D1),logand: SparseUnivariatePolynomial
--R            (D1))),List(Record(integrand: D1,intvar: D1))) -> 
--R            IntegrationResult(D1)
--R             from IntegrationResult(D1) if D1 has FIELD
--R
--RExamples of mkAnswer from IntegrationResult
--R
--E 1816

--S 1817 of 3320
)d op mkcomm
--R 
--R
--RThere are 2 exposed functions called mkcomm :
--R   [1] (Commutator,Commutator) -> Commutator from Commutator
--R   [2] Integer -> Commutator from Commutator
--R
--RExamples of mkcomm from Commutator
--R
--E 1817

--S 1818 of 3320
)d op mkIntegral
--R 
--R
--RThere is one unexposed function called mkIntegral :
--R   [1] D2 -> Record(coef: Fraction(D4),poly: D2) from ChangeOfVariable(
--R            D3,D4,D2)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D2 has UPOLYC(FRAC
--R            (D4))
--R
--RExamples of mkIntegral from ChangeOfVariable
--R
--E 1818

--S 1819 of 3320
)d op mkPrim
--R 
--R
--RThere is one unexposed function called mkPrim :
--R   [1] (D1,Symbol) -> D1 from IntegrationTools(D3,D1)
--R             if D3 has GCDDOM and D3 has ORDSET and D1 has ELEMFUN and 
--R            D1 has FS(D3)
--R
--RExamples of mkPrim from IntegrationTools
--R
--E 1819

--S 1820 of 3320
)d op modifyPoint
--R 
--R
--RThere are 3 unexposed functions called modifyPoint :
--R   [1] (SubSpace(D3,D4),NonNegativeInteger,Point(D4)) -> SubSpace(D3,D4
--R            )
--R             from SubSpace(D3,D4) if D4 has RING and D3: PI
--R   [2] (SubSpace(D3,D4),List(NonNegativeInteger),NonNegativeInteger)
--R             -> SubSpace(D3,D4)
--R             from SubSpace(D3,D4) if D3: PI and D4 has RING
--R   [3] (SubSpace(D3,D4),List(NonNegativeInteger),Point(D4)) -> SubSpace
--R            (D3,D4)
--R             from SubSpace(D3,D4) if D4 has RING and D3: PI
--R
--RExamples of modifyPoint from SubSpace
--R
--E 1820

--S 1821 of 3320
)d op modifyPointData
--R 
--R
--RThere are 2 exposed functions called modifyPointData :
--R   [1] (D,NonNegativeInteger,Point(D3)) -> D from D
--R             if D has SPACEC(D3) and D3 has RING
--R   [2] (ThreeDimensionalViewport,NonNegativeInteger,Point(DoubleFloat))
--R             -> Void
--R             from ThreeDimensionalViewport
--R
--RExamples of modifyPointData from ThreeSpaceCategory
--R
--R
--RExamples of modifyPointData from ThreeDimensionalViewport
--R
--E 1821

--S 1822 of 3320
)d op modTree
--R 
--R
--RThere is one exposed function called modTree :
--R   [1] (D2,List(D2)) -> List(D2) from CRApackage(D2) if D2 has EUCDOM
--R         
--R
--RExamples of modTree from CRApackage
--R
--E 1822

--S 1823 of 3320
)d op modularFactor
--R 
--R
--RThere is one unexposed function called modularFactor :
--R   [1] D2 -> Record(prime: Integer,factors: List(D2))
--R             from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R
--RExamples of modularFactor from GaloisGroupFactorizer
--R
--E 1823

--S 1824 of 3320
)d op modularGcd
--R 
--R
--RThere is one unexposed function called modularGcd :
--R   [1] List(D1) -> D1 from InnerModularGcd(D3,D1,D4,D5)
--R             if D1 has UPOLYC(D3) and D3 has EUCDOM and D4: D3 and D5: 
--R            ((D3,NonNegativeInteger) -> D3)
--R
--RExamples of modularGcd from InnerModularGcd
--R
--E 1824

--S 1825 of 3320
)d op modularGcdPrimitive
--R 
--R
--RThere is one unexposed function called modularGcdPrimitive :
--R   [1] List(D1) -> D1 from InnerModularGcd(D3,D1,D4,D5)
--R             if D1 has UPOLYC(D3) and D3 has EUCDOM and D4: D3 and D5: 
--R            ((D3,NonNegativeInteger) -> D3)
--R
--RExamples of modularGcdPrimitive from InnerModularGcd
--R
--E 1825

--S 1826 of 3320
)d op module
--R 
--R
--RThere are 2 unexposed functions called module :
--R   [1] FractionalIdeal(D2,D3,D4,D5) -> FramedModule(D2,D3,D4,D5,D6)
--R             from FramedModule(D2,D3,D4,D5,D6)
--R             if D5 has RETRACT(D3) and D2 has EUCDOM and D3 has QFCAT(
--R            D2) and D4 has UPOLYC(D3) and D5 has FRAMALG(D3,D4) and D6
--R            : VECTOR(D5)
--R   [2] Vector(D5) -> FramedModule(D2,D3,D4,D5,D6)
--R             from FramedModule(D2,D3,D4,D5,D6)
--R             if D5 has FRAMALG(D3,D4) and D3 has QFCAT(D2) and D4 has 
--R            UPOLYC(D3) and D2 has EUCDOM and D6: VECTOR(D5)
--R
--RExamples of module from FramedModule
--R
--E 1826

--S 1827 of 3320
)d op moduleSum
--R 
--R
--RThere is one unexposed function called moduleSum :
--R   [1] (Record(basis: Matrix(D2),basisDen: D2,basisInv: Matrix(D2)),
--R            Record(basis: Matrix(D2),basisDen: D2,basisInv: Matrix(D2))) -> 
--R            Record(basis: Matrix(D2),basisDen: D2,basisInv: Matrix(D2))
--R             from IntegralBasisTools(D2,D3,D4)
--R             if D2 has EuclideanDomainwith
--R               squareFree : % -> Factored(%)and D3 has UPOLYC(D2) 
--R            and D4 has FRAMALG(D2,D3)
--R
--RExamples of moduleSum from IntegralBasisTools
--R
--E 1827

--S 1828 of 3320
)d op moduloP
--R 
--R
--RThere is one exposed function called moduloP :
--R   [1] D -> Integer from D if D has PADICCT(D2)
--R
--RExamples of moduloP from PAdicIntegerCategory
--R
--E 1828

--S 1829 of 3320
)d op modulus
--R 
--R
--RThere is one exposed function called modulus :
--R   [1]  -> Integer from D if D has PADICCT(D2)
--R
--RThere are 4 unexposed functions called modulus :
--R   [1] EuclideanModularRing(D2,D3,D1,D4,D5,D6) -> D1
--R             from EuclideanModularRing(D2,D3,D1,D4,D5,D6)
--R             if D2 has COMRING and D1 has ABELMON and D3 has UPOLYC(D2)
--R            and D4: ((D3,D1) -> D3) and D5: ((D1,D1) -> Union(D1,
--R            "failed")) and D6: ((D3,D3,D1) -> Union(D3,"failed"))
--R   [2] ModularField(D2,D1,D3,D4,D5) -> D1 from ModularField(D2,D1,D3,D4
--R            ,D5)
--R             if D1 has ABELMON and D2 has COMRING and D3: ((D2,D1) -> 
--R            D2) and D4: ((D1,D1) -> Union(D1,"failed")) and D5: ((D2,D2
--R            ,D1) -> Union(D2,"failed"))
--R   [3]  -> D1 from ModMonic(D2,D1) if D1 has UPOLYC(D2) and D2 has RING
--R            
--R   [4] ModularRing(D2,D1,D3,D4,D5) -> D1 from ModularRing(D2,D1,D3,D4,
--R            D5)
--R             if D1 has ABELMON and D2 has COMRING and D3: ((D2,D1) -> 
--R            D2) and D4: ((D1,D1) -> Union(D1,"failed")) and D5: ((D2,D2
--R            ,D1) -> Union(D2,"failed"))
--R
--RExamples of modulus from EuclideanModularRing
--R
--R
--RExamples of modulus from ModularField
--R
--R
--RExamples of modulus from ModMonic
--R
--R
--RExamples of modulus from ModularRing
--R
--R
--RExamples of modulus from PAdicIntegerCategory
--R
--E 1829

--S 1830 of 3320
)d op moebius
--R 
--R
--RThere is one unexposed function called moebius :
--R   [1] (D1,D1,D1,D1) -> MoebiusTransform(D1) from MoebiusTransform(D1)
--R             if D1 has FIELD
--R
--RExamples of moebius from MoebiusTransform
--R
--E 1830

--S 1831 of 3320
)d op moebiusMu
--R 
--R
--RThere is one exposed function called moebiusMu :
--R   [1] Integer -> Integer from IntegerNumberTheoryFunctions
--R
--RExamples of moebiusMu from IntegerNumberTheoryFunctions
--R
--E 1831

--S 1832 of 3320
)d op monic?
--R 
--R
--RThere is one exposed function called monic? :
--R   [1] D -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RThere is one unexposed function called monic? :
--R   [1] D2 -> Boolean from GaloisGroupPolynomialUtilities(D3,D2)
--R             if D3 has RING and D2 has UPOLYC(D3)
--R
--RExamples of monic? from GaloisGroupPolynomialUtilities
--R
--R
--RExamples of monic? from RecursivePolynomialCategory
--R
--E 1832

--S 1833 of 3320
)d op monicCompleteDecompose
--R 
--R
--RThere is one unexposed function called monicCompleteDecompose :
--R   [1] D2 -> List(D2) from UnivariatePolynomialDecompositionPackage(D3,
--R            D2)
--R             if D3 has Join(IntegralDomain,CharacteristicZero) and D2
--R             has UPOLYC(D3)
--R
--RExamples of monicCompleteDecompose from UnivariatePolynomialDecompositionPackage
--R
--E 1833

--S 1834 of 3320
)d op monicDecomposeIfCan
--R 
--R
--RThere is one unexposed function called monicDecomposeIfCan :
--R   [1] D2 -> Union(Record(left: D2,right: D2),"failed")
--R             from UnivariatePolynomialDecompositionPackage(D3,D2)
--R             if D3 has Join(IntegralDomain,CharacteristicZero) and D2
--R             has UPOLYC(D3)
--R
--RExamples of monicDecomposeIfCan from UnivariatePolynomialDecompositionPackage
--R
--E 1834

--S 1835 of 3320
)d op monicDivide
--R 
--R
--RThere are 2 exposed functions called monicDivide :
--R   [1] (D,D,D2) -> Record(quotient: D,remainder: D) from D
--R             if D3 has RING and D4 has OAMONS and D2 has ORDSET and D
--R             has POLYCAT(D3,D4,D2)
--R   [2] (D,D) -> Record(quotient: D,remainder: D) from D
--R             if D2 has RING and D has UPOLYC(D2)
--R
--RExamples of monicDivide from PolynomialCategory
--R
--R
--RExamples of monicDivide from UnivariatePolynomialCategory
--R
--E 1835

--S 1836 of 3320
)d op monicLeftDivide
--R 
--R
--RThere is one exposed function called monicLeftDivide :
--R   [1] (D,D) -> Record(quotient: D,remainder: D) from D
--R             if D2 has INTDOM and D2 has RING and D has OREPCAT(D2)
--R
--RThere is one unexposed function called monicLeftDivide :
--R   [1] (D2,D2,Automorphism(D4)) -> Record(quotient: D2,remainder: D2)
--R             from UnivariateSkewPolynomialCategoryOps(D4,D2)
--R             if D4 has INTDOM and D4 has RING and D2 has OREPCAT(D4)
--R         
--R
--RExamples of monicLeftDivide from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of monicLeftDivide from UnivariateSkewPolynomialCategoryOps
--R
--E 1836

--S 1837 of 3320
)d op monicModulo
--R 
--R
--RThere is one exposed function called monicModulo :
--R   [1] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RThere is one unexposed function called monicModulo :
--R   [1] (NewSparseUnivariatePolynomial(D1),NewSparseUnivariatePolynomial
--R            (D1)) -> NewSparseUnivariatePolynomial(D1)
--R             from NewSparseUnivariatePolynomial(D1) if D1 has RING
--R
--RExamples of monicModulo from NewSparseUnivariatePolynomial
--R
--R
--RExamples of monicModulo from RecursivePolynomialCategory
--R
--E 1837

--S 1838 of 3320
)d op monicRightDivide
--R 
--R
--RThere is one exposed function called monicRightDivide :
--R   [1] (D,D) -> Record(quotient: D,remainder: D) from D
--R             if D2 has INTDOM and D2 has RING and D has OREPCAT(D2)
--R
--RThere is one unexposed function called monicRightDivide :
--R   [1] (D2,D2,Automorphism(D4)) -> Record(quotient: D2,remainder: D2)
--R             from UnivariateSkewPolynomialCategoryOps(D4,D2)
--R             if D4 has INTDOM and D4 has RING and D2 has OREPCAT(D4)
--R         
--R
--RExamples of monicRightDivide from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of monicRightDivide from UnivariateSkewPolynomialCategoryOps
--R
--E 1838

--S 1839 of 3320
)d op monicRightFactorIfCan
--R 
--R
--RThere is one unexposed function called monicRightFactorIfCan :
--R   [1] (D1,NonNegativeInteger) -> Union(D1,"failed")
--R             from UnivariatePolynomialDecompositionPackage(D3,D1)
--R             if D3 has Join(IntegralDomain,CharacteristicZero) and D1
--R             has UPOLYC(D3)
--R
--RExamples of monicRightFactorIfCan from UnivariatePolynomialDecompositionPackage
--R
--E 1839

--S 1840 of 3320
)d op monom
--R 
--R
--RThere are 2 exposed functions called monom :
--R   [1] (D1,D2) -> D from D if D has FMCAT(D2,D1) and D2 has RING and D1
--R             has SETCAT
--R   [2] (OrderedFreeMonoid(D3),D2) -> D from D
--R             if D3 has ORDSET and D has XFALG(D3,D2) and D2 has RING
--R         
--R
--RThere is one unexposed function called monom :
--R   [1] (D2,Integer) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R
--RExamples of monom from FreeModuleCat
--R
--R
--RExamples of monom from StreamTaylorSeriesOperations
--R
--R
--RExamples of monom from XFreeAlgebra
--R
--E 1840

--S 1841 of 3320
)d op monomial
--R 
--R
--RThere are 11 exposed functions called monomial :
--R   [1] (D1,D2) -> D from D if D has AMR(D1,D2) and D1 has RING and D2
--R             has OAMON
--R   [2] (D1,List(PositiveInteger)) -> CliffordAlgebra(D3,D1,D4)
--R             from CliffordAlgebra(D3,D1,D4)
--R             if D3: PI and D1 has FIELD and D4: QFORM(D3,D1)
--R   [3] (D1,D2) -> D from D if D has IDPC(D1,D2) and D1 has SETCAT and 
--R            D2 has ORDSET
--R   [4] (D1,NonNegativeInteger) -> D from D if D has MLO(D1) and D1 has 
--R            RING
--R   [5] (D,List(D4),List(NonNegativeInteger)) -> D from D
--R             if D has MTSCAT(D3,D4) and D3 has RING and D4 has ORDSET
--R         
--R   [6] (D,D1,NonNegativeInteger) -> D from D
--R             if D has MTSCAT(D3,D1) and D3 has RING and D1 has ORDSET
--R         
--R   [7] (D1,NonNegativeInteger) -> D from D if D has OREPCAT(D1) and D1
--R             has RING
--R   [8] (D,List(D5),List(NonNegativeInteger)) -> D from D
--R             if D has POLYCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [9] (D,D1,NonNegativeInteger) -> D from D
--R             if D has POLYCAT(D3,D4,D1) and D3 has RING and D4 has 
--R            OAMONS and D1 has ORDSET
--R   [10] (D,List(D5),List(D4)) -> D from D
--R             if D has PSCAT(D3,D4,D5) and D3 has RING and D4 has OAMON 
--R            and D5 has ORDSET
--R   [11] (D,D1,D2) -> D from D
--R             if D has PSCAT(D3,D2,D1) and D3 has RING and D2 has OAMON 
--R            and D1 has ORDSET
--R
--RThere are 3 unexposed functions called monomial :
--R   [1] (D1,ModuleMonomial(D4,D5,D6)) -> GeneralModulePolynomial(D3,D1,
--R            D4,D5,D6,D7)
--R             from GeneralModulePolynomial(D3,D1,D4,D5,D6,D7)
--R             if D4 has ORDSET and D5 has DIRPCAT(#(D3),NNI) and D6: ((
--R            Record(index: D4,exponent: D5),Record(index: D4,exponent: 
--R            D5)) -> Boolean) and D3: LIST(SYMBOL) and D1 has COMRING 
--R            and D7 has POLYCAT(D1,D5,OVAR(D3))
--R   [2] (D1,Integer) -> LaurentPolynomial(D1,D3) from LaurentPolynomial(
--R            D1,D3)
--R             if D1 has INTDOM and D3 has UPOLYC(D1)
--R   [3] (D1,D2) -> MonoidRing(D1,D2) from MonoidRing(D1,D2)
--R             if D1 has RING and D2 has MONOID
--R
--RExamples of monomial from AbelianMonoidRing
--R
--R
--RExamples of monomial from CliffordAlgebra
--R
--R
--RExamples of monomial from GeneralModulePolynomial
--R
--R
--RExamples of monomial from IndexedDirectProductCategory
--R
--R
--RExamples of monomial from LaurentPolynomial
--R
--R
--RExamples of monomial from MonogenicLinearOperator
--R
--R
--RExamples of monomial from MonoidRing
--R
--R
--RExamples of monomial from MultivariateTaylorSeriesCategory
--R
--R
--RExamples of monomial from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of monomial from PolynomialCategory
--R
--R
--RExamples of monomial from PowerSeriesCategory
--R
--E 1841

--S 1842 of 3320
)d op monomial?
--R 
--R
--RThere are 3 exposed functions called monomial? :
--R   [1] D -> Boolean from D if D has AMR(D2,D3) and D2 has RING and D3
--R             has OAMON
--R   [2] D -> Boolean from D if D has FMCAT(D2,D3) and D2 has RING and D3
--R             has SETCAT
--R   [3] D -> Boolean from D if D has XFALG(D2,D3) and D2 has ORDSET and 
--R            D3 has RING
--R
--RThere are 3 unexposed functions called monomial? :
--R   [1] InnerSparseUnivariatePowerSeries(D2) -> Boolean
--R             from InnerSparseUnivariatePowerSeries(D2) if D2 has RING
--R         
--R   [2] LaurentPolynomial(D2,D3) -> Boolean from LaurentPolynomial(D2,D3
--R            )
--R             if D2 has INTDOM and D3 has UPOLYC(D2)
--R   [3] MonoidRing(D2,D3) -> Boolean from MonoidRing(D2,D3)
--R             if D2 has RING and D3 has MONOID
--R
--RExamples of monomial? from AbelianMonoidRing
--R
--R
--RExamples of monomial? from FreeModuleCat
--R
--R
--RExamples of monomial? from InnerSparseUnivariatePowerSeries
--R
--R
--RExamples of monomial? from LaurentPolynomial
--R
--R
--RExamples of monomial? from MonoidRing
--R
--R
--RExamples of monomial? from XFreeAlgebra
--R
--E 1842

--S 1843 of 3320
)d op monomial2series
--R 
--R
--RThere is one exposed function called monomial2series :
--R   [1] (List(D),List(NonNegativeInteger),Integer) -> D from D
--R             if D has LOCPOWC(D4) and D4 has FIELD
--R
--RExamples of monomial2series from LocalPowerSeriesCategory
--R
--E 1843

--S 1844 of 3320
)d op monomialIntegrate
--R 
--R
--RThere is one unexposed function called monomialIntegrate :
--R   [1] (Fraction(D5),(D5 -> D5)) -> Record(ir: IntegrationResult(
--R            Fraction(D5)),specpart: Fraction(D5),polypart: D5)
--R             from TranscendentalIntegration(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has FIELD
--R
--RExamples of monomialIntegrate from TranscendentalIntegration
--R
--E 1844

--S 1845 of 3320
)d op monomialIntPoly
--R 
--R
--RThere is one unexposed function called monomialIntPoly :
--R   [1] (D2,(D2 -> D2)) -> Record(answer: D2,polypart: D2)
--R             from TranscendentalIntegration(D4,D2)
--R             if D2 has UPOLYC(D4) and D4 has FIELD
--R
--RExamples of monomialIntPoly from TranscendentalIntegration
--R
--E 1845

--S 1846 of 3320
)d op monomials
--R 
--R
--RThere are 3 exposed functions called monomials :
--R   [1] D -> List(D) from D if D2 has RING and D3 has SETCAT and D has 
--R            FMCAT(D2,D3)
--R   [2] D2 -> List(D2) from PackageForPoly(D3,D2,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D2 has FAMR(D3,D4)
--R   [3] D -> List(D) from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has POLYCAT(D2,D3,D4)
--R
--RThere is one unexposed function called monomials :
--R   [1] MonoidRing(D2,D3) -> List(MonoidRing(D2,D3)) from MonoidRing(D2,
--R            D3)
--R             if D2 has RING and D3 has MONOID
--R
--RExamples of monomials from FreeModuleCat
--R
--R
--RExamples of monomials from MonoidRing
--R
--R
--RExamples of monomials from PackageForPoly
--R
--R
--RExamples of monomials from PolynomialCategory
--R
--E 1846

--S 1847 of 3320
)d op monomRDE
--R 
--R
--RThere is one unexposed function called monomRDE :
--R   [1] (Fraction(D5),Fraction(D5),(D5 -> D5)) -> Union(Record(a: D5,b: 
--R            Fraction(D5),c: Fraction(D5),t: D5),"failed")
--R             from TranscendentalRischDE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer))
--R
--RExamples of monomRDE from TranscendentalRischDE
--R
--E 1847

--S 1848 of 3320
)d op monomRDEsys
--R 
--R
--RThere is one unexposed function called monomRDEsys :
--R   [1] (Fraction(D5),Fraction(D5),Fraction(D5),(D5 -> D5)) -> Union(
--R            Record(a: D5,b: Fraction(D5),h: D5,c1: Fraction(D5),c2: Fraction(
--R            D5),t: D5),"failed")
--R             from TranscendentalRischDESystem(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer))
--R
--RExamples of monomRDEsys from TranscendentalRischDESystem
--R
--E 1848

--S 1849 of 3320
)d op more?
--R 
--R
--RThere are 6 exposed functions called more? :
--R   [1] (D,NonNegativeInteger) -> Boolean from D if D has AGG
--R   [2] (ArrayStack(D3),NonNegativeInteger) -> Boolean from ArrayStack(
--R            D3)
--R             if D3 has SETCAT
--R   [3] (Dequeue(D3),NonNegativeInteger) -> Boolean from Dequeue(D3) if 
--R            D3 has SETCAT
--R   [4] (Heap(D3),NonNegativeInteger) -> Boolean from Heap(D3) if D3
--R             has ORDSET
--R   [5] (Queue(D3),NonNegativeInteger) -> Boolean from Queue(D3) if D3
--R             has SETCAT
--R   [6] (Stack(D3),NonNegativeInteger) -> Boolean from Stack(D3) if D3
--R             has SETCAT
--R
--RThere is one unexposed function called more? :
--R   [1] (D2,D2) -> Boolean from UserDefinedPartialOrdering(D2)
--R             if D2 has ORDSET and D2 has SETCAT
--R
--RExamples of more? from Aggregate
--R
--R
--RExamples of more? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rmore?(a,9)
--R
--R
--RExamples of more? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rmore?(a,9)
--R
--R
--RExamples of more? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rmore?(a,9)
--R
--R
--RExamples of more? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rmore?(a,9)
--R
--R
--RExamples of more? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rmore?(a,9)
--R
--R
--RExamples of more? from UserDefinedPartialOrdering
--R
--E 1849

--S 1850 of 3320
)d op moreAlgebraic?
--R 
--R
--RThere are 2 exposed functions called moreAlgebraic? :
--R   [1] (D2,D2) -> Boolean from QuasiComponentPackage(D3,D4,D5,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (D2,D2) -> Boolean from SquareFreeQuasiComponentPackage(D3,D4,D5
--R            ,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of moreAlgebraic? from QuasiComponentPackage
--R
--R
--RExamples of moreAlgebraic? from SquareFreeQuasiComponentPackage
--R
--E 1850

--S 1851 of 3320
)d op morphism
--R 
--R
--RThere are 3 unexposed functions called morphism :
--R   [1] ((D2,Integer) -> D2) -> Automorphism(D2) from Automorphism(D2)
--R             if D2 has RING
--R   [2] ((D2 -> D2),(D2 -> D2)) -> Automorphism(D2) from Automorphism(D2
--R            )
--R             if D2 has RING
--R   [3] (D2 -> D2) -> Automorphism(D2) from Automorphism(D2) if D2 has 
--R            RING
--R
--RExamples of morphism from Automorphism
--R
--E 1851

--S 1852 of 3320
)d op move
--R 
--R
--RThere is one exposed function called move :
--R   [1] (ThreeDimensionalViewport,NonNegativeInteger,NonNegativeInteger)
--R             -> Void
--R             from ThreeDimensionalViewport
--R
--RThere is one unexposed function called move :
--R   [1] (TwoDimensionalViewport,NonNegativeInteger,NonNegativeInteger)
--R             -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of move from TwoDimensionalViewport
--R
--R
--RExamples of move from ThreeDimensionalViewport
--R
--E 1852

--S 1853 of 3320 done
)d op movedPoints
--R 
--R
--RThere are 2 exposed functions called movedPoints :
--R   [1] PermutationGroup(D2) -> Set(D2) from PermutationGroup(D2) if D2
--R             has SETCAT
--R   [2] Permutation(D2) -> Set(D2) from Permutation(D2) if D2 has SETCAT
--R            
--R
--RExamples of movedPoints from PermutationGroup
--R
--Rx : PERM INT := [[1,3,5],[7,11,9]] 
--Rz : PERM INT := [1,3,11] 
--Rg : PERMGRP INT := [ x , z ] 
--RmovedPoints g
--R
--R
--RExamples of movedPoints from Permutation
--R
--Rp := coercePreimagesImages([[1,2,3],[1,2,3]]) 
--RmovedPoints p
--R
--E 1853

--S 1854 of 3320
)d op mpsode
--R 
--R
--RThere is one unexposed function called mpsode :
--R   [1] (List(D4),List((List(D5) -> D5))) -> List(D5)
--R             from UnivariateTaylorSeriesODESolver(D4,D5)
--R             if D4 has ALGEBRA(FRAC(INT)) and D5 has UTSCAT(D4)
--R
--RExamples of mpsode from UnivariateTaylorSeriesODESolver
--R
--E 1854

--S 1855 of 3320
)d op MPtoMPT
--R 
--R
--RThere is one exposed function called MPtoMPT :
--R   [1] (Polynomial(Integer),Symbol,List(Symbol),D5) -> D1 from D
--R             if D has MAGCDOC(D1,D5) and D5 has TYPE and D1 has TYPE
--R         
--R
--RExamples of MPtoMPT from ModularAlgebraicGcdOperations
--R
--E 1855

--S 1856 of 3320
)d op mr
--R 
--R
--RThere is one unexposed function called mr :
--R   [1] List(List(List(D3))) -> Record(f1: List(D3),f2: List(List(List(
--R            D3))),f3: List(List(D3)),f4: List(List(List(D3))))
--R             from TableauxBumpers(D3) if D3 has ORDSET
--R
--RExamples of mr from TableauxBumpers
--R
--E 1856

--S 1857 of 3320
)d op mul
--R 
--R
--RThere is one exposed function called mul :
--R   [1] (U32Vector,U32Vector,Integer) -> U32Vector
--R             from U32VectorPolynomialOperations
--R
--RExamples of mul from U32VectorPolynomialOperations
--R
--E 1857

--S 1858 of 3320
--R--------------------)d op mul_by_binomial (fix this)
--E 1858

--S 1859 of 3320
--R--------------------)d op mul_by_scalar (fix this)
--E 1859

--S 1860 of 3320
)d op mulmod
--R 
--R
--RThere is one exposed function called mulmod :
--R   [1] (D,D,D) -> D from D if D has INS
--R
--RExamples of mulmod from IntegerNumberSystem
--R
--E 1860

--S 1861 of 3320
)d op multiEuclidean
--R 
--R
--RThere is one exposed function called multiEuclidean :
--R   [1] (List(D),D) -> Union(List(D),"failed") from D if D has EUCDOM
--R         
--R
--RExamples of multiEuclidean from EuclideanDomain
--R
--E 1861

--S 1862 of 3320
)d op multiEuclideanTree
--R 
--R
--RThere is one exposed function called multiEuclideanTree :
--R   [1] (List(D2),D2) -> List(D2) from CRApackage(D2) if D2 has EUCDOM
--R         
--R
--RExamples of multiEuclideanTree from CRApackage
--R
--E 1862

--S 1863 of 3320
)d op multinomial
--R 
--R
--RThere is one exposed function called multinomial :
--R   [1] (D1,List(D1)) -> D1 from IntegerCombinatoricFunctions(D1) if D1
--R             has INS
--R
--RExamples of multinomial from IntegerCombinatoricFunctions
--R
--E 1863

--S 1864 of 3320
)d op multiple
--R 
--R
--RThere are 2 exposed functions called multiple :
--R   [1] D1 -> D1 from FunctionSpaceAssertions(D2,D1)
--R             if D2 has ORDSET and D1 has FS(D2)
--R   [2] Symbol -> Expression(Integer) from PatternMatchAssertions
--R
--RExamples of multiple from FunctionSpaceAssertions
--R
--R
--RExamples of multiple from PatternMatchAssertions
--R
--E 1864

--S 1865 of 3320
)d op multiple?
--R 
--R
--RThere is one unexposed function called multiple? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of multiple? from Pattern
--R
--E 1865

--S 1866 of 3320
)d op multiplicative?
--R 
--R
--RThere is one exposed function called multiplicative? :
--R   [1] (DirichletRing(D3),PositiveInteger) -> Boolean from 
--R            DirichletRing(D3)
--R             if D3 has RING
--R
--RExamples of multiplicative? from DirichletRing
--R
--E 1866

--S 1867 of 3320
)d op multiplicity
--R 
--R
--RThere are 3 exposed functions called multiplicity :
--R   [1] List(List(D4)) -> NonNegativeInteger from NewtonPolygon(D3,D4,D5
--R            ,D6)
--R             if D4 has FAMR(D3,D5) and D5 has DIRPCAT(D6,NNI) and D6: 
--R            NNI and D3 has RING
--R   [2] (D2,D3) -> NonNegativeInteger
--R             from PolynomialPackageForCurve(D4,D2,D5,D6,D3)
--R             if D4 has FIELD and D5 has DIRPCAT(D6,NNI) and D6: NNI and
--R            D2 has FAMR(D4,D5) and D3 has PRSPCAT(D4)
--R   [3] (D2,D3,Integer) -> NonNegativeInteger
--R             from PolynomialPackageForCurve(D5,D2,D6,D7,D3)
--R             if D5 has FIELD and D6 has DIRPCAT(D7,NNI) and D7: NNI and
--R            D2 has FAMR(D5,D6) and D3 has PRSPCAT(D5)
--R
--RExamples of multiplicity from NewtonPolygon
--R
--R
--RExamples of multiplicity from PolynomialPackageForCurve
--R
--E 1867

--S 1868 of 3320
)d op multiplyCoefficients
--R 
--R
--RThere are 2 exposed functions called multiplyCoefficients :
--R   [1] ((Integer -> D2),D) -> D from D if D has ULSCAT(D2) and D2 has 
--R            RING
--R   [2] ((Integer -> D2),D) -> D from D if D has UTSCAT(D2) and D2 has 
--R            RING
--R
--RThere is one unexposed function called multiplyCoefficients :
--R   [1] ((Integer -> D2),InnerSparseUnivariatePowerSeries(D2)) -> 
--R            InnerSparseUnivariatePowerSeries(D2)
--R             from InnerSparseUnivariatePowerSeries(D2) if D2 has RING
--R         
--R
--RExamples of multiplyCoefficients from InnerSparseUnivariatePowerSeries
--R
--R
--RExamples of multiplyCoefficients from UnivariateLaurentSeriesCategory
--R
--R
--RExamples of multiplyCoefficients from UnivariateTaylorSeriesCategory
--R
--E 1868

--S 1869 of 3320
)d op multiplyExponents
--R 
--R
--RThere are 3 exposed functions called multiplyExponents :
--R   [1] (D,NonNegativeInteger) -> D from D if D has UPOLYC(D2) and D2
--R             has RING
--R   [2] (D,PositiveInteger) -> D from D
--R             if D has UPSCAT(D2,D3) and D2 has RING and D3 has OAMON
--R         
--R   [3] (D,Fraction(Integer)) -> D from D if D has UPXSCAT(D2) and D2
--R             has RING
--R
--RExamples of multiplyExponents from UnivariatePolynomialCategory
--R
--R
--RExamples of multiplyExponents from UnivariatePowerSeriesCategory
--R
--R
--RExamples of multiplyExponents from UnivariatePuiseuxSeriesCategory
--R
--E 1869

--S 1870 of 3320
)d op multisect
--R 
--R
--RThere are 2 exposed functions called multisect :
--R   [1] (Integer,Integer,UnivariateFormalPowerSeries(D2)) -> 
--R            UnivariateFormalPowerSeries(D2)
--R             from UnivariateFormalPowerSeries(D2) if D2 has RING
--R   [2] (Integer,Integer,UnivariateTaylorSeriesCZero(D2,D3)) -> 
--R            UnivariateTaylorSeriesCZero(D2,D3)
--R             from UnivariateTaylorSeriesCZero(D2,D3) if D2 has RING and
--R            D3: SYMBOL
--R
--RThere are 2 unexposed functions called multisect :
--R   [1] (Integer,Integer,Stream(D3)) -> Stream(D3)
--R             from StreamTaylorSeriesOperations(D3) if D3 has RING
--R   [2] (Integer,Integer,UnivariateTaylorSeries(D2,D3,D4)) -> 
--R            UnivariateTaylorSeries(D2,D3,D4)
--R             from UnivariateTaylorSeries(D2,D3,D4)
--R             if D2 has RING and D3: SYMBOL and D4: D2
--R
--RExamples of multisect from StreamTaylorSeriesOperations
--R
--R
--RExamples of multisect from UnivariateFormalPowerSeries
--R
--R
--RExamples of multisect from UnivariateTaylorSeries
--R
--R
--RExamples of multisect from UnivariateTaylorSeriesCZero
--R
--E 1870

--S 1871 of 3320
)d op multiServ
--R 
--R
--RThere is one exposed function called multiServ :
--R   [1] SExpression -> Void from AxiomServer
--R
--RExamples of multiServ from AxiomServer
--R
--E 1871

--S 1872 of 3320 done
)d op multiset
--R 
--R
--RThere are 3 exposed functions called multiset :
--R   [1] List(D2) -> Multiset(D2) from Multiset(D2) if D2 has SETCAT
--R   [2] D1 -> Multiset(D1) from Multiset(D1) if D1 has SETCAT
--R   [3]  -> Multiset(D1) from Multiset(D1) if D1 has SETCAT
--R
--RExamples of multiset from Multiset
--R
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
--R
--Rmultiset(3)
--R
--Rm:=multiset()@Multiset(Integer)
--R
--E 1872

--S 1873 of 3320
)d op multivariate
--R 
--R
--RThere are 3 exposed functions called multivariate :
--R   [1] (SparseUnivariatePolynomial(D),D2) -> D from D
--R             if D has POLYCAT(D3,D4,D2) and D3 has RING and D4 has 
--R            OAMONS and D2 has ORDSET
--R   [2] (SparseUnivariatePolynomial(D3),D2) -> D from D
--R             if D3 has RING and D has POLYCAT(D3,D4,D2) and D4 has 
--R            OAMONS and D2 has ORDSET
--R   [3] (Fraction(SparseUnivariatePolynomial(Fraction(Polynomial(D4)))),
--R            Symbol) -> Fraction(Polynomial(D4))
--R             from RationalFunction(D4) if D4 has INTDOM
--R
--RThere are 2 unexposed functions called multivariate :
--R   [1] (SparseUnivariatePolynomial(Fraction(SparseUnivariatePolynomial(
--R            D1))),Kernel(D1),D1) -> D1
--R             from GenusZeroIntegration(D4,D1,D5)
--R             if D1 has Join(FunctionSpace(D4),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D4 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D5 has SETCAT
--R   [2] (Fraction(SparseUnivariatePolynomial(D1)),D3) -> D1
--R             from PolynomialCategoryQuotientFunctions(D4,D3,D5,D6,D1)
--R             if D4 has OAMONS and D3 has ORDSET and D5 has RING and D1
--R             has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6and D6 has POLYCAT(D5,D4,D3)
--R
--RExamples of multivariate from GenusZeroIntegration
--R
--R
--RExamples of multivariate from PolynomialCategory
--R
--R
--RExamples of multivariate from PolynomialCategoryQuotientFunctions
--R
--R
--RExamples of multivariate from RationalFunction
--R
--E 1873

--S 1874 of 3320
)d op multMonom
--R 
--R
--RThere is one unexposed function called multMonom :
--R   [1] (D1,D2,GeneralModulePolynomial(D3,D1,D4,D2,D5,D6)) -> 
--R            GeneralModulePolynomial(D3,D1,D4,D2,D5,D6)
--R             from GeneralModulePolynomial(D3,D1,D4,D2,D5,D6)
--R             if D3: LIST(SYMBOL) and D1 has COMRING and D2 has DIRPCAT(
--R            #(D3),NNI) and D5: ((Record(index: D4,exponent: D2),Record(
--R            index: D4,exponent: D2)) -> Boolean) and D4 has ORDSET and 
--R            D6 has POLYCAT(D1,D2,OVAR(D3))
--R
--RExamples of multMonom from GeneralModulePolynomial
--R
--E 1874

--S 1875 of 3320
)d op multV
--R 
--R
--RThere is one exposed function called multV :
--R   [1] D -> NonNegativeInteger from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of multV from InfinitlyClosePointCategory
--R
--E 1875

--S 1876 of 3320
)d op Musser
--R 
--R
--RThere is one exposed function called Musser :
--R   [1] D2 -> Factored(D2) from FiniteFieldSquareFreeDecomposition(D3,D2
--R            )
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R
--RExamples of Musser from FiniteFieldSquareFreeDecomposition
--R
--E 1876

--S 1877 of 3320
)d op musserTrials
--R 
--R
--RThere are 2 unexposed functions called musserTrials :
--R   [1]  -> PositiveInteger from GaloisGroupFactorizer(D2) if D2 has 
--R            UPOLYC(INT)
--R   [2] PositiveInteger -> PositiveInteger from GaloisGroupFactorizer(D2
--R            )
--R             if D2 has UPOLYC(INT)
--R
--RExamples of musserTrials from GaloisGroupFactorizer
--R
--E 1877

--S 1878 of 3320
)d op mvar
--R 
--R
--RThere are 2 exposed functions called mvar :
--R   [1] D -> D1 from D
--R             if D has PSETCAT(D2,D3,D1,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has RPOLCAT(D2,D3,D1) and D1 has ORDSET
--R   [2] D -> D1 from D
--R             if D has RPOLCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R
--RExamples of mvar from PolynomialSetCategory
--R
--R
--RExamples of mvar from RecursivePolynomialCategory
--R
--E 1878

--S 1879 of 3320
)d op myDegree
--R 
--R
--RThere is one unexposed function called myDegree :
--R   [1] (SparseUnivariatePolynomial(D8),List(D6),NonNegativeInteger) -> 
--R            List(NonNegativeInteger)
--R             from MultivariateSquareFree(D5,D6,D7,D8)
--R             if D6 has ORDSET and D8 has POLYCAT(D7,D5,D6) and D5 has 
--R            OAMONS and D7 has EUCDOM
--R
--RExamples of myDegree from MultivariateSquareFree
--R
--E 1879

--S 1880 of 3320
)d op name
--R 
--R
--RThere are 4 exposed functions called name :
--R   [1] BasicOperator -> Symbol from BasicOperator
--R   [2] D -> D1 from D if D has FILECAT(D1,D2) and D2 has SETCAT and D1
--R             has SETCAT
--R   [3] D -> String from D if D has FNCAT
--R   [4] Symbol -> Symbol from Symbol
--R
--RThere are 3 unexposed functions called name :
--R   [1] FunctionCalled(D2) -> Symbol from FunctionCalled(D2) if D2: 
--R            SYMBOL
--R   [2] Kernel(D2) -> Symbol from Kernel(D2) if D2 has ORDSET
--R   [3] RuleCalled(D2) -> Symbol from RuleCalled(D2) if D2: SYMBOL
--R
--RExamples of name from BasicOperator
--R
--R
--RExamples of name from FileCategory
--R
--R
--RExamples of name from FileNameCategory
--R
--R
--RExamples of name from FunctionCalled
--R
--R
--RExamples of name from Kernel
--R
--R
--RExamples of name from RuleCalled
--R
--R
--RExamples of name from Symbol
--R
--RU:=subscript(u,[1,2]) 
--Rname(U)
--R
--E 1880

--S 1881 of 3320
)d op nand
--R 
--R
--RThere are 2 exposed functions called nand :
--R   [1] (Boolean,Boolean) -> Boolean from Boolean
--R   [2] (D,D) -> D from D if D has BTAGG
--R
--RExamples of nand from Boolean
--R
--R
--RExamples of nand from BitAggregate
--R
--E 1881

--S 1882 of 3320
)d op nary?
--R 
--R
--RThere is one exposed function called nary? :
--R   [1] BasicOperator -> Boolean from BasicOperator
--R
--RExamples of nary? from BasicOperator
--R
--E 1882

--S 1883 of 3320
)d op ncols
--R 
--R
--RThere are 3 exposed functions called ncols :
--R   [1] D -> NonNegativeInteger from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] D -> NonNegativeInteger from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R   [3] SparseEchelonMatrix(D2,D3) -> NonNegativeInteger
--R             from SparseEchelonMatrix(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of ncols from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rncols(arr)
--R
--R
--RExamples of ncols from RectangularMatrixCategory
--R
--R
--RExamples of ncols from SparseEchelonMatrix
--R
--E 1883

--S 1884 of 3320
)d op negAndPosEdge
--R 
--R
--RThere is one exposed function called negAndPosEdge :
--R   [1] (D2,List(List(D2))) -> List(List(D2)) from NewtonPolygon(D3,D2,
--R            D4,D5)
--R             if D2 has FAMR(D3,D4) and D4 has DIRPCAT(D5,NNI) and D5: 
--R            NNI and D3 has RING
--R
--RExamples of negAndPosEdge from NewtonPolygon
--R
--E 1884

--S 1885 of 3320
)d op negative?
--R 
--R
--RThere are 3 exposed functions called negative? :
--R   [1] D -> Boolean from D
--R             if D has INTCAT(D2) and D2 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R   [2] D -> Boolean from D if D has ORDRING
--R   [3] (D2,D) -> Boolean from D
--R             if D has RRCC(D3,D2) and D3 has Join(OrderedRing,Field) 
--R            and D2 has UPOLYC(D3)
--R
--RExamples of negative? from IntervalCategory
--R
--R
--RExamples of negative? from OrderedRing
--R
--R
--RExamples of negative? from RealRootCharacterizationCategory
--R
--E 1885

--S 1886 of 3320
)d op neglist
--R 
--R
--RThere is one exposed function called neglist :
--R   [1] List(D2) -> List(D2) from ExpertSystemToolsPackage1(D2) if D2
--R             has ORDRING
--R
--RExamples of neglist from ExpertSystemToolsPackage1
--R
--E 1886

--S 1887 of 3320
)d op new
--R 
--R
--RThere are 8 exposed functions called new :
--R   [1] (NonNegativeInteger,NonNegativeInteger,D2) -> D from D
--R             if D2 has TYPE and D has ARR2CAT(D2,D3,D4) and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] (String,String,String) -> D from D if D has FNCAT
--R   [3]  -> ScriptFormulaFormat from ScriptFormulaFormat
--R   [4] (NonNegativeInteger,D2) -> D from D if D has LNAGG(D2) and D2
--R             has TYPE
--R   [5] (List(D3),Integer) -> SparseEchelonMatrix(D3,D4)
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R   [6] Symbol -> Symbol from Symbol
--R   [7]  -> Symbol from Symbol
--R   [8]  -> TexFormat from TexFormat
--R
--RThere are 4 unexposed functions called new :
--R   [1]  -> SubSpaceComponentProperty from SubSpaceComponentProperty
--R   [2]  -> PatternMatchListResult(D1,D2,D3)
--R             from PatternMatchListResult(D1,D2,D3)
--R             if D2 has SETCAT and D1 has SETCAT and D3 has LSAGG(D2)
--R         
--R   [3]  -> PatternMatchResult(D1,D2) from PatternMatchResult(D1,D2)
--R             if D1 has SETCAT and D2 has SETCAT
--R   [4]  -> SubSpace(D1,D2) from SubSpace(D1,D2) if D1: PI and D2 has 
--R            RING
--R
--RExamples of new from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,0)
--R
--R
--RExamples of new from SubSpaceComponentProperty
--R
--R
--RExamples of new from FileNameCategory
--R
--R
--RExamples of new from ScriptFormulaFormat
--R
--R
--RExamples of new from LinearAggregate
--R
--R
--RExamples of new from PatternMatchListResult
--R
--R
--RExamples of new from PatternMatchResult
--R
--R
--RExamples of new from SparseEchelonMatrix
--R
--R
--RExamples of new from SubSpace
--R
--R
--RExamples of new from Symbol
--R
--Rnew("xyz")$Symbol
--R
--Rnew()$Symbol
--R
--R
--RExamples of new from TexFormat
--R
--E 1887

--S 1888 of 3320
)d op newElement
--R 
--R
--RThere are 3 exposed functions called newElement :
--R   [1] (SparseUnivariatePolynomial(D),Symbol) -> D from D if D has 
--R            PACPERC
--R   [2] (SparseUnivariatePolynomial(D),D,Symbol) -> D from D if D has 
--R            PACPERC
--R   [3] (SparseUnivariatePolynomial(
--R            PseudoAlgebraicClosureOfRationalNumber),
--R            SparseUnivariatePolynomial(PseudoAlgebraicClosureOfRationalNumber
--R            ),PositiveInteger,PseudoAlgebraicClosureOfRationalNumber,Symbol)
--R             -> PseudoAlgebraicClosureOfRationalNumber
--R             from PseudoAlgebraicClosureOfRationalNumber
--R
--RExamples of newElement from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of newElement from PseudoAlgebraicClosureOfRationalNumber
--R
--E 1888

--S 1889 of 3320
)d op newLine
--R 
--R
--RThere is one exposed function called newLine :
--R   [1]  -> String from DisplayPackage
--R
--RExamples of newLine from DisplayPackage
--R
--E 1889

--S 1890 of 3320
)d op newReduc
--R 
--R
--RThere is one unexposed function called newReduc :
--R   [1]  -> Void from FunctionSpaceReduce(D2,D3)
--R             if D2 has Join(OrderedSet,IntegralDomain,RetractableTo(
--R            Integer)) and D3 has FS(D2)
--R
--RExamples of newReduc from FunctionSpaceReduce
--R
--E 1890

--S 1891 of 3320
)d op newSubProgram
--R 
--R
--RThere is one exposed function called newSubProgram :
--R   [1] Symbol -> Void from TheSymbolTable
--R
--RExamples of newSubProgram from TheSymbolTable
--R
--E 1891

--S 1892 of 3320
)d op newton
--R 
--R
--RThere is one unexposed function called newton :
--R   [1] List(D3) -> SparseUnivariatePolynomial(D3) from 
--R            NewtonInterpolation(D3)
--R             if D3 has INTDOM
--R
--RExamples of newton from NewtonInterpolation
--R
--E 1892

--S 1893 of 3320
)d op newtonPolygon
--R 
--R
--RThere is one exposed function called newtonPolygon :
--R   [1] (D2,Integer,Integer,Union(left,center,right,vertical,horizontal)
--R            ) -> List(List(D2))
--R             from NewtonPolygon(D5,D2,D6,D7)
--R             if D5 has RING and D6 has DIRPCAT(D7,NNI) and D7: NNI and 
--R            D2 has FAMR(D5,D6)
--R
--RExamples of newtonPolygon from NewtonPolygon
--R
--E 1893

--S 1894 of 3320
)d op newtonPolySlope
--R 
--R
--RThere is one exposed function called newtonPolySlope :
--R   [1] DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY],D3)
--R             -> List(List(NonNegativeInteger))
--R             from BlowUpPackage(D3,D4,D5,D6,D7)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D4),NNI) and D5 has FAMR(D3,D6) and D7 has BLMETCT
--R
--RExamples of newtonPolySlope from BlowUpPackage
--R
--E 1894

--S 1895 of 3320
)d op newTypeLists
--R 
--R
--RThere is one exposed function called newTypeLists :
--R   [1] SymbolTable -> SExpression from SymbolTable
--R
--RExamples of newTypeLists from SymbolTable
--R
--E 1895

--S 1896 of 3320
)d op next
--R 
--R
--RThere is one exposed function called next :
--R   [1] D -> D from D if D has DLAGG(D1) and D1 has TYPE
--R
--RExamples of next from DoublyLinkedAggregate
--R
--E 1896

--S 1897 of 3320
)d op nextColeman
--R 
--R
--RThere is one exposed function called nextColeman :
--R   [1] (List(Integer),List(Integer),Matrix(Integer)) -> Matrix(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of nextColeman from SymmetricGroupCombinatoricFunctions
--R
--E 1897

--S 1898 of 3320
)d op nextIrreduciblePoly
--R 
--R
--RThere is one unexposed function called nextIrreduciblePoly :
--R   [1] SparseUnivariatePolynomial(D2) -> Union(
--R            SparseUnivariatePolynomial(D2),"failed")
--R             from FiniteFieldPolynomialPackage(D2) if D2 has FFIELDC
--R         
--R
--RExamples of nextIrreduciblePoly from FiniteFieldPolynomialPackage
--R
--E 1898

--S 1899 of 3320
)d op nextItem
--R 
--R
--RThere is one exposed function called nextItem :
--R   [1] D -> Union(D,"failed") from D if D has STEP
--R
--RExamples of nextItem from StepThrough
--R
--E 1899

--S 1900 of 3320
)d op nextLatticePermutation
--R 
--R
--RThere is one exposed function called nextLatticePermutation :
--R   [1] (List(Integer),List(Integer),Boolean) -> List(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of nextLatticePermutation from SymmetricGroupCombinatoricFunctions
--R
--E 1900

--S 1901 of 3320
)d op nextNormalPoly
--R 
--R
--RThere is one unexposed function called nextNormalPoly :
--R   [1] SparseUnivariatePolynomial(D2) -> Union(
--R            SparseUnivariatePolynomial(D2),"failed")
--R             from FiniteFieldPolynomialPackage(D2) if D2 has FFIELDC
--R         
--R
--RExamples of nextNormalPoly from FiniteFieldPolynomialPackage
--R
--E 1901

--S 1902 of 3320
)d op nextNormalPrimitivePoly
--R 
--R
--RThere is one unexposed function called nextNormalPrimitivePoly :
--R   [1] SparseUnivariatePolynomial(D2) -> Union(
--R            SparseUnivariatePolynomial(D2),"failed")
--R             from FiniteFieldPolynomialPackage(D2) if D2 has FFIELDC
--R         
--R
--RExamples of nextNormalPrimitivePoly from FiniteFieldPolynomialPackage
--R
--E 1902

--S 1903 of 3320
)d op nextPartition
--R 
--R
--RThere are 2 exposed functions called nextPartition :
--R   [1] (Vector(Integer),Vector(Integer),Integer) -> Vector(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R   [2] (List(Integer),Vector(Integer),Integer) -> Vector(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of nextPartition from SymmetricGroupCombinatoricFunctions
--R
--E 1903

--S 1904 of 3320
)d op nextPrime
--R 
--R
--RThere is one exposed function called nextPrime :
--R   [1] D1 -> D1 from IntegerPrimesPackage(D1) if D1 has INS
--R
--RExamples of nextPrime from IntegerPrimesPackage
--R
--E 1904

--S 1905 of 3320
)d op nextPrimitiveNormalPoly
--R 
--R
--RThere is one unexposed function called nextPrimitiveNormalPoly :
--R   [1] SparseUnivariatePolynomial(D2) -> Union(
--R            SparseUnivariatePolynomial(D2),"failed")
--R             from FiniteFieldPolynomialPackage(D2) if D2 has FFIELDC
--R         
--R
--RExamples of nextPrimitiveNormalPoly from FiniteFieldPolynomialPackage
--R
--E 1905

--S 1906 of 3320
)d op nextPrimitivePoly
--R 
--R
--RThere is one unexposed function called nextPrimitivePoly :
--R   [1] SparseUnivariatePolynomial(D2) -> Union(
--R            SparseUnivariatePolynomial(D2),"failed")
--R             from FiniteFieldPolynomialPackage(D2) if D2 has FFIELDC
--R         
--R
--RExamples of nextPrimitivePoly from FiniteFieldPolynomialPackage
--R
--E 1906

--S 1907 of 3320
--R-------------- )d op next_sousResultant2 (fix this)
--E 1907

--S 1908 of 3320
)d op nextSublist
--R 
--R
--RThere is one unexposed function called nextSublist :
--R   [1] (Integer,Integer) -> List(List(Integer))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D6 has POLYCAT(D3,D5,D4)
--R
--RExamples of nextSublist from ParametricLinearEquations
--R
--E 1908

--S 1909 of 3320
--R-------------- )d op next_subResultant2 (fix this)
--E 1909

--S 1910 of 3320
)d op nextSubsetGray
--R 
--R
--RThere is one unexposed function called nextSubsetGray :
--R   [1] (Vector(Vector(Integer)),PositiveInteger) -> Vector(Vector(
--R            Integer))
--R             from GrayCode
--R
--RExamples of nextSubsetGray from GrayCode
--R
--E 1910

--S 1911 of 3320
)d op nil
--R 
--R
--RThere is one exposed function called nil :
--R   [1]  -> List(D1) from List(D1) if D1 has TYPE
--R
--RExamples of nil from List
--R
--E 1911

--S 1912 of 3320 done
)d op nilFactor
--R 
--R
--RThere is one exposed function called nilFactor :
--R   [1] (D1,Integer) -> Factored(D1) from Factored(D1) if D1 has INTDOM
--R            
--R
--RExamples of nilFactor from Factored
--R
--RnilFactor(24,2) 
--RnilFactor(x-y,3)
--R
--E 1912

--S 1913 of 3320
)d op nlde
--R 
--R
--RThere is one unexposed function called nlde :
--R   [1] Stream(Stream(D3)) -> Stream(D3) from 
--R            StreamTaylorSeriesOperations(D3)
--R             if D3 has ALGEBRA(FRAC(INT)) and D3 has RING
--R
--RExamples of nlde from StreamTaylorSeriesOperations
--R
--E 1913

--S 1914 of 3320
)d op node
--R 
--R
--RThere is one exposed function called node :
--R   [1] (D,D1,D) -> D from D if D has BTCAT(D1) and D1 has SETCAT
--R
--RExamples of node from BinaryTreeCategory
--R
--E 1914

--S 1915 of 3320
)d op node?
--R 
--R
--RThere is one exposed function called node? :
--R   [1] (D,D) -> Boolean from D if D has RCAGG(D2) and D2 has TYPE and 
--R            D2 has SETCAT
--R
--RExamples of node? from RecursiveAggregate
--R
--E 1915

--S 1916 of 3320
)d op nodeOf?
--R 
--R
--RThere is one unexposed function called nodeOf? :
--R   [1] (SplittingNode(D3,D4),SplittingTree(D3,D4)) -> Boolean
--R             from SplittingTree(D3,D4)
--R             if D3 has Join(SetCategory,Aggregate) and D4 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of nodeOf? from SplittingTree
--R
--E 1916

--S 1917 of 3320
)d op nodes
--R 
--R
--RThere is one exposed function called nodes :
--R   [1] D -> List(D) from D if D2 has TYPE and D has RCAGG(D2)
--R
--RExamples of nodes from RecursiveAggregate
--R
--E 1917

--S 1918 of 3320
)d op noKaratsuba
--R 
--R
--RThere is one exposed function called noKaratsuba :
--R   [1] (D1,D1) -> D1 from UnivariatePolynomialMultiplicationPackage(D2,
--R            D1)
--R             if D2 has RING and D1 has UPOLYC(D2)
--R
--RExamples of noKaratsuba from UnivariatePolynomialMultiplicationPackage
--R
--E 1918

--S 1919 of 3320
)d op noLinearFactor?
--R 
--R
--RThere is one unexposed function called noLinearFactor? :
--R   [1] D2 -> Boolean from BrillhartTests(D2) if D2 has UPOLYC(INT)
--R
--RExamples of noLinearFactor? from BrillhartTests
--R
--E 1919

--S 1920 of 3320
)d op noncommutativeJordanAlgebra?
--R 
--R
--RThere is one exposed function called noncommutativeJordanAlgebra? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called noncommutativeJordanAlgebra? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of noncommutativeJordanAlgebra? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of noncommutativeJordanAlgebra? from FiniteRankNonAssociativeAlgebra
--R
--E 1920

--S 1921 of 3320
)d op nonLinearPart
--R 
--R
--RThere is one exposed function called nonLinearPart :
--R   [1] List(Expression(DoubleFloat)) -> List(Expression(DoubleFloat))
--R             from e04AgentsPackage
--R
--RExamples of nonLinearPart from e04AgentsPackage
--R
--E 1921

--S 1922 of 3320
)d op nonQsign
--R 
--R
--RThere is one unexposed function called nonQsign :
--R   [1] D2 -> Union(Integer,"failed") from ToolsForSign(D2) if D2 has 
--R            RING
--R
--RExamples of nonQsign from ToolsForSign
--R
--E 1922

--S 1923 of 3320
)d op nonSingularModel
--R 
--R
--RThere is one exposed function called nonSingularModel :
--R   [1] Symbol -> List(Polynomial(D3)) from D
--R             if D has FFCAT(D3,D4,D5) and D3 has UFD and D4 has UPOLYC(
--R            D3) and D5 has UPOLYC(FRAC(D4)) and D3 has FIELD
--R
--RThere is one unexposed function called nonSingularModel :
--R   [1] Symbol -> List(Polynomial(D4)) from FunctionFieldCategory&(D3,D4
--R            ,D5,D6)
--R             if D4 has UFD and D5 has UPOLYC(D4) and D6 has UPOLYC(FRAC
--R            (D5)) and D3 has FFCAT(D4,D5,D6)
--R
--RExamples of nonSingularModel from FunctionFieldCategory&
--R
--R
--RExamples of nonSingularModel from FunctionFieldCategory
--R
--E 1923

--S 1924 of 3320
)d op nor
--R 
--R
--RThere are 2 exposed functions called nor :
--R   [1] (Boolean,Boolean) -> Boolean from Boolean
--R   [2] (D,D) -> D from D if D has BTAGG
--R
--RExamples of nor from Boolean
--R
--R
--RExamples of nor from BitAggregate
--R
--E 1924

--S 1925 of 3320
)d op norm
--R 
--R
--RThere are 12 exposed functions called norm :
--R   [1] (AlgebraicNumber,List(Kernel(AlgebraicNumber))) -> 
--R            AlgebraicNumber
--R             from AlgebraicNumber
--R   [2] (AlgebraicNumber,Kernel(AlgebraicNumber)) -> AlgebraicNumber
--R             from AlgebraicNumber
--R   [3] (SparseUnivariatePolynomial(AlgebraicNumber),List(Kernel(
--R            AlgebraicNumber))) -> SparseUnivariatePolynomial(AlgebraicNumber)
--R             from AlgebraicNumber
--R   [4] (SparseUnivariatePolynomial(AlgebraicNumber),Kernel(
--R            AlgebraicNumber)) -> SparseUnivariatePolynomial(AlgebraicNumber)
--R             from AlgebraicNumber
--R   [5] D -> D1 from D if D has COMPCAT(D1) and D1 has COMRING
--R   [6] (D,PositiveInteger) -> D from D
--R             if D has FAXF(D2) and D2 has FIELD and D2 has FINITE
--R   [7] D -> D1 from D if D has FAXF(D1) and D1 has FIELD
--R   [8] D -> D1 from D
--R             if D has FINRALG(D1,D2) and D2 has UPOLYC(D1) and D1 has 
--R            COMRING
--R   [9] D2 -> D1 from NormInMonogenicAlgebra(D3,D1,D4,D2)
--R             if D3 has GCDDOM and D4 has MONOGEN(D3,D1) and D1 has 
--R            UPOLYC(D3) and D2 has UPOLYC(D4)
--R   [10] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R   [11] D -> D1 from D if D has QUATCAT(D1) and D1 has COMRING
--R   [12] D -> D from D if D has RNS
--R
--RThere are 9 unexposed functions called norm :
--R   [1] D2 -> D1 from ComplexRootFindingPackage(D1,D2)
--R             if D1 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D1))
--R   [2] FractionalIdeal(D2,D1,D3,D4) -> D1 from FractionalIdeal(D2,D1,D3
--R            ,D4)
--R             if D3 has UPOLYC(D1) and D1 has QFCAT(D2) and D2 has 
--R            EUCDOM and D4 has Join(FramedAlgebra(D1,D3),RetractableTo(
--R            D1))
--R   [3] FramedModule(D2,D1,D3,D4,D5) -> D1 from FramedModule(D2,D1,D3,D4
--R            ,D5)
--R             if D3 has UPOLYC(D1) and D1 has QFCAT(D2) and D2 has 
--R            EUCDOM and D4 has FRAMALG(D1,D3) and D5: VECTOR(D4)
--R   [4] (D2,PositiveInteger) -> D1
--R             from GaloisGroupFactorizationUtilities(D4,D2,D1)
--R             if D4 has RING and D1 has Join(FloatingPointSystem,
--R            RetractableTo(D4),Field,TranscendentalFunctionCategory,
--R            ElementaryFunctionCategory) and D2 has UPOLYC(D4)
--R   [5] (InnerAlgebraicNumber,List(Kernel(InnerAlgebraicNumber))) -> 
--R            InnerAlgebraicNumber
--R             from InnerAlgebraicNumber
--R   [6] (InnerAlgebraicNumber,Kernel(InnerAlgebraicNumber)) -> 
--R            InnerAlgebraicNumber
--R             from InnerAlgebraicNumber
--R   [7] (SparseUnivariatePolynomial(InnerAlgebraicNumber),List(Kernel(
--R            InnerAlgebraicNumber))) -> SparseUnivariatePolynomial(
--R            InnerAlgebraicNumber)
--R             from InnerAlgebraicNumber
--R   [8] (SparseUnivariatePolynomial(InnerAlgebraicNumber),Kernel(
--R            InnerAlgebraicNumber)) -> SparseUnivariatePolynomial(
--R            InnerAlgebraicNumber)
--R             from InnerAlgebraicNumber
--R   [9] (Vector(D3),PositiveInteger) -> Vector(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of norm from AlgebraicNumber
--R
--R
--RExamples of norm from ComplexCategory
--R
--R
--RExamples of norm from ComplexRootFindingPackage
--R
--R
--RExamples of norm from FiniteAlgebraicExtensionField
--R
--R
--RExamples of norm from FiniteRankAlgebra
--R
--R
--RExamples of norm from FractionalIdeal
--R
--R
--RExamples of norm from FramedModule
--R
--R
--RExamples of norm from GaloisGroupFactorizationUtilities
--R
--R
--RExamples of norm from InnerAlgebraicNumber
--R
--R
--RExamples of norm from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of norm from NormInMonogenicAlgebra
--R
--R
--RExamples of norm from OctonionCategory
--R
--R
--RExamples of norm from QuaternionCategory
--R
--R
--RExamples of norm from RealNumberSystem
--R
--E 1925

--S 1926 of 3320
)d op normal
--R 
--R
--RThere is one unexposed function called normal :
--R   [1] (Float,Float) -> (() -> Float) from RandomFloatDistributions
--R
--RExamples of normal from RandomFloatDistributions
--R
--E 1926

--S 1927 of 3320
)d op normal?
--R 
--R
--RThere is one exposed function called normal? :
--R   [1] D -> Boolean from D if D has FAXF(D2) and D2 has FIELD and D2
--R             has FINITE
--R
--RThere are 2 unexposed functions called normal? :
--R   [1] SparseUnivariatePolynomial(D3) -> Boolean
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R   [2] Vector(D3) -> Boolean from InnerNormalBasisFieldFunctions(D3)
--R             if D3 has FFIELDC
--R
--RExamples of normal? from FiniteAlgebraicExtensionField
--R
--R
--RExamples of normal? from FiniteFieldPolynomialPackage
--R
--R
--RExamples of normal? from InnerNormalBasisFieldFunctions
--R
--E 1927

--S 1928 of 3320
)d op normal01
--R 
--R
--RThere is one unexposed function called normal01 :
--R   [1]  -> Float from RandomFloatDistributions
--R
--RExamples of normal01 from RandomFloatDistributions
--R
--E 1928

--S 1929 of 3320
)d op normalDenom
--R 
--R
--RThere is one unexposed function called normalDenom :
--R   [1] (Fraction(D1),(D1 -> D1)) -> D1 from MonomialExtensionTools(D4,
--R            D1)
--R             if D1 has UPOLYC(D4) and D4 has FIELD
--R
--RExamples of normalDenom from MonomialExtensionTools
--R
--E 1929

--S 1930 of 3320
)d op normalDeriv
--R 
--R
--RThere is one unexposed function called normalDeriv :
--R   [1] (SparseUnivariatePolynomial(D6),Integer) -> 
--R            SparseUnivariatePolynomial(D6)
--R             from FactoringUtilities(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D5,D3,D4) and D3 has OAMONS and D4 has 
--R            ORDSET and D5 has RING
--R
--RExamples of normalDeriv from FactoringUtilities
--R
--E 1930

--S 1931 of 3320
)d op normalElement
--R 
--R
--RThere is one exposed function called normalElement :
--R   [1]  -> D from D if D has FAXF(D1) and D1 has FINITE and D1 has 
--R            FIELD
--R
--RThere is one unexposed function called normalElement :
--R   [1] PositiveInteger -> Vector(D3) from 
--R            InnerNormalBasisFieldFunctions(D3)
--R             if D3 has FFIELDC
--R
--RExamples of normalElement from FiniteAlgebraicExtensionField
--R
--R
--RExamples of normalElement from InnerNormalBasisFieldFunctions
--R
--E 1931

--S 1932 of 3320
)d op normalForm
--R 
--R
--RThere is one exposed function called normalForm :
--R   [1] (D1,List(D1)) -> D1 from GroebnerPackage(D3,D4,D5,D1)
--R             if D1 has POLYCAT(D3,D4,D5) and D3 has FIELD and D3 has 
--R            GCDDOM and D4 has OAMONS and D5 has ORDSET
--R
--RThere is one unexposed function called normalForm :
--R   [1] (Matrix(D5),Automorphism(D5),(D5 -> D5)) -> Record(R: Matrix(D5)
--R            ,A: Matrix(D5),Ainv: Matrix(D5))
--R             from PseudoLinearNormalForm(D5) if D5 has FIELD
--R
--RExamples of normalForm from GroebnerPackage
--R
--R
--RExamples of normalForm from PseudoLinearNormalForm
--R
--E 1932

--S 1933 of 3320
)d op normalise
--R 
--R
--RThere is one exposed function called normalise :
--R   [1] Matrix(Expression(Integer)) -> Matrix(Expression(Integer))
--R             from RadicalEigenPackage
--R
--RExamples of normalise from RadicalEigenPackage
--R
--E 1933

--S 1934 of 3320
)d op normalize
--R 
--R
--RThere are 4 exposed functions called normalize :
--R   [1] D1 -> D1 from ElementaryFunctionStructurePackage(D2,D1)
--R             if D2 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer)) and D1 has Join
--R            (AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))
--R   [2] (D1,Symbol) -> D1 from ElementaryFunctionStructurePackage(D3,D1)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer)) and D1 has Join
--R            (AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [3] Float -> Float from Float
--R   [4] (D2,D3) -> List(Record(val: D2,tower: D3))
--R             from NormalizationPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of normalize from ElementaryFunctionStructurePackage
--R
--R
--RExamples of normalize from Float
--R
--R
--RExamples of normalize from NormalizationPackage
--R
--E 1934

--S 1935 of 3320
)d op normalizeAtInfinity
--R 
--R
--RThere is one exposed function called normalizeAtInfinity :
--R   [1] Vector(D) -> Vector(D) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of normalizeAtInfinity from FunctionFieldCategory
--R
--E 1935

--S 1936 of 3320
)d op normalized?
--R 
--R
--RThere are 4 exposed functions called normalized? :
--R   [1] (D,List(D)) -> Boolean from D
--R             if D has RPOLCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [2] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] D -> Boolean from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [4] (D2,D) -> Boolean from D
--R             if D has TSETCAT(D3,D4,D5,D2) and D3 has INTDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of normalized? from RecursivePolynomialCategory
--R
--R
--RExamples of normalized? from TriangularSetCategory
--R
--E 1936

--S 1937 of 3320
)d op normalizedAssociate
--R 
--R
--RThere is one exposed function called normalizedAssociate :
--R   [1] (D1,D2) -> D1 from NormalizationPackage(D3,D4,D5,D1,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D1 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D1)
--R         
--R
--RExamples of normalizedAssociate from NormalizationPackage
--R
--E 1937

--S 1938 of 3320
)d op normalizedDivide
--R 
--R
--RThere is one exposed function called normalizedDivide :
--R   [1] (D2,D2) -> Record(quotient: D2,remainder: D2)
--R             from MatrixLinearAlgebraFunctions(D2,D3,D4,D5)
--R             if D2 has EUCDOM and D2 has COMRING and D3 has FLAGG(D2) 
--R            and D4 has FLAGG(D2) and D5 has MATCAT(D2,D3,D4)
--R
--RThere is one unexposed function called normalizedDivide :
--R   [1] (D2,D2) -> Record(quotient: D2,remainder: D2)
--R             from ModularHermitianRowReduction(D2) if D2 has EUCDOM
--R
--RExamples of normalizedDivide from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of normalizedDivide from ModularHermitianRowReduction
--R
--E 1938

--S 1939 of 3320
)d op normalizeIfCan
--R 
--R
--RThere is one unexposed function called normalizeIfCan :
--R   [1] D1 -> D1 from LazardSetSolvingPackage(D2,D3,D4,D5,D6,D1)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5) 
--R            and D1 has SFRTCAT(D2,D3,D4,D5)
--R
--RExamples of normalizeIfCan from LazardSetSolvingPackage
--R
--E 1939

--S 1940 of 3320
)d op normDeriv2
--R 
--R
--RThere is one unexposed function called normDeriv2 :
--R   [1] (SparseUnivariatePolynomial(D5),Integer) -> 
--R            SparseUnivariatePolynomial(D5)
--R             from MultivariateSquareFree(D3,D4,D5,D6)
--R             if D5 has EUCDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D6 has POLYCAT(D5,D3,D4)
--R
--RExamples of normDeriv2 from MultivariateSquareFree
--R
--E 1940

--S 1941 of 3320
)d op normFactors
--R 
--R
--RThere is one unexposed function called normFactors :
--R   [1] D2 -> List(D2) from NormRetractPackage(D3,D4,D5,D2,D6)
--R             if D3 has FFIELDC and D4 has FAXF(D3) and D5 has UPOLYC(D4
--R            ) and D2 has UPOLYC(D5) and D6: PI
--R
--RExamples of normFactors from NormRetractPackage
--R
--E 1941

--S 1942 of 3320
)d op normInvertible?
--R 
--R
--RThere is one exposed function called normInvertible? :
--R   [1] (D2,D3) -> List(Record(val: Boolean,tower: D3))
--R             from NormalizationPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of normInvertible? from NormalizationPackage
--R
--E 1942

--S 1943 of 3320
)d op not
--R 
--R
--RThere are 3 exposed functions called not :
--R   [1] Boolean -> Boolean from Boolean
--R   [2] D -> D from D if D has BTAGG
--R   [3] SingleInteger -> SingleInteger from SingleInteger
--R
--RThere is one unexposed function called not :
--R   [1] OutputForm -> OutputForm from OutputForm
--R
--RExamples of not from Boolean
--R
--R
--RExamples of not from BitAggregate
--R
--R
--RExamples of not from OutputForm
--R
--R
--RExamples of not from SingleInteger
--R
--E 1943

--S 1944 of 3320
)d op Not
--R 
--R
--RThere is one exposed function called Not :
--R   [1] SingleInteger -> SingleInteger from SingleInteger
--R
--RThere is one unexposed function called Not :
--R   [1] IndexedBits(D1) -> IndexedBits(D1) from IndexedBits(D1) if D1: 
--R            INT
--R
--RExamples of Not from IndexedBits
--R
--R
--RExamples of Not from SingleInteger
--R
--E 1944

--S 1945 of 3320
)d op NOT
--R 
--R
--RThere are 2 exposed functions called NOT :
--R   [1] Switch -> Switch from Switch
--R   [2] Union(I: Expression(Integer),F: Expression(Float),CF: Expression
--R            (Complex(Float)),switch: Switch) -> Switch
--R             from Switch
--R
--RExamples of NOT from Switch
--R
--E 1945

--S 1946 of 3320
)d op notelem
--R 
--R
--RThere is one unexposed function called notelem :
--R   [1] IntegrationResult(D2) -> List(Record(integrand: D2,intvar: D2))
--R             from IntegrationResult(D2) if D2 has FIELD
--R
--RExamples of notelem from IntegrationResult
--R
--E 1946

--S 1947 of 3320
)d op npcoef
--R 
--R
--RThere is one unexposed function called npcoef :
--R   [1] (SparseUnivariatePolynomial(D1),List(D6),List(D1)) -> Record(
--R            deter: List(SparseUnivariatePolynomial(D1)),dterm: List(List(
--R            Record(expt: NonNegativeInteger,pcoef: D1))),nfacts: List(D6),
--R            nlead: List(D1))
--R             from NPCoef(D6,D7,D8,D9,D1)
--R             if D6 has UPOLYC(D9) and D7 has OAMONS and D8 has ORDSET 
--R            and D9 has EUCDOM and D1 has POLYCAT(D9,D7,D8)
--R
--RExamples of npcoef from NPCoef
--R
--E 1947

--S 1948 of 3320
)d op nrows
--R 
--R
--RThere are 3 exposed functions called nrows :
--R   [1] D -> NonNegativeInteger from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] D -> NonNegativeInteger from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R   [3] SparseEchelonMatrix(D2,D3) -> NonNegativeInteger
--R             from SparseEchelonMatrix(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of nrows from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rnrows(arr)
--R
--R
--RExamples of nrows from RectangularMatrixCategory
--R
--R
--RExamples of nrows from SparseEchelonMatrix
--R
--E 1948

--S 1949 of 3320
)d op nsqfree
--R 
--R
--RThere is one unexposed function called nsqfree :
--R   [1] (SparseUnivariatePolynomial(D8),List(D6),List(List(D7))) -> 
--R            Record(unitPart: D8,suPart: List(Record(factor: 
--R            SparseUnivariatePolynomial(D8),exponent: Integer)))
--R             from MultivariateSquareFree(D5,D6,D7,D8)
--R             if D6 has ORDSET and D7 has EUCDOM and D5 has OAMONS and 
--R            D8 has POLYCAT(D7,D5,D6)
--R
--RExamples of nsqfree from MultivariateSquareFree
--R
--E 1949

--S 1950 of 3320
)d op nthCoef
--R 
--R
--RThere is one exposed function called nthCoef :
--R   [1] (D,Integer) -> D1 from D
--R             if D has FAMONC(D3,D1) and D3 has SETCAT and D1 has CABMON
--R            
--R
--RExamples of nthCoef from FreeAbelianMonoidCategory
--R
--E 1950

--S 1951 of 3320
)d op nthExpon
--R 
--R
--RThere are 4 unexposed functions called nthExpon :
--R   [1] (FreeGroup(D2),Integer) -> Integer from FreeGroup(D2) if D2 has 
--R            SETCAT
--R   [2] (FreeMonoid(D3),Integer) -> NonNegativeInteger from FreeMonoid(
--R            D3)
--R             if D3 has SETCAT
--R   [3] (ListMonoidOps(D3,D1,D4),Integer) -> D1 from ListMonoidOps(D3,D1
--R            ,D4)
--R             if D1 has ABELMON and D3 has SETCAT and D4: D1
--R   [4] (OrderedFreeMonoid(D3),Integer) -> NonNegativeInteger
--R             from OrderedFreeMonoid(D3) if D3 has ORDSET
--R
--RExamples of nthExpon from FreeGroup
--R
--R
--RExamples of nthExpon from FreeMonoid
--R
--R
--RExamples of nthExpon from ListMonoidOps
--R
--R
--RExamples of nthExpon from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--RnthExpon(m1,2)
--R
--E 1951

--S 1952 of 3320 done
)d op nthExponent
--R 
--R
--RThere is one exposed function called nthExponent :
--R   [1] (Factored(D2),Integer) -> Integer from Factored(D2) if D2 has 
--R            INTDOM
--R
--RExamples of nthExponent from Factored
--R
--Ra:=factor 9720000 
--RnthExponent(a,2)
--R
--E 1952

--S 1953 of 3320
)d op nthFactor
--R 
--R
--RThere are 2 exposed functions called nthFactor :
--R   [1] (D,Integer) -> D1 from D
--R             if D has FAMONC(D1,D3) and D3 has CABMON and D1 has SETCAT
--R            
--R   [2] (Factored(D1),Integer) -> D1 from Factored(D1) if D1 has INTDOM
--R            
--R
--RThere are 4 unexposed functions called nthFactor :
--R   [1] (FreeGroup(D1),Integer) -> D1 from FreeGroup(D1) if D1 has 
--R            SETCAT
--R   [2] (FreeMonoid(D1),Integer) -> D1 from FreeMonoid(D1) if D1 has 
--R            SETCAT
--R   [3] (ListMonoidOps(D1,D3,D4),Integer) -> D1 from ListMonoidOps(D1,D3
--R            ,D4)
--R             if D1 has SETCAT and D3 has ABELMON and D4: D3
--R   [4] (OrderedFreeMonoid(D1),Integer) -> D1 from OrderedFreeMonoid(D1)
--R             if D1 has ORDSET
--R
--RExamples of nthFactor from FreeAbelianMonoidCategory
--R
--R
--RExamples of nthFactor from FreeGroup
--R
--R
--RExamples of nthFactor from FreeMonoid
--R
--R
--RExamples of nthFactor from Factored
--R
--Ra:=factor 9720000 
--RnthFactor(a,2)
--R
--R
--RExamples of nthFactor from ListMonoidOps
--R
--R
--RExamples of nthFactor from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--RnthFactor(m1,2)
--R
--E 1953

--S 1954 of 3320 done
)d op nthFlag
--R 
--R
--RThere is one exposed function called nthFlag :
--R   [1] (Factored(D3),Integer) -> Union("nil","sqfr","irred","prime")
--R             from Factored(D3) if D3 has INTDOM
--R
--RExamples of nthFlag from Factored
--R
--Ra:=factor 9720000 
--RnthFlag(a,2)
--R
--E 1954

--S 1955 of 3320 done
)d op nthFractionalTerm
--R 
--R
--RThere is one exposed function called nthFractionalTerm :
--R   [1] (PartialFraction(D2),Integer) -> PartialFraction(D2)
--R             from PartialFraction(D2) if D2 has EUCDOM
--R
--RExamples of nthFractionalTerm from PartialFraction
--R
--Ra:=partialFraction(1,factorial 10) 
--Rb:=padicFraction(a) 
--RnthFractionalTerm(b,3)
--R
--E 1955

--S 1956 of 3320
)d op nthr
--R 
--R
--RThere is one unexposed function called nthr :
--R   [1] (D2,NonNegativeInteger) -> Record(exponent: NonNegativeInteger,
--R            coef: D2,radicand: List(D2))
--R             from PolynomialRoots(D4,D5,D6,D2,D7)
--R             if D4 has OAMONS and D5 has ORDSET and D6 has INTDOM and 
--R            D2 has POLYCAT(D6,D4,D5) and D7 has Fieldwith
--R               numer : % -> D2
--R               denom : % -> D2
--R               coerce : D2 -> %
--R
--RExamples of nthr from PolynomialRoots
--R
--E 1956

--S 1957 of 3320
)d op nthRoot
--R 
--R
--RThere is one exposed function called nthRoot :
--R   [1] (D,Integer) -> D from D if D has RADCAT
--R
--RThere is one unexposed function called nthRoot :
--R   [1] (Factored(D4),NonNegativeInteger) -> Record(exponent: 
--R            NonNegativeInteger,coef: D4,radicand: List(D4))
--R             from FactoredFunctions(D4) if D4 has INTDOM
--R
--RExamples of nthRoot from FactoredFunctions
--R
--R
--RExamples of nthRoot from RadicalCategory
--R
--E 1957

--S 1958 of 3320
)d op nthRootIfCan
--R 
--R
--RThere is one exposed function called nthRootIfCan :
--R   [1] (D1,NonNegativeInteger) -> Union(D1,"failed") from D
--R             if D has PTRANFN(D1) and D1 has TRANFUN
--R
--RExamples of nthRootIfCan from PartialTranscendentalFunctions
--R
--E 1958

--S 1959 of 3320
)d op Nul
--R 
--R
--RThere is one unexposed function called Nul :
--R   [1] NonNegativeInteger -> ExtAlgBasis from ExtAlgBasis
--R
--RExamples of Nul from ExtAlgBasis
--R
--E 1959

--S 1960 of 3320
)d op null
--R 
--R
--RThere is one exposed function called null :
--R   [1] List(D2) -> Boolean from List(D2) if D2 has TYPE
--R
--RExamples of null from List
--R
--E 1960

--S 1961 of 3320
)d op null?
--R 
--R
--RThere is one exposed function called null? :
--R   [1] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of null? from SExpressionCategory
--R
--E 1961

--S 1962 of 3320
)d op nullary
--R 
--R
--RThere is one exposed function called nullary :
--R   [1] D2 -> (() -> D2) from MappingPackage1(D2) if D2 has SETCAT
--R
--RExamples of nullary from MappingPackage1
--R
--E 1962

--S 1963 of 3320
)d op nullary?
--R 
--R
--RThere is one exposed function called nullary? :
--R   [1] BasicOperator -> Boolean from BasicOperator
--R
--RExamples of nullary? from BasicOperator
--R
--E 1963

--S 1964 of 3320
)d op nullity
--R 
--R
--RThere are 3 exposed functions called nullity :
--R   [1] D -> NonNegativeInteger from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2) and D2 has INTDOM
--R   [2] D2 -> NonNegativeInteger from MatrixLinearAlgebraFunctions(D3,D4
--R            ,D5,D2)
--R             if D3 has INTDOM and D3 has COMRING and D4 has FLAGG(D3) 
--R            and D5 has FLAGG(D3) and D2 has MATCAT(D3,D4,D5)
--R   [3] D -> NonNegativeInteger from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4) and D4 has 
--R            INTDOM
--R
--RThere is one unexposed function called nullity :
--R   [1] D2 -> NonNegativeInteger
--R             from InnerMatrixLinearAlgebraFunctions(D3,D4,D5,D2)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D2 has MATCAT(D3,D4,D5)
--R
--RExamples of nullity from InnerMatrixLinearAlgebraFunctions
--R
--R
--RExamples of nullity from MatrixCategory
--R
--Rnullity matrix [[1,2,3],[4,5,6],[7,8,9]]
--R
--R
--RExamples of nullity from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of nullity from RectangularMatrixCategory
--R
--E 1964

--S 1965 of 3320
)d op nullSpace
--R 
--R
--RThere are 3 exposed functions called nullSpace :
--R   [1] D -> List(D4) from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2) and D2 has INTDOM
--R   [2] D2 -> List(D5) from MatrixLinearAlgebraFunctions(D3,D4,D5,D2)
--R             if D3 has INTDOM and D3 has COMRING and D4 has FLAGG(D3) 
--R            and D5 has FLAGG(D3) and D2 has MATCAT(D3,D4,D5)
--R   [3] D -> List(D6) from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4) and D4 has 
--R            INTDOM
--R
--RThere are 2 unexposed functions called nullSpace :
--R   [1] D2 -> List(D5) from InnerMatrixLinearAlgebraFunctions(D3,D4,D5,
--R            D2)
--R             if D5 has shallowlyMutable and D3 has FIELD and D4 has 
--R            FLAGG(D3) and D5 has FLAGG(D3) and D2 has MATCAT(D3,D4,D5)
--R            
--R   [2] D3 -> List(D6)
--R             from InnerMatrixQuotientFieldFunctions(D4,D5,D6,D3,D7,D8,
--R            D9,D1)
--R             if D9 has shallowlyMutable and D4 has INTDOM and D5 has 
--R            FLAGG(D4) and D6 has FLAGG(D4) and D7 has QFCAT(D4) and D8
--R             has FLAGG(D7) and D9 has FLAGG(D7) and D3 has MATCAT(D4,D5
--R            ,D6) and D1 has MATCAT(D7,D8,D9)
--R
--RExamples of nullSpace from InnerMatrixLinearAlgebraFunctions
--R
--R
--RExamples of nullSpace from InnerMatrixQuotientFieldFunctions
--R
--R
--RExamples of nullSpace from MatrixCategory
--R
--RnullSpace matrix [[1,2,3],[4,5,6],[7,8,9]]
--R
--R
--RExamples of nullSpace from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of nullSpace from RectangularMatrixCategory
--R
--E 1965

--S 1966 of 3320
)d op number?
--R 
--R
--RThere is one exposed function called number? :
--R   [1] Expression(D2) -> Boolean from Expression(D2)
--R             if D2 has INTDOM and D2 has ORDSET
--R
--RExamples of number? from Expression
--R
--E 1966

--S 1967 of 3320
)d op numberOfChildren
--R 
--R
--RThere is one unexposed function called numberOfChildren :
--R   [1] SubSpace(D2,D3) -> NonNegativeInteger from SubSpace(D2,D3)
--R             if D2: PI and D3 has RING
--R
--RExamples of numberOfChildren from SubSpace
--R
--E 1967

--S 1968 of 3320
)d op numberOfComponents
--R 
--R
--RThere are 2 exposed functions called numberOfComponents :
--R   [1]  -> NonNegativeInteger from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R   [2] D -> NonNegativeInteger from D if D has SPACEC(D2) and D2 has 
--R            RING
--R
--RThere is one unexposed function called numberOfComponents :
--R   [1]  -> NonNegativeInteger from FunctionFieldCategory&(D2,D3,D4,D5)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D5 has UPOLYC(FRAC
--R            (D4)) and D2 has FFCAT(D3,D4,D5)
--R
--RExamples of numberOfComponents from FunctionFieldCategory&
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RnumberOfComponents()$R
--R
--R
--RExamples of numberOfComponents from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RnumberOfComponents()$R
--R
--R
--RExamples of numberOfComponents from ThreeSpaceCategory
--R
--E 1968

--S 1969 of 3320
)d op numberOfComposites
--R 
--R
--RThere is one exposed function called numberOfComposites :
--R   [1] D -> NonNegativeInteger from D if D has SPACEC(D2) and D2 has 
--R            RING
--R
--RExamples of numberOfComposites from ThreeSpaceCategory
--R
--E 1969

--S 1970 of 3320 done
)d op numberOfComputedEntries
--R 
--R
--RThere is one exposed function called numberOfComputedEntries :
--R   [1] D -> NonNegativeInteger from D if D has LZSTAGG(D2) and D2 has 
--R            TYPE
--R
--RExamples of numberOfComputedEntries from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--RnumberOfComputedEntries m
--R
--E 1970

--S 1971 of 3320
)d op numberOfCycles
--R 
--R
--RThere is one exposed function called numberOfCycles :
--R   [1] Permutation(D2) -> NonNegativeInteger from Permutation(D2) if D2
--R             has SETCAT
--R
--RExamples of numberOfCycles from Permutation
--R
--E 1971

--S 1972 of 3320
)d op numberOfDivisors
--R 
--R
--RThere is one exposed function called numberOfDivisors :
--R   [1] Integer -> Integer from IntegerNumberTheoryFunctions
--R
--RExamples of numberOfDivisors from IntegerNumberTheoryFunctions
--R
--E 1972

--S 1973 of 3320
)d op numberOfFactors
--R 
--R
--RThere is one exposed function called numberOfFactors :
--R   [1] Factored(D2) -> NonNegativeInteger from Factored(D2) if D2 has 
--R            INTDOM
--R
--RThere is one unexposed function called numberOfFactors :
--R   [1] List(Record(factor: D3,degree: Integer)) -> NonNegativeInteger
--R             from GaloisGroupFactorizer(D3) if D3 has UPOLYC(INT)
--R
--RExamples of numberOfFactors from Factored
--R
--Ra:=factor 9720000 
--RnumberOfFactors a
--R
--R
--RExamples of numberOfFactors from GaloisGroupFactorizer
--R
--E 1973

--S 1974 of 3320 done
)d op numberOfFractionalTerms
--R 
--R
--RThere is one exposed function called numberOfFractionalTerms :
--R   [1] PartialFraction(D2) -> Integer from PartialFraction(D2) if D2
--R             has EUCDOM
--R
--RExamples of numberOfFractionalTerms from PartialFraction
--R
--Ra:=partialFraction(1,factorial 10) 
--Rb:=padicFraction(a) 
--RnumberOfFractionalTerms(b)
--R
--E 1974

--S 1975 of 3320
)d op numberOfHues
--R 
--R
--RThere is one exposed function called numberOfHues :
--R   [1]  -> PositiveInteger from Color
--R
--RExamples of numberOfHues from Color
--R
--E 1975

--S 1976 of 3320
)d op numberOfImproperPartitions
--R 
--R
--RThere is one exposed function called numberOfImproperPartitions :
--R   [1] (Integer,Integer) -> Integer from 
--R            SymmetricGroupCombinatoricFunctions
--R
--RExamples of numberOfImproperPartitions from SymmetricGroupCombinatoricFunctions
--R
--E 1976

--S 1977 of 3320
)d op numberOfIrreduciblePoly
--R 
--R
--RThere is one unexposed function called numberOfIrreduciblePoly :
--R   [1] PositiveInteger -> PositiveInteger from 
--R            FiniteFieldPolynomialPackage(D2)
--R             if D2 has FFIELDC
--R
--RExamples of numberOfIrreduciblePoly from FiniteFieldPolynomialPackage
--R
--E 1977

--S 1978 of 3320
)d op numberOfMonomials
--R 
--R
--RThere are 2 exposed functions called numberOfMonomials :
--R   [1] D -> NonNegativeInteger from D
--R             if D has FAMR(D2,D3) and D2 has RING and D3 has OAMON
--R   [2] D -> NonNegativeInteger from D
--R             if D has FMCAT(D2,D3) and D2 has RING and D3 has SETCAT
--R         
--R
--RThere is one unexposed function called numberOfMonomials :
--R   [1] MonoidRing(D2,D3) -> NonNegativeInteger from MonoidRing(D2,D3)
--R             if D2 has RING and D3 has MONOID
--R
--RExamples of numberOfMonomials from FiniteAbelianMonoidRing
--R
--R
--RExamples of numberOfMonomials from FreeModuleCat
--R
--R
--RExamples of numberOfMonomials from MonoidRing
--R
--E 1978

--S 1979 of 3320
)d op numberOfNormalPoly
--R 
--R
--RThere is one unexposed function called numberOfNormalPoly :
--R   [1] PositiveInteger -> PositiveInteger from 
--R            FiniteFieldPolynomialPackage(D2)
--R             if D2 has FFIELDC
--R
--RExamples of numberOfNormalPoly from FiniteFieldPolynomialPackage
--R
--E 1979

--S 1980 of 3320
)d op numberOfOperations
--R 
--R
--RThere is one exposed function called numberOfOperations :
--R   [1] Vector(Expression(DoubleFloat)) -> Record(additions: Integer,
--R            multiplications: Integer,exponentiations: Integer,functionCalls: 
--R            Integer)
--R             from ExpertSystemToolsPackage
--R
--RExamples of numberOfOperations from ExpertSystemToolsPackage
--R
--E 1980

--S 1981 of 3320
)d op numberOfPlacesOfDegree
--R 
--R
--RThere are 3 exposed functions called numberOfPlacesOfDegree :
--R   [1] PositiveInteger -> Integer
--R             from GeneralPackageForAlgebraicFunctionField(D8,D9,D10,D11
--R            ,D12,D13,D1,D2,D3,D4,D5)
--R             if D8 has FINITE and D8 has FIELD and D9: LIST(SYMBOL) and
--R            D10 has POLYCAT(D8,D11,OVAR(D9)) and D11 has DIRPCAT(#(D9),
--R            NNI) and D12 has PRSPCAT(D8) and D13 has LOCPOWC(D8) and D1
--R             has PLACESC(D8,D13) and D2 has DIVCAT(D1) and D3 has 
--R            INFCLCT(D8,D9,D10,D11,D12,D13,D1,D2,D5) and D5 has BLMETCT 
--R            and D4 has DSTRCAT(D3)
--R   [2] PositiveInteger -> Integer
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if PseudoAlgebraicClosureOfFiniteField(D3) has FINITE and 
--R            D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R   [3] PositiveInteger -> Integer
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FINITE and D3 has FIELD and D4: LIST(SYMBOL) and
--R            D5 has BLMETCT
--R
--RExamples of numberOfPlacesOfDegree from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of numberOfPlacesOfDegree from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of numberOfPlacesOfDegree from PackageForAlgebraicFunctionField
--R
--E 1981

--S 1982 of 3320
)d op numberOfPrimitivePoly
--R 
--R
--RThere is one unexposed function called numberOfPrimitivePoly :
--R   [1] PositiveInteger -> PositiveInteger from 
--R            FiniteFieldPolynomialPackage(D2)
--R             if D2 has FFIELDC
--R
--RExamples of numberOfPrimitivePoly from FiniteFieldPolynomialPackage
--R
--E 1982

--S 1983 of 3320
)d op numberOfValuesNeeded
--R 
--R
--RThere is one exposed function called numberOfValuesNeeded :
--R   [1] (Integer,BasicOperator,Symbol,D4) -> Integer
--R             from RecurrenceOperator(D5,D4)
--R             if D5 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
--R            InputForm)) and D4 has Join(FunctionSpace(D5),AbelianMonoid
--R            ,RetractableTo(Integer),RetractableTo(Symbol),
--R            PartialDifferentialRing(Symbol),CombinatorialOpsCategory)
--R         
--R
--RExamples of numberOfValuesNeeded from RecurrenceOperator
--R
--E 1983

--S 1984 of 3320
)d op numberOfVariables
--R 
--R
--RThere are 2 exposed functions called numberOfVariables :
--R   [1] (List(D7),List(D8)) -> NonNegativeInteger
--R             from RegularSetDecompositionPackage(D4,D5,D6,D7,D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has RSETCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [2] (List(D7),List(D8)) -> NonNegativeInteger
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D7,
--R            D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has SFRTCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R
--RExamples of numberOfVariables from RegularSetDecompositionPackage
--R
--R
--RExamples of numberOfVariables from SquareFreeRegularSetDecompositionPackage
--R
--E 1984

--S 1985 of 3320
)d op numberPlacesDegExtDeg
--R 
--R
--RThere are 3 exposed functions called numberPlacesDegExtDeg :
--R   [1] (PositiveInteger,PositiveInteger) -> Integer
--R             from GeneralPackageForAlgebraicFunctionField(D8,D9,D10,D11
--R            ,D12,D13,D1,D2,D3,D4,D5)
--R             if D8 has FINITE and D8 has FIELD and D9: LIST(SYMBOL) and
--R            D10 has POLYCAT(D8,D11,OVAR(D9)) and D11 has DIRPCAT(#(D9),
--R            NNI) and D12 has PRSPCAT(D8) and D13 has LOCPOWC(D8) and D1
--R             has PLACESC(D8,D13) and D2 has DIVCAT(D1) and D3 has 
--R            INFCLCT(D8,D9,D10,D11,D12,D13,D1,D2,D5) and D5 has BLMETCT 
--R            and D4 has DSTRCAT(D3)
--R   [2] (PositiveInteger,PositiveInteger) -> Integer
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if PseudoAlgebraicClosureOfFiniteField(D3) has FINITE and 
--R            D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R   [3] (PositiveInteger,PositiveInteger) -> Integer
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FINITE and D3 has FIELD and D4: LIST(SYMBOL) and
--R            D5 has BLMETCT
--R
--RExamples of numberPlacesDegExtDeg from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of numberPlacesDegExtDeg from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of numberPlacesDegExtDeg from PackageForAlgebraicFunctionField
--R
--E 1985

--S 1986 of 3320
)d op numberRatPlacesExtDeg
--R 
--R
--RThere are 3 exposed functions called numberRatPlacesExtDeg :
--R   [1] PositiveInteger -> Integer
--R             from GeneralPackageForAlgebraicFunctionField(D8,D9,D10,D11
--R            ,D12,D13,D1,D2,D3,D4,D5)
--R             if D8 has FINITE and D8 has FIELD and D9: LIST(SYMBOL) and
--R            D10 has POLYCAT(D8,D11,OVAR(D9)) and D11 has DIRPCAT(#(D9),
--R            NNI) and D12 has PRSPCAT(D8) and D13 has LOCPOWC(D8) and D1
--R             has PLACESC(D8,D13) and D2 has DIVCAT(D1) and D3 has 
--R            INFCLCT(D8,D9,D10,D11,D12,D13,D1,D2,D5) and D5 has BLMETCT 
--R            and D4 has DSTRCAT(D3)
--R   [2] PositiveInteger -> Integer
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if PseudoAlgebraicClosureOfFiniteField(D3) has FINITE and 
--R            D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R   [3] PositiveInteger -> Integer
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FINITE and D3 has FIELD and D4: LIST(SYMBOL) and
--R            D5 has BLMETCT
--R
--RExamples of numberRatPlacesExtDeg from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of numberRatPlacesExtDeg from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of numberRatPlacesExtDeg from PackageForAlgebraicFunctionField
--R
--E 1986

--S 1987 of 3320
)d op numer
--R 
--R
--RThere are 3 exposed functions called numer :
--R   [1] AlgebraicNumber -> SparseMultivariatePolynomial(Integer,Kernel(
--R            AlgebraicNumber))
--R             from AlgebraicNumber
--R   [2] D -> SparseMultivariatePolynomial(D2,Kernel(D)) from D
--R             if D2 has RING and D2 has ORDSET and D has FS(D2)
--R   [3] D -> D1 from D if D has QFCAT(D1) and D1 has INTDOM
--R
--RThere are 4 unexposed functions called numer :
--R   [1] FractionalIdeal(D2,D3,D4,D5) -> Vector(D5)
--R             from FractionalIdeal(D2,D3,D4,D5)
--R             if D2 has EUCDOM and D3 has QFCAT(D2) and D4 has UPOLYC(D3
--R            ) and D5 has Join(FramedAlgebra(D3,D4),RetractableTo(D3))
--R         
--R   [2] InnerAlgebraicNumber -> SparseMultivariatePolynomial(Integer,
--R            Kernel(InnerAlgebraicNumber))
--R             from InnerAlgebraicNumber
--R   [3] LocalAlgebra(D1,D2,D3) -> D1 from LocalAlgebra(D1,D2,D3)
--R             if D2 has COMRING and D1 has ALGEBRA(D2) and D3 has 
--R            SubsetCategory(Monoid,D2)
--R   [4] Localize(D1,D2,D3) -> D1 from Localize(D1,D2,D3)
--R             if D2 has COMRING and D1 has MODULE(D2) and D3 has 
--R            SubsetCategory(Monoid,D2)
--R
--RExamples of numer from AlgebraicNumber
--R
--Rt1:=sqrt(3)/sqrt(5) 
--Rnumer t1
--R
--R
--RExamples of numer from FractionalIdeal
--R
--R
--RExamples of numer from FunctionSpace
--R
--R
--RExamples of numer from InnerAlgebraicNumber
--R
--R
--RExamples of numer from LocalAlgebra
--R
--R
--RExamples of numer from Localize
--R
--R
--RExamples of numer from QuotientFieldCategory
--R
--E 1987

--S 1988 of 3320
)d op numerator
--R 
--R
--RThere are 3 exposed functions called numerator :
--R   [1] D -> D from D if D has FS(D1) and D1 has ORDSET and D1 has RING
--R            
--R   [2] MyExpression(D1,D2) -> MyExpression(D1,D2) from MyExpression(D1,
--R            D2)
--R             if D1: SYMBOL and D2 has Join(Ring,OrderedSet,
--R            IntegralDomain)
--R   [3] D -> D from D if D has QFCAT(D1) and D1 has INTDOM
--R
--RExamples of numerator from FunctionSpace
--R
--R
--RExamples of numerator from MyExpression
--R
--R
--RExamples of numerator from QuotientFieldCategory
--R
--E 1988

--S 1989 of 3320
)d op numerators
--R 
--R
--RThere is one exposed function called numerators :
--R   [1] ContinuedFraction(D2) -> Stream(D2) from ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of numerators from ContinuedFraction
--R
--E 1989

--S 1990 of 3320
)d op numeric
--R 
--R
--RThere are 8 exposed functions called numeric :
--R   [1] D2 -> Float from Numeric(D2) if D2 has KONVERT(FLOAT)
--R   [2] (D2,PositiveInteger) -> Float from Numeric(D2) if D2 has KONVERT
--R            (FLOAT)
--R   [3] Polynomial(D3) -> Float from Numeric(D3)
--R             if D3 has RING and D3 has KONVERT(FLOAT)
--R   [4] (Polynomial(D4),PositiveInteger) -> Float from Numeric(D4)
--R             if D4 has RING and D4 has KONVERT(FLOAT)
--R   [5] Fraction(Polynomial(D3)) -> Float from Numeric(D3)
--R             if D3 has INTDOM and D3 has KONVERT(FLOAT)
--R   [6] (Fraction(Polynomial(D4)),PositiveInteger) -> Float from Numeric
--R            (D4)
--R             if D4 has INTDOM and D4 has KONVERT(FLOAT)
--R   [7] Expression(D3) -> Float from Numeric(D3)
--R             if D3 has INTDOM and D3 has ORDSET and D3 has KONVERT(
--R            FLOAT)
--R   [8] (Expression(D4),PositiveInteger) -> Float from Numeric(D4)
--R             if D4 has INTDOM and D4 has ORDSET and D4 has KONVERT(
--R            FLOAT)
--R
--RExamples of numeric from Numeric
--R
--E 1990

--S 1991 of 3320
)d op numericalIntegration
--R 
--R
--RThere are 2 exposed functions called numericalIntegration :
--R   [1] (Record(fn: Expression(DoubleFloat),range: List(Segment(
--R            OrderedCompletion(DoubleFloat))),abserr: DoubleFloat,relerr: 
--R            DoubleFloat),Result) -> Result
--R             from D if D has NUMINT
--R   [2] (Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat),Result) -> Result
--R             from D if D has NUMINT
--R
--RExamples of numericalIntegration from NumericalIntegrationCategory
--R
--E 1991

--S 1992 of 3320
)d op numericalOptimization
--R 
--R
--RThere are 2 exposed functions called numericalOptimization :
--R   [1] Record(fn: Expression(DoubleFloat),init: List(DoubleFloat),lb: 
--R            List(OrderedCompletion(DoubleFloat)),cf: List(Expression(
--R            DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))) -> Result
--R             from D if D has OPTCAT
--R   [2] Record(lfn: List(Expression(DoubleFloat)),init: List(DoubleFloat
--R            )) -> Result
--R             from D if D has OPTCAT
--R
--RExamples of numericalOptimization from NumericalOptimizationCategory
--R
--E 1992

--S 1993 of 3320
)d op numericIfCan
--R 
--R
--RThere are 6 exposed functions called numericIfCan :
--R   [1] Polynomial(D3) -> Union(Float,"failed") from Numeric(D3)
--R             if D3 has RING and D3 has KONVERT(FLOAT)
--R   [2] (Polynomial(D4),PositiveInteger) -> Union(Float,"failed")
--R             from Numeric(D4) if D4 has RING and D4 has KONVERT(FLOAT)
--R            
--R   [3] Fraction(Polynomial(D3)) -> Union(Float,"failed") from Numeric(
--R            D3)
--R             if D3 has INTDOM and D3 has KONVERT(FLOAT)
--R   [4] (Fraction(Polynomial(D4)),PositiveInteger) -> Union(Float,
--R            "failed")
--R             from Numeric(D4) if D4 has INTDOM and D4 has KONVERT(FLOAT
--R            )
--R   [5] Expression(D3) -> Union(Float,"failed") from Numeric(D3)
--R             if D3 has INTDOM and D3 has ORDSET and D3 has KONVERT(
--R            FLOAT)
--R   [6] (Expression(D4),PositiveInteger) -> Union(Float,"failed")
--R             from Numeric(D4)
--R             if D4 has INTDOM and D4 has ORDSET and D4 has KONVERT(
--R            FLOAT)
--R
--RExamples of numericIfCan from Numeric
--R
--E 1993

--S 1994 of 3320
)d op numFunEvals
--R 
--R
--RThere is one unexposed function called numFunEvals :
--R   [1]  -> Integer from Plot
--R
--RExamples of numFunEvals from Plot
--R
--E 1994

--S 1995 of 3320
)d op numFunEvals3D
--R 
--R
--RThere is one unexposed function called numFunEvals3D :
--R   [1]  -> Integer from Plot3D
--R
--RExamples of numFunEvals3D from Plot3D
--R
--E 1995

--S 1996 of 3320
)d op obj
--R 
--R
--RThere is one exposed function called obj :
--R   [1] Any -> None from Any
--R
--RExamples of obj from Any
--R
--E 1996

--S 1997 of 3320
)d op objectOf
--R 
--R
--RThere is one exposed function called objectOf :
--R   [1] Any -> OutputForm from Any
--R
--RExamples of objectOf from Any
--R
--E 1997

--S 1998 of 3320
)d op objects
--R 
--R
--RThere is one exposed function called objects :
--R   [1] D -> Record(points: NonNegativeInteger,curves: 
--R            NonNegativeInteger,polygons: NonNegativeInteger,constructs: 
--R            NonNegativeInteger)
--R             from D if D has SPACEC(D2) and D2 has RING
--R
--RExamples of objects from ThreeSpaceCategory
--R
--E 1998

--S 1999 of 3320
)d op oblateSpheroidal
--R 
--R
--RThere is one exposed function called oblateSpheroidal :
--R   [1] D2 -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of oblateSpheroidal from CoordinateSystems
--R
--E 1999

--S 2000 of 3320
)d op ocf2ocdf
--R 
--R
--RThere is one exposed function called ocf2ocdf :
--R   [1] OrderedCompletion(Float) -> OrderedCompletion(DoubleFloat)
--R             from ExpertSystemToolsPackage
--R
--RExamples of ocf2ocdf from ExpertSystemToolsPackage
--R
--E 2000

--S 2001 of 3320
)d op octon
--R 
--R
--RThere are 2 exposed functions called octon :
--R   [1] (D1,D1,D1,D1,D1,D1,D1,D1) -> D from D if D has OC(D1) and D1
--R             has COMRING
--R   [2] (Quaternion(D2),Quaternion(D2)) -> Octonion(D2) from Octonion(D2
--R            )
--R             if D2 has COMRING
--R
--RExamples of octon from OctonionCategory
--R
--R
--RExamples of octon from Octonion
--R
--E 2001

--S 2002 of 3320
)d op odd?
--R 
--R
--RThere are 3 exposed functions called odd? :
--R   [1] D -> Boolean from D if D has RETRACT(INT) and D has ES
--R   [2] D -> Boolean from D if D has INS
--R   [3] Permutation(D2) -> Boolean from Permutation(D2) if D2 has SETCAT
--R            
--R
--RExamples of odd? from RetractableTo
--R
--R
--RExamples of odd? from IntegerNumberSystem
--R
--R
--RExamples of odd? from Permutation
--R
--E 2002

--S 2003 of 3320
)d op oddInfiniteProduct
--R 
--R
--RThere are 3 exposed functions called oddInfiniteProduct :
--R   [1] D1 -> D1 from InfiniteProductCharacteristicZero(D2,D1)
--R             if D2 has Join(IntegralDomain,CharacteristicZero) and D1
--R             has UTSCAT(D2)
--R   [2] D1 -> D1 from InfiniteProductFiniteField(D2,D3,D4,D1)
--R             if D2 has Join(Field,Finite,ConvertibleTo(Integer)) and D3
--R             has UPOLYC(D2) and D4 has MONOGEN(D2,D3) and D1 has UTSCAT
--R            (D4)
--R   [3] D1 -> D1 from InfiniteProductPrimeField(D2,D1)
--R             if D2 has Join(Field,Finite,ConvertibleTo(Integer)) and D1
--R             has UTSCAT(D2)
--R
--RThere is one unexposed function called oddInfiniteProduct :
--R   [1] Stream(D2) -> Stream(D2) from StreamInfiniteProduct(D2)
--R             if D2 has Join(IntegralDomain,CharacteristicZero)
--R
--RExamples of oddInfiniteProduct from InfiniteProductCharacteristicZero
--R
--R
--RExamples of oddInfiniteProduct from InfiniteProductFiniteField
--R
--R
--RExamples of oddInfiniteProduct from InfiniteProductPrimeField
--R
--R
--RExamples of oddInfiniteProduct from StreamInfiniteProduct
--R
--E 2003

--S 2004 of 3320
)d op oddintegers
--R 
--R
--RThere is one unexposed function called oddintegers :
--R   [1] Integer -> Stream(Integer) from StreamTaylorSeriesOperations(D3)
--R             if D3 has RING
--R
--RExamples of oddintegers from StreamTaylorSeriesOperations
--R
--E 2004

--S 2005 of 3320
)d op oddlambert
--R 
--R
--RThere are 2 exposed functions called oddlambert :
--R   [1] UnivariateFormalPowerSeries(D1) -> UnivariateFormalPowerSeries(
--R            D1)
--R             from UnivariateFormalPowerSeries(D1) if D1 has RING
--R   [2] UnivariateTaylorSeriesCZero(D1,D2) -> 
--R            UnivariateTaylorSeriesCZero(D1,D2)
--R             from UnivariateTaylorSeriesCZero(D1,D2) if D1 has RING and
--R            D2: SYMBOL
--R
--RThere are 2 unexposed functions called oddlambert :
--R   [1] Stream(D2) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R   [2] UnivariateTaylorSeries(D1,D2,D3) -> UnivariateTaylorSeries(D1,D2
--R            ,D3)
--R             from UnivariateTaylorSeries(D1,D2,D3)
--R             if D1 has RING and D2: SYMBOL and D3: D1
--R
--RExamples of oddlambert from StreamTaylorSeriesOperations
--R
--R
--RExamples of oddlambert from UnivariateFormalPowerSeries
--R
--R
--RExamples of oddlambert from UnivariateTaylorSeries
--R
--R
--RExamples of oddlambert from UnivariateTaylorSeriesCZero
--R
--E 2005

--S 2006 of 3320
)d op ode
--R 
--R
--RThere is one unexposed function called ode :
--R   [1] ((List(D1) -> D1),List(D4)) -> D1
--R             from UnivariateTaylorSeriesODESolver(D4,D1)
--R             if D4 has ALGEBRA(FRAC(INT)) and D1 has UTSCAT(D4)
--R
--RExamples of ode from UnivariateTaylorSeriesODESolver
--R
--E 2006

--S 2007 of 3320
)d op ode1
--R 
--R
--RThere is one unexposed function called ode1 :
--R   [1] ((D1 -> D1),D3) -> D1 from UnivariateTaylorSeriesODESolver(D3,D1
--R            )
--R             if D1 has UTSCAT(D3) and D3 has ALGEBRA(FRAC(INT))
--R
--RExamples of ode1 from UnivariateTaylorSeriesODESolver
--R
--E 2007

--S 2008 of 3320
)d op ode2
--R 
--R
--RThere is one unexposed function called ode2 :
--R   [1] (((D1,D1) -> D1),D3,D3) -> D1 from 
--R            UnivariateTaylorSeriesODESolver(D3,D1)
--R             if D1 has UTSCAT(D3) and D3 has ALGEBRA(FRAC(INT))
--R
--RExamples of ode2 from UnivariateTaylorSeriesODESolver
--R
--E 2008

--S 2009 of 3320
)d op OMbindTCP
--R 
--R
--RThere is one exposed function called OMbindTCP :
--R   [1] (OpenMathConnection,SingleInteger) -> Boolean from 
--R            OpenMathConnection
--R
--RExamples of OMbindTCP from OpenMathConnection
--R
--E 2009

--S 2010 of 3320
)d op OMclose
--R 
--R
--RThere is one exposed function called OMclose :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMclose from OpenMathDevice
--R
--E 2010

--S 2011 of 3320
)d op OMcloseConn
--R 
--R
--RThere is one exposed function called OMcloseConn :
--R   [1] OpenMathConnection -> Void from OpenMathConnection
--R
--RExamples of OMcloseConn from OpenMathConnection
--R
--E 2011

--S 2012 of 3320
)d op OMconnectTCP
--R 
--R
--RThere is one exposed function called OMconnectTCP :
--R   [1] (OpenMathConnection,String,SingleInteger) -> Boolean
--R             from OpenMathConnection
--R
--RExamples of OMconnectTCP from OpenMathConnection
--R
--E 2012

--S 2013 of 3320
)d op OMconnInDevice
--R 
--R
--RThere is one exposed function called OMconnInDevice :
--R   [1] OpenMathConnection -> OpenMathDevice from OpenMathConnection
--R
--RExamples of OMconnInDevice from OpenMathConnection
--R
--E 2013

--S 2014 of 3320
)d op OMconnOutDevice
--R 
--R
--RThere is one exposed function called OMconnOutDevice :
--R   [1] OpenMathConnection -> OpenMathDevice from OpenMathConnection
--R
--RExamples of OMconnOutDevice from OpenMathConnection
--R
--E 2014

--S 2015 of 3320
)d op OMencodingBinary
--R 
--R
--RThere is one exposed function called OMencodingBinary :
--R   [1]  -> OpenMathEncoding from OpenMathEncoding
--R
--RExamples of OMencodingBinary from OpenMathEncoding
--R
--E 2015

--S 2016 of 3320
)d op OMencodingSGML
--R 
--R
--RThere is one exposed function called OMencodingSGML :
--R   [1]  -> OpenMathEncoding from OpenMathEncoding
--R
--RExamples of OMencodingSGML from OpenMathEncoding
--R
--E 2016

--S 2017 of 3320
)d op OMencodingUnknown
--R 
--R
--RThere is one exposed function called OMencodingUnknown :
--R   [1]  -> OpenMathEncoding from OpenMathEncoding
--R
--RExamples of OMencodingUnknown from OpenMathEncoding
--R
--E 2017

--S 2018 of 3320
)d op OMencodingXML
--R 
--R
--RThere is one exposed function called OMencodingXML :
--R   [1]  -> OpenMathEncoding from OpenMathEncoding
--R
--RExamples of OMencodingXML from OpenMathEncoding
--R
--E 2018

--S 2019 of 3320
)d op omError
--R 
--R
--RThere is one exposed function called omError :
--R   [1] (OpenMathErrorKind,List(Symbol)) -> OpenMathError from 
--R            OpenMathError
--R
--RExamples of omError from OpenMathError
--R
--E 2019

--S 2020 of 3320
)d op OMgetApp
--R 
--R
--RThere is one exposed function called OMgetApp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetApp from OpenMathDevice
--R
--E 2020

--S 2021 of 3320
)d op OMgetAtp
--R 
--R
--RThere is one exposed function called OMgetAtp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetAtp from OpenMathDevice
--R
--E 2021

--S 2022 of 3320
)d op OMgetAttr
--R 
--R
--RThere is one exposed function called OMgetAttr :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetAttr from OpenMathDevice
--R
--E 2022

--S 2023 of 3320
)d op OMgetBind
--R 
--R
--RThere is one exposed function called OMgetBind :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetBind from OpenMathDevice
--R
--E 2023

--S 2024 of 3320
)d op OMgetBVar
--R 
--R
--RThere is one exposed function called OMgetBVar :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetBVar from OpenMathDevice
--R
--E 2024

--S 2025 of 3320
)d op OMgetEndApp
--R 
--R
--RThere is one exposed function called OMgetEndApp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetEndApp from OpenMathDevice
--R
--E 2025

--S 2026 of 3320
)d op OMgetEndAtp
--R 
--R
--RThere is one exposed function called OMgetEndAtp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetEndAtp from OpenMathDevice
--R
--E 2026

--S 2027 of 3320
)d op OMgetEndAttr
--R 
--R
--RThere is one exposed function called OMgetEndAttr :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetEndAttr from OpenMathDevice
--R
--E 2027

--S 2028 of 3320
)d op OMgetEndBind
--R 
--R
--RThere is one exposed function called OMgetEndBind :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetEndBind from OpenMathDevice
--R
--E 2028

--S 2029 of 3320
)d op OMgetEndBVar
--R 
--R
--RThere is one exposed function called OMgetEndBVar :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetEndBVar from OpenMathDevice
--R
--E 2029

--S 2030 of 3320
)d op OMgetEndError
--R 
--R
--RThere is one exposed function called OMgetEndError :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetEndError from OpenMathDevice
--R
--E 2030

--S 2031 of 3320
)d op OMgetEndObject
--R 
--R
--RThere is one exposed function called OMgetEndObject :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetEndObject from OpenMathDevice
--R
--E 2031

--S 2032 of 3320
)d op OMgetError
--R 
--R
--RThere is one exposed function called OMgetError :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetError from OpenMathDevice
--R
--E 2032

--S 2033 of 3320
)d op OMgetFloat
--R 
--R
--RThere is one exposed function called OMgetFloat :
--R   [1] OpenMathDevice -> DoubleFloat from OpenMathDevice
--R
--RExamples of OMgetFloat from OpenMathDevice
--R
--E 2033

--S 2034 of 3320
)d op OMgetInteger
--R 
--R
--RThere is one exposed function called OMgetInteger :
--R   [1] OpenMathDevice -> Integer from OpenMathDevice
--R
--RExamples of OMgetInteger from OpenMathDevice
--R
--E 2034

--S 2035 of 3320
)d op OMgetObject
--R 
--R
--RThere is one exposed function called OMgetObject :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMgetObject from OpenMathDevice
--R
--E 2035

--S 2036 of 3320
)d op OMgetString
--R 
--R
--RThere is one exposed function called OMgetString :
--R   [1] OpenMathDevice -> String from OpenMathDevice
--R
--RExamples of OMgetString from OpenMathDevice
--R
--E 2036

--S 2037 of 3320
)d op OMgetSymbol
--R 
--R
--RThere is one exposed function called OMgetSymbol :
--R   [1] OpenMathDevice -> Record(cd: String,name: String) from 
--R            OpenMathDevice
--R
--RExamples of OMgetSymbol from OpenMathDevice
--R
--E 2037

--S 2038 of 3320
)d op OMgetType
--R 
--R
--RThere is one exposed function called OMgetType :
--R   [1] OpenMathDevice -> Symbol from OpenMathDevice
--R
--RExamples of OMgetType from OpenMathDevice
--R
--E 2038

--S 2039 of 3320
)d op OMgetVariable
--R 
--R
--RThere is one exposed function called OMgetVariable :
--R   [1] OpenMathDevice -> Symbol from OpenMathDevice
--R
--RExamples of OMgetVariable from OpenMathDevice
--R
--E 2039

--S 2040 of 3320
)d op OMlistCDs
--R 
--R
--RThere is one exposed function called OMlistCDs :
--R   [1]  -> List(String) from OpenMathPackage
--R
--RExamples of OMlistCDs from OpenMathPackage
--R
--E 2040

--S 2041 of 3320
)d op OMlistSymbols
--R 
--R
--RThere is one exposed function called OMlistSymbols :
--R   [1] String -> List(String) from OpenMathPackage
--R
--RExamples of OMlistSymbols from OpenMathPackage
--R
--E 2041

--S 2042 of 3320
)d op OMmakeConn
--R 
--R
--RThere is one exposed function called OMmakeConn :
--R   [1] SingleInteger -> OpenMathConnection from OpenMathConnection
--R
--RExamples of OMmakeConn from OpenMathConnection
--R
--E 2042

--S 2043 of 3320
)d op OMopenFile
--R 
--R
--RThere is one exposed function called OMopenFile :
--R   [1] (String,String,OpenMathEncoding) -> OpenMathDevice from 
--R            OpenMathDevice
--R
--RExamples of OMopenFile from OpenMathDevice
--R
--E 2043

--S 2044 of 3320
)d op OMopenString
--R 
--R
--RThere is one exposed function called OMopenString :
--R   [1] (String,OpenMathEncoding) -> OpenMathDevice from OpenMathDevice
--R            
--R
--RExamples of OMopenString from OpenMathDevice
--R
--E 2044

--S 2045 of 3320
)d op OMParseError?
--R 
--R
--RThere is one exposed function called OMParseError? :
--R   [1] OpenMathErrorKind -> Boolean from OpenMathErrorKind
--R
--RExamples of OMParseError? from OpenMathErrorKind
--R
--E 2045

--S 2046 of 3320
)d op OMputApp
--R 
--R
--RThere is one exposed function called OMputApp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputApp from OpenMathDevice
--R
--E 2046

--S 2047 of 3320
)d op OMputAtp
--R 
--R
--RThere is one exposed function called OMputAtp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputAtp from OpenMathDevice
--R
--E 2047

--S 2048 of 3320
)d op OMputAttr
--R 
--R
--RThere is one exposed function called OMputAttr :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputAttr from OpenMathDevice
--R
--E 2048

--S 2049 of 3320
)d op OMputBind
--R 
--R
--RThere is one exposed function called OMputBind :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputBind from OpenMathDevice
--R
--E 2049

--S 2050 of 3320
)d op OMputBVar
--R 
--R
--RThere is one exposed function called OMputBVar :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputBVar from OpenMathDevice
--R
--E 2050

--S 2051 of 3320
)d op OMputEndApp
--R 
--R
--RThere is one exposed function called OMputEndApp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputEndApp from OpenMathDevice
--R
--E 2051

--S 2052 of 3320
)d op OMputEndAtp
--R 
--R
--RThere is one exposed function called OMputEndAtp :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputEndAtp from OpenMathDevice
--R
--E 2052

--S 2053 of 3320
)d op OMputEndAttr
--R 
--R
--RThere is one exposed function called OMputEndAttr :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputEndAttr from OpenMathDevice
--R
--E 2053

--S 2054 of 3320
)d op OMputEndBind
--R 
--R
--RThere is one exposed function called OMputEndBind :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputEndBind from OpenMathDevice
--R
--E 2054

--S 2055 of 3320
)d op OMputEndBVar
--R 
--R
--RThere is one exposed function called OMputEndBVar :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputEndBVar from OpenMathDevice
--R
--E 2055

--S 2056 of 3320
)d op OMputEndError
--R 
--R
--RThere is one exposed function called OMputEndError :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputEndError from OpenMathDevice
--R
--E 2056

--S 2057 of 3320
)d op OMputEndObject
--R 
--R
--RThere is one exposed function called OMputEndObject :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputEndObject from OpenMathDevice
--R
--E 2057

--S 2058 of 3320
)d op OMputError
--R 
--R
--RThere is one exposed function called OMputError :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputError from OpenMathDevice
--R
--E 2058

--S 2059 of 3320
)d op OMputFloat
--R 
--R
--RThere is one exposed function called OMputFloat :
--R   [1] (OpenMathDevice,DoubleFloat) -> Void from OpenMathDevice
--R
--RExamples of OMputFloat from OpenMathDevice
--R
--E 2059

--S 2060 of 3320
)d op OMputInteger
--R 
--R
--RThere is one exposed function called OMputInteger :
--R   [1] (OpenMathDevice,Integer) -> Void from OpenMathDevice
--R
--RExamples of OMputInteger from OpenMathDevice
--R
--E 2060

--S 2061 of 3320
)d op OMputObject
--R 
--R
--RThere is one exposed function called OMputObject :
--R   [1] OpenMathDevice -> Void from OpenMathDevice
--R
--RExamples of OMputObject from OpenMathDevice
--R
--E 2061

--S 2062 of 3320
)d op OMputString
--R 
--R
--RThere is one exposed function called OMputString :
--R   [1] (OpenMathDevice,String) -> Void from OpenMathDevice
--R
--RExamples of OMputString from OpenMathDevice
--R
--E 2062

--S 2063 of 3320
)d op OMputSymbol
--R 
--R
--RThere is one exposed function called OMputSymbol :
--R   [1] (OpenMathDevice,String,String) -> Void from OpenMathDevice
--R
--RExamples of OMputSymbol from OpenMathDevice
--R
--E 2063

--S 2064 of 3320
)d op OMputVariable
--R 
--R
--RThere is one exposed function called OMputVariable :
--R   [1] (OpenMathDevice,Symbol) -> Void from OpenMathDevice
--R
--RExamples of OMputVariable from OpenMathDevice
--R
--E 2064

--S 2065 of 3320
)d op OMread
--R 
--R
--RThere is one exposed function called OMread :
--R   [1] OpenMathDevice -> Any from OpenMathPackage
--R
--RExamples of OMread from OpenMathPackage
--R
--E 2065

--S 2066 of 3320
)d op OMReadError?
--R 
--R
--RThere is one exposed function called OMReadError? :
--R   [1] OpenMathErrorKind -> Boolean from OpenMathErrorKind
--R
--RExamples of OMReadError? from OpenMathErrorKind
--R
--E 2066

--S 2067 of 3320
)d op OMreadFile
--R 
--R
--RThere is one exposed function called OMreadFile :
--R   [1] String -> Any from OpenMathPackage
--R
--RExamples of OMreadFile from OpenMathPackage
--R
--E 2067

--S 2068 of 3320
)d op OMreadStr
--R 
--R
--RThere is one exposed function called OMreadStr :
--R   [1] String -> Any from OpenMathPackage
--R
--RExamples of OMreadStr from OpenMathPackage
--R
--E 2068

--S 2069 of 3320
)d op OMreceive
--R 
--R
--RThere is one exposed function called OMreceive :
--R   [1] OpenMathConnection -> Any from OpenMathServerPackage
--R
--RExamples of OMreceive from OpenMathServerPackage
--R
--E 2069

--S 2070 of 3320
)d op OMsend
--R 
--R
--RThere is one exposed function called OMsend :
--R   [1] (OpenMathConnection,Any) -> Void from OpenMathServerPackage
--R
--RExamples of OMsend from OpenMathServerPackage
--R
--E 2070

--S 2071 of 3320
)d op OMserve
--R 
--R
--RThere is one exposed function called OMserve :
--R   [1] (SingleInteger,SingleInteger) -> Void from OpenMathServerPackage
--R            
--R
--RExamples of OMserve from OpenMathServerPackage
--R
--E 2071

--S 2072 of 3320
)d op OMsetEncoding
--R 
--R
--RThere is one exposed function called OMsetEncoding :
--R   [1] (OpenMathDevice,OpenMathEncoding) -> Void from OpenMathDevice
--R         
--R
--RExamples of OMsetEncoding from OpenMathDevice
--R
--E 2072

--S 2073 of 3320
)d op OMsupportsCD?
--R 
--R
--RThere is one exposed function called OMsupportsCD? :
--R   [1] String -> Boolean from OpenMathPackage
--R
--RExamples of OMsupportsCD? from OpenMathPackage
--R
--E 2073

--S 2074 of 3320
)d op OMsupportsSymbol?
--R 
--R
--RThere is one exposed function called OMsupportsSymbol? :
--R   [1] (String,String) -> Boolean from OpenMathPackage
--R
--RExamples of OMsupportsSymbol? from OpenMathPackage
--R
--E 2074

--S 2075 of 3320
)d op OMunhandledSymbol
--R 
--R
--RThere is one exposed function called OMunhandledSymbol :
--R   [1] (String,String) -> Exit from OpenMathPackage
--R
--RExamples of OMunhandledSymbol from OpenMathPackage
--R
--E 2075

--S 2076 of 3320
)d op OMUnknownCD?
--R 
--R
--RThere is one exposed function called OMUnknownCD? :
--R   [1] OpenMathErrorKind -> Boolean from OpenMathErrorKind
--R
--RExamples of OMUnknownCD? from OpenMathErrorKind
--R
--E 2076

--S 2077 of 3320
)d op OMUnknownSymbol?
--R 
--R
--RThere is one exposed function called OMUnknownSymbol? :
--R   [1] OpenMathErrorKind -> Boolean from OpenMathErrorKind
--R
--RExamples of OMUnknownSymbol? from OpenMathErrorKind
--R
--E 2077

--S 2078 of 3320
)d op OMwrite
--R 
--R
--RThere are 8 exposed functions called OMwrite :
--R   [1] Expression(D3) -> String from ExpressionToOpenMath(D3)
--R             if D3 has Join(OpenMath,OrderedSet,Ring)
--R   [2] (Expression(D4),Boolean) -> String from ExpressionToOpenMath(D4)
--R             if D4 has Join(OpenMath,OrderedSet,Ring)
--R   [3] (OpenMathDevice,Expression(D4)) -> Void from 
--R            ExpressionToOpenMath(D4)
--R             if D4 has Join(OpenMath,OrderedSet,Ring)
--R   [4] (OpenMathDevice,Expression(D5),Boolean) -> Void
--R             from ExpressionToOpenMath(D5) if D5 has Join(OpenMath,
--R            OrderedSet,Ring)
--R   [5] D -> String from D if D has OM
--R   [6] (D,Boolean) -> String from D if D has OM
--R   [7] (OpenMathDevice,D) -> Void from D if D has OM
--R   [8] (OpenMathDevice,D,Boolean) -> Void from D if D has OM
--R
--RExamples of OMwrite from ExpressionToOpenMath
--R
--R
--RExamples of OMwrite from OpenMath
--R
--E 2078

--S 2079 of 3320
)d op one
--R 
--R
--RThere is one exposed function called one :
--R   [1] Boolean -> GuessOption from GuessOption
--R
--RThere is one unexposed function called one :
--R   [1] List(GuessOption) -> Boolean from GuessOptionFunctions0
--R
--RExamples of one from GuessOptionFunctions0
--R
--R
--RExamples of one from GuessOption
--R
--E 2079

--S 2080 of 3320
)d op one?
--R 
--R
--RThere are 3 exposed functions called one? :
--R   [1] PolynomialIdeals(D2,D3,D4,D5) -> Boolean
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R   [2] D -> Boolean from D if D has MONADWU
--R   [3] D -> Boolean from D if D has MONOID
--R
--RExamples of one? from PolynomialIdeals
--R
--R
--RExamples of one? from MonadWithUnit
--R
--R
--RExamples of one? from Monoid
--R
--E 2080

--S 2081 of 3320 done
)d op oneDimensionalArray
--R 
--R
--RThere are 2 exposed functions called oneDimensionalArray :
--R   [1] (NonNegativeInteger,D2) -> OneDimensionalArray(D2)
--R             from OneDimensionalArray(D2) if D2 has TYPE
--R   [2] List(D2) -> OneDimensionalArray(D2) from OneDimensionalArray(D2)
--R             if D2 has TYPE
--R
--RExamples of oneDimensionalArray from OneDimensionalArray
--R
--RoneDimensionalArray(10,0.0)
--R
--RoneDimensionalArray [i**2 for i in 1..10]
--R
--E 2081

--S 2082 of 3320
)d op op
--R 
--R
--RThere is one unexposed function called op :
--R   [1] D1 -> OppositeMonogenicLinearOperator(D1,D2)
--R             from OppositeMonogenicLinearOperator(D1,D2)
--R             if D2 has RING and D1 has MLO(D2)
--R
--RExamples of op from OppositeMonogenicLinearOperator
--R
--E 2082

--S 2083 of 3320
)d op open
--R 
--R
--RThere are 2 exposed functions called open :
--R   [1] (D1,String) -> D from D
--R             if D has FILECAT(D1,D3) and D1 has SETCAT and D3 has 
--R            SETCAT
--R   [2] D1 -> D from D if D has FILECAT(D1,D2) and D1 has SETCAT and D2
--R             has SETCAT
--R
--RExamples of open from FileCategory
--R
--E 2083

--S 2084 of 3320
)d op open?
--R 
--R
--RThere is one unexposed function called open? :
--R   [1] TubePlot(D2) -> Boolean from TubePlot(D2) if D2 has PSCURVE
--R
--RExamples of open? from TubePlot
--R
--E 2084

--S 2085 of 3320
)d op operation
--R 
--R
--RThere is one exposed function called operation :
--R   [1] FortranCode -> Union(Null: null,Assignment: assignment,
--R            Conditional: conditional,Return: return,Block: block,Comment: 
--R            comment,Call: call,For: for,While: while,Repeat: repeat,Goto: 
--R            goto,Continue: continue,ArrayAssignment: arrayAssignment,Save: 
--R            save,Stop: stop,Common: common,Print: print)
--R             from FortranCode
--R
--RExamples of operation from FortranCode
--R
--E 2085

--S 2086 of 3320
)d op operator
--R 
--R
--RThere are 3 exposed functions called operator :
--R   [1] (Symbol,NonNegativeInteger) -> BasicOperator from BasicOperator
--R            
--R   [2] Symbol -> BasicOperator from BasicOperator
--R   [3] BasicOperator -> BasicOperator from D if D has ES
--R
--RThere are 9 unexposed functions called operator :
--R   [1] BasicOperator -> BasicOperator from AlgebraicFunction(D2,D3)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D3 has FS(D2
--R            )
--R   [2] BasicOperator -> BasicOperator from CombinatorialFunction(D2,D3)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D3 has FS(D2
--R            )
--R   [3] Symbol -> BasicOperator from CommonOperators
--R   [4] BasicOperator -> BasicOperator from ElementaryFunction(D2,D3)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D3 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [5] BasicOperator -> BasicOperator from ExpressionSpace&(D2) if D2
--R             has ES
--R   [6] BasicOperator -> BasicOperator from FunctionSpace&(D2,D3)
--R             if D3 has ORDSET and D2 has FS(D3)
--R   [7] BasicOperator -> BasicOperator from FunctionalSpecialFunction(D2
--R            ,D3)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D3 has FS(D2
--R            )
--R   [8] Kernel(D2) -> BasicOperator from Kernel(D2) if D2 has ORDSET
--R   [9] BasicOperator -> BasicOperator from LiouvillianFunction(D2,D3)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D3 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of operator from AlgebraicFunction
--R
--R
--RExamples of operator from BasicOperator
--R
--R
--RExamples of operator from CombinatorialFunction
--R
--R
--RExamples of operator from CommonOperators
--R
--R
--RExamples of operator from ElementaryFunction
--R
--R
--RExamples of operator from ExpressionSpace&
--R
--R
--RExamples of operator from ExpressionSpace
--R
--R
--RExamples of operator from FunctionSpace&
--R
--R
--RExamples of operator from FunctionalSpecialFunction
--R
--R
--RExamples of operator from Kernel
--R
--R
--RExamples of operator from LiouvillianFunction
--R
--E 2086

--S 2087 of 3320
)d op operators
--R 
--R
--RThere is one exposed function called operators :
--R   [1] D -> List(BasicOperator) from D if D has ES
--R
--RExamples of operators from ExpressionSpace
--R
--E 2087

--S 2088 of 3320
)d op opeval
--R 
--R
--RThere is one exposed function called opeval :
--R   [1] (BasicOperator,D1) -> D1 from ModuleOperator(D3,D1)
--R             if D3 has RING and D1 has LMODULE(D3)
--R
--RThere is one unexposed function called opeval :
--R   [1] (BasicOperator,D1) -> D1 from Operator(D1) if D1 has RING
--R
--RExamples of opeval from ModuleOperator
--R
--R
--RExamples of opeval from Operator
--R
--E 2088

--S 2089 of 3320
)d op optAttributes
--R 
--R
--RThere is one exposed function called optAttributes :
--R   [1] Union(noa: Record(fn: Expression(DoubleFloat),init: List(
--R            DoubleFloat),lb: List(OrderedCompletion(DoubleFloat)),cf: List(
--R            Expression(DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))
--R            ),lsa: Record(lfn: List(Expression(DoubleFloat)),init: List(
--R            DoubleFloat))) -> List(String)
--R             from e04AgentsPackage
--R
--RExamples of optAttributes from e04AgentsPackage
--R
--E 2089

--S 2090 of 3320
)d op optimize
--R 
--R
--RThere are 6 exposed functions called optimize :
--R   [1] (NumericalOptimizationProblem,RoutinesTable) -> Result
--R             from AnnaNumericalOptimizationPackage
--R   [2] NumericalOptimizationProblem -> Result
--R             from AnnaNumericalOptimizationPackage
--R   [3] (Expression(Float),List(Float),List(OrderedCompletion(Float)),
--R            List(Expression(Float)),List(OrderedCompletion(Float))) -> Result
--R             from AnnaNumericalOptimizationPackage
--R   [4] (Expression(Float),List(Float),List(OrderedCompletion(Float)),
--R            List(OrderedCompletion(Float))) -> Result
--R             from AnnaNumericalOptimizationPackage
--R   [5] (Expression(Float),List(Float)) -> Result
--R             from AnnaNumericalOptimizationPackage
--R   [6] (List(Expression(Float)),List(Float)) -> Result
--R             from AnnaNumericalOptimizationPackage
--R
--RExamples of optimize from AnnaNumericalOptimizationPackage
--R
--E 2090

--S 2091 of 3320
)d op option
--R 
--R
--RThere are 2 exposed functions called option :
--R   [1] (List(DrawOption),Symbol) -> Union(Any,"failed") from DrawOption
--R            
--R   [2] (List(GuessOption),Symbol) -> Union(Any,"failed") from 
--R            GuessOption
--R
--RThere is one unexposed function called option :
--R   [1] (List(DrawOption),Symbol) -> Union(D1,"failed")
--R             from DrawOptionFunctions1(D1) if D1 has TYPE
--R
--RExamples of option from DrawOptionFunctions1
--R
--R
--RExamples of option from DrawOption
--R
--R
--RExamples of option from GuessOption
--R
--E 2091

--S 2092 of 3320
)d op option?
--R 
--R
--RThere is one exposed function called option? :
--R   [1] (List(DrawOption),Symbol) -> Boolean from DrawOption
--R
--RExamples of option? from DrawOption
--R
--E 2092

--S 2093 of 3320
)d op optional
--R 
--R
--RThere are 2 exposed functions called optional :
--R   [1] D1 -> D1 from FunctionSpaceAssertions(D2,D1)
--R             if D2 has ORDSET and D1 has FS(D2)
--R   [2] Symbol -> Expression(Integer) from PatternMatchAssertions
--R
--RExamples of optional from FunctionSpaceAssertions
--R
--R
--RExamples of optional from PatternMatchAssertions
--R
--E 2093

--S 2094 of 3320
)d op optional?
--R 
--R
--RThere is one unexposed function called optional? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of optional? from Pattern
--R
--E 2094

--S 2095 of 3320
)d op options
--R 
--R
--RThere are 2 exposed functions called options :
--R   [1] (ThreeDimensionalViewport,List(DrawOption)) -> 
--R            ThreeDimensionalViewport
--R             from ThreeDimensionalViewport
--R   [2] ThreeDimensionalViewport -> List(DrawOption)
--R             from ThreeDimensionalViewport
--R
--RThere are 2 unexposed functions called options :
--R   [1] (TwoDimensionalViewport,List(DrawOption)) -> 
--R            TwoDimensionalViewport
--R             from TwoDimensionalViewport
--R   [2] TwoDimensionalViewport -> List(DrawOption) from 
--R            TwoDimensionalViewport
--R
--RExamples of options from TwoDimensionalViewport
--R
--R
--RExamples of options from ThreeDimensionalViewport
--R
--E 2095

--S 2096 of 3320
)d op optpair
--R 
--R
--RThere is one unexposed function called optpair :
--R   [1] List(Pattern(D2)) -> Union(List(Pattern(D2)),"failed") from 
--R            Pattern(D2)
--R             if D2 has SETCAT
--R
--RExamples of optpair from Pattern
--R
--E 2096

--S 2097 of 3320
)d op or
--R 
--R
--RThere are 2 exposed functions called or :
--R   [1] (Boolean,Boolean) -> Boolean from Boolean
--R   [2] (D,D) -> D from D if D has BTAGG
--R
--RThere is one unexposed function called or :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of or from Boolean
--R
--R
--RExamples of or from BitAggregate
--R
--R
--RExamples of or from OutputForm
--R
--E 2097

--S 2098 of 3320
)d op Or
--R 
--R
--RThere is one exposed function called Or :
--R   [1] (SingleInteger,SingleInteger) -> SingleInteger from 
--R            SingleInteger
--R
--RThere is one unexposed function called Or :
--R   [1] (IndexedBits(D1),IndexedBits(D1)) -> IndexedBits(D1) from 
--R            IndexedBits(D1)
--R             if D1: INT
--R
--RExamples of Or from IndexedBits
--R
--R
--RExamples of Or from SingleInteger
--R
--E 2098

--S 2099 of 3320
)d op OR
--R 
--R
--RThere is one exposed function called OR :
--R   [1] (Union(I: Expression(Integer),F: Expression(Float),CF: 
--R            Expression(Complex(Float)),switch: Switch),Union(I: Expression(
--R            Integer),F: Expression(Float),CF: Expression(Complex(Float)),
--R            switch: Switch)) -> Switch
--R             from Switch
--R
--RExamples of OR from Switch
--R
--E 2099

--S 2100 of 3320
)d op orbit
--R 
--R
--RThere are 8 exposed functions called orbit :
--R   [1] (D,NonNegativeInteger) -> List(D) from D if D3 has FIELD and D
--R             has AFSPCAT(D3)
--R   [2] D -> List(D) from D if D2 has FIELD and D has AFSPCAT(D2)
--R   [3] (D,D2) -> Set(D2) from D if D has PERMCAT(D2) and D2 has SETCAT
--R            
--R   [4] (PermutationGroup(D3),List(D3)) -> Set(List(D3))
--R             from PermutationGroup(D3) if D3 has SETCAT
--R   [5] (PermutationGroup(D3),Set(D3)) -> Set(Set(D3)) from 
--R            PermutationGroup(D3)
--R             if D3 has SETCAT
--R   [6] (PermutationGroup(D2),D2) -> Set(D2) from PermutationGroup(D2)
--R             if D2 has SETCAT
--R   [7] (D,NonNegativeInteger) -> List(D) from D if D3 has FIELD and D
--R             has PRSPCAT(D3)
--R   [8] D -> List(D) from D if D2 has FIELD and D has PRSPCAT(D2)
--R
--RExamples of orbit from AffineSpaceCategory
--R
--R
--RExamples of orbit from PermutationCategory
--R
--R
--RExamples of orbit from PermutationGroup
--R
--Rx : PERM INT := [[1,3,5],[7,11,9]] 
--Ry : PERM INT := [[3,5,7,9]] 
--Rg : PERMGRP INT := [ x , y ] 
--Rorbit(g, 3)
--R
--R
--RExamples of orbit from ProjectiveSpaceCategory
--R
--E 2100

--S 2101 of 3320 done
)d op orbits
--R 
--R
--RThere is one exposed function called orbits :
--R   [1] PermutationGroup(D2) -> Set(Set(D2)) from PermutationGroup(D2)
--R             if D2 has SETCAT
--R
--RExamples of orbits from PermutationGroup
--R
--Ry : PERM INT := [[3,5,7,9]] 
--Rz : PERM INT := [1,3,11] 
--Rg : PERMGRP INT := [ y , z ] 
--Rorbits g
--R
--E 2101

--S 2102 of 3320 done
)d op ord
--R 
--R
--RThere is one exposed function called ord :
--R   [1] Character -> Integer from Character
--R
--RExamples of ord from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[ord c for c in chars]
--R
--E 2102

--S 2103 of 3320
)d op order
--R 
--R
--RThere are 16 exposed functions called order :
--R   [1] D -> NonNegativeInteger from D
--R             if D has DPOLCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            ORDSET and D4 has DVARCAT(D3) and D5 has OAMONS
--R   [2] (D,D2) -> NonNegativeInteger from D
--R             if D has DPOLCAT(D3,D2,D4,D5) and D3 has RING and D2 has 
--R            ORDSET and D4 has DVARCAT(D2) and D5 has OAMONS
--R   [3] D -> NonNegativeInteger from D if D has DVARCAT(D2) and D2 has 
--R            ORDSET
--R   [4] D -> PositiveInteger from D if D has FFIELDC
--R   [5] D -> OnePointCompletion(PositiveInteger) from D if D has FPC
--R   [6] D -> Integer from D if D has FPS
--R   [7] D -> Integer from D if D has LOCPOWC(D2) and D2 has FIELD
--R   [8] D -> Integer from D if D has LOCPOWC(D2) and D2 has FIELD
--R   [9] (D,D2,NonNegativeInteger) -> NonNegativeInteger from D
--R             if D has MTSCAT(D3,D2) and D3 has RING and D2 has ORDSET
--R         
--R   [10] (D,D2) -> NonNegativeInteger from D
--R             if D has MTSCAT(D3,D2) and D3 has RING and D2 has ORDSET
--R         
--R   [11] D -> NonNegativeInteger from D if D has PADICCT(D2)
--R   [12] PermutationGroup(D2) -> NonNegativeInteger from 
--R            PermutationGroup(D2)
--R             if D2 has SETCAT
--R   [13] Permutation(D2) -> NonNegativeInteger from Permutation(D2) if 
--R            D2 has SETCAT
--R   [14] (D,D) -> NonNegativeInteger from D
--R             if D has UPOLYC(D2) and D2 has RING and D2 has INTDOM
--R   [15] (D,D1) -> D1 from D if D has UPSCAT(D2,D1) and D2 has RING and 
--R            D1 has OAMON
--R   [16] D -> D1 from D if D has UPSCAT(D2,D1) and D2 has RING and D1
--R             has OAMON
--R
--RThere are 7 unexposed functions called order :
--R   [1] FiniteDivisor(D3,D4,D5,D6) -> NonNegativeInteger
--R             from FindOrderFinite(D3,D4,D5,D6)
--R             if D3 has Join(Finite,Field) and D4 has UPOLYC(D3) and D5
--R             has UPOLYC(FRAC(D4)) and D6 has FFCAT(D3,D4,D5)
--R   [2] (InnerTaylorSeries(D2),NonNegativeInteger) -> NonNegativeInteger
--R             from InnerTaylorSeries(D2) if D2 has RING
--R   [3] InnerTaylorSeries(D2) -> NonNegativeInteger from 
--R            InnerTaylorSeries(D2)
--R             if D2 has RING
--R   [4] LaurentPolynomial(D2,D3) -> Integer from LaurentPolynomial(D2,D3
--R            )
--R             if D2 has INTDOM and D3 has UPOLYC(D2)
--R   [5] FiniteDivisor(D4,D5,D6,D7) -> Union(NonNegativeInteger,"failed")
--R             from PointsOfFiniteOrder(D3,D4,D5,D6,D7)
--R             if D4 has FS(D3) and D5 has UPOLYC(D4) and D6 has UPOLYC(
--R            FRAC(D5)) and D7 has FFCAT(D4,D5,D6) and D3 has Join(
--R            OrderedSet,IntegralDomain,RetractableTo(Integer))
--R   [6] FiniteDivisor(Fraction(Integer),D3,D4,D5) -> Union(
--R            NonNegativeInteger,"failed")
--R             from PointsOfFiniteOrderRational(D3,D4,D5)
--R             if D3 has UPOLYC(FRAC(INT)) and D4 has UPOLYC(FRAC(D3)) 
--R            and D5 has FFCAT(FRAC(INT),D3,D4)
--R   [7] (FiniteDivisor(D5,D6,D3,D7),D3,(D5 -> D8)) -> NonNegativeInteger
--R             from ReducedDivisor(D5,D6,D3,D7,D8)
--R             if D5 has FIELD and D6 has UPOLYC(D5) and D3 has UPOLYC(
--R            FRAC(D6)) and D7 has FFCAT(D5,D6,D3) and D8 has Join(Finite
--R            ,Field)
--R
--RExamples of order from DifferentialPolynomialCategory
--R
--R
--RExamples of order from DifferentialVariableCategory
--R
--R
--RExamples of order from FiniteFieldCategory
--R
--R
--RExamples of order from FindOrderFinite
--R
--R
--RExamples of order from FieldOfPrimeCharacteristic
--R
--R
--RExamples of order from FloatingPointSystem
--R
--R
--RExamples of order from InnerTaylorSeries
--R
--R
--RExamples of order from LaurentPolynomial
--R
--Rw:SparseUnivariateLaurentSeries(Fraction(Integer),'z,0):=0 
--Rorder(w,0)
--R
--R
--RExamples of order from LocalPowerSeriesCategory
--R
--R
--RExamples of order from MultivariateTaylorSeriesCategory
--R
--R
--RExamples of order from PAdicIntegerCategory
--R
--R
--RExamples of order from PermutationGroup
--R
--Rx : PERM INT := [[1,3,5],[7,11,9]] 
--Ry : PERM INT := [[3,5,7,9]] 
--Rg : PERMGRP INT := [ x , y ] 
--Rorder g
--R
--R
--RExamples of order from Permutation
--R
--R
--RExamples of order from PointsOfFiniteOrder
--R
--R
--RExamples of order from PointsOfFiniteOrderRational
--R
--R
--RExamples of order from ReducedDivisor
--R
--R
--RExamples of order from UnivariatePolynomialCategory
--R
--R
--RExamples of order from UnivariatePowerSeriesCategory
--R
--E 2103

--S 2104 of 3320
)d op orderIfNegative
--R 
--R
--RThere is one exposed function called orderIfNegative :
--R   [1] D -> Union(Integer,"failed") from D if D has LOCPOWC(D2) and D2
--R             has FIELD
--R
--RExamples of orderIfNegative from LocalPowerSeriesCategory
--R
--E 2104

--S 2105 of 3320
)d op origin
--R 
--R
--RThere is one exposed function called origin :
--R   [1]  -> D from D if D has AFSPCAT(D1) and D1 has FIELD
--R
--RExamples of origin from AffineSpaceCategory
--R
--E 2105

--S 2106 of 3320
)d op orthonormalBasis
--R 
--R
--RThere is one exposed function called orthonormalBasis :
--R   [1] Matrix(Fraction(Polynomial(Integer))) -> List(Matrix(Expression(
--R            Integer)))
--R             from RadicalEigenPackage
--R
--RExamples of orthonormalBasis from RadicalEigenPackage
--R
--E 2106

--S 2107 of 3320
)d op outerProduct
--R 
--R
--RThere is one exposed function called outerProduct :
--R   [1] (D,D) -> Matrix(D2) from D
--R             if D has VECTCAT(D2) and D2 has TYPE and D2 has RING
--R
--RExamples of outerProduct from VectorCategory
--R
--E 2107

--S 2108 of 3320
)d op outlineRender
--R 
--R
--RThere is one exposed function called outlineRender :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of outlineRender from ThreeDimensionalViewport
--R
--E 2108

--S 2109 of 3320
)d op output
--R 
--R
--RThere are 4 exposed functions called output :
--R   [1] String -> Void from OutputPackage
--R   [2] OutputForm -> Void from OutputPackage
--R   [3] (String,OutputForm) -> Void from OutputPackage
--R   [4] (Integer,Stream(D3)) -> Void from Stream(D3) if D3 has SETCAT 
--R            and D3 has TYPE
--R
--RExamples of output from OutputPackage
--R
--R
--RExamples of output from Stream
--R
--Rm:=[1,2,3] 
--Rn:=repeating(m) 
--Routput(5,n)
--R
--E 2109

--S 2110 of 3320
)d op outputArgs
--R 
--R
--RThere is one exposed function called outputArgs :
--R   [1] (String,String,D3,D4) -> Void from NormalizationPackage(D5,D6,D7
--R            ,D3,D4)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D3 has RPOLCAT(D5,D6,D7) and D4 has RSETCAT(D5,D6,D7,D3)
--R         
--R
--RExamples of outputArgs from NormalizationPackage
--R
--E 2110

--S 2111 of 3320
)d op outputAsFortran
--R 
--R
--RThere are 8 exposed functions called outputAsFortran :
--R   [1]  -> Void from Asp12(D2) if D2: SYMBOL
--R   [2]  -> Void from Asp29(D2) if D2: SYMBOL
--R   [3]  -> Void from Asp33(D2) if D2: SYMBOL
--R   [4] D -> Void from D if D has FORTCAT
--R   [5] FileName -> Void from FortranPackage
--R   [6] (String,OutputForm) -> Void from SpecialOutputPackage
--R   [7] OutputForm -> Void from SpecialOutputPackage
--R   [8] List(OutputForm) -> Void from SpecialOutputPackage
--R
--RExamples of outputAsFortran from Asp12
--R
--R
--RExamples of outputAsFortran from Asp29
--R
--R
--RExamples of outputAsFortran from Asp33
--R
--R
--RExamples of outputAsFortran from FortranProgramCategory
--R
--R
--RExamples of outputAsFortran from FortranPackage
--R
--R
--RExamples of outputAsFortran from SpecialOutputPackage
--R
--E 2111

--S 2112 of 3320
)d op outputAsScript
--R 
--R
--RThere are 2 exposed functions called outputAsScript :
--R   [1] OutputForm -> Void from SpecialOutputPackage
--R   [2] List(OutputForm) -> Void from SpecialOutputPackage
--R
--RExamples of outputAsScript from SpecialOutputPackage
--R
--E 2112

--S 2113 of 3320
)d op outputAsTex
--R 
--R
--RThere are 2 exposed functions called outputAsTex :
--R   [1] OutputForm -> Void from SpecialOutputPackage
--R   [2] List(OutputForm) -> Void from SpecialOutputPackage
--R
--RExamples of outputAsTex from SpecialOutputPackage
--R
--E 2113

--S 2114 of 3320
)d op outputFixed
--R 
--R
--RThere are 2 exposed functions called outputFixed :
--R   [1] NonNegativeInteger -> Void from Float
--R   [2]  -> Void from Float
--R
--RExamples of outputFixed from Float
--R
--E 2114

--S 2115 of 3320
)d op outputFloating
--R 
--R
--RThere are 2 exposed functions called outputFloating :
--R   [1] NonNegativeInteger -> Void from Float
--R   [2]  -> Void from Float
--R
--RExamples of outputFloating from Float
--R
--E 2115

--S 2116 of 3320
)d op outputForm
--R 
--R
--RThere are 7 unexposed functions called outputForm :
--R   [1] (ListMonoidOps(D4,D5,D6),((OutputForm,OutputForm) -> OutputForm)
--R            ,((OutputForm,OutputForm) -> OutputForm),Integer) -> OutputForm
--R             from ListMonoidOps(D4,D5,D6)
--R             if D4 has SETCAT and D5 has ABELMON and D6: D5
--R   [2] (SparseUnivariateSkewPolynomial(D2,D3,D4),OutputForm) -> 
--R            OutputForm
--R             from SparseUnivariateSkewPolynomial(D2,D3,D4)
--R             if D2 has RING and D3: AUTOMOR(D2) and D4: (D2 -> D2)
--R   [3] DoubleFloat -> OutputForm from OutputForm
--R   [4] String -> OutputForm from OutputForm
--R   [5] Symbol -> OutputForm from OutputForm
--R   [6] Integer -> OutputForm from OutputForm
--R   [7] (SparseUnivariatePolynomial(D2),OutputForm) -> OutputForm
--R             from SparseUnivariatePolynomial(D2) if D2 has RING
--R
--RExamples of outputForm from ListMonoidOps
--R
--R
--RExamples of outputForm from SparseUnivariateSkewPolynomial
--R
--R
--RExamples of outputForm from OutputForm
--R
--R
--RExamples of outputForm from SparseUnivariatePolynomial
--R
--E 2116

--S 2117 of 3320
)d op outputGeneral
--R 
--R
--RThere are 2 exposed functions called outputGeneral :
--R   [1] NonNegativeInteger -> Void from Float
--R   [2]  -> Void from Float
--R
--RExamples of outputGeneral from Float
--R
--E 2117

--S 2118 of 3320
)d op outputList
--R 
--R
--RThere is one exposed function called outputList :
--R   [1] List(Any) -> Void from OutputPackage
--R
--RExamples of outputList from OutputPackage
--R
--E 2118

--S 2119 of 3320
)d op outputMeasure
--R 
--R
--RThere is one exposed function called outputMeasure :
--R   [1] Float -> String from ExpertSystemToolsPackage
--R
--RExamples of outputMeasure from ExpertSystemToolsPackage
--R
--E 2119

--S 2120 of 3320
)d op outputSpacing
--R 
--R
--RThere is one exposed function called outputSpacing :
--R   [1] NonNegativeInteger -> Void from Float
--R
--RExamples of outputSpacing from Float
--R
--E 2120

--S 2121 of 3320
)d op over
--R 
--R
--RThere is one unexposed function called over :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of over from OutputForm
--R
--E 2121

--S 2122 of 3320
)d op overbar
--R 
--R
--RThere is one unexposed function called overbar :
--R   [1] OutputForm -> OutputForm from OutputForm
--R
--RExamples of overbar from OutputForm
--R
--E 2122

--S 2123 of 3320
)d op overlabel
--R 
--R
--RThere is one unexposed function called overlabel :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of overlabel from OutputForm
--R
--E 2123

--S 2124 of 3320
)d op overlap
--R 
--R
--RThere are 2 unexposed functions called overlap :
--R   [1] (FreeMonoid(D2),FreeMonoid(D2)) -> Record(lm: FreeMonoid(D2),mm
--R            : FreeMonoid(D2),rm: FreeMonoid(D2))
--R             from FreeMonoid(D2) if D2 has SETCAT
--R   [2] (OrderedFreeMonoid(D2),OrderedFreeMonoid(D2)) -> Record(lm: 
--R            OrderedFreeMonoid(D2),mm: OrderedFreeMonoid(D2),rm: 
--R            OrderedFreeMonoid(D2))
--R             from OrderedFreeMonoid(D2) if D2 has ORDSET
--R
--RExamples of overlap from FreeMonoid
--R
--R
--RExamples of overlap from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rm2:=(x*y)$OFMONOID(Symbol) 
--Roverlap(m1,m2)
--R
--E 2124

--S 2125 of 3320
)d op overset?
--R 
--R
--RThere is one unexposed function called overset? :
--R   [1] (List(D7),List(List(D7))) -> Boolean
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D7 has POLYCAT(D4,D6,D5) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D6 has OAMONS
--R
--RExamples of overset? from ParametricLinearEquations
--R
--E 2125

--S 2126 of 3320
)d op pack!
--R 
--R
--RThere are 2 exposed functions called pack! :
--R   [1] KeyedAccessFile(D1) -> KeyedAccessFile(D1) from KeyedAccessFile(
--R            D1)
--R             if D1 has SETCAT
--R   [2] Library -> Library from Library
--R
--RExamples of pack! from KeyedAccessFile
--R
--R
--RExamples of pack! from Library
--R
--E 2126

--S 2127 of 3320
)d op packageCall
--R 
--R
--RThere is one unexposed function called packageCall :
--R   [1] Symbol -> InputForm from InputFormFunctions1(D3) if D3 has TYPE
--R            
--R
--RExamples of packageCall from InputFormFunctions1
--R
--E 2127

--S 2128 of 3320
)d op packExps
--R 
--R
--RThere is one exposed function called packExps :
--R   [1] (Integer,Integer,D3) -> SortedExponentVector from D
--R             if D has MAGCDOC(D4,D3) and D4 has TYPE and D3 has TYPE
--R         
--R
--RExamples of packExps from ModularAlgebraicGcdOperations
--R
--E 2128

--S 2129 of 3320
)d op packModulus
--R 
--R
--RThere is one exposed function called packModulus :
--R   [1] (List(Polynomial(Integer)),List(Symbol),Integer) -> Union(D1,
--R            "failed")
--R             from D if D has MAGCDOC(D5,D1) and D5 has TYPE and D1 has 
--R            TYPE
--R
--RExamples of packModulus from ModularAlgebraicGcdOperations
--R
--E 2129

--S 2130 of 3320
)d op pade
--R 
--R
--RThere are 2 exposed functions called pade :
--R   [1] (NonNegativeInteger,NonNegativeInteger,UnivariateTaylorSeries(D4
--R            ,D5,D6),UnivariateTaylorSeries(D4,D5,D6)) -> Union(Fraction(
--R            UnivariatePolynomial(D5,D4)),"failed")
--R             from PadeApproximantPackage(D4,D5,D6)
--R             if D4 has FIELD and D5: SYMBOL and D6: D4
--R   [2] (NonNegativeInteger,NonNegativeInteger,UnivariateTaylorSeries(D4
--R            ,D5,D6)) -> Union(Fraction(UnivariatePolynomial(D5,D4)),"failed")
--R             from PadeApproximantPackage(D4,D5,D6)
--R             if D4 has FIELD and D5: SYMBOL and D6: D4
--R
--RThere is one unexposed function called pade :
--R   [1] (NonNegativeInteger,NonNegativeInteger,D3,D3) -> Union(Fraction(
--R            D5),"failed")
--R             from PadeApproximants(D4,D3,D5)
--R             if D4 has FIELD and D3 has UTSCAT(D4) and D5 has UPOLYC(D4
--R            )
--R
--RExamples of pade from PadeApproximants
--R
--R
--RExamples of pade from PadeApproximantPackage
--R
--E 2130

--S 2131 of 3320
)d op padecf
--R 
--R
--RThere is one unexposed function called padecf :
--R   [1] (NonNegativeInteger,NonNegativeInteger,D3,D3) -> Union(
--R            ContinuedFraction(D5),"failed")
--R             from PadeApproximants(D4,D3,D5)
--R             if D4 has FIELD and D3 has UTSCAT(D4) and D5 has UPOLYC(D4
--R            )
--R
--RExamples of padecf from PadeApproximants
--R
--E 2131

--S 2132 of 3320
)d op padicallyExpand
--R 
--R
--RThere is one exposed function called padicallyExpand :
--R   [1] (D2,D2) -> SparseUnivariatePolynomial(D2) from PartialFraction(
--R            D2)
--R             if D2 has EUCDOM
--R
--RExamples of padicallyExpand from PartialFraction
--R
--E 2132

--S 2133 of 3320 done
)d op padicFraction
--R 
--R
--RThere is one exposed function called padicFraction :
--R   [1] PartialFraction(D1) -> PartialFraction(D1) from PartialFraction(
--R            D1)
--R             if D1 has EUCDOM
--R
--RExamples of padicFraction from PartialFraction
--R
--Ra:=partialFraction(1,factorial 10) 
--RpadicFraction(a)
--R
--E 2133

--S 2134 of 3320
)d op pair?
--R 
--R
--RThere is one exposed function called pair? :
--R   [1] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of pair? from SExpressionCategory
--R
--E 2134

--S 2135 of 3320
)d op palgextint
--R 
--R
--RThere is one unexposed function called palgextint :
--R   [1] (D2,Kernel(D2),Kernel(D2),D2) -> Union(Record(ratpart: D2,coeff
--R            : D2),"failed")
--R             from PureAlgebraicIntegration(D4,D2,D5)
--R             if D2 has Join(FunctionSpace(D4),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D4 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D5 has SETCAT
--R
--RExamples of palgextint from PureAlgebraicIntegration
--R
--E 2135

--S 2136 of 3320
)d op palgextint0
--R 
--R
--RThere are 2 unexposed functions called palgextint0 :
--R   [1] (D2,Kernel(D2),Kernel(D2),D2,D2,SparseUnivariatePolynomial(D2))
--R             -> Union(Record(ratpart: D2,coeff: D2),"failed")
--R             from GenusZeroIntegration(D5,D2,D6)
--R             if D2 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R   [2] (D2,Kernel(D2),Kernel(D2),D2,Kernel(D2),D2,Fraction(
--R            SparseUnivariatePolynomial(D2))) -> Union(Record(ratpart: D2,
--R            coeff: D2),"failed")
--R             from GenusZeroIntegration(D5,D2,D6)
--R             if D2 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R
--RExamples of palgextint0 from GenusZeroIntegration
--R
--E 2136

--S 2137 of 3320
)d op palginfieldint
--R 
--R
--RThere is one unexposed function called palginfieldint :
--R   [1] (D1,(D5 -> D5)) -> Union(D1,"failed")
--R             from AlgebraicIntegrate(D3,D4,D5,D6,D1)
--R             if D5 has UPOLYC(D4) and D4 has Join(
--R            AlgebraicallyClosedField,FunctionSpace(D3)) and D3 has Join
--R            (OrderedSet,IntegralDomain,RetractableTo(Integer)) and D6
--R             has UPOLYC(FRAC(D5)) and D1 has FFCAT(D4,D5,D6)
--R
--RExamples of palginfieldint from AlgebraicIntegrate
--R
--E 2137

--S 2138 of 3320
)d op palgint
--R 
--R
--RThere is one unexposed function called palgint :
--R   [1] (D2,Kernel(D2),Kernel(D2)) -> IntegrationResult(D2)
--R             from PureAlgebraicIntegration(D4,D2,D5)
--R             if D2 has Join(FunctionSpace(D4),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D4 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D5 has SETCAT
--R
--RExamples of palgint from PureAlgebraicIntegration
--R
--E 2138

--S 2139 of 3320
)d op palgint0
--R 
--R
--RThere are 2 unexposed functions called palgint0 :
--R   [1] (D2,Kernel(D2),Kernel(D2),D2,SparseUnivariatePolynomial(D2)) -> 
--R            IntegrationResult(D2)
--R             from GenusZeroIntegration(D5,D2,D6)
--R             if D2 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R   [2] (D2,Kernel(D2),Kernel(D2),Kernel(D2),D2,Fraction(
--R            SparseUnivariatePolynomial(D2))) -> IntegrationResult(D2)
--R             from GenusZeroIntegration(D5,D2,D6)
--R             if D2 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R
--RExamples of palgint0 from GenusZeroIntegration
--R
--E 2139

--S 2140 of 3320
)d op palgintegrate
--R 
--R
--RThere is one unexposed function called palgintegrate :
--R   [1] (D2,(D6 -> D6)) -> IntegrationResult(D2)
--R             from AlgebraicIntegrate(D4,D5,D6,D7,D2)
--R             if D6 has UPOLYC(D5) and D5 has Join(
--R            AlgebraicallyClosedField,FunctionSpace(D4)) and D4 has Join
--R            (OrderedSet,IntegralDomain,RetractableTo(Integer)) and D7
--R             has UPOLYC(FRAC(D6)) and D2 has FFCAT(D5,D6,D7)
--R
--RExamples of palgintegrate from AlgebraicIntegrate
--R
--E 2140

--S 2141 of 3320
)d op palglimint
--R 
--R
--RThere is one unexposed function called palglimint :
--R   [1] (D2,Kernel(D2),Kernel(D2),List(D2)) -> Union(Record(mainpart: D2
--R            ,limitedlogs: List(Record(coeff: D2,logand: D2))),"failed")
--R             from PureAlgebraicIntegration(D5,D2,D6)
--R             if D2 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R
--RExamples of palglimint from PureAlgebraicIntegration
--R
--E 2141

--S 2142 of 3320
)d op palglimint0
--R 
--R
--RThere are 2 unexposed functions called palglimint0 :
--R   [1] (D2,Kernel(D2),Kernel(D2),List(D2),D2,SparseUnivariatePolynomial
--R            (D2)) -> Union(Record(mainpart: D2,limitedlogs: List(Record(coeff
--R            : D2,logand: D2))),"failed")
--R             from GenusZeroIntegration(D6,D2,D7)
--R             if D2 has Join(FunctionSpace(D6),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D6 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D7 has SETCAT
--R   [2] (D2,Kernel(D2),Kernel(D2),List(D2),Kernel(D2),D2,Fraction(
--R            SparseUnivariatePolynomial(D2))) -> Union(Record(mainpart: D2,
--R            limitedlogs: List(Record(coeff: D2,logand: D2))),"failed")
--R             from GenusZeroIntegration(D6,D2,D7)
--R             if D2 has Join(FunctionSpace(D6),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D6 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D7 has SETCAT
--R
--RExamples of palglimint0 from GenusZeroIntegration
--R
--E 2142

--S 2143 of 3320
)d op palgLODE
--R 
--R
--RThere is one unexposed function called palgLODE :
--R   [1] (D2,D3,Kernel(D3),Kernel(D3),Symbol) -> Record(particular: Union
--R            (D3,"failed"),basis: List(D3))
--R             from PureAlgebraicIntegration(D6,D3,D2)
--R             if D3 has Join(FunctionSpace(D6),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D6 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D2 has LODOCAT(D3) 
--R            and D2 has SETCAT
--R
--RExamples of palgLODE from PureAlgebraicIntegration
--R
--E 2143

--S 2144 of 3320
)d op palgLODE0
--R 
--R
--RThere are 2 unexposed functions called palgLODE0 :
--R   [1] (D2,D3,Kernel(D3),Kernel(D3),D3,SparseUnivariatePolynomial(D3))
--R             -> Record(particular: Union(D3,"failed"),basis: List(D3))
--R             from GenusZeroIntegration(D6,D3,D2)
--R             if D3 has Join(FunctionSpace(D6),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D6 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D2 has LODOCAT(D3) 
--R            and D2 has SETCAT
--R   [2] (D2,D3,Kernel(D3),Kernel(D3),Kernel(D3),D3,Fraction(
--R            SparseUnivariatePolynomial(D3))) -> Record(particular: Union(D3,
--R            "failed"),basis: List(D3))
--R             from GenusZeroIntegration(D6,D3,D2)
--R             if D3 has Join(FunctionSpace(D6),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D6 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D2 has LODOCAT(D3) 
--R            and D2 has SETCAT
--R
--RExamples of palgLODE0 from GenusZeroIntegration
--R
--E 2144

--S 2145 of 3320
)d op palgRDE
--R 
--R
--RThere is one unexposed function called palgRDE :
--R   [1] (D1,D1,D1,Kernel(D1),Kernel(D1),((D1,D1,Symbol) -> Union(D1,
--R            "failed"))) -> Union(D1,"failed")
--R             from PureAlgebraicIntegration(D4,D1,D5)
--R             if D1 has Join(FunctionSpace(D4),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D4 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D5 has SETCAT
--R
--RExamples of palgRDE from PureAlgebraicIntegration
--R
--E 2145

--S 2146 of 3320
)d op palgRDE0
--R 
--R
--RThere are 2 unexposed functions called palgRDE0 :
--R   [1] (D1,D1,Kernel(D1),Kernel(D1),((D1,D1,Symbol) -> Union(D1,
--R            "failed")),D1,SparseUnivariatePolynomial(D1)) -> Union(D1,
--R            "failed")
--R             from GenusZeroIntegration(D5,D1,D6)
--R             if D1 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R   [2] (D1,D1,Kernel(D1),Kernel(D1),((D1,D1,Symbol) -> Union(D1,
--R            "failed")),Kernel(D1),D1,Fraction(SparseUnivariatePolynomial(D1))
--R            ) -> Union(D1,"failed")
--R             from GenusZeroIntegration(D5,D1,D6)
--R             if D1 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R
--RExamples of palgRDE0 from GenusZeroIntegration
--R
--E 2146

--S 2147 of 3320
)d op parabolic
--R 
--R
--RThere is one exposed function called parabolic :
--R   [1] Point(D2) -> Point(D2) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of parabolic from CoordinateSystems
--R
--E 2147

--S 2148 of 3320
)d op parabolicCylindrical
--R 
--R
--RThere is one exposed function called parabolicCylindrical :
--R   [1] Point(D2) -> Point(D2) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of parabolicCylindrical from CoordinateSystems
--R
--E 2148

--S 2149 of 3320
)d op paraboloidal
--R 
--R
--RThere is one exposed function called paraboloidal :
--R   [1] Point(D2) -> Point(D2) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of paraboloidal from CoordinateSystems
--R
--E 2149

--S 2150 of 3320
)d op parametersOf
--R 
--R
--RThere is one exposed function called parametersOf :
--R   [1] SymbolTable -> List(Symbol) from SymbolTable
--R
--RExamples of parametersOf from SymbolTable
--R
--E 2150

--S 2151 of 3320
)d op parametric?
--R 
--R
--RThere is one unexposed function called parametric? :
--R   [1] Plot -> Boolean from Plot
--R
--RExamples of parametric? from Plot
--R
--E 2151

--S 2152 of 3320
)d op parametrize
--R 
--R
--RThere are 7 exposed functions called parametrize :
--R   [1] (D5,D6) -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D7,D8,D5,D9,
--R            D10,D4,D6,D11,D1,D2,D3)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D5 has POLYCAT(D7
--R            ,D9,OVAR(D8)) and D9 has DIRPCAT(#(D8),NNI) and D10 has 
--R            PRSPCAT(D7) and D6 has PLACESC(D7,D4) and D11 has DIVCAT(D6
--R            ) and D1 has INFCLCT(D7,D8,D5,D9,D10,D4,D6,D11,D3) and D3
--R             has BLMETCT and D4 has LOCPOWC(D7) and D2 has DSTRCAT(D1)
--R            
--R   [2] (DistributedMultivariatePolynomial(D5,D4),
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D4)) -> 
--R            NeitherSparseOrDensePowerSeries(
--R            PseudoAlgebraicClosureOfFiniteField(D4))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D4,D5
--R            ,D6)
--R             if D4 has FFIELDC and D5: LIST(SYMBOL) and D6 has BLMETCT
--R            
--R   [3] (DistributedMultivariatePolynomial(D5,D4),Places(D4)) -> 
--R            NeitherSparseOrDensePowerSeries(D4)
--R             from PackageForAlgebraicFunctionField(D4,D5,D6)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has BLMETCT
--R         
--R   [4] (D2,List(D1)) -> D1 from ParametrizationPackage(D4,D5,D2,D6,D7,
--R            D1,D8)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D1 has LOCPOWC(D4) and D2 has POLYCAT(D4,D6,
--R            OVAR(D5)) and D7 has PRSPCAT(D4) and D8 has PLACESC(D4,D1)
--R            
--R   [5] (D2,D3) -> D1 from ParametrizationPackage(D4,D5,D2,D6,D7,D1,D3)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D1 has LOCPOWC(D4) and D2 has POLYCAT(D4,D6,
--R            OVAR(D5)) and D7 has PRSPCAT(D4) and D3 has PLACESC(D4,D1)
--R            
--R   [6] (D2,D2,D3) -> D1 from ParametrizationPackage(D4,D5,D2,D6,D7,D1,
--R            D3)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D1 has LOCPOWC(D4) and D2 has POLYCAT(D4,D6,
--R            OVAR(D5)) and D7 has PRSPCAT(D4) and D3 has PLACESC(D4,D1)
--R            
--R   [7] (D2,D3,Integer) -> D1 from ParametrizationPackage(D5,D6,D2,D7,D8
--R            ,D1,D3)
--R             if D5 has FIELD and D6: LIST(SYMBOL) and D7 has DIRPCAT(#(
--R            D6),NNI) and D1 has LOCPOWC(D5) and D2 has POLYCAT(D5,D7,
--R            OVAR(D6)) and D8 has PRSPCAT(D5) and D3 has PLACESC(D5,D1)
--R            
--R
--RExamples of parametrize from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of parametrize from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of parametrize from PackageForAlgebraicFunctionField
--R
--R
--RExamples of parametrize from ParametrizationPackage
--R
--E 2152

--S 2153 of 3320
)d op ParCond
--R 
--R
--RThere is one unexposed function called ParCond :
--R   [1] (Matrix(D7),NonNegativeInteger) -> List(Record(det: D7,rows: 
--R            List(Integer),cols: List(Integer)))
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D7 has POLYCAT(D4,D6,D5) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D6 has OAMONS
--R
--RExamples of ParCond from ParametricLinearEquations
--R
--E 2153

--S 2154 of 3320
)d op ParCondList
--R 
--R
--RThere is one unexposed function called ParCondList :
--R   [1] (Matrix(D7),NonNegativeInteger) -> List(Record(rank: 
--R            NonNegativeInteger,eqns: List(Record(det: D7,rows: List(Integer),
--R            cols: List(Integer))),fgb: List(D7)))
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D7 has POLYCAT(D4,D6,D5) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D6 has OAMONS
--R
--RExamples of ParCondList from ParametricLinearEquations
--R
--E 2154

--S 2155 of 3320
)d op paren
--R 
--R
--RThere are 2 exposed functions called paren :
--R   [1] List(D) -> D from D if D has ES
--R   [2] D -> D from D if D has ES
--R
--RThere are 2 unexposed functions called paren :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R   [2] OutputForm -> OutputForm from OutputForm
--R
--RExamples of paren from ExpressionSpace
--R
--R
--RExamples of paren from OutputForm
--R
--E 2155

--S 2156 of 3320
)d op parent
--R 
--R
--RThere is one unexposed function called parent :
--R   [1] SubSpace(D1,D2) -> SubSpace(D1,D2) from SubSpace(D1,D2)
--R             if D1: PI and D2 has RING
--R
--RExamples of parent from SubSpace
--R
--E 2156

--S 2157 of 3320
)d op parse
--R 
--R
--RThere is one unexposed function called parse :
--R   [1] String -> InputForm from InputForm
--R
--RExamples of parse from InputForm
--R
--E 2157

--S 2158 of 3320
)d op partialDenominators
--R 
--R
--RThere is one exposed function called partialDenominators :
--R   [1] ContinuedFraction(D2) -> Stream(D2) from ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of partialDenominators from ContinuedFraction
--R
--E 2158

--S 2159 of 3320 done
)d op partialFraction
--R 
--R
--RThere is one exposed function called partialFraction :
--R   [1] (D1,Factored(D1)) -> PartialFraction(D1) from PartialFraction(D1
--R            )
--R             if D1 has EUCDOM
--R
--RThere are 2 unexposed functions called partialFraction :
--R   [1] (Fraction(Polynomial(D4)),Symbol) -> Any from 
--R            PartialFractionPackage(D4)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero)
--R   [2] (Polynomial(D5),Factored(Polynomial(D5)),Symbol) -> Any
--R             from PartialFractionPackage(D5)
--R             if D5 has Join(EuclideanDomain,CharacteristicZero)
--R
--RExamples of partialFraction from PartialFraction
--R
--RpartialFraction(1,factorial 10)
--R
--R
--RExamples of partialFraction from PartialFractionPackage
--R
--Ra:=x+1/(y+1) 
--RpartialFraction(a,y)$PFRPAC(INT)
--R
--E 2159

--S 2160 of 3320
--R--------------- )d op partiallyOrderedSet (what?)
--E 2160

--S 2161 of 3320
)d op partialNumerators
--R 
--R
--RThere is one exposed function called partialNumerators :
--R   [1] ContinuedFraction(D2) -> Stream(D2) from ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of partialNumerators from ContinuedFraction
--R
--E 2161

--S 2162 of 3320
)d op partialQuotients
--R 
--R
--RThere is one exposed function called partialQuotients :
--R   [1] ContinuedFraction(D2) -> Stream(D2) from ContinuedFraction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of partialQuotients from ContinuedFraction
--R
--E 2162

--S 2163 of 3320
)d op particularSolution
--R 
--R
--RThere are 2 exposed functions called particularSolution :
--R   [1] (Matrix(D3),Vector(D3)) -> Union(Vector(D3),"failed")
--R             from LinearSystemMatrixPackage1(D3) if D3 has FIELD
--R   [2] (D2,D1) -> Union(D1,"failed") from LinearSystemMatrixPackage(D3,
--R            D4,D1,D2)
--R             if D3 has FIELD and D4 has FiniteLinearAggregate(D3)with
--R                 shallowlyMutableand D1 has FiniteLinearAggregate(D3)
--R            with
--R                 shallowlyMutableand D2 has MATCAT(D3,D4,D1)
--R
--RThere are 2 unexposed functions called particularSolution :
--R   [1] (D2,D1,List(D1),(D1 -> D1)) -> Union(D1,"failed") from ODETools(
--R            D1,D2)
--R             if D1 has FIELD and D2 has LODOCAT(D1)
--R   [2] D3 -> D2 from PolynomialSolveByFormulas(D3,D2)
--R             if D2 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D2)
--R            
--R
--RExamples of particularSolution from LinearSystemMatrixPackage1
--R
--R
--RExamples of particularSolution from LinearSystemMatrixPackage
--R
--R
--RExamples of particularSolution from ODETools
--R
--R
--RExamples of particularSolution from PolynomialSolveByFormulas
--R
--E 2163

--S 2164 of 3320
)d op partition
--R 
--R
--RThere is one exposed function called partition :
--R   [1] D1 -> D1 from IntegerCombinatoricFunctions(D1) if D1 has INS
--R
--RThere is one unexposed function called partition :
--R   [1] List(Integer) -> Partition from Partition
--R
--RExamples of partition from IntegerCombinatoricFunctions
--R
--R
--RExamples of partition from Partition
--R
--E 2164

--S 2165 of 3320
)d op partitions
--R 
--R
--RThere are 3 exposed functions called partitions :
--R   [1] (Integer,Integer,Integer) -> Stream(List(Integer))
--R             from PartitionsAndPermutations
--R   [2] Integer -> Stream(List(Integer)) from PartitionsAndPermutations
--R            
--R   [3] (Integer,Integer) -> Stream(List(Integer)) from 
--R            PartitionsAndPermutations
--R
--RExamples of partitions from PartitionsAndPermutations
--R
--E 2165

--S 2166 of 3320
)d op parts
--R 
--R
--RThere are 7 exposed functions called parts :
--R   [1] D -> List(D2) from D
--R             if D has ARR2CAT(D2,D3,D4) and D2 has TYPE and D3 has 
--R            FLAGG(D2) and D4 has FLAGG(D2)
--R   [2] ArrayStack(D2) -> List(D2) from ArrayStack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [3] Dequeue(D2) -> List(D2) from Dequeue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [4] Heap(D2) -> List(D2) from Heap(D2) if $ has finiteAggregate and 
--R            D2 has ORDSET
--R   [5] D -> List(D2) from D
--R             if D has finiteAggregate and D has HOAGG(D2) and D2 has 
--R            TYPE
--R   [6] Queue(D2) -> List(D2) from Queue(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R   [7] Stack(D2) -> List(D2) from Stack(D2)
--R             if $ has finiteAggregate and D2 has SETCAT
--R
--RExamples of parts from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rparts(arr)
--R
--R
--RExamples of parts from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rparts a
--R
--R
--RExamples of parts from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rparts a
--R
--R
--RExamples of parts from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rparts a
--R
--R
--RExamples of parts from HomogeneousAggregate
--R
--R
--RExamples of parts from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rparts a
--R
--R
--RExamples of parts from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rparts a
--R
--E 2166

--S 2167 of 3320
)d op pascalTriangle
--R 
--R
--RThere is one unexposed function called pascalTriangle :
--R   [1] (NonNegativeInteger,Integer) -> D1 from GaloisGroupUtilities(D1)
--R             if D1 has RING
--R
--RExamples of pascalTriangle from GaloisGroupUtilities
--R
--E 2167

--S 2168 of 3320
)d op pastel
--R 
--R
--RThere is one exposed function called pastel :
--R   [1] Color -> Palette from Palette
--R
--RExamples of pastel from Palette
--R
--E 2168

--S 2169 of 3320
)d op pattern
--R 
--R
--RThere is one exposed function called pattern :
--R   [1] RewriteRule(D2,D3,D4) -> Pattern(D2) from RewriteRule(D2,D3,D4)
--R             if D2 has SETCAT and D3 has Join(Ring,PatternMatchable(D2)
--R            ,OrderedSet,ConvertibleTo(Pattern(D2))) and D4 has Join(
--R            FunctionSpace(D3),PatternMatchable(D2),ConvertibleTo(
--R            Pattern(D2)))
--R
--RExamples of pattern from RewriteRule
--R
--E 2169

--S 2170 of 3320
)d op patternMatch
--R 
--R
--RThere is one exposed function called patternMatch :
--R   [1] (D,Pattern(D3),PatternMatchResult(D3,D)) -> PatternMatchResult(
--R            D3,D)
--R             from D if D has PATMAB(D3) and D3 has SETCAT
--R
--RThere are 11 unexposed functions called patternMatch :
--R   [1] (D2,Pattern(D4),PatternMatchResult(D4,D2)) -> PatternMatchResult
--R            (D4,D2)
--R             from ComplexPatternMatch(D4,D5,D2)
--R             if D4 has SETCAT and D2 has COMPCAT(D5) and Polynomial(D5)
--R             has PATMAB(D4) and D5 has Join(PatternMatchable(D4),
--R            CommutativeRing)
--R   [2] (D2,Pattern(D4),PatternMatchResult(D4,D5)) -> PatternMatchResult
--R            (D4,D5)
--R             from PatternMatchPushDown(D4,D2,D5)
--R             if D4 has SETCAT and D5 has Join(SetCategory,RetractableTo
--R            (D2)) and D2 has PATMAB(D4)
--R   [3] (D2,Pattern(D4),PatternMatchResult(D4,D2)) -> PatternMatchResult
--R            (D4,D2)
--R             from PatternMatchFunctionSpace(D4,D5,D2)
--R             if D4 has SETCAT and D2 has Join(FunctionSpace(D5),
--R            ConvertibleTo(Pattern(D4)),PatternMatchable(D4),
--R            RetractableTo(Kernel($))) and D5 has Join(IntegralDomain,
--R            OrderedSet,PatternMatchable(D4))
--R   [4] (D2,Pattern(Integer),PatternMatchResult(Integer,D2)) -> 
--R            PatternMatchResult(Integer,D2)
--R             from PatternMatchIntegerNumberSystem(D2) if D2 has INS
--R   [5] (Kernel(D5),Pattern(D4),PatternMatchResult(D4,D5)) -> 
--R            PatternMatchResult(D4,D5)
--R             from PatternMatchKernel(D4,D5)
--R             if D4 has SETCAT and D5 has Join(OrderedSet,RetractableTo(
--R            Kernel($)),ConvertibleTo(Pattern(D4)),PatternMatchable(D4))
--R            
--R   [6] (D2,Pattern(D4),PatternMatchListResult(D4,D5,D2)) -> 
--R            PatternMatchListResult(D4,D5,D2)
--R             from PatternMatchListAggregate(D4,D5,D2)
--R             if D4 has SETCAT and D5 has PATMAB(D4) and D2 has LSAGG(D5
--R            )
--R   [7] (D2,Pattern(D5),PatternMatchResult(D5,D2),((D7,Pattern(D5),
--R            PatternMatchResult(D5,D2)) -> PatternMatchResult(D5,D2))) -> 
--R            PatternMatchResult(D5,D2)
--R             from PatternMatchPolynomialCategory(D5,D6,D7,D8,D2)
--R             if D7 has ORDSET and D5 has SETCAT and D2 has Join(
--R            PolynomialCategory(D8,D6,D7),ConvertibleTo(Pattern(D5))) 
--R            and D6 has OAMONS and D8 has Join(Ring,OrderedSet,
--R            PatternMatchable(D5))
--R   [8] (D2,Pattern(D4),PatternMatchResult(D4,D2)) -> PatternMatchResult
--R            (D4,D2)
--R             from PatternMatchPolynomialCategory(D4,D5,D6,D7,D2)
--R             if D4 has SETCAT and D2 has Join(PolynomialCategory(D7,D5,
--R            D6),ConvertibleTo(Pattern(D4))) and D6 has PATMAB(D4) and 
--R            D5 has OAMONS and D6 has ORDSET and D7 has Join(Ring,
--R            OrderedSet,PatternMatchable(D4))
--R   [9] (D2,Pattern(D4),PatternMatchResult(D4,D2)) -> PatternMatchResult
--R            (D4,D2)
--R             from PatternMatchQuotientFieldCategory(D4,D5,D2)
--R             if D4 has SETCAT and D2 has QFCAT(D5) and D5 has Join(
--R            IntegralDomain,PatternMatchable(D4),ConvertibleTo(Pattern(
--R            D4)))
--R   [10] (Symbol,Pattern(D4),PatternMatchResult(D4,Symbol)) -> 
--R            PatternMatchResult(D4,Symbol)
--R             from PatternMatchSymbol(D4) if D4 has SETCAT
--R   [11] (List(D8),List(Pattern(D6)),(List(D8) -> D8),PatternMatchResult
--R            (D6,D8),((D8,Pattern(D6),PatternMatchResult(D6,D8)) -> 
--R            PatternMatchResult(D6,D8))) -> PatternMatchResult(D6,D8)
--R             from PatternMatchTools(D6,D7,D8)
--R             if D6 has SETCAT and D8 has Join(Ring,ConvertibleTo(
--R            Pattern(D6)),RetractableTo(D7)) and D7 has Join(Ring,
--R            OrderedSet)
--R
--RExamples of patternMatch from ComplexPatternMatch
--R
--R
--RExamples of patternMatch from PatternMatchable
--R
--R
--RExamples of patternMatch from PatternMatchPushDown
--R
--R
--RExamples of patternMatch from PatternMatchFunctionSpace
--R
--R
--RExamples of patternMatch from PatternMatchIntegerNumberSystem
--R
--R
--RExamples of patternMatch from PatternMatchKernel
--R
--R
--RExamples of patternMatch from PatternMatchListAggregate
--R
--R
--RExamples of patternMatch from PatternMatchPolynomialCategory
--R
--R
--RExamples of patternMatch from PatternMatchQuotientFieldCategory
--R
--R
--RExamples of patternMatch from PatternMatchSymbol
--R
--R
--RExamples of patternMatch from PatternMatchTools
--R
--E 2170

--S 2171 of 3320
)d op patternVariable
--R 
--R
--RThere is one unexposed function called patternVariable :
--R   [1] (Symbol,Boolean,Boolean,Boolean) -> Pattern(D3) from Pattern(D3)
--R             if D3 has SETCAT
--R
--RExamples of patternVariable from Pattern
--R
--E 2171

--S 2172 of 3320
)d op pdct
--R 
--R
--RThere is one unexposed function called pdct :
--R   [1] Partition -> Integer from Partition
--R
--RExamples of pdct from Partition
--R
--E 2172

--S 2173 of 3320
)d op PDESolve
--R 
--R
--RThere is one exposed function called PDESolve :
--R   [1] Record(pde: List(Expression(DoubleFloat)),constraints: List(
--R            Record(start: DoubleFloat,finish: DoubleFloat,grid: 
--R            NonNegativeInteger,boundaryType: Integer,dStart: Matrix(
--R            DoubleFloat),dFinish: Matrix(DoubleFloat))),f: List(List(
--R            Expression(DoubleFloat))),st: String,tol: DoubleFloat) -> Result
--R             from D if D has PDECAT
--R
--RExamples of PDESolve from PartialDifferentialEquationsSolverCategory
--R
--E 2173

--S 2174 of 3320
)d op pdf2df
--R 
--R
--RThere is one exposed function called pdf2df :
--R   [1] Polynomial(DoubleFloat) -> DoubleFloat from 
--R            ExpertSystemToolsPackage
--R
--RExamples of pdf2df from ExpertSystemToolsPackage
--R
--E 2174

--S 2175 of 3320
)d op pdf2ef
--R 
--R
--RThere is one exposed function called pdf2ef :
--R   [1] Polynomial(DoubleFloat) -> Expression(Float)
--R             from ExpertSystemToolsPackage
--R
--RExamples of pdf2ef from ExpertSystemToolsPackage
--R
--E 2175

--S 2176 of 3320
)d op perfectNthPower?
--R 
--R
--RThere is one exposed function called perfectNthPower? :
--R   [1] (D2,NonNegativeInteger) -> Boolean from IntegerRoots(D2) if D2
--R             has INS
--R
--RExamples of perfectNthPower? from IntegerRoots
--R
--E 2176

--S 2177 of 3320
)d op perfectNthRoot
--R 
--R
--RThere are 2 exposed functions called perfectNthRoot :
--R   [1] (D1,NonNegativeInteger) -> Union(D1,"failed") from IntegerRoots(
--R            D1)
--R             if D1 has INS
--R   [2] D2 -> Record(base: D2,exponent: NonNegativeInteger) from 
--R            IntegerRoots(D2)
--R             if D2 has INS
--R
--RExamples of perfectNthRoot from IntegerRoots
--R
--E 2177

--S 2178 of 3320
)d op perfectSqrt
--R 
--R
--RThere is one exposed function called perfectSqrt :
--R   [1] D1 -> Union(D1,"failed") from IntegerRoots(D1) if D1 has INS
--R
--RExamples of perfectSqrt from IntegerRoots
--R
--E 2178

--S 2179 of 3320
)d op perfectSquare?
--R 
--R
--RThere is one exposed function called perfectSquare? :
--R   [1] D2 -> Boolean from IntegerRoots(D2) if D2 has INS
--R
--RExamples of perfectSquare? from IntegerRoots
--R
--E 2179

--S 2180 of 3320
)d op permanent
--R 
--R
--RThere is one exposed function called permanent :
--R   [1] SquareMatrix(D3,D1) -> D1 from Permanent(D3,D1)
--R             if D3: PI and D1 has Ringwith
--R                 commutative("*")
--R
--RExamples of permanent from Permanent
--R
--E 2180

--S 2181 of 3320
)d op permutation
--R 
--R
--RThere are 2 exposed functions called permutation :
--R   [1] (D,D) -> D from D if D has CFCAT
--R   [2] (D1,D1) -> D1 from IntegerCombinatoricFunctions(D1) if D1 has 
--R            INS
--R
--RThere is one unexposed function called permutation :
--R   [1] (D1,D1) -> D1 from CombinatorialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of permutation from CombinatorialFunctionCategory
--R
--R
--RExamples of permutation from CombinatorialFunction
--R
--R
--RExamples of permutation from IntegerCombinatoricFunctions
--R
--E 2181

--S 2182 of 3320
)d op permutationGroup
--R 
--R
--RThere is one exposed function called permutationGroup :
--R   [1] List(Permutation(D2)) -> PermutationGroup(D2) from 
--R            PermutationGroup(D2)
--R             if D2 has SETCAT
--R
--RExamples of permutationGroup from PermutationGroup
--R
--E 2182

--S 2183 of 3320
)d op permutationRepresentation
--R 
--R
--RThere are 4 exposed functions called permutationRepresentation :
--R   [1] (Permutation(Integer),Integer) -> Matrix(Integer)
--R             from RepresentationPackage1(D4) if D4 has RING
--R   [2] List(Integer) -> Matrix(Integer) from RepresentationPackage1(D3)
--R             if D3 has RING
--R   [3] (List(Permutation(Integer)),Integer) -> List(Matrix(Integer))
--R             from RepresentationPackage1(D4) if D4 has RING
--R   [4] List(List(Integer)) -> List(Matrix(Integer))
--R             from RepresentationPackage1(D3) if D3 has RING
--R
--RExamples of permutationRepresentation from RepresentationPackage1
--R
--E 2183

--S 2184 of 3320
)d op permutations
--R 
--R
--RThere is one exposed function called permutations :
--R   [1] Integer -> Stream(List(Integer)) from PartitionsAndPermutations
--R            
--R
--RExamples of permutations from PartitionsAndPermutations
--R
--E 2184

--S 2185 of 3320
)d op perspective
--R 
--R
--RThere is one exposed function called perspective :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of perspective from ThreeDimensionalViewport
--R
--E 2185

--S 2186 of 3320 done
)d op pfaffian
--R 
--R
--RThere is one exposed function called pfaffian :
--R   [1] D -> D1 from D
--R             if D has MATCAT(D1,D2,D3) and D2 has FLAGG(D1) and D3 has 
--R            FLAGG(D1) and D1 has RING and D1 has COMRING
--R
--RExamples of pfaffian from MatrixCategory
--R
--Rpfaffian [[0,1,0,0],[-1,0,0,0],[0,0,0,1],[0,0,-1,0]]
--R
--E 2186

--S 2187 of 3320
)d op phiCoord
--R 
--R
--RThere is one unexposed function called phiCoord :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of phiCoord from PointPackage
--R
--E 2187

--S 2188 of 3320
)d op physicalLength
--R 
--R
--RThere is one exposed function called physicalLength :
--R   [1] FlexibleArray(D2) -> NonNegativeInteger from FlexibleArray(D2)
--R             if D2 has TYPE
--R
--RThere is one unexposed function called physicalLength :
--R   [1] IndexedFlexibleArray(D2,D3) -> NonNegativeInteger
--R             from IndexedFlexibleArray(D2,D3) if D2 has TYPE and D3: 
--R            INT
--R
--RExamples of physicalLength from FlexibleArray
--R
--R
--RExamples of physicalLength from IndexedFlexibleArray
--R
--RT1:=IndexedFlexibleArray(Integer,20) 
--Rt2:=flexibleArray([i for i in 1..10])$T1 
--RphysicalLength t2
--R
--E 2188

--S 2189 of 3320
)d op physicalLength!
--R 
--R
--RThere is one exposed function called physicalLength! :
--R   [1] (FlexibleArray(D2),Integer) -> FlexibleArray(D2) from 
--R            FlexibleArray(D2)
--R             if D2 has TYPE
--R
--RThere is one unexposed function called physicalLength! :
--R   [1] (IndexedFlexibleArray(D2,D3),Integer) -> IndexedFlexibleArray(D2
--R            ,D3)
--R             from IndexedFlexibleArray(D2,D3) if D2 has TYPE and D3: 
--R            INT
--R
--RExamples of physicalLength! from FlexibleArray
--R
--R
--RExamples of physicalLength! from IndexedFlexibleArray
--R
--RT1:=IndexedFlexibleArray(Integer,20) 
--Rt2:=flexibleArray([i for i in 1..10])$T1 
--RphysicalLength!(t2,15)
--R
--E 2189

--S 2190 of 3320
)d op pi
--R 
--R
--RThere are 3 exposed functions called pi :
--R   [1]  -> FortranExpression(D1,D2,D3) from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2]  -> Pi from Pi
--R   [3]  -> D from D if D has TRANFUN
--R
--RThere is one unexposed function called pi :
--R   [1]  -> D1 from ElementaryFunction(D2,D1)
--R             if D1 has Join(FunctionSpace(D2),RadicalCategory) and D2
--R             has Join(OrderedSet,IntegralDomain)
--R
--RExamples of pi from ElementaryFunction
--R
--R
--RExamples of pi from FortranExpression
--R
--R
--RExamples of pi from Pi
--R
--R
--RExamples of pi from TranscendentalFunctionCategory
--R
--E 2190

--S 2191 of 3320
)d op pile
--R 
--R
--RThere is one unexposed function called pile :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R
--RExamples of pile from OutputForm
--R
--E 2191

--S 2192 of 3320
)d op pivot
--R 
--R
--RThere is one exposed function called pivot :
--R   [1] (SparseEchelonMatrix(D3,D4),Integer) -> Record(Index: D3,Entry: 
--R            D4)
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of pivot from SparseEchelonMatrix
--R
--E 2192

--S 2193 of 3320
)d op pivots
--R 
--R
--RThere is one exposed function called pivots :
--R   [1] SparseEchelonMatrix(D2,D3) -> Record(Indices: List(D2),Entries: 
--R            List(D3))
--R             from SparseEchelonMatrix(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of pivots from SparseEchelonMatrix
--R
--E 2193

--S 2194 of 3320
)d op placesAbove
--R 
--R
--RThere are 3 exposed functions called placesAbove :
--R   [1] D6 -> List(D12)
--R             from GeneralPackageForAlgebraicFunctionField(D7,D8,D9,D10,
--R            D6,D11,D12,D1,D2,D3,D4)
--R             if D7 has FIELD and D8: LIST(SYMBOL) and D9 has POLYCAT(D7
--R            ,D10,OVAR(D8)) and D10 has DIRPCAT(#(D8),NNI) and D6 has 
--R            PRSPCAT(D7) and D11 has LOCPOWC(D7) and D12 has PLACESC(D7,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D7,D8,D9,D10
--R            ,D6,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2] ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(D3) -> 
--R            List(PlacesOverPseudoAlgebraicClosureOfFiniteField(D3))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R            
--R   [3] ProjectivePlane(D3) -> List(Places(D3))
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R
--RExamples of placesAbove from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of placesAbove from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of placesAbove from PackageForAlgebraicFunctionField
--R
--E 2194

--S 2195 of 3320
)d op placesOfDegree
--R 
--R
--RThere are 4 exposed functions called placesOfDegree :
--R   [1] PositiveInteger -> List(D1)
--R             from GeneralPackageForAlgebraicFunctionField(D8,D9,D10,D11
--R            ,D12,D13,D1,D2,D3,D4,D5)
--R             if D8 has FINITE and D8 has FIELD and D9: LIST(SYMBOL) and
--R            D10 has POLYCAT(D8,D11,OVAR(D9)) and D11 has DIRPCAT(#(D9),
--R            NNI) and D12 has PRSPCAT(D8) and D13 has LOCPOWC(D8) and D1
--R             has PLACESC(D8,D13) and D2 has DIVCAT(D1) and D3 has 
--R            INFCLCT(D8,D9,D10,D11,D12,D13,D1,D2,D5) and D5 has BLMETCT 
--R            and D4 has DSTRCAT(D3)
--R   [2] (PositiveInteger,D9,List(D14)) -> Void
--R             from IntersectionDivisorPackage(D11,D12,D9,D13,D14,D1,D2,
--R            D3,D4,D5,D6)
--R             if D14 has PRSPCAT(D11) and D11 has FIELD and D12: LIST(
--R            SYMBOL) and D9 has POLYCAT(D11,D13,OVAR(D12)) and D13 has 
--R            DIRPCAT(#(D12),NNI) and D1 has LOCPOWC(D11) and D2 has 
--R            PLACESC(D11,D1) and D3 has DIVCAT(D2) and D4 has INFCLCT(
--R            D11,D12,D9,D13,D14,D1,D2,D3,D6) and D6 has BLMETCT and D5
--R             has DSTRCAT(D4)
--R   [3] PositiveInteger -> List(
--R            PlacesOverPseudoAlgebraicClosureOfFiniteField(D3))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if PseudoAlgebraicClosureOfFiniteField(D3) has FINITE and 
--R            D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R   [4] PositiveInteger -> List(Places(D3))
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FINITE and D3 has FIELD and D4: LIST(SYMBOL) and
--R            D5 has BLMETCT
--R
--RExamples of placesOfDegree from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of placesOfDegree from IntersectionDivisorPackage
--R
--R
--RExamples of placesOfDegree from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of placesOfDegree from PackageForAlgebraicFunctionField
--R
--E 2195

--S 2196 of 3320
)d op plenaryPower
--R 
--R
--RThere is one exposed function called plenaryPower :
--R   [1] (D,PositiveInteger) -> D from D if D has NAALG(D2) and D2 has 
--R            COMRING
--R
--RExamples of plenaryPower from NonAssociativeAlgebra
--R
--E 2196

--S 2197 of 3320
)d op pleskenSplit
--R 
--R
--RThere are 2 unexposed functions called pleskenSplit :
--R   [1] (D2,D3,Boolean) -> Factored(D2) from ComplexRootFindingPackage(
--R            D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R   [2] (D2,D3) -> Factored(D2) from ComplexRootFindingPackage(D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R
--RExamples of pleskenSplit from ComplexRootFindingPackage
--R
--E 2197

--S 2198 of 3320
)d op plot
--R 
--R
--RThere are 12 unexposed functions called plot :
--R   [1] (D2,Symbol,Segment(DoubleFloat)) -> Plot from PlotFunctions1(D2)
--R             if D2 has KONVERT(INFORM)
--R   [2] (D2,D2,Symbol,Segment(DoubleFloat)) -> Plot from PlotFunctions1(
--R            D2)
--R             if D2 has KONVERT(INFORM)
--R   [3] (Plot3D,Segment(DoubleFloat)) -> Plot3D from Plot3D
--R   [4] ((DoubleFloat -> DoubleFloat),(DoubleFloat -> DoubleFloat),(
--R            DoubleFloat -> DoubleFloat),(DoubleFloat -> DoubleFloat),Segment(
--R            DoubleFloat),Segment(DoubleFloat),Segment(DoubleFloat),Segment(
--R            DoubleFloat)) -> Plot3D
--R             from Plot3D
--R   [5] ((DoubleFloat -> DoubleFloat),(DoubleFloat -> DoubleFloat),(
--R            DoubleFloat -> DoubleFloat),(DoubleFloat -> DoubleFloat),Segment(
--R            DoubleFloat)) -> Plot3D
--R             from Plot3D
--R   [6] (Plot,Segment(DoubleFloat)) -> Plot from Plot
--R   [7] ((DoubleFloat -> DoubleFloat),(DoubleFloat -> DoubleFloat),
--R            Segment(DoubleFloat),Segment(DoubleFloat),Segment(DoubleFloat))
--R             -> Plot
--R             from Plot
--R   [8] ((DoubleFloat -> DoubleFloat),(DoubleFloat -> DoubleFloat),
--R            Segment(DoubleFloat)) -> Plot
--R             from Plot
--R   [9] (List((DoubleFloat -> DoubleFloat)),Segment(DoubleFloat),Segment
--R            (DoubleFloat)) -> Plot
--R             from Plot
--R   [10] (List((DoubleFloat -> DoubleFloat)),Segment(DoubleFloat)) -> 
--R            Plot
--R             from Plot
--R   [11] ((DoubleFloat -> DoubleFloat),Segment(DoubleFloat),Segment(
--R            DoubleFloat)) -> Plot
--R             from Plot
--R   [12] ((DoubleFloat -> DoubleFloat),Segment(DoubleFloat)) -> Plot
--R             from Plot
--R
--RExamples of plot from PlotFunctions1
--R
--R
--RExamples of plot from Plot3D
--R
--R
--RExamples of plot from Plot
--R
--Rfp:=(t:DFLOAT):DFLOAT +-> sin(t) 
--Rplot(fp,-1.0..1.0)$PLOT
--R
--E 2198

--S 2199 of 3320
)d op plotPolar
--R 
--R
--RThere are 4 unexposed functions called plotPolar :
--R   [1] (D2,Symbol,Segment(DoubleFloat)) -> Plot from PlotFunctions1(D2)
--R             if D2 has KONVERT(INFORM)
--R   [2] (D2,Symbol) -> Plot from PlotFunctions1(D2) if D2 has KONVERT(
--R            INFORM)
--R   [3] (DoubleFloat -> DoubleFloat) -> Plot from Plot
--R   [4] ((DoubleFloat -> DoubleFloat),Segment(DoubleFloat)) -> Plot
--R             from Plot
--R
--RExamples of plotPolar from PlotFunctions1
--R
--R
--RExamples of plotPolar from Plot
--R
--E 2199

--S 2200 of 3320
)d op plus
--R 
--R
--RThere is one exposed function called plus :
--R   [1] (ThreeDimensionalMatrix(D1),ThreeDimensionalMatrix(D1)) -> 
--R            ThreeDimensionalMatrix(D1)
--R             from ThreeDimensionalMatrix(D1) if D1 has RING and D1 has 
--R            SETCAT
--R
--RThere are 2 unexposed functions called plus :
--R   [1] (ListMonoidOps(D1,D2,D3),ListMonoidOps(D1,D2,D3)) -> 
--R            ListMonoidOps(D1,D2,D3)
--R             from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R   [2] (D1,D2,ListMonoidOps(D1,D2,D3)) -> ListMonoidOps(D1,D2,D3)
--R             from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R
--RExamples of plus from ListMonoidOps
--R
--R
--RExamples of plus from ThreeDimensionalMatrix
--R
--E 2200

--S 2201 of 3320
)d op plus!
--R 
--R
--RThere is one unexposed function called plus! :
--R   [1] (Matrix(D2),Matrix(D2),Matrix(D2)) -> Matrix(D2)
--R             from StorageEfficientMatrixOperations(D2) if D2 has RING
--R         
--R
--RExamples of plus! from StorageEfficientMatrixOperations
--R
--E 2201

--S 2202 of 3320
)d op plusInfinity
--R 
--R
--RThere are 2 exposed functions called plusInfinity :
--R   [1]  -> OrderedCompletion(Integer) from Infinity
--R   [2]  -> OrderedCompletion(D1) from OrderedCompletion(D1) if D1 has 
--R            SETCAT
--R
--RExamples of plusInfinity from Infinity
--R
--R
--RExamples of plusInfinity from OrderedCompletion
--R
--E 2202

--S 2203 of 3320
)d op pmComplexintegrate
--R 
--R
--RThere is one unexposed function called pmComplexintegrate :
--R   [1] (D2,Symbol) -> Union(Record(special: D2,integrand: D2),"failed")
--R             from PatternMatchIntegration(D4,D2)
--R             if D4 has KONVERT(PATTERN(INT)) and D4 has PATMAB(INT) and
--R            D4 has Join(OrderedSet,RetractableTo(Integer),GcdDomain,
--R            LinearlyExplicitRingOver(Integer)) and D2 has LFCAT and D2
--R             has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4))
--R
--RExamples of pmComplexintegrate from PatternMatchIntegration
--R
--E 2203

--S 2204 of 3320
)d op pmintegrate
--R 
--R
--RThere are 2 unexposed functions called pmintegrate :
--R   [1] (D2,Symbol) -> Union(Record(special: D2,integrand: D2),"failed")
--R             from PatternMatchIntegration(D4,D2)
--R             if D4 has KONVERT(PATTERN(INT)) and D4 has PATMAB(INT) and
--R            D4 has Join(OrderedSet,RetractableTo(Integer),GcdDomain,
--R            LinearlyExplicitRingOver(Integer)) and D2 has LFCAT and D2
--R             has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4))
--R   [2] (D1,Symbol,OrderedCompletion(D1),OrderedCompletion(D1)) -> Union
--R            (D1,"failed")
--R             from PatternMatchIntegration(D4,D1)
--R             if D1 has SPFCAT and D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has KONVERT(PATTERN(INT)) and D4 has PATMAB(INT) and D4
--R             has Join(OrderedSet,RetractableTo(Integer),GcdDomain,
--R            LinearlyExplicitRingOver(Integer))
--R
--RExamples of pmintegrate from PatternMatchIntegration
--R
--E 2204

--S 2205 of 3320
)d op po
--R 
--R
--RThere is one unexposed function called po :
--R   [1] OppositeMonogenicLinearOperator(D1,D2) -> D1
--R             from OppositeMonogenicLinearOperator(D1,D2)
--R             if D1 has MLO(D2) and D2 has RING
--R
--RExamples of po from OppositeMonogenicLinearOperator
--R
--E 2205

--S 2206 of 3320
)d op point
--R 
--R
--RThere are 6 exposed functions called point :
--R   [1] List(D2) -> D from D if D2 has RING and D has PTCAT(D2)
--R   [2] D -> Point(D2) from D if D has SPACEC(D2) and D2 has RING
--R   [3] Point(D2) -> D from D if D2 has RING and D has SPACEC(D2)
--R   [4] (D,NonNegativeInteger) -> D from D if D has SPACEC(D2) and D2
--R             has RING
--R   [5] (D,List(D2)) -> D from D if D has SPACEC(D2) and D2 has RING
--R   [6] (D,Point(D2)) -> D from D if D has SPACEC(D2) and D2 has RING
--R         
--R
--RThere are 2 unexposed functions called point :
--R   [1] (GraphImage,Point(DoubleFloat),Palette) -> Void from GraphImage
--R            
--R   [2] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat) -> Point(
--R            DoubleFloat)
--R             from TubePlotTools
--R
--RExamples of point from GraphImage
--R
--R
--RExamples of point from PointCategory
--R
--R
--RExamples of point from ThreeSpaceCategory
--R
--R
--RExamples of point from TubePlotTools
--R
--E 2206

--S 2207 of 3320
)d op point?
--R 
--R
--RThere is one exposed function called point? :
--R   [1] D -> Boolean from D if D has SPACEC(D2) and D2 has RING
--R
--RExamples of point? from ThreeSpaceCategory
--R
--E 2207

--S 2208 of 3320
)d op pointColor
--R 
--R
--RThere are 2 exposed functions called pointColor :
--R   [1] Palette -> DrawOption from DrawOption
--R   [2] Float -> DrawOption from DrawOption
--R
--RExamples of pointColor from DrawOption
--R
--E 2208

--S 2209 of 3320
)d op pointColorDefault
--R 
--R
--RThere are 2 exposed functions called pointColorDefault :
--R   [1]  -> Palette from ViewDefaultsPackage
--R   [2] Palette -> Palette from ViewDefaultsPackage
--R
--RExamples of pointColorDefault from ViewDefaultsPackage
--R
--E 2209

--S 2210 of 3320
)d op pointColorPalette
--R 
--R
--RThere is one unexposed function called pointColorPalette :
--R   [1] (List(DrawOption),Palette) -> Palette from DrawOptionFunctions0
--R            
--R
--RExamples of pointColorPalette from DrawOptionFunctions0
--R
--E 2210

--S 2211 of 3320
)d op pointData
--R 
--R
--RThere is one unexposed function called pointData :
--R   [1] SubSpace(D2,D3) -> List(Point(D3)) from SubSpace(D2,D3)
--R             if D2: PI and D3 has RING
--R
--RExamples of pointData from SubSpace
--R
--E 2211

--S 2212 of 3320
)d op pointDominateBy
--R 
--R
--RThere are 4 exposed functions called pointDominateBy :
--R   [1] D5 -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D4,D10,D5,D11,D1,D2,D3)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            LOCPOWC(D6) and D5 has PLACESC(D6,D10) and D11 has DIVCAT(
--R            D5) and D1 has INFCLCT(D6,D7,D8,D9,D4,D10,D5,D11,D3) and D3
--R             has BLMETCT and D4 has PRSPCAT(D6) and D2 has DSTRCAT(D1)
--R            
--R   [2] D2 -> D1
--R             from LocalParametrizationOfSimplePointPackage(D3,D4,D5,D6,
--R            D1,D7,D2)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D4),NNI) and D7 has LOCPOWC(D3) and D1 has PRSPCAT(D3) and 
--R            D5 has POLYCAT(D3,D6,OVAR(D4)) and D2 has PLACESC(D3,D7)
--R         
--R   [3] PlacesOverPseudoAlgebraicClosureOfFiniteField(D3) -> 
--R            ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(D3)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R            
--R   [4] Places(D3) -> ProjectivePlane(D3)
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R
--RExamples of pointDominateBy from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of pointDominateBy from LocalParametrizationOfSimplePointPackage
--R
--R
--RExamples of pointDominateBy from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of pointDominateBy from PackageForAlgebraicFunctionField
--R
--E 2212

--S 2213 of 3320
)d op pointInIdeal?
--R 
--R
--RThere is one exposed function called pointInIdeal? :
--R   [1] (List(D5),D3) -> Boolean from PolynomialPackageForCurve(D4,D5,D6
--R            ,D7,D3)
--R             if D5 has FAMR(D4,D6) and D6 has DIRPCAT(D7,NNI) and D7: 
--R            NNI and D4 has FIELD and D3 has PRSPCAT(D4)
--R
--RExamples of pointInIdeal? from PolynomialPackageForCurve
--R
--E 2213

--S 2214 of 3320
)d op pointLists
--R 
--R
--RThere is one unexposed function called pointLists :
--R   [1] GraphImage -> List(List(Point(DoubleFloat))) from GraphImage
--R
--RExamples of pointLists from GraphImage
--R
--E 2214

--S 2215 of 3320
)d op pointPlot
--R 
--R
--RThere are 4 unexposed functions called pointPlot :
--R   [1] ((DoubleFloat -> Point(DoubleFloat)),Segment(DoubleFloat),
--R            Segment(DoubleFloat),Segment(DoubleFloat),Segment(DoubleFloat))
--R             -> Plot3D
--R             from Plot3D
--R   [2] ((DoubleFloat -> Point(DoubleFloat)),Segment(DoubleFloat)) -> 
--R            Plot3D
--R             from Plot3D
--R   [3] ((DoubleFloat -> Point(DoubleFloat)),Segment(DoubleFloat),
--R            Segment(DoubleFloat),Segment(DoubleFloat)) -> Plot
--R             from Plot
--R   [4] ((DoubleFloat -> Point(DoubleFloat)),Segment(DoubleFloat)) -> 
--R            Plot
--R             from Plot
--R
--RExamples of pointPlot from Plot3D
--R
--R
--RExamples of pointPlot from Plot
--R
--E 2215

--S 2216 of 3320
)d op points
--R 
--R
--RThere is one unexposed function called points :
--R   [1] (TwoDimensionalViewport,PositiveInteger,String) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of points from TwoDimensionalViewport
--R
--E 2216

--S 2217 of 3320
)d op pointSizeDefault
--R 
--R
--RThere are 2 exposed functions called pointSizeDefault :
--R   [1]  -> PositiveInteger from ViewDefaultsPackage
--R   [2] PositiveInteger -> PositiveInteger from ViewDefaultsPackage
--R
--RExamples of pointSizeDefault from ViewDefaultsPackage
--R
--E 2217

--S 2218 of 3320
)d op pointToCell
--R 
--R
--RThere is one exposed function called pointToCell :
--R   [1] (D1,Boolean,Symbol) -> SimpleCell(D1,D4) from SimpleCell(D1,D4)
--R             if D1 has RCFIELD and D4 has UPOLYC(D1)
--R
--RExamples of pointToCell from SimpleCell
--R
--E 2218

--S 2219 of 3320
)d op pointToPlace
--R 
--R
--RThere is one exposed function called pointToPlace :
--R   [1] (D2,D3) -> D1
--R             from LocalParametrizationOfSimplePointPackage(D4,D5,D3,D6,
--R            D2,D7,D1)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D1 has PLACESC(D4,D7) and D3 has POLYCAT(D4,D6
--R            ,OVAR(D5)) and D2 has PRSPCAT(D4) and D7 has LOCPOWC(D4)
--R         
--R
--RExamples of pointToPlace from LocalParametrizationOfSimplePointPackage
--R
--E 2219

--S 2220 of 3320
)d op pointV
--R 
--R
--RThere is one exposed function called pointV :
--R   [1] D -> D2 from D
--R             if D has INFCLCT(D3,D4,D5,D6,D2,D7,D8,D9,D1) and D3 has 
--R            FIELD and D5 has POLYCAT(D3,D6,OVAR(D4)) and D6 has DIRPCAT
--R            (#(D4),NNI) and D7 has LOCPOWC(D3) and D8 has PLACESC(D3,D7
--R            ) and D1 has BLMETCT and D2 has PRSPCAT(D3)
--R
--RExamples of pointV from InfinitlyClosePointCategory
--R
--E 2220

--S 2221 of 3320
)d op pointValue
--R 
--R
--RThere are 2 exposed functions called pointValue :
--R   [1] D -> List(D2) from D if D has AFSPCAT(D2) and D2 has FIELD
--R   [2] D -> List(D2) from D if D has PRSPCAT(D2) and D2 has FIELD
--R
--RExamples of pointValue from AffineSpaceCategory
--R
--R
--RExamples of pointValue from ProjectiveSpaceCategory
--R
--E 2221

--S 2222 of 3320
)d op poisson
--R 
--R
--RThere is one unexposed function called poisson :
--R   [1] RationalNumber -> (() -> Integer) from 
--R            RandomIntegerDistributions
--R
--RExamples of poisson from RandomIntegerDistributions
--R
--E 2222

--S 2223 of 3320
)d op pol
--R 
--R
--RThere is one unexposed function called pol :
--R   [1] Vector(D3) -> SparseUnivariatePolynomial(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of pol from InnerNormalBasisFieldFunctions
--R
--E 2223

--S 2224 of 3320
)d op polar
--R 
--R
--RThere is one exposed function called polar :
--R   [1] Point(D2) -> Point(D2) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of polar from CoordinateSystems
--R
--E 2224

--S 2225 of 3320
)d op polarCoordinates
--R 
--R
--RThere is one exposed function called polarCoordinates :
--R   [1] D -> Record(r: D2,phi: D2) from D
--R             if D has COMPCAT(D2) and D2 has COMRING and D2 has RNS and
--R            D2 has TRANFUN
--R
--RExamples of polarCoordinates from ComplexCategory
--R
--E 2225

--S 2226 of 3320
)d op polCase
--R 
--R
--RThere is one unexposed function called polCase :
--R   [1] (D2,NonNegativeInteger,List(D2)) -> Boolean
--R             from LeadingCoefDetermination(D5,D6,D2,D7)
--R             if D2 has EUCDOM and D5 has ORDSET and D6 has OAMONS and 
--R            D7 has POLYCAT(D2,D6,D5)
--R
--RExamples of polCase from LeadingCoefDetermination
--R
--E 2226

--S 2227 of 3320
)d op pole?
--R 
--R
--RThere is one exposed function called pole? :
--R   [1] D -> Boolean from D
--R             if D has PSCAT(D2,D3,D4) and D2 has RING and D3 has OAMON 
--R            and D4 has ORDSET
--R
--RThere is one unexposed function called pole? :
--R   [1] InnerTaylorSeries(D2) -> Boolean from InnerTaylorSeries(D2) if 
--R            D2 has RING
--R
--RExamples of pole? from InnerTaylorSeries
--R
--R
--RExamples of pole? from PowerSeriesCategory
--R
--E 2227

--S 2228 of 3320
)d op PollardSmallFactor
--R 
--R
--RThere is one unexposed function called PollardSmallFactor :
--R   [1] D1 -> Union(D1,"failed") from IntegerFactorizationPackage(D1)
--R             if D1 has INS
--R
--RExamples of PollardSmallFactor from IntegerFactorizationPackage
--R
--E 2228

--S 2229 of 3320
)d op polygamma
--R 
--R
--RThere are 3 exposed functions called polygamma :
--R   [1] (NonNegativeInteger,DoubleFloat) -> DoubleFloat
--R             from DoubleFloatSpecialFunctions
--R   [2] (NonNegativeInteger,Complex(DoubleFloat)) -> Complex(DoubleFloat
--R            )
--R             from DoubleFloatSpecialFunctions
--R   [3] (D,D) -> D from D if D has SPFCAT
--R
--RThere is one unexposed function called polygamma :
--R   [1] (D1,D1) -> D1 from FunctionalSpecialFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has FS(D2
--R            )
--R
--RExamples of polygamma from DoubleFloatSpecialFunctions
--R
--R
--RExamples of polygamma from FunctionalSpecialFunction
--R
--R
--RExamples of polygamma from SpecialFunctionCategory
--R
--E 2229

--S 2230 of 3320
)d op polygon
--R 
--R
--RThere are 4 exposed functions called polygon :
--R   [1] D -> List(Point(D2)) from D if D has SPACEC(D2) and D2 has RING
--R            
--R   [2] List(Point(D2)) -> D from D if D2 has RING and D has SPACEC(D2)
--R            
--R   [3] (D,List(List(D2))) -> D from D if D has SPACEC(D2) and D2 has 
--R            RING
--R   [4] (D,List(Point(D2))) -> D from D if D has SPACEC(D2) and D2 has 
--R            RING
--R
--RExamples of polygon from ThreeSpaceCategory
--R
--E 2230

--S 2231 of 3320
)d op polygon?
--R 
--R
--RThere is one exposed function called polygon? :
--R   [1] D -> Boolean from D if D has SPACEC(D2) and D2 has RING
--R
--RExamples of polygon? from ThreeSpaceCategory
--R
--E 2231

--S 2232 of 3320
)d op polynomial
--R 
--R
--RThere are 4 exposed functions called polynomial :
--R   [1] (D,NonNegativeInteger,NonNegativeInteger) -> Polynomial(D3)
--R             from D
--R             if D has MTSCAT(D3,D4) and D3 has RING and D4 has ORDSET
--R         
--R   [2] (D,NonNegativeInteger) -> Polynomial(D3) from D
--R             if D has MTSCAT(D3,D4) and D3 has RING and D4 has ORDSET
--R         
--R   [3] (D,NonNegativeInteger,NonNegativeInteger) -> Polynomial(D3)
--R             from D
--R             if D has UTSCAT(D3) and D3 has RING
--R   [4] (D,NonNegativeInteger) -> Polynomial(D3) from D
--R             if D has UTSCAT(D3) and D3 has RING
--R
--RExamples of polynomial from MultivariateTaylorSeriesCategory
--R
--R
--RExamples of polynomial from UnivariateTaylorSeriesCategory
--R
--E 2232

--S 2233 of 3320
)d op polynomialZeros
--R 
--R
--RThere is one exposed function called polynomialZeros :
--R   [1] (Polynomial(Fraction(Integer)),Symbol,Segment(OrderedCompletion(
--R            DoubleFloat))) -> List(DoubleFloat)
--R             from ExpertSystemContinuityPackage
--R
--RExamples of polynomialZeros from ExpertSystemContinuityPackage
--R
--E 2233

--S 2234 of 3320
)d op polyPart
--R 
--R
--RThere is one exposed function called polyPart :
--R   [1] FullPartialFractionExpansion(D2,D1) -> D1
--R             from FullPartialFractionExpansion(D2,D1)
--R             if D1 has UPOLYC(D2) and D2 has Join(Field,
--R            CharacteristicZero)
--R
--RExamples of polyPart from FullPartialFractionExpansion
--R
--E 2234

--S 2235 of 3320
)d op polyRDE
--R 
--R
--RThere is one unexposed function called polyRDE :
--R   [1] (D2,D2,D2,Integer,(D2 -> D2)) -> Union(ans: Record(ans: D2,nosol
--R            : Boolean),eq: Record(b: D2,c: D2,m: Integer,alpha: D2,beta: D2))
--R             from TranscendentalRischDE(D5,D2)
--R             if D2 has UPOLYC(D5) and D5 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer))
--R
--RExamples of polyRDE from TranscendentalRischDE
--R
--E 2235

--S 2236 of 3320
)d op polyred
--R 
--R
--RThere is one unexposed function called polyred :
--R   [1] D1 -> D1 from PointsOfFiniteOrderTools(D2,D1)
--R             if D2 has UPOLYC(FRAC(INT)) and D1 has UPOLYC(FRAC(D2))
--R         
--R
--RExamples of polyred from PointsOfFiniteOrderTools
--R
--E 2236

--S 2237 of 3320
)d op polyRicDE
--R 
--R
--RThere are 2 unexposed functions called polyRicDE :
--R   [1] (D2,(D5 -> List(D4))) -> List(Record(poly: D5,eq: D2))
--R             from PrimitiveRatRicDE(D4,D5,D2,D6)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D5 has UPOLYC(D4) and D2 has 
--R            LODOCAT(D5) and D6 has LODOCAT(FRAC(D5))
--R   [2] (LinearOrdinaryDifferentialOperator2(D5,Fraction(D5)),(D5 -> 
--R            List(D4))) -> List(Record(poly: D5,eq: 
--R            LinearOrdinaryDifferentialOperator2(D5,Fraction(D5))))
--R             from RationalRicDE(D4,D5)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer),RetractableTo(Fraction(Integer))) and D5 has 
--R            UPOLYC(D4)
--R
--RExamples of polyRicDE from PrimitiveRatRicDE
--R
--R
--RExamples of polyRicDE from RationalRicDE
--R
--E 2237

--S 2238 of 3320
)d op polyRing2UPUP
--R 
--R
--RThere is one exposed function called polyRing2UPUP :
--R   [1] D2 -> SparseUnivariatePolynomial(SparseUnivariatePolynomial(D3))
--R             from AffineAlgebraicSetComputeWithResultant(D3,D4,D2,D5,D6
--R            )
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has DIRPCAT(#(
--R            D4),NNI) and D2 has POLYCAT(D3,D5,OVAR(D4)) and D6 has 
--R            PRSPCAT(D3)
--R
--RExamples of polyRing2UPUP from AffineAlgebraicSetComputeWithResultant
--R
--E 2238

--S 2239 of 3320
)d op polyRingToBlUpRing
--R 
--R
--RThere is one exposed function called polyRingToBlUpRing :
--R   [1] (D2,D3) -> DistributedMultivariatePolynomial([construct,QUOTEX,
--R            QUOTEY],D4)
--R             from BlowUpPackage(D4,D5,D2,D6,D3)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D2 has FAMR(D4,D6) and D3 has BLMETCT
--R
--RExamples of polyRingToBlUpRing from BlowUpPackage
--R
--E 2239

--S 2240 of 3320
)d op pomopo!
--R 
--R
--RThere is one exposed function called pomopo! :
--R   [1] (D,D1,D2,D) -> D from D if D has FAMR(D1,D2) and D1 has RING and
--R            D2 has OAMON
--R
--RExamples of pomopo! from FiniteAbelianMonoidRing
--R
--E 2240

--S 2241 of 3320 done
)d op pop!
--R 
--R
--RThere are 4 exposed functions called pop! :
--R   [1] ArrayStack(D1) -> D1 from ArrayStack(D1) if D1 has SETCAT
--R   [2] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [3] D -> D1 from D if D has SKAGG(D1) and D1 has TYPE
--R   [4] Stack(D1) -> D1 from Stack(D1) if D1 has SETCAT
--R
--RExamples of pop! from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rpop! a 
--Ra
--R
--R
--RExamples of pop! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rpop! a 
--Ra
--R
--R
--RExamples of pop! from StackAggregate
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rpop! a 
--Ra
--R
--R
--RExamples of pop! from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rpop! a 
--Ra
--R
--E 2241

--S 2242 of 3320
)d op popFortranOutputStack
--R 
--R
--RThere is one exposed function called popFortranOutputStack :
--R   [1]  -> Void from FortranOutputStackPackage
--R
--RExamples of popFortranOutputStack from FortranOutputStackPackage
--R
--E 2242

--S 2243 of 3320
)d op posExpnPart
--R 
--R
--RThere is one exposed function called posExpnPart :
--R   [1] D -> D from D if D has LOCPOWC(D1) and D1 has FIELD
--R
--RExamples of posExpnPart from LocalPowerSeriesCategory
--R
--E 2243

--S 2244 of 3320
)d op position
--R 
--R
--RThere are 7 exposed functions called position :
--R   [1] BinaryFile -> SingleInteger from BinaryFile
--R   [2] D -> NonNegativeInteger from D if D has CACHSET
--R   [3] (D2,D,Integer) -> Integer from D
--R             if D has FLAGG(D2) and D2 has TYPE and D2 has SETCAT
--R   [4] (D2,D) -> Integer from D if D has FLAGG(D2) and D2 has TYPE and 
--R            D2 has SETCAT
--R   [5] ((D3 -> Boolean),D) -> Integer from D if D has FLAGG(D3) and D3
--R             has TYPE
--R   [6] (CharacterClass,D,Integer) -> Integer from D if D has SRAGG
--R   [7] (D,D,Integer) -> Integer from D if D has SRAGG
--R
--RExamples of position from BinaryFile
--R
--R
--RExamples of position from CachableSet
--R
--R
--RExamples of position from FiniteLinearAggregate
--R
--R
--RExamples of position from StringAggregate
--R
--E 2244

--S 2245 of 3320
)d op position!
--R 
--R
--RThere is one exposed function called position! :
--R   [1] (BinaryFile,SingleInteger) -> SingleInteger from BinaryFile
--R
--RExamples of position! from BinaryFile
--R
--E 2245

--S 2246 of 3320
)d op positive?
--R 
--R
--RThere are 3 exposed functions called positive? :
--R   [1] D -> Boolean from D
--R             if D has INTCAT(D2) and D2 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R   [2] D -> Boolean from D if D has ORDRING
--R   [3] (D2,D) -> Boolean from D
--R             if D has RRCC(D3,D2) and D3 has Join(OrderedRing,Field) 
--R            and D2 has UPOLYC(D3)
--R
--RExamples of positive? from IntervalCategory
--R
--R
--RExamples of positive? from OrderedRing
--R
--R
--RExamples of positive? from RealRootCharacterizationCategory
--R
--E 2246

--S 2247 of 3320
)d op positiveRemainder
--R 
--R
--RThere is one exposed function called positiveRemainder :
--R   [1] (D,D) -> D from D if D has INS
--R
--RExamples of positiveRemainder from IntegerNumberSystem
--R
--E 2247

--S 2248 of 3320
)d op positiveSolve
--R 
--R
--RThere are 4 exposed functions called positiveSolve :
--R   [1] RegularChain(D3,D4) -> List(List(RealClosure(Fraction(D3))))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R   [2] (List(Polynomial(D4)),Boolean,Boolean) -> List(List(RealClosure(
--R            Fraction(D4))))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [3] (List(Polynomial(D4)),Boolean) -> List(List(RealClosure(Fraction
--R            (D4))))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [4] List(Polynomial(D3)) -> List(List(RealClosure(Fraction(D3))))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R
--RExamples of positiveSolve from ZeroDimensionalSolvePackage
--R
--E 2248

--S 2249 of 3320
)d op possiblyInfinite?
--R 
--R
--RThere is one exposed function called possiblyInfinite? :
--R   [1] D -> Boolean from D if D has STAGG(D2) and D2 has TYPE
--R
--RExamples of possiblyInfinite? from StreamAggregate
--R
--E 2249

--S 2250 of 3320
)d op possiblyNewVariety?
--R 
--R
--RThere is one unexposed function called possiblyNewVariety? :
--R   [1] (List(D7),List(List(D7))) -> Boolean
--R             from PolynomialSetUtilitiesPackage(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of possiblyNewVariety? from PolynomialSetUtilitiesPackage
--R
--E 2250

--S 2251 of 3320
)d op postfix
--R 
--R
--RThere is one unexposed function called postfix :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of postfix from OutputForm
--R
--E 2251

--S 2252 of 3320
)d op pow
--R 
--R
--RThere is one exposed function called pow :
--R   [1] (U32Vector,PositiveInteger,NonNegativeInteger,Integer) -> 
--R            U32Vector
--R             from U32VectorPolynomialOperations
--R
--RThere is one unexposed function called pow :
--R   [1]  -> PrimitiveArray(ModMonic(D2,D3)) from ModMonic(D2,D3)
--R             if D2 has RING and D3 has UPOLYC(D2)
--R
--RExamples of pow from ModMonic
--R
--R
--RExamples of pow from U32VectorPolynomialOperations
--R
--E 2252

--S 2253 of 3320
)d op power
--R 
--R
--RThere is one unexposed function called power :
--R   [1] (D2,Stream(D2)) -> Stream(D2) from StreamTaylorSeriesOperations(
--R            D2)
--R             if D2 has FIELD and D2 has RING
--R
--RExamples of power from StreamTaylorSeriesOperations
--R
--E 2253

--S 2254 of 3320
)d op power!
--R 
--R
--RThere is one unexposed function called power! :
--R   [1] (Matrix(D3),Matrix(D3),Matrix(D3),Matrix(D3),NonNegativeInteger)
--R             -> Matrix(D3)
--R             from StorageEfficientMatrixOperations(D3) if D3 has RING
--R         
--R
--RExamples of power! from StorageEfficientMatrixOperations
--R
--E 2254

--S 2255 of 3320
)d op powerAssociative?
--R 
--R
--RThere is one exposed function called powerAssociative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RExamples of powerAssociative? from FiniteRankNonAssociativeAlgebra
--R
--E 2255

--S 2256 of 3320
)d op powern
--R 
--R
--RThere is one unexposed function called powern :
--R   [1] (Fraction(Integer),Stream(D3)) -> Stream(D3)
--R             from StreamTaylorSeriesOperations(D3)
--R             if D3 has ALGEBRA(FRAC(INT)) and D3 has RING
--R
--RExamples of powern from StreamTaylorSeriesOperations
--R
--E 2256

--S 2257 of 3320
)d op powers
--R 
--R
--RThere is one unexposed function called powers :
--R   [1] List(Integer) -> List(List(Integer)) from Partition
--R
--RExamples of powers from Partition
--R
--E 2257

--S 2258 of 3320
)d op powerSum
--R 
--R
--RThere is one exposed function called powerSum :
--R   [1] Integer -> SymmetricPolynomial(Fraction(Integer)) from 
--R            CycleIndicators
--R
--RExamples of powerSum from CycleIndicators
--R
--E 2258

--S 2259 of 3320
)d op powmod
--R 
--R
--RThere is one exposed function called powmod :
--R   [1] (D,D,D) -> D from D if D has INS
--R
--RExamples of powmod from IntegerNumberSystem
--R
--E 2259

--S 2260 of 3320
)d op pquo
--R 
--R
--RThere are 2 exposed functions called pquo :
--R   [1] (D,D,D1) -> D from D
--R             if D has RPOLCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R   [2] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of pquo from RecursivePolynomialCategory
--R
--E 2260

--S 2261 of 3320
)d op pr2dmp
--R 
--R
--RThere is one unexposed function called pr2dmp :
--R   [1] Polynomial(D3) -> D1 from ParametricLinearEquations(D3,D4,D5,D1)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D1
--R             has POLYCAT(D3,D5,D4) and D4 has Join(OrderedSet,
--R            ConvertibleTo(Symbol)) and D5 has OAMONS
--R
--RExamples of pr2dmp from ParametricLinearEquations
--R
--E 2261

--S 2262 of 3320
)d op precision
--R 
--R
--RThere are 4 exposed functions called precision :
--R   [1] PositiveInteger -> PositiveInteger from D
--R             if D has arbitraryPrecision and D has FPS
--R   [2]  -> PositiveInteger from D if D has FPS
--R   [3] PositiveInteger -> PositiveInteger from MachineFloat
--R   [4]  -> PositiveInteger from MachineFloat
--R
--RExamples of precision from FloatingPointSystem
--R
--R
--RExamples of precision from MachineFloat
--R
--E 2262

--S 2263 of 3320
)d op predicate
--R 
--R
--RThere is one unexposed function called predicate :
--R   [1] Pattern(D3) -> (D4 -> Boolean) from PatternFunctions1(D3,D4)
--R             if D3 has SETCAT and D4 has TYPE
--R
--RExamples of predicate from PatternFunctions1
--R
--E 2263

--S 2264 of 3320
)d op predicates
--R 
--R
--RThere is one unexposed function called predicates :
--R   [1] Pattern(D2) -> List(Any) from Pattern(D2) if D2 has SETCAT
--R
--RExamples of predicates from Pattern
--R
--E 2264

--S 2265 of 3320
)d op prefix
--R 
--R
--RThere is one unexposed function called prefix :
--R   [1] (OutputForm,List(OutputForm)) -> OutputForm from OutputForm
--R
--RExamples of prefix from OutputForm
--R
--E 2265

--S 2266 of 3320
)d op prefix?
--R 
--R
--RThere is one exposed function called prefix? :
--R   [1] (D,D) -> Boolean from D if D has SRAGG
--R
--RExamples of prefix? from StringAggregate
--R
--E 2266

--S 2267 of 3320
)d op prefixRagits
--R 
--R
--RThere is one exposed function called prefixRagits :
--R   [1] RadixExpansion(D2) -> List(Integer) from RadixExpansion(D2) if 
--R            D2: INT
--R
--RExamples of prefixRagits from RadixExpansion
--R
--E 2267

--S 2268 of 3320
)d op prem
--R 
--R
--RThere are 2 exposed functions called prem :
--R   [1] (D,D,D1) -> D from D
--R             if D has RPOLCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R   [2] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R
--RExamples of prem from RecursivePolynomialCategory
--R
--E 2268

--S 2269 of 3320
)d op prepareDecompose
--R 
--R
--RThere are 2 exposed functions called prepareDecompose :
--R   [1] (List(D9),List(D1),Boolean,Boolean) -> List(Record(eq: List(D9),
--R            tower: D1,ineq: List(D9)))
--R             from QuasiComponentPackage(D6,D7,D8,D9,D1)
--R             if D1 has RSETCAT(D6,D7,D8,D9) and D6 has GCDDOM and D7
--R             has OAMONS and D8 has ORDSET and D9 has RPOLCAT(D6,D7,D8)
--R            
--R   [2] (List(D9),List(D1),Boolean,Boolean) -> List(Record(eq: List(D9),
--R            tower: D1,ineq: List(D9)))
--R             from SquareFreeQuasiComponentPackage(D6,D7,D8,D9,D1)
--R             if D1 has RSETCAT(D6,D7,D8,D9) and D6 has GCDDOM and D7
--R             has OAMONS and D8 has ORDSET and D9 has RPOLCAT(D6,D7,D8)
--R            
--R
--RExamples of prepareDecompose from QuasiComponentPackage
--R
--R
--RExamples of prepareDecompose from SquareFreeQuasiComponentPackage
--R
--E 2269

--S 2270 of 3320
)d op prepareSubResAlgo
--R 
--R
--RThere is one exposed function called prepareSubResAlgo :
--R   [1] (D2,D2,D3) -> List(Record(val: List(D2),tower: D3))
--R             from RegularTriangularSetGcdPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of prepareSubResAlgo from RegularTriangularSetGcdPackage
--R
--E 2270

--S 2271 of 3320
--R-----------------)d op pre_process (fix this)
--E 2271

--S 2272 of 3320
)d op presub
--R 
--R
--RThere is one unexposed function called presub :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of presub from OutputForm
--R
--E 2272

--S 2273 of 3320
)d op presuper
--R 
--R
--RThere is one unexposed function called presuper :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of presuper from OutputForm
--R
--E 2273

--S 2274 of 3320
)d op previous
--R 
--R
--RThere is one exposed function called previous :
--R   [1] D -> D from D if D has DLAGG(D1) and D1 has TYPE
--R
--RExamples of previous from DoublyLinkedAggregate
--R
--E 2274

--S 2275 of 3320
)d op previousTower
--R 
--R
--RThere is one exposed function called previousTower :
--R   [1] D -> D from D if D has PACPERC
--R
--RExamples of previousTower from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--E 2275

--S 2276 of 3320
)d op prevPrime
--R 
--R
--RThere is one exposed function called prevPrime :
--R   [1] D1 -> D1 from IntegerPrimesPackage(D1) if D1 has INS
--R
--RExamples of prevPrime from IntegerPrimesPackage
--R
--E 2276

--S 2277 of 3320
)d op primaryDecomp
--R 
--R
--RThere is one exposed function called primaryDecomp :
--R   [1] PolynomialIdeals(Fraction(Integer),DirectProduct(D4,
--R            NonNegativeInteger),OrderedVariableList(D3),
--R            DistributedMultivariatePolynomial(D3,Fraction(Integer))) -> List(
--R            PolynomialIdeals(Fraction(Integer),DirectProduct(D4,
--R            NonNegativeInteger),OrderedVariableList(D3),
--R            DistributedMultivariatePolynomial(D3,Fraction(Integer))))
--R             from IdealDecompositionPackage(D3,D4) if D3: LIST(SYMBOL) 
--R            and D4: NNI
--R
--RExamples of primaryDecomp from IdealDecompositionPackage
--R
--E 2277

--S 2278 of 3320
)d op prime
--R 
--R
--RThere are 2 unexposed functions called prime :
--R   [1] (OutputForm,NonNegativeInteger) -> OutputForm from OutputForm
--R         
--R   [2] OutputForm -> OutputForm from OutputForm
--R
--RExamples of prime from OutputForm
--R
--E 2278

--S 2279 of 3320
)d op prime?
--R 
--R
--RThere are 4 exposed functions called prime? :
--R   [1] Complex(Integer) -> Boolean from GaussianFactorizationPackage
--R         
--R   [2] PolynomialIdeals(Fraction(Integer),DirectProduct(D4,
--R            NonNegativeInteger),OrderedVariableList(D3),
--R            DistributedMultivariatePolynomial(D3,Fraction(Integer))) -> 
--R            Boolean
--R             from IdealDecompositionPackage(D3,D4) if D3: LIST(SYMBOL) 
--R            and D4: NNI
--R   [3] D2 -> Boolean from IntegerPrimesPackage(D2) if D2 has INS
--R   [4] D -> Boolean from D if D has UFD
--R
--RExamples of prime? from GaussianFactorizationPackage
--R
--R
--RExamples of prime? from IdealDecompositionPackage
--R
--R
--RExamples of prime? from IntegerPrimesPackage
--R
--R
--RExamples of prime? from UniqueFactorizationDomain
--R
--E 2279

--S 2280 of 3320 done
)d op primeFactor
--R 
--R
--RThere is one exposed function called primeFactor :
--R   [1] (D1,Integer) -> Factored(D1) from Factored(D1) if D1 has INTDOM
--R            
--R
--RExamples of primeFactor from Factored
--R
--Ra:=primeFactor(3,4) 
--RnthFlag(a,1)
--R
--E 2280

--S 2281 of 3320
)d op primeFrobenius
--R 
--R
--RThere are 2 exposed functions called primeFrobenius :
--R   [1] (D,NonNegativeInteger) -> D from D if D has FPC
--R   [2] D -> D from D if D has FPC
--R
--RExamples of primeFrobenius from FieldOfPrimeCharacteristic
--R
--E 2281

--S 2282 of 3320
)d op primes
--R 
--R
--RThere is one exposed function called primes :
--R   [1] (D2,D2) -> List(D2) from IntegerPrimesPackage(D2) if D2 has INS
--R            
--R
--RExamples of primes from IntegerPrimesPackage
--R
--E 2282

--S 2283 of 3320
)d op primextendedint
--R 
--R
--RThere is one unexposed function called primextendedint :
--R   [1] (Fraction(D6),(D6 -> D6),(D5 -> Union(Record(ratpart: D5,coeff: 
--R            D5),"failed")),Fraction(D6)) -> Union(Record(answer: Fraction(D6)
--R            ,a0: D5),Record(ratpart: Fraction(D6),coeff: Fraction(D6)),
--R            "failed")
--R             from TranscendentalIntegration(D5,D6)
--R             if D5 has FIELD and D6 has UPOLYC(D5)
--R
--RExamples of primextendedint from TranscendentalIntegration
--R
--E 2283

--S 2284 of 3320
)d op primextintfrac
--R 
--R
--RThere is one unexposed function called primextintfrac :
--R   [1] (Fraction(D5),(D5 -> D5),Fraction(D5)) -> Union(Record(ratpart: 
--R            Fraction(D5),coeff: Fraction(D5)),"failed")
--R             from TranscendentalIntegration(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has FIELD
--R
--RExamples of primextintfrac from TranscendentalIntegration
--R
--E 2284

--S 2285 of 3320
)d op primintegrate
--R 
--R
--RThere is one unexposed function called primintegrate :
--R   [1] (Fraction(D6),(D6 -> D6),(D5 -> Union(Record(ratpart: D5,coeff: 
--R            D5),"failed"))) -> Record(answer: IntegrationResult(Fraction(D6))
--R            ,a0: D5)
--R             from TranscendentalIntegration(D5,D6)
--R             if D5 has FIELD and D6 has UPOLYC(D5)
--R
--RExamples of primintegrate from TranscendentalIntegration
--R
--E 2285

--S 2286 of 3320
)d op primintfldpoly
--R 
--R
--RThere is one unexposed function called primintfldpoly :
--R   [1] (D1,(D3 -> Union(Record(ratpart: D3,coeff: D3),"failed")),D3)
--R             -> Union(D1,"failed")
--R             from TranscendentalIntegration(D3,D1)
--R             if D3 has FIELD and D1 has UPOLYC(D3)
--R
--RExamples of primintfldpoly from TranscendentalIntegration
--R
--E 2286

--S 2287 of 3320
)d op primitive?
--R 
--R
--RThere is one exposed function called primitive? :
--R   [1] D -> Boolean from D if D has FFIELDC
--R
--RThere is one unexposed function called primitive? :
--R   [1] SparseUnivariatePolynomial(D3) -> Boolean
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R
--RExamples of primitive? from FiniteFieldCategory
--R
--R
--RExamples of primitive? from FiniteFieldPolynomialPackage
--R
--E 2287

--S 2288 of 3320
)d op primitiveElement
--R 
--R
--RThere are 3 exposed functions called primitiveElement :
--R   [1]  -> D from D if D has FFIELDC
--R   [2] List(D4) -> Record(primelt: D4,poly: List(
--R            SparseUnivariatePolynomial(D4)),prim: SparseUnivariatePolynomial(
--R            D4))
--R             from FunctionSpacePrimitiveElement(D3,D4)
--R             if D4 has FS(D3) and D3 has Join(IntegralDomain,OrderedSet
--R            ,CharacteristicZero)
--R   [3] (D2,D2) -> Record(primelt: D2,pol1: SparseUnivariatePolynomial(
--R            D2),pol2: SparseUnivariatePolynomial(D2),prim: 
--R            SparseUnivariatePolynomial(D2))
--R             from FunctionSpacePrimitiveElement(D3,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,
--R            CharacteristicZero) and D2 has ACF and D2 has FS(D3)
--R
--RThere are 3 unexposed functions called primitiveElement :
--R   [1] (Polynomial(D4),Symbol,Polynomial(D4),Symbol) -> Record(coef1: 
--R            Integer,coef2: Integer,prim: SparseUnivariatePolynomial(D4))
--R             from PrimitiveElement(D4) if D4 has Join(Field,
--R            CharacteristicZero)
--R   [2] (List(Polynomial(D4)),List(Symbol)) -> Record(coef: List(Integer
--R            ),poly: List(SparseUnivariatePolynomial(D4)),prim: 
--R            SparseUnivariatePolynomial(D4))
--R             from PrimitiveElement(D4) if D4 has Join(Field,
--R            CharacteristicZero)
--R   [3] (List(Polynomial(D5)),List(Symbol),Symbol) -> Record(coef: List(
--R            Integer),poly: List(SparseUnivariatePolynomial(D5)),prim: 
--R            SparseUnivariatePolynomial(D5))
--R             from PrimitiveElement(D5) if D5 has Join(Field,
--R            CharacteristicZero)
--R
--RExamples of primitiveElement from FiniteFieldCategory
--R
--R
--RExamples of primitiveElement from FunctionSpacePrimitiveElement
--R
--R
--RExamples of primitiveElement from PrimitiveElement
--R
--E 2288

--S 2289 of 3320
)d op primitiveMonomials
--R 
--R
--RThere is one exposed function called primitiveMonomials :
--R   [1] D -> List(D) from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has POLYCAT(D2,D3,D4)
--R
--RExamples of primitiveMonomials from PolynomialCategory
--R
--E 2289

--S 2290 of 3320
)d op primitivePart
--R 
--R
--RThere are 5 exposed functions called primitivePart :
--R   [1] D -> D from D
--R             if D has FAMR(D1,D2) and D1 has RING and D2 has OAMON and 
--R            D1 has GCDDOM
--R   [2] D -> D from D
--R             if D has FFCAT(D1,D2,D3) and D1 has UFD and D2 has UPOLYC(
--R            D1) and D3 has UPOLYC(FRAC(D2))
--R   [3] D -> D from D if D has OREPCAT(D1) and D1 has RING and D1 has 
--R            GCDDOM
--R   [4] (D,D1) -> D from D
--R             if D has POLYCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET and D2 has GCDDOM
--R   [5] D -> D from D
--R             if D has POLYCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has GCDDOM
--R
--RThere is one unexposed function called primitivePart :
--R   [1] (D1,D2) -> D1 from SubResultantPackage(D2,D1)
--R             if D2 has EUCDOM and D2 has INTDOM and D1 has UPOLYC(D2)
--R         
--R
--RExamples of primitivePart from FiniteAbelianMonoidRing
--R
--R
--RExamples of primitivePart from FunctionFieldCategory
--R
--R
--RExamples of primitivePart from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of primitivePart from PolynomialCategory
--R
--R
--RExamples of primitivePart from SubResultantPackage
--R
--E 2290

--S 2291 of 3320
)d op primitivePart!
--R 
--R
--RThere is one exposed function called primitivePart! :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has GCDDOM
--R
--RExamples of primitivePart! from RecursivePolynomialCategory
--R
--E 2291

--S 2292 of 3320
)d op primitiveRowEchelon
--R 
--R
--RThere is one exposed function called primitiveRowEchelon :
--R   [1] SparseEchelonMatrix(D2,D3) -> Record(Ech: SparseEchelonMatrix(D2
--R            ,D3),Lt: Matrix(Fraction(D3)),Pivots: List(D3),Rank: 
--R            NonNegativeInteger)
--R             from SparseEchelonMatrix(D2,D3)
--R             if D3 has GCDDOM and D2 has ORDSET and D3 has RING
--R
--RExamples of primitiveRowEchelon from SparseEchelonMatrix
--R
--E 2292

--S 2293 of 3320
)d op primlimintfrac
--R 
--R
--RThere is one unexposed function called primlimintfrac :
--R   [1] (Fraction(D6),(D6 -> D6),List(Fraction(D6))) -> Union(Record(
--R            mainpart: Fraction(D6),limitedlogs: List(Record(coeff: Fraction(
--R            D6),logand: Fraction(D6)))),"failed")
--R             from TranscendentalIntegration(D5,D6)
--R             if D6 has UPOLYC(D5) and D5 has FIELD
--R
--RExamples of primlimintfrac from TranscendentalIntegration
--R
--E 2293

--S 2294 of 3320
)d op primlimitedint
--R 
--R
--RThere is one unexposed function called primlimitedint :
--R   [1] (Fraction(D7),(D7 -> D7),(D6 -> Union(Record(ratpart: D6,coeff: 
--R            D6),"failed")),List(Fraction(D7))) -> Union(Record(answer: 
--R            Record(mainpart: Fraction(D7),limitedlogs: List(Record(coeff: 
--R            Fraction(D7),logand: Fraction(D7)))),a0: D6),"failed")
--R             from TranscendentalIntegration(D6,D7)
--R             if D6 has FIELD and D7 has UPOLYC(D6)
--R
--RExamples of primlimitedint from TranscendentalIntegration
--R
--E 2294

--S 2295 of 3320
)d op primPartElseUnitCanonical
--R 
--R
--RThere is one exposed function called primPartElseUnitCanonical :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R
--RExamples of primPartElseUnitCanonical from RecursivePolynomialCategory
--R
--E 2295

--S 2296 of 3320
)d op primPartElseUnitCanonical!
--R 
--R
--RThere is one exposed function called primPartElseUnitCanonical! :
--R   [1] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R
--RExamples of primPartElseUnitCanonical! from RecursivePolynomialCategory
--R
--E 2296

--S 2297 of 3320
)d op prinb
--R 
--R
--RThere is one unexposed function called prinb :
--R   [1] Integer -> Void from GroebnerInternalPackage(D3,D4,D5,D6)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has POLYCAT(D3,D4,D5)
--R
--RExamples of prinb from GroebnerInternalPackage
--R
--E 2297

--S 2298 of 3320
)d op principal?
--R 
--R
--RThere is one exposed function called principal? :
--R   [1] D -> Boolean from D
--R             if D has FDIVCAT(D2,D3,D4,D5) and D2 has FIELD and D3 has 
--R            UPOLYC(D2) and D4 has UPOLYC(FRAC(D3)) and D5 has FFCAT(D2,
--R            D3,D4)
--R
--RExamples of principal? from FiniteDivisorCategory
--R
--E 2298

--S 2299 of 3320
)d op principalIdeal
--R 
--R
--RThere is one exposed function called principalIdeal :
--R   [1] List(D) -> Record(coef: List(D),generator: D) from D if D has 
--R            PID
--R
--RExamples of principalIdeal from PrincipalIdealDomain
--R
--E 2299

--S 2300 of 3320
)d op principalSubResultantSet
--R 
--R
--RThere is one exposed function called principalSubResultantSet :
--R   [1] (SparseUnivariatePolynomial(Polynomial(D3)),
--R            SparseUnivariatePolynomial(Polynomial(D3))) -> List(Polynomial(D3
--R            ))
--R             from CylindricalAlgebraicDecompositionPackage(D3) if D3
--R             has RCFIELD
--R
--RExamples of principalSubResultantSet from CylindricalAlgebraicDecompositionPackage
--R
--E 2300

--S 2301 of 3320
)d op prindINFO
--R 
--R
--RThere is one unexposed function called prindINFO :
--R   [1] (Record(lcmfij: D5,totdeg: NonNegativeInteger,poli: D3,polj: D3)
--R            ,D3,D3,Integer,Integer,Integer) -> Integer
--R             from GroebnerInternalPackage(D4,D5,D6,D3)
--R             if D5 has OAMONS and D3 has POLYCAT(D4,D5,D6) and D4 has 
--R            GCDDOM and D6 has ORDSET
--R
--RExamples of prindINFO from GroebnerInternalPackage
--R
--E 2301

--S 2302 of 3320
)d op prinpolINFO
--R 
--R
--RThere is one unexposed function called prinpolINFO :
--R   [1] List(D6) -> Void from GroebnerInternalPackage(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of prinpolINFO from GroebnerInternalPackage
--R
--E 2302

--S 2303 of 3320
)d op prinshINFO
--R 
--R
--RThere is one unexposed function called prinshINFO :
--R   [1] D2 -> Void from GroebnerInternalPackage(D3,D4,D5,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has POLYCAT(D3,D4,D5)
--R
--RExamples of prinshINFO from GroebnerInternalPackage
--R
--E 2303

--S 2304 of 3320
)d op print
--R 
--R
--RThere is one exposed function called print :
--R   [1] OutputForm -> Void from PrintPackage
--R
--RThere is one unexposed function called print :
--R   [1] OutputForm -> Void from OutputForm
--R
--RExamples of print from OutputForm
--R
--R
--RExamples of print from PrintPackage
--R
--E 2304

--S 2305 of 3320
)d op printCode
--R 
--R
--RThere is one exposed function called printCode :
--R   [1] FortranCode -> Void from FortranCode
--R
--RExamples of printCode from FortranCode
--R
--E 2305

--S 2306 of 3320
)d op printHeader
--R 
--R
--RThere are 3 exposed functions called printHeader :
--R   [1]  -> Void from TheSymbolTable
--R   [2] Symbol -> Void from TheSymbolTable
--R   [3] (Symbol,TheSymbolTable) -> Void from TheSymbolTable
--R
--RExamples of printHeader from TheSymbolTable
--R
--E 2306

--S 2307 of 3320
)d op printInfo
--R 
--R
--RThere are 7 exposed functions called printInfo :
--R   [1] List(Boolean) -> Void
--R             from GeneralPackageForAlgebraicFunctionField(D8,D9,D10,D11
--R            ,D12,D13,D1,D2,D3,D4,D5)
--R             if D8 has FIELD and D9: LIST(SYMBOL) and D10 has POLYCAT(
--R            D8,D11,OVAR(D9)) and D11 has DIRPCAT(#(D9),NNI) and D12
--R             has PRSPCAT(D8) and D13 has LOCPOWC(D8) and D1 has PLACESC
--R            (D8,D13) and D2 has DIVCAT(D1) and D3 has INFCLCT(D8,D9,D10
--R            ,D11,D12,D13,D1,D2,D5) and D5 has BLMETCT and D4 has 
--R            DSTRCAT(D3)
--R   [2]  -> Boolean from D if D has LOCPOWC(D2) and D2 has FIELD
--R   [3] Boolean -> Boolean from D if D has LOCPOWC(D2) and D2 has FIELD
--R            
--R   [4] Boolean -> Boolean
--R             from LocalParametrizationOfSimplePointPackage(D2,D3,D4,D5,
--R            D6,D7,D8)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D5 has DIRPCAT(#(
--R            D3),NNI) and D7 has LOCPOWC(D2) and D4 has POLYCAT(D2,D5,
--R            OVAR(D3)) and D6 has PRSPCAT(D2) and D8 has PLACESC(D2,D7)
--R            
--R   [5]  -> Boolean
--R             from LocalParametrizationOfSimplePointPackage(D2,D3,D4,D5,
--R            D6,D7,D8)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D5 has DIRPCAT(#(
--R            D3),NNI) and D7 has LOCPOWC(D2) and D4 has POLYCAT(D2,D5,
--R            OVAR(D3)) and D6 has PRSPCAT(D2) and D8 has PLACESC(D2,D7)
--R            
--R   [6] (List(Record(val: List(D7),tower: D8)),NonNegativeInteger) -> 
--R            Void
--R             from RegularSetDecompositionPackage(D4,D5,D6,D7,D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has RSETCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R   [7] (List(Record(val: List(D7),tower: D8)),NonNegativeInteger) -> 
--R            Void
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D7,
--R            D8)
--R             if D7 has RPOLCAT(D4,D5,D6) and D8 has SFRTCAT(D4,D5,D6,D7
--R            ) and D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET
--R
--RExamples of printInfo from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of printInfo from LocalPowerSeriesCategory
--R
--R
--RExamples of printInfo from LocalParametrizationOfSimplePointPackage
--R
--R
--RExamples of printInfo from RegularSetDecompositionPackage
--R
--R
--RExamples of printInfo from SquareFreeRegularSetDecompositionPackage
--R
--E 2307

--S 2308 of 3320
)d op printInfo!
--R 
--R
--RThere is one unexposed function called printInfo! :
--R   [1] (String,String) -> Void from TabulatedComputationPackage(D3,D4)
--R             if D3 has SETCAT and D4 has SETCAT
--R
--RExamples of printInfo! from TabulatedComputationPackage
--R
--E 2308

--S 2309 of 3320
)d op printingInfo?
--R 
--R
--RThere is one unexposed function called printingInfo? :
--R   [1]  -> Boolean from TabulatedComputationPackage(D2,D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of printingInfo? from TabulatedComputationPackage
--R
--E 2309

--S 2310 of 3320
)d op printStatement
--R 
--R
--RThere is one exposed function called printStatement :
--R   [1] List(OutputForm) -> FortranCode from FortranCode
--R
--RExamples of printStatement from FortranCode
--R
--E 2310

--S 2311 of 3320
)d op printStats!
--R 
--R
--RThere is one unexposed function called printStats! :
--R   [1]  -> Void from TabulatedComputationPackage(D2,D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of printStats! from TabulatedComputationPackage
--R
--E 2311

--S 2312 of 3320
)d op printTypes
--R 
--R
--RThere are 2 exposed functions called printTypes :
--R   [1] Symbol -> Void from TheSymbolTable
--R   [2] SymbolTable -> Void from SymbolTable
--R
--RExamples of printTypes from TheSymbolTable
--R
--R
--RExamples of printTypes from SymbolTable
--R
--E 2312

--S 2313 of 3320
)d op probablyZeroDim?
--R 
--R
--RThere is one unexposed function called probablyZeroDim? :
--R   [1] List(D6) -> Boolean from PolynomialSetUtilitiesPackage(D3,D4,D5,
--R            D6)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of probablyZeroDim? from PolynomialSetUtilitiesPackage
--R
--E 2313

--S 2314 of 3320
)d op problemPoints
--R 
--R
--RThere are 2 exposed functions called problemPoints :
--R   [1] (Expression(DoubleFloat),Symbol,Segment(OrderedCompletion(
--R            DoubleFloat))) -> List(DoubleFloat)
--R             from d01AgentsPackage
--R   [2] (Expression(DoubleFloat),Symbol,Segment(OrderedCompletion(
--R            DoubleFloat))) -> List(DoubleFloat)
--R             from ExpertSystemContinuityPackage
--R
--RExamples of problemPoints from d01AgentsPackage
--R
--R
--RExamples of problemPoints from ExpertSystemContinuityPackage
--R
--E 2314

--S 2315 of 3320
)d op processTemplate
--R 
--R
--RThere are 2 exposed functions called processTemplate :
--R   [1] FileName -> FileName from FortranTemplate
--R   [2] (FileName,FileName) -> FileName from FortranTemplate
--R
--RExamples of processTemplate from FortranTemplate
--R
--E 2315

--S 2316 of 3320
)d op prod
--R 
--R
--RThere are 3 unexposed functions called prod :
--R   [1] (OutputForm,OutputForm,OutputForm) -> OutputForm from OutputForm
--R            
--R   [2] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [3] OutputForm -> OutputForm from OutputForm
--R
--RExamples of prod from OutputForm
--R
--E 2316

--S 2317 of 3320
)d op product
--R 
--R
--RThere are 4 exposed functions called product :
--R   [1] (CartesianTensor(D1,D2,D3),CartesianTensor(D1,D2,D3)) -> 
--R            CartesianTensor(D1,D2,D3)
--R             from CartesianTensor(D1,D2,D3) if D1: INT and D2: NNI and 
--R            D3 has COMRING
--R   [2] (D,SegmentBinding(D)) -> D from D if D has COMBOPC
--R   [3] (D,Symbol) -> D from D if D has COMBOPC
--R   [4] (D,D) -> D from D if D has GRALG(D1,D2) and D1 has COMRING and 
--R            D2 has ABELMON
--R
--RThere are 3 unexposed functions called product :
--R   [1] (D1,Symbol) -> D1 from CombinatorialFunction(D3,D1)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D1 has FS(D3
--R            )
--R   [2] (D1,SegmentBinding(D1)) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R   [3] (XPBWPolynomial(D2,D3),XPBWPolynomial(D2,D3),NonNegativeInteger)
--R             -> XPBWPolynomial(D2,D3)
--R             from XPBWPolynomial(D2,D3) if D2 has ORDSET and D3 has 
--R            COMRING
--R
--RExamples of product from CartesianTensor
--R
--Rm:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] 
--RTm:CartesianTensor(1,2,Integer):=m 
--Rn:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] 
--RTn:CartesianTensor(1,2,Integer):=n 
--RTmn:=product(Tm,Tn)
--R
--R
--RExamples of product from CombinatorialFunction
--R
--R
--RExamples of product from CombinatorialOpsCategory
--R
--R
--RExamples of product from GradedAlgebra
--R
--R
--RExamples of product from XPBWPolynomial
--R
--E 2317

--S 2318 of 3320 done
)d op proj
--R 
--R
--RThere is one unexposed function called proj :
--R   [1] (DeRhamComplex(D2,D3),NonNegativeInteger) -> DeRhamComplex(D2,D3
--R            )
--R             from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R
--RExamples of proj from DeRhamComplex
--R
--RcoefRing := Integer 
--RR3 : List Symbol := [x,y,z] 
--RD := DERHAM(coefRing,R3) 
--R[dx,dy,dz] := [generator(i)$D for i in 1..3] 
--Rproj(dx+dy*dz+dx*dy*dz,2)
--R
--E 2318

--S 2319 of 3320
)d op projection
--R 
--R
--RThere is one exposed function called projection :
--R   [1] Cell(D1) -> Union(Cell(D1),"failed") from Cell(D1) if D1 has 
--R            RCFIELD
--R
--RExamples of projection from Cell
--R
--E 2319

--S 2320 of 3320
)d op projectionSet
--R 
--R
--RThere is one exposed function called projectionSet :
--R   [1] List(SparseUnivariatePolynomial(Polynomial(D3))) -> List(
--R            Polynomial(D3))
--R             from CylindricalAlgebraicDecompositionPackage(D3) if D3
--R             has RCFIELD
--R
--RExamples of projectionSet from CylindricalAlgebraicDecompositionPackage
--R
--E 2320

--S 2321 of 3320
)d op projectivePoint
--R 
--R
--RThere are 3 exposed functions called projectivePoint :
--R   [1] List(PseudoAlgebraicClosureOfFiniteField(D3)) -> 
--R            ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(D3)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R            
--R   [2] List(D3) -> ProjectivePlane(D3)
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has BLMETCT
--R         
--R   [3] List(D2) -> D from D if D2 has FIELD and D has PRSPCAT(D2)
--R
--RExamples of projectivePoint from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of projectivePoint from PackageForAlgebraicFunctionField
--R
--R
--RExamples of projectivePoint from ProjectiveSpaceCategory
--R
--E 2321

--S 2322 of 3320
)d op prolateSpheroidal
--R 
--R
--RThere is one exposed function called prolateSpheroidal :
--R   [1] D2 -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of prolateSpheroidal from CoordinateSystems
--R
--E 2322

--S 2323 of 3320
)d op prologue
--R 
--R
--RThere are 2 exposed functions called prologue :
--R   [1] ScriptFormulaFormat -> List(String) from ScriptFormulaFormat
--R   [2] TexFormat -> List(String) from TexFormat
--R
--RExamples of prologue from ScriptFormulaFormat
--R
--R
--RExamples of prologue from TexFormat
--R
--E 2323

--S 2324 of 3320
)d op properties
--R 
--R
--RThere is one exposed function called properties :
--R   [1] BasicOperator -> AssociationList(String,None) from BasicOperator
--R            
--R
--RExamples of properties from BasicOperator
--R
--E 2324

--S 2325 of 3320
)d op property
--R 
--R
--RThere is one exposed function called property :
--R   [1] (BasicOperator,String) -> Union(None,"failed") from 
--R            BasicOperator
--R
--RExamples of property from BasicOperator
--R
--E 2325

--S 2326 of 3320
)d op pseudoDivide
--R 
--R
--RThere are 2 exposed functions called pseudoDivide :
--R   [1] (D,D) -> Record(quotient: D,remainder: D) from D
--R             if D2 has RING and D3 has OAMONS and D4 has ORDSET and D
--R             has RPOLCAT(D2,D3,D4)
--R   [2] (D,D) -> Record(coef: D2,quotient: D,remainder: D) from D
--R             if D2 has INTDOM and D2 has RING and D has UPOLYC(D2)
--R
--RThere is one unexposed function called pseudoDivide :
--R   [1] (D2,D2) -> Record(coef: D3,quotient: D2,remainder: D2)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of pseudoDivide from PseudoRemainderSequence
--R
--R
--RExamples of pseudoDivide from RecursivePolynomialCategory
--R
--R
--RExamples of pseudoDivide from UnivariatePolynomialCategory
--R
--E 2326

--S 2327 of 3320
)d op pseudoQuotient
--R 
--R
--RThere is one exposed function called pseudoQuotient :
--R   [1] (D,D) -> D from D if D has UPOLYC(D1) and D1 has RING and D1
--R             has INTDOM
--R
--RExamples of pseudoQuotient from UnivariatePolynomialCategory
--R
--E 2327

--S 2328 of 3320
)d op pseudoRem
--R 
--R
--RThere is one exposed function called pseudoRem :
--R   [1] (D1,D1,D2) -> D1 from D
--R             if D has MAGCDOC(D1,D2) and D1 has TYPE and D2 has TYPE
--R         
--R
--RExamples of pseudoRem from ModularAlgebraicGcdOperations
--R
--E 2328

--S 2329 of 3320
)d op pseudoRemainder
--R 
--R
--RThere is one exposed function called pseudoRemainder :
--R   [1] (D,D) -> D from D if D has UPOLYC(D1) and D1 has RING
--R
--RExamples of pseudoRemainder from UnivariatePolynomialCategory
--R
--E 2329

--S 2330 of 3320
)d op psolve
--R 
--R
--RThere are 12 unexposed functions called psolve :
--R   [1] (Matrix(D7),List(D7)) -> List(Record(eqzro: List(D7),neqzro: 
--R            List(D7),wcond: List(Polynomial(D4)),bsoln: Record(partsol: 
--R            Vector(Fraction(Polynomial(D4))),basis: List(Vector(Fraction(
--R            Polynomial(D4)))))))
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D7 has POLYCAT(D4,D6,D5) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D6 has OAMONS
--R   [2] (Matrix(D7),List(Symbol)) -> List(Record(eqzro: List(D7),neqzro
--R            : List(D7),wcond: List(Polynomial(D4)),bsoln: Record(partsol: 
--R            Vector(Fraction(Polynomial(D4))),basis: List(Vector(Fraction(
--R            Polynomial(D4)))))))
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D7 has POLYCAT(D4,D6,D5) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D6 has OAMONS
--R   [3] Matrix(D6) -> List(Record(eqzro: List(D6),neqzro: List(D6),wcond
--R            : List(Polynomial(D3)),bsoln: Record(partsol: Vector(Fraction(
--R            Polynomial(D3))),basis: List(Vector(Fraction(Polynomial(D3)))))))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D5,D4) and D3 has Join(
--R            EuclideanDomain,CharacteristicZero) and D4 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D5 has OAMONS
--R   [4] (Matrix(D8),List(D8),PositiveInteger) -> List(Record(eqzro: List
--R            (D8),neqzro: List(D8),wcond: List(Polynomial(D5)),bsoln: Record(
--R            partsol: Vector(Fraction(Polynomial(D5))),basis: List(Vector(
--R            Fraction(Polynomial(D5)))))))
--R             from ParametricLinearEquations(D5,D6,D7,D8)
--R             if D8 has POLYCAT(D5,D7,D6) and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D6 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D7 has OAMONS
--R   [5] (Matrix(D8),List(Symbol),PositiveInteger) -> List(Record(eqzro: 
--R            List(D8),neqzro: List(D8),wcond: List(Polynomial(D5)),bsoln: 
--R            Record(partsol: Vector(Fraction(Polynomial(D5))),basis: List(
--R            Vector(Fraction(Polynomial(D5)))))))
--R             from ParametricLinearEquations(D5,D6,D7,D8)
--R             if D8 has POLYCAT(D5,D7,D6) and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D6 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D7 has OAMONS
--R   [6] (Matrix(D7),PositiveInteger) -> List(Record(eqzro: List(D7),
--R            neqzro: List(D7),wcond: List(Polynomial(D4)),bsoln: Record(
--R            partsol: Vector(Fraction(Polynomial(D4))),basis: List(Vector(
--R            Fraction(Polynomial(D4)))))))
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D7 has POLYCAT(D4,D6,D5) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D6 has OAMONS
--R   [7] (Matrix(D8),List(D8),String) -> Integer
--R             from ParametricLinearEquations(D5,D6,D7,D8)
--R             if D8 has POLYCAT(D5,D7,D6) and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D6 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D7 has OAMONS
--R   [8] (Matrix(D8),List(Symbol),String) -> Integer
--R             from ParametricLinearEquations(D5,D6,D7,D8)
--R             if D8 has POLYCAT(D5,D7,D6) and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D6 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D7 has OAMONS
--R   [9] (Matrix(D7),String) -> Integer
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D7 has POLYCAT(D4,D6,D5) and D4 has Join(
--R            EuclideanDomain,CharacteristicZero) and D5 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D6 has OAMONS
--R   [10] (Matrix(D1),List(D1),PositiveInteger,String) -> Integer
--R             from ParametricLinearEquations(D7,D8,D9,D1)
--R             if D1 has POLYCAT(D7,D9,D8) and D7 has Join(
--R            EuclideanDomain,CharacteristicZero) and D8 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D9 has OAMONS
--R   [11] (Matrix(D1),List(Symbol),PositiveInteger,String) -> Integer
--R             from ParametricLinearEquations(D7,D8,D9,D1)
--R             if D1 has POLYCAT(D7,D9,D8) and D7 has Join(
--R            EuclideanDomain,CharacteristicZero) and D8 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D9 has OAMONS
--R   [12] (Matrix(D8),PositiveInteger,String) -> Integer
--R             from ParametricLinearEquations(D5,D6,D7,D8)
--R             if D8 has POLYCAT(D5,D7,D6) and D5 has Join(
--R            EuclideanDomain,CharacteristicZero) and D6 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D7 has OAMONS
--R
--RExamples of psolve from ParametricLinearEquations
--R
--E 2330

--S 2331 of 3320
)d op ptFunc
--R 
--R
--RThere is one unexposed function called ptFunc :
--R   [1] (((DoubleFloat,DoubleFloat) -> DoubleFloat),((DoubleFloat,
--R            DoubleFloat) -> DoubleFloat),((DoubleFloat,DoubleFloat) -> 
--R            DoubleFloat),((DoubleFloat,DoubleFloat,DoubleFloat) -> 
--R            DoubleFloat)) -> ((DoubleFloat,DoubleFloat) -> Point(DoubleFloat)
--R            )
--R             from MeshCreationRoutinesForThreeDimensions
--R
--RExamples of ptFunc from MeshCreationRoutinesForThreeDimensions
--R
--E 2331

--S 2332 of 3320
)d op pToDmp
--R 
--R
--RThere is one unexposed function called pToDmp :
--R   [1] Polynomial(D4) -> DistributedMultivariatePolynomial(D3,D4)
--R             from PolToPol(D3,D4) if D4 has RING and D3: LIST(SYMBOL)
--R         
--R
--RExamples of pToDmp from PolToPol
--R
--E 2332

--S 2333 of 3320
)d op pToHdmp
--R 
--R
--RThere is one unexposed function called pToHdmp :
--R   [1] Polynomial(D4) -> HomogeneousDistributedMultivariatePolynomial(
--R            D3,D4)
--R             from PolToPol(D3,D4) if D4 has RING and D3: LIST(SYMBOL)
--R         
--R
--RExamples of pToHdmp from PolToPol
--R
--E 2333

--S 2334 of 3320 done
)d op ptree
--R 
--R
--RThere are 2 exposed functions called ptree :
--R   [1] (PendantTree(D1),PendantTree(D1)) -> PendantTree(D1) from 
--R            PendantTree(D1)
--R             if D1 has SETCAT
--R   [2] D1 -> PendantTree(D1) from PendantTree(D1) if D1 has SETCAT
--R
--RExamples of ptree from PendantTree
--R
--Rt1:=ptree([1,2,3]) 
--Rptree(t1,ptree([1,2,3]))
--R
--Rt1:=ptree([1,2,3])
--R
--E 2334

--S 2335 of 3320
)d op puiseux
--R 
--R
--RThere are 8 exposed functions called puiseux :
--R   [1] Symbol -> Any from ExpressionToUnivariatePowerSeries(D3,D4)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D4 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [2] D2 -> Any from ExpressionToUnivariatePowerSeries(D3,D2)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [3] (D2,Fraction(Integer)) -> Any
--R             from ExpressionToUnivariatePowerSeries(D4,D2)
--R             if D4 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4))
--R   [4] (D2,Equation(D2)) -> Any from ExpressionToUnivariatePowerSeries(
--R            D4,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [5] (D2,Equation(D2),Fraction(Integer)) -> Any
--R             from ExpressionToUnivariatePowerSeries(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [6] ((Fraction(Integer) -> D7),Equation(D7),UniversalSegment(
--R            Fraction(Integer)),Fraction(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D6,D7)
--R             if D7 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D6)) and D6
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [7] (D2,Symbol,Equation(D2),UniversalSegment(Fraction(Integer)),
--R            Fraction(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D7,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D7)) and D7
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [8] (Fraction(Integer),D2) -> D from D
--R             if D3 has RING and D has UPXSCCA(D3,D2) and D2 has ULSCAT(
--R            D3)
--R
--RExamples of puiseux from ExpressionToUnivariatePowerSeries
--R
--R
--RExamples of puiseux from GenerateUnivariatePowerSeries
--R
--R
--RExamples of puiseux from UnivariatePuiseuxSeriesConstructorCategory
--R
--E 2335

--S 2336 of 3320
)d op pureLex
--R 
--R
--RThere is one unexposed function called pureLex :
--R   [1] (Vector(D4),Vector(D4)) -> Boolean from OrderingFunctions(D3,D4)
--R             if D4 has OAMON and D3: NNI
--R
--RExamples of pureLex from OrderingFunctions
--R
--E 2336

--S 2337 of 3320
)d op purelyAlgebraic?
--R 
--R
--RThere are 2 exposed functions called purelyAlgebraic? :
--R   [1] D -> Boolean from D
--R             if D has RSETCAT(D2,D3,D4,D5) and D2 has GCDDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [2] (D2,D) -> Boolean from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of purelyAlgebraic? from RegularTriangularSetCategory
--R
--E 2337

--S 2338 of 3320
)d op purelyAlgebraicLeadingMonomial?
--R 
--R
--RThere is one exposed function called purelyAlgebraicLeadingMonomial? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of purelyAlgebraicLeadingMonomial? from RegularTriangularSetCategory
--R
--E 2338

--S 2339 of 3320
)d op purelyTranscendental?
--R 
--R
--RThere is one exposed function called purelyTranscendental? :
--R   [1] (D2,D) -> Boolean from D
--R             if D has RSETCAT(D3,D4,D5,D2) and D3 has GCDDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of purelyTranscendental? from RegularTriangularSetCategory
--R
--E 2339

--S 2340 of 3320
)d op purge!
--R 
--R
--RThere is one exposed function called purge! :
--R   [1] (SparseEchelonMatrix(D3,D4),(D3 -> Boolean)) -> Void
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of purge! from SparseEchelonMatrix
--R
--E 2340

--S 2341 of 3320 done
)d op push!
--R 
--R
--RThere are 4 exposed functions called push! :
--R   [1] (D1,ArrayStack(D1)) -> D1 from ArrayStack(D1) if D1 has SETCAT
--R         
--R   [2] (D1,Dequeue(D1)) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [3] (D1,D) -> D1 from D if D has SKAGG(D1) and D1 has TYPE
--R   [4] (D1,Stack(D1)) -> D1 from Stack(D1) if D1 has SETCAT
--R
--RExamples of push! from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rpush!(9,a) 
--Ra
--R
--R
--RExamples of push! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rpush! a 
--Ra
--R
--R
--RExamples of push! from StackAggregate
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rpush! a 
--Ra
--R
--R
--RExamples of push! from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rpush!(9,a) 
--Ra
--R
--E 2341

--S 2342 of 3320
)d op pushdown
--R 
--R
--RThere is one exposed function called pushdown :
--R   [1] (D1,D2) -> D1 from MPolyCatRationalFunctionFactorizer(D3,D2,D4,
--R            D1)
--R             if D3 has OAMONS and D2 has OrderedSetwith
--R               convert : % -> Symboland D4 has INTDOM and D1 has 
--R            POLYCAT(FRAC(POLY(D4)),D3,D2)
--R
--RThere are 2 unexposed functions called pushdown :
--R   [1] (D1,D2) -> D1 from PushVariables(D3,D4,D2,D1)
--R             if D3 has RING and D4 has OAMONS and D2 has OrderedSetwith
--R               convert : % -> Symbol
--R               variable : Symbol -> Union(%,"failed")and D1 has 
--R            POLYCAT(POLY(D3),D4,D2)
--R   [2] (D1,List(D5)) -> D1 from PushVariables(D3,D4,D5,D1)
--R             if D5 has OrderedSetwith
--R               convert : % -> Symbol
--R               variable : Symbol -> Union(%,"failed")and D3 has RING
--R            and D4 has OAMONS and D1 has POLYCAT(POLY(D3),D4,D5)
--R
--RExamples of pushdown from MPolyCatRationalFunctionFactorizer
--R
--R
--RExamples of pushdown from PushVariables
--R
--E 2342

--S 2343 of 3320
)d op pushdterm
--R 
--R
--RThere is one exposed function called pushdterm :
--R   [1] (SparseUnivariatePolynomial(D1),D3) -> D1
--R             from MPolyCatRationalFunctionFactorizer(D4,D3,D5,D1)
--R             if D1 has POLYCAT(FRAC(POLY(D5)),D4,D3) and D4 has OAMONS 
--R            and D3 has OrderedSetwith
--R               convert : % -> Symboland D5 has INTDOM
--R
--RExamples of pushdterm from MPolyCatRationalFunctionFactorizer
--R
--E 2343

--S 2344 of 3320
)d op pushFortranOutputStack
--R 
--R
--RThere are 2 exposed functions called pushFortranOutputStack :
--R   [1] FileName -> Void from FortranOutputStackPackage
--R   [2] String -> Void from FortranOutputStackPackage
--R
--RExamples of pushFortranOutputStack from FortranOutputStackPackage
--R
--E 2344

--S 2345 of 3320
)d op pushucoef
--R 
--R
--RThere is one exposed function called pushucoef :
--R   [1] (SparseUnivariatePolynomial(Polynomial(D5)),D3) -> D1
--R             from MPolyCatRationalFunctionFactorizer(D4,D3,D5,D1)
--R             if D5 has INTDOM and D1 has POLYCAT(FRAC(POLY(D5)),D4,D3) 
--R            and D4 has OAMONS and D3 has OrderedSetwith
--R               convert : % -> Symbol
--R
--RExamples of pushucoef from MPolyCatRationalFunctionFactorizer
--R
--E 2345

--S 2346 of 3320
)d op pushuconst
--R 
--R
--RThere is one exposed function called pushuconst :
--R   [1] (Fraction(Polynomial(D5)),D3) -> D1
--R             from MPolyCatRationalFunctionFactorizer(D4,D3,D5,D1)
--R             if D5 has INTDOM and D1 has POLYCAT(FRAC(POLY(D5)),D4,D3) 
--R            and D4 has OAMONS and D3 has OrderedSetwith
--R               convert : % -> Symbol
--R
--RExamples of pushuconst from MPolyCatRationalFunctionFactorizer
--R
--E 2346

--S 2347 of 3320
)d op pushup
--R 
--R
--RThere is one exposed function called pushup :
--R   [1] (D1,D2) -> D1 from MPolyCatRationalFunctionFactorizer(D3,D2,D4,
--R            D1)
--R             if D3 has OAMONS and D2 has OrderedSetwith
--R               convert : % -> Symboland D4 has INTDOM and D1 has 
--R            POLYCAT(FRAC(POLY(D4)),D3,D2)
--R
--RThere are 2 unexposed functions called pushup :
--R   [1] (D1,D2) -> D1 from PushVariables(D3,D4,D2,D1)
--R             if D3 has RING and D4 has OAMONS and D2 has OrderedSetwith
--R               convert : % -> Symbol
--R               variable : Symbol -> Union(%,"failed")and D1 has 
--R            POLYCAT(POLY(D3),D4,D2)
--R   [2] (D1,List(D5)) -> D1 from PushVariables(D3,D4,D5,D1)
--R             if D5 has OrderedSetwith
--R               convert : % -> Symbol
--R               variable : Symbol -> Union(%,"failed")and D3 has RING
--R            and D4 has OAMONS and D1 has POLYCAT(POLY(D3),D4,D5)
--R
--RExamples of pushup from MPolyCatRationalFunctionFactorizer
--R
--R
--RExamples of pushup from PushVariables
--R
--E 2347

--S 2348 of 3320
)d op putColorInfo
--R 
--R
--RThere is one unexposed function called putColorInfo :
--R   [1] (List(List(Point(DoubleFloat))),List(Palette)) -> List(List(
--R            Point(DoubleFloat)))
--R             from GraphImage
--R
--RExamples of putColorInfo from GraphImage
--R
--E 2348

--S 2349 of 3320
)d op putGraph
--R 
--R
--RThere is one unexposed function called putGraph :
--R   [1] (TwoDimensionalViewport,GraphImage,PositiveInteger) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of putGraph from TwoDimensionalViewport
--R
--E 2349

--S 2350 of 3320
)d op qcoerce
--R 
--R
--RThere are 2 exposed functions called qcoerce :
--R   [1] Integer -> NonNegativeInteger from NonNegativeInteger
--R   [2] Integer -> PositiveInteger from PositiveInteger
--R
--RExamples of qcoerce from NonNegativeInteger
--R
--R
--RExamples of qcoerce from PositiveInteger
--R
--E 2350

--S 2351 of 3320
)d op qelt
--R 
--R
--RThere are 3 exposed functions called qelt :
--R   [1] (D,Integer,Integer) -> D1 from D
--R             if D has ARR2CAT(D1,D3,D4) and D3 has FLAGG(D1) and D4
--R             has FLAGG(D1) and D1 has TYPE
--R   [2] (D,D2) -> D1 from D if D has ELTAGG(D2,D1) and D2 has SETCAT and
--R            D1 has TYPE
--R   [3] (D,Integer,Integer) -> D1 from D
--R             if D has RMATCAT(D3,D4,D1,D5,D6) and D5 has DIRPCAT(D4,D1)
--R            and D6 has DIRPCAT(D3,D1) and D1 has RING
--R
--RExamples of qelt from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rqelt(arr,1,1)
--R
--R
--RExamples of qelt from EltableAggregate
--R
--R
--RExamples of qelt from RectangularMatrixCategory
--R
--E 2351

--S 2352 of 3320
)d op qfactor
--R 
--R
--RThere is one unexposed function called qfactor :
--R   [1] D2 -> Union(Factored(SparseUnivariatePolynomial(Fraction(Integer
--R            ))),"failed")
--R             from FunctionSpaceUnivariatePolynomialFactor(D3,D4,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D4 has FS(D3) and D2 has UPOLYC(D4)
--R
--RExamples of qfactor from FunctionSpaceUnivariatePolynomialFactor
--R
--E 2352

--S 2353 of 3320
)d op qinterval
--R 
--R
--RThere is one exposed function called qinterval :
--R   [1] (D1,D1) -> D from D
--R             if D has INTCAT(D1) and D1 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R
--RExamples of qinterval from IntervalCategory
--R
--E 2353

--S 2354 of 3320 done
)d op qnew
--R 
--R
--RThere are 7 exposed functions called qnew :
--R   [1] (Integer,Integer) -> ComplexDoubleFloatMatrix
--R             from ComplexDoubleFloatMatrix
--R   [2] Integer -> ComplexDoubleFloatVector from 
--R            ComplexDoubleFloatVector
--R   [3] (Integer,Integer) -> DoubleFloatMatrix from DoubleFloatMatrix
--R         
--R   [4] Integer -> DoubleFloatVector from DoubleFloatVector
--R   [5] (Integer,Integer) -> U16Matrix from U16Matrix
--R   [6] (Integer,Integer) -> U32Matrix from U32Matrix
--R   [7] (Integer,Integer) -> U8Matrix from U8Matrix
--R
--RExamples of qnew from ComplexDoubleFloatMatrix
--R
--Rt1:CDFMAT:=qnew(3,4)
--R
--R
--RExamples of qnew from ComplexDoubleFloatVector
--R
--Rt1:CDFVEC:=qnew 7
--R
--R
--RExamples of qnew from DoubleFloatMatrix
--R
--Rt1:DFMAT:=qnew(3,4)
--R
--R
--RExamples of qnew from DoubleFloatVector
--R
--Rt1:DFVEC:=qnew(7)
--R
--R
--RExamples of qnew from U16Matrix
--R
--Rqnew(3,4)$U16Matrix()
--R
--R
--RExamples of qnew from U32Matrix
--R
--Rqnew(3,4)$U32Matrix()
--R
--R
--RExamples of qnew from U8Matrix
--R
--Rqnew(3,4)$U8Matrix()
--R
--E 2354

--S 2355 of 3320
)d op qPot
--R 
--R
--RThere is one unexposed function called qPot :
--R   [1] (Vector(D3),Integer) -> Vector(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of qPot from InnerNormalBasisFieldFunctions
--R
--E 2355

--S 2356 of 3320
)d op qqq
--R 
--R
--RThere is one unexposed function called qqq :
--R   [1] (NonNegativeInteger,TaylorSeries(D5),Stream(TaylorSeries(D5)))
--R             -> (Stream(TaylorSeries(D5)) -> Stream(TaylorSeries(D5)))
--R             from WeierstrassPreparation(D5) if D5 has FIELD
--R
--RExamples of qqq from WeierstrassPreparation
--R
--E 2356

--S 2357 of 3320
)d op qroot
--R 
--R
--RThere is one unexposed function called qroot :
--R   [1] (Fraction(Integer),NonNegativeInteger) -> Record(exponent: 
--R            NonNegativeInteger,coef: D8,radicand: D8)
--R             from PolynomialRoots(D4,D5,D6,D7,D8)
--R             if D4 has OAMONS and D5 has ORDSET and D6 has INTDOM and 
--R            D7 has POLYCAT(D6,D4,D5) and D8 has Fieldwith
--R               numer : % -> D7
--R               denom : % -> D7
--R               coerce : D7 -> %
--R
--RExamples of qroot from PolynomialRoots
--R
--E 2357

--S 2358 of 3320
)d op qsetelt!
--R 
--R
--RThere are 2 exposed functions called qsetelt! :
--R   [1] (D,Integer,Integer,D1) -> D1 from D
--R             if D has ARR2CAT(D1,D3,D4) and D1 has TYPE and D3 has 
--R            FLAGG(D1) and D4 has FLAGG(D1)
--R   [2] (D,D2,D1) -> D1 from D
--R             if D has shallowlyMutable and D has ELTAGG(D2,D1) and D2
--R             has SETCAT and D1 has TYPE
--R
--RExamples of qsetelt! from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,0) 
--Rqsetelt!(arr,1,1,17)
--R
--R
--RExamples of qsetelt! from EltableAggregate
--R
--E 2358

--S 2359 of 3320
)d op qShiftAction
--R 
--R
--RThere is one exposed function called qShiftAction :
--R   [1] (D1,NonNegativeInteger,NonNegativeInteger,D3) -> D1
--R             from FractionFreeFastGaussian(D1,D3)
--R             if D1 has Join(IntegralDomain,GcdDomain) and D3 has AMR(D1
--R            ,NNI)
--R
--RExamples of qShiftAction from FractionFreeFastGaussian
--R
--E 2359

--S 2360 of 3320
)d op qShiftC
--R 
--R
--RThere is one exposed function called qShiftC :
--R   [1] (D2,NonNegativeInteger) -> List(D2) from 
--R            FractionFreeFastGaussian(D2,D4)
--R             if D2 has Join(IntegralDomain,GcdDomain) and D4 has AMR(D2
--R            ,NNI)
--R
--RExamples of qShiftC from FractionFreeFastGaussian
--R
--E 2360

--S 2361 of 3320
)d op quadratic
--R 
--R
--RThere are 2 unexposed functions called quadratic :
--R   [1] D3 -> List(D4) from PolynomialSolveByFormulas(D3,D4)
--R             if D4 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D4)
--R            
--R   [2] (D3,D3,D3) -> List(D3) from PolynomialSolveByFormulas(D4,D3)
--R             if D3 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D4 has UPOLYC(D3)
--R            
--R
--RExamples of quadratic from PolynomialSolveByFormulas
--R
--E 2361

--S 2362 of 3320
)d op quadratic?
--R 
--R
--RThere is one exposed function called quadratic? :
--R   [1] Expression(DoubleFloat) -> Boolean from e04AgentsPackage
--R
--RExamples of quadratic? from e04AgentsPackage
--R
--E 2362

--S 2363 of 3320 done
)d op quadraticBezier
--R 
--R
--RThere is one exposed function called quadraticBezier :
--R   [1] (List(D3),List(D3),List(D3)) -> (D3 -> List(D3)) from Bezier(D3)
--R             if D3 has RING
--R
--RExamples of quadraticBezier from Bezier
--R
--Rn:=quadraticBezier([2.0,2.0],[4.0,4.0],[6.0,2.0]) 
--R[n(t/10.0) for t in 0..10 by 1]
--R
--E 2363

--S 2364 of 3320
)d op quadraticForm
--R 
--R
--RThere is one exposed function called quadraticForm :
--R   [1] SquareMatrix(D2,D3) -> QuadraticForm(D2,D3) from QuadraticForm(
--R            D2,D3)
--R             if D2: PI and D3 has FIELD
--R
--RExamples of quadraticForm from QuadraticForm
--R
--E 2364

--S 2365 of 3320
)d op quadraticNorm
--R 
--R
--RThere is one unexposed function called quadraticNorm :
--R   [1] D2 -> D1 from GaloisGroupFactorizationUtilities(D3,D2,D1)
--R             if D3 has RING and D1 has Join(FloatingPointSystem,
--R            RetractableTo(D3),Field,TranscendentalFunctionCategory,
--R            ElementaryFunctionCategory) and D2 has UPOLYC(D3)
--R
--RExamples of quadraticNorm from GaloisGroupFactorizationUtilities
--R
--E 2365

--S 2366 of 3320
)d op quadTransform
--R 
--R
--RThere is one exposed function called quadTransform :
--R   [1] (DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY],D4)
--R            ,NonNegativeInteger,D3) -> DistributedMultivariatePolynomial([
--R            construct,QUOTEX,QUOTEY],D4)
--R             from BlowUpPackage(D4,D5,D6,D7,D3)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D7 has DIRPCAT(#(
--R            D5),NNI) and D6 has FAMR(D4,D7) and D3 has BLMETCT
--R
--RExamples of quadTransform from BlowUpPackage
--R
--E 2366

--S 2367 of 3320
)d op quartic
--R 
--R
--RThere are 2 unexposed functions called quartic :
--R   [1] D3 -> List(D4) from PolynomialSolveByFormulas(D3,D4)
--R             if D4 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D4)
--R            
--R   [2] (D3,D3,D3,D3,D3) -> List(D3) from PolynomialSolveByFormulas(D4,
--R            D3)
--R             if D3 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D4 has UPOLYC(D3)
--R            
--R
--RExamples of quartic from PolynomialSolveByFormulas
--R
--E 2367

--S 2368 of 3320
)d op quasiAlgebraicSet
--R 
--R
--RThere is one unexposed function called quasiAlgebraicSet :
--R   [1] (List(D2),D2) -> QuasiAlgebraicSet(D3,D4,D5,D2)
--R             from QuasiAlgebraicSet(D3,D4,D5,D2)
--R             if D2 has POLYCAT(D3,D5,D4) and D3 has GCDDOM and D4 has 
--R            ORDSET and D5 has OAMONS
--R
--RExamples of quasiAlgebraicSet from QuasiAlgebraicSet
--R
--E 2368

--S 2369 of 3320
)d op quasiComponent
--R 
--R
--RThere is one exposed function called quasiComponent :
--R   [1] D -> Record(close: List(D5),open: List(D5)) from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of quasiComponent from TriangularSetCategory
--R
--E 2369

--S 2370 of 3320
)d op quasiMonic?
--R 
--R
--RThere is one exposed function called quasiMonic? :
--R   [1] D -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of quasiMonic? from RecursivePolynomialCategory
--R
--E 2370

--S 2371 of 3320
)d op quasiMonicPolynomials
--R 
--R
--RThere is one unexposed function called quasiMonicPolynomials :
--R   [1] List(D6) -> Record(goodPols: List(D6),badPols: List(D6))
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5)
--R
--RExamples of quasiMonicPolynomials from PolynomialSetUtilitiesPackage
--R
--E 2371

--S 2372 of 3320
)d op quasiRegular
--R 
--R
--RThere is one exposed function called quasiRegular :
--R   [1] D -> D from D if D has XFALG(D1,D2) and D1 has ORDSET and D2
--R             has RING
--R
--RThere is one unexposed function called quasiRegular :
--R   [1] XPolynomialRing(D1,D2) -> XPolynomialRing(D1,D2)
--R             from XPolynomialRing(D1,D2) if D1 has RING and D2 has 
--R            ORDMON
--R
--RExamples of quasiRegular from XFreeAlgebra
--R
--R
--RExamples of quasiRegular from XPolynomialRing
--R
--E 2372

--S 2373 of 3320
)d op quasiRegular?
--R 
--R
--RThere is one exposed function called quasiRegular? :
--R   [1] D -> Boolean from D if D has XFALG(D2,D3) and D2 has ORDSET and 
--R            D3 has RING
--R
--RThere is one unexposed function called quasiRegular? :
--R   [1] XPolynomialRing(D2,D3) -> Boolean from XPolynomialRing(D2,D3)
--R             if D2 has RING and D3 has ORDMON
--R
--RExamples of quasiRegular? from XFreeAlgebra
--R
--R
--RExamples of quasiRegular? from XPolynomialRing
--R
--E 2373

--S 2374 of 3320
)d op quatern
--R 
--R
--RThere is one exposed function called quatern :
--R   [1] (D1,D1,D1,D1) -> D from D if D has QUATCAT(D1) and D1 has 
--R            COMRING
--R
--RExamples of quatern from QuaternionCategory
--R
--E 2374

--S 2375 of 3320 done
)d op queue
--R 
--R
--RThere is one exposed function called queue :
--R   [1] List(D2) -> Queue(D2) from Queue(D2) if D2 has SETCAT
--R
--RExamples of queue from Queue
--R
--Re:Queue INT:= queue [1,2,3,4,5]
--R
--E 2375

--S 2376 of 3320
)d op quickSort
--R 
--R
--RThere is one exposed function called quickSort :
--R   [1] (((D3,D3) -> Boolean),D1) -> D1 from FiniteLinearAggregateSort(
--R            D3,D1)
--R             if D3 has TYPE and D1 has FiniteLinearAggregate(D3)with
--R                 shallowlyMutable
--R
--RExamples of quickSort from FiniteLinearAggregateSort
--R
--E 2376

--S 2377 of 3320
)d op quo
--R 
--R
--RThere are 2 exposed functions called quo :
--R   [1] (D,D) -> D from D if D has EUCDOM
--R   [2] (NonNegativeInteger,NonNegativeInteger) -> NonNegativeInteger
--R             from NonNegativeInteger
--R
--RThere is one unexposed function called quo :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of quo from EuclideanDomain
--R
--R
--RExamples of quo from NonNegativeInteger
--R
--R
--RExamples of quo from OutputForm
--R
--E 2377

--S 2378 of 3320
)d op quoByVar
--R 
--R
--RThere is one exposed function called quoByVar :
--R   [1] D -> D from D if D has UTSCAT(D1) and D1 has RING
--R
--RExamples of quoByVar from UnivariateTaylorSeriesCategory
--R
--E 2378

--S 2379 of 3320
)d op quote
--R 
--R
--RThere is one exposed function called quote :
--R   [1]  -> Character from Character
--R
--RThere is one unexposed function called quote :
--R   [1] OutputForm -> OutputForm from OutputForm
--R
--RExamples of quote from Character
--R
--Rquote()
--R
--R
--RExamples of quote from OutputForm
--R
--E 2379

--S 2380 of 3320
)d op quoted?
--R 
--R
--RThere is one unexposed function called quoted? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of quoted? from Pattern
--R
--E 2380

--S 2381 of 3320
)d op quotedOperators
--R 
--R
--RThere is one exposed function called quotedOperators :
--R   [1] RewriteRule(D2,D3,D4) -> List(Symbol) from RewriteRule(D2,D3,D4)
--R             if D2 has SETCAT and D3 has Join(Ring,PatternMatchable(D2)
--R            ,OrderedSet,ConvertibleTo(Pattern(D2))) and D4 has Join(
--R            FunctionSpace(D3),PatternMatchable(D2),ConvertibleTo(
--R            Pattern(D2)))
--R
--RExamples of quotedOperators from RewriteRule
--R
--E 2381

--S 2382 of 3320
)d op quotient
--R 
--R
--RThere are 2 exposed functions called quotient :
--R   [1] (PolynomialIdeals(D2,D3,D4,D1),D1) -> PolynomialIdeals(D2,D3,D4,
--R            D1)
--R             from PolynomialIdeals(D2,D3,D4,D1)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D1
--R             has POLYCAT(D2,D3,D4)
--R   [2] (PolynomialIdeals(D1,D2,D3,D4),PolynomialIdeals(D1,D2,D3,D4))
--R             -> PolynomialIdeals(D1,D2,D3,D4)
--R             from PolynomialIdeals(D1,D2,D3,D4)
--R             if D1 has FIELD and D2 has OAMONS and D3 has ORDSET and D4
--R             has POLYCAT(D1,D2,D3)
--R
--RExamples of quotient from PolynomialIdeals
--R
--E 2382

--S 2383 of 3320
)d op quotientByP
--R 
--R
--RThere is one exposed function called quotientByP :
--R   [1] D -> D from D if D has PADICCT(D1)
--R
--RExamples of quotientByP from PAdicIntegerCategory
--R
--E 2383

--S 2384 of 3320
)d op quotValuation
--R 
--R
--RThere is one exposed function called quotValuation :
--R   [1] D -> Integer from D if D has BLMETCT
--R
--RExamples of quotValuation from BlowUpMethodCategory
--R
--E 2384

--S 2385 of 3320
)d op quotVecSpaceBasis
--R 
--R
--RThere is one exposed function called quotVecSpaceBasis :
--R   [1] (List(List(D2)),List(List(D2))) -> List(List(D2)) from 
--R            LinesOpPack(D2)
--R             if D2 has FIELD
--R
--RExamples of quotVecSpaceBasis from LinesOpPack
--R
--E 2385

--S 2386 of 3320
)d op radical
--R 
--R
--RThere is one exposed function called radical :
--R   [1] PolynomialIdeals(Fraction(Integer),DirectProduct(D3,
--R            NonNegativeInteger),OrderedVariableList(D2),
--R            DistributedMultivariatePolynomial(D2,Fraction(Integer))) -> 
--R            PolynomialIdeals(Fraction(Integer),DirectProduct(D3,
--R            NonNegativeInteger),OrderedVariableList(D2),
--R            DistributedMultivariatePolynomial(D2,Fraction(Integer)))
--R             from IdealDecompositionPackage(D2,D3) if D2: LIST(SYMBOL) 
--R            and D3: NNI
--R
--RExamples of radical from IdealDecompositionPackage
--R
--E 2386

--S 2387 of 3320
)d op radicalEigenvalues
--R 
--R
--RThere is one exposed function called radicalEigenvalues :
--R   [1] Matrix(Fraction(Polynomial(Integer))) -> List(Expression(Integer
--R            ))
--R             from RadicalEigenPackage
--R
--RExamples of radicalEigenvalues from RadicalEigenPackage
--R
--E 2387

--S 2388 of 3320
)d op radicalEigenvector
--R 
--R
--RThere is one exposed function called radicalEigenvector :
--R   [1] (Expression(Integer),Matrix(Fraction(Polynomial(Integer)))) -> 
--R            List(Matrix(Expression(Integer)))
--R             from RadicalEigenPackage
--R
--RExamples of radicalEigenvector from RadicalEigenPackage
--R
--E 2388

--S 2389 of 3320
)d op radicalEigenvectors
--R 
--R
--RThere is one exposed function called radicalEigenvectors :
--R   [1] Matrix(Fraction(Polynomial(Integer))) -> List(Record(radval: 
--R            Expression(Integer),radmult: Integer,radvect: List(Matrix(
--R            Expression(Integer)))))
--R             from RadicalEigenPackage
--R
--RExamples of radicalEigenvectors from RadicalEigenPackage
--R
--E 2389

--S 2390 of 3320
)d op radicalOfLeftTraceForm
--R 
--R
--RThere is one exposed function called radicalOfLeftTraceForm :
--R   [1]  -> List(D3) from AlgebraPackage(D2,D3)
--R             if D2 has INTDOM and D3 has FRNAALG(D2)
--R
--RExamples of radicalOfLeftTraceForm from AlgebraPackage
--R
--E 2390

--S 2391 of 3320 done
)d op radicalRoots
--R 
--R
--RThere are 2 exposed functions called radicalRoots :
--R   [1] (Fraction(Polynomial(D4)),Symbol) -> List(Expression(D4))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [2] (List(Fraction(Polynomial(D4))),List(Symbol)) -> List(List(
--R            Expression(D4)))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R
--RExamples of radicalRoots from RadicalSolvePackage
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--Rc:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) 
--RradicalRoots([b,c],[x,y])
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--RradicalRoots(b,x)
--R
--E 2391

--S 2392 of 3320
)d op radicalSimplify
--R 
--R
--RThere is one unexposed function called radicalSimplify :
--R   [1] QuasiAlgebraicSet(Fraction(Integer),OrderedVariableList(D2),
--R            DirectProduct(D3,NonNegativeInteger),
--R            DistributedMultivariatePolynomial(D2,Fraction(Integer))) -> 
--R            QuasiAlgebraicSet(Fraction(Integer),OrderedVariableList(D2),
--R            DirectProduct(D3,NonNegativeInteger),
--R            DistributedMultivariatePolynomial(D2,Fraction(Integer)))
--R             from QuasiAlgebraicSet2(D2,D3) if D2: LIST(SYMBOL) and D3
--R            : NNI
--R
--RExamples of radicalSimplify from QuasiAlgebraicSet2
--R
--E 2392

--S 2393 of 3320 done
)d op radicalSolve
--R 
--R
--RThere are 8 exposed functions called radicalSolve :
--R   [1] (Fraction(Polynomial(D4)),Symbol) -> List(Equation(Expression(D4
--R            )))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [2] Fraction(Polynomial(D3)) -> List(Equation(Expression(D3)))
--R             from RadicalSolvePackage(D3)
--R             if D3 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [3] (Equation(Fraction(Polynomial(D4))),Symbol) -> List(Equation(
--R            Expression(D4)))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [4] Equation(Fraction(Polynomial(D3))) -> List(Equation(Expression(
--R            D3)))
--R             from RadicalSolvePackage(D3)
--R             if D3 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [5] (List(Fraction(Polynomial(D4))),List(Symbol)) -> List(List(
--R            Equation(Expression(D4))))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [6] List(Fraction(Polynomial(D3))) -> List(List(Equation(Expression(
--R            D3))))
--R             from RadicalSolvePackage(D3)
--R             if D3 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [7] (List(Equation(Fraction(Polynomial(D4)))),List(Symbol)) -> List(
--R            List(Equation(Expression(D4))))
--R             from RadicalSolvePackage(D4)
--R             if D4 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R   [8] List(Equation(Fraction(Polynomial(D3)))) -> List(List(Equation(
--R            Expression(D3))))
--R             from RadicalSolvePackage(D3)
--R             if D3 has Join(EuclideanDomain,OrderedSet,
--R            CharacteristicZero)
--R
--RExamples of radicalSolve from RadicalSolvePackage
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--Rc:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) 
--RradicalSolve([b=0,c=0])
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--Rc:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) 
--RradicalSolve([b=0,c=0],[x,y])
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--Rc:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) 
--RradicalSolve([b,c])
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--Rc:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1) 
--RradicalSolve([b,c],[x,y])
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--RradicalSolve(b=0)
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--RradicalSolve(b=0,x)
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--RradicalSolve(b)
--R
--Rb:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13) 
--RradicalSolve(b,x)
--R
--E 2393

--S 2394 of 3320
)d op radix
--R 
--R
--RThere is one exposed function called radix :
--R   [1] (Fraction(Integer),Integer) -> Any from RadixUtilities
--R
--RExamples of radix from RadixUtilities
--R
--E 2394

--S 2395 of 3320
)d op radPoly
--R 
--R
--RThere is one unexposed function called radPoly :
--R   [1] D2 -> Union(Record(radicand: Fraction(D4),deg: 
--R            NonNegativeInteger),"failed")
--R             from ChangeOfVariable(D3,D4,D2)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D2 has UPOLYC(FRAC
--R            (D4))
--R
--RExamples of radPoly from ChangeOfVariable
--R
--E 2395

--S 2396 of 3320
)d op raisePolynomial
--R 
--R
--RThere is one unexposed function called raisePolynomial :
--R   [1] SparseUnivariatePolynomial(D5) -> SparseUnivariatePolynomial(D6)
--R             from FactoringUtilities(D3,D4,D5,D6)
--R             if D5 has RING and D3 has OAMONS and D4 has ORDSET and D6
--R             has POLYCAT(D5,D3,D4)
--R
--RExamples of raisePolynomial from FactoringUtilities
--R
--E 2396

--S 2397 of 3320
)d op ramified?
--R 
--R
--RThere are 2 exposed functions called ramified? :
--R   [1] D2 -> Boolean from D
--R             if D has FFCAT(D3,D2,D4) and D3 has UFD and D2 has UPOLYC(
--R            D3) and D4 has UPOLYC(FRAC(D2))
--R   [2] D2 -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of ramified? from FunctionFieldCategory
--R
--E 2397

--S 2398 of 3320
)d op ramifiedAtInfinity?
--R 
--R
--RThere is one exposed function called ramifiedAtInfinity? :
--R   [1]  -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of ramifiedAtInfinity? from FunctionFieldCategory
--R
--E 2398

--S 2399 of 3320
)d op ramifMult
--R 
--R
--RThere is one exposed function called ramifMult :
--R   [1] D -> Integer from D if D has BLMETCT
--R
--RExamples of ramifMult from BlowUpMethodCategory
--R
--E 2399

--S 2400 of 3320
)d op ran
--R 
--R
--RThere is one unexposed function called ran :
--R   [1] Integer -> D1 from FactoringUtilities(D3,D4,D1,D5)
--R             if D3 has OAMONS and D4 has ORDSET and D1 has RING and D5
--R             has POLYCAT(D1,D3,D4)
--R
--RExamples of ran from FactoringUtilities
--R
--E 2400

--S 2401 of 3320
)d op randnum
--R 
--R
--RThere are 2 exposed functions called randnum :
--R   [1]  -> Integer from RandomNumberSource
--R   [2] Integer -> Integer from RandomNumberSource
--R
--RExamples of randnum from RandomNumberSource
--R
--E 2401

--S 2402 of 3320
)d op random
--R 
--R
--RThere are 8 exposed functions called random :
--R   [1]  -> D from D if D has FINITE
--R   [2] D -> D from D if D has INS
--R   [3]  -> D from D if D has INS
--R   [4] Integer -> Integer from Integer
--R   [5] NonNegativeInteger -> NonNegativeInteger from NonNegativeInteger
--R            
--R   [6] PermutationGroup(D2) -> Permutation(D2) from PermutationGroup(D2
--R            )
--R             if D2 has SETCAT
--R   [7] (PermutationGroup(D3),Integer) -> Permutation(D3)
--R             from PermutationGroup(D3) if D3 has SETCAT
--R   [8]  -> D from D if D has QFCAT(D1) and D1 has INS and D1 has INTDOM
--R            
--R
--RThere are 3 unexposed functions called random :
--R   [1] PositiveInteger -> SparseUnivariatePolynomial(D3)
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R   [2] (PositiveInteger,PositiveInteger) -> SparseUnivariatePolynomial(
--R            D3)
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R   [3] PositiveInteger -> Vector(D3) from 
--R            InnerNormalBasisFieldFunctions(D3)
--R             if D3 has FFIELDC
--R
--RExamples of random from FiniteFieldPolynomialPackage
--R
--R
--RExamples of random from Finite
--R
--R
--RExamples of random from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of random from IntegerNumberSystem
--R
--R
--RExamples of random from Integer
--R
--R
--RExamples of random from NonNegativeInteger
--R
--R
--RExamples of random from PermutationGroup
--R
--R
--RExamples of random from QuotientFieldCategory
--R
--E 2402

--S 2403 of 3320
)d op randomLC
--R 
--R
--RThere is one unexposed function called randomLC :
--R   [1] (NonNegativeInteger,Vector(D1)) -> D1 from FractionalIdeal(D4,D5
--R            ,D6,D1)
--R             if D4 has EUCDOM and D5 has QFCAT(D4) and D1 has Join(
--R            FramedAlgebra(D5,D6),RetractableTo(D5)) and D6 has UPOLYC(
--R            D5)
--R
--RExamples of randomLC from FractionalIdeal
--R
--E 2403

--S 2404 of 3320
)d op randomR
--R 
--R
--RThere are 3 unexposed functions called randomR :
--R   [1]  -> D1 from GeneralPolynomialGcdPackage(D2,D3,D1,D4)
--R             if D2 has OAMONS and D3 has ORDSET and D1 has PFECAT and 
--R            D4 has POLYCAT(D1,D2,D3)
--R   [2]  -> D1 from PolynomialFactorizationByRecursion(D1,D2,D3,D4)
--R             if D2 has OAMONS and D3 has ORDSET and D1 has PFECAT and 
--R            D4 has POLYCAT(D1,D2,D3)
--R   [3]  -> D1 from PolynomialFactorizationByRecursionUnivariate(D1,D2)
--R             if D1 has PFECAT and D2 has UPOLYC(D1)
--R
--RExamples of randomR from GeneralPolynomialGcdPackage
--R
--R
--RExamples of randomR from PolynomialFactorizationByRecursion
--R
--R
--RExamples of randomR from PolynomialFactorizationByRecursionUnivariate
--R
--E 2404

--S 2405 of 3320
)d op range
--R 
--R
--RThere are 2 exposed functions called range :
--R   [1] List(Segment(Fraction(Integer))) -> DrawOption from DrawOption
--R         
--R   [2] List(Segment(Float)) -> DrawOption from DrawOption
--R
--RExamples of range from DrawOption
--R
--E 2405

--S 2406 of 3320
)d op rangeIsFinite
--R 
--R
--RThere is one exposed function called rangeIsFinite :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Union(finite: The range is finite,lowerInfinite: 
--R            The bottom of range is infinite,upperInfinite: 
--R            The top of range is infinite,bothInfinite: 
--R            Both top and bottom points are infinite,notEvaluated: 
--R            Range not yet evaluated)
--R             from d01AgentsPackage
--R
--RExamples of rangeIsFinite from d01AgentsPackage
--R
--E 2406

--S 2407 of 3320
)d op rangePascalTriangle
--R 
--R
--RThere are 2 unexposed functions called rangePascalTriangle :
--R   [1] NonNegativeInteger -> NonNegativeInteger from 
--R            GaloisGroupUtilities(D2)
--R             if D2 has RING
--R   [2]  -> NonNegativeInteger from GaloisGroupUtilities(D2) if D2 has 
--R            RING
--R
--RExamples of rangePascalTriangle from GaloisGroupUtilities
--R
--E 2407

--S 2408 of 3320
)d op ranges
--R 
--R
--RThere is one exposed function called ranges :
--R   [1] List(Segment(Float)) -> DrawOption from DrawOption
--R
--RThere are 3 unexposed functions called ranges :
--R   [1] (List(DrawOption),List(Segment(Float))) -> List(Segment(Float))
--R             from DrawOptionFunctions0
--R   [2] (GraphImage,List(Segment(Float))) -> List(Segment(Float)) from 
--R            GraphImage
--R   [3] GraphImage -> List(Segment(Float)) from GraphImage
--R
--RExamples of ranges from DrawOptionFunctions0
--R
--R
--RExamples of ranges from DrawOption
--R
--R
--RExamples of ranges from GraphImage
--R
--E 2408

--S 2409 of 3320
)d op rank
--R 
--R
--RThere are 8 exposed functions called rank :
--R   [1] CartesianTensor(D2,D3,D4) -> NonNegativeInteger
--R             from CartesianTensor(D2,D3,D4) if D2: INT and D3: NNI and 
--R            D4 has COMRING
--R   [2]  -> PositiveInteger from D if D has FINAALG(D2) and D2 has 
--R            COMRING
--R   [3]  -> PositiveInteger from D
--R             if D has FINRALG(D2,D3) and D2 has COMRING and D3 has 
--R            UPOLYC(D2)
--R   [4] (Matrix(D4),Vector(D4)) -> NonNegativeInteger
--R             from LinearSystemMatrixPackage1(D4) if D4 has FIELD
--R   [5] (D2,D3) -> NonNegativeInteger from LinearSystemMatrixPackage(D4,
--R            D5,D3,D2)
--R             if D4 has FIELD and D5 has FiniteLinearAggregate(D4)with
--R                 shallowlyMutableand D3 has FiniteLinearAggregate(D4)
--R            with
--R                 shallowlyMutableand D2 has MATCAT(D4,D5,D3)
--R   [6] D -> NonNegativeInteger from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2) and D2 has INTDOM
--R   [7] D2 -> NonNegativeInteger from MatrixLinearAlgebraFunctions(D3,D4
--R            ,D5,D2)
--R             if D3 has INTDOM and D3 has COMRING and D4 has FLAGG(D3) 
--R            and D5 has FLAGG(D3) and D2 has MATCAT(D3,D4,D5)
--R   [8] D -> NonNegativeInteger from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4) and D4 has 
--R            INTDOM
--R
--RThere are 2 unexposed functions called rank :
--R   [1]  -> PositiveInteger from ComplexCategory&(D2,D3)
--R             if D3 has COMRING and D2 has COMPCAT(D3)
--R   [2] D2 -> NonNegativeInteger
--R             from InnerMatrixLinearAlgebraFunctions(D3,D4,D5,D2)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D2 has MATCAT(D3,D4,D5)
--R
--RExamples of rank from CartesianTensor
--R
--RCT:=CARTEN(1,2,Integer) 
--Rt0:CT:=8 
--Rrank t0
--R
--R
--RExamples of rank from ComplexCategory&
--R
--R
--RExamples of rank from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of rank from FiniteRankAlgebra
--R
--R
--RExamples of rank from InnerMatrixLinearAlgebraFunctions
--R
--R
--RExamples of rank from LinearSystemMatrixPackage1
--R
--R
--RExamples of rank from LinearSystemMatrixPackage
--R
--R
--RExamples of rank from MatrixCategory
--R
--Rrank matrix [[1,2,3],[4,5,6],[7,8,9]]
--R
--R
--RExamples of rank from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of rank from RectangularMatrixCategory
--R
--E 2409

--S 2410 of 3320
)d op rarrow
--R 
--R
--RThere is one unexposed function called rarrow :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of rarrow from OutputForm
--R
--E 2410

--S 2411 of 3320
)d op ratDenom
--R 
--R
--RThere are 4 exposed functions called ratDenom :
--R   [1] D1 -> D1 from AlgebraicManipulations(D2,D1)
--R             if D2 has INTDOM and D1 has Join(Field,ExpressionSpace)
--R            with
--R               numer : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D2,Kernel(%)) -> 
--R               %
--R   [2] (D1,D1) -> D1 from AlgebraicManipulations(D2,D1)
--R             if D2 has INTDOM and D1 has Join(Field,ExpressionSpace)
--R            with
--R               numer : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D2,Kernel(%)) -> 
--R               %
--R   [3] (D1,List(D1)) -> D1 from AlgebraicManipulations(D3,D1)
--R             if D1 has Join(Field,ExpressionSpace)with
--R               numer : % -> SparseMultivariatePolynomial(D3,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D3,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D3,Kernel(%)) -> 
--R               %and D3 has INTDOM
--R   [4] (D1,List(Kernel(D1))) -> D1 from AlgebraicManipulations(D3,D1)
--R             if D1 has Join(Field,ExpressionSpace)with
--R               numer : % -> SparseMultivariatePolynomial(D3,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D3,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D3,Kernel(%)) -> 
--R               %and D3 has INTDOM
--R
--RExamples of ratDenom from AlgebraicManipulations
--R
--E 2411

--S 2412 of 3320
)d op ratDsolve
--R 
--R
--RThere are 4 unexposed functions called ratDsolve :
--R   [1] (LinearOrdinaryDifferentialOperator1(Fraction(D5)),Fraction(D5))
--R             -> Record(particular: Union(Fraction(D5),"failed"),basis: List(
--R            Fraction(D5)))
--R             from RationalLODE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R   [2] (LinearOrdinaryDifferentialOperator1(Fraction(D5)),List(Fraction
--R            (D5))) -> Record(basis: List(Fraction(D5)),mat: Matrix(D4))
--R             from RationalLODE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R   [3] (LinearOrdinaryDifferentialOperator2(D5,Fraction(D5)),Fraction(
--R            D5)) -> Record(particular: Union(Fraction(D5),"failed"),basis: 
--R            List(Fraction(D5)))
--R             from RationalLODE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R   [4] (LinearOrdinaryDifferentialOperator2(D5,Fraction(D5)),List(
--R            Fraction(D5))) -> Record(basis: List(Fraction(D5)),mat: Matrix(D4
--R            ))
--R             from RationalLODE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R
--RExamples of ratDsolve from RationalLODE
--R
--E 2412

--S 2413 of 3320
)d op rational
--R 
--R
--RThere are 8 exposed functions called rational :
--R   [1] D -> Fraction(Integer) from D
--R             if D has COMPCAT(D2) and D2 has COMRING and D2 has INS
--R   [2] Factored(D2) -> Fraction(Integer) from Factored(D2)
--R             if D2 has INS and D2 has INTDOM
--R   [3] D -> Fraction(Integer) from D if D has INS
--R   [4] D -> Fraction(Integer) from D
--R             if D has OC(D2) and D2 has COMRING and D2 has INS
--R   [5] OnePointCompletion(D2) -> Fraction(Integer) from 
--R            OnePointCompletion(D2)
--R             if D2 has INS and D2 has SETCAT
--R   [6] OrderedCompletion(D2) -> Fraction(Integer) from 
--R            OrderedCompletion(D2)
--R             if D2 has INS and D2 has SETCAT
--R   [7] D -> Fraction(Integer) from D
--R             if D has QUATCAT(D2) and D2 has COMRING and D2 has INS
--R   [8] D2 -> Fraction(Integer) from RationalRetractions(D2)
--R             if D2 has RETRACT(FRAC(INT))
--R
--RExamples of rational from ComplexCategory
--R
--R
--RExamples of rational from Factored
--R
--R
--RExamples of rational from IntegerNumberSystem
--R
--R
--RExamples of rational from OctonionCategory
--R
--R
--RExamples of rational from OnePointCompletion
--R
--R
--RExamples of rational from OrderedCompletion
--R
--R
--RExamples of rational from QuaternionCategory
--R
--R
--RExamples of rational from RationalRetractions
--R
--E 2413

--S 2414 of 3320
)d op rational?
--R 
--R
--RThere are 12 exposed functions called rational? :
--R   [1] D -> Boolean from D if D has AFSPCAT(D2) and D2 has FIELD
--R   [2] (D,NonNegativeInteger) -> Boolean from D if D has AFSPCAT(D3) 
--R            and D3 has FIELD
--R   [3] D -> Boolean from D if D has COMPCAT(D2) and D2 has COMRING and 
--R            D2 has INS
--R   [4] Factored(D2) -> Boolean from Factored(D2) if D2 has INS and D2
--R             has INTDOM
--R   [5] D -> Boolean from D if D has INS
--R   [6] D -> Boolean from D if D has OC(D2) and D2 has COMRING and D2
--R             has INS
--R   [7] OnePointCompletion(D2) -> Boolean from OnePointCompletion(D2)
--R             if D2 has INS and D2 has SETCAT
--R   [8] OrderedCompletion(D2) -> Boolean from OrderedCompletion(D2)
--R             if D2 has INS and D2 has SETCAT
--R   [9] D -> Boolean from D if D has PRSPCAT(D2) and D2 has FIELD
--R   [10] (D,NonNegativeInteger) -> Boolean from D if D has PRSPCAT(D3) 
--R            and D3 has FIELD
--R   [11] D -> Boolean from D if D has QUATCAT(D2) and D2 has COMRING and
--R            D2 has INS
--R   [12] D2 -> Boolean from RationalRetractions(D2) if D2 has RETRACT(
--R            FRAC(INT))
--R
--RExamples of rational? from AffineSpaceCategory
--R
--R
--RExamples of rational? from ComplexCategory
--R
--R
--RExamples of rational? from Factored
--R
--R
--RExamples of rational? from IntegerNumberSystem
--R
--R
--RExamples of rational? from OctonionCategory
--R
--R
--RExamples of rational? from OnePointCompletion
--R
--R
--RExamples of rational? from OrderedCompletion
--R
--R
--RExamples of rational? from ProjectiveSpaceCategory
--R
--R
--RExamples of rational? from QuaternionCategory
--R
--R
--RExamples of rational? from RationalRetractions
--R
--E 2414

--S 2415 of 3320
)d op rationalApproximation
--R 
--R
--RThere are 4 exposed functions called rationalApproximation :
--R   [1] (DoubleFloat,NonNegativeInteger,NonNegativeInteger) -> Fraction(
--R            Integer)
--R             from DoubleFloat
--R   [2] (DoubleFloat,NonNegativeInteger) -> Fraction(Integer) from 
--R            DoubleFloat
--R   [3] (Float,NonNegativeInteger,NonNegativeInteger) -> Fraction(
--R            Integer)
--R             from Float
--R   [4] (Float,NonNegativeInteger) -> Fraction(Integer) from Float
--R
--RExamples of rationalApproximation from DoubleFloat
--R
--R
--RExamples of rationalApproximation from Float
--R
--E 2415

--S 2416 of 3320 done
)d op rationalFunction
--R 
--R
--RThere are 2 exposed functions called rationalFunction :
--R   [1] (D,Integer,Integer) -> Fraction(Polynomial(D3)) from D
--R             if D has ULSCAT(D3) and D3 has RING and D3 has INTDOM
--R   [2] (D,Integer) -> Fraction(Polynomial(D3)) from D
--R             if D has ULSCAT(D3) and D3 has RING and D3 has INTDOM
--R
--RExamples of rationalFunction from UnivariateLaurentSeriesCategory
--R
--Rw:SparseUnivariateLaurentSeries(Fraction(Integer),'z,0):=0 
--RrationalFunction(w,0)
--R
--E 2416

--S 2417 of 3320
)d op rationalIfCan
--R 
--R
--RThere are 8 exposed functions called rationalIfCan :
--R   [1] D -> Union(Fraction(Integer),"failed") from D
--R             if D has COMPCAT(D2) and D2 has COMRING and D2 has INS
--R   [2] Factored(D2) -> Union(Fraction(Integer),"failed") from Factored(
--R            D2)
--R             if D2 has INS and D2 has INTDOM
--R   [3] D -> Union(Fraction(Integer),"failed") from D if D has INS
--R   [4] D -> Union(Fraction(Integer),"failed") from D
--R             if D has OC(D2) and D2 has COMRING and D2 has INS
--R   [5] OnePointCompletion(D2) -> Union(Fraction(Integer),"failed")
--R             from OnePointCompletion(D2) if D2 has INS and D2 has 
--R            SETCAT
--R   [6] OrderedCompletion(D2) -> Union(Fraction(Integer),"failed")
--R             from OrderedCompletion(D2) if D2 has INS and D2 has SETCAT
--R            
--R   [7] D -> Union(Fraction(Integer),"failed") from D
--R             if D has QUATCAT(D2) and D2 has COMRING and D2 has INS
--R   [8] D2 -> Union(Fraction(Integer),"failed") from RationalRetractions
--R            (D2)
--R             if D2 has RETRACT(FRAC(INT))
--R
--RExamples of rationalIfCan from ComplexCategory
--R
--R
--RExamples of rationalIfCan from Factored
--R
--R
--RExamples of rationalIfCan from IntegerNumberSystem
--R
--R
--RExamples of rationalIfCan from OctonionCategory
--R
--R
--RExamples of rationalIfCan from OnePointCompletion
--R
--R
--RExamples of rationalIfCan from OrderedCompletion
--R
--R
--RExamples of rationalIfCan from QuaternionCategory
--R
--R
--RExamples of rationalIfCan from RationalRetractions
--R
--E 2417

--S 2418 of 3320
)d op rationalPlaces
--R 
--R
--RThere are 3 exposed functions called rationalPlaces :
--R   [1]  -> List(D12)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FINITE and D6 has FIELD and D7: LIST(SYMBOL) and
--R            D8 has POLYCAT(D6,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI
--R            ) and D10 has PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12
--R             has PLACESC(D6,D11) and D1 has DIVCAT(D12) and D2 has 
--R            INFCLCT(D6,D7,D8,D9,D10,D11,D12,D1,D4) and D4 has BLMETCT 
--R            and D3 has DSTRCAT(D2)
--R   [2]  -> List(PlacesOverPseudoAlgebraicClosureOfFiniteField(D2))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [3]  -> List(Places(D2)) from PackageForAlgebraicFunctionField(D2,D3
--R            ,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of rationalPlaces from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of rationalPlaces from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of rationalPlaces from PackageForAlgebraicFunctionField
--R
--E 2418

--S 2419 of 3320 done
)d op rationalPoint?
--R 
--R
--RThere is one exposed function called rationalPoint? :
--R   [1] (D2,D2) -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RThere is one unexposed function called rationalPoint? :
--R   [1] (D2,D2) -> Boolean from FunctionFieldCategory&(D3,D2,D4,D5)
--R             if D2 has UFD and D4 has UPOLYC(D2) and D5 has UPOLYC(FRAC
--R            (D4)) and D3 has FFCAT(D2,D4,D5)
--R
--RExamples of rationalPoint? from FunctionFieldCategory&
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RrationalPoint?(0,0)$R 
--RR2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4) 
--RrationalPoint?(0,0)$R2
--R
--R
--RExamples of rationalPoint? from FunctionFieldCategory
--R
--RP0 := UnivariatePolynomial(x, Integer) 
--RP1 := UnivariatePolynomial(y, Fraction P0) 
--RR := RadicalFunctionField(INT, P0, P1, 1 - x**20, 20) 
--RrationalPoint?(0,0)$R 
--RR2 := RadicalFunctionField(INT, P0, P1, 2 * x**2, 4) 
--RrationalPoint?(0,0)$R2
--R
--E 2419

--S 2420 of 3320
)d op rationalPoints
--R 
--R
--RThere are 5 exposed functions called rationalPoints :
--R   [1]  -> List(List(D2)) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3)) and D2 has FINITE
--R   [2]  -> List(D10)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FINITE and D6 has FIELD and D7: LIST(SYMBOL) and
--R            D8 has POLYCAT(D6,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI
--R            ) and D10 has PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12
--R             has PLACESC(D6,D11) and D1 has DIVCAT(D12) and D2 has 
--R            INFCLCT(D6,D7,D8,D9,D10,D11,D12,D1,D4) and D4 has BLMETCT 
--R            and D3 has DSTRCAT(D2)
--R   [3]  -> List(ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(
--R            D2))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [4]  -> List(ProjectivePlane(D2))
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R   [5] (D2,PositiveInteger) -> List(D7)
--R             from ProjectiveAlgebraicSetPackage(D4,D5,D2,D6,D7)
--R             if D4 has FIELD and D5: LIST(SYMBOL) and D6 has DIRPCAT(#(
--R            D5),NNI) and D2 has POLYCAT(D4,D6,OVAR(D5)) and D7 has 
--R            PRSPCAT(D4)
--R
--RThere is one unexposed function called rationalPoints :
--R   [1]  -> List(List(D3)) from FunctionFieldCategory&(D2,D3,D4,D5)
--R             if D3 has UFD and D4 has UPOLYC(D3) and D5 has UPOLYC(FRAC
--R            (D4)) and D2 has FFCAT(D3,D4,D5)
--R
--RExamples of rationalPoints from FunctionFieldCategory&
--R
--R
--RExamples of rationalPoints from FunctionFieldCategory
--R
--R
--RExamples of rationalPoints from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of rationalPoints from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of rationalPoints from PackageForAlgebraicFunctionField
--R
--R
--RExamples of rationalPoints from ProjectiveAlgebraicSetPackage
--R
--E 2420

--S 2421 of 3320
)d op rationalPower
--R 
--R
--RThere is one exposed function called rationalPower :
--R   [1] D -> Fraction(Integer) from D
--R             if D has UPXSCCA(D2,D3) and D2 has RING and D3 has ULSCAT(
--R            D2)
--R
--RExamples of rationalPower from UnivariatePuiseuxSeriesConstructorCategory
--R
--E 2421

--S 2422 of 3320
)d op ratpart
--R 
--R
--RThere is one unexposed function called ratpart :
--R   [1] IntegrationResult(D1) -> D1 from IntegrationResult(D1) if D1
--R             has FIELD
--R
--RExamples of ratpart from IntegrationResult
--R
--E 2422

--S 2423 of 3320
)d op ratPoly
--R 
--R
--RThere is one exposed function called ratPoly :
--R   [1] D2 -> SparseUnivariatePolynomial(D2) from AlgebraicManipulations
--R            (D3,D2)
--R             if D3 has INTDOM and D2 has Join(Field,ExpressionSpace)
--R            with
--R               numer : % -> SparseMultivariatePolynomial(D3,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D3,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D3,Kernel(%)) -> 
--R               %
--R
--RExamples of ratPoly from AlgebraicManipulations
--R
--E 2423

--S 2424 of 3320 done
)d op ravel
--R 
--R
--RThere is one exposed function called ravel :
--R   [1] CartesianTensor(D2,D3,D4) -> List(D4) from CartesianTensor(D2,D3
--R            ,D4)
--R             if D2: INT and D3: NNI and D4 has COMRING
--R
--RExamples of ravel from CartesianTensor
--R
--Rn:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] 
--Rtn:CartesianTensor(1,2,Integer):=n 
--Rravel tn
--R
--E 2424

--S 2425 of 3320
)d op rCoord
--R 
--R
--RThere is one unexposed function called rCoord :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of rCoord from PointPackage
--R
--E 2425

--S 2426 of 3320
)d op rdHack1
--R 
--R
--RThere is one unexposed function called rdHack1 :
--R   [1] (Vector(D5),Vector(Integer),Integer) -> (() -> D5)
--R             from RandomDistributions(D5) if D5 has SETCAT
--R
--RExamples of rdHack1 from RandomDistributions
--R
--E 2426

--S 2427 of 3320
)d op rdregime
--R 
--R
--RThere is one unexposed function called rdregime :
--R   [1] String -> List(Record(eqzro: List(D6),neqzro: List(D6),wcond: 
--R            List(Polynomial(D3)),bsoln: Record(partsol: Vector(Fraction(
--R            Polynomial(D3))),basis: List(Vector(Fraction(Polynomial(D3)))))))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D6 has POLYCAT(D3,D5,D4)
--R
--RExamples of rdregime from ParametricLinearEquations
--R
--E 2427

--S 2428 of 3320
)d op read!
--R 
--R
--RThere is one exposed function called read! :
--R   [1] D -> D1 from D if D has FILECAT(D2,D1) and D2 has SETCAT and D1
--R             has SETCAT
--R
--RExamples of read! from FileCategory
--R
--E 2428

--S 2429 of 3320
)d op readable?
--R 
--R
--RThere is one exposed function called readable? :
--R   [1] D -> Boolean from D if D has FNCAT
--R
--RExamples of readable? from FileNameCategory
--R
--E 2429

--S 2430 of 3320
)d op readIfCan!
--R 
--R
--RThere are 3 exposed functions called readIfCan! :
--R   [1] BinaryFile -> Union(SingleInteger,"failed") from BinaryFile
--R   [2] File(D1) -> Union(D1,"failed") from File(D1) if D1 has SETCAT
--R         
--R   [3] TextFile -> Union(String,"failed") from TextFile
--R
--RExamples of readIfCan! from BinaryFile
--R
--R
--RExamples of readIfCan! from File
--R
--R
--RExamples of readIfCan! from TextFile
--R
--E 2430

--S 2431 of 3320
)d op readLine!
--R 
--R
--RThere is one exposed function called readLine! :
--R   [1] TextFile -> String from TextFile
--R
--RExamples of readLine! from TextFile
--R
--E 2431

--S 2432 of 3320
)d op readLineIfCan!
--R 
--R
--RThere is one exposed function called readLineIfCan! :
--R   [1] TextFile -> Union(String,"failed") from TextFile
--R
--RExamples of readLineIfCan! from TextFile
--R
--E 2432

--S 2433 of 3320
)d op real
--R 
--R
--RThere are 5 exposed functions called real :
--R   [1] D -> D1 from D if D has COMPCAT(D1) and D1 has COMRING
--R   [2] D2 -> Expression(D3) from ComplexTrigonometricManipulations(D3,
--R            D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D3)))
--R            
--R   [3] D -> D1 from D if D has OC(D1) and D1 has COMRING
--R   [4] D -> D1 from D if D has QUATCAT(D1) and D1 has COMRING
--R   [5] D1 -> D1 from TrigonometricManipulations(D2,D1)
--R             if D2 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))
--R
--RExamples of real from ComplexCategory
--R
--R
--RExamples of real from ComplexTrigonometricManipulations
--R
--R
--RExamples of real from OctonionCategory
--R
--R
--RExamples of real from QuaternionCategory
--R
--R
--RExamples of real from TrigonometricManipulations
--R
--E 2433

--S 2434 of 3320
)d op real?
--R 
--R
--RThere are 3 exposed functions called real? :
--R   [1] D2 -> Boolean from ComplexTrigonometricManipulations(D3,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D3)))
--R            
--R   [2] FortranScalarType -> Boolean from FortranScalarType
--R   [3] D2 -> Boolean from TrigonometricManipulations(D3,D2)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R
--RExamples of real? from ComplexTrigonometricManipulations
--R
--R
--RExamples of real? from FortranScalarType
--R
--R
--RExamples of real? from TrigonometricManipulations
--R
--E 2434

--S 2435 of 3320
)d op realEigenvalues
--R 
--R
--RThere is one exposed function called realEigenvalues :
--R   [1] (Matrix(Fraction(Integer)),D3) -> List(D3)
--R             from NumericRealEigenPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R
--RExamples of realEigenvalues from NumericRealEigenPackage
--R
--E 2435

--S 2436 of 3320
)d op realEigenvectors
--R 
--R
--RThere is one exposed function called realEigenvectors :
--R   [1] (Matrix(Fraction(Integer)),D3) -> List(Record(outval: D3,outmult
--R            : Integer,outvect: List(Matrix(D3))))
--R             from NumericRealEigenPackage(D3) if D3 has Join(Field,
--R            OrderedRing)
--R
--RExamples of realEigenvectors from NumericRealEigenPackage
--R
--E 2436

--S 2437 of 3320
)d op realElementary
--R 
--R
--RThere are 2 exposed functions called realElementary :
--R   [1] D1 -> D1 from ElementaryFunctionStructurePackage(D2,D1)
--R             if D2 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer)) and D1 has Join
--R            (AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))
--R   [2] (D1,Symbol) -> D1 from ElementaryFunctionStructurePackage(D3,D1)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer)) and D1 has Join
--R            (AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R
--RExamples of realElementary from ElementaryFunctionStructurePackage
--R
--E 2437

--S 2438 of 3320
)d op realRoots
--R 
--R
--RThere are 2 exposed functions called realRoots :
--R   [1] (List(Fraction(Polynomial(Integer))),List(Symbol),D4) -> List(
--R            List(D4))
--R             from FloatingRealPackage(D4) if D4 has Join(OrderedRing,
--R            Field)
--R   [2] (Fraction(Polynomial(Integer)),D3) -> List(D3)
--R             from FloatingRealPackage(D3) if D3 has Join(OrderedRing,
--R            Field)
--R
--RExamples of realRoots from FloatingRealPackage
--R
--E 2438

--S 2439 of 3320
)d op realSolve
--R 
--R
--RThere are 5 exposed functions called realSolve :
--R   [1] RegularChain(D3,D4) -> List(List(RealClosure(Fraction(D3))))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R   [2] (List(Polynomial(D4)),Boolean,Boolean,Boolean) -> List(List(
--R            RealClosure(Fraction(D4))))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [3] (List(Polynomial(D4)),Boolean,Boolean) -> List(List(RealClosure(
--R            Fraction(D4))))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [4] (List(Polynomial(D4)),Boolean) -> List(List(RealClosure(Fraction
--R            (D4))))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [5] List(Polynomial(D3)) -> List(List(RealClosure(Fraction(D3))))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R
--RThere is one unexposed function called realSolve :
--R   [1] (List(Polynomial(Integer)),List(Symbol),Float) -> List(List(
--R            Float))
--R             from RealSolvePackage
--R
--RExamples of realSolve from RealSolvePackage
--R
--Rp1 := x**2*y*z + y*z 
--Rp2 := x**2*y**2*z + x + z 
--Rp3 := x**2*y**2*z**2 + z + 1 
--Rlp := [p1, p2, p3] 
--RrealSolve(lp,[x,y,z],0.01)
--R
--R
--RExamples of realSolve from ZeroDimensionalSolvePackage
--R
--E 2439

--S 2440 of 3320
)d op realZeros
--R 
--R
--RThere are 8 exposed functions called realZeros :
--R   [1] D2 -> List(Record(left: Fraction(Integer),right: Fraction(
--R            Integer)))
--R             from RealZeroPackage(D2) if D2 has UPOLYC(INT)
--R   [2] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)))
--R             -> List(Record(left: Fraction(Integer),right: Fraction(Integer))
--R            )
--R             from RealZeroPackage(D2) if D2 has UPOLYC(INT)
--R   [3] (D2,Fraction(Integer)) -> List(Record(left: Fraction(Integer),
--R            right: Fraction(Integer)))
--R             from RealZeroPackage(D2) if D2 has UPOLYC(INT)
--R   [4] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            Fraction(Integer)) -> List(Record(left: Fraction(Integer),right: 
--R            Fraction(Integer)))
--R             from RealZeroPackage(D2) if D2 has UPOLYC(INT)
--R   [5] D2 -> List(Record(left: Fraction(Integer),right: Fraction(
--R            Integer)))
--R             from RealZeroPackageQ(D2) if D2 has UPOLYC(FRAC(INT))
--R   [6] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)))
--R             -> List(Record(left: Fraction(Integer),right: Fraction(Integer))
--R            )
--R             from RealZeroPackageQ(D2) if D2 has UPOLYC(FRAC(INT))
--R   [7] (D2,Fraction(Integer)) -> List(Record(left: Fraction(Integer),
--R            right: Fraction(Integer)))
--R             from RealZeroPackageQ(D2) if D2 has UPOLYC(FRAC(INT))
--R   [8] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            Fraction(Integer)) -> List(Record(left: Fraction(Integer),right: 
--R            Fraction(Integer)))
--R             from RealZeroPackageQ(D2) if D2 has UPOLYC(FRAC(INT))
--R
--RExamples of realZeros from RealZeroPackage
--R
--R
--RExamples of realZeros from RealZeroPackageQ
--R
--E 2440

--S 2441 of 3320
)d op recip
--R 
--R
--RThere are 6 exposed functions called recip :
--R   [1] CliffordAlgebra(D1,D2,D3) -> Union(CliffordAlgebra(D1,D2,D3),
--R            "failed")
--R             from CliffordAlgebra(D1,D2,D3)
--R             if D1: PI and D2 has FIELD and D3: QFORM(D1,D2)
--R   [2] D -> Union(D,"failed") from D
--R             if D has FINAALG(D1) and D1 has COMRING and D1 has INTDOM
--R            
--R   [3] D -> Union(D,"failed") from D if D has MONADWU
--R   [4] D -> Union(D,"failed") from D if D has MONOID
--R   [5] (D2,D3) -> Record(num: D2,den: D2)
--R             from NormalizationPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R   [6] (D1,D) -> Union(D1,"failed") from D
--R             if D has RRCC(D2,D1) and D2 has Join(OrderedRing,Field) 
--R            and D1 has UPOLYC(D2)
--R
--RThere are 5 unexposed functions called recip :
--R   [1] EuclideanModularRing(D1,D2,D3,D4,D5,D6) -> Union(
--R            EuclideanModularRing(D1,D2,D3,D4,D5,D6),"failed")
--R             from EuclideanModularRing(D1,D2,D3,D4,D5,D6)
--R             if D1 has COMRING and D2 has UPOLYC(D1) and D3 has ABELMON
--R            and D4: ((D2,D3) -> D2) and D5: ((D3,D3) -> Union(D3,
--R            "failed")) and D6: ((D2,D2,D3) -> Union(D2,"failed"))
--R   [2] ModularRing(D1,D2,D3,D4,D5) -> Union(ModularRing(D1,D2,D3,D4,D5)
--R            ,"failed")
--R             from ModularRing(D1,D2,D3,D4,D5)
--R             if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) -> 
--R            D1) and D4: ((D2,D2) -> Union(D2,"failed")) and D5: ((D1,D1
--R            ,D2) -> Union(D1,"failed"))
--R   [3] MoebiusTransform(D1) -> MoebiusTransform(D1) from 
--R            MoebiusTransform(D1)
--R             if D1 has FIELD
--R   [4]  -> MoebiusTransform(D1) from MoebiusTransform(D1) if D1 has 
--R            FIELD
--R   [5] Stream(D2) -> Union(Stream(D2),"failed")
--R             from StreamTaylorSeriesOperations(D2) if D2 has RING
--R
--RExamples of recip from CliffordAlgebra
--R
--R
--RExamples of recip from EuclideanModularRing
--R
--R
--RExamples of recip from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of recip from ModularRing
--R
--R
--RExamples of recip from MoebiusTransform
--R
--R
--RExamples of recip from MonadWithUnit
--R
--R
--RExamples of recip from Monoid
--R
--R
--RExamples of recip from NormalizationPackage
--R
--R
--RExamples of recip from RealRootCharacterizationCategory
--R
--R
--RExamples of recip from StreamTaylorSeriesOperations
--R
--E 2441

--S 2442 of 3320
)d op reciprocalPolynomial
--R 
--R
--RThere is one unexposed function called reciprocalPolynomial :
--R   [1] D1 -> D1 from ComplexRootFindingPackage(D2,D1)
--R             if D2 has Join(Field,OrderedRing) and D1 has UPOLYC(
--R            COMPLEX(D2))
--R
--RExamples of reciprocalPolynomial from ComplexRootFindingPackage
--R
--E 2442

--S 2443 of 3320
)d op recolor
--R 
--R
--RThere is one exposed function called recolor :
--R   [1] (((DoubleFloat,DoubleFloat) -> Point(DoubleFloat)),((DoubleFloat
--R            ,DoubleFloat,DoubleFloat) -> DoubleFloat)) -> ((DoubleFloat,
--R            DoubleFloat) -> Point(DoubleFloat))
--R             from TopLevelDrawFunctionsForCompiledFunctions
--R
--RExamples of recolor from TopLevelDrawFunctionsForCompiledFunctions
--R
--E 2443

--S 2444 of 3320
)d op recoverAfterFail
--R 
--R
--RThere is one exposed function called recoverAfterFail :
--R   [1] (RoutinesTable,String,Integer) -> Union(String,"failed")
--R             from RoutinesTable
--R
--RExamples of recoverAfterFail from RoutinesTable
--R
--E 2444

--S 2445 of 3320
)d op rectangularMatrix
--R 
--R
--RThere is one unexposed function called rectangularMatrix :
--R   [1] Matrix(D4) -> RectangularMatrix(D2,D3,D4)
--R             from RectangularMatrix(D2,D3,D4) if D4 has RING and D2: 
--R            NNI and D3: NNI
--R
--RExamples of rectangularMatrix from RectangularMatrix
--R
--E 2445

--S 2446 of 3320
)d op recur
--R 
--R
--RThere is one exposed function called recur :
--R   [1] ((NonNegativeInteger,D2) -> D2) -> ((NonNegativeInteger,D2) -> 
--R            D2)
--R             from MappingPackage1(D2) if D2 has SETCAT
--R
--RThere is one unexposed function called recur :
--R   [1] (((NonNegativeInteger,D1) -> D1),NonNegativeInteger,D1) -> D1
--R             from MappingPackageInternalHacks1(D1) if D1 has SETCAT
--R
--RExamples of recur from MappingPackageInternalHacks1
--R
--R
--RExamples of recur from MappingPackage1
--R
--E 2446

--S 2447 of 3320
)d op red
--R 
--R
--RThere is one exposed function called red :
--R   [1]  -> Color from Color
--R
--RExamples of red from Color
--R
--E 2447

--S 2448 of 3320
)d op redmat
--R 
--R
--RThere is one unexposed function called redmat :
--R   [1] (Matrix(D6),List(D6)) -> Matrix(D6)
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D5,D4) and D3 has Join(
--R            EuclideanDomain,CharacteristicZero) and D4 has Join(
--R            OrderedSet,ConvertibleTo(Symbol)) and D5 has OAMONS
--R
--RExamples of redmat from ParametricLinearEquations
--R
--E 2448

--S 2449 of 3320
)d op redPo
--R 
--R
--RThere is one unexposed function called redPo :
--R   [1] (D2,List(D2)) -> Record(poly: D2,mult: D4)
--R             from GroebnerInternalPackage(D4,D5,D6,D2)
--R             if D2 has POLYCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of redPo from GroebnerInternalPackage
--R
--E 2449

--S 2450 of 3320
)d op redPol
--R 
--R
--RThere is one unexposed function called redPol :
--R   [1] (D1,List(D1)) -> D1 from GroebnerInternalPackage(D3,D4,D5,D1)
--R             if D1 has POLYCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of redPol from GroebnerInternalPackage
--R
--E 2450

--S 2451 of 3320
)d op redpps
--R 
--R
--RThere is one unexposed function called redpps :
--R   [1] (Record(partsol: Vector(Fraction(Polynomial(D3))),basis: List(
--R            Vector(Fraction(Polynomial(D3))))),List(D6)) -> Record(partsol: 
--R            Vector(Fraction(Polynomial(D3))),basis: List(Vector(Fraction(
--R            Polynomial(D3)))))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D6
--R             has POLYCAT(D3,D5,D4) and D4 has Join(OrderedSet,
--R            ConvertibleTo(Symbol)) and D5 has OAMONS
--R
--RExamples of redpps from ParametricLinearEquations
--R
--E 2451

--S 2452 of 3320
)d op reduce
--R 
--R
--RThere are 21 exposed functions called reduce :
--R   [1] AlgebraicNumber -> AlgebraicNumber from AlgebraicNumber
--R   [2] (((D4,D1) -> D1),OneDimensionalArray(D4),D1) -> D1
--R             from OneDimensionalArrayFunctions2(D4,D1) if D4 has TYPE 
--R            and D1 has TYPE
--R   [3] (((D1,D1) -> D1),D,D1,D1) -> D1 from D
--R             if D1 has SETCAT and D has finiteAggregate and D has CLAGG
--R            (D1) and D1 has TYPE
--R   [4] (((D1,D1) -> D1),D,D1) -> D1 from D
--R             if D has finiteAggregate and D has CLAGG(D1) and D1 has 
--R            TYPE
--R   [5] (((D1,D1) -> D1),D) -> D1 from D
--R             if D has finiteAggregate and D has CLAGG(D1) and D1 has 
--R            TYPE
--R   [6] (((D5,D1) -> D1),DirectProduct(D4,D5),D1) -> D1
--R             from DirectProductFunctions2(D4,D5,D1)
--R             if D4: NNI and D5 has TYPE and D1 has TYPE
--R   [7] Expression(D1) -> Expression(D1) from Expression(D1)
--R             if D1 has INTDOM and D1 has ORDSET
--R   [8] D -> D from D
--R             if D has FDIVCAT(D1,D2,D3,D4) and D1 has FIELD and D2 has 
--R            UPOLYC(D1) and D3 has UPOLYC(FRAC(D2)) and D4 has FFCAT(D1,
--R            D2,D3)
--R   [9] (((D4,D1) -> D1),D3,D1) -> D1
--R             from FiniteLinearAggregateFunctions2(D4,D3,D1,D5)
--R             if D4 has TYPE and D1 has TYPE and D3 has FLAGG(D4) and D5
--R             has FLAGG(D1)
--R   [10] (((D4,D1) -> D1),D3,D1) -> D1
--R             from FiniteSetAggregateFunctions2(D4,D3,D1,D5)
--R             if D4 has SETCAT and D1 has SETCAT and D3 has FSAGG(D4) 
--R            and D5 has FSAGG(D1)
--R   [11] (((D4,D1) -> D1),List(D4),D1) -> D1 from ListFunctions2(D4,D1)
--R             if D4 has TYPE and D1 has TYPE
--R   [12] (((D5,D2) -> D2),D4,D2) -> D2
--R             from MatrixCategoryFunctions2(D5,D6,D7,D4,D2,D8,D9,D1)
--R             if D5 has RING and D2 has RING and D6 has FLAGG(D5) and D7
--R             has FLAGG(D5) and D8 has FLAGG(D2) and D9 has FLAGG(D2) 
--R            and D4 has MATCAT(D5,D6,D7) and D1 has MATCAT(D2,D8,D9)
--R   [13] Fraction(D3) -> Union(D,"failed") from D
--R             if D3 has UPOLYC(D2) and D2 has FIELD and D2 has COMRING 
--R            and D has MONOGEN(D2,D3)
--R   [14] D1 -> D from D
--R             if D2 has COMRING and D has MONOGEN(D2,D1) and D1 has 
--R            UPOLYC(D2)
--R   [15] SparseUnivariatePolynomial(D) -> D from D if D has PACPERC
--R   [16] List(D) -> Divisor(D) from D
--R             if D has PLACESC(D3,D4) and D3 has FIELD and D4 has 
--R            LOCPOWC(D3)
--R   [17] (((D4,D1) -> D1),PrimitiveArray(D4),D1) -> D1
--R             from PrimitiveArrayFunctions2(D4,D1) if D4 has TYPE and D1
--R             has TYPE
--R   [18] (((D9,D4) -> D4),D6,D4) -> D4
--R             from RectangularMatrixCategoryFunctions2(D7,D8,D9,D10,D11,
--R            D6,D4,D1,D2,D3)
--R             if D9 has RING and D4 has RING and D7: NNI and D8: NNI and
--R            D10 has DIRPCAT(D8,D9) and D11 has DIRPCAT(D7,D9) and D1
--R             has DIRPCAT(D8,D4) and D2 has DIRPCAT(D7,D4) and D6 has 
--R            RMATCAT(D7,D8,D9,D10,D11) and D3 has RMATCAT(D7,D8,D4,D1,D2
--R            )
--R   [19] (D1,((D4,D1) -> D1),Stream(D4)) -> D1 from StreamFunctions2(D4,
--R            D1)
--R             if D4 has TYPE and D1 has TYPE
--R   [20] (D1,D,((D1,D1) -> D1),((D1,D1) -> Boolean)) -> D1 from D
--R             if D has TSETCAT(D4,D5,D6,D1) and D4 has INTDOM and D5
--R             has OAMONS and D6 has ORDSET and D1 has RPOLCAT(D4,D5,D6)
--R            
--R   [21] (((D4,D1) -> D1),Vector(D4),D1) -> D1 from VectorFunctions2(D4,
--R            D1)
--R             if D4 has TYPE and D1 has TYPE
--R
--RThere are 7 unexposed functions called reduce :
--R   [1] SparseUnivariatePolynomial(D3) -> Record(pol: 
--R            SparseUnivariatePolynomial(D3),deg: PositiveInteger)
--R             from DegreeReductionPackage(D3,D4)
--R             if D3 has RING and D4 has Join(IntegralDomain,OrderedSet)
--R            
--R   [2] (D1,D2) -> EuclideanModularRing(D3,D1,D2,D4,D5,D6)
--R             from EuclideanModularRing(D3,D1,D2,D4,D5,D6)
--R             if D3 has COMRING and D1 has UPOLYC(D3) and D2 has ABELMON
--R            and D4: ((D1,D2) -> D1) and D5: ((D2,D2) -> Union(D2,
--R            "failed")) and D6: ((D1,D1,D2) -> Union(D1,"failed"))
--R   [3] InnerAlgebraicNumber -> InnerAlgebraicNumber from 
--R            InnerAlgebraicNumber
--R   [4] (D1,D2) -> ModularField(D1,D2,D3,D4,D5) from ModularField(D1,D2,
--R            D3,D4,D5)
--R             if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) -> 
--R            D1) and D4: ((D2,D2) -> Union(D2,"failed")) and D5: ((D1,D1
--R            ,D2) -> Union(D1,"failed"))
--R   [5] D1 -> ModMonic(D2,D1) from ModMonic(D2,D1)
--R             if D2 has RING and D1 has UPOLYC(D2)
--R   [6] (D1,D2) -> ModularRing(D1,D2,D3,D4,D5) from ModularRing(D1,D2,D3
--R            ,D4,D5)
--R             if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) -> 
--R            D1) and D4: ((D2,D2) -> Union(D2,"failed")) and D5: ((D1,D1
--R            ,D2) -> Union(D1,"failed"))
--R   [7] D1 -> ResidueRing(D2,D3,D4,D1,D5) from ResidueRing(D2,D3,D4,D1,
--R            D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D1
--R             has POLYCAT(D2,D3,D4) and D5: LIST(D1)
--R
--RExamples of reduce from AlgebraicNumber
--R
--R
--RExamples of reduce from OneDimensionalArrayFunctions2
--R
--RT1:=OneDimensionalArrayFunctions2(Integer,Integer) 
--Radder(a:Integer,b:Integer):Integer == a+b 
--Rreduce(adder,[i for i in 1..10],0)$T1
--R
--R
--RExamples of reduce from Collection
--R
--R)clear all 
--Rreduce(+,[C[i]*x**i for i in 1..5])
--R
--R
--RExamples of reduce from DegreeReductionPackage
--R
--R
--RExamples of reduce from DirectProductFunctions2
--R
--R
--RExamples of reduce from EuclideanModularRing
--R
--R
--RExamples of reduce from Expression
--R
--R
--RExamples of reduce from FiniteDivisorCategory
--R
--R
--RExamples of reduce from FiniteLinearAggregateFunctions2
--R
--R
--RExamples of reduce from FiniteSetAggregateFunctions2
--R
--R
--RExamples of reduce from InnerAlgebraicNumber
--R
--R
--RExamples of reduce from ListFunctions2
--R
--R
--RExamples of reduce from MatrixCategoryFunctions2
--R
--R
--RExamples of reduce from ModularField
--R
--R
--RExamples of reduce from ModMonic
--R
--R
--RExamples of reduce from ModularRing
--R
--R
--RExamples of reduce from MonogenicAlgebra
--R
--R
--RExamples of reduce from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of reduce from PlacesCategory
--R
--R
--RExamples of reduce from PrimitiveArrayFunctions2
--R
--RT1:=PrimitiveArrayFunctions2(Integer,Integer) 
--Radder(a:Integer,b:Integer):Integer == a+b 
--Rreduce(adder,[i for i in 1..10],0)$T1
--R
--R
--RExamples of reduce from ResidueRing
--R
--R
--RExamples of reduce from RectangularMatrixCategoryFunctions2
--R
--R
--RExamples of reduce from StreamFunctions2
--R
--Rm:=[i for i in 1..300]::Stream(Integer) 
--Rf(i:Integer,j:Integer):Integer==i+j 
--Rreduce(1,f,m)
--R
--R
--RExamples of reduce from TriangularSetCategory
--R
--R
--RExamples of reduce from VectorFunctions2
--R
--E 2452

--S 2453 of 3320
)d op reduceBasisAtInfinity
--R 
--R
--RThere is one exposed function called reduceBasisAtInfinity :
--R   [1] Vector(D) -> Vector(D) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of reduceBasisAtInfinity from FunctionFieldCategory
--R
--E 2453

--S 2454 of 3320
)d op reduceByQuasiMonic
--R 
--R
--RThere is one exposed function called reduceByQuasiMonic :
--R   [1] (D1,D) -> D1 from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of reduceByQuasiMonic from TriangularSetCategory
--R
--E 2454

--S 2455 of 3320
)d op reduced?
--R 
--R
--RThere are 3 exposed functions called reduced? :
--R   [1] (D,List(D)) -> Boolean from D
--R             if D has RPOLCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [2] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [3] (D2,D,((D2,D2) -> Boolean)) -> Boolean from D
--R             if D has TSETCAT(D4,D5,D6,D2) and D4 has INTDOM and D5
--R             has OAMONS and D6 has ORDSET and D2 has RPOLCAT(D4,D5,D6)
--R            
--R
--RExamples of reduced? from RecursivePolynomialCategory
--R
--R
--RExamples of reduced? from TriangularSetCategory
--R
--E 2455

--S 2456 of 3320
)d op reducedContinuedFraction
--R 
--R
--RThere is one exposed function called reducedContinuedFraction :
--R   [1] (D1,Stream(D1)) -> ContinuedFraction(D1) from ContinuedFraction(
--R            D1)
--R             if D1 has EUCDOM
--R
--RExamples of reducedContinuedFraction from ContinuedFraction
--R
--E 2456

--S 2457 of 3320
)d op reducedDiscriminant
--R 
--R
--RThere is one unexposed function called reducedDiscriminant :
--R   [1] D2 -> D1 from PAdicWildFunctionFieldIntegralBasis(D3,D1,D2,D4)
--R             if D2 has UPOLYC(D1) and D1 has UPOLYC(D3) and D3 has 
--R            FFIELDC and D4 has MONOGEN(D1,D2)
--R
--RExamples of reducedDiscriminant from PAdicWildFunctionFieldIntegralBasis
--R
--E 2457

--S 2458 of 3320
)d op reducedForm
--R 
--R
--RThere is one exposed function called reducedForm :
--R   [1] ContinuedFraction(D1) -> ContinuedFraction(D1) from 
--R            ContinuedFraction(D1)
--R             if D1 has EUCDOM
--R
--RExamples of reducedForm from ContinuedFraction
--R
--E 2458

--S 2459 of 3320
)d op reducedQPowers
--R 
--R
--RThere is one unexposed function called reducedQPowers :
--R   [1] SparseUnivariatePolynomial(D3) -> PrimitiveArray(
--R            SparseUnivariatePolynomial(D3))
--R             from FiniteFieldPolynomialPackage(D3) if D3 has FFIELDC
--R         
--R
--RExamples of reducedQPowers from FiniteFieldPolynomialPackage
--R
--E 2459

--S 2460 of 3320
)d op reducedSystem
--R 
--R
--RThere are 2 exposed functions called reducedSystem :
--R   [1] (Matrix(D),Vector(D)) -> Record(mat: Matrix(D4),vec: Vector(D4))
--R             from D
--R             if D has LINEXP(D4) and D4 has RING
--R   [2] Matrix(D) -> Matrix(D3) from D if D has LINEXP(D3) and D3 has 
--R            RING
--R
--RExamples of reducedSystem from LinearlyExplicitRingOver
--R
--E 2460

--S 2461 of 3320
)d op reduceLineOverLine
--R 
--R
--RThere is one exposed function called reduceLineOverLine :
--R   [1] (List(D2),List(D2),D2) -> List(D2) from LinesOpPack(D2) if D2
--R             has FIELD
--R
--RExamples of reduceLineOverLine from LinesOpPack
--R
--E 2461

--S 2462 of 3320
)d op reduceLODE
--R 
--R
--RThere is one unexposed function called reduceLODE :
--R   [1] (D2,D3) -> Record(mat: Matrix(D5),vec: Vector(D4))
--R             from ReduceLODE(D4,D5,D6,D3,D2)
--R             if D4 has FIELD and D6 has UPOLYC(D4) and D3 has MONOGEN(
--R            D4,D6) and D5 has LODOCAT(D4) and D2 has LODOCAT(D3)
--R
--RExamples of reduceLODE from ReduceLODE
--R
--E 2462

--S 2463 of 3320
)d op ReduceOrder
--R 
--R
--RThere are 2 unexposed functions called ReduceOrder :
--R   [1] (D1,D2) -> D1 from ReductionOfOrder(D2,D1)
--R             if D2 has FIELD and D1 has LODOCAT(D2)
--R   [2] (D2,List(D4)) -> Record(eq: D2,op: List(D4)) from 
--R            ReductionOfOrder(D4,D2)
--R             if D4 has FIELD and D2 has LODOCAT(D4)
--R
--RExamples of ReduceOrder from ReductionOfOrder
--R
--E 2463

--S 2464 of 3320
)d op reduceRow
--R 
--R
--RThere is one exposed function called reduceRow :
--R   [1] List(List(D2)) -> List(List(D2)) from LinesOpPack(D2) if D2 has 
--R            FIELD
--R
--RExamples of reduceRow from LinesOpPack
--R
--E 2464

--S 2465 of 3320
)d op reduceRowOnList
--R 
--R
--RThere is one exposed function called reduceRowOnList :
--R   [1] (List(D3),List(List(D3))) -> List(List(D3)) from LinesOpPack(D3)
--R             if D3 has FIELD
--R
--RExamples of reduceRowOnList from LinesOpPack
--R
--E 2465

--S 2466 of 3320
)d op reduction
--R 
--R
--RThere are 3 unexposed functions called reduction :
--R   [1] (D1,D2) -> D1 from GenExEuclid(D2,D1) if D2 has EUCDOM and D1
--R             has UPOLYC(D2)
--R   [2] (D1,D2) -> D1 from GeneralHenselPackage(D2,D1)
--R             if D2 has EUCDOM and D1 has UPOLYC(D2)
--R   [3] (D1,D2) -> D1 from InnerModularGcd(D2,D1,D3,D4)
--R             if D2 has EUCDOM and D3: D2 and D4: ((D2,
--R            NonNegativeInteger) -> D2) and D1 has UPOLYC(D2)
--R
--RExamples of reduction from GenExEuclid
--R
--R
--RExamples of reduction from GeneralHenselPackage
--R
--R
--RExamples of reduction from InnerModularGcd
--R
--E 2466

--S 2467 of 3320
)d op reductum
--R 
--R
--RThere are 7 exposed functions called reductum :
--R   [1] D -> D from D if D has AMR(D1,D2) and D1 has RING and D2 has 
--R            OAMON
--R   [2] Divisor(D1) -> Divisor(D1) from Divisor(D1) if D1 has SETCATD
--R         
--R   [3] D -> D from D if D has FMCAT(D1,D2) and D1 has RING and D2 has 
--R            SETCAT
--R   [4] D -> D from D if D has IDPC(D1,D2) and D1 has SETCAT and D2 has 
--R            ORDSET
--R   [5] D -> D from D if D has MLO(D1) and D1 has RING
--R   [6] D -> D from D if D has OREPCAT(D1) and D1 has RING
--R   [7] (D,D1) -> D from D
--R             if D has RPOLCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET
--R
--RThere are 6 unexposed functions called reductum :
--R   [1] AntiSymm(D1,D2) -> AntiSymm(D1,D2) from AntiSymm(D1,D2)
--R             if D1 has RING and D2: LIST(SYMBOL)
--R   [2] DeRhamComplex(D1,D2) -> DeRhamComplex(D1,D2) from DeRhamComplex(
--R            D1,D2)
--R             if D1 has Join(Ring,OrderedSet) and D2: LIST(SYMBOL)
--R   [3] GeneralModulePolynomial(D1,D2,D3,D4,D5,D6) -> 
--R            GeneralModulePolynomial(D1,D2,D3,D4,D5,D6)
--R             from GeneralModulePolynomial(D1,D2,D3,D4,D5,D6)
--R             if D1: LIST(SYMBOL) and D2 has COMRING and D4 has DIRPCAT(
--R            #(D1),NNI) and D5: ((Record(index: D3,exponent: D4),Record(
--R            index: D3,exponent: D4)) -> Boolean) and D3 has ORDSET and 
--R            D6 has POLYCAT(D2,D4,OVAR(D1))
--R   [4] LaurentPolynomial(D1,D2) -> LaurentPolynomial(D1,D2)
--R             from LaurentPolynomial(D1,D2) if D1 has INTDOM and D2 has 
--R            UPOLYC(D1)
--R   [5] MonoidRing(D1,D2) -> MonoidRing(D1,D2) from MonoidRing(D1,D2)
--R             if D2 has ORDSET and D1 has RING and D2 has MONOID
--R   [6] XPolynomialRing(D1,D2) -> XPolynomialRing(D1,D2)
--R             from XPolynomialRing(D1,D2) if D1 has RING and D2 has 
--R            ORDMON
--R
--RExamples of reductum from AbelianMonoidRing
--R
--R
--RExamples of reductum from AntiSymm
--R
--R
--RExamples of reductum from DeRhamComplex
--R
--Rder:=DERHAM(Integer,[x,y,z]) 
--R[dx,dy,dz]:=[generator(i)$der for i in 1..3] 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--Rreductum sigma
--R
--R
--RExamples of reductum from Divisor
--R
--R
--RExamples of reductum from FreeModuleCat
--R
--R
--RExamples of reductum from GeneralModulePolynomial
--R
--R
--RExamples of reductum from IndexedDirectProductCategory
--R
--R
--RExamples of reductum from LaurentPolynomial
--R
--R
--RExamples of reductum from MonogenicLinearOperator
--R
--R
--RExamples of reductum from MonoidRing
--R
--R
--RExamples of reductum from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of reductum from RecursivePolynomialCategory
--R
--R
--RExamples of reductum from XPolynomialRing
--R
--E 2467

--S 2468 of 3320
)d op ref
--R 
--R
--RThere is one unexposed function called ref :
--R   [1] D1 -> Reference(D1) from Reference(D1) if D1 has TYPE
--R
--RExamples of ref from Reference
--R
--E 2468

--S 2469 of 3320
)d op refine
--R 
--R
--RThere are 5 exposed functions called refine :
--R   [1] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            Fraction(Integer)) -> Record(left: Fraction(Integer),right: 
--R            Fraction(Integer))
--R             from RealZeroPackage(D2) if D2 has UPOLYC(INT)
--R   [2] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            Record(left: Fraction(Integer),right: Fraction(Integer))) -> 
--R            Union(Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            "failed")
--R             from RealZeroPackage(D2) if D2 has UPOLYC(INT)
--R   [3] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            Fraction(Integer)) -> Record(left: Fraction(Integer),right: 
--R            Fraction(Integer))
--R             from RealZeroPackageQ(D2) if D2 has UPOLYC(FRAC(INT))
--R   [4] (D2,Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            Record(left: Fraction(Integer),right: Fraction(Integer))) -> 
--R            Union(Record(left: Fraction(Integer),right: Fraction(Integer)),
--R            "failed")
--R             from RealZeroPackageQ(D2) if D2 has UPOLYC(FRAC(INT))
--R   [5] RightOpenIntervalRootCharacterization(D1,D2) -> 
--R            RightOpenIntervalRootCharacterization(D1,D2)
--R             from RightOpenIntervalRootCharacterization(D1,D2)
--R             if D1 has Join(OrderedRing,Field) and D2 has UPOLYC(D1)
--R         
--R
--RThere are 6 unexposed functions called refine :
--R   [1] (PlaneAlgebraicCurvePlot,DoubleFloat) -> PlaneAlgebraicCurvePlot
--R             from PlaneAlgebraicCurvePlot
--R   [2] (Factored(D3),(D3 -> Factored(D3))) -> Factored(D3)
--R             from FactoredFunctionUtilities(D3) if D3 has INTDOM
--R   [3] Plot3D -> Plot3D from Plot3D
--R   [4] (Plot3D,Segment(DoubleFloat)) -> Plot3D from Plot3D
--R   [5] Plot -> Plot from Plot
--R   [6] (Plot,Segment(DoubleFloat)) -> Plot from Plot
--R
--RExamples of refine from PlaneAlgebraicCurvePlot
--R
--Rsketch:=makeSketch(x+y,x,y,-1/2..1/2,-1/2..1/2)$ACPLOT 
--Rrefined:=refine(sketch,0.1)
--R
--R
--RExamples of refine from FactoredFunctionUtilities
--R
--R
--RExamples of refine from Plot3D
--R
--R
--RExamples of refine from Plot
--R
--R
--RExamples of refine from RealZeroPackage
--R
--R
--RExamples of refine from RealZeroPackageQ
--R
--R
--RExamples of refine from RightOpenIntervalRootCharacterization
--R
--E 2469

--S 2470 of 3320
)d op regime
--R 
--R
--RThere is one unexposed function called regime :
--R   [1] (Record(det: D3,rows: List(Integer),cols: List(Integer)),Matrix(
--R            D3),List(Fraction(Polynomial(D11))),List(List(D3)),
--R            NonNegativeInteger,NonNegativeInteger,Integer) -> Record(eqzro: 
--R            List(D3),neqzro: List(D3),wcond: List(Polynomial(D11)),bsoln: 
--R            Record(partsol: Vector(Fraction(Polynomial(D11))),basis: List(
--R            Vector(Fraction(Polynomial(D11))))))
--R             from ParametricLinearEquations(D11,D1,D2,D3)
--R             if D11 has Join(EuclideanDomain,CharacteristicZero) and D3
--R             has POLYCAT(D11,D2,D1) and D1 has Join(OrderedSet,
--R            ConvertibleTo(Symbol)) and D2 has OAMONS
--R
--RExamples of regime from ParametricLinearEquations
--R
--E 2470

--S 2471 of 3320
)d op region
--R 
--R
--RThere is one unexposed function called region :
--R   [1] (TwoDimensionalViewport,PositiveInteger,String) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of region from TwoDimensionalViewport
--R
--E 2471

--S 2472 of 3320
)d op regularRepresentation
--R 
--R
--RThere are 2 exposed functions called regularRepresentation :
--R   [1] (D,Vector(D)) -> Matrix(D3) from D
--R             if D has FINRALG(D3,D4) and D3 has COMRING and D4 has 
--R            UPOLYC(D3)
--R   [2] D -> Matrix(D2) from D
--R             if D has FRAMALG(D2,D3) and D2 has COMRING and D3 has 
--R            UPOLYC(D2)
--R
--RExamples of regularRepresentation from FiniteRankAlgebra
--R
--R
--RExamples of regularRepresentation from FramedAlgebra
--R
--E 2472

--S 2473 of 3320 done
)d op reindex
--R 
--R
--RThere is one exposed function called reindex :
--R   [1] (CartesianTensor(D2,D3,D4),List(Integer)) -> CartesianTensor(D2,
--R            D3,D4)
--R             from CartesianTensor(D2,D3,D4) if D2: INT and D3: NNI and 
--R            D4 has COMRING
--R
--RExamples of reindex from CartesianTensor
--R
--Rn:SquareMatrix(2,Integer):=matrix [[2,3],[0,1]] 
--Rtn:CartesianTensor(1,2,Integer):=n 
--Rp:=product(tn,tn) 
--Rreindex(p,[4,3,2,1])
--R
--E 2473

--S 2474 of 3320
)d op relationsIdeal
--R 
--R
--RThere is one exposed function called relationsIdeal :
--R   [1] List(D6) -> SuchThat(List(Polynomial(D3)),List(Equation(
--R            Polynomial(D3))))
--R             from PolynomialIdeals(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D5 has KONVERT(SYMBOL) and
--R            D3 has FIELD and D4 has OAMONS and D5 has ORDSET
--R
--RExamples of relationsIdeal from PolynomialIdeals
--R
--E 2474

--S 2475 of 3320
)d op relativeApprox
--R 
--R
--RThere are 3 exposed functions called relativeApprox :
--R   [1] (RealClosure(D2),RealClosure(D2)) -> Fraction(Integer)
--R             from RealClosure(D2) if D2 has Join(OrderedRing,Field,
--R            RealConstant)
--R   [2] (D2,RightOpenIntervalRootCharacterization(D1,D2),D1) -> D1
--R             from RightOpenIntervalRootCharacterization(D1,D2)
--R             if D1 has Join(OrderedRing,Field) and D2 has UPOLYC(D1)
--R         
--R   [3] (D2,D,D1) -> D1 from D
--R             if D has RRCC(D1,D2) and D1 has Join(OrderedRing,Field) 
--R            and D2 has UPOLYC(D1)
--R
--RExamples of relativeApprox from RealClosure
--R
--R
--RExamples of relativeApprox from RightOpenIntervalRootCharacterization
--R
--R
--RExamples of relativeApprox from RealRootCharacterizationCategory
--R
--E 2475

--S 2476 of 3320
)d op relerror
--R 
--R
--RThere is one exposed function called relerror :
--R   [1] (Float,Float) -> Integer from Float
--R
--RExamples of relerror from Float
--R
--E 2476

--S 2477 of 3320
)d op rem
--R 
--R
--RThere are 2 exposed functions called rem :
--R   [1] (D,D) -> D from D if D has EUCDOM
--R   [2] (NonNegativeInteger,NonNegativeInteger) -> NonNegativeInteger
--R             from NonNegativeInteger
--R
--RThere is one unexposed function called rem :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of rem from EuclideanDomain
--R
--R
--RExamples of rem from NonNegativeInteger
--R
--R
--RExamples of rem from OutputForm
--R
--E 2477

--S 2478 of 3320
)d op remainder
--R 
--R
--RThere is one exposed function called remainder :
--R   [1] (D2,D) -> Record(rnum: D3,polnum: D2,den: D3) from D
--R             if D has PSETCAT(D3,D4,D5,D2) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5) and 
--R            D3 has INTDOM
--R
--RExamples of remainder from PolynomialSetCategory
--R
--E 2478

--S 2479 of 3320
)d op remainder!
--R 
--R
--RThere is one exposed function called remainder! :
--R   [1] (U32Vector,U32Vector,Integer) -> Void from 
--R            U32VectorPolynomialOperations
--R
--RExamples of remainder! from U32VectorPolynomialOperations
--R
--E 2479

--S 2480 of 3320
)d op RemainderList
--R 
--R
--RThere are 2 unexposed functions called RemainderList :
--R   [1] XPolynomial(D2) -> List(Record(k: Symbol,c: XPolynomial(D2)))
--R             from XPolynomial(D2) if D2 has RING
--R   [2] XRecursivePolynomial(D2,D3) -> List(Record(k: D2,c: 
--R            XRecursivePolynomial(D2,D3)))
--R             from XRecursivePolynomial(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of RemainderList from XPolynomial
--R
--R
--RExamples of RemainderList from XRecursivePolynomial
--R
--E 2480

--S 2481 of 3320
)d op remove
--R 
--R
--RThere are 5 exposed functions called remove :
--R   [1] (D1,D) -> D from D
--R             if D has finiteAggregate and D has CLAGG(D1) and D1 has 
--R            TYPE and D1 has SETCAT
--R   [2] ((D2 -> Boolean),D) -> D from D
--R             if D has finiteAggregate and D has CLAGG(D2) and D2 has 
--R            TYPE
--R   [3] ((D2 -> Boolean),D) -> D from D if D has LZSTAGG(D2) and D2 has 
--R            TYPE
--R   [4] ((D3 -> Boolean),Multiset(D3),Integer) -> Multiset(D3) from 
--R            Multiset(D3)
--R             if D3 has SETCAT
--R   [5] (D1,Multiset(D1),Integer) -> Multiset(D1) from Multiset(D1) if 
--R            D1 has SETCAT
--R
--RThere is one unexposed function called remove :
--R   [1] (SplittingNode(D2,D3),SplittingTree(D2,D3)) -> SplittingTree(D2,
--R            D3)
--R             from SplittingTree(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of remove from Collection
--R
--R
--RExamples of remove from LazyStreamAggregate
--R
--Rm:=[i for i in 1..] 
--Rf(i:PositiveInteger):Boolean == even? i 
--Rremove(f,m)
--R
--R
--RExamples of remove from Multiset
--R
--Rf(x) == x < 4 
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove(f,s,2) 
--Rremove(f,s,0) 
--Rremove(f,s,-2)
--R
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove(3,s,2) 
--Rremove(3,s,0) 
--Rremove(3,s,-2)
--R
--R
--RExamples of remove from SplittingTree
--R
--E 2481

--S 2482 of 3320
)d op remove!
--R 
--R
--RThere are 7 exposed functions called remove! :
--R   [1] ((D2 -> Boolean),D) -> D from D
--R             if D has finiteAggregate and D has DIOPS(D2) and D2 has 
--R            SETCAT
--R   [2] (D1,D) -> D from D
--R             if D has finiteAggregate and D has DIOPS(D1) and D1 has 
--R            SETCAT
--R   [3] (D1,D) -> D from D if D has ELAGG(D1) and D1 has TYPE and D1
--R             has SETCAT
--R   [4] ((D2 -> Boolean),D) -> D from D if D has ELAGG(D2) and D2 has 
--R            TYPE
--R   [5] (D2,D) -> Union(D1,"failed") from D
--R             if D has KDAGG(D2,D1) and D2 has SETCAT and D1 has SETCAT
--R            
--R   [6] ((D3 -> Boolean),Multiset(D3),Integer) -> Multiset(D3) from 
--R            Multiset(D3)
--R             if D3 has SETCAT
--R   [7] (D1,Multiset(D1),Integer) -> Multiset(D1) from Multiset(D1) if 
--R            D1 has SETCAT
--R
--RThere is one unexposed function called remove! :
--R   [1] (SplittingNode(D2,D3),SplittingTree(D2,D3)) -> SplittingTree(D2,
--R            D3)
--R             from SplittingTree(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of remove! from DictionaryOperations
--R
--R
--RExamples of remove! from ExtensibleLinearAggregate
--R
--R
--RExamples of remove! from KeyedDictionary
--R
--R
--RExamples of remove! from Multiset
--R
--Rf(x) == x < 4 
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove!(f,s,2) 
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove!(f,s,0) 
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove!(f,s,-2)
--R
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove!(3,s,2) 
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove!(3,s,0) 
--Rs := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10] 
--Rremove!(3,s,-2)
--R
--R
--RExamples of remove! from SplittingTree
--R
--E 2482

--S 2483 of 3320
)d op removeConjugate
--R 
--R
--RThere are 4 exposed functions called removeConjugate :
--R   [1] List(D) -> List(D) from D if D has AFSPCAT(D2) and D2 has FIELD
--R            
--R   [2] (List(D),NonNegativeInteger) -> List(D) from D
--R             if D has AFSPCAT(D3) and D3 has FIELD
--R   [3] List(D) -> List(D) from D if D has PRSPCAT(D2) and D2 has FIELD
--R            
--R   [4] (List(D),NonNegativeInteger) -> List(D) from D
--R             if D has PRSPCAT(D3) and D3 has FIELD
--R
--RExamples of removeConjugate from AffineSpaceCategory
--R
--R
--RExamples of removeConjugate from ProjectiveSpaceCategory
--R
--E 2483

--S 2484 of 3320
)d op removeConstantTerm
--R 
--R
--RThere is one unexposed function called removeConstantTerm :
--R   [1] (D1,Symbol) -> D1 from IntegrationTools(D3,D1)
--R             if D3 has INTDOM and D3 has ORDSET and D1 has FS(D3)
--R
--RExamples of removeConstantTerm from IntegrationTools
--R
--E 2484

--S 2485 of 3320
)d op removeCoshSq
--R 
--R
--RThere is one exposed function called removeCoshSq :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of removeCoshSq from TranscendentalManipulations
--R
--E 2485

--S 2486 of 3320
)d op removeCosSq
--R 
--R
--RThere is one exposed function called removeCosSq :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of removeCosSq from TranscendentalManipulations
--R
--E 2486

--S 2487 of 3320 done
)d op removeDuplicates
--R 
--R
--RThere is one exposed function called removeDuplicates :
--R   [1] D -> D from D
--R             if D has finiteAggregate and D has CLAGG(D1) and D1 has 
--R            TYPE and D1 has SETCAT
--R
--RExamples of removeDuplicates from Collection
--R
--RremoveDuplicates [1,4,2,-6,0,3,5,4,2,3]
--R
--E 2487

--S 2488 of 3320
)d op removeDuplicates!
--R 
--R
--RThere are 2 exposed functions called removeDuplicates! :
--R   [1] D -> D from D if D has ELAGG(D1) and D1 has TYPE and D1 has 
--R            SETCAT
--R   [2] D -> D from D if D has MDAGG(D1) and D1 has SETCAT
--R
--RExamples of removeDuplicates! from ExtensibleLinearAggregate
--R
--R
--RExamples of removeDuplicates! from MultiDictionary
--R
--E 2488

--S 2489 of 3320
)d op removeFirstZeroes
--R 
--R
--RThere is one exposed function called removeFirstZeroes :
--R   [1] D -> D from D if D has LOCPOWC(D1) and D1 has FIELD
--R
--RExamples of removeFirstZeroes from LocalPowerSeriesCategory
--R
--E 2489

--S 2490 of 3320
)d op removeIrreducibleRedundantFactors
--R 
--R
--RThere is one unexposed function called removeIrreducibleRedundantFactors :
--R   [1] (List(D5),List(D5)) -> List(D5)
--R             from PolynomialSetUtilitiesPackage(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has CHARZ and D2 has 
--R            EUCDOM and D2 has INTDOM and D3 has OAMONS and D4 has 
--R            ORDSET
--R
--RExamples of removeIrreducibleRedundantFactors from PolynomialSetUtilitiesPackage
--R
--E 2490

--S 2491 of 3320
)d op removeRedundantFactors
--R 
--R
--RThere are 5 unexposed functions called removeRedundantFactors :
--R   [1] List(D5) -> List(D5) from PolynomialSetUtilitiesPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [2] (D2,D2) -> List(D2) from PolynomialSetUtilitiesPackage(D3,D4,D5,
--R            D2)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5)
--R   [3] (List(D2),D2) -> List(D2) from PolynomialSetUtilitiesPackage(D3,
--R            D4,D5,D2)
--R             if D2 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [4] (List(D5),List(D5)) -> List(D5)
--R             from PolynomialSetUtilitiesPackage(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [5] (List(D6),List(D6),(List(D6) -> List(D6))) -> List(D6)
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of removeRedundantFactors from PolynomialSetUtilitiesPackage
--R
--E 2491

--S 2492 of 3320
)d op removeRedundantFactorsInContents
--R 
--R
--RThere is one unexposed function called removeRedundantFactorsInContents :
--R   [1] (List(D5),List(D5)) -> List(D5)
--R             from PolynomialSetUtilitiesPackage(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has GCDDOM and D2 has 
--R            INTDOM and D3 has OAMONS and D4 has ORDSET
--R
--RExamples of removeRedundantFactorsInContents from PolynomialSetUtilitiesPackage
--R
--E 2492

--S 2493 of 3320
)d op removeRedundantFactorsInPols
--R 
--R
--RThere is one unexposed function called removeRedundantFactorsInPols :
--R   [1] (List(D5),List(D5)) -> List(D5)
--R             from PolynomialSetUtilitiesPackage(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has GCDDOM and D2 has 
--R            INTDOM and D3 has OAMONS and D4 has ORDSET
--R
--RExamples of removeRedundantFactorsInPols from PolynomialSetUtilitiesPackage
--R
--E 2493

--S 2494 of 3320
)d op removeRoughlyRedundantFactorsInContents
--R 
--R
--RThere is one unexposed function called removeRoughlyRedundantFactorsInContents :
--R   [1] (List(D5),List(D5)) -> List(D5)
--R             from PolynomialSetUtilitiesPackage(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has GCDDOM and D2 has 
--R            INTDOM and D3 has OAMONS and D4 has ORDSET
--R
--RExamples of removeRoughlyRedundantFactorsInContents from PolynomialSetUtilitiesPackage
--R
--E 2494

--S 2495 of 3320
)d op removeRoughlyRedundantFactorsInPol
--R 
--R
--RThere is one unexposed function called removeRoughlyRedundantFactorsInPol :
--R   [1] (D1,List(D1)) -> D1 from PolynomialSetUtilitiesPackage(D3,D4,D5,
--R            D1)
--R             if D1 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of removeRoughlyRedundantFactorsInPol from PolynomialSetUtilitiesPackage
--R
--E 2495

--S 2496 of 3320
)d op removeRoughlyRedundantFactorsInPols
--R 
--R
--RThere are 2 unexposed functions called removeRoughlyRedundantFactorsInPols :
--R   [1] (List(D5),List(D5)) -> List(D5)
--R             from PolynomialSetUtilitiesPackage(D2,D3,D4,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [2] (List(D6),List(D6),Boolean) -> List(D6)
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET
--R
--RExamples of removeRoughlyRedundantFactorsInPols from PolynomialSetUtilitiesPackage
--R
--E 2496

--S 2497 of 3320
)d op removeSinhSq
--R 
--R
--RThere is one exposed function called removeSinhSq :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of removeSinhSq from TranscendentalManipulations
--R
--E 2497

--S 2498 of 3320
)d op removeSinSq
--R 
--R
--RThere is one exposed function called removeSinSq :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of removeSinSq from TranscendentalManipulations
--R
--E 2498

--S 2499 of 3320
)d op removeSquaresIfCan
--R 
--R
--RThere is one unexposed function called removeSquaresIfCan :
--R   [1] List(D5) -> List(D5) from PolynomialSetUtilitiesPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has INTDOM and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of removeSquaresIfCan from PolynomialSetUtilitiesPackage
--R
--E 2499

--S 2500 of 3320
)d op removeSuperfluousCases
--R 
--R
--RThere are 2 exposed functions called removeSuperfluousCases :
--R   [1] List(Record(val: List(D5),tower: D6)) -> List(Record(val: List(
--R            D5),tower: D6))
--R             from QuasiComponentPackage(D2,D3,D4,D5,D6)
--R             if D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5
--R            ) and D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET
--R   [2] List(Record(val: List(D5),tower: D6)) -> List(Record(val: List(
--R            D5),tower: D6))
--R             from SquareFreeQuasiComponentPackage(D2,D3,D4,D5,D6)
--R             if D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5
--R            ) and D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET
--R
--RExamples of removeSuperfluousCases from QuasiComponentPackage
--R
--R
--RExamples of removeSuperfluousCases from SquareFreeQuasiComponentPackage
--R
--E 2500

--S 2501 of 3320
)d op removeSuperfluousQuasiComponents
--R 
--R
--RThere are 2 exposed functions called removeSuperfluousQuasiComponents :
--R   [1] List(D6) -> List(D6) from QuasiComponentPackage(D2,D3,D4,D5,D6)
--R             if D6 has RSETCAT(D2,D3,D4,D5) and D2 has GCDDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [2] List(D6) -> List(D6) from SquareFreeQuasiComponentPackage(D2,D3,
--R            D4,D5,D6)
--R             if D6 has RSETCAT(D2,D3,D4,D5) and D2 has GCDDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of removeSuperfluousQuasiComponents from QuasiComponentPackage
--R
--R
--RExamples of removeSuperfluousQuasiComponents from SquareFreeQuasiComponentPackage
--R
--E 2501

--S 2502 of 3320
)d op removeZero
--R 
--R
--RThere is one exposed function called removeZero :
--R   [1] (D1,D) -> D1 from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of removeZero from TriangularSetCategory
--R
--E 2502

--S 2503 of 3320
)d op removeZeroes
--R 
--R
--RThere are 4 exposed functions called removeZeroes :
--R   [1] D -> D from D if D has LOCPOWC(D1) and D1 has FIELD
--R   [2] (Integer,D) -> D from D if D has LOCPOWC(D2) and D2 has FIELD
--R         
--R   [3] (Integer,D) -> D from D
--R             if D has ULSCCAT(D2,D3) and D2 has RING and D3 has UTSCAT(
--R            D2)
--R   [4] D -> D from D if D has ULSCCAT(D1,D2) and D1 has RING and D2
--R             has UTSCAT(D1)
--R
--RThere are 6 unexposed functions called removeZeroes :
--R   [1] (Integer,BalancedPAdicRational(D2)) -> BalancedPAdicRational(D2)
--R             from BalancedPAdicRational(D2) if D2: INT
--R   [2] BalancedPAdicRational(D1) -> BalancedPAdicRational(D1)
--R             from BalancedPAdicRational(D1) if D1: INT
--R   [3] (Integer,PAdicRational(D2)) -> PAdicRational(D2) from 
--R            PAdicRational(D2)
--R             if D2: INT
--R   [4] PAdicRational(D1) -> PAdicRational(D1) from PAdicRational(D1)
--R             if D1: INT
--R   [5] (Integer,PAdicRationalConstructor(D2,D3)) -> 
--R            PAdicRationalConstructor(D2,D3)
--R             from PAdicRationalConstructor(D2,D3) if D2: INT and D3
--R             has PADICCT(D2)
--R   [6] PAdicRationalConstructor(D1,D2) -> PAdicRationalConstructor(D1,
--R            D2)
--R             from PAdicRationalConstructor(D1,D2) if D1: INT and D2
--R             has PADICCT(D1)
--R
--RExamples of removeZeroes from BalancedPAdicRational
--R
--R
--RExamples of removeZeroes from LocalPowerSeriesCategory
--R
--R
--RExamples of removeZeroes from PAdicRational
--R
--R
--RExamples of removeZeroes from PAdicRationalConstructor
--R
--R
--RExamples of removeZeroes from UnivariateLaurentSeriesConstructorCategory
--R
--E 2503

--S 2504 of 3320
)d op rename
--R 
--R
--RThere is one exposed function called rename :
--R   [1] (D,OutputForm) -> D from D if D has RCFIELD
--R
--RExamples of rename from RealClosedField
--R
--E 2504

--S 2505 of 3320
)d op rename!
--R 
--R
--RThere is one exposed function called rename! :
--R   [1] (D,OutputForm) -> D from D if D has RCFIELD
--R
--RExamples of rename! from RealClosedField
--R
--E 2505

--S 2506 of 3320
)d op reopen!
--R 
--R
--RThere is one exposed function called reopen! :
--R   [1] (D,String) -> D from D
--R             if D has FILECAT(D2,D3) and D2 has SETCAT and D3 has 
--R            SETCAT
--R
--RExamples of reopen! from FileCategory
--R
--E 2506

--S 2507 of 3320
)d op reorder
--R 
--R
--RThere are 3 unexposed functions called reorder :
--R   [1] (DistributedMultivariatePolynomial(D2,D3),List(Integer)) -> 
--R            DistributedMultivariatePolynomial(D2,D3)
--R             from DistributedMultivariatePolynomial(D2,D3)
--R             if D2: LIST(SYMBOL) and D3 has RING
--R   [2] (GeneralDistributedMultivariatePolynomial(D2,D3,D4),List(Integer
--R            )) -> GeneralDistributedMultivariatePolynomial(D2,D3,D4)
--R             from GeneralDistributedMultivariatePolynomial(D2,D3,D4)
--R             if D2: LIST(SYMBOL) and D3 has RING and D4 has DIRPCAT(#(
--R            D2),NNI)
--R   [3] (HomogeneousDistributedMultivariatePolynomial(D2,D3),List(
--R            Integer)) -> HomogeneousDistributedMultivariatePolynomial(D2,D3)
--R             from HomogeneousDistributedMultivariatePolynomial(D2,D3)
--R             if D2: LIST(SYMBOL) and D3 has RING
--R
--RExamples of reorder from DistributedMultivariatePolynomial
--R
--R
--RExamples of reorder from GeneralDistributedMultivariatePolynomial
--R
--R
--RExamples of reorder from HomogeneousDistributedMultivariatePolynomial
--R
--E 2507

--S 2508 of 3320
)d op repack1
--R 
--R
--RThere is one exposed function called repack1 :
--R   [1] (D2,U32Vector,Integer,D5) -> Void from D
--R             if D has MAGCDOC(D2,D5) and D2 has TYPE and D5 has TYPE
--R         
--R
--RExamples of repack1 from ModularAlgebraicGcdOperations
--R
--E 2508

--S 2509 of 3320 done
)d op repeating
--R 
--R
--RThere is one exposed function called repeating :
--R   [1] List(D2) -> Stream(D2) from Stream(D2) if D2 has TYPE
--R
--RExamples of repeating from Stream
--R
--Rm:=repeating([-1,0,1,2,3])
--R
--E 2509

--S 2510 of 3320 done
)d op repeating?
--R 
--R
--RThere is one exposed function called repeating? :
--R   [1] (List(D3),Stream(D3)) -> Boolean from Stream(D3)
--R             if D3 has SETCAT and D3 has TYPE
--R
--RExamples of repeating? from Stream
--R
--Rm:=[1,2,3] 
--Rn:=repeating(m) 
--Rrepeating?(m,n)
--R
--E 2510

--S 2511 of 3320
)d op repeatUntilLoop
--R 
--R
--RThere is one exposed function called repeatUntilLoop :
--R   [1] (Switch,FortranCode) -> FortranCode from FortranCode
--R
--RExamples of repeatUntilLoop from FortranCode
--R
--E 2511

--S 2512 of 3320
)d op replace
--R 
--R
--RThere is one exposed function called replace :
--R   [1] (D,UniversalSegment(Integer),D) -> D from D if D has SRAGG
--R
--RExamples of replace from StringAggregate
--R
--E 2512

--S 2513 of 3320
)d op replaceDiffs
--R 
--R
--RThere is one exposed function called replaceDiffs :
--R   [1] (D1,BasicOperator,Symbol) -> D1 from ExpressionSolve(D4,D1,D5,D6
--R            )
--R             if D4 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
--R            InputForm)) and D1 has FS(D4) and D5 has UTSCAT(D1) and D6
--R             has UTSCAT(SUPEXPR(D1))
--R
--RExamples of replaceDiffs from ExpressionSolve
--R
--E 2513

--S 2514 of 3320
)d op replaceKthElement
--R 
--R
--RThere is one unexposed function called replaceKthElement :
--R   [1] (SetOfMIntegersInOneToN(D2,D3),PositiveInteger,PositiveInteger)
--R             -> Union(SetOfMIntegersInOneToN(D2,D3),"failed")
--R             from SetOfMIntegersInOneToN(D2,D3) if D2: PI and D3: PI
--R         
--R
--RExamples of replaceKthElement from SetOfMIntegersInOneToN
--R
--E 2514

--S 2515 of 3320
)d op replaceVarByOne
--R 
--R
--RThere is one exposed function called replaceVarByOne :
--R   [1] (D1,Integer) -> D1 from PackageForPoly(D3,D1,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D1 has FAMR(D3,D4)
--R
--RExamples of replaceVarByOne from PackageForPoly
--R
--E 2515

--S 2516 of 3320
)d op replaceVarByZero
--R 
--R
--RThere is one exposed function called replaceVarByZero :
--R   [1] (D1,Integer) -> D1 from PackageForPoly(D3,D1,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D1 has FAMR(D3,D4)
--R
--RExamples of replaceVarByZero from PackageForPoly
--R
--E 2516

--S 2517 of 3320 done
)d op reportInstantiations
--R 
--R
--RThere is one exposed function called reportInstantiations :
--R   [1] Boolean -> Void from ApplicationProgramInterface
--R
--RExamples of reportInstantiations from ApplicationProgramInterface
--R
--RreportInstantiations(true) 
--R1 
--RreportInstantiations(false)
--R
--E 2517

--S 2518 of 3320
)d op representationType
--R 
--R
--RThere is one exposed function called representationType :
--R   [1]  -> Union("prime",polynomial,normal,cyclic) from D if D has 
--R            FFIELDC
--R
--RExamples of representationType from FiniteFieldCategory
--R
--E 2518

--S 2519 of 3320
)d op represents
--R 
--R
--RThere are 6 exposed functions called represents :
--R   [1] Vector(D2) -> D from D if D2 has FIELD and D has FAXF(D2)
--R   [2] (Vector(D2),D2) -> D from D
--R             if D2 has UPOLYC(D3) and D3 has UFD and D has FFCAT(D3,D2,
--R            D4) and D4 has UPOLYC(FRAC(D2))
--R   [3] (Vector(D3),Vector(D)) -> D from D if D3 has COMRING and D has 
--R            FINAALG(D3)
--R   [4] (Vector(D3),Vector(D)) -> D from D
--R             if D3 has COMRING and D has FINRALG(D3,D4) and D4 has 
--R            UPOLYC(D3)
--R   [5] Vector(D2) -> D from D
--R             if D2 has COMRING and D has FRAMALG(D2,D3) and D3 has 
--R            UPOLYC(D2)
--R   [6] Vector(D2) -> D from D if D2 has COMRING and D has FRNAALG(D2)
--R         
--R
--RExamples of represents from FiniteAlgebraicExtensionField
--R
--R
--RExamples of represents from FunctionFieldCategory
--R
--R
--RExamples of represents from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of represents from FiniteRankAlgebra
--R
--R
--RExamples of represents from FramedAlgebra
--R
--R
--RExamples of represents from FramedNonAssociativeAlgebra
--R
--E 2519

--S 2520 of 3320
)d op repSq
--R 
--R
--RThere is one unexposed function called repSq :
--R   [1] (Vector(D3),NonNegativeInteger) -> Vector(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of repSq from InnerNormalBasisFieldFunctions
--R
--E 2520

--S 2521 of 3320
)d op reseed
--R 
--R
--RThere is one exposed function called reseed :
--R   [1] Integer -> Void from RandomNumberSource
--R
--RExamples of reseed from RandomNumberSource
--R
--E 2521

--S 2522 of 3320
)d op reset
--R 
--R
--RThere are 2 exposed functions called reset :
--R   [1]  -> Void
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12 has PLACESC(D6,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2] ThreeDimensionalViewport -> Void from ThreeDimensionalViewport
--R         
--R
--RThere is one unexposed function called reset :
--R   [1] TwoDimensionalViewport -> Void from TwoDimensionalViewport
--R
--RExamples of reset from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of reset from TwoDimensionalViewport
--R
--R
--RExamples of reset from ThreeDimensionalViewport
--R
--E 2522

--S 2523 of 3320
)d op resetAttributeButtons
--R 
--R
--RThere is one exposed function called resetAttributeButtons :
--R   [1]  -> Void from AttributeButtons
--R
--RExamples of resetAttributeButtons from AttributeButtons
--R
--E 2523

--S 2524 of 3320
)d op resetBadValues
--R 
--R
--RThere is one unexposed function called resetBadValues :
--R   [1] Pattern(D1) -> Pattern(D1) from Pattern(D1) if D1 has SETCAT
--R
--RExamples of resetBadValues from Pattern
--R
--E 2524

--S 2525 of 3320 done
)d op resetNew
--R 
--R
--RThere is one exposed function called resetNew :
--R   [1]  -> Void from Symbol
--R
--RExamples of resetNew from Symbol
--R
--Rnew()$Symbol 
--Rnew()$Symbol 
--RresetNew() 
--Rnew()$Symbol
--R
--E 2525

--S 2526 of 3320
)d op resetVariableOrder
--R 
--R
--RThere is one exposed function called resetVariableOrder :
--R   [1]  -> Void from UserDefinedVariableOrdering
--R
--RExamples of resetVariableOrder from UserDefinedVariableOrdering
--R
--E 2526

--S 2527 of 3320
)d op reshape
--R 
--R
--RThere are 2 exposed functions called reshape :
--R   [1] (List(D7),CartesianTensor(D4,D5,D6)) -> CartesianTensor(D4,D5,D7
--R            )
--R             from CartesianTensorFunctions2(D4,D5,D6,D7)
--R             if D4: INT and D5: NNI and D6 has COMRING and D7 has 
--R            COMRING
--R   [2] (List(D8),D3) -> D1 from MPolyCatFunctions2(D4,D5,D6,D7,D8,D3,D1
--R            )
--R             if D8 has RING and D4 has ORDSET and D5 has OAMONS and D7
--R             has RING and D1 has POLYCAT(D8,D6,D4) and D6 has OAMONS 
--R            and D3 has POLYCAT(D7,D5,D4)
--R
--RExamples of reshape from CartesianTensorFunctions2
--R
--R
--RExamples of reshape from MPolyCatFunctions2
--R
--E 2527

--S 2528 of 3320
)d op resize
--R 
--R
--RThere is one exposed function called resize :
--R   [1] (ThreeDimensionalViewport,PositiveInteger,PositiveInteger) -> 
--R            Void
--R             from ThreeDimensionalViewport
--R
--RThere is one unexposed function called resize :
--R   [1] (TwoDimensionalViewport,PositiveInteger,PositiveInteger) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of resize from TwoDimensionalViewport
--R
--R
--RExamples of resize from ThreeDimensionalViewport
--R
--E 2528

--S 2529 of 3320
)d op rest
--R 
--R
--RThere are 3 exposed functions called rest :
--R   [1] D -> Union(D,"failed") from D
--R             if D has TSETCAT(D1,D2,D3,D4) and D1 has INTDOM and D2
--R             has OAMONS and D3 has ORDSET and D4 has RPOLCAT(D1,D2,D3)
--R            
--R   [2] (D,NonNegativeInteger) -> D from D if D has URAGG(D2) and D2
--R             has TYPE
--R   [3] D -> D from D if D has URAGG(D1) and D1 has TYPE
--R
--RThere are 3 unexposed functions called rest :
--R   [1] Magma(D1) -> Magma(D1) from Magma(D1) if D1 has ORDSET
--R   [2] OrderedFreeMonoid(D1) -> OrderedFreeMonoid(D1) from 
--R            OrderedFreeMonoid(D1)
--R             if D1 has ORDSET
--R   [3] PoincareBirkhoffWittLyndonBasis(D1) -> 
--R            PoincareBirkhoffWittLyndonBasis(D1)
--R             from PoincareBirkhoffWittLyndonBasis(D1) if D1 has ORDSET
--R            
--R
--RExamples of rest from Magma
--R
--R
--RExamples of rest from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rrest m1
--R
--R
--RExamples of rest from PoincareBirkhoffWittLyndonBasis
--R
--R
--RExamples of rest from TriangularSetCategory
--R
--R
--RExamples of rest from UnaryRecursiveAggregate
--R
--Rrest([1,4,2,-6,0,3,5,4,2,3],3)
--R
--Rrest [1,4,2,-6,0,3,5,4,2,3]
--R
--E 2529

--S 2530 of 3320
)d op restorePrecision
--R 
--R
--RThere is one exposed function called restorePrecision :
--R   [1]  -> Void from NAGLinkSupportPackage
--R
--RExamples of restorePrecision from NAGLinkSupportPackage
--R
--E 2530

--S 2531 of 3320
)d op result
--R 
--R
--RThere is one unexposed function called result :
--R   [1] SplittingTree(D2,D3) -> List(Record(val: D2,tower: D3))
--R             from SplittingTree(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of result from SplittingTree
--R
--E 2531

--S 2532 of 3320
)d op resultant
--R 
--R
--RThere are 4 exposed functions called resultant :
--R   [1] (D,D,D1) -> D from D
--R             if D has POLYCAT(D2,D3,D1) and D2 has RING and D3 has 
--R            OAMONS and D1 has ORDSET and D2 has COMRING
--R   [2] (U32Vector,U32Vector,Integer) -> Integer
--R             from U32VectorPolynomialOperations
--R   [3] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R   [4] (D,D) -> D1 from D if D has UPOLYC(D1) and D1 has RING and D1
--R             has COMRING
--R
--RThere is one unexposed function called resultant :
--R   [1] (D2,D2) -> D1 from PseudoRemainderSequence(D1,D2)
--R             if D1 has INTDOM and D2 has UPOLYC(D1)
--R
--RExamples of resultant from PolynomialCategory
--R
--R
--RExamples of resultant from U32VectorPolynomialOperations
--R
--R
--RExamples of resultant from PseudoRemainderSequence
--R
--R
--RExamples of resultant from RecursivePolynomialCategory
--R
--R
--RExamples of resultant from UnivariatePolynomialCategory
--R
--E 2532

--S 2533 of 3320
)d op resultantEuclidean
--R 
--R
--RThere is one unexposed function called resultantEuclidean :
--R   [1] (D2,D2) -> Record(coef1: D2,coef2: D2,resultant: D3)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of resultantEuclidean from PseudoRemainderSequence
--R
--E 2533

--S 2534 of 3320
--R----------------)d op resultantEuclidean_naif (fix this)
--E 2534

--S 2535 of 3320
--R----------------)d op resultant_naif (fix this)
--E 2535

--S 2536 of 3320
)d op resultantReduit
--R 
--R
--RThere is one unexposed function called resultantReduit :
--R   [1] (D2,D2) -> D1 from PseudoRemainderSequence(D1,D2)
--R             if D1 has INTDOM and D1 has GCDDOM and D2 has UPOLYC(D1)
--R         
--R
--RExamples of resultantReduit from PseudoRemainderSequence
--R
--E 2536

--S 2537 of 3320
)d op resultantReduitEuclidean
--R 
--R
--RThere is one unexposed function called resultantReduitEuclidean :
--R   [1] (D2,D2) -> Record(coef1: D2,coef2: D2,resultantReduit: D3)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has GCDDOM and D3 has INTDOM and D2 has UPOLYC(D3)
--R         
--R
--RExamples of resultantReduitEuclidean from PseudoRemainderSequence
--R
--E 2537

--S 2538 of 3320
)d op resultantSet
--R 
--R
--RThere is one exposed function called resultantSet :
--R   [1] List(SparseUnivariatePolynomial(Polynomial(D3))) -> List(
--R            Polynomial(D3))
--R             from CylindricalAlgebraicDecompositionPackage(D3) if D3
--R             has RCFIELD
--R
--RExamples of resultantSet from CylindricalAlgebraicDecompositionPackage
--R
--E 2538

--S 2539 of 3320
)d op retract
--R 
--R
--RThere are 38 exposed functions called retract :
--R   [1] Any -> D1 from AnyFunctions1(D1) if D1 has TYPE
--R   [2] Polynomial(Float) -> FortranExpression(D2,D3,D4)
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(FLOAT) and D2: LIST(SYMBOL) and D3: LIST
--R            (SYMBOL) and D4 has FMTC
--R   [3] Fraction(Polynomial(Float)) -> FortranExpression(D2,D3,D4)
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(FLOAT) and D2: LIST(SYMBOL) and D3: LIST
--R            (SYMBOL) and D4 has FMTC
--R   [4] Expression(Float) -> FortranExpression(D2,D3,D4)
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(FLOAT) and D2: LIST(SYMBOL) and D3: LIST
--R            (SYMBOL) and D4 has FMTC
--R   [5] Polynomial(Integer) -> FortranExpression(D2,D3,D4)
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(INT) and D2: LIST(SYMBOL) and D3: LIST(
--R            SYMBOL) and D4 has FMTC
--R   [6] Fraction(Polynomial(Integer)) -> FortranExpression(D2,D3,D4)
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(INT) and D2: LIST(SYMBOL) and D3: LIST(
--R            SYMBOL) and D4 has FMTC
--R   [7] Expression(Integer) -> FortranExpression(D2,D3,D4)
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(INT) and D2: LIST(SYMBOL) and D3: LIST(
--R            SYMBOL) and D4 has FMTC
--R   [8] Symbol -> FortranExpression(D2,D3,D4) from FortranExpression(D2,
--R            D3,D4)
--R             if D2: LIST(SYMBOL) and D3: LIST(SYMBOL) and D4 has FMTC
--R         
--R   [9] Expression(D4) -> FortranExpression(D2,D3,D4)
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has FMTC and D2: LIST(SYMBOL) and D3: LIST(SYMBOL)
--R         
--R   [10] Matrix(Fraction(Polynomial(Integer))) -> D from D if D has 
--R            FMFUN
--R   [11] Matrix(Fraction(Polynomial(Float))) -> D from D if D has FMFUN
--R            
--R   [12] Matrix(Polynomial(Integer)) -> D from D if D has FMFUN
--R   [13] Matrix(Polynomial(Float)) -> D from D if D has FMFUN
--R   [14] Matrix(Expression(Integer)) -> D from D if D has FMFUN
--R   [15] Matrix(Expression(Float)) -> D from D if D has FMFUN
--R   [16] Fraction(Polynomial(Integer)) -> D from D if D has FORTFN
--R   [17] Fraction(Polynomial(Float)) -> D from D if D has FORTFN
--R   [18] Polynomial(Integer) -> D from D if D has FORTFN
--R   [19] Polynomial(Float) -> D from D if D has FORTFN
--R   [20] Expression(Integer) -> D from D if D has FORTFN
--R   [21] Expression(Float) -> D from D if D has FORTFN
--R   [22] Vector(Fraction(Polynomial(Integer))) -> D from D if D has 
--R            FVFUN
--R   [23] Vector(Fraction(Polynomial(Float))) -> D from D if D has FVFUN
--R            
--R   [24] Vector(Polynomial(Integer)) -> D from D if D has FVFUN
--R   [25] Vector(Polynomial(Float)) -> D from D if D has FVFUN
--R   [26] Vector(Expression(Integer)) -> D from D if D has FVFUN
--R   [27] Vector(Expression(Float)) -> D from D if D has FVFUN
--R   [28] MyExpression(D2,D3) -> Fraction(MyUnivariatePolynomial(D2,D3))
--R             from MyExpression(D2,D3)
--R             if D2: SYMBOL and D3 has Join(Ring,OrderedSet,
--R            IntegralDomain)
--R   [29] NumericalIntegrationProblem -> Union(nia: Record(var: Symbol,fn
--R            : Expression(DoubleFloat),range: Segment(OrderedCompletion(
--R            DoubleFloat)),abserr: DoubleFloat,relerr: DoubleFloat),mdnia: 
--R            Record(fn: Expression(DoubleFloat),range: List(Segment(
--R            OrderedCompletion(DoubleFloat))),abserr: DoubleFloat,relerr: 
--R            DoubleFloat))
--R             from NumericalIntegrationProblem
--R   [30] UnivariateFormalPowerSeries(D2) -> NottinghamGroup(D2)
--R             from NottinghamGroup(D2) if D2 has FFIELDC
--R   [31] NumericalODEProblem -> Record(xinit: DoubleFloat,xend: 
--R            DoubleFloat,fn: Vector(Expression(DoubleFloat)),yinit: List(
--R            DoubleFloat),intvals: List(DoubleFloat),g: Expression(DoubleFloat
--R            ),abserr: DoubleFloat,relerr: DoubleFloat)
--R             from NumericalODEProblem
--R   [32] NumericalOptimizationProblem -> Union(noa: Record(fn: 
--R            Expression(DoubleFloat),init: List(DoubleFloat),lb: List(
--R            OrderedCompletion(DoubleFloat)),cf: List(Expression(DoubleFloat))
--R            ,ub: List(OrderedCompletion(DoubleFloat))),lsa: Record(lfn: List(
--R            Expression(DoubleFloat)),init: List(DoubleFloat)))
--R             from NumericalOptimizationProblem
--R   [33] NumericalPDEProblem -> Record(pde: List(Expression(DoubleFloat)
--R            ),constraints: List(Record(start: DoubleFloat,finish: DoubleFloat
--R            ,grid: NonNegativeInteger,boundaryType: Integer,dStart: Matrix(
--R            DoubleFloat),dFinish: Matrix(DoubleFloat))),f: List(List(
--R            Expression(DoubleFloat))),st: String,tol: DoubleFloat)
--R             from NumericalPDEProblem
--R   [34] List(D5) -> D from D
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D has PSETCAT(D2,D3,D4,D5)
--R   [35] D -> D1 from D if D has RETRACT(D1) and D1 has TYPE
--R   [36] D1 -> D from D
--R             if D1 = POLY(D2) and not(ofCategory(D2,Algebra(Fraction(
--R            Integer)))) and not(ofCategory(D2,Algebra(Integer))) and D4
--R             has KONVERT(SYMBOL) and D2 has RING and D has RPOLCAT(D2,
--R            D3,D4) and D3 has OAMONS and D4 has ORDSET or D1 = POLY(D2)
--R            and not(ofCategory(D2,IntegerNumberSystem)) and not(
--R            ofCategory(D2,Algebra(Fraction(Integer)))) and D2 has 
--R            ALGEBRA(INT) and D4 has KONVERT(SYMBOL) and D2 has RING and
--R            D has RPOLCAT(D2,D3,D4) and D3 has OAMONS and D4 has ORDSET
--R            or D1 = POLY(D2) and not(ofCategory(D2,
--R            QuotientFieldCategory(Integer))) and D2 has ALGEBRA(FRAC(
--R            INT)) and D4 has KONVERT(SYMBOL) and D2 has RING and D has 
--R            RPOLCAT(D2,D3,D4) and D3 has OAMONS and D4 has ORDSET
--R   [37] D1 -> D from D
--R             if D1 = POLY(INT) and D has RPOLCAT(D2,D3,D4) and not(
--R            ofCategory(D2,Algebra(Fraction(Integer)))) and D2 has 
--R            ALGEBRA(INT) and D4 has KONVERT(SYMBOL) and D2 has RING and
--R            D3 has OAMONS and D4 has ORDSET or D1 = POLY(INT) and D
--R             has RPOLCAT(D2,D3,D4) and D2 has ALGEBRA(FRAC(INT)) and D4
--R             has KONVERT(SYMBOL) and D2 has RING and D3 has OAMONS and 
--R            D4 has ORDSET
--R   [38] Polynomial(Fraction(Integer)) -> D from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has ALGEBRA(FRAC(INT)) 
--R            and D4 has KONVERT(SYMBOL) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of retract from AnyFunctions1
--R
--R
--RExamples of retract from FortranExpression
--R
--R
--RExamples of retract from FortranMatrixFunctionCategory
--R
--R
--RExamples of retract from FortranFunctionCategory
--R
--R
--RExamples of retract from FortranVectorFunctionCategory
--R
--R
--RExamples of retract from MyExpression
--R
--R
--RExamples of retract from NumericalIntegrationProblem
--R
--R
--RExamples of retract from NottinghamGroup
--R
--R
--RExamples of retract from NumericalODEProblem
--R
--R
--RExamples of retract from NumericalOptimizationProblem
--R
--R
--RExamples of retract from NumericalPDEProblem
--R
--R
--RExamples of retract from PolynomialSetCategory
--R
--R
--RExamples of retract from RetractableTo
--R
--R
--RExamples of retract from RecursivePolynomialCategory
--R
--E 2539

--S 2540 of 3320
)d op retractable?
--R 
--R
--RThere is one exposed function called retractable? :
--R   [1] Any -> Boolean from AnyFunctions1(D3) if D3 has TYPE
--R
--RThere are 5 unexposed functions called retractable? :
--R   [1] AntiSymm(D2,D3) -> Boolean from AntiSymm(D2,D3)
--R             if D2 has RING and D3: LIST(SYMBOL)
--R   [2] DeRhamComplex(D2,D3) -> Boolean from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R   [3] LyndonWord(D2) -> Boolean from LyndonWord(D2) if D2 has ORDSET
--R         
--R   [4] Magma(D2) -> Boolean from Magma(D2) if D2 has ORDSET
--R   [5] PoincareBirkhoffWittLyndonBasis(D2) -> Boolean
--R             from PoincareBirkhoffWittLyndonBasis(D2) if D2 has ORDSET
--R            
--R
--RExamples of retractable? from AntiSymm
--R
--R
--RExamples of retractable? from AnyFunctions1
--R
--R
--RExamples of retractable? from DeRhamComplex
--R
--Rder:=DERHAM(Integer,[x,y,z]) 
--R[dx,dy,dz]:=[generator(i)$der for i in 1..3] 
--Rf:BOP:=operator('f) 
--Rg:BOP:=operator('g) 
--Rh:BOP:=operator('h) 
--Rsigma:=f(x,y,z)*dx + g(x,y,z)*dy + h(x,y,z)*dz 
--Rretractable? sigma
--R
--R
--RExamples of retractable? from LyndonWord
--R
--R
--RExamples of retractable? from Magma
--R
--R
--RExamples of retractable? from PoincareBirkhoffWittLyndonBasis
--R
--E 2540

--S 2541 of 3320
)d op retractIfCan
--R 
--R
--RThere are 32 exposed functions called retractIfCan :
--R   [1] Any -> Union(D1,"failed") from AnyFunctions1(D1) if D1 has TYPE
--R            
--R   [2] Polynomial(Float) -> Union(FortranExpression(D2,D3,D4),"failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(FLOAT) and D2: LIST(SYMBOL) and D3: LIST
--R            (SYMBOL) and D4 has FMTC
--R   [3] Fraction(Polynomial(Float)) -> Union(FortranExpression(D2,D3,D4)
--R            ,"failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(FLOAT) and D2: LIST(SYMBOL) and D3: LIST
--R            (SYMBOL) and D4 has FMTC
--R   [4] Expression(Float) -> Union(FortranExpression(D2,D3,D4),"failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(FLOAT) and D2: LIST(SYMBOL) and D3: LIST
--R            (SYMBOL) and D4 has FMTC
--R   [5] Polynomial(Integer) -> Union(FortranExpression(D2,D3,D4),
--R            "failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(INT) and D2: LIST(SYMBOL) and D3: LIST(
--R            SYMBOL) and D4 has FMTC
--R   [6] Fraction(Polynomial(Integer)) -> Union(FortranExpression(D2,D3,
--R            D4),"failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(INT) and D2: LIST(SYMBOL) and D3: LIST(
--R            SYMBOL) and D4 has FMTC
--R   [7] Expression(Integer) -> Union(FortranExpression(D2,D3,D4),
--R            "failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has RETRACT(INT) and D2: LIST(SYMBOL) and D3: LIST(
--R            SYMBOL) and D4 has FMTC
--R   [8] Symbol -> Union(FortranExpression(D2,D3,D4),"failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D2: LIST(SYMBOL) and D3: LIST(SYMBOL) and D4 has FMTC
--R         
--R   [9] Expression(D4) -> Union(FortranExpression(D2,D3,D4),"failed")
--R             from FortranExpression(D2,D3,D4)
--R             if D4 has FMTC and D2: LIST(SYMBOL) and D3: LIST(SYMBOL)
--R         
--R   [10] Matrix(Fraction(Polynomial(Integer))) -> Union(D,"failed")
--R             from D
--R             if D has FMFUN
--R   [11] Matrix(Fraction(Polynomial(Float))) -> Union(D,"failed") from D
--R             if D has FMFUN
--R   [12] Matrix(Polynomial(Integer)) -> Union(D,"failed") from D if D
--R             has FMFUN
--R   [13] Matrix(Polynomial(Float)) -> Union(D,"failed") from D if D has 
--R            FMFUN
--R   [14] Matrix(Expression(Integer)) -> Union(D,"failed") from D if D
--R             has FMFUN
--R   [15] Matrix(Expression(Float)) -> Union(D,"failed") from D if D has 
--R            FMFUN
--R   [16] Fraction(Polynomial(Integer)) -> Union(D,"failed") from D if D
--R             has FORTFN
--R   [17] Fraction(Polynomial(Float)) -> Union(D,"failed") from D if D
--R             has FORTFN
--R   [18] Polynomial(Integer) -> Union(D,"failed") from D if D has FORTFN
--R            
--R   [19] Polynomial(Float) -> Union(D,"failed") from D if D has FORTFN
--R         
--R   [20] Expression(Integer) -> Union(D,"failed") from D if D has FORTFN
--R            
--R   [21] Expression(Float) -> Union(D,"failed") from D if D has FORTFN
--R         
--R   [22] Vector(Fraction(Polynomial(Integer))) -> Union(D,"failed")
--R             from D
--R             if D has FVFUN
--R   [23] Vector(Fraction(Polynomial(Float))) -> Union(D,"failed") from D
--R             if D has FVFUN
--R   [24] Vector(Polynomial(Integer)) -> Union(D,"failed") from D if D
--R             has FVFUN
--R   [25] Vector(Polynomial(Float)) -> Union(D,"failed") from D if D has 
--R            FVFUN
--R   [26] Vector(Expression(Integer)) -> Union(D,"failed") from D if D
--R             has FVFUN
--R   [27] Vector(Expression(Float)) -> Union(D,"failed") from D if D has 
--R            FVFUN
--R   [28] List(D5) -> Union(D,"failed") from D
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D has PSETCAT(D2,D3,D4,D5)
--R   [29] D -> Union(D1,"failed") from D if D has RETRACT(D1) and D1 has 
--R            TYPE
--R   [30] D1 -> Union(D,"failed") from D
--R             if D1 = POLY(D2) and not(ofCategory(D2,Algebra(Fraction(
--R            Integer)))) and not(ofCategory(D2,Algebra(Integer))) and D4
--R             has KONVERT(SYMBOL) and D2 has RING and D has RPOLCAT(D2,
--R            D3,D4) and D3 has OAMONS and D4 has ORDSET or D1 = POLY(D2)
--R            and not(ofCategory(D2,IntegerNumberSystem)) and not(
--R            ofCategory(D2,Algebra(Fraction(Integer)))) and D2 has 
--R            ALGEBRA(INT) and D4 has KONVERT(SYMBOL) and D2 has RING and
--R            D has RPOLCAT(D2,D3,D4) and D3 has OAMONS and D4 has ORDSET
--R            or D1 = POLY(D2) and not(ofCategory(D2,
--R            QuotientFieldCategory(Integer))) and D2 has ALGEBRA(FRAC(
--R            INT)) and D4 has KONVERT(SYMBOL) and D2 has RING and D has 
--R            RPOLCAT(D2,D3,D4) and D3 has OAMONS and D4 has ORDSET
--R   [31] D1 -> Union(D,"failed") from D
--R             if D1 = POLY(INT) and D has RPOLCAT(D2,D3,D4) and not(
--R            ofCategory(D2,Algebra(Fraction(Integer)))) and D2 has 
--R            ALGEBRA(INT) and D4 has KONVERT(SYMBOL) and D2 has RING and
--R            D3 has OAMONS and D4 has ORDSET or D1 = POLY(INT) and D
--R             has RPOLCAT(D2,D3,D4) and D2 has ALGEBRA(FRAC(INT)) and D4
--R             has KONVERT(SYMBOL) and D2 has RING and D3 has OAMONS and 
--R            D4 has ORDSET
--R   [32] Polynomial(Fraction(Integer)) -> Union(D,"failed") from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has ALGEBRA(FRAC(INT)) 
--R            and D4 has KONVERT(SYMBOL) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RThere is one unexposed function called retractIfCan :
--R   [1] D2 -> Union(SparseUnivariatePolynomial(
--R            SparseUnivariatePolynomial(D3)),"failed")
--R             from NormRetractPackage(D3,D4,D5,D2,D6)
--R             if D3 has FFIELDC and D4 has FAXF(D3) and D5 has UPOLYC(D4
--R            ) and D2 has UPOLYC(D5) and D6: PI
--R
--RExamples of retractIfCan from AnyFunctions1
--R
--R
--RExamples of retractIfCan from FortranExpression
--R
--R
--RExamples of retractIfCan from FortranMatrixFunctionCategory
--R
--R
--RExamples of retractIfCan from FortranFunctionCategory
--R
--R
--RExamples of retractIfCan from FortranVectorFunctionCategory
--R
--R
--RExamples of retractIfCan from NormRetractPackage
--R
--R
--RExamples of retractIfCan from PolynomialSetCategory
--R
--R
--RExamples of retractIfCan from RetractableTo
--R
--R
--RExamples of retractIfCan from RecursivePolynomialCategory
--R
--E 2541

--S 2542 of 3320
)d op retractToGrn
--R 
--R
--RThere is one exposed function called retractToGrn :
--R   [1] PseudoAlgebraicClosureOfAlgExtOfRationalNumber(D2) -> 
--R            PseudoAlgebraicClosureOfRationalNumber
--R             from PseudoAlgebraicClosureOfAlgExtOfRationalNumber(D2)
--R             if D2: PACRAT
--R
--RExamples of retractToGrn from PseudoAlgebraicClosureOfAlgExtOfRationalNumber
--R
--E 2542

--S 2543 of 3320
)d op returns
--R 
--R
--RThere are 7 exposed functions called returns :
--R   [1] Expression(Complex(Float)) -> FortranCode from FortranCode
--R   [2] Expression(Integer) -> FortranCode from FortranCode
--R   [3] Expression(Float) -> FortranCode from FortranCode
--R   [4] Expression(MachineComplex) -> FortranCode from FortranCode
--R   [5] Expression(MachineInteger) -> FortranCode from FortranCode
--R   [6] Expression(MachineFloat) -> FortranCode from FortranCode
--R   [7]  -> FortranCode from FortranCode
--R
--RExamples of returns from FortranCode
--R
--E 2543

--S 2544 of 3320
)d op returnType!
--R 
--R
--RThere are 3 exposed functions called returnType! :
--R   [1] Union(fst: FortranScalarType,void: void) -> Void from 
--R            TheSymbolTable
--R   [2] (Symbol,Union(fst: FortranScalarType,void: void)) -> Void
--R             from TheSymbolTable
--R   [3] (Symbol,Union(fst: FortranScalarType,void: void),TheSymbolTable)
--R             -> Void
--R             from TheSymbolTable
--R
--RExamples of returnType! from TheSymbolTable
--R
--E 2544

--S 2545 of 3320
)d op returnTypeOf
--R 
--R
--RThere is one exposed function called returnTypeOf :
--R   [1] (Symbol,TheSymbolTable) -> Union(fst: FortranScalarType,void: 
--R            void)
--R             from TheSymbolTable
--R
--RExamples of returnTypeOf from TheSymbolTable
--R
--E 2545

--S 2546 of 3320
)d op reverse
--R 
--R
--RThere is one exposed function called reverse :
--R   [1] D -> D from D if D has FLAGG(D1) and D1 has TYPE
--R
--RThere are 2 unexposed functions called reverse :
--R   [1] D1 -> D1 from GaloisGroupPolynomialUtilities(D2,D1)
--R             if D2 has RING and D1 has UPOLYC(D2)
--R   [2] ListMonoidOps(D1,D2,D3) -> ListMonoidOps(D1,D2,D3)
--R             from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R
--RExamples of reverse from FiniteLinearAggregate
--R
--R
--RExamples of reverse from GaloisGroupPolynomialUtilities
--R
--R
--RExamples of reverse from ListMonoidOps
--R
--E 2546

--S 2547 of 3320
)d op reverse!
--R 
--R
--RThere are 3 exposed functions called reverse! :
--R   [1] Dequeue(D1) -> Dequeue(D1) from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D from D if D has DQAGG(D1) and D1 has TYPE
--R   [3] D -> D from D if D has shallowlyMutable and D has FLAGG(D1) and 
--R            D1 has TYPE
--R
--RThere is one unexposed function called reverse! :
--R   [1] ListMonoidOps(D1,D2,D3) -> ListMonoidOps(D1,D2,D3)
--R             from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R
--RExamples of reverse! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rreverse! a 
--Ra
--R
--R
--RExamples of reverse! from DequeueAggregate
--R
--R
--RExamples of reverse! from FiniteLinearAggregate
--R
--R
--RExamples of reverse! from ListMonoidOps
--R
--E 2547

--S 2548 of 3320
)d op reverseLex
--R 
--R
--RThere is one unexposed function called reverseLex :
--R   [1] (Vector(D4),Vector(D4)) -> Boolean from OrderingFunctions(D3,D4)
--R             if D4 has OAMON and D3: NNI
--R
--RExamples of reverseLex from OrderingFunctions
--R
--E 2548

--S 2549 of 3320
)d op revert
--R 
--R
--RThere are 2 exposed functions called revert :
--R   [1] UnivariateFormalPowerSeries(D1) -> UnivariateFormalPowerSeries(
--R            D1)
--R             from UnivariateFormalPowerSeries(D1) if D1 has RING
--R   [2] UnivariateTaylorSeriesCZero(D1,D2) -> 
--R            UnivariateTaylorSeriesCZero(D1,D2)
--R             from UnivariateTaylorSeriesCZero(D1,D2) if D1 has RING and
--R            D2: SYMBOL
--R
--RThere are 2 unexposed functions called revert :
--R   [1] Stream(D2) -> Stream(D2) from StreamTaylorSeriesOperations(D2)
--R             if D2 has RING
--R   [2] UnivariateTaylorSeries(D1,D2,D3) -> UnivariateTaylorSeries(D1,D2
--R            ,D3)
--R             from UnivariateTaylorSeries(D1,D2,D3)
--R             if D1 has RING and D2: SYMBOL and D3: D1
--R
--RExamples of revert from StreamTaylorSeriesOperations
--R
--R
--RExamples of revert from UnivariateFormalPowerSeries
--R
--R
--RExamples of revert from UnivariateTaylorSeries
--R
--R
--RExamples of revert from UnivariateTaylorSeriesCZero
--R
--E 2549

--S 2550 of 3320
)d op rewriteIdealWithHeadRemainder
--R 
--R
--RThere is one exposed function called rewriteIdealWithHeadRemainder :
--R   [1] (List(D5),D) -> List(D5) from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) and 
--R            D2 has INTDOM
--R
--RExamples of rewriteIdealWithHeadRemainder from PolynomialSetCategory
--R
--E 2550

--S 2551 of 3320
)d op rewriteIdealWithQuasiMonicGenerators
--R 
--R
--RThere is one unexposed function called rewriteIdealWithQuasiMonicGenerators :
--R   [1] (List(D7),((D7,D7) -> Boolean),((D7,D7) -> D7)) -> List(D7)
--R             from PolynomialSetUtilitiesPackage(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of rewriteIdealWithQuasiMonicGenerators from PolynomialSetUtilitiesPackage
--R
--E 2551

--S 2552 of 3320
)d op rewriteIdealWithRemainder
--R 
--R
--RThere is one exposed function called rewriteIdealWithRemainder :
--R   [1] (List(D5),D) -> List(D5) from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) and 
--R            D2 has INTDOM
--R
--RExamples of rewriteIdealWithRemainder from PolynomialSetCategory
--R
--E 2552

--S 2553 of 3320
)d op rewriteSetByReducingWithParticularGenerators
--R 
--R
--RThere is one unexposed function called rewriteSetByReducingWithParticularGenerators :
--R   [1] (List(D8),(D8 -> Boolean),((D8,D8) -> Boolean),((D8,D8) -> D8))
--R             -> List(D8)
--R             from PolynomialSetUtilitiesPackage(D5,D6,D7,D8)
--R             if D8 has RPOLCAT(D5,D6,D7) and D5 has INTDOM and D6 has 
--R            OAMONS and D7 has ORDSET
--R
--RExamples of rewriteSetByReducingWithParticularGenerators from PolynomialSetUtilitiesPackage
--R
--E 2553

--S 2554 of 3320
)d op rewriteSetWithReduction
--R 
--R
--RThere is one exposed function called rewriteSetWithReduction :
--R   [1] (List(D7),D,((D7,D7) -> D7),((D7,D7) -> Boolean)) -> List(D7)
--R             from D
--R             if D has TSETCAT(D4,D5,D6,D7) and D4 has INTDOM and D5
--R             has OAMONS and D6 has ORDSET and D7 has RPOLCAT(D4,D5,D6)
--R            
--R
--RExamples of rewriteSetWithReduction from TriangularSetCategory
--R
--E 2554

--S 2555 of 3320
)d op RF2UTS
--R 
--R
--RThere is one unexposed function called RF2UTS :
--R   [1] Fraction(D4) -> D1 from UTSodetools(D3,D4,D5,D1)
--R             if D4 has UPOLYC(D3) and D3 has INTDOM and D3 has RING and
--R            D1 has UTSCAT(D3) and D5 has LODOCAT(D4)
--R
--RExamples of RF2UTS from UTSodetools
--R
--E 2555

--S 2556 of 3320
)d op rhs
--R 
--R
--RThere are 2 exposed functions called rhs :
--R   [1] Equation(D1) -> D1 from Equation(D1) if D1 has TYPE
--R   [2] RewriteRule(D2,D3,D1) -> D1 from RewriteRule(D2,D3,D1)
--R             if D2 has SETCAT and D1 has Join(FunctionSpace(D3),
--R            PatternMatchable(D2),ConvertibleTo(Pattern(D2))) and D3
--R             has Join(Ring,PatternMatchable(D2),OrderedSet,
--R            ConvertibleTo(Pattern(D2)))
--R
--RThere is one unexposed function called rhs :
--R   [1] SuchThat(D2,D1) -> D1 from SuchThat(D2,D1) if D1 has SETCAT and 
--R            D2 has SETCAT
--R
--RExamples of rhs from Equation
--R
--R
--RExamples of rhs from RewriteRule
--R
--R
--RExamples of rhs from SuchThat
--R
--E 2556

--S 2557 of 3320
)d op ricDsolve
--R 
--R
--RThere are 8 unexposed functions called ricDsolve :
--R   [1] (LinearOrdinaryDifferentialOperator1(Fraction(D5)),(D5 -> List(
--R            D4))) -> List(Fraction(D5))
--R             from RationalRicDE(D4,D5)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer),RetractableTo(Fraction(Integer))) and D5 has 
--R            UPOLYC(D4)
--R   [2] (LinearOrdinaryDifferentialOperator1(Fraction(D6)),(D6 -> List(
--R            D5)),(D6 -> Factored(D6))) -> List(Fraction(D6))
--R             from RationalRicDE(D5,D6)
--R             if D5 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer),RetractableTo(Fraction(Integer))) and D6 has 
--R            UPOLYC(D5)
--R   [3] (LinearOrdinaryDifferentialOperator2(D5,Fraction(D5)),(D5 -> 
--R            List(D4))) -> List(Fraction(D5))
--R             from RationalRicDE(D4,D5)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer),RetractableTo(Fraction(Integer))) and D5 has 
--R            UPOLYC(D4)
--R   [4] (LinearOrdinaryDifferentialOperator2(D6,Fraction(D6)),(D6 -> 
--R            List(D5)),(D6 -> Factored(D6))) -> List(Fraction(D6))
--R             from RationalRicDE(D5,D6)
--R             if D5 has Join(Field,CharacteristicZero,RetractableTo(
--R            Integer),RetractableTo(Fraction(Integer))) and D6 has 
--R            UPOLYC(D5)
--R   [5] LinearOrdinaryDifferentialOperator1(Fraction(D4)) -> List(
--R            Fraction(D4))
--R             from RationalRicDE(D3,D4)
--R             if D4 has UPOLYC(D3) and D3 has ACF and D3 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R   [6] (LinearOrdinaryDifferentialOperator1(Fraction(D5)),(D5 -> 
--R            Factored(D5))) -> List(Fraction(D5))
--R             from RationalRicDE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has ACF and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R   [7] LinearOrdinaryDifferentialOperator2(D4,Fraction(D4)) -> List(
--R            Fraction(D4))
--R             from RationalRicDE(D3,D4)
--R             if D4 has UPOLYC(D3) and D3 has ACF and D3 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R   [8] (LinearOrdinaryDifferentialOperator2(D5,Fraction(D5)),(D5 -> 
--R            Factored(D5))) -> List(Fraction(D5))
--R             from RationalRicDE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has ACF and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R
--RExamples of ricDsolve from RationalRicDE
--R
--E 2557

--S 2558 of 3320
)d op ridHack1
--R 
--R
--RThere is one unexposed function called ridHack1 :
--R   [1] (Integer,Integer,Integer,Integer) -> Integer
--R             from RandomIntegerDistributions
--R
--RExamples of ridHack1 from RandomIntegerDistributions
--R
--E 2558

--S 2559 of 3320
)d op right
--R 
--R
--RThere are 2 exposed functions called right :
--R   [1] D -> D from D if D has BRAGG(D1) and D1 has TYPE
--R   [2] RightOpenIntervalRootCharacterization(D1,D2) -> D1
--R             from RightOpenIntervalRootCharacterization(D1,D2)
--R             if D1 has Join(OrderedRing,Field) and D2 has UPOLYC(D1)
--R         
--R
--RThere are 4 unexposed functions called right :
--R   [1] LyndonWord(D1) -> LyndonWord(D1) from LyndonWord(D1) if D1 has 
--R            ORDSET
--R   [2] Magma(D1) -> Magma(D1) from Magma(D1) if D1 has ORDSET
--R   [3] OutputForm -> OutputForm from OutputForm
--R   [4] (OutputForm,Integer) -> OutputForm from OutputForm
--R
--RExamples of right from BinaryRecursiveAggregate
--R
--R
--RExamples of right from LyndonWord
--R
--R
--RExamples of right from Magma
--R
--R
--RExamples of right from OutputForm
--R
--R
--RExamples of right from RightOpenIntervalRootCharacterization
--R
--E 2559

--S 2560 of 3320
)d op rightAlternative?
--R 
--R
--RThere is one exposed function called rightAlternative? :
--R   [1]  -> Boolean from D if D has FINAALG(D2) and D2 has COMRING
--R
--RThere is one unexposed function called rightAlternative? :
--R   [1]  -> Boolean from FiniteRankNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FINAALG(D3)
--R
--RExamples of rightAlternative? from FiniteRankNonAssociativeAlgebra&
--R
--R
--RExamples of rightAlternative? from FiniteRankNonAssociativeAlgebra
--R
--E 2560

--S 2561 of 3320
)d op rightCharacteristicPolynomial
--R 
--R
--RThere is one exposed function called rightCharacteristicPolynomial :
--R   [1] D -> SparseUnivariatePolynomial(D2) from D
--R             if D has FINAALG(D2) and D2 has COMRING
--R
--RExamples of rightCharacteristicPolynomial from FiniteRankNonAssociativeAlgebra
--R
--E 2561

--S 2562 of 3320
)d op rightDiscriminant
--R 
--R
--RThere are 2 exposed functions called rightDiscriminant :
--R   [1] Vector(D) -> D1 from D if D has FINAALG(D1) and D1 has COMRING
--R         
--R   [2]  -> D1 from D if D has FRNAALG(D1) and D1 has COMRING
--R
--RThere is one unexposed function called rightDiscriminant :
--R   [1]  -> D1 from FramedNonAssociativeAlgebra&(D2,D1)
--R             if D1 has COMRING and D2 has FRNAALG(D1)
--R
--RExamples of rightDiscriminant from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of rightDiscriminant from FramedNonAssociativeAlgebra&
--R
--R
--RExamples of rightDiscriminant from FramedNonAssociativeAlgebra
--R
--E 2562

--S 2563 of 3320
)d op rightDivide
--R 
--R
--RThere is one exposed function called rightDivide :
--R   [1] (D,D) -> Record(quotient: D,remainder: D) from D
--R             if D2 has FIELD and D2 has RING and D has OREPCAT(D2)
--R
--RThere is one unexposed function called rightDivide :
--R   [1] (D2,D2,Automorphism(D4)) -> Record(quotient: D2,remainder: D2)
--R             from UnivariateSkewPolynomialCategoryOps(D4,D2)
--R             if D4 has FIELD and D4 has RING and D2 has OREPCAT(D4)
--R
--RExamples of rightDivide from UnivariateSkewPolynomialCategory
--R
--R
--RExamples of rightDivide from UnivariateSkewPolynomialCategoryOps
--R
--E 2563

--S 2564 of 3320
)d op rightExactQuotient
--R 
--R
--RThere is one exposed function called rightExactQuotient :
--R   [1] (D,D) -> Union(D,"failed") from D
--R             if D has OREPCAT(D1) and D1 has RING and D1 has FIELD
--R
--RExamples of rightExactQuotient from UnivariateSkewPolynomialCategory
--R
--E 2564

--S 2565 of 3320
)d op rightExtendedGcd
--R 
--R
--RThere is one exposed function called rightExtendedGcd :
--R   [1] (D,D) -> Record(coef1: D,coef2: D,generator: D) from D
--R             if D2 has FIELD and D2 has RING and D has OREPCAT(D2)
--R
--RExamples of rightExtendedGcd from UnivariateSkewPolynomialCategory
--R
--E 2565

--S 2566 of 3320
)d op rightFactorCandidate
--R 
--R
--RThere is one exposed function called rightFactorCandidate :
--R   [1] (D1,NonNegativeInteger) -> D1 from PolynomialDecomposition(D1,D3
--R            )
--R             if D3 has FIELD and D1 has UPOLYC(D3)
--R
--RExamples of rightFactorCandidate from PolynomialDecomposition
--R
--E 2566

--S 2567 of 3320
)d op rightFactorIfCan
--R 
--R
--RThere is one unexposed function called rightFactorIfCan :
--R   [1] (D1,NonNegativeInteger,D3) -> Union(D1,"failed")
--R             from UnivariatePolynomialDecompositionPackage(D3,D1)
--R             if D3 has Join(IntegralDomain,CharacteristicZero) and D1
--R             has UPOLYC(D3)
--R
--RExamples of rightFactorIfCan from UnivariatePolynomialDecompositionPackage
--R
--E 2567

--S 2568 of 3320
)d op rightGcd
--R 
--R
--RThere is one exposed function called rightGcd :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RExamples of rightGcd from UnivariateSkewPolynomialCategory
--R
--E 2568

--S 2569 of 3320
)d op rightLcm
--R 
--R
--RThere is one exposed function called rightLcm :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RExamples of rightLcm from UnivariateSkewPolynomialCategory
--R
--E 2569

--S 2570 of 3320
)d op rightMinimalPolynomial
--R 
--R
--RThere is one exposed function called rightMinimalPolynomial :
--R   [1] D -> SparseUnivariatePolynomial(D2) from D
--R             if D has FINAALG(D2) and D2 has COMRING and D2 has INTDOM
--R            
--R
--RExamples of rightMinimalPolynomial from FiniteRankNonAssociativeAlgebra
--R
--E 2570

--S 2571 of 3320
)d op rightMult
--R 
--R
--RThere is one unexposed function called rightMult :
--R   [1] (ListMonoidOps(D1,D2,D3),D1) -> ListMonoidOps(D1,D2,D3)
--R             from ListMonoidOps(D1,D2,D3)
--R             if D1 has SETCAT and D2 has ABELMON and D3: D2
--R
--RExamples of rightMult from ListMonoidOps
--R
--E 2571

--S 2572 of 3320
)d op rightNorm
--R 
--R
--RThere is one exposed function called rightNorm :
--R   [1] D -> D1 from D if D has FINAALG(D1) and D1 has COMRING
--R
--RExamples of rightNorm from FiniteRankNonAssociativeAlgebra
--R
--E 2572

--S 2573 of 3320
)d op rightOne
--R 
--R
--RThere is one exposed function called rightOne :
--R   [1] Equation(D1) -> Union(Equation(D1),"failed") from Equation(D1)
--R             if D1 has MONOID and D1 has TYPE
--R
--RExamples of rightOne from Equation
--R
--E 2573

--S 2574 of 3320
)d op rightPower
--R 
--R
--RThere are 2 exposed functions called rightPower :
--R   [1] (D,PositiveInteger) -> D from D if D has MONAD
--R   [2] (D,NonNegativeInteger) -> D from D if D has MONADWU
--R
--RExamples of rightPower from Monad
--R
--R
--RExamples of rightPower from MonadWithUnit
--R
--E 2574

--S 2575 of 3320
)d op rightQuotient
--R 
--R
--RThere is one exposed function called rightQuotient :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RExamples of rightQuotient from UnivariateSkewPolynomialCategory
--R
--E 2575

--S 2576 of 3320
)d op rightRank
--R 
--R
--RThere is one exposed function called rightRank :
--R   [1] D2 -> NonNegativeInteger from AlgebraPackage(D3,D2)
--R             if D3 has INTDOM and D2 has FRNAALG(D3)
--R
--RExamples of rightRank from AlgebraPackage
--R
--E 2576

--S 2577 of 3320
--R-----------------------)d op rightRankPolynomial (System Error)
--E 2577

--S 2578 of 3320
)d op rightRecip
--R 
--R
--RThere are 2 exposed functions called rightRecip :
--R   [1] D -> Union(D,"failed") from D
--R             if D has FINAALG(D1) and D1 has COMRING and D1 has INTDOM
--R            
--R   [2] D -> Union(D,"failed") from D if D has MONADWU
--R
--RExamples of rightRecip from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of rightRecip from MonadWithUnit
--R
--E 2578

--S 2579 of 3320
)d op rightRegularRepresentation
--R 
--R
--RThere are 2 exposed functions called rightRegularRepresentation :
--R   [1] (D,Vector(D)) -> Matrix(D3) from D if D has FINAALG(D3) and D3
--R             has COMRING
--R   [2] D -> Matrix(D2) from D if D has FRNAALG(D2) and D2 has COMRING
--R         
--R
--RExamples of rightRegularRepresentation from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of rightRegularRepresentation from FramedNonAssociativeAlgebra
--R
--E 2579

--S 2580 of 3320
)d op rightRemainder
--R 
--R
--RThere is one exposed function called rightRemainder :
--R   [1] (D,D) -> D from D if D has OREPCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RExamples of rightRemainder from UnivariateSkewPolynomialCategory
--R
--E 2580

--S 2581 of 3320
)d op rightScalarTimes!
--R 
--R
--RThere is one unexposed function called rightScalarTimes! :
--R   [1] (Matrix(D2),Matrix(D2),D2) -> Matrix(D2)
--R             from StorageEfficientMatrixOperations(D2) if D2 has RING
--R         
--R
--RExamples of rightScalarTimes! from StorageEfficientMatrixOperations
--R
--E 2581

--S 2582 of 3320
)d op rightTrace
--R 
--R
--RThere is one exposed function called rightTrace :
--R   [1] D -> D1 from D if D has FINAALG(D1) and D1 has COMRING
--R
--RExamples of rightTrace from FiniteRankNonAssociativeAlgebra
--R
--E 2582

--S 2583 of 3320
)d op rightTraceMatrix
--R 
--R
--RThere are 2 exposed functions called rightTraceMatrix :
--R   [1] Vector(D) -> Matrix(D3) from D if D has FINAALG(D3) and D3 has 
--R            COMRING
--R   [2]  -> Matrix(D2) from D if D has FRNAALG(D2) and D2 has COMRING
--R         
--R
--RThere is one unexposed function called rightTraceMatrix :
--R   [1]  -> Matrix(D3) from FramedNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FRNAALG(D3)
--R
--RExamples of rightTraceMatrix from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of rightTraceMatrix from FramedNonAssociativeAlgebra&
--R
--R
--RExamples of rightTraceMatrix from FramedNonAssociativeAlgebra
--R
--E 2583

--S 2584 of 3320
)d op rightTrim
--R 
--R
--RThere are 2 exposed functions called rightTrim :
--R   [1] (D,CharacterClass) -> D from D if D has SRAGG
--R   [2] (D,Character) -> D from D if D has SRAGG
--R
--RExamples of rightTrim from StringAggregate
--R
--E 2584

--S 2585 of 3320
)d op rightUnit
--R 
--R
--RThere is one exposed function called rightUnit :
--R   [1]  -> Union(D,"failed") from D
--R             if D has FINAALG(D1) and D1 has INTDOM and D1 has COMRING
--R            
--R
--RExamples of rightUnit from FiniteRankNonAssociativeAlgebra
--R
--E 2585

--S 2586 of 3320
--R---------------------)d op rightUnits (System Error)
--E 2586

--S 2587 of 3320
)d op rightZero
--R 
--R
--RThere is one exposed function called rightZero :
--R   [1] Equation(D1) -> Equation(D1) from Equation(D1)
--R             if D1 has ABELGRP and D1 has TYPE
--R
--RExamples of rightZero from Equation
--R
--E 2587

--S 2588 of 3320
)d op rischDE
--R 
--R
--RThere is one unexposed function called rischDE :
--R   [1] (Integer,D3,D3,Symbol,((D3,List(D3)) -> Union(Record(mainpart: 
--R            D3,limitedlogs: List(Record(coeff: D3,logand: D3))),"failed")),((
--R            D3,D3) -> Union(Record(ratpart: D3,coeff: D3),"failed"))) -> 
--R            Record(ans: D3,right: D3,sol?: Boolean)
--R             from ElementaryRischDE(D7,D3)
--R             if D3 has Join(TranscendentalFunctionCategory,
--R            AlgebraicallyClosedField,FunctionSpace(D7)) and D7 has Join
--R            (GcdDomain,OrderedSet,CharacteristicZero,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer))
--R
--RExamples of rischDE from ElementaryRischDE
--R
--E 2588

--S 2589 of 3320
)d op rischDEsys
--R 
--R
--RThere is one unexposed function called rischDEsys :
--R   [1] (Integer,D3,D3,D3,Symbol,((D3,List(D3)) -> Union(Record(mainpart
--R            : D3,limitedlogs: List(Record(coeff: D3,logand: D3))),"failed")),
--R            ((D3,D3) -> Union(Record(ratpart: D3,coeff: D3),"failed"))) -> 
--R            Union(List(D3),"failed")
--R             from ElementaryRischDESystem(D7,D3)
--R             if D3 has Join(TranscendentalFunctionCategory,
--R            AlgebraicallyClosedField,FunctionSpace(D7)) and D7 has Join
--R            (GcdDomain,OrderedSet,CharacteristicZero,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer))
--R
--RExamples of rischDEsys from ElementaryRischDESystem
--R
--E 2589

--S 2590 of 3320
)d op rischNormalize
--R 
--R
--RThere is one exposed function called rischNormalize :
--R   [1] (D2,Symbol) -> Record(func: D2,kers: List(Kernel(D2)),vals: List
--R            (D2))
--R             from ElementaryFunctionStructurePackage(D4,D2)
--R             if D4 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer)) and D2 has Join
--R            (AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4))
--R
--RExamples of rischNormalize from ElementaryFunctionStructurePackage
--R
--E 2590

--S 2591 of 3320
)d op RittWuCompare
--R 
--R
--RThere is one exposed function called RittWuCompare :
--R   [1] (D,D) -> Union(Boolean,"failed") from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of RittWuCompare from RecursivePolynomialCategory
--R
--E 2591

--S 2592 of 3320
)d op rk4
--R 
--R
--RThere are 2 exposed functions called rk4 :
--R   [1] (Vector(Float),Integer,Float,Float,((Vector(Float),Vector(Float)
--R            ,Float) -> Void)) -> Void
--R             from NumericalOrdinaryDifferentialEquations
--R   [2] (Vector(Float),Integer,Float,Float,((Vector(Float),Vector(Float)
--R            ,Float) -> Void),Vector(Float),Vector(Float),Vector(Float),Vector
--R            (Float)) -> Void
--R             from NumericalOrdinaryDifferentialEquations
--R
--RExamples of rk4 from NumericalOrdinaryDifferentialEquations
--R
--E 2592

--S 2593 of 3320
)d op rk4a
--R 
--R
--RThere is one exposed function called rk4a :
--R   [1] (Vector(Float),Integer,Float,Float,Float,Float,Integer,((Vector(
--R            Float),Vector(Float),Float) -> Void)) -> Void
--R             from NumericalOrdinaryDifferentialEquations
--R
--RExamples of rk4a from NumericalOrdinaryDifferentialEquations
--R
--E 2593

--S 2594 of 3320
)d op rk4f
--R 
--R
--RThere is one exposed function called rk4f :
--R   [1] (Vector(Float),Integer,Float,Float,Integer,((Vector(Float),
--R            Vector(Float),Float) -> Void)) -> Void
--R             from NumericalOrdinaryDifferentialEquations
--R
--RExamples of rk4f from NumericalOrdinaryDifferentialEquations
--R
--E 2594

--S 2595 of 3320
)d op rk4qc
--R 
--R
--RThere are 2 exposed functions called rk4qc :
--R   [1] (Vector(Float),Integer,Float,Record(try: Float,did: Float,next: 
--R            Float),Float,Vector(Float),((Vector(Float),Vector(Float),Float)
--R             -> Void)) -> Void
--R             from NumericalOrdinaryDifferentialEquations
--R   [2] (Vector(Float),Integer,Float,Record(try: Float,did: Float,next: 
--R            Float),Float,Vector(Float),((Vector(Float),Vector(Float),Float)
--R             -> Void),Vector(Float),Vector(Float),Vector(Float),Vector(Float)
--R            ,Vector(Float),Vector(Float),Vector(Float)) -> Void
--R             from NumericalOrdinaryDifferentialEquations
--R
--RExamples of rk4qc from NumericalOrdinaryDifferentialEquations
--R
--E 2595

--S 2596 of 3320
)d op roman
--R 
--R
--RThere are 2 exposed functions called roman :
--R   [1] Integer -> RomanNumeral from RomanNumeral
--R   [2] Symbol -> RomanNumeral from RomanNumeral
--R
--RExamples of roman from RomanNumeral
--R
--E 2596

--S 2597 of 3320
)d op romberg
--R 
--R
--RThere is one exposed function called romberg :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer) -> 
--R            Record(value: Float,error: Float,totalpts: Integer,success: 
--R            Boolean)
--R             from NumericalQuadrature
--R
--RExamples of romberg from NumericalQuadrature
--R
--E 2597

--S 2598 of 3320
)d op rombergo
--R 
--R
--RThere is one exposed function called rombergo :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer) -> 
--R            Record(value: Float,error: Float,totalpts: Integer,success: 
--R            Boolean)
--R             from NumericalQuadrature
--R
--RExamples of rombergo from NumericalQuadrature
--R
--E 2598

--S 2599 of 3320
)d op root
--R 
--R
--RThere is one exposed function called root :
--R   [1] (SparseUnivariatePolynomial(Integer),Integer) -> D from D if D
--R             has PADICCT(D3)
--R
--RThere are 2 unexposed functions called root :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [2] OutputForm -> OutputForm from OutputForm
--R
--RExamples of root from OutputForm
--R
--R
--RExamples of root from PAdicIntegerCategory
--R
--E 2599

--S 2600 of 3320
)d op root?
--R 
--R
--RThere is one unexposed function called root? :
--R   [1] SubSpace(D2,D3) -> Boolean from SubSpace(D2,D3) if D2: PI and D3
--R             has RING
--R
--RExamples of root? from SubSpace
--R
--E 2600

--S 2601 of 3320
)d op rootBound
--R 
--R
--RThere is one unexposed function called rootBound :
--R   [1] D2 -> Integer from GaloisGroupFactorizationUtilities(D3,D2,D4)
--R             if D3 has RING and D2 has UPOLYC(D3) and D4 has Join(
--R            FloatingPointSystem,RetractableTo(D3),Field,
--R            TranscendentalFunctionCategory,ElementaryFunctionCategory)
--R            
--R
--RExamples of rootBound from GaloisGroupFactorizationUtilities
--R
--E 2601

--S 2602 of 3320
)d op rootKerSimp
--R 
--R
--RThere is one exposed function called rootKerSimp :
--R   [1] (BasicOperator,D1,NonNegativeInteger) -> D1
--R             from AlgebraicManipulations(D4,D1)
--R             if D4 has GCDDOM and D4 has ORDSET and D4 has RETRACT(INT)
--R            and D4 has INTDOM and D1 has FS(D4) and D1 has Join(Field,
--R            ExpressionSpace)with
--R               numer : % -> SparseMultivariatePolynomial(D4,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D4,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D4,Kernel(%)) -> 
--R               %
--R
--RExamples of rootKerSimp from AlgebraicManipulations
--R
--E 2602

--S 2603 of 3320
)d op rootNormalize
--R 
--R
--RThere is one exposed function called rootNormalize :
--R   [1] (D1,Kernel(D1)) -> D1 from ElementaryFunctionStructurePackage(D3
--R            ,D1)
--R             if D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D3)) and D3
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R
--RExamples of rootNormalize from ElementaryFunctionStructurePackage
--R
--E 2603

--S 2604 of 3320
)d op rootOf
--R 
--R
--RThere are 8 exposed functions called rootOf :
--R   [1] (SparseUnivariatePolynomial(D),Symbol) -> D from D if D has ACF
--R            
--R   [2] SparseUnivariatePolynomial(D) -> D from D if D has ACF
--R   [3] Polynomial(D) -> D from D if D has ACF
--R   [4] (D,Symbol) -> D from D
--R             if D has ACFS(D2) and D2 has Join(OrderedSet,
--R            IntegralDomain)
--R   [5] D -> D from D if D has ACFS(D1) and D1 has Join(OrderedSet,
--R            IntegralDomain)
--R   [6] (SparseUnivariatePolynomial(D),PositiveInteger) -> Union(D,
--R            "failed")
--R             from D if D has RCFIELD
--R   [7] (SparseUnivariatePolynomial(D),PositiveInteger,OutputForm) -> 
--R            Union(D,"failed")
--R             from D if D has RCFIELD
--R   [8] (D1,PositiveInteger) -> Union(D,"failed") from D
--R             if D3 has Join(OrderedRing,Field) and D has RRCC(D3,D1) 
--R            and D1 has UPOLYC(D3)
--R
--RThere is one unexposed function called rootOf :
--R   [1] (SparseUnivariatePolynomial(D1),Symbol) -> D1
--R             from AlgebraicFunction(D4,D1)
--R             if D1 has FS(D4) and D4 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of rootOf from AlgebraicallyClosedField
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RrootOf(a,x)
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RrootOf(a)
--R
--Ra:Polynomial(Integer):=-3*x^3+2*x+13 
--RrootOf(a)
--R
--R
--RExamples of rootOf from AlgebraicallyClosedFunctionSpace
--R
--R
--RExamples of rootOf from AlgebraicFunction
--R
--R
--RExamples of rootOf from RealClosedField
--R
--R
--RExamples of rootOf from RealRootCharacterizationCategory
--R
--E 2604

--S 2605 of 3320
)d op rootOfIrreduciblePoly
--R 
--R
--RThere is one exposed function called rootOfIrreduciblePoly :
--R   [1] SparseUnivariatePolynomial(D3) -> D1
--R             from FiniteFieldPolynomialPackage2(D1,D3)
--R             if D3 has FFIELDC and D1 has FieldOfPrimeCharacteristic
--R            with
--R               coerce : D3 -> D1
--R               lookup : D1 -> PositiveInteger
--R               basis : PositiveInteger -> Vector(D1)
--R               Frobenius : D1 -> D1
--R
--RExamples of rootOfIrreduciblePoly from FiniteFieldPolynomialPackage2
--R
--E 2605

--S 2606 of 3320
)d op rootPoly
--R 
--R
--RThere is one unexposed function called rootPoly :
--R   [1] (Fraction(D5),NonNegativeInteger) -> Record(exponent: 
--R            NonNegativeInteger,coef: Fraction(D5),radicand: D5)
--R             from ChangeOfVariable(D4,D5,D6)
--R             if D4 has UFD and D5 has UPOLYC(D4) and D6 has UPOLYC(FRAC
--R            (D5))
--R
--RExamples of rootPoly from ChangeOfVariable
--R
--E 2606

--S 2607 of 3320
)d op rootPower
--R 
--R
--RThere is one exposed function called rootPower :
--R   [1] D1 -> D1 from AlgebraicManipulations(D2,D1)
--R             if D2 has GCDDOM and D2 has ORDSET and D2 has RETRACT(INT)
--R            and D2 has INTDOM and D1 has FS(D2) and D1 has Join(Field,
--R            ExpressionSpace)with
--R               numer : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D2,Kernel(%)) -> 
--R               %
--R
--RExamples of rootPower from AlgebraicManipulations
--R
--E 2607

--S 2608 of 3320
)d op rootProduct
--R 
--R
--RThere is one exposed function called rootProduct :
--R   [1] D1 -> D1 from AlgebraicManipulations(D2,D1)
--R             if D2 has GCDDOM and D2 has ORDSET and D2 has RETRACT(INT)
--R            and D2 has INTDOM and D1 has FS(D2) and D1 has Join(Field,
--R            ExpressionSpace)with
--R               numer : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D2,Kernel(%)) -> 
--R               %
--R
--RExamples of rootProduct from AlgebraicManipulations
--R
--E 2608

--S 2609 of 3320
)d op rootRadius
--R 
--R
--RThere are 2 unexposed functions called rootRadius :
--R   [1] (D2,D1) -> D1 from ComplexRootFindingPackage(D1,D2)
--R             if D1 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D1))
--R   [2] D2 -> D1 from ComplexRootFindingPackage(D1,D2)
--R             if D1 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D1))
--R
--RExamples of rootRadius from ComplexRootFindingPackage
--R
--E 2609

--S 2610 of 3320
)d op rootSimp
--R 
--R
--RThere is one exposed function called rootSimp :
--R   [1] D1 -> D1 from AlgebraicManipulations(D2,D1)
--R             if D2 has GCDDOM and D2 has ORDSET and D2 has RETRACT(INT)
--R            and D2 has INTDOM and D1 has FS(D2) and D1 has Join(Field,
--R            ExpressionSpace)with
--R               numer : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D2,Kernel(%)) -> 
--R               %
--R
--RExamples of rootSimp from AlgebraicManipulations
--R
--E 2610

--S 2611 of 3320
)d op rootsOf
--R 
--R
--RThere are 5 exposed functions called rootsOf :
--R   [1] (SparseUnivariatePolynomial(D),Symbol) -> List(D) from D if D
--R             has ACF
--R   [2] SparseUnivariatePolynomial(D) -> List(D) from D if D has ACF
--R   [3] Polynomial(D) -> List(D) from D if D has ACF
--R   [4] (D,Symbol) -> List(D) from D
--R             if D3 has Join(OrderedSet,IntegralDomain) and D has ACFS(
--R            D3)
--R   [5] D -> List(D) from D
--R             if D2 has Join(OrderedSet,IntegralDomain) and D has ACFS(
--R            D2)
--R
--RExamples of rootsOf from AlgebraicallyClosedField
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RrootsOf(a,x)
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RrootsOf(a)
--R
--Ra:Polynomial(Integer):=-3*x^3+2*x+13 
--RrootsOf(a)
--R
--R
--RExamples of rootsOf from AlgebraicallyClosedFunctionSpace
--R
--E 2611

--S 2612 of 3320
)d op rootSplit
--R 
--R
--RThere is one exposed function called rootSplit :
--R   [1] D1 -> D1 from AlgebraicManipulations(D2,D1)
--R             if D2 has INTDOM and D1 has Join(Field,ExpressionSpace)
--R            with
--R               numer : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               denom : % -> SparseMultivariatePolynomial(D2,Kernel(%)
--R               )
--R               coerce : SparseMultivariatePolynomial(D2,Kernel(%)) -> 
--R               %
--R
--RExamples of rootSplit from AlgebraicManipulations
--R
--E 2612

--S 2613 of 3320
)d op rotate
--R 
--R
--RThere are 2 exposed functions called rotate :
--R   [1] (ThreeDimensionalViewport,Integer,Integer) -> Void
--R             from ThreeDimensionalViewport
--R   [2] (ThreeDimensionalViewport,Float,Float) -> Void
--R             from ThreeDimensionalViewport
--R
--RExamples of rotate from ThreeDimensionalViewport
--R
--E 2613

--S 2614 of 3320
)d op rotate!
--R 
--R
--RThere are 3 exposed functions called rotate! :
--R   [1] Dequeue(D1) -> Dequeue(D1) from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D from D if D has QUAGG(D1) and D1 has TYPE
--R   [3] Queue(D1) -> Queue(D1) from Queue(D1) if D1 has SETCAT
--R
--RExamples of rotate! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rrotate! a
--R
--R
--RExamples of rotate! from QueueAggregate
--R
--R
--RExamples of rotate! from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rrotate! a
--R
--E 2614

--S 2615 of 3320 done
)d op rotatex
--R 
--R
--RThere is one exposed function called rotatex :
--R   [1] D1 -> DenavitHartenbergMatrix(D1) from DenavitHartenbergMatrix(
--R            D1)
--R             if D1 has Join(Field,TranscendentalFunctionCategory)
--R
--RExamples of rotatex from DenavitHartenbergMatrix
--R
--Rrotatex(30)
--R
--E 2615

--S 2616 of 3320 done
)d op rotatey
--R 
--R
--RThere is one exposed function called rotatey :
--R   [1] D1 -> DenavitHartenbergMatrix(D1) from DenavitHartenbergMatrix(
--R            D1)
--R             if D1 has Join(Field,TranscendentalFunctionCategory)
--R
--RExamples of rotatey from DenavitHartenbergMatrix
--R
--Rrotatey(30)
--R
--E 2616

--S 2617 of 3320 done
)d op rotatez
--R 
--R
--RThere is one exposed function called rotatez :
--R   [1] D1 -> DenavitHartenbergMatrix(D1) from DenavitHartenbergMatrix(
--R            D1)
--R             if D1 has Join(Field,TranscendentalFunctionCategory)
--R
--RExamples of rotatez from DenavitHartenbergMatrix
--R
--Rrotatez(30)
--R
--E 2617

--S 2618 of 3320
)d op roughBase?
--R 
--R
--RThere is one exposed function called roughBase? :
--R   [1] D -> Boolean from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) and 
--R            D2 has INTDOM
--R
--RExamples of roughBase? from PolynomialSetCategory
--R
--E 2618

--S 2619 of 3320
)d op roughBasicSet
--R 
--R
--RThere is one unexposed function called roughBasicSet :
--R   [1] List(D6) -> Union(Record(bas: GeneralTriangularSet(D3,D4,D5,D6),
--R            top: List(D6)),"failed")
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5)
--R
--RExamples of roughBasicSet from PolynomialSetUtilitiesPackage
--R
--E 2619

--S 2620 of 3320
)d op roughEqualIdeals?
--R 
--R
--RThere is one exposed function called roughEqualIdeals? :
--R   [1] (D,D) -> Boolean from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) and 
--R            D2 has INTDOM
--R
--RExamples of roughEqualIdeals? from PolynomialSetCategory
--R
--E 2620

--S 2621 of 3320
)d op roughSubIdeal?
--R 
--R
--RThere is one exposed function called roughSubIdeal? :
--R   [1] (D,D) -> Boolean from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) and 
--R            D2 has INTDOM
--R
--RExamples of roughSubIdeal? from PolynomialSetCategory
--R
--E 2621

--S 2622 of 3320
)d op roughUnitIdeal?
--R 
--R
--RThere is one exposed function called roughUnitIdeal? :
--R   [1] D -> Boolean from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) and 
--R            D2 has INTDOM
--R
--RExamples of roughUnitIdeal? from PolynomialSetCategory
--R
--E 2622

--S 2623 of 3320
)d op round
--R 
--R
--RThere is one exposed function called round :
--R   [1] D -> D from D if D has RNS
--R
--RExamples of round from RealNumberSystem
--R
--E 2623

--S 2624 of 3320
)d op routines
--R 
--R
--RThere is one exposed function called routines :
--R   [1]  -> RoutinesTable from RoutinesTable
--R
--RExamples of routines from RoutinesTable
--R
--E 2624

--S 2625 of 3320
)d op row
--R 
--R
--RThere are 3 exposed functions called row :
--R   [1] (D,Integer) -> D1 from D
--R             if D has ARR2CAT(D3,D1,D4) and D3 has TYPE and D4 has 
--R            FLAGG(D3) and D1 has FLAGG(D3)
--R   [2] (D,Integer) -> D1 from D
--R             if D has RMATCAT(D3,D4,D5,D1,D6) and D5 has RING and D6
--R             has DIRPCAT(D3,D5) and D1 has DIRPCAT(D4,D5)
--R   [3] (SparseEchelonMatrix(D3,D4),Integer) -> Record(Indices: List(D3)
--R            ,Entries: List(D4))
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of row from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,10) 
--Rrow(arr,1)
--R
--R
--RExamples of row from RectangularMatrixCategory
--R
--R
--RExamples of row from SparseEchelonMatrix
--R
--E 2625

--S 2626 of 3320
)d op rowEch
--R 
--R
--RThere is one unexposed function called rowEch :
--R   [1] Matrix(D2) -> Matrix(D2) from ModularHermitianRowReduction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of rowEch from ModularHermitianRowReduction
--R
--E 2626

--S 2627 of 3320
)d op rowEchelon
--R 
--R
--RThere are 4 exposed functions called rowEchelon :
--R   [1] D -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1) and D1 has EUCDOM
--R   [2] D1 -> D1 from MatrixLinearAlgebraFunctions(D2,D3,D4,D1)
--R             if D2 has EUCDOM and D2 has COMRING and D3 has FLAGG(D2) 
--R            and D4 has FLAGG(D2) and D1 has MATCAT(D2,D3,D4)
--R   [3] D -> D from D
--R             if D has RMATCAT(D1,D2,D3,D4,D5) and D3 has RING and D4
--R             has DIRPCAT(D2,D3) and D5 has DIRPCAT(D1,D3) and D3 has 
--R            EUCDOM
--R   [4] SparseEchelonMatrix(D2,D3) -> Record(Ech: SparseEchelonMatrix(D2
--R            ,D3),Lt: Matrix(D3),Pivots: List(D3),Rank: NonNegativeInteger)
--R             from SparseEchelonMatrix(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RThere are 3 unexposed functions called rowEchelon :
--R   [1] D1 -> D1 from InnerMatrixLinearAlgebraFunctions(D2,D3,D4,D1)
--R             if D2 has FIELD and D3 has FLAGG(D2) and D4 has FLAGG(D2) 
--R            and D1 has MATCAT(D2,D3,D4)
--R   [2] D2 -> D1 from InnerMatrixQuotientFieldFunctions(D3,D4,D5,D2,D6,
--R            D7,D8,D1)
--R             if D3 has INTDOM and D4 has FLAGG(D3) and D5 has FLAGG(D3)
--R            and D6 has QFCAT(D3) and D1 has MATCAT(D6,D7,D8) and D2
--R             has MATCAT(D3,D4,D5) and D7 has FLAGG(D6) and D8 has FLAGG
--R            (D6)
--R   [3] (Matrix(D2),D2) -> Matrix(D2) from ModularHermitianRowReduction(
--R            D2)
--R             if D2 has EUCDOM
--R
--RExamples of rowEchelon from InnerMatrixLinearAlgebraFunctions
--R
--R
--RExamples of rowEchelon from InnerMatrixQuotientFieldFunctions
--R
--R
--RExamples of rowEchelon from MatrixCategory
--R
--RrowEchelon matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of rowEchelon from MatrixLinearAlgebraFunctions
--R
--R
--RExamples of rowEchelon from ModularHermitianRowReduction
--R
--R
--RExamples of rowEchelon from RectangularMatrixCategory
--R
--R
--RExamples of rowEchelon from SparseEchelonMatrix
--R
--E 2627

--S 2628 of 3320
)d op rowEchelonLocal
--R 
--R
--RThere is one unexposed function called rowEchelonLocal :
--R   [1] (Matrix(D2),D2,D2) -> Matrix(D2) from 
--R            ModularHermitianRowReduction(D2)
--R             if D2 has EUCDOM
--R
--RExamples of rowEchelonLocal from ModularHermitianRowReduction
--R
--E 2628

--S 2629 of 3320
)d op rowEchLocal
--R 
--R
--RThere is one unexposed function called rowEchLocal :
--R   [1] (Matrix(D2),D2) -> Matrix(D2) from ModularHermitianRowReduction(
--R            D2)
--R             if D2 has EUCDOM
--R
--RExamples of rowEchLocal from ModularHermitianRowReduction
--R
--E 2629

--S 2630 of 3320
)d op rowEchWoZeroLines
--R 
--R
--RThere is one exposed function called rowEchWoZeroLines :
--R   [1] Matrix(D2) -> Matrix(D2) from LinesOpPack(D2) if D2 has FIELD
--R         
--R
--RExamples of rowEchWoZeroLines from LinesOpPack
--R
--E 2630

--S 2631 of 3320
)d op rowEchWoZeroLinesWOVectorise
--R 
--R
--RThere is one exposed function called rowEchWoZeroLinesWOVectorise :
--R   [1] Matrix(D2) -> Matrix(D2) from LinesOpPack(D2) if D2 has FIELD
--R         
--R
--RExamples of rowEchWoZeroLinesWOVectorise from LinesOpPack
--R
--E 2631

--S 2632 of 3320 done
)d op rows
--R 
--R
--RThere are 2 exposed functions called rows :
--R   [1] (D1,List(PositiveInteger)) -> D1 from MatrixManipulation(D3,D4,
--R            D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R   [2] (D1,Segment(PositiveInteger)) -> D1 from MatrixManipulation(D3,
--R            D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R
--RExamples of rows from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--Rrows(M, 2..3)
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--Rrows(M, [1,2]) 
--Rrows(M, [3,2])
--R
--E 2632

--S 2633 of 3320
)d op rquo
--R 
--R
--RThere are 4 exposed functions called rquo :
--R   [1] (XRecursivePolynomial(D2,D3),D) -> XRecursivePolynomial(D2,D3)
--R             from D
--R             if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
--R            
--R   [2] (D,D) -> D from D if D has XFALG(D1,D2) and D1 has ORDSET and D2
--R             has RING
--R   [3] (D,OrderedFreeMonoid(D2)) -> D from D
--R             if D has XFALG(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R   [4] (D,D1) -> D from D if D has XFALG(D1,D2) and D1 has ORDSET and 
--R            D2 has RING
--R
--RThere are 3 unexposed functions called rquo :
--R   [1] (FreeMonoid(D1),FreeMonoid(D1)) -> Union(FreeMonoid(D1),"failed"
--R            )
--R             from FreeMonoid(D1) if D1 has SETCAT
--R   [2] (OrderedFreeMonoid(D1),D1) -> Union(OrderedFreeMonoid(D1),
--R            "failed")
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R   [3] (OrderedFreeMonoid(D1),OrderedFreeMonoid(D1)) -> Union(
--R            OrderedFreeMonoid(D1),"failed")
--R             from OrderedFreeMonoid(D1) if D1 has ORDSET
--R
--RExamples of rquo from FreeLieAlgebra
--R
--R
--RExamples of rquo from FreeMonoid
--R
--R
--RExamples of rquo from OrderedFreeMonoid
--R
--Rm1:=(x*y)$OFMONOID(Symbol) 
--Rdiv(m1,y)
--R
--Rm1:=(q*y^3)$OFMONOID(Symbol) 
--Rm2:=(y^2)$OFMONOID(Symbol) 
--Rlquo(m1,m2)
--R
--R
--RExamples of rquo from XFreeAlgebra
--R
--E 2633

--S 2634 of 3320
)d op rroot
--R 
--R
--RThere is one unexposed function called rroot :
--R   [1] (D2,NonNegativeInteger) -> Record(exponent: NonNegativeInteger,
--R            coef: D7,radicand: D7)
--R             from PolynomialRoots(D4,D5,D2,D6,D7)
--R             if D4 has OAMONS and D5 has ORDSET and D2 has INTDOM and 
--R            D6 has POLYCAT(D2,D4,D5) and D7 has Fieldwith
--R               numer : % -> D6
--R               denom : % -> D6
--R               coerce : D6 -> %
--R
--RExamples of rroot from PolynomialRoots
--R
--E 2634

--S 2635 of 3320
)d op rspace
--R 
--R
--RThere is one unexposed function called rspace :
--R   [1] (Integer,Integer) -> OutputForm from OutputForm
--R
--RExamples of rspace from OutputForm
--R
--E 2635

--S 2636 of 3320 done
)d op rst
--R 
--R
--RThere is one exposed function called rst :
--R   [1] D -> D from D if D has LZSTAGG(D1) and D1 has TYPE
--R
--RExamples of rst from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--Rrst m
--R
--E 2636

--S 2637 of 3320
)d op rubiksGroup
--R 
--R
--RThere is one exposed function called rubiksGroup :
--R   [1]  -> PermutationGroup(Integer) from PermutationGroupExamples
--R
--RExamples of rubiksGroup from PermutationGroupExamples
--R
--E 2637

--S 2638 of 3320 done
)d op rule
--R 
--R
--RThere are 2 exposed functions called rule :
--R   [1] (D1,D1,List(Symbol)) -> RewriteRule(D3,D4,D1) from RewriteRule(
--R            D3,D4,D1)
--R             if D3 has SETCAT and D4 has Join(Ring,PatternMatchable(D3)
--R            ,OrderedSet,ConvertibleTo(Pattern(D3))) and D1 has Join(
--R            FunctionSpace(D4),PatternMatchable(D3),ConvertibleTo(
--R            Pattern(D3)))
--R   [2] (D1,D1) -> RewriteRule(D2,D3,D1) from RewriteRule(D2,D3,D1)
--R             if D2 has SETCAT and D3 has Join(Ring,PatternMatchable(D2)
--R            ,OrderedSet,ConvertibleTo(Pattern(D2))) and D1 has Join(
--R            FunctionSpace(D3),PatternMatchable(D2),ConvertibleTo(
--R            Pattern(D2)))
--R
--RExamples of rule from RewriteRule
--R
--Rlogrule := rule log(x) + log(y) == log(x*y) 
--Rf := log(sin(x)) + log(x) 
--Rlogrule f
--R
--E 2638

--S 2639 of 3320
)d op rules
--R 
--R
--RThere is one exposed function called rules :
--R   [1] Ruleset(D2,D3,D4) -> List(RewriteRule(D2,D3,D4)) from Ruleset(D2
--R            ,D3,D4)
--R             if D2 has SETCAT and D3 has Join(Ring,PatternMatchable(D2)
--R            ,OrderedSet,ConvertibleTo(Pattern(D2))) and D4 has Join(
--R            FunctionSpace(D3),PatternMatchable(D2),ConvertibleTo(
--R            Pattern(D2)))
--R
--RExamples of rules from Ruleset
--R
--E 2639

--S 2640 of 3320
)d op ruleset
--R 
--R
--RThere is one exposed function called ruleset :
--R   [1] List(RewriteRule(D2,D3,D4)) -> Ruleset(D2,D3,D4) from Ruleset(D2
--R            ,D3,D4)
--R             if D2 has SETCAT and D3 has Join(Ring,PatternMatchable(D2)
--R            ,OrderedSet,ConvertibleTo(Pattern(D2))) and D4 has Join(
--R            FunctionSpace(D3),PatternMatchable(D2),ConvertibleTo(
--R            Pattern(D2)))
--R
--RExamples of ruleset from Ruleset
--R
--E 2640

--S 2641 of 3320
)d op rur
--R 
--R
--RThere are 4 unexposed functions called rur :
--R   [1] (D2,Boolean) -> List(D2)
--R             from InternalRationalUnivariateRepresentationPackage(D4,D5
--R            ,D6,D7,D2)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero) and D5
--R             has OAMONS and D6 has ORDSET and D7 has RPOLCAT(D4,D5,D6) 
--R            and D2 has SFRTCAT(D4,D5,D6,D7)
--R   [2] (List(Polynomial(D4)),Boolean) -> List(Record(complexRoots: 
--R            SparseUnivariatePolynomial(D4),coordinates: List(Polynomial(D4)))
--R            )
--R             from RationalUnivariateRepresentationPackage(D4,D5)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero) and D5
--R            : LIST(SYMBOL)
--R   [3] List(Polynomial(D3)) -> List(Record(complexRoots: 
--R            SparseUnivariatePolynomial(D3),coordinates: List(Polynomial(D3)))
--R            )
--R             from RationalUnivariateRepresentationPackage(D3,D4)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R            : LIST(SYMBOL)
--R   [4] (List(Polynomial(D4)),Boolean,Boolean) -> List(Record(
--R            complexRoots: SparseUnivariatePolynomial(D4),coordinates: List(
--R            Polynomial(D4))))
--R             from RationalUnivariateRepresentationPackage(D4,D5)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero) and D5
--R            : LIST(SYMBOL)
--R
--RExamples of rur from InternalRationalUnivariateRepresentationPackage
--R
--R
--RExamples of rur from RationalUnivariateRepresentationPackage
--R
--E 2641

--S 2642 of 3320
)d op s01eaf
--R 
--R
--RThere is one exposed function called s01eaf :
--R   [1] (Complex(DoubleFloat),Integer) -> Result from 
--R            NagSpecialFunctionsPackage
--R
--RExamples of s01eaf from NagSpecialFunctionsPackage
--R
--E 2642

--S 2643 of 3320
)d op s13aaf
--R 
--R
--RThere is one exposed function called s13aaf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s13aaf from NagSpecialFunctionsPackage
--R
--E 2643

--S 2644 of 3320
)d op s13acf
--R 
--R
--RThere is one exposed function called s13acf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s13acf from NagSpecialFunctionsPackage
--R
--E 2644

--S 2645 of 3320
)d op s13adf
--R 
--R
--RThere is one exposed function called s13adf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s13adf from NagSpecialFunctionsPackage
--R
--E 2645

--S 2646 of 3320
)d op s14aaf
--R 
--R
--RThere is one exposed function called s14aaf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s14aaf from NagSpecialFunctionsPackage
--R
--E 2646

--S 2647 of 3320
)d op s14abf
--R 
--R
--RThere is one exposed function called s14abf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s14abf from NagSpecialFunctionsPackage
--R
--E 2647

--S 2648 of 3320
)d op s14baf
--R 
--R
--RThere is one exposed function called s14baf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,Integer) -> Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s14baf from NagSpecialFunctionsPackage
--R
--E 2648

--S 2649 of 3320
)d op s15adf
--R 
--R
--RThere is one exposed function called s15adf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s15adf from NagSpecialFunctionsPackage
--R
--E 2649

--S 2650 of 3320
)d op s15aef
--R 
--R
--RThere is one exposed function called s15aef :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s15aef from NagSpecialFunctionsPackage
--R
--E 2650

--S 2651 of 3320
)d op s17acf
--R 
--R
--RThere is one exposed function called s17acf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17acf from NagSpecialFunctionsPackage
--R
--E 2651

--S 2652 of 3320
)d op s17adf
--R 
--R
--RThere is one exposed function called s17adf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17adf from NagSpecialFunctionsPackage
--R
--E 2652

--S 2653 of 3320
)d op s17aef
--R 
--R
--RThere is one exposed function called s17aef :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17aef from NagSpecialFunctionsPackage
--R
--E 2653

--S 2654 of 3320
)d op s17aff
--R 
--R
--RThere is one exposed function called s17aff :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17aff from NagSpecialFunctionsPackage
--R
--E 2654

--S 2655 of 3320
)d op s17agf
--R 
--R
--RThere is one exposed function called s17agf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17agf from NagSpecialFunctionsPackage
--R
--E 2655

--S 2656 of 3320
)d op s17ahf
--R 
--R
--RThere is one exposed function called s17ahf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17ahf from NagSpecialFunctionsPackage
--R
--E 2656

--S 2657 of 3320
)d op s17ajf
--R 
--R
--RThere is one exposed function called s17ajf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17ajf from NagSpecialFunctionsPackage
--R
--E 2657

--S 2658 of 3320
)d op s17akf
--R 
--R
--RThere is one exposed function called s17akf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s17akf from NagSpecialFunctionsPackage
--R
--E 2658

--S 2659 of 3320
)d op s17dcf
--R 
--R
--RThere is one exposed function called s17dcf :
--R   [1] (DoubleFloat,Complex(DoubleFloat),Integer,String,Integer) -> 
--R            Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s17dcf from NagSpecialFunctionsPackage
--R
--E 2659

--S 2660 of 3320
)d op s17def
--R 
--R
--RThere is one exposed function called s17def :
--R   [1] (DoubleFloat,Complex(DoubleFloat),Integer,String,Integer) -> 
--R            Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s17def from NagSpecialFunctionsPackage
--R
--E 2660

--S 2661 of 3320
)d op s17dgf
--R 
--R
--RThere is one exposed function called s17dgf :
--R   [1] (String,Complex(DoubleFloat),String,Integer) -> Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s17dgf from NagSpecialFunctionsPackage
--R
--E 2661

--S 2662 of 3320
)d op s17dhf
--R 
--R
--RThere is one exposed function called s17dhf :
--R   [1] (String,Complex(DoubleFloat),String,Integer) -> Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s17dhf from NagSpecialFunctionsPackage
--R
--E 2662

--S 2663 of 3320
)d op s17dlf
--R 
--R
--RThere is one exposed function called s17dlf :
--R   [1] (Integer,DoubleFloat,Complex(DoubleFloat),Integer,String,Integer
--R            ) -> Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s17dlf from NagSpecialFunctionsPackage
--R
--E 2663

--S 2664 of 3320
)d op s18acf
--R 
--R
--RThere is one exposed function called s18acf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s18acf from NagSpecialFunctionsPackage
--R
--E 2664

--S 2665 of 3320
)d op s18adf
--R 
--R
--RThere is one exposed function called s18adf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s18adf from NagSpecialFunctionsPackage
--R
--E 2665

--S 2666 of 3320
)d op s18aef
--R 
--R
--RThere is one exposed function called s18aef :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s18aef from NagSpecialFunctionsPackage
--R
--E 2666

--S 2667 of 3320
)d op s18aff
--R 
--R
--RThere is one exposed function called s18aff :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s18aff from NagSpecialFunctionsPackage
--R
--E 2667

--S 2668 of 3320
)d op s18dcf
--R 
--R
--RThere is one exposed function called s18dcf :
--R   [1] (DoubleFloat,Complex(DoubleFloat),Integer,String,Integer) -> 
--R            Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s18dcf from NagSpecialFunctionsPackage
--R
--E 2668

--S 2669 of 3320
)d op s18def
--R 
--R
--RThere is one exposed function called s18def :
--R   [1] (DoubleFloat,Complex(DoubleFloat),Integer,String,Integer) -> 
--R            Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s18def from NagSpecialFunctionsPackage
--R
--E 2669

--S 2670 of 3320
)d op s19aaf
--R 
--R
--RThere is one exposed function called s19aaf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s19aaf from NagSpecialFunctionsPackage
--R
--E 2670

--S 2671 of 3320
)d op s19abf
--R 
--R
--RThere is one exposed function called s19abf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s19abf from NagSpecialFunctionsPackage
--R
--E 2671

--S 2672 of 3320
)d op s19acf
--R 
--R
--RThere is one exposed function called s19acf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s19acf from NagSpecialFunctionsPackage
--R
--E 2672

--S 2673 of 3320
)d op s19adf
--R 
--R
--RThere is one exposed function called s19adf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s19adf from NagSpecialFunctionsPackage
--R
--E 2673

--S 2674 of 3320
)d op s20acf
--R 
--R
--RThere is one exposed function called s20acf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s20acf from NagSpecialFunctionsPackage
--R
--E 2674

--S 2675 of 3320
)d op s20adf
--R 
--R
--RThere is one exposed function called s20adf :
--R   [1] (DoubleFloat,Integer) -> Result from NagSpecialFunctionsPackage
--R            
--R
--RExamples of s20adf from NagSpecialFunctionsPackage
--R
--E 2675

--S 2676 of 3320
)d op s21baf
--R 
--R
--RThere is one exposed function called s21baf :
--R   [1] (DoubleFloat,DoubleFloat,Integer) -> Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s21baf from NagSpecialFunctionsPackage
--R
--E 2676

--S 2677 of 3320
)d op s21bbf
--R 
--R
--RThere is one exposed function called s21bbf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,Integer) -> Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s21bbf from NagSpecialFunctionsPackage
--R
--E 2677

--S 2678 of 3320
)d op s21bcf
--R 
--R
--RThere is one exposed function called s21bcf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,Integer) -> Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s21bcf from NagSpecialFunctionsPackage
--R
--E 2678

--S 2679 of 3320
)d op s21bdf
--R 
--R
--RThere is one exposed function called s21bdf :
--R   [1] (DoubleFloat,DoubleFloat,DoubleFloat,DoubleFloat,Integer) -> 
--R            Result
--R             from NagSpecialFunctionsPackage
--R
--RExamples of s21bdf from NagSpecialFunctionsPackage
--R
--E 2679

--S 2680 of 3320
)d op safeCeiling
--R 
--R
--RThere is one unexposed function called safeCeiling :
--R   [1] D2 -> Integer from GaloisGroupUtilities(D2) if D2 has FPS and D2
--R             has RING
--R
--RExamples of safeCeiling from GaloisGroupUtilities
--R
--E 2680

--S 2681 of 3320
)d op safeFloor
--R 
--R
--RThere is one unexposed function called safeFloor :
--R   [1] D2 -> Integer from GaloisGroupUtilities(D2) if D2 has FPS and D2
--R             has RING
--R
--RExamples of safeFloor from GaloisGroupUtilities
--R
--E 2681

--S 2682 of 3320
)d op safety
--R 
--R
--RThere is one exposed function called safety :
--R   [1] NonNegativeInteger -> GuessOption from GuessOption
--R
--RThere is one unexposed function called safety :
--R   [1] List(GuessOption) -> NonNegativeInteger from 
--R            GuessOptionFunctions0
--R
--RExamples of safety from GuessOptionFunctions0
--R
--R
--RExamples of safety from GuessOption
--R
--E 2682

--S 2683 of 3320
)d op safetyMargin
--R 
--R
--RThere are 2 unexposed functions called safetyMargin :
--R   [1] NonNegativeInteger -> NonNegativeInteger from 
--R            GaloisGroupUtilities(D2)
--R             if D2 has FPS and D2 has RING
--R   [2]  -> NonNegativeInteger from GaloisGroupUtilities(D2)
--R             if D2 has FPS and D2 has RING
--R
--RExamples of safetyMargin from GaloisGroupUtilities
--R
--E 2683

--S 2684 of 3320
)d op sample
--R 
--R
--RThere are 10 exposed functions called sample :
--R   [1]  -> D from D if D has ABELMON
--R   [2]  -> D from D if D has AGG
--R   [3]  -> ArrayStack(D1) from ArrayStack(D1) if D1 has SETCAT
--R   [4]  -> CartesianTensor(D1,D2,D3) from CartesianTensor(D1,D2,D3)
--R             if D1: INT and D2: NNI and D3 has COMRING
--R   [5]  -> Dequeue(D1) from Dequeue(D1) if D1 has SETCAT
--R   [6]  -> Heap(D1) from Heap(D1) if D1 has ORDSET
--R   [7]  -> D from D if D has MONOID
--R   [8]  -> Queue(D1) from Queue(D1) if D1 has SETCAT
--R   [9]  -> Stack(D1) from Stack(D1) if D1 has SETCAT
--R   [10]  -> Symbol from Symbol
--R
--RExamples of sample from AbelianMonoid
--R
--R
--RExamples of sample from Aggregate
--R
--R
--RExamples of sample from ArrayStack
--R
--Rsample()$ArrayStack(INT)
--R
--R
--RExamples of sample from CartesianTensor
--R
--R
--RExamples of sample from Dequeue
--R
--Rsample()$Dequeue(INT)
--R
--R
--RExamples of sample from Heap
--R
--Rsample()$Heap(INT)
--R
--R
--RExamples of sample from Monoid
--R
--R
--RExamples of sample from Queue
--R
--Rsample()$Queue(INT)
--R
--R
--RExamples of sample from Stack
--R
--Rsample()$Stack(INT)
--R
--R
--RExamples of sample from Symbol
--R
--Rsample()$Symbol
--R
--E 2684

--S 2685 of 3320 done
)d op sampleDotGraph
--R 
--R
--RThere is one exposed function called sampleDotGraph :
--R   [1]  -> List(String) from Graphviz
--R
--RExamples of sampleDotGraph from Graphviz
--R
--Rgraph:=sampleDotGraph()
--R
--E 2685

--S 2686 of 3320
)d op samplePoint
--R 
--R
--RThere are 2 exposed functions called samplePoint :
--R   [1] Cell(D2) -> List(D2) from Cell(D2) if D2 has RCFIELD
--R   [2] SimpleCell(D1,D2) -> D1 from SimpleCell(D1,D2)
--R             if D1 has RCFIELD and D2 has UPOLYC(D1)
--R
--RExamples of samplePoint from Cell
--R
--R
--RExamples of samplePoint from SimpleCell
--R
--E 2686

--S 2687 of 3320
)d op satisfy?
--R 
--R
--RThere are 3 unexposed functions called satisfy? :
--R   [1] (PatternMatchResult(D3,D4),Pattern(D3)) -> Union(Boolean,
--R            "failed")
--R             from PatternMatchResult(D3,D4) if D3 has SETCAT and D4
--R             has SETCAT
--R   [2] (D2,Pattern(D4)) -> Boolean from PatternFunctions1(D4,D2)
--R             if D4 has SETCAT and D2 has TYPE
--R   [3] (List(D5),Pattern(D4)) -> Boolean from PatternFunctions1(D4,D5)
--R             if D4 has SETCAT and D5 has TYPE
--R
--RExamples of satisfy? from PatternMatchResult
--R
--R
--RExamples of satisfy? from PatternFunctions1
--R
--E 2687

--S 2688 of 3320
)d op saturate
--R 
--R
--RThere are 2 exposed functions called saturate :
--R   [1] (PolynomialIdeals(D3,D4,D5,D1),D1,List(D5)) -> PolynomialIdeals(
--R            D3,D4,D5,D1)
--R             from PolynomialIdeals(D3,D4,D5,D1)
--R             if D5 has ORDSET and D3 has FIELD and D4 has OAMONS and D1
--R             has POLYCAT(D3,D4,D5)
--R   [2] (PolynomialIdeals(D2,D3,D4,D1),D1) -> PolynomialIdeals(D2,D3,D4,
--R            D1)
--R             from PolynomialIdeals(D2,D3,D4,D1)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D1
--R             has POLYCAT(D2,D3,D4)
--R
--RExamples of saturate from PolynomialIdeals
--R
--E 2688

--S 2689 of 3320
)d op save
--R 
--R
--RThere is one exposed function called save :
--R   [1]  -> FortranCode from FortranCode
--R
--RExamples of save from FortranCode
--R
--E 2689

--S 2690 of 3320
)d op say
--R 
--R
--RThere are 2 exposed functions called say :
--R   [1] String -> Void from DisplayPackage
--R   [2] List(String) -> Void from DisplayPackage
--R
--RExamples of say from DisplayPackage
--R
--E 2690

--S 2691 of 3320
)d op sayLength
--R 
--R
--RThere are 2 exposed functions called sayLength :
--R   [1] String -> Integer from DisplayPackage
--R   [2] List(String) -> Integer from DisplayPackage
--R
--RExamples of sayLength from DisplayPackage
--R
--E 2691

--S 2692 of 3320
)d op sbt
--R 
--R
--RThere is one exposed function called sbt :
--R   [1] (D,D) -> D from D if D has LOCPOWC(D1) and D1 has FIELD
--R
--RExamples of sbt from LocalPowerSeriesCategory
--R
--E 2692

--S 2693 of 3320
)d op scalarMatrix
--R 
--R
--RThere are 2 exposed functions called scalarMatrix :
--R   [1] (NonNegativeInteger,D2) -> D from D
--R             if D2 has RING and D has MATCAT(D2,D3,D4) and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [2] D1 -> D from D
--R             if D1 has RING and D has SMATCAT(D2,D1,D3,D4) and D3 has 
--R            DIRPCAT(D2,D1) and D4 has DIRPCAT(D2,D1)
--R
--RExamples of scalarMatrix from MatrixCategory
--R
--Rz:Matrix(INT):=scalarMatrix(3,5)
--R
--R
--RExamples of scalarMatrix from SquareMatrixCategory
--R
--E 2693

--S 2694 of 3320
)d op scalarTypeOf
--R 
--R
--RThere is one exposed function called scalarTypeOf :
--R   [1] FortranType -> Union(fst: FortranScalarType,void: void) from 
--R            FortranType
--R
--RExamples of scalarTypeOf from FortranType
--R
--E 2694

--S 2695 of 3320
)d op scale
--R 
--R
--RThere is one exposed function called scale :
--R   [1] (D1,D1,D1) -> DenavitHartenbergMatrix(D1)
--R             from DenavitHartenbergMatrix(D1)
--R             if D1 has Join(Field,TranscendentalFunctionCategory)
--R
--RThere are 3 unexposed functions called scale :
--R   [1] (MoebiusTransform(D1),D1) -> MoebiusTransform(D1)
--R             from MoebiusTransform(D1) if D1 has FIELD
--R   [2] D1 -> MoebiusTransform(D1) from MoebiusTransform(D1) if D1 has 
--R            FIELD
--R   [3] (TwoDimensionalViewport,PositiveInteger,Float,Float) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of scale from DenavitHartenbergMatrix
--R
--Rscale(0.5,0.5,0.5)
--R
--R
--RExamples of scale from MoebiusTransform
--R
--R
--RExamples of scale from TwoDimensionalViewport
--R
--E 2695

--S 2696 of 3320
)d op scaleRoots
--R 
--R
--RThere is one unexposed function called scaleRoots :
--R   [1] (D1,D2) -> D1 from GaloisGroupPolynomialUtilities(D2,D1)
--R             if D2 has RING and D1 has UPOLYC(D2)
--R
--RExamples of scaleRoots from GaloisGroupPolynomialUtilities
--R
--E 2696

--S 2697 of 3320
)d op scan
--R 
--R
--RThere are 8 exposed functions called scan :
--R   [1] (((D5,D4) -> D4),OneDimensionalArray(D5),D4) -> 
--R            OneDimensionalArray(D4)
--R             from OneDimensionalArrayFunctions2(D5,D4) if D5 has TYPE 
--R            and D4 has TYPE
--R   [2] (((D6,D4) -> D4),DirectProduct(D5,D6),D4) -> DirectProduct(D5,D4
--R            )
--R             from DirectProductFunctions2(D5,D6,D4)
--R             if D5: NNI and D6 has TYPE and D4 has TYPE
--R   [3] (((D5,D4) -> D4),D3,D4) -> D1
--R             from FiniteLinearAggregateFunctions2(D5,D3,D4,D1)
--R             if D5 has TYPE and D4 has TYPE and D1 has FLAGG(D4) and D3
--R             has FLAGG(D5)
--R   [4] (((D5,D4) -> D4),D3,D4) -> D1
--R             from FiniteSetAggregateFunctions2(D5,D3,D4,D1)
--R             if D5 has SETCAT and D4 has SETCAT and D1 has FSAGG(D4) 
--R            and D3 has FSAGG(D5)
--R   [5] (((D5,D4) -> D4),List(D5),D4) -> List(D4) from ListFunctions2(D5
--R            ,D4)
--R             if D5 has TYPE and D4 has TYPE
--R   [6] (((D5,D4) -> D4),PrimitiveArray(D5),D4) -> PrimitiveArray(D4)
--R             from PrimitiveArrayFunctions2(D5,D4) if D5 has TYPE and D4
--R             has TYPE
--R   [7] (D2,((D5,D2) -> D2),Stream(D5)) -> Stream(D2)
--R             from StreamFunctions2(D5,D2) if D5 has TYPE and D2 has 
--R            TYPE
--R   [8] (((D5,D4) -> D4),Vector(D5),D4) -> Vector(D4)
--R             from VectorFunctions2(D5,D4) if D5 has TYPE and D4 has 
--R            TYPE
--R
--RExamples of scan from OneDimensionalArrayFunctions2
--R
--RT1:=OneDimensionalArrayFunctions2(Integer,Integer) 
--Radder(a:Integer,b:Integer):Integer == a+b 
--Rscan(adder,[i for i in 1..10],0)$T1
--R
--R
--RExamples of scan from DirectProductFunctions2
--R
--R
--RExamples of scan from FiniteLinearAggregateFunctions2
--R
--R
--RExamples of scan from FiniteSetAggregateFunctions2
--R
--R
--RExamples of scan from ListFunctions2
--R
--R
--RExamples of scan from PrimitiveArrayFunctions2
--R
--RT1:=PrimitiveArrayFunctions2(Integer,Integer) 
--Radder(a:Integer,b:Integer):Integer == a+b 
--Rscan(adder,[i for i in 1..10],0)$T1
--R
--R
--RExamples of scan from StreamFunctions2
--R
--Rm:=[i for i in 1..]::Stream(Integer) 
--Rf(i:Integer,j:Integer):Integer==i+j 
--Rscan(1,f,m)
--R
--R
--RExamples of scan from VectorFunctions2
--R
--E 2697

--S 2698 of 3320
)d op ScanArabic
--R 
--R
--RThere is one unexposed function called ScanArabic :
--R   [1] String -> PositiveInteger from NumberFormats
--R
--RExamples of ScanArabic from NumberFormats
--R
--E 2698

--S 2699 of 3320
)d op ScanFloatIgnoreSpaces
--R 
--R
--RThere is one unexposed function called ScanFloatIgnoreSpaces :
--R   [1] String -> Float from NumberFormats
--R
--RExamples of ScanFloatIgnoreSpaces from NumberFormats
--R
--E 2699

--S 2700 of 3320
)d op ScanFloatIgnoreSpacesIfCan
--R 
--R
--RThere is one unexposed function called ScanFloatIgnoreSpacesIfCan :
--R   [1] String -> Union(Float,"failed") from NumberFormats
--R
--RExamples of ScanFloatIgnoreSpacesIfCan from NumberFormats
--R
--E 2700

--S 2701 of 3320
)d op scanOneDimSubspaces
--R 
--R
--RThere is one exposed function called scanOneDimSubspaces :
--R   [1] (List(Vector(D4)),Integer) -> Vector(D4) from 
--R            RepresentationPackage2(D4)
--R             if D4 has FIELD and D4 has FINITE and D4 has RING
--R
--RExamples of scanOneDimSubspaces from RepresentationPackage2
--R
--E 2701

--S 2702 of 3320
)d op ScanRoman
--R 
--R
--RThere is one unexposed function called ScanRoman :
--R   [1] String -> PositiveInteger from NumberFormats
--R
--RExamples of ScanRoman from NumberFormats
--R
--E 2702

--S 2703 of 3320
)d op schema
--R 
--R
--RThere is one unexposed function called schema :
--R   [1] (D2,D2) -> List(NonNegativeInteger) from PseudoRemainderSequence
--R            (D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of schema from PseudoRemainderSequence
--R
--E 2703

--S 2704 of 3320
)d op schwerpunkt
--R 
--R
--RThere is one unexposed function called schwerpunkt :
--R   [1] D2 -> Complex(D3) from ComplexRootFindingPackage(D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R
--RExamples of schwerpunkt from ComplexRootFindingPackage
--R
--E 2704

--S 2705 of 3320
)d op screenResolution
--R 
--R
--RThere are 2 exposed functions called screenResolution :
--R   [1]  -> Integer from GraphicsDefaults
--R   [2] Integer -> Integer from GraphicsDefaults
--R
--RThere is one unexposed function called screenResolution :
--R   [1]  -> Integer from Plot
--R
--RExamples of screenResolution from GraphicsDefaults
--R
--R
--RExamples of screenResolution from Plot
--R
--E 2705

--S 2706 of 3320
)d op screenResolution3D
--R 
--R
--RThere is one unexposed function called screenResolution3D :
--R   [1]  -> Integer from Plot3D
--R
--RExamples of screenResolution3D from Plot3D
--R
--E 2706

--S 2707 of 3320 done
)d op script 
--R 
--R
--RThere are 2 exposed functions called script :
--R   [1] (Symbol,Record(sub: List(OutputForm),sup: List(OutputForm),
--R            presup: List(OutputForm),presub: List(OutputForm),args: List(
--R            OutputForm))) -> Symbol
--R             from Symbol
--R   [2] (Symbol,List(List(OutputForm))) -> Symbol from Symbol
--R
--RExamples of script from Symbol
--R
--Rm:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) 
--Rn:=scripts m 
--Rscript(Little,n)
--R
--Rm:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) 
--Rscripts m
--R
--E 2707

--S 2708 of 3320 done
)d op scripted?
--R 
--R
--RThere is one exposed function called scripted? :
--R   [1] Symbol -> Boolean from Symbol
--R
--RExamples of scripted? from Symbol
--R
--RU:=subscript(u,[1,2]) 
--Rscripted? U 
--Rscripted? W
--R
--E 2708

--S 2709 of 3320
)d op scripts
--R 
--R
--RThere is one exposed function called scripts :
--R   [1] Symbol -> Record(sub: List(OutputForm),sup: List(OutputForm),
--R            presup: List(OutputForm),presub: List(OutputForm),args: List(
--R            OutputForm))
--R             from Symbol
--R
--RThere is one unexposed function called scripts :
--R   [1] (OutputForm,List(OutputForm)) -> OutputForm from OutputForm
--R
--RExamples of scripts from OutputForm
--R
--R
--RExamples of scripts from Symbol
--R
--Rm:=script(Big,[[i,j],[k,1],[0,1],[2],[u,v,w]]) 
--Rscripts m
--R
--E 2709

--S 2710 of 3320
)d op sdf2lst
--R 
--R
--RThere are 3 exposed functions called sdf2lst :
--R   [1] Stream(DoubleFloat) -> List(String) from d01AgentsPackage
--R   [2] Stream(DoubleFloat) -> List(String) from 
--R            ExpertSystemContinuityPackage
--R   [3] Stream(DoubleFloat) -> List(String) from 
--R            ExpertSystemToolsPackage
--R
--RExamples of sdf2lst from d01AgentsPackage
--R
--R
--RExamples of sdf2lst from ExpertSystemContinuityPackage
--R
--R
--RExamples of sdf2lst from ExpertSystemToolsPackage
--R
--E 2710

--S 2711 of 3320
)d op se2rfi
--R 
--R
--RThere is one unexposed function called se2rfi :
--R   [1] List(Symbol) -> List(Fraction(Polynomial(D3)))
--R             from ParametricLinearEquations(D3,D4,D5,D6)
--R             if D3 has Join(EuclideanDomain,CharacteristicZero) and D4
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D5 has 
--R            OAMONS and D6 has POLYCAT(D3,D5,D4)
--R
--RExamples of se2rfi from ParametricLinearEquations
--R
--E 2711

--S 2712 of 3320
)d op search
--R 
--R
--RThere is one exposed function called search :
--R   [1] (D2,D) -> Union(D1,"failed") from D
--R             if D has KDAGG(D2,D1) and D2 has SETCAT and D1 has SETCAT
--R            
--R
--RExamples of search from KeyedDictionary
--R
--E 2712

--S 2713 of 3320
)d op sec
--R 
--R
--RThere is one exposed function called sec :
--R   [1] D -> D from D if D has TRIGCAT
--R
--RThere are 5 unexposed functions called sec :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of sec from ElementaryFunction
--R
--R
--RExamples of sec from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of sec from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of sec from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of sec from StreamTranscendentalFunctions
--R
--R
--RExamples of sec from TrigonometricFunctionCategory
--R
--E 2713

--S 2714 of 3320
)d op sec2cos
--R 
--R
--RThere is one exposed function called sec2cos :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of sec2cos from TranscendentalManipulations
--R
--E 2714

--S 2715 of 3320
)d op sech
--R 
--R
--RThere is one exposed function called sech :
--R   [1] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called sech :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of sech from ElementaryFunction
--R
--R
--RExamples of sech from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of sech from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of sech from HyperbolicFunctionCategory
--R
--R
--RExamples of sech from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of sech from StreamTranscendentalFunctions
--R
--E 2715

--S 2716 of 3320
)d op sech2cosh
--R 
--R
--RThere is one exposed function called sech2cosh :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of sech2cosh from TranscendentalManipulations
--R
--E 2716

--S 2717 of 3320
)d op sechIfCan
--R 
--R
--RThere is one exposed function called sechIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of sechIfCan from PartialTranscendentalFunctions
--R
--E 2717

--S 2718 of 3320
)d op secIfCan
--R 
--R
--RThere is one exposed function called secIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of secIfCan from PartialTranscendentalFunctions
--R
--E 2718

--S 2719 of 3320 done
)d op second
--R 
--R
--RThere is one exposed function called second :
--R   [1] D -> D1 from D if D has URAGG(D1) and D1 has TYPE
--R
--RExamples of second from UnaryRecursiveAggregate
--R
--Rsecond [1,4,2,-6,0,3,5,4,2,3]
--R
--E 2719

--S 2720 of 3320
)d op seed
--R 
--R
--RThere is one exposed function called seed :
--R   [1]  -> Integer from RandomNumberSource
--R
--RExamples of seed from RandomNumberSource
--R
--E 2720

--S 2721 of 3320
)d op segment
--R 
--R
--RThere are 3 exposed functions called segment :
--R   [1] SegmentBinding(D2) -> Segment(D2) from SegmentBinding(D2) if D2
--R             has TYPE
--R   [2] (D1,D1) -> D from D if D has SEGCAT(D1) and D1 has TYPE
--R   [3] D1 -> UniversalSegment(D1) from UniversalSegment(D1) if D1 has 
--R            TYPE
--R
--RExamples of segment from SegmentBinding
--R
--R
--RExamples of segment from SegmentCategory
--R
--R
--RExamples of segment from UniversalSegment
--R
--E 2721

--S 2722 of 3320
)d op SEGMENT
--R 
--R
--RThere are 2 exposed functions called SEGMENT :
--R   [1] (D1,D1) -> D from D if D has SEGCAT(D1) and D1 has TYPE
--R   [2] D1 -> UniversalSegment(D1) from UniversalSegment(D1) if D1 has 
--R            TYPE
--R
--RThere are 2 unexposed functions called SEGMENT :
--R   [1] OutputForm -> OutputForm from OutputForm
--R   [2] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of SEGMENT from OutputForm
--R
--R
--RExamples of SEGMENT from SegmentCategory
--R
--R
--RExamples of SEGMENT from UniversalSegment
--R
--E 2722

--S 2723 of 3320
)d op select
--R 
--R
--RThere are 4 exposed functions called select :
--R   [1] ((D2 -> Boolean),D) -> D from D
--R             if D has finiteAggregate and D has CLAGG(D2) and D2 has 
--R            TYPE
--R   [2] ((D2 -> Boolean),InfiniteTuple(D2)) -> InfiniteTuple(D2)
--R             from InfiniteTuple(D2) if D2 has TYPE
--R   [3] ((D2 -> Boolean),D) -> D from D if D has LZSTAGG(D2) and D2 has 
--R            TYPE
--R   [4] (D,D2) -> Union(D1,"failed") from D
--R             if D has TSETCAT(D3,D4,D2,D1) and D3 has INTDOM and D4
--R             has OAMONS and D2 has ORDSET and D1 has RPOLCAT(D3,D4,D2)
--R            
--R
--RThere is one unexposed function called select :
--R   [1] (Tuple(D1),NonNegativeInteger) -> D1 from Tuple(D1) if D1 has 
--R            TYPE
--R
--RExamples of select from Collection
--R
--R
--RExamples of select from InfiniteTuple
--R
--R
--RExamples of select from LazyStreamAggregate
--R
--Rm:=[i for i in 0..] 
--Rselect(x+->prime? x,m)
--R
--R
--RExamples of select from TriangularSetCategory
--R
--R
--RExamples of select from Tuple
--R
--Rt1:PrimitiveArray(Integer):= [i for i in 1..10] 
--Rt2:=coerce(t1)$Tuple(Integer) 
--Rselect(t2,3)
--R
--E 2723

--S 2724 of 3320
)d op select!
--R 
--R
--RThere are 2 exposed functions called select! :
--R   [1] ((D2 -> Boolean),D) -> D from D
--R             if D has finiteAggregate and D has DIOPS(D2) and D2 has 
--R            SETCAT
--R   [2] ((D2 -> Boolean),D) -> D from D if D has ELAGG(D2) and D2 has 
--R            TYPE
--R
--RExamples of select! from DictionaryOperations
--R
--R
--RExamples of select! from ExtensibleLinearAggregate
--R
--E 2724

--S 2725 of 3320
)d op selectAndPolynomials
--R 
--R
--RThere is one unexposed function called selectAndPolynomials :
--R   [1] (List((D7 -> Boolean)),List(D7)) -> Record(goodPols: List(D7),
--R            badPols: List(D7))
--R             from PolynomialSetUtilitiesPackage(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of selectAndPolynomials from PolynomialSetUtilitiesPackage
--R
--E 2725

--S 2726 of 3320
)d op selectFiniteRoutines
--R 
--R
--RThere is one exposed function called selectFiniteRoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectFiniteRoutines from RoutinesTable
--R
--E 2726

--S 2727 of 3320
)d op selectfirst
--R 
--R
--RThere is one unexposed function called selectfirst :
--R   [1] Product(D1,D2) -> D1 from Product(D1,D2) if D1 has SETCAT and D2
--R             has SETCAT
--R
--RExamples of selectfirst from Product
--R
--E 2727

--S 2728 of 3320
)d op selectIntegrationRoutines
--R 
--R
--RThere is one exposed function called selectIntegrationRoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectIntegrationRoutines from RoutinesTable
--R
--E 2728

--S 2729 of 3320
)d op selectMultiDimensionalRoutines
--R 
--R
--RThere is one exposed function called selectMultiDimensionalRoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectMultiDimensionalRoutines from RoutinesTable
--R
--E 2729

--S 2730 of 3320
)d op selectNonFiniteRoutines
--R 
--R
--RThere is one exposed function called selectNonFiniteRoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectNonFiniteRoutines from RoutinesTable
--R
--E 2730

--S 2731 of 3320
)d op selectODEIVPRoutines
--R 
--R
--RThere is one exposed function called selectODEIVPRoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectODEIVPRoutines from RoutinesTable
--R
--E 2731

--S 2732 of 3320
)d op selectOptimizationRoutines
--R 
--R
--RThere is one exposed function called selectOptimizationRoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectOptimizationRoutines from RoutinesTable
--R
--E 2732

--S 2733 of 3320
)d op selectOrPolynomials
--R 
--R
--RThere is one unexposed function called selectOrPolynomials :
--R   [1] (List((D7 -> Boolean)),List(D7)) -> Record(goodPols: List(D7),
--R            badPols: List(D7))
--R             from PolynomialSetUtilitiesPackage(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of selectOrPolynomials from PolynomialSetUtilitiesPackage
--R
--E 2733

--S 2734 of 3320
)d op selectPDERoutines
--R 
--R
--RThere is one exposed function called selectPDERoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectPDERoutines from RoutinesTable
--R
--E 2734

--S 2735 of 3320
)d op selectPolynomials
--R 
--R
--RThere is one unexposed function called selectPolynomials :
--R   [1] ((D7 -> Boolean),List(D7)) -> Record(goodPols: List(D7),badPols
--R            : List(D7))
--R             from PolynomialSetUtilitiesPackage(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has INTDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of selectPolynomials from PolynomialSetUtilitiesPackage
--R
--E 2735

--S 2736 of 3320
)d op selectsecond
--R 
--R
--RThere is one unexposed function called selectsecond :
--R   [1] Product(D2,D1) -> D1 from Product(D2,D1) if D1 has SETCAT and D2
--R             has SETCAT
--R
--RExamples of selectsecond from Product
--R
--E 2736

--S 2737 of 3320
)d op selectSumOfSquaresRoutines
--R 
--R
--RThere is one exposed function called selectSumOfSquaresRoutines :
--R   [1] RoutinesTable -> RoutinesTable from RoutinesTable
--R
--RExamples of selectSumOfSquaresRoutines from RoutinesTable
--R
--E 2737

--S 2738 of 3320
)d op semicolonSeparate
--R 
--R
--RThere is one unexposed function called semicolonSeparate :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R
--RExamples of semicolonSeparate from OutputForm
--R
--E 2738

--S 2739 of 3320
)d op semiDegreeSubResultantEuclidean
--R 
--R
--RThere is one unexposed function called semiDegreeSubResultantEuclidean :
--R   [1] (D2,D2,NonNegativeInteger) -> Record(coef2: D2,subResultant: D2)
--R             from PseudoRemainderSequence(D4,D2)
--R             if D4 has INTDOM and D2 has UPOLYC(D4)
--R
--RExamples of semiDegreeSubResultantEuclidean from PseudoRemainderSequence
--R
--E 2739

--S 2740 of 3320
)d op semiDiscriminantEuclidean
--R 
--R
--RThere is one unexposed function called semiDiscriminantEuclidean :
--R   [1] D2 -> Record(coef2: D2,discriminant: D3)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of semiDiscriminantEuclidean from PseudoRemainderSequence
--R
--E 2740

--S 2741 of 3320
)d op semiIndiceSubResultantEuclidean
--R 
--R
--RThere is one unexposed function called semiIndiceSubResultantEuclidean :
--R   [1] (D2,D2,NonNegativeInteger) -> Record(coef2: D2,subResultant: D2)
--R             from PseudoRemainderSequence(D4,D2)
--R             if D4 has INTDOM and D2 has UPOLYC(D4)
--R
--RExamples of semiIndiceSubResultantEuclidean from PseudoRemainderSequence
--R
--E 2741

--S 2742 of 3320
)d op semiLastSubResultantEuclidean
--R 
--R
--RThere is one unexposed function called semiLastSubResultantEuclidean :
--R   [1] (D2,D2) -> Record(coef2: D2,subResultant: D2)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of semiLastSubResultantEuclidean from PseudoRemainderSequence
--R
--E 2742

--S 2743 of 3320
)d op semiResultantEuclidean1
--R 
--R
--RThere is one unexposed function called semiResultantEuclidean1 :
--R   [1] (D2,D2) -> Record(coef1: D2,resultant: D3)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of semiResultantEuclidean1 from PseudoRemainderSequence
--R
--E 2743

--S 2744 of 3320
)d op semiResultantEuclidean2
--R 
--R
--RThere is one unexposed function called semiResultantEuclidean2 :
--R   [1] (D2,D2) -> Record(coef2: D2,resultant: D3)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of semiResultantEuclidean2 from PseudoRemainderSequence
--R
--E 2744

--S 2745 of 3320
--R--------------------)d op semiResultantEuclidean_naif (fix this)
--E 2745

--S 2746 of 3320
)d op semiResultantReduitEuclidean
--R 
--R
--RThere is one unexposed function called semiResultantReduitEuclidean :
--R   [1] (D2,D2) -> Record(coef2: D2,resultantReduit: D3)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has GCDDOM and D3 has INTDOM and D2 has UPOLYC(D3)
--R         
--R
--RExamples of semiResultantReduitEuclidean from PseudoRemainderSequence
--R
--E 2746

--S 2747 of 3320
)d op semiSubResultantGcdEuclidean1
--R 
--R
--RThere is one unexposed function called semiSubResultantGcdEuclidean1 :
--R   [1] (D2,D2) -> Record(coef1: D2,gcd: D2) from 
--R            PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of semiSubResultantGcdEuclidean1 from PseudoRemainderSequence
--R
--E 2747

--S 2748 of 3320
)d op semiSubResultantGcdEuclidean2
--R 
--R
--RThere is one unexposed function called semiSubResultantGcdEuclidean2 :
--R   [1] (D2,D2) -> Record(coef2: D2,gcd: D2) from 
--R            PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of semiSubResultantGcdEuclidean2 from PseudoRemainderSequence
--R
--E 2748

--S 2749 of 3320
)d op separant
--R 
--R
--RThere is one exposed function called separant :
--R   [1] D -> D from D
--R             if D has DPOLCAT(D1,D2,D3,D4) and D1 has RING and D2 has 
--R            ORDSET and D3 has DVARCAT(D2) and D4 has OAMONS
--R
--RExamples of separant from DifferentialPolynomialCategory
--R
--E 2749

--S 2750 of 3320
)d op separate
--R 
--R
--RThere is one exposed function called separate :
--R   [1] (D,D) -> Record(primePart: D,commonPart: D) from D
--R             if D2 has GCDDOM and D2 has RING and D has UPOLYC(D2)
--R
--RThere are 2 unexposed functions called separate :
--R   [1] Fraction(D4) -> Record(polyPart: LaurentPolynomial(D3,D4),
--R            fracPart: Fraction(D4))
--R             from LaurentPolynomial(D3,D4)
--R             if D3 has FIELD and D3 has INTDOM and D4 has UPOLYC(D3)
--R         
--R   [2] SubSpace(D2,D3) -> List(SubSpace(D2,D3)) from SubSpace(D2,D3)
--R             if D2: PI and D3 has RING
--R
--RExamples of separate from LaurentPolynomial
--R
--R
--RExamples of separate from SubSpace
--R
--R
--RExamples of separate from UnivariatePolynomialCategory
--R
--E 2750

--S 2751 of 3320
)d op separateDegrees
--R 
--R
--RThere is one exposed function called separateDegrees :
--R   [1] D2 -> List(Record(deg: NonNegativeInteger,prod: D2))
--R             from DistinctDegreeFactorize(D3,D2)
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R
--RExamples of separateDegrees from DistinctDegreeFactorize
--R
--E 2751

--S 2752 of 3320
)d op separateFactors
--R 
--R
--RThere are 2 exposed functions called separateFactors :
--R   [1] List(Record(deg: NonNegativeInteger,prod: D4)) -> List(D4)
--R             from DistinctDegreeFactorize(D3,D4)
--R             if D4 has UPOLYC(D3) and D3 has FFIELDC
--R   [2] (List(Record(factor: D4,degree: Integer)),Integer) -> List(D4)
--R             from ModularDistinctDegreeFactorizer(D4) if D4 has UPOLYC(
--R            INT)
--R
--RExamples of separateFactors from DistinctDegreeFactorize
--R
--R
--RExamples of separateFactors from ModularDistinctDegreeFactorizer
--R
--E 2752

--S 2753 of 3320
)d op separe
--R 
--R
--RThere is one exposed function called separe :
--R   [1] (List(D2),D2,D2) -> List(D2) from SimpleCell(D2,D3)
--R             if D2 has RCFIELD and D3 has UPOLYC(D2)
--R
--RExamples of separe from SimpleCell
--R
--E 2753

--S 2754 of 3320
)d op sequences
--R 
--R
--RThere are 2 exposed functions called sequences :
--R   [1] (List(Integer),List(Integer)) -> Stream(List(Integer))
--R             from PartitionsAndPermutations
--R   [2] List(Integer) -> Stream(List(Integer)) from 
--R            PartitionsAndPermutations
--R
--RExamples of sequences from PartitionsAndPermutations
--R
--E 2754

--S 2755 of 3320
)d op series
--R 
--R
--RThere are 16 exposed functions called series :
--R   [1] Symbol -> Any from ExpressionToUnivariatePowerSeries(D3,D4)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D4 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [2] D2 -> Any from ExpressionToUnivariatePowerSeries(D3,D2)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [3] (D2,Fraction(Integer)) -> Any
--R             from ExpressionToUnivariatePowerSeries(D4,D2)
--R             if D4 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4))
--R   [4] (D2,Equation(D2)) -> Any from ExpressionToUnivariatePowerSeries(
--R            D4,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [5] (D2,Equation(D2),Fraction(Integer)) -> Any
--R             from ExpressionToUnivariatePowerSeries(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [6] ((Integer -> D5),Equation(D5)) -> Any
--R             from GenerateUnivariatePowerSeries(D4,D5)
--R             if D5 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [7] (D2,Symbol,Equation(D2)) -> Any from 
--R            GenerateUnivariatePowerSeries(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [8] ((Integer -> D6),Equation(D6),UniversalSegment(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D5,D6)
--R             if D6 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [9] (D2,Symbol,Equation(D2),UniversalSegment(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D6,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D6)) and D6
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [10] ((Fraction(Integer) -> D7),Equation(D7),UniversalSegment(
--R            Fraction(Integer)),Fraction(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D6,D7)
--R             if D7 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D6)) and D6
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [11] (D2,Symbol,Equation(D2),UniversalSegment(Fraction(Integer)),
--R            Fraction(Integer)) -> Any
--R             from GenerateUnivariatePowerSeries(D7,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D7)) and D7
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [12] (Integer,D2,D) -> D from D if D has LOCPOWC(D2) and D2 has 
--R            FIELD
--R   [13] Stream(Record(k: Integer,c: D2)) -> D from D
--R             if D2 has RING and D has ULSCAT(D2)
--R   [14] (NonNegativeInteger,Stream(Record(k: Fraction(Integer),c: D3)))
--R             -> D
--R             from D if D3 has RING and D has UPXSCAT(D3)
--R   [15] Stream(D2) -> D from D if D2 has RING and D has UTSCAT(D2)
--R   [16] Stream(Record(k: NonNegativeInteger,c: D2)) -> D from D
--R             if D2 has RING and D has UTSCAT(D2)
--R
--RThere are 3 unexposed functions called series :
--R   [1] Stream(Record(k: Integer,c: D2)) -> 
--R            InnerSparseUnivariatePowerSeries(D2)
--R             from InnerSparseUnivariatePowerSeries(D2) if D2 has RING
--R         
--R   [2] Stream(D2) -> InnerTaylorSeries(D2) from InnerTaylorSeries(D2)
--R             if D2 has RING
--R   [3] Stream(D4) -> SparseMultivariateTaylorSeries(D2,D3,D4)
--R             from SparseMultivariateTaylorSeries(D2,D3,D4)
--R             if D4 has POLYCAT(D2,INDE(D3),D3) and D2 has RING and D3
--R             has ORDSET
--R
--RExamples of series from ExpressionToUnivariatePowerSeries
--R
--R
--RExamples of series from GenerateUnivariatePowerSeries
--R
--R
--RExamples of series from InnerSparseUnivariatePowerSeries
--R
--R
--RExamples of series from InnerTaylorSeries
--R
--R
--RExamples of series from LocalPowerSeriesCategory
--R
--R
--RExamples of series from SparseMultivariateTaylorSeries
--R
--R
--RExamples of series from UnivariateLaurentSeriesCategory
--R
--R
--RExamples of series from UnivariatePuiseuxSeriesCategory
--R
--R
--RExamples of series from UnivariateTaylorSeriesCategory
--R
--E 2755

--S 2756 of 3320
)d op seriesSolve
--R 
--R
--RThere are 12 exposed functions called seriesSolve :
--R   [1] (Equation(D5),BasicOperator,Equation(D5),Equation(D5)) -> Any
--R             from ExpressionSpaceODESolver(D4,D5)
--R             if D5 has FS(D4) and D4 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [2] (Equation(D6),BasicOperator,Equation(D6),List(D6)) -> Any
--R             from ExpressionSpaceODESolver(D5,D6)
--R             if D6 has FS(D5) and D5 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [3] (List(Equation(D6)),List(BasicOperator),Equation(D6),List(
--R            Equation(D6))) -> Any
--R             from ExpressionSpaceODESolver(D5,D6)
--R             if D6 has FS(D5) and D5 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [4] (List(Equation(D7)),List(BasicOperator),Equation(D7),List(D7))
--R             -> Any
--R             from ExpressionSpaceODESolver(D6,D7)
--R             if D7 has FS(D6) and D6 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [5] (List(D6),List(BasicOperator),Equation(D6),List(D6)) -> Any
--R             from ExpressionSpaceODESolver(D5,D6)
--R             if D6 has FS(D5) and D5 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [6] (List(D7),List(BasicOperator),Equation(D7),List(Equation(D7)))
--R             -> Any
--R             from ExpressionSpaceODESolver(D6,D7)
--R             if D7 has FS(D6) and D6 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [7] (Equation(D4),BasicOperator,Equation(D4),D4) -> Any
--R             from ExpressionSpaceODESolver(D5,D4)
--R             if D4 has FS(D5) and D5 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [8] (D2,BasicOperator,Equation(D2),D2) -> Any
--R             from ExpressionSpaceODESolver(D5,D2)
--R             if D2 has FS(D5) and D5 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [9] (D2,BasicOperator,Equation(D2),Equation(D2)) -> Any
--R             from ExpressionSpaceODESolver(D5,D2)
--R             if D2 has FS(D5) and D5 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [10] (D2,BasicOperator,Equation(D2),List(D2)) -> Any
--R             from ExpressionSpaceODESolver(D6,D2)
--R             if D2 has FS(D6) and D6 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm))
--R   [11] (D2,BasicOperator,Symbol,List(D2)) -> D1
--R             from ExpressionSolve(D6,D2,D1,D7)
--R             if D2 has FS(D6) and D6 has Join(OrderedSet,IntegralDomain
--R            ,ConvertibleTo(InputForm)) and D1 has UTSCAT(D2) and D7
--R             has UTSCAT(SUPEXPR(D2))
--R   [12] ((D5 -> D5),List(D4)) -> D1 from TaylorSolve(D4,D1,D5)
--R             if D4 has FIELD and D5 has UTSCAT(SUPEXPR(D4)) and D1 has 
--R            UTSCAT(D4)
--R
--RExamples of seriesSolve from ExpressionSpaceODESolver
--R
--R
--RExamples of seriesSolve from ExpressionSolve
--R
--R
--RExamples of seriesSolve from TaylorSolve
--R
--E 2756

--S 2757 of 3320
)d op seriesToOutputForm
--R 
--R
--RThere is one unexposed function called seriesToOutputForm :
--R   [1] (Stream(Record(k: Integer,c: D5)),Reference(OrderedCompletion(
--R            Integer)),Symbol,D5,Fraction(Integer)) -> OutputForm
--R             from InnerSparseUnivariatePowerSeries(D5) if D5 has RING
--R         
--R
--RExamples of seriesToOutputForm from InnerSparseUnivariatePowerSeries
--R
--E 2757

--S 2758 of 3320
)d op set
--R 
--R
--RThere are 2 exposed functions called set :
--R   [1] List(D2) -> D from D if D2 has SETCAT and D has SETAGG(D2)
--R   [2]  -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R
--RExamples of set from SetAggregate
--R
--E 2758

--S 2759 of 3320
)d op setAdaptive
--R 
--R
--RThere is one unexposed function called setAdaptive :
--R   [1] Boolean -> Boolean from Plot
--R
--RExamples of setAdaptive from Plot
--R
--E 2759

--S 2760 of 3320
)d op setAdaptive3D
--R 
--R
--RThere is one unexposed function called setAdaptive3D :
--R   [1] Boolean -> Boolean from Plot3D
--R
--RExamples of setAdaptive3D from Plot3D
--R
--E 2760

--S 2761 of 3320
)d op setAttributeButtonStep
--R 
--R
--RThere is one exposed function called setAttributeButtonStep :
--R   [1] Float -> Float from AttributeButtons
--R
--RExamples of setAttributeButtonStep from AttributeButtons
--R
--E 2761

--S 2762 of 3320
)d op setButtonValue
--R 
--R
--RThere are 2 exposed functions called setButtonValue :
--R   [1] (String,String,Float) -> Float from AttributeButtons
--R   [2] (String,Float) -> Float from AttributeButtons
--R
--RExamples of setButtonValue from AttributeButtons
--R
--E 2762

--S 2763 of 3320
)d op setchart!
--R 
--R
--RThere is one exposed function called setchart! :
--R   [1] (D,D2) -> D2 from D
--R             if D has INFCLCT(D3,D4,D5,D6,D7,D8,D9,D1,D2) and D3 has 
--R            FIELD and D5 has POLYCAT(D3,D6,OVAR(D4)) and D6 has DIRPCAT
--R            (#(D4),NNI) and D7 has PRSPCAT(D3) and D8 has LOCPOWC(D3) 
--R            and D9 has PLACESC(D3,D8) and D2 has BLMETCT
--R
--RExamples of setchart! from InfinitlyClosePointCategory
--R
--E 2763

--S 2764 of 3320
)d op setchildren!
--R 
--R
--RThere is one exposed function called setchildren! :
--R   [1] (D,List(D)) -> D from D
--R             if D has shallowlyMutable and D has RCAGG(D2) and D2 has 
--R            TYPE
--R
--RExamples of setchildren! from RecursiveAggregate
--R
--E 2764

--S 2765 of 3320
)d op setClipValue
--R 
--R
--RThere is one exposed function called setClipValue :
--R   [1] DoubleFloat -> DoubleFloat from DrawComplex
--R
--RExamples of setClipValue from DrawComplex
--R
--E 2765

--S 2766 of 3320
)d op setClosed
--R 
--R
--RThere is one unexposed function called setClosed :
--R   [1] (TubePlot(D2),Boolean) -> Boolean from TubePlot(D2) if D2 has 
--R            PSCURVE
--R
--RExamples of setClosed from TubePlot
--R
--E 2766

--S 2767 of 3320 done
)d op setColumn!
--R 
--R
--RThere is one exposed function called setColumn! :
--R   [1] (D,Integer,D2) -> D from D
--R             if D has ARR2CAT(D3,D4,D2) and D3 has TYPE and D4 has 
--R            FLAGG(D3) and D2 has FLAGG(D3)
--R
--RExamples of setColumn! from TwoDimensionalArrayCategory
--R
--RT1:=TwoDimensionalArray Integer 
--Rarr:T1:= new(5,4,0) 
--RT2:=OneDimensionalArray Integer 
--Racol:=construct([1,2,3,4,5]::List(INT))$T2 
--RsetColumn!(arr,1,acol)$T1
--R
--E 2767

--S 2768 of 3320
)d op setCondition!
--R 
--R
--RThere is one unexposed function called setCondition! :
--R   [1] (SplittingNode(D2,D1),D1) -> SplittingNode(D2,D1)
--R             from SplittingNode(D2,D1)
--R             if D2 has Join(SetCategory,Aggregate) and D1 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of setCondition! from SplittingNode
--R
--E 2768

--S 2769 of 3320
)d op setcurve!
--R 
--R
--RThere is one exposed function called setcurve! :
--R   [1] (D,DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY],
--R            D4)) -> DistributedMultivariatePolynomial([construct,QUOTEX,QUOTE
--R            Y],D4)
--R             from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of setcurve! from InfinitlyClosePointCategory
--R
--E 2769

--S 2770 of 3320
)d op setCurve
--R 
--R
--RThere are 3 exposed functions called setCurve :
--R   [1] D4 -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D5,D6,D4,D7,
--R            D8,D9,D10,D11,D1,D2,D3)
--R             if D5 has FIELD and D6: LIST(SYMBOL) and D4 has POLYCAT(D5
--R            ,D7,OVAR(D6)) and D7 has DIRPCAT(#(D6),NNI) and D8 has 
--R            PRSPCAT(D5) and D9 has LOCPOWC(D5) and D10 has PLACESC(D5,
--R            D9) and D11 has DIVCAT(D10) and D1 has INFCLCT(D5,D6,D4,D7,
--R            D8,D9,D10,D11,D3) and D3 has BLMETCT and D2 has DSTRCAT(D1)
--R            
--R   [2] DistributedMultivariatePolynomial(D3,D2) -> 
--R            DistributedMultivariatePolynomial(D3,D2)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [3] DistributedMultivariatePolynomial(D3,D2) -> 
--R            DistributedMultivariatePolynomial(D3,D2)
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of setCurve from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of setCurve from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of setCurve from PackageForAlgebraicFunctionField
--R
--E 2770

--S 2771 of 3320
)d op setDegree!
--R 
--R
--RThere is one exposed function called setDegree! :
--R   [1] (D,PositiveInteger) -> Void from D
--R             if D has PLACESC(D3,D4) and D3 has FIELD and D4 has 
--R            LOCPOWC(D3)
--R
--RExamples of setDegree! from PlacesCategory
--R
--E 2771

--S 2772 of 3320
)d op setDifference
--R 
--R
--RThere is one exposed function called setDifference :
--R   [1] (List(D1),List(D1)) -> List(D1) from List(D1) if D1 has SETCAT 
--R            and D1 has TYPE
--R
--RExamples of setDifference from List
--R
--E 2772

--S 2773 of 3320
)d op setelt
--R 
--R
--RThere are 14 exposed functions called setelt :
--R   [1] (D,Integer,D1) -> D1 from D if D has AFSPCAT(D1) and D1 has 
--R            FIELD
--R   [2] (D,Integer,Integer,D1) -> D1 from D
--R             if D has ARR2CAT(D1,D3,D4) and D1 has TYPE and D3 has 
--R            FLAGG(D1) and D4 has FLAGG(D1)
--R   [3] (D,right,D) -> D from D
--R             if D has shallowlyMutable and D has BRAGG(D2) and D2 has 
--R            TYPE
--R   [4] (D,left,D) -> D from D
--R             if D has shallowlyMutable and D has BRAGG(D2) and D2 has 
--R            TYPE
--R   [5] (D,D2,D1) -> D1 from D
--R             if D has shallowlyMutable and D has ELTAGG(D2,D1) and D2
--R             has SETCAT and D1 has TYPE
--R   [6] (Library,Symbol,Any) -> Any from Library
--R   [7] (D,UniversalSegment(Integer),D1) -> D1 from D
--R             if D has shallowlyMutable and D has LNAGG(D1) and D1 has 
--R            TYPE
--R   [8] (D,List(Integer),List(Integer),D) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [9] (D,Integer,D1) -> D1 from D if D has PRSPCAT(D1) and D1 has 
--R            FIELD
--R   [10] (D,value,D1) -> D1 from D
--R             if D has shallowlyMutable and D has RCAGG(D1) and D1 has 
--R            TYPE
--R   [11] (D,D2,D1) -> D1 from D
--R             if D has TBAGG(D2,D1) and D2 has SETCAT and D1 has SETCAT
--R            
--R   [12] (D,last,D1) -> D1 from D
--R             if D has shallowlyMutable and D has URAGG(D1) and D1 has 
--R            TYPE
--R   [13] (D,rest,D) -> D from D
--R             if D has shallowlyMutable and D has URAGG(D2) and D2 has 
--R            TYPE
--R   [14] (D,first,D1) -> D1 from D
--R             if D has shallowlyMutable and D has URAGG(D1) and D1 has 
--R            TYPE
--R
--RThere is one unexposed function called setelt :
--R   [1] (Reference(D1),D1) -> D1 from Reference(D1) if D1 has TYPE
--R
--RExamples of setelt from AffineSpaceCategory
--R
--R
--RExamples of setelt from TwoDimensionalArrayCategory
--R
--Rarr : ARRAY2 INT := new(5,4,0) 
--Rsetelt(arr,1,1,17)
--R
--R
--RExamples of setelt from BinaryRecursiveAggregate
--R
--R
--RExamples of setelt from EltableAggregate
--R
--R
--RExamples of setelt from Library
--R
--R
--RExamples of setelt from LinearAggregate
--R
--R
--RExamples of setelt from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rsetelt(m,3,3,10)
--R
--R
--RExamples of setelt from ProjectiveSpaceCategory
--R
--R
--RExamples of setelt from RecursiveAggregate
--R
--R
--RExamples of setelt from Reference
--R
--R
--RExamples of setelt from TableAggregate
--R
--R
--RExamples of setelt from UnaryRecursiveAggregate
--R
--Rt1:=[1,4,2,-6,0,3,5,4,2,3] 
--Rt1.last := 7 
--Rt1
--R
--Rt1:=[1,2,3] 
--Rt1.rest:=[4,5,6] 
--Rt1
--R
--Rt1:=[1,2,3] 
--Rt1.first:=7 
--Rt1
--R
--E 2773

--S 2774 of 3320
)d op setelt!
--R 
--R
--RThere are 2 exposed functions called setelt! :
--R   [1] (ThreeDimensionalMatrix(D1),NonNegativeInteger,
--R            NonNegativeInteger,NonNegativeInteger,D1) -> D1
--R             from ThreeDimensionalMatrix(D1) if D1 has SETCAT
--R   [2] (SparseEchelonMatrix(D3,D4),Integer,D3,D4) -> Void
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of setelt! from ThreeDimensionalMatrix
--R
--R
--RExamples of setelt! from SparseEchelonMatrix
--R
--E 2774

--S 2775 of 3320
)d op setEmpty!
--R 
--R
--RThere is one unexposed function called setEmpty! :
--R   [1] SplittingNode(D1,D2) -> SplittingNode(D1,D2) from SplittingNode(
--R            D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of setEmpty! from SplittingNode
--R
--E 2775

--S 2776 of 3320
)d op setEpilogue!
--R 
--R
--RThere are 2 exposed functions called setEpilogue! :
--R   [1] (ScriptFormulaFormat,List(String)) -> List(String)
--R             from ScriptFormulaFormat
--R   [2] (TexFormat,List(String)) -> List(String) from TexFormat
--R
--RExamples of setEpilogue! from ScriptFormulaFormat
--R
--R
--RExamples of setEpilogue! from TexFormat
--R
--E 2776

--S 2777 of 3320
)d op setErrorBound
--R 
--R
--RThere is one unexposed function called setErrorBound :
--R   [1] D1 -> D1 from ComplexRootFindingPackage(D1,D2)
--R             if D1 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D1))
--R
--RExamples of setErrorBound from ComplexRootFindingPackage
--R
--E 2777

--S 2778 of 3320
)d op setexcpDiv!
--R 
--R
--RThere is one exposed function called setexcpDiv! :
--R   [1] (D,DIVISOR) -> DIVISOR from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of setexcpDiv! from InfinitlyClosePointCategory
--R
--E 2778

--S 2779 of 3320
)d op setFieldInfo
--R 
--R
--RThere is one unexposed function called setFieldInfo :
--R   [1] (Vector(List(Record(value: D3,index: SingleInteger))),D3) -> 
--R            Void
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of setFieldInfo from InnerNormalBasisFieldFunctions
--R
--E 2779

--S 2780 of 3320 done
)d op setfirst!
--R 
--R
--RThere is one exposed function called setfirst! :
--R   [1] (D,D1) -> D1 from D
--R             if D has shallowlyMutable and D has URAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of setfirst! from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rsetfirst!(t1,7) 
--Rt1
--R
--E 2780

--S 2781 of 3320
)d op setFormula!
--R 
--R
--RThere is one exposed function called setFormula! :
--R   [1] (ScriptFormulaFormat,List(String)) -> List(String)
--R             from ScriptFormulaFormat
--R
--RExamples of setFormula! from ScriptFormulaFormat
--R
--E 2781

--S 2782 of 3320
)d op setFoundPlacesToEmpty
--R 
--R
--RThere is one exposed function called setFoundPlacesToEmpty :
--R   [1]  -> List(D) from D
--R             if D2 has FIELD and D3 has LOCPOWC(D2) and D has PLACESC(
--R            D2,D3)
--R
--RExamples of setFoundPlacesToEmpty from PlacesCategory
--R
--E 2782

--S 2783 of 3320
)d op setFoundZeroes
--R 
--R
--RThere is one exposed function called setFoundZeroes :
--R   [1] List(D2) -> List(D2) from RootsFindingPackage(D2) if D2 has 
--R            FIELD
--R
--RExamples of setFoundZeroes from RootsFindingPackage
--R
--E 2783

--S 2784 of 3320
)d op setGcdMode
--R 
--R
--RThere is one exposed function called setGcdMode :
--R   [1] Symbol -> Symbol from SparseEchelonMatrix(D2,D3)
--R             if D3 has GCDDOM and D2 has ORDSET and D3 has RING
--R
--RExamples of setGcdMode from SparseEchelonMatrix
--R
--E 2784

--S 2785 of 3320
)d op setImagSteps
--R 
--R
--RThere is one exposed function called setImagSteps :
--R   [1] Integer -> Integer from DrawComplex
--R
--RExamples of setImagSteps from DrawComplex
--R
--E 2785

--S 2786 of 3320
)d op setIntersection
--R 
--R
--RThere is one exposed function called setIntersection :
--R   [1] (List(D1),List(D1)) -> List(D1) from List(D1) if D1 has SETCAT 
--R            and D1 has TYPE
--R
--RExamples of setIntersection from List
--R
--E 2786

--S 2787 of 3320
)d op setLabelValue
--R 
--R
--RThere is one exposed function called setLabelValue :
--R   [1] SingleInteger -> SingleInteger from FortranCode
--R
--RExamples of setLabelValue from FortranCode
--R
--E 2787

--S 2788 of 3320 done
)d op setlast!
--R 
--R
--RThere is one exposed function called setlast! :
--R   [1] (D,D1) -> D1 from D
--R             if D has shallowlyMutable and D has URAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of setlast! from UnaryRecursiveAggregate
--R
--Rt1:=[1,4,2,-6,0,3,5,4,2,3] 
--Rsetlast!(t1,7) 
--Rt1
--R
--E 2788

--S 2789 of 3320 done
)d op setleaves!
--R 
--R
--RThere is one exposed function called setleaves! :
--R   [1] (BalancedBinaryTree(D2),List(D2)) -> BalancedBinaryTree(D2)
--R             from BalancedBinaryTree(D2) if D2 has SETCAT
--R
--RExamples of setleaves! from BalancedBinaryTree
--R
--Rt1:=balancedBinaryTree(4, 0) 
--Rsetleaves!(t1,[1,2,3,4])
--R
--E 2789

--S 2790 of 3320
)d op setleft!
--R 
--R
--RThere is one exposed function called setleft! :
--R   [1] (D,D) -> D from D
--R             if D has shallowlyMutable and D has BRAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of setleft! from BinaryRecursiveAggregate
--R
--E 2790

--S 2791 of 3320
)d op setLegalFortranSourceExtensions
--R 
--R
--RThere is one exposed function called setLegalFortranSourceExtensions :
--R   [1] List(String) -> List(String) from FortranPackage
--R
--RExamples of setLegalFortranSourceExtensions from FortranPackage
--R
--E 2791

--S 2792 of 3320
)d op setlocalParam!
--R 
--R
--RThere is one exposed function called setlocalParam! :
--R   [1] (D,List(D9)) -> List(D9) from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of setlocalParam! from InfinitlyClosePointCategory
--R
--E 2792

--S 2793 of 3320
)d op setlocalPoint!
--R 
--R
--RThere is one exposed function called setlocalPoint! :
--R   [1] (D,AffinePlane(D4)) -> AffinePlane(D4) from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of setlocalPoint! from InfinitlyClosePointCategory
--R
--E 2793

--S 2794 of 3320
)d op setMaxPoints
--R 
--R
--RThere is one unexposed function called setMaxPoints :
--R   [1] Integer -> Integer from Plot
--R
--RExamples of setMaxPoints from Plot
--R
--E 2794

--S 2795 of 3320
)d op setMaxPoints3D
--R 
--R
--RThere is one unexposed function called setMaxPoints3D :
--R   [1] Integer -> Integer from Plot3D
--R
--RExamples of setMaxPoints3D from Plot3D
--R
--E 2795

--S 2796 of 3320
)d op setMinPoints
--R 
--R
--RThere is one unexposed function called setMinPoints :
--R   [1] Integer -> Integer from Plot
--R
--RExamples of setMinPoints from Plot
--R
--E 2796

--S 2797 of 3320
)d op setMinPoints3D
--R 
--R
--RThere is one unexposed function called setMinPoints3D :
--R   [1] Integer -> Integer from Plot3D
--R
--RExamples of setMinPoints3D from Plot3D
--R
--E 2797

--S 2798 of 3320
)d op setmult!
--R 
--R
--RThere is one exposed function called setmult! :
--R   [1] (D,NonNegativeInteger) -> NonNegativeInteger from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of setmult! from InfinitlyClosePointCategory
--R
--E 2798

--S 2799 of 3320
)d op setnext!
--R 
--R
--RThere is one exposed function called setnext! :
--R   [1] (D,D) -> D from D
--R             if D has shallowlyMutable and D has DLAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of setnext! from DoublyLinkedAggregate
--R
--E 2799

--S 2800 of 3320
)d op setOfMinN
--R 
--R
--RThere is one unexposed function called setOfMinN :
--R   [1] List(PositiveInteger) -> SetOfMIntegersInOneToN(D2,D3)
--R             from SetOfMIntegersInOneToN(D2,D3) if D2: PI and D3: PI
--R         
--R
--RExamples of setOfMinN from SetOfMIntegersInOneToN
--R
--E 2800

--S 2801 of 3320
--R------------------- )d op SetOfMIntegersInOneToN (huh?)
--E 2801

--S 2802 of 3320
)d op setOrder
--R 
--R
--RThere are 2 unexposed functions called setOrder :
--R   [1] List(D3) -> Void from UserDefinedPartialOrdering(D3) if D3 has 
--R            SETCAT
--R   [2] (List(D3),List(D3)) -> Void from UserDefinedPartialOrdering(D3)
--R             if D3 has SETCAT
--R
--RExamples of setOrder from UserDefinedPartialOrdering
--R
--E 2802

--S 2803 of 3320
)d op setParam!
--R 
--R
--RThere is one exposed function called setParam! :
--R   [1] (D,List(D4)) -> Void from D
--R             if D has PLACESC(D3,D4) and D3 has FIELD and D4 has 
--R            LOCPOWC(D3)
--R
--RExamples of setParam! from PlacesCategory
--R
--E 2803

--S 2804 of 3320
)d op setpoint!
--R 
--R
--RThere is one exposed function called setpoint! :
--R   [1] (D,D2) -> D2 from D
--R             if D has INFCLCT(D3,D4,D5,D6,D2,D7,D8,D9,D1) and D3 has 
--R            FIELD and D5 has POLYCAT(D3,D6,OVAR(D4)) and D6 has DIRPCAT
--R            (#(D4),NNI) and D2 has PRSPCAT(D3) and D7 has LOCPOWC(D3) 
--R            and D8 has PLACESC(D3,D7) and D1 has BLMETCT
--R
--RExamples of setpoint! from InfinitlyClosePointCategory
--R
--E 2804

--S 2805 of 3320
)d op setPoly
--R 
--R
--RThere is one unexposed function called setPoly :
--R   [1] D1 -> D1 from ModMonic(D2,D1) if D2 has RING and D1 has UPOLYC(
--R            D2)
--R
--RExamples of setPoly from ModMonic
--R
--E 2805

--S 2806 of 3320
)d op setPosition
--R 
--R
--RThere is one exposed function called setPosition :
--R   [1] (D,NonNegativeInteger) -> Void from D if D has CACHSET
--R
--RExamples of setPosition from CachableSet
--R
--E 2806

--S 2807 of 3320
)d op setPredicates
--R 
--R
--RThere is one unexposed function called setPredicates :
--R   [1] (Pattern(D2),List(Any)) -> Pattern(D2) from Pattern(D2) if D2
--R             has SETCAT
--R
--RExamples of setPredicates from Pattern
--R
--E 2807

--S 2808 of 3320
)d op setprevious!
--R 
--R
--RThere is one exposed function called setprevious! :
--R   [1] (D,D) -> D from D
--R             if D has shallowlyMutable and D has DLAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of setprevious! from DoublyLinkedAggregate
--R
--E 2808

--S 2809 of 3320
)d op setPrologue!
--R 
--R
--RThere are 2 exposed functions called setPrologue! :
--R   [1] (ScriptFormulaFormat,List(String)) -> List(String)
--R             from ScriptFormulaFormat
--R   [2] (TexFormat,List(String)) -> List(String) from TexFormat
--R
--RExamples of setPrologue! from ScriptFormulaFormat
--R
--R
--RExamples of setPrologue! from TexFormat
--R
--E 2809

--S 2810 of 3320
)d op setProperties
--R 
--R
--RThere is one exposed function called setProperties :
--R   [1] (BasicOperator,AssociationList(String,None)) -> BasicOperator
--R             from BasicOperator
--R
--RExamples of setProperties from BasicOperator
--R
--E 2810

--S 2811 of 3320
)d op setProperty
--R 
--R
--RThere is one exposed function called setProperty :
--R   [1] (BasicOperator,String,None) -> BasicOperator from BasicOperator
--R            
--R
--RExamples of setProperty from BasicOperator
--R
--E 2811

--S 2812 of 3320
)d op setRealSteps
--R 
--R
--RThere is one exposed function called setRealSteps :
--R   [1] Integer -> Integer from DrawComplex
--R
--RExamples of setRealSteps from DrawComplex
--R
--E 2812

--S 2813 of 3320
)d op setref
--R 
--R
--RThere is one unexposed function called setref :
--R   [1] (Reference(D1),D1) -> D1 from Reference(D1) if D1 has TYPE
--R
--RExamples of setref from Reference
--R
--E 2813

--S 2814 of 3320 done
)d op setrest!
--R 
--R
--RThere are 2 exposed functions called setrest! :
--R   [1] (Stream(D2),Integer,Stream(D2)) -> Stream(D2) from Stream(D2)
--R             if D2 has TYPE
--R   [2] (D,D) -> D from D
--R             if D has shallowlyMutable and D has URAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of setrest! from Stream
--R
--Rp:=[i for i in 1..] 
--Rq:=[i for i in 9..] 
--Rsetrest!(p,4,q) 
--Rp
--R
--R
--RExamples of setrest! from UnaryRecursiveAggregate
--R
--Rt1:=[1,2,3] 
--Rsetrest!(t1,[4,5,6]) 
--Rt1
--R
--E 2814

--S 2815 of 3320
)d op setright!
--R 
--R
--RThere is one exposed function called setright! :
--R   [1] (D,D) -> D from D
--R             if D has shallowlyMutable and D has BRAGG(D1) and D1 has 
--R            TYPE
--R
--RExamples of setright! from BinaryRecursiveAggregate
--R
--E 2815

--S 2816 of 3320
)d op setRow!
--R 
--R
--RThere are 3 exposed functions called setRow! :
--R   [1] (D,Integer,D2) -> D from D
--R             if D has ARR2CAT(D3,D2,D4) and D3 has TYPE and D2 has 
--R            FLAGG(D3) and D4 has FLAGG(D3)
--R   [2] (SparseEchelonMatrix(D5,D6),Integer,List(D5),List(D6)) -> Void
--R             from SparseEchelonMatrix(D5,D6) if D5 has ORDSET and D6
--R             has RING
--R   [3] (SparseEchelonMatrix(D4,D5),Integer,Record(Indices: List(D4),
--R            Entries: List(D5))) -> Void
--R             from SparseEchelonMatrix(D4,D5) if D4 has ORDSET and D5
--R             has RING
--R
--RExamples of setRow! from TwoDimensionalArrayCategory
--R
--RT1:=TwoDimensionalArray Integer 
--Rarr:T1:= new(5,4,0) 
--RT2:=OneDimensionalArray Integer 
--Rarow:=construct([1,2,3,4]::List(INT))$T2 
--RsetRow!(arr,1,arow)$T1
--R
--R
--RExamples of setRow! from SparseEchelonMatrix
--R
--E 2816

--S 2817 of 3320
)d op setScreenResolution
--R 
--R
--RThere is one unexposed function called setScreenResolution :
--R   [1] Integer -> Integer from Plot
--R
--RExamples of setScreenResolution from Plot
--R
--E 2817

--S 2818 of 3320
)d op setScreenResolution3D
--R 
--R
--RThere is one unexposed function called setScreenResolution3D :
--R   [1] Integer -> Integer from Plot3D
--R
--RExamples of setScreenResolution3D from Plot3D
--R
--E 2818

--S 2819 of 3320
)d op setSingularPoints
--R 
--R
--RThere are 3 exposed functions called setSingularPoints :
--R   [1] List(D10) -> List(D10)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D10 has PRSPCAT(D6) and D6 has FIELD and D7: LIST(
--R            SYMBOL) and D8 has POLYCAT(D6,D9,OVAR(D7)) and D9 has 
--R            DIRPCAT(#(D7),NNI) and D11 has LOCPOWC(D6) and D12 has 
--R            PLACESC(D6,D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(
--R            D6,D7,D8,D9,D10,D11,D12,D1,D4) and D4 has BLMETCT and D3
--R             has DSTRCAT(D2)
--R   [2] List(ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(D2))
--R             -> List(ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(
--R            D2))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [3] List(ProjectivePlane(D2)) -> List(ProjectivePlane(D2))
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of setSingularPoints from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of setSingularPoints from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of setSingularPoints from PackageForAlgebraicFunctionField
--R
--E 2819

--S 2820 of 3320
)d op setStatus
--R 
--R
--RThere is one unexposed function called setStatus :
--R   [1] (QuasiAlgebraicSet(D2,D3,D4,D5),Union(Boolean,"failed")) -> 
--R            QuasiAlgebraicSet(D2,D3,D4,D5)
--R             from QuasiAlgebraicSet(D2,D3,D4,D5)
--R             if D2 has GCDDOM and D3 has ORDSET and D4 has OAMONS and 
--R            D5 has POLYCAT(D2,D4,D3)
--R
--RExamples of setStatus from QuasiAlgebraicSet
--R
--E 2820

--S 2821 of 3320
)d op setStatus!
--R 
--R
--RThere is one unexposed function called setStatus! :
--R   [1] (SplittingNode(D2,D3),Boolean) -> SplittingNode(D2,D3)
--R             from SplittingNode(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of setStatus! from SplittingNode
--R
--E 2821

--S 2822 of 3320 done
)d op setsubMatrix!
--R 
--R
--RThere is one exposed function called setsubMatrix! :
--R   [1] (D,Integer,Integer,D) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R
--RExamples of setsubMatrix! from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--RsetsubMatrix!(m,2,2,matrix [[3,3],[3,3]])
--R
--E 2822

--S 2823 of 3320
)d op setsubmult!
--R 
--R
--RThere is one exposed function called setsubmult! :
--R   [1] (D,NonNegativeInteger) -> NonNegativeInteger from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of setsubmult! from InfinitlyClosePointCategory
--R
--E 2823

--S 2824 of 3320
)d op setsymbName!
--R 
--R
--RThere is one exposed function called setsymbName! :
--R   [1] (D,Symbol) -> Symbol from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of setsymbName! from InfinitlyClosePointCategory
--R
--E 2824

--S 2825 of 3320
)d op setTex!
--R 
--R
--RThere is one exposed function called setTex! :
--R   [1] (TexFormat,List(String)) -> List(String) from TexFormat
--R
--RExamples of setTex! from TexFormat
--R
--E 2825

--S 2826 of 3320
)d op setTopPredicate
--R 
--R
--RThere is one unexposed function called setTopPredicate :
--R   [1] (Pattern(D3),List(Symbol),Any) -> Pattern(D3) from Pattern(D3)
--R             if D3 has SETCAT
--R
--RExamples of setTopPredicate from Pattern
--R
--E 2826

--S 2827 of 3320
)d op setTower!
--R 
--R
--RThere is one exposed function called setTower! :
--R   [1] D -> Void from D if D has PACPERC
--R
--RExamples of setTower! from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--E 2827

--S 2828 of 3320
)d op setUnion
--R 
--R
--RThere is one exposed function called setUnion :
--R   [1] (List(D1),List(D1)) -> List(D1) from List(D1) if D1 has SETCAT 
--R            and D1 has TYPE
--R
--RExamples of setUnion from List
--R
--E 2828

--S 2829 of 3320
)d op setValue!
--R 
--R
--RThere is one unexposed function called setValue! :
--R   [1] (SplittingNode(D1,D2),D1) -> SplittingNode(D1,D2)
--R             from SplittingNode(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of setValue! from SplittingNode
--R
--E 2829

--S 2830 of 3320
)d op setVariableOrder
--R 
--R
--RThere are 2 exposed functions called setVariableOrder :
--R   [1] List(Symbol) -> Void from UserDefinedVariableOrdering
--R   [2] (List(Symbol),List(Symbol)) -> Void from 
--R            UserDefinedVariableOrdering
--R
--RExamples of setVariableOrder from UserDefinedVariableOrdering
--R
--E 2830

--S 2831 of 3320
)d op SFunction
--R 
--R
--RThere is one exposed function called SFunction :
--R   [1] List(Integer) -> SymmetricPolynomial(Fraction(Integer))
--R             from CycleIndicators
--R
--RExamples of SFunction from CycleIndicators
--R
--E 2831

--S 2832 of 3320
)d op sh
--R 
--R
--RThere are 2 exposed functions called sh :
--R   [1] (D,NonNegativeInteger) -> D from D
--R             if D has XFALG(D2,D3) and D2 has ORDSET and D3 has RING 
--R            and D3 has COMRING
--R   [2] (D,D) -> D from D
--R             if D has XFALG(D1,D2) and D1 has ORDSET and D2 has RING 
--R            and D2 has COMRING
--R
--RExamples of sh from XFreeAlgebra
--R
--E 2832

--S 2833 of 3320
)d op shade
--R 
--R
--RThere is one exposed function called shade :
--R   [1] Palette -> Integer from Palette
--R
--RThere is one unexposed function called shade :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of shade from Palette
--R
--R
--RExamples of shade from PointPackage
--R
--E 2833

--S 2834 of 3320
)d op shallowCopy
--R 
--R
--RThere is one unexposed function called shallowCopy :
--R   [1] SubSpace(D1,D2) -> SubSpace(D1,D2) from SubSpace(D1,D2)
--R             if D1: PI and D2 has RING
--R
--RExamples of shallowCopy from SubSpace
--R
--E 2834

--S 2835 of 3320
)d op shallowExpand
--R 
--R
--RThere is one exposed function called shallowExpand :
--R   [1] FreeNilpotentLie(D2,D3,D4) -> OutputForm from FreeNilpotentLie(
--R            D2,D3,D4)
--R             if D2: NNI and D3: NNI and D4 has COMRING
--R
--RExamples of shallowExpand from FreeNilpotentLie
--R
--E 2835

--S 2836 of 3320
)d op shanksDiscLogAlgorithm
--R 
--R
--RThere is one unexposed function called shanksDiscLogAlgorithm :
--R   [1] (D3,D3,NonNegativeInteger) -> Union(NonNegativeInteger,"failed")
--R             from DiscreteLogarithmPackage(D3)
--R             if D3 has Join(Monoid,Finite)with
--R               D : (D3,Integer) -> D3
--R
--RExamples of shanksDiscLogAlgorithm from DiscreteLogarithmPackage
--R
--E 2836

--S 2837 of 3320
)d op shellSort
--R 
--R
--RThere is one exposed function called shellSort :
--R   [1] (((D3,D3) -> Boolean),D1) -> D1 from FiniteLinearAggregateSort(
--R            D3,D1)
--R             if D3 has TYPE and D1 has FiniteLinearAggregate(D3)with
--R                 shallowlyMutable
--R
--RExamples of shellSort from FiniteLinearAggregateSort
--R
--E 2837

--S 2838 of 3320
)d op shift
--R 
--R
--RThere are 4 exposed functions called shift :
--R   [1] (Float,Integer) -> Float from Float
--R   [2] (D,D) -> D from D if D has INS
--R   [3] (D,Integer) -> D from D if D has LOCPOWC(D2) and D2 has FIELD
--R         
--R   [4] (NonNegativeInteger,Integer) -> NonNegativeInteger
--R             from NonNegativeInteger
--R
--RThere are 2 unexposed functions called shift :
--R   [1] (MoebiusTransform(D1),D1) -> MoebiusTransform(D1)
--R             from MoebiusTransform(D1) if D1 has FIELD
--R   [2] D1 -> MoebiusTransform(D1) from MoebiusTransform(D1) if D1 has 
--R            FIELD
--R
--RExamples of shift from Float
--R
--R
--RExamples of shift from IntegerNumberSystem
--R
--R
--RExamples of shift from LocalPowerSeriesCategory
--R
--R
--RExamples of shift from MoebiusTransform
--R
--R
--RExamples of shift from NonNegativeInteger
--R
--E 2838

--S 2839 of 3320
)d op ShiftAction
--R 
--R
--RThere is one exposed function called ShiftAction :
--R   [1] (NonNegativeInteger,NonNegativeInteger,D3) -> D1
--R             from FractionFreeFastGaussian(D1,D3)
--R             if D1 has Join(IntegralDomain,GcdDomain) and D3 has AMR(D1
--R            ,NNI)
--R
--RExamples of ShiftAction from FractionFreeFastGaussian
--R
--E 2839

--S 2840 of 3320
)d op ShiftC
--R 
--R
--RThere is one exposed function called ShiftC :
--R   [1] NonNegativeInteger -> List(D3) from FractionFreeFastGaussian(D3,
--R            D4)
--R             if D3 has Join(IntegralDomain,GcdDomain) and D4 has AMR(D3
--R            ,NNI)
--R
--RExamples of ShiftC from FractionFreeFastGaussian
--R
--E 2840

--S 2841 of 3320
)d op shiftHP
--R 
--R
--RThere are 12 exposed functions called shiftHP :
--R   [1] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(AlgebraicNumber) -> Stream(
--R            UnivariateFormalPowerSeries(AlgebraicNumber))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber)))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> AlgebraicNumber),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber))) -> 
--R            SparseUnivariatePolynomial(AlgebraicNumber)),AX: ((
--R            NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(AlgebraicNumber)))
--R             from GuessAlgebraicNumber
--R   [2] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(AlgebraicNumber) -> Stream(
--R            UnivariateFormalPowerSeries(AlgebraicNumber))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber)))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            AlgebraicNumber)) -> AlgebraicNumber),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(AlgebraicNumber))) -> 
--R            SparseUnivariatePolynomial(AlgebraicNumber)),AX: ((
--R            NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(AlgebraicNumber))))
--R             from GuessAlgebraicNumber if AlgebraicNumber has RETRACT(
--R            SYMBOL)
--R   [3] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D3) -> Stream(
--R            UnivariateFormalPowerSeries(D3))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D3)))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(D3)) -> D3),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3))) -> SparseUnivariatePolynomial(D3
--R            )),AX: ((NonNegativeInteger,Symbol,Expression(Integer)) -> 
--R            Expression(Integer)),C: (NonNegativeInteger -> List(D3)))
--R             from GuessFinite(D3)
--R             if D3 has Join(FiniteFieldCategory,ConvertibleTo(Integer))
--R            
--R   [4] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D3) -> Stream(
--R            UnivariateFormalPowerSeries(D3))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D3)))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(D3)) -> D3),AF: ((NonNegativeInteger,
--R            NonNegativeInteger,UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D3))) -> SparseUnivariatePolynomial(D3
--R            )),AX: ((NonNegativeInteger,Symbol,Expression(Integer)) -> 
--R            Expression(Integer)),C: (NonNegativeInteger -> List(D3))))
--R             from GuessFinite(D3)
--R             if D3 has RETRACT(SYMBOL) and D3 has Join(
--R            FiniteFieldCategory,ConvertibleTo(Integer))
--R   [5] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Integer)) -> Stream(
--R            UnivariateFormalPowerSeries(Fraction(Integer)))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Integer))))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            Integer)) -> Integer),AF: ((NonNegativeInteger,NonNegativeInteger
--R            ,UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer)))) -> SparseUnivariatePolynomial(Fraction(Integer))),AX
--R            : ((NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(Integer)))
--R             from GuessInteger
--R   [6] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Integer)) -> Stream(
--R            UnivariateFormalPowerSeries(Fraction(Integer)))),degreeStream: 
--R            Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Integer))))),exprStream: ((
--R            Expression(Integer),Symbol) -> Stream(Expression(Integer))),A: ((
--R            NonNegativeInteger,NonNegativeInteger,SparseUnivariatePolynomial(
--R            Integer)) -> Integer),AF: ((NonNegativeInteger,NonNegativeInteger
--R            ,UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Integer)))) -> SparseUnivariatePolynomial(Fraction(Integer))),AX
--R            : ((NonNegativeInteger,Symbol,Expression(Integer)) -> Expression(
--R            Integer)),C: (NonNegativeInteger -> List(Integer))))
--R             from GuessInteger
--R             if Fraction(Integer) has RETRACT(SYMBOL) and Integer has 
--R            RETRACT(SYMBOL)
--R   [7] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D4) -> Stream(
--R            UnivariateFormalPowerSeries(D4))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D4)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D4)))),
--R            exprStream: ((D6,Symbol) -> Stream(D6)),A: ((NonNegativeInteger,
--R            NonNegativeInteger,SparseUnivariatePolynomial(D5)) -> D5),AF: ((
--R            NonNegativeInteger,NonNegativeInteger,UnivariateFormalPowerSeries
--R            (SparseUnivariatePolynomial(D4))) -> SparseUnivariatePolynomial(
--R            D4)),AX: ((NonNegativeInteger,Symbol,D6) -> D6),C: (
--R            NonNegativeInteger -> List(D5)))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [8] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(D4) -> Stream(
--R            UnivariateFormalPowerSeries(D4))),degreeStream: Stream(
--R            NonNegativeInteger),testStream: (UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(D4)) -> Stream(
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(D4)))),
--R            exprStream: ((D6,Symbol) -> Stream(D6)),A: ((NonNegativeInteger,
--R            NonNegativeInteger,SparseUnivariatePolynomial(D5)) -> D5),AF: ((
--R            NonNegativeInteger,NonNegativeInteger,UnivariateFormalPowerSeries
--R            (SparseUnivariatePolynomial(D4))) -> SparseUnivariatePolynomial(
--R            D4)),AX: ((NonNegativeInteger,Symbol,D6) -> D6),C: (
--R            NonNegativeInteger -> List(D5))))
--R             from Guess(D4,D5,D6,D7,D8,D9)
--R             if D7 has Join(OrderedSet,IntegralDomain) and D8: (D7 -> 
--R            D4) and D4 has RETRACT(SYMBOL) and D5 has RETRACT(SYMBOL) 
--R            and D4 has FIELD and D5 has GCDDOM and D6 has Join(
--R            FunctionSpace(Integer),IntegralDomain,RetractableTo(D7),
--R            RetractableTo(Symbol),RetractableTo(Integer),
--R            CombinatorialOpsCategory,PartialDifferentialRing(Symbol))
--R            with
--R               ?*? : (%,%) -> %
--R               ?/? : (%,%) -> %
--R               D : (%,%) -> %
--R               numerator : % -> %
--R               denominator : % -> %
--R               ground? : % -> Booleanand D9: (D4 -> D6)
--R   [9] List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Polynomial(Integer))) -> 
--R            Stream(UnivariateFormalPowerSeries(Fraction(Polynomial(Integer)))
--R            )),degreeStream: Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Polynomial(Integer)))))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(Polynomial(Integer))) -> Polynomial(
--R            Integer)),AF: ((NonNegativeInteger,NonNegativeInteger,
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer))))) -> SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))),AX: ((NonNegativeInteger,Symbol,Expression
--R            (Integer)) -> Expression(Integer)),C: (NonNegativeInteger -> List
--R            (Polynomial(Integer))))
--R             from GuessPolynomial
--R   [10] Symbol -> (List(GuessOption) -> Record(guessStream: (
--R            UnivariateFormalPowerSeries(Fraction(Polynomial(Integer))) -> 
--R            Stream(UnivariateFormalPowerSeries(Fraction(Polynomial(Integer)))
--R            )),degreeStream: Stream(NonNegativeInteger),testStream: (
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))) -> Stream(UnivariateFormalPowerSeries(
--R            SparseUnivariatePolynomial(Fraction(Polynomial(Integer)))))),
--R            exprStream: ((Expression(Integer),Symbol) -> Stream(Expression(
--R            Integer))),A: ((NonNegativeInteger,NonNegativeInteger,
--R            SparseUnivariatePolynomial(Polynomial(Integer))) -> Polynomial(
--R            Integer)),AF: ((NonNegativeInteger,NonNegativeInteger,
--R            UnivariateFormalPowerSeries(SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer))))) -> SparseUnivariatePolynomial(Fraction(
--R            Polynomial(Integer)))),AX: ((NonNegativeInteger,Symbol,Expression
--R            (Integer)) -> Expression(Integer)),C: (NonNegativeInteger -> List
--R            (Polynomial(Integer)))))
--R             from GuessPolynomial
--R             if Fraction(Polynomial(Integer)) has RETRACT(SYMBOL) and 
--R            Polynomial(Integer) has RETRACT(SYMBOL)
--R   [11] List(GuessOption) -> HPSPEC from GuessUnivariatePolynomial(D3)
--R             if D3: SYMBOL
--R   [12] Symbol -> (List(GuessOption) -> HPSPEC)
--R             from GuessUnivariatePolynomial(D3) if D3: SYMBOL
--R
--RExamples of shiftHP from GuessAlgebraicNumber
--R
--R
--RExamples of shiftHP from GuessFinite
--R
--R
--RExamples of shiftHP from GuessInteger
--R
--R
--RExamples of shiftHP from Guess
--R
--R
--RExamples of shiftHP from GuessPolynomial
--R
--R
--RExamples of shiftHP from GuessUnivariatePolynomial
--R
--E 2841

--S 2842 of 3320
)d op shiftInfoRec
--R 
--R
--RThere is one exposed function called shiftInfoRec :
--R   [1] (BasicOperator,Symbol,D4) -> Record(max: Union(Integer,"failed")
--R            ,ord: Union(Integer,"failed"),ker: Kernel(D4))
--R             from RecurrenceOperator(D5,D4)
--R             if D5 has RING and D5 has Join(OrderedSet,IntegralDomain,
--R            ConvertibleTo(InputForm)) and D4 has Join(FunctionSpace(D5)
--R            ,AbelianMonoid,RetractableTo(Integer),RetractableTo(Symbol)
--R            ,PartialDifferentialRing(Symbol),CombinatorialOpsCategory)
--R            
--R
--RExamples of shiftInfoRec from RecurrenceOperator
--R
--E 2842

--S 2843 of 3320
)d op shiftLeft
--R 
--R
--RThere is one exposed function called shiftLeft :
--R   [1] (D,NonNegativeInteger) -> D from D if D has UPOLYC(D2) and D2
--R             has RING
--R
--RExamples of shiftLeft from UnivariatePolynomialCategory
--R
--E 2843

--S 2844 of 3320
)d op shiftRight
--R 
--R
--RThere is one exposed function called shiftRight :
--R   [1] (D,NonNegativeInteger) -> D from D if D has UPOLYC(D2) and D2
--R             has RING
--R
--RExamples of shiftRight from UnivariatePolynomialCategory
--R
--E 2844

--S 2845 of 3320
)d op shiftRoots
--R 
--R
--RThere is one unexposed function called shiftRoots :
--R   [1] (D1,D2) -> D1 from GaloisGroupPolynomialUtilities(D2,D1)
--R             if D2 has RING and D1 has UPOLYC(D2)
--R
--RExamples of shiftRoots from GaloisGroupPolynomialUtilities
--R
--E 2845

--S 2846 of 3320
)d op show
--R 
--R
--RThere is one unexposed function called show :
--R   [1] (TwoDimensionalViewport,PositiveInteger,String) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of show from TwoDimensionalViewport
--R
--E 2846

--S 2847 of 3320
)d op showAll?
--R 
--R
--RThere is one exposed function called showAll? :
--R   [1]  -> Boolean from Stream(D2) if D2 has SETCAT and D2 has TYPE
--R
--RExamples of showAll? from Stream
--R
--E 2847

--S 2848 of 3320 done
)d op showAllElements
--R 
--R
--RThere is one exposed function called showAllElements :
--R   [1] Stream(D2) -> OutputForm from Stream(D2) if D2 has SETCAT and D2
--R             has TYPE
--R
--RExamples of showAllElements from Stream
--R
--Rm:=[1,2,3,4,5,6,7,8,9,10,11,12] 
--Rn:=m::Stream(PositiveInteger) 
--RshowAllElements n
--R
--E 2848

--S 2849 of 3320
)d op showArrayValues
--R 
--R
--RThere is one exposed function called showArrayValues :
--R   [1] Boolean -> Boolean from Result
--R
--RExamples of showArrayValues from Result
--R
--E 2849

--S 2850 of 3320
)d op showAttributes
--R 
--R
--RThere is one exposed function called showAttributes :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Union(Record(endPointContinuity: Union(continuous
--R            : Continuous at the end points,lowerSingular: 
--R            There is a singularity at the lower end point,upperSingular: 
--R            There is a singularity at the upper end point,bothSingular: 
--R            There are singularities at both end points,notEvaluated: 
--R            End point continuity not yet evaluated),singularitiesStream: 
--R            Union(str: Stream(DoubleFloat),notEvaluated: 
--R            Internal singularities not yet evaluated),range: Union(finite: 
--R            The range is finite,lowerInfinite: 
--R            The bottom of range is infinite,upperInfinite: 
--R            The top of range is infinite,bothInfinite: 
--R            Both top and bottom points are infinite,notEvaluated: 
--R            Range not yet evaluated)),"failed")
--R             from IntegrationFunctionsTable
--R
--RExamples of showAttributes from IntegrationFunctionsTable
--R
--E 2850

--S 2851 of 3320
)d op showClipRegion
--R 
--R
--RThere is one exposed function called showClipRegion :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of showClipRegion from ThreeDimensionalViewport
--R
--E 2851

--S 2852 of 3320
)d op showFortranOutputStack
--R 
--R
--RThere is one exposed function called showFortranOutputStack :
--R   [1]  -> Stack(String) from FortranOutputStackPackage
--R
--RExamples of showFortranOutputStack from FortranOutputStackPackage
--R
--E 2852

--S 2853 of 3320
)d op showIntensityFunctions
--R 
--R
--RThere is one exposed function called showIntensityFunctions :
--R   [1] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
--R            Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
--R            DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
--R            relerr: DoubleFloat) -> Union(Record(stiffness: Float,stability: 
--R            Float,expense: Float,accuracy: Float,intermediateResults: Float),
--R            "failed")
--R             from ODEIntensityFunctionsTable
--R
--RExamples of showIntensityFunctions from ODEIntensityFunctionsTable
--R
--E 2853

--S 2854 of 3320
)d op showRegion
--R 
--R
--RThere is one exposed function called showRegion :
--R   [1] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RExamples of showRegion from ThreeDimensionalViewport
--R
--E 2854

--S 2855 of 3320
)d op showScalarValues
--R 
--R
--RThere is one exposed function called showScalarValues :
--R   [1] Boolean -> Boolean from Result
--R
--RExamples of showScalarValues from Result
--R
--E 2855

--S 2856 of 3320
)d op showTheFTable
--R 
--R
--RThere is one exposed function called showTheFTable :
--R   [1]  -> IntegrationFunctionsTable from IntegrationFunctionsTable
--R
--RExamples of showTheFTable from IntegrationFunctionsTable
--R
--E 2856

--S 2857 of 3320
)d op showTheIFTable
--R 
--R
--RThere is one exposed function called showTheIFTable :
--R   [1]  -> ODEIntensityFunctionsTable from ODEIntensityFunctionsTable
--R         
--R
--RExamples of showTheIFTable from ODEIntensityFunctionsTable
--R
--E 2857

--S 2858 of 3320
)d op showTheRoutinesTable
--R 
--R
--RThere is one exposed function called showTheRoutinesTable :
--R   [1]  -> RoutinesTable from RoutinesTable
--R
--RExamples of showTheRoutinesTable from RoutinesTable
--R
--E 2858

--S 2859 of 3320
)d op showTheSymbolTable
--R 
--R
--RThere is one exposed function called showTheSymbolTable :
--R   [1]  -> TheSymbolTable from TheSymbolTable
--R
--RExamples of showTheSymbolTable from TheSymbolTable
--R
--E 2859

--S 2860 of 3320 done
)d op showTypeInOutput
--R 
--R
--RThere is one exposed function called showTypeInOutput :
--R   [1] Boolean -> String from Any
--R
--RExamples of showTypeInOutput from Any
--R
--Ru:=[1,7.2,3/2,x**2,"wally"] 
--RshowTypeInOutput(true) 
--Ru
--R
--E 2860

--S 2861 of 3320
)d op shrinkable
--R 
--R
--RThere is one exposed function called shrinkable :
--R   [1] Boolean -> Boolean from FlexibleArray(D2) if D2 has TYPE
--R
--RThere is one unexposed function called shrinkable :
--R   [1] Boolean -> Boolean from IndexedFlexibleArray(D2,D3) if D2 has 
--R            TYPE and D3: INT
--R
--RExamples of shrinkable from FlexibleArray
--R
--R
--RExamples of shrinkable from IndexedFlexibleArray
--R
--RT1:=IndexedFlexibleArray(Integer,20) 
--Rshrinkable(false)$T1
--R
--E 2861

--S 2862 of 3320
)d op shuffle
--R 
--R
--RThere is one exposed function called shuffle :
--R   [1] (List(Integer),List(Integer)) -> Stream(List(Integer))
--R             from PartitionsAndPermutations
--R
--RExamples of shuffle from PartitionsAndPermutations
--R
--E 2862

--S 2863 of 3320
)d op shufflein
--R 
--R
--RThere is one exposed function called shufflein :
--R   [1] (List(Integer),Stream(List(Integer))) -> Stream(List(Integer))
--R             from PartitionsAndPermutations
--R
--RExamples of shufflein from PartitionsAndPermutations
--R
--E 2863

--S 2864 of 3320
)d op Si
--R 
--R
--RThere is one exposed function called Si :
--R   [1] D -> D from D if D has LFCAT
--R
--RThere is one unexposed function called Si :
--R   [1] D1 -> D1 from LiouvillianFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory,
--R            TranscendentalFunctionCategory)
--R
--RExamples of Si from LiouvillianFunctionCategory
--R
--R
--RExamples of Si from LiouvillianFunction
--R
--E 2864

--S 2865 of 3320
)d op sign
--R 
--R
--RThere are 9 exposed functions called sign :
--R   [1] D -> Integer from D if D has ORDRING
--R   [2] Permutation(D2) -> Integer from Permutation(D2) if D2 has SETCAT
--R            
--R   [3] (D2,D) -> Integer from D
--R             if D has RRCC(D3,D2) and D3 has Join(OrderedRing,Field) 
--R            and D2 has UPOLYC(D3)
--R   [4] D2 -> Union(Integer,"failed") from ElementaryFunctionSign(D3,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),GcdDomain) and 
--R            D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D3))
--R   [5] (D2,Symbol,OrderedCompletion(D2)) -> Union(Integer,"failed")
--R             from ElementaryFunctionSign(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer),GcdDomain)
--R   [6] (D2,Symbol,D2,String) -> Union(Integer,"failed")
--R             from ElementaryFunctionSign(D5,D2)
--R             if D5 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),GcdDomain) and 
--R            D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5))
--R   [7] Fraction(Polynomial(D3)) -> Union(Integer,"failed")
--R             from RationalFunctionSign(D3) if D3 has GCDDOM
--R   [8] (Fraction(Polynomial(D5)),Symbol,OrderedCompletion(Fraction(
--R            Polynomial(D5)))) -> Union(Integer,"failed")
--R             from RationalFunctionSign(D5) if D5 has GCDDOM
--R   [9] (Fraction(Polynomial(D5)),Symbol,Fraction(Polynomial(D5)),String
--R            ) -> Union(Integer,"failed")
--R             from RationalFunctionSign(D5) if D5 has GCDDOM
--R
--RThere is one unexposed function called sign :
--R   [1] D2 -> Union(Integer,"failed") from ToolsForSign(D2) if D2 has 
--R            RING
--R
--RExamples of sign from OrderedRing
--R
--R
--RExamples of sign from Permutation
--R
--R
--RExamples of sign from RealRootCharacterizationCategory
--R
--R
--RExamples of sign from ElementaryFunctionSign
--R
--R
--RExamples of sign from RationalFunctionSign
--R
--R
--RExamples of sign from ToolsForSign
--R
--E 2865

--S 2866 of 3320
)d op signAround
--R 
--R
--RThere are 3 unexposed functions called signAround :
--R   [1] (D2,Integer,(D4 -> Union(Integer,"failed"))) -> Union(Integer,
--R            "failed")
--R             from InnerPolySign(D4,D2) if D4 has RING and D2 has UPOLYC
--R            (D4)
--R   [2] (D2,D3,Integer,(D3 -> Union(Integer,"failed"))) -> Union(Integer
--R            ,"failed")
--R             from InnerPolySign(D3,D2) if D3 has RING and D2 has UPOLYC
--R            (D3)
--R   [3] (D2,D3,(D3 -> Union(Integer,"failed"))) -> Union(Integer,
--R            "failed")
--R             from InnerPolySign(D3,D2) if D3 has RING and D2 has UPOLYC
--R            (D3)
--R
--RExamples of signAround from InnerPolySign
--R
--E 2866

--S 2867 of 3320
)d op simpleBounds?
--R 
--R
--RThere is one exposed function called simpleBounds? :
--R   [1] List(Expression(DoubleFloat)) -> Boolean from e04AgentsPackage
--R         
--R
--RExamples of simpleBounds? from e04AgentsPackage
--R
--E 2867

--S 2868 of 3320
)d op simplify
--R 
--R
--RThere are 2 exposed functions called simplify :
--R   [1] AlgebraicNumber -> Expression(Integer)
--R             from SimplifyAlgebraicNumberConvertPackage
--R   [2] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RThere is one unexposed function called simplify :
--R   [1] QuasiAlgebraicSet(D1,D2,D3,D4) -> QuasiAlgebraicSet(D1,D2,D3,D4)
--R             from QuasiAlgebraicSet(D1,D2,D3,D4)
--R             if D1 has CHARZ and D1 has EUCDOM and D1 has GCDDOM and D2
--R             has ORDSET and D3 has OAMONS and D4 has POLYCAT(D1,D3,D2)
--R            
--R
--RExamples of simplify from QuasiAlgebraicSet
--R
--R
--RExamples of simplify from SimplifyAlgebraicNumberConvertPackage
--R
--R
--RExamples of simplify from TranscendentalManipulations
--R
--E 2868

--S 2869 of 3320
)d op simplifyExp
--R 
--R
--RThere is one exposed function called simplifyExp :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of simplifyExp from TranscendentalManipulations
--R
--E 2869

--S 2870 of 3320
)d op simplifyLog
--R 
--R
--RThere is one exposed function called simplifyLog :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of simplifyLog from TranscendentalManipulations
--R
--E 2870

--S 2871 of 3320
)d op simplifyPower
--R 
--R
--RThere is one exposed function called simplifyPower :
--R   [1] (Expression(D2),Integer) -> Expression(D2) from Expression(D2)
--R             if D2 has INTDOM and D2 has ORDSET
--R
--RExamples of simplifyPower from Expression
--R
--E 2871

--S 2872 of 3320
)d op simpson
--R 
--R
--RThere is one exposed function called simpson :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer) -> 
--R            Record(value: Float,error: Float,totalpts: Integer,success: 
--R            Boolean)
--R             from NumericalQuadrature
--R
--RExamples of simpson from NumericalQuadrature
--R
--E 2872

--S 2873 of 3320
)d op simpsono
--R 
--R
--RThere is one exposed function called simpsono :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer) -> 
--R            Record(value: Float,error: Float,totalpts: Integer,success: 
--R            Boolean)
--R             from NumericalQuadrature
--R
--RExamples of simpsono from NumericalQuadrature
--R
--E 2873

--S 2874 of 3320
)d op sin
--R 
--R
--RThere are 2 exposed functions called sin :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has TRIGCAT
--R
--RThere are 6 unexposed functions called sin :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] D1 -> FourierComponent(D1) from FourierComponent(D1) if D1 has 
--R            ORDSET
--R   [5] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [6] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of sin from ElementaryFunction
--R
--R
--RExamples of sin from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of sin from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of sin from FourierComponent
--R
--R
--RExamples of sin from FortranExpression
--R
--R
--RExamples of sin from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of sin from StreamTranscendentalFunctions
--R
--R
--RExamples of sin from TrigonometricFunctionCategory
--R
--E 2874

--S 2875 of 3320
)d op sin?
--R 
--R
--RThere is one unexposed function called sin? :
--R   [1] FourierComponent(D2) -> Boolean from FourierComponent(D2) if D2
--R             has ORDSET
--R
--RExamples of sin? from FourierComponent
--R
--E 2875

--S 2876 of 3320
)d op sin2csc
--R 
--R
--RThere is one exposed function called sin2csc :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of sin2csc from TranscendentalManipulations
--R
--E 2876

--S 2877 of 3320
)d op sincos
--R 
--R
--RThere is one unexposed function called sincos :
--R   [1] Stream(D3) -> Record(sin: Stream(D3),cos: Stream(D3))
--R             from StreamTranscendentalFunctions(D3) if D3 has ALGEBRA(
--R            FRAC(INT))
--R
--RExamples of sincos from StreamTranscendentalFunctions
--R
--E 2877

--S 2878 of 3320
)d op singleFactorBound
--R 
--R
--RThere are 2 unexposed functions called singleFactorBound :
--R   [1] (D2,NonNegativeInteger) -> Integer
--R             from GaloisGroupFactorizationUtilities(D4,D2,D5)
--R             if D4 has RING and D2 has UPOLYC(D4) and D5 has Join(
--R            FloatingPointSystem,RetractableTo(D4),Field,
--R            TranscendentalFunctionCategory,ElementaryFunctionCategory)
--R            
--R   [2] D2 -> Integer from GaloisGroupFactorizationUtilities(D3,D2,D4)
--R             if D3 has RING and D2 has UPOLYC(D3) and D4 has Join(
--R            FloatingPointSystem,RetractableTo(D3),Field,
--R            TranscendentalFunctionCategory,ElementaryFunctionCategory)
--R            
--R
--RExamples of singleFactorBound from GaloisGroupFactorizationUtilities
--R
--E 2878

--S 2879 of 3320
)d op singRicDE
--R 
--R
--RThere are 2 unexposed functions called singRicDE :
--R   [1] (D2,((D6,SparseUnivariatePolynomial(D6)) -> List(D6)),(D6 -> 
--R            Factored(D6))) -> List(Record(frac: Fraction(D6),eq: D2))
--R             from PrimitiveRatRicDE(D5,D6,D2,D7)
--R             if D6 has UPOLYC(D5) and D5 has Join(Field,
--R            CharacteristicZero,RetractableTo(Fraction(Integer))) and D2
--R             has LODOCAT(D6) and D7 has LODOCAT(FRAC(D6))
--R   [2] (LinearOrdinaryDifferentialOperator2(D5,Fraction(D5)),(D5 -> 
--R            Factored(D5))) -> List(Record(frac: Fraction(D5),eq: 
--R            LinearOrdinaryDifferentialOperator2(D5,Fraction(D5))))
--R             from RationalRicDE(D4,D5)
--R             if D5 has UPOLYC(D4) and D4 has Join(Field,
--R            CharacteristicZero,RetractableTo(Integer),RetractableTo(
--R            Fraction(Integer)))
--R
--RExamples of singRicDE from PrimitiveRatRicDE
--R
--R
--RExamples of singRicDE from RationalRicDE
--R
--E 2879

--S 2880 of 3320
)d op singular?
--R 
--R
--RThere are 2 exposed functions called singular? :
--R   [1] D2 -> Boolean from D
--R             if D has FFCAT(D3,D2,D4) and D3 has UFD and D2 has UPOLYC(
--R            D3) and D4 has UPOLYC(FRAC(D2))
--R   [2] D2 -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of singular? from FunctionFieldCategory
--R
--E 2880

--S 2881 of 3320
)d op singularAtInfinity?
--R 
--R
--RThere is one exposed function called singularAtInfinity? :
--R   [1]  -> Boolean from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of singularAtInfinity? from FunctionFieldCategory
--R
--E 2881

--S 2882 of 3320
)d op singularitiesOf
--R 
--R
--RThere are 3 exposed functions called singularitiesOf :
--R   [1] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
--R            OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr: 
--R            DoubleFloat) -> Stream(DoubleFloat)
--R             from d01AgentsPackage
--R   [2] (Expression(DoubleFloat),List(Symbol),Segment(OrderedCompletion(
--R            DoubleFloat))) -> Stream(DoubleFloat)
--R             from ExpertSystemContinuityPackage
--R   [3] (Vector(Expression(DoubleFloat)),List(Symbol),Segment(
--R            OrderedCompletion(DoubleFloat))) -> Stream(DoubleFloat)
--R             from ExpertSystemContinuityPackage
--R
--RExamples of singularitiesOf from d01AgentsPackage
--R
--R
--RExamples of singularitiesOf from ExpertSystemContinuityPackage
--R
--E 2882

--S 2883 of 3320
)d op singularPoints
--R 
--R
--RThere are 4 exposed functions called singularPoints :
--R   [1]  -> List(D10)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FIELD and D7: LIST(SYMBOL) and D8 has POLYCAT(D6
--R            ,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI) and D10 has 
--R            PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12 has PLACESC(D6,
--R            D11) and D1 has DIVCAT(D12) and D2 has INFCLCT(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D4) and D4 has BLMETCT and D3 has DSTRCAT(D2
--R            )
--R   [2]  -> List(ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(
--R            D2))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [3]  -> List(ProjectivePlane(D2))
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R   [4] D2 -> List(D6) from ProjectiveAlgebraicSetPackage(D3,D4,D2,D5,D6
--R            )
--R             if D3 has FIELD and D4: LIST(SYMBOL) and D5 has DIRPCAT(#(
--R            D4),NNI) and D2 has POLYCAT(D3,D5,OVAR(D4)) and D6 has 
--R            PRSPCAT(D3)
--R
--RExamples of singularPoints from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of singularPoints from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of singularPoints from PackageForAlgebraicFunctionField
--R
--R
--RExamples of singularPoints from ProjectiveAlgebraicSetPackage
--R
--E 2883

--S 2884 of 3320
)d op singularPointsWithRestriction
--R 
--R
--RThere is one exposed function called singularPointsWithRestriction :
--R   [1] (D2,List(D2)) -> List(D7)
--R             from ProjectiveAlgebraicSetPackage(D4,D5,D2,D6,D7)
--R             if D2 has POLYCAT(D4,D6,OVAR(D5)) and D6 has DIRPCAT(#(D5)
--R            ,NNI) and D4 has FIELD and D5: LIST(SYMBOL) and D7 has 
--R            PRSPCAT(D4)
--R
--RExamples of singularPointsWithRestriction from ProjectiveAlgebraicSetPackage
--R
--E 2884

--S 2885 of 3320
)d op sinh
--R 
--R
--RThere are 2 exposed functions called sinh :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called sinh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of sinh from ElementaryFunction
--R
--R
--RExamples of sinh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of sinh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of sinh from FortranExpression
--R
--R
--RExamples of sinh from HyperbolicFunctionCategory
--R
--R
--RExamples of sinh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of sinh from StreamTranscendentalFunctions
--R
--E 2885

--S 2886 of 3320
)d op sinh2csch
--R 
--R
--RThere is one exposed function called sinh2csch :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of sinh2csch from TranscendentalManipulations
--R
--E 2886

--S 2887 of 3320
)d op sinhcosh
--R 
--R
--RThere is one unexposed function called sinhcosh :
--R   [1] Stream(D3) -> Record(sinh: Stream(D3),cosh: Stream(D3))
--R             from StreamTranscendentalFunctions(D3) if D3 has ALGEBRA(
--R            FRAC(INT))
--R
--RExamples of sinhcosh from StreamTranscendentalFunctions
--R
--E 2887

--S 2888 of 3320
)d op sinhIfCan
--R 
--R
--RThere is one exposed function called sinhIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of sinhIfCan from PartialTranscendentalFunctions
--R
--E 2888

--S 2889 of 3320
)d op sinIfCan
--R 
--R
--RThere is one exposed function called sinIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of sinIfCan from PartialTranscendentalFunctions
--R
--E 2889

--S 2890 of 3320
)d op size
--R 
--R
--RThere are 4 exposed functions called size :
--R   [1] D -> NonNegativeInteger from D
--R             if D has FAMONC(D2,D3) and D2 has SETCAT and D3 has CABMON
--R            
--R   [2]  -> NonNegativeInteger from D if D has FINITE
--R   [3]  -> Integer from RandomNumberSource
--R   [4] RightOpenIntervalRootCharacterization(D1,D2) -> D1
--R             from RightOpenIntervalRootCharacterization(D1,D2)
--R             if D1 has Join(OrderedRing,Field) and D2 has UPOLYC(D1)
--R         
--R
--RThere are 8 unexposed functions called size :
--R   [1]  -> NonNegativeInteger from DirectProductCategory&(D2,D3,D4)
--R             if D3: NNI and D4 has TYPE and D2 has DIRPCAT(D3,D4)
--R   [2]  -> NonNegativeInteger from FiniteAlgebraicExtensionField&(D2,D3
--R            )
--R             if D3 has FIELD and D2 has FAXF(D3)
--R   [3] FreeGroup(D2) -> NonNegativeInteger from FreeGroup(D2) if D2
--R             has SETCAT
--R   [4] FreeMonoid(D2) -> NonNegativeInteger from FreeMonoid(D2) if D2
--R             has SETCAT
--R   [5]  -> NonNegativeInteger from FiniteSetAggregate&(D2,D3)
--R             if D3 has SETCAT and D2 has FSAGG(D3)
--R   [6] ListMonoidOps(D2,D3,D4) -> NonNegativeInteger
--R             from ListMonoidOps(D2,D3,D4)
--R             if D2 has SETCAT and D3 has ABELMON and D4: D3
--R   [7]  -> NonNegativeInteger from MonogenicAlgebra&(D2,D3,D4)
--R             if D3 has COMRING and D4 has UPOLYC(D3) and D2 has MONOGEN
--R            (D3,D4)
--R   [8] OrderedFreeMonoid(D2) -> NonNegativeInteger from 
--R            OrderedFreeMonoid(D2)
--R             if D2 has ORDSET
--R
--RExamples of size from DirectProductCategory&
--R
--R
--RExamples of size from FreeAbelianMonoidCategory
--R
--R
--RExamples of size from FiniteAlgebraicExtensionField&
--R
--R
--RExamples of size from FreeGroup
--R
--R
--RExamples of size from Finite
--R
--R
--RExamples of size from FreeMonoid
--R
--R
--RExamples of size from FiniteSetAggregate&
--R
--R
--RExamples of size from ListMonoidOps
--R
--R
--RExamples of size from MonogenicAlgebra&
--R
--R
--RExamples of size from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--Rsize(m1,2)
--R
--R
--RExamples of size from RandomNumberSource
--R
--R
--RExamples of size from RightOpenIntervalRootCharacterization
--R
--E 2890

--S 2891 of 3320
)d op size?
--R 
--R
--RThere are 6 exposed functions called size? :
--R   [1] (D,NonNegativeInteger) -> Boolean from D if D has AGG
--R   [2] (ArrayStack(D3),NonNegativeInteger) -> Boolean from ArrayStack(
--R            D3)
--R             if D3 has SETCAT
--R   [3] (Dequeue(D3),NonNegativeInteger) -> Boolean from Dequeue(D3) if 
--R            D3 has SETCAT
--R   [4] (Heap(D3),NonNegativeInteger) -> Boolean from Heap(D3) if D3
--R             has ORDSET
--R   [5] (Queue(D3),NonNegativeInteger) -> Boolean from Queue(D3) if D3
--R             has SETCAT
--R   [6] (Stack(D3),NonNegativeInteger) -> Boolean from Stack(D3) if D3
--R             has SETCAT
--R
--RExamples of size? from Aggregate
--R
--R
--RExamples of size? from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rsize?(a,5)
--R
--R
--RExamples of size? from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rsize?(a,5)
--R
--R
--RExamples of size? from Heap
--R
--Ra:Heap INT:= heap [1,2,3,4,5] 
--Rsize?(a,5)
--R
--R
--RExamples of size? from Queue
--R
--Ra:Queue INT:= queue [1,2,3,4,5] 
--Rsize?(a,5)
--R
--R
--RExamples of size? from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rsize?(a,5)
--R
--E 2891

--S 2892 of 3320
)d op sizeLess?
--R 
--R
--RThere is one exposed function called sizeLess? :
--R   [1] (D,D) -> Boolean from D if D has EUCDOM
--R
--RExamples of sizeLess? from EuclideanDomain
--R
--E 2892

--S 2893 of 3320
)d op sizeMultiplication
--R 
--R
--RThere is one exposed function called sizeMultiplication :
--R   [1]  -> NonNegativeInteger from FiniteFieldNormalBasis(D2,D3) if D2
--R            : PI and D3: PI
--R
--RThere are 3 unexposed functions called sizeMultiplication :
--R   [1] Vector(List(Record(value: D3,index: SingleInteger))) -> 
--R            NonNegativeInteger
--R             from FiniteFieldFunctions(D3) if D3 has FFIELDC
--R   [2]  -> NonNegativeInteger
--R             from FiniteFieldNormalBasisExtensionByPolynomial(D2,D3)
--R             if D2 has FFIELDC and D3: Union(SUP(D2),VECTOR(LIST(
--R            Record(value: D2,index: SingleInteger))))
--R   [3]  -> NonNegativeInteger from FiniteFieldNormalBasisExtension(D2,
--R            D3)
--R             if D2 has FFIELDC and D3: PI
--R
--RExamples of sizeMultiplication from FiniteFieldFunctions
--R
--R
--RExamples of sizeMultiplication from FiniteFieldNormalBasis
--R
--R
--RExamples of sizeMultiplication from FiniteFieldNormalBasisExtensionByPolynomial
--R
--R
--RExamples of sizeMultiplication from FiniteFieldNormalBasisExtension
--R
--E 2893

--S 2894 of 3320
)d op sizePascalTriangle
--R 
--R
--RThere is one unexposed function called sizePascalTriangle :
--R   [1]  -> NonNegativeInteger from GaloisGroupUtilities(D2) if D2 has 
--R            RING
--R
--RExamples of sizePascalTriangle from GaloisGroupUtilities
--R
--E 2894

--S 2895 of 3320
)d op skewSFunction
--R 
--R
--RThere is one exposed function called skewSFunction :
--R   [1] (List(Integer),List(Integer)) -> SymmetricPolynomial(Fraction(
--R            Integer))
--R             from CycleIndicators
--R
--RExamples of skewSFunction from CycleIndicators
--R
--E 2895

--S 2896 of 3320
)d op slash
--R 
--R
--RThere is one unexposed function called slash :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of slash from OutputForm
--R
--E 2896

--S 2897 of 3320
)d op slex
--R 
--R
--RThere is one unexposed function called slex :
--R   [1] List(D3) -> List(List(D3)) from TableauxBumpers(D3) if D3 has 
--R            ORDSET
--R
--RExamples of slex from TableauxBumpers
--R
--E 2897

--S 2898 of 3320
)d op slope
--R 
--R
--RThere are 2 exposed functions called slope :
--R   [1] (D2,D2) -> Record(height: Integer,base: Integer,quotient: 
--R            Integer,reste: Integer,type: Union(left,center,right,vertical,
--R            horizontal))
--R             from NewtonPolygon(D3,D2,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D2 has FAMR(D3,D4)
--R   [2] List(D4) -> Record(height: Integer,base: Integer,quotient: 
--R            Integer,reste: Integer,type: Union(left,center,right,vertical,
--R            horizontal))
--R             from NewtonPolygon(D3,D4,D5,D6)
--R             if D4 has FAMR(D3,D5) and D5 has DIRPCAT(D6,NNI) and D6: 
--R            NNI and D3 has RING
--R
--RExamples of slope from NewtonPolygon
--R
--E 2898

--S 2899 of 3320
)d op smaller?
--R 
--R
--RThere is one exposed function called smaller? :
--R   [1] (D,D) -> Boolean from D if D has COMPAR
--R
--RExamples of smaller? from Comparable
--R
--E 2899

--S 2900 of 3320
)d op smith
--R 
--R
--RThere is one exposed function called smith :
--R   [1] D1 -> D1 from SmithNormalForm(D2,D3,D4,D1)
--R             if D2 has EUCDOM and D3 has FLAGG(D2) and D4 has FLAGG(D2)
--R            and D1 has MATCAT(D2,D3,D4)
--R
--RExamples of smith from SmithNormalForm
--R
--E 2900

--S 2901 of 3320
)d op sn
--R 
--R
--RThere is one unexposed function called sn :
--R   [1] (D1,D2) -> D1 from EllipticFunctionsUnivariateTaylorSeries(D2,D1
--R            )
--R             if D2 has FIELD and D1 has UTSCAT(D2)
--R
--RExamples of sn from EllipticFunctionsUnivariateTaylorSeries
--R
--E 2901

--S 2902 of 3320
)d op sncndn
--R 
--R
--RThere is one unexposed function called sncndn :
--R   [1] (Stream(D3),D3) -> List(Stream(D3))
--R             from EllipticFunctionsUnivariateTaylorSeries(D3,D4)
--R             if D3 has FIELD and D4 has UTSCAT(D3)
--R
--RExamples of sncndn from EllipticFunctionsUnivariateTaylorSeries
--R
--E 2902

--S 2903 of 3320
)d op socf2socdf
--R 
--R
--RThere is one exposed function called socf2socdf :
--R   [1] Segment(OrderedCompletion(Float)) -> Segment(OrderedCompletion(
--R            DoubleFloat))
--R             from ExpertSystemToolsPackage
--R
--RExamples of socf2socdf from ExpertSystemToolsPackage
--R
--E 2903

--S 2904 of 3320
)d op solid
--R 
--R
--RThere is one unexposed function called solid :
--R   [1] (SubSpaceComponentProperty,Boolean) -> Boolean
--R             from SubSpaceComponentProperty
--R
--RExamples of solid from SubSpaceComponentProperty
--R
--E 2904

--S 2905 of 3320
)d op solid?
--R 
--R
--RThere is one unexposed function called solid? :
--R   [1] SubSpaceComponentProperty -> Boolean from 
--R            SubSpaceComponentProperty
--R
--RExamples of solid? from SubSpaceComponentProperty
--R
--E 2905

--S 2906 of 3320
)d op solve
--R 
--R
--RThere are 45 exposed functions called solve :
--R   [1] (List(Fraction(Polynomial(Integer))),D3) -> List(List(Equation(
--R            Polynomial(D3))))
--R             from FloatingRealPackage(D3) if D3 has Join(OrderedRing,
--R            Field)
--R   [2] (List(Equation(Fraction(Polynomial(Integer)))),D3) -> List(List(
--R            Equation(Polynomial(D3))))
--R             from FloatingRealPackage(D3) if D3 has Join(OrderedRing,
--R            Field)
--R   [3] (Fraction(Polynomial(Integer)),D3) -> List(Equation(Polynomial(
--R            D3)))
--R             from FloatingRealPackage(D3) if D3 has Join(OrderedRing,
--R            Field)
--R   [4] (Equation(Fraction(Polynomial(Integer))),D3) -> List(Equation(
--R            Polynomial(D3)))
--R             from FloatingRealPackage(D3) if D3 has Join(OrderedRing,
--R            Field)
--R   [5] (D2,D3,Symbol) -> Union(Record(particular: D3,basis: List(D3)),
--R            "failed")
--R             from ElementaryFunctionLODESolver(D5,D3,D2)
--R             if D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D3 has Join(
--R            AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D2 has LODOCAT(D3)
--R   [6] (D2,D1,Symbol,D1,List(D1)) -> Union(D1,"failed")
--R             from ElementaryFunctionLODESolver(D5,D1,D2)
--R             if D1 has Join(AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D2 has LODOCAT(D1)
--R   [7] (Matrix(D4),Vector(D4)) -> Record(particular: Union(Vector(D4),
--R            "failed"),basis: List(Vector(D4)))
--R             from LinearSystemMatrixPackage1(D4) if D4 has FIELD
--R   [8] (List(List(D4)),Vector(D4)) -> Record(particular: Union(Vector(
--R            D4),"failed"),basis: List(Vector(D4)))
--R             from LinearSystemMatrixPackage1(D4) if D4 has FIELD
--R   [9] (Matrix(D4),List(Vector(D4))) -> List(Record(particular: Union(
--R            Vector(D4),"failed"),basis: List(Vector(D4))))
--R             from LinearSystemMatrixPackage1(D4) if D4 has FIELD
--R   [10] (List(List(D4)),List(Vector(D4))) -> List(Record(particular: 
--R            Union(Vector(D4),"failed"),basis: List(Vector(D4))))
--R             from LinearSystemMatrixPackage1(D4) if D4 has FIELD
--R   [11] (D2,D3) -> Record(particular: Union(D3,"failed"),basis: List(D3
--R            ))
--R             from LinearSystemMatrixPackage(D4,D5,D3,D2)
--R             if D4 has FIELD and D5 has FiniteLinearAggregate(D4)with
--R                 shallowlyMutableand D3 has FiniteLinearAggregate(D4)
--R            with
--R                 shallowlyMutableand D2 has MATCAT(D4,D5,D3)
--R   [12] (D2,List(D6)) -> List(Record(particular: Union(D6,"failed"),
--R            basis: List(D6)))
--R             from LinearSystemMatrixPackage(D4,D5,D6,D2)
--R             if D4 has FIELD and D5 has FiniteLinearAggregate(D4)with
--R                 shallowlyMutableand D6 has FiniteLinearAggregate(D4)
--R            with
--R                 shallowlyMutableand D2 has MATCAT(D4,D5,D6)
--R   [13] (Matrix(D6),Vector(D6),Symbol) -> Union(Record(particular: 
--R            Vector(D6),basis: List(Vector(D6))),"failed")
--R             from ElementaryFunctionODESolver(D5,D6)
--R             if D6 has Join(AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [14] (Matrix(D5),Symbol) -> Union(List(Vector(D5)),"failed")
--R             from ElementaryFunctionODESolver(D4,D5)
--R             if D5 has Join(AlgebraicallyClosedFunctionSpace(D4),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D4 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [15] (List(Equation(D6)),List(BasicOperator),Symbol) -> Union(
--R            Record(particular: Vector(D6),basis: List(Vector(D6))),"failed")
--R             from ElementaryFunctionODESolver(D5,D6)
--R             if D6 has Join(AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [16] (List(D6),List(BasicOperator),Symbol) -> Union(Record(
--R            particular: Vector(D6),basis: List(Vector(D6))),"failed")
--R             from ElementaryFunctionODESolver(D5,D6)
--R             if D6 has Join(AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [17] (Equation(D6),BasicOperator,Symbol) -> Union(Record(particular
--R            : D6,basis: List(D6)),D6,"failed")
--R             from ElementaryFunctionODESolver(D5,D6)
--R             if D6 has Join(AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [18] (D2,BasicOperator,Symbol) -> Union(Record(particular: D2,basis
--R            : List(D2)),D2,"failed")
--R             from ElementaryFunctionODESolver(D5,D2)
--R             if D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D2 has Join(
--R            AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory)
--R         
--R   [19] (Equation(D1),BasicOperator,Equation(D1),List(D1)) -> Union(D1,
--R            "failed")
--R             from ElementaryFunctionODESolver(D5,D1)
--R             if D1 has Join(AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [20] (D1,BasicOperator,Equation(D1),List(D1)) -> Union(D1,"failed")
--R             from ElementaryFunctionODESolver(D5,D1)
--R             if D1 has Join(AlgebraicallyClosedFunctionSpace(D5),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory) 
--R            and D5 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [21] NumericalODEProblem -> Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [22] (NumericalODEProblem,RoutinesTable) -> Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [23] (Vector(Expression(Float)),Float,Float,List(Float)) -> Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [24] (Vector(Expression(Float)),Float,Float,List(Float),Float) -> 
--R            Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [25] (Vector(Expression(Float)),Float,Float,List(Float),Expression(
--R            Float),Float) -> Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [26] (Vector(Expression(Float)),Float,Float,List(Float),List(Float),
--R            Float) -> Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [27] (Vector(Expression(Float)),Float,Float,List(Float),Expression(
--R            Float),List(Float),Float) -> Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [28] (Vector(Expression(Float)),Float,Float,List(Float),Expression(
--R            Float),List(Float),Float,Float) -> Result
--R             from AnnaOrdinaryDifferentialEquationPackage
--R   [29] NumericalPDEProblem -> Result from 
--R            AnnaPartialDifferentialEquationPackage
--R   [30] (NumericalPDEProblem,RoutinesTable) -> Result
--R             from AnnaPartialDifferentialEquationPackage
--R   [31] (Float,Float,Float,Float,NonNegativeInteger,NonNegativeInteger,
--R            List(Expression(Float)),List(List(Expression(Float))),String,
--R            DoubleFloat) -> Result
--R             from AnnaPartialDifferentialEquationPackage
--R   [32] (Float,Float,Float,Float,NonNegativeInteger,NonNegativeInteger,
--R            List(Expression(Float)),List(List(Expression(Float))),String) -> 
--R            Result
--R             from AnnaPartialDifferentialEquationPackage
--R   [33] Expression(D3) -> List(Equation(Expression(D3)))
--R             from TransSolvePackage(D3)
--R             if D3 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [34] Equation(Expression(D3)) -> List(Equation(Expression(D3)))
--R             from TransSolvePackage(D3)
--R             if D3 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [35] (Equation(Expression(D4)),Symbol) -> List(Equation(Expression(
--R            D4)))
--R             from TransSolvePackage(D4)
--R             if D4 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [36] (Expression(D4),Symbol) -> List(Equation(Expression(D4)))
--R             from TransSolvePackage(D4)
--R             if D4 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [37] (List(Equation(Expression(D4))),List(Symbol)) -> List(List(
--R            Equation(Expression(D4))))
--R             from TransSolvePackage(D4)
--R             if D4 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero)
--R   [38] (List(Fraction(Polynomial(D4))),List(Symbol)) -> List(List(
--R            Equation(Fraction(Polynomial(D4)))))
--R             from SystemSolvePackage(D4) if D4 has INTDOM
--R   [39] (List(Equation(Fraction(Polynomial(D4)))),List(Symbol)) -> List
--R            (List(Equation(Fraction(Polynomial(D4)))))
--R             from SystemSolvePackage(D4) if D4 has INTDOM
--R   [40] List(Fraction(Polynomial(D3))) -> List(List(Equation(Fraction(
--R            Polynomial(D3)))))
--R             from SystemSolvePackage(D3) if D3 has INTDOM
--R   [41] List(Equation(Fraction(Polynomial(D3)))) -> List(List(Equation(
--R            Fraction(Polynomial(D3)))))
--R             from SystemSolvePackage(D3) if D3 has INTDOM
--R   [42] (Fraction(Polynomial(D4)),Symbol) -> List(Equation(Fraction(
--R            Polynomial(D4))))
--R             from SystemSolvePackage(D4) if D4 has INTDOM
--R   [43] (Equation(Fraction(Polynomial(D4))),Symbol) -> List(Equation(
--R            Fraction(Polynomial(D4))))
--R             from SystemSolvePackage(D4) if D4 has INTDOM
--R   [44] Fraction(Polynomial(D3)) -> List(Equation(Fraction(Polynomial(
--R            D3))))
--R             from SystemSolvePackage(D3) if D3 has INTDOM
--R   [45] Equation(Fraction(Polynomial(D3))) -> List(Equation(Fraction(
--R            Polynomial(D3))))
--R             from SystemSolvePackage(D3) if D3 has INTDOM
--R
--RThere are 7 unexposed functions called solve :
--R   [1] (List(Polynomial(D4)),List(Symbol)) -> List(List(Equation(
--R            Fraction(Polynomial(D4)))))
--R             from NonLinearSolvePackage(D4) if D4 has INTDOM
--R   [2] List(Polynomial(D3)) -> List(List(Equation(Fraction(Polynomial(
--R            D3)))))
--R             from NonLinearSolvePackage(D3) if D3 has INTDOM
--R   [3] (D1,D1,BasicOperator,Symbol) -> Union(D1,"failed")
--R             from NonLinearFirstOrderODESolver(D4,D1)
--R             if D4 has Join(OrderedSet,EuclideanDomain,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer),
--R            CharacteristicZero) and D1 has Join(
--R            AlgebraicallyClosedFunctionSpace(D4),
--R            TranscendentalFunctionCategory,PrimitiveFunctionCategory)
--R         
--R   [4] (Matrix(D5),Vector(D5),((D6,D5) -> Union(Record(particular: D5,
--R            basis: List(D5)),"failed"))) -> Union(Record(particular: Vector(
--R            D5),basis: Matrix(D5)),"failed")
--R             from SystemODESolver(D5,D6) if D5 has FIELD and D6 has 
--R            LODOCAT(D5)
--R   [5] (Polynomial(Fraction(Integer)),Float) -> List(Float)
--R             from RealSolvePackage
--R   [6] (Polynomial(Integer),Float) -> List(Float) from RealSolvePackage
--R            
--R   [7] D3 -> List(D4) from PolynomialSolveByFormulas(D3,D4)
--R             if D4 has Fieldwith
--R               D : (%,Fraction(Integer)) -> %and D3 has UPOLYC(D4)
--R            
--R
--RExamples of solve from FloatingRealPackage
--R
--R
--RExamples of solve from ElementaryFunctionLODESolver
--R
--R
--RExamples of solve from LinearSystemMatrixPackage1
--R
--R
--RExamples of solve from LinearSystemMatrixPackage
--R
--R
--RExamples of solve from NonLinearSolvePackage
--R
--R
--RExamples of solve from NonLinearFirstOrderODESolver
--R
--R
--RExamples of solve from ElementaryFunctionODESolver
--R
--R
--RExamples of solve from AnnaOrdinaryDifferentialEquationPackage
--R
--R
--RExamples of solve from SystemODESolver
--R
--R
--RExamples of solve from AnnaPartialDifferentialEquationPackage
--R
--R
--RExamples of solve from RealSolvePackage
--R
--Rp := 4*x^3 - 3*x^2 + 2*x - 4 
--Rsolve(p,0.01)$REALSOLV
--R
--Rp := 4*x^3 - 3*x^2 + 2*x - 4 
--Rsolve(p::POLY(FRAC(INT)),0.01)$REALSOLV
--R
--R
--RExamples of solve from PolynomialSolveByFormulas
--R
--R
--RExamples of solve from TransSolvePackage
--R
--Rsolve(1/2*v*v*cos(theta+phi)*cos(theta+phi)+g*l*cos(phi)=g*l,phi) 
--RdefiningPolynomial %phi0 
--RdefiningPolynomial %phi1
--R
--R
--RExamples of solve from SystemSolvePackage
--R
--E 2906

--S 2907 of 3320
)d op solve1
--R 
--R
--RThere is one unexposed function called solve1 :
--R   [1] (SparseUnivariatePolynomial(D4),D3) -> List(D5)
--R             from InnerNumericEigenPackage(D4,D5,D3)
--R             if D4 has FIELD and D5 has FIELD and D3 has Join(Field,
--R            OrderedRing)
--R
--RExamples of solve1 from InnerNumericEigenPackage
--R
--E 2907

--S 2908 of 3320
)d op solveid
--R 
--R
--RThere is one unexposed function called solveid :
--R   [1] (D2,D3,Vector(List(D2))) -> Union(List(D2),"failed")
--R             from GenExEuclid(D3,D2) if D3 has EUCDOM and D2 has UPOLYC
--R            (D3)
--R
--RExamples of solveid from GenExEuclid
--R
--E 2908

--S 2909 of 3320
)d op solveInField
--R 
--R
--RThere are 3 unexposed functions called solveInField :
--R   [1] (List(Polynomial(D4)),List(Symbol)) -> List(List(Equation(
--R            Fraction(Polynomial(D4)))))
--R             from NonLinearSolvePackage(D4) if D4 has INTDOM
--R   [2] List(Polynomial(D3)) -> List(List(Equation(Fraction(Polynomial(
--R            D3)))))
--R             from NonLinearSolvePackage(D3) if D3 has INTDOM
--R   [3] (Matrix(D6),Vector(D5),((D6,D5) -> Record(particular: Union(D5,
--R            "failed"),basis: List(D5)))) -> Record(particular: Union(Vector(
--R            D5),"failed"),basis: List(Vector(D5)))
--R             from SystemODESolver(D5,D6) if D5 has FIELD and D6 has 
--R            LODOCAT(D5)
--R
--RExamples of solveInField from NonLinearSolvePackage
--R
--R
--RExamples of solveInField from SystemODESolver
--R
--E 2909

--S 2910 of 3320
)d op solveLinear
--R 
--R
--RThere are 2 unexposed functions called solveLinear :
--R   [1] (Vector(D3),D3) -> Union(Vector(D4),"failed")
--R             from LinearDependence(D4,D3)
--R             if D3 has LINEXP(D4) and D4 has FIELD and D4 has INTDOM
--R         
--R   [2] (Vector(D3),D3) -> Union(Vector(Fraction(D4)),"failed")
--R             from LinearDependence(D4,D3)
--R             if D3 has LINEXP(D4) and not(ofCategory(D4,Field)) and D4
--R             has INTDOM
--R
--RExamples of solveLinear from LinearDependence
--R
--E 2910

--S 2911 of 3320
)d op solveLinearlyOverQ
--R 
--R
--RThere is one exposed function called solveLinearlyOverQ :
--R   [1] (Vector(D3),D3) -> Union(Vector(Fraction(Integer)),"failed")
--R             from IntegerLinearDependence(D3) if D3 has LINEXP(INT)
--R
--RExamples of solveLinearlyOverQ from IntegerLinearDependence
--R
--E 2911

--S 2912 of 3320
)d op solveLinearPolynomialEquation
--R 
--R
--RThere is one exposed function called solveLinearPolynomialEquation :
--R   [1] (List(SparseUnivariatePolynomial(D)),SparseUnivariatePolynomial(
--R            D)) -> Union(List(SparseUnivariatePolynomial(D)),"failed")
--R             from D if D has PFECAT
--R
--RThere are 3 unexposed functions called solveLinearPolynomialEquation :
--R   [1] (List(SparseUnivariatePolynomial(D4)),SparseUnivariatePolynomial
--R            (D4)) -> Union(List(SparseUnivariatePolynomial(D4)),"failed")
--R             from ComplexIntegerSolveLinearPolynomialEquation(D3,D4)
--R             if D4 has COMPCAT(D3) and D3 has INS
--R   [2] (List(D2),D2) -> Union(List(D2),"failed")
--R             from FiniteFieldSolveLinearPolynomialEquation(D3,D4,D2)
--R             if D2 has UPOLYC(D4) and D4 has UPOLYC(D3) and D3 has 
--R            FFIELDC
--R   [3] (List(SparseUnivariatePolynomial(Integer)),
--R            SparseUnivariatePolynomial(Integer)) -> Union(List(
--R            SparseUnivariatePolynomial(Integer)),"failed")
--R             from IntegerSolveLinearPolynomialEquation
--R
--RExamples of solveLinearPolynomialEquation from ComplexIntegerSolveLinearPolynomialEquation
--R
--R
--RExamples of solveLinearPolynomialEquation from FiniteFieldSolveLinearPolynomialEquation
--R
--R
--RExamples of solveLinearPolynomialEquation from IntegerSolveLinearPolynomialEquation
--R
--R
--RExamples of solveLinearPolynomialEquation from PolynomialFactorizationExplicit
--R
--E 2912

--S 2913 of 3320
)d op solveLinearPolynomialEquationByFractions
--R 
--R
--RThere is one unexposed function called solveLinearPolynomialEquationByFractions :
--R   [1] (List(SparseUnivariatePolynomial(D3)),SparseUnivariatePolynomial
--R            (D3)) -> Union(List(SparseUnivariatePolynomial(D3)),"failed")
--R             from LinearPolynomialEquationByFractions(D3) if D3 has 
--R            PFECAT
--R
--RExamples of solveLinearPolynomialEquationByFractions from LinearPolynomialEquationByFractions
--R
--E 2913

--S 2914 of 3320
)d op solveLinearPolynomialEquationByRecursion
--R 
--R
--RThere are 2 unexposed functions called solveLinearPolynomialEquationByRecursion :
--R   [1] (List(SparseUnivariatePolynomial(D6)),SparseUnivariatePolynomial
--R            (D6)) -> Union(List(SparseUnivariatePolynomial(D6)),"failed")
--R             from PolynomialFactorizationByRecursion(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D3,D4,D5) and D3 has PFECAT and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [2] (List(SparseUnivariatePolynomial(D4)),SparseUnivariatePolynomial
--R            (D4)) -> Union(List(SparseUnivariatePolynomial(D4)),"failed")
--R             from PolynomialFactorizationByRecursionUnivariate(D3,D4)
--R             if D4 has UPOLYC(D3) and D3 has PFECAT
--R
--RExamples of solveLinearPolynomialEquationByRecursion from PolynomialFactorizationByRecursion
--R
--R
--RExamples of solveLinearPolynomialEquationByRecursion from PolynomialFactorizationByRecursionUnivariate
--R
--E 2914

--S 2915 of 3320
)d op solveRetract
--R 
--R
--RThere is one unexposed function called solveRetract :
--R   [1] (List(Polynomial(D5)),List(Symbol)) -> List(List(Equation(
--R            Fraction(Polynomial(D5)))))
--R             from RetractSolvePackage(D4,D5)
--R             if D5 has Join(IntegralDomain,RetractableTo(D4)) and D4
--R             has INTDOM
--R
--RExamples of solveRetract from RetractSolvePackage
--R
--E 2915

--S 2916 of 3320
)d op someBasis
--R 
--R
--RThere is one exposed function called someBasis :
--R   [1]  -> Vector(D) from D if D2 has COMRING and D has FINAALG(D2)
--R
--RExamples of someBasis from FiniteRankNonAssociativeAlgebra
--R
--E 2916

--S 2917 of 3320
)d op Somos
--R 
--R
--RThere is one exposed function called Somos :
--R   [1] Union(PositiveInteger,Boolean) -> GuessOption from GuessOption
--R         
--R
--RThere is one unexposed function called Somos :
--R   [1] List(GuessOption) -> Union(PositiveInteger,Boolean)
--R             from GuessOptionFunctions0
--R
--RExamples of Somos from GuessOptionFunctions0
--R
--R
--RExamples of Somos from GuessOption
--R
--E 2917

--S 2918 of 3320
)d op sort
--R 
--R
--RThere are 4 exposed functions called sort :
--R   [1] D -> D from D if D has FLAGG(D1) and D1 has TYPE and D1 has 
--R            ORDSET
--R   [2] (((D2,D2) -> Boolean),D) -> D from D if D has FLAGG(D2) and D2
--R             has TYPE
--R   [3] List(Permutation(D2)) -> List(Permutation(D2)) from Permutation(
--R            D2)
--R             if D2 has SETCAT
--R   [4] (D,D2) -> Record(under: D,floor: D,upper: D) from D
--R             if D3 has RING and D4 has OAMONS and D2 has ORDSET and D5
--R             has RPOLCAT(D3,D4,D2) and D has PSETCAT(D3,D4,D2,D5)
--R
--RExamples of sort from FiniteLinearAggregate
--R
--R
--RExamples of sort from Permutation
--R
--R
--RExamples of sort from PolynomialSetCategory
--R
--E 2918

--S 2919 of 3320
)d op sort!
--R 
--R
--RThere are 2 exposed functions called sort! :
--R   [1] D -> D from D
--R             if D has shallowlyMutable and D has FLAGG(D1) and D1 has 
--R            TYPE and D1 has ORDSET
--R   [2] (((D2,D2) -> Boolean),D) -> D from D
--R             if D has shallowlyMutable and D has FLAGG(D2) and D2 has 
--R            TYPE
--R
--RExamples of sort! from FiniteLinearAggregate
--R
--E 2919

--S 2920 of 3320
)d op sortConstraints
--R 
--R
--RThere is one exposed function called sortConstraints :
--R   [1] Record(fn: Expression(DoubleFloat),init: List(DoubleFloat),lb: 
--R            List(OrderedCompletion(DoubleFloat)),cf: List(Expression(
--R            DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))) -> 
--R            Record(fn: Expression(DoubleFloat),init: List(DoubleFloat),lb: 
--R            List(OrderedCompletion(DoubleFloat)),cf: List(Expression(
--R            DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat)))
--R             from e04AgentsPackage
--R
--RExamples of sortConstraints from e04AgentsPackage
--R
--E 2920

--S 2921 of 3320
)d op sorted?
--R 
--R
--RThere are 2 exposed functions called sorted? :
--R   [1] D -> Boolean from D if D has FLAGG(D2) and D2 has TYPE and D2
--R             has ORDSET
--R   [2] (((D3,D3) -> Boolean),D) -> Boolean from D if D has FLAGG(D3) 
--R            and D3 has TYPE
--R
--RExamples of sorted? from FiniteLinearAggregate
--R
--E 2921

--S 2922 of 3320
)d op sortedPurge!
--R 
--R
--RThere is one exposed function called sortedPurge! :
--R   [1] (SparseEchelonMatrix(D3,D4),(D3 -> Boolean)) -> Void
--R             from SparseEchelonMatrix(D3,D4) if D3 has ORDSET and D4
--R             has RING
--R
--RExamples of sortedPurge! from SparseEchelonMatrix
--R
--E 2922

--S 2923 of 3320
)d op space
--R 
--R
--RThere are 2 exposed functions called space :
--R   [1]  -> Character from Character
--R   [2] ThreeSpace(DoubleFloat) -> DrawOption from DrawOption
--R
--RThere is one unexposed function called space :
--R   [1] List(DrawOption) -> ThreeSpace(DoubleFloat) from 
--R            DrawOptionFunctions0
--R
--RExamples of space from Character
--R
--Rspace()
--R
--R
--RExamples of space from DrawOptionFunctions0
--R
--R
--RExamples of space from DrawOption
--R
--E 2923

--S 2924 of 3320
)d op sparsityIF
--R 
--R
--RThere is one exposed function called sparsityIF :
--R   [1] Matrix(Expression(DoubleFloat)) -> Float from d02AgentsPackage
--R         
--R
--RExamples of sparsityIF from d02AgentsPackage
--R
--E 2924

--S 2925 of 3320
)d op specialise
--R 
--R
--RThere is one exposed function called specialise :
--R   [1] (List(Polynomial(D4)),Cell(D4)) -> List(
--R            SparseUnivariatePolynomial(D4))
--R             from CylindricalAlgebraicDecompositionPackage(D4) if D4
--R             has RCFIELD
--R
--RExamples of specialise from CylindricalAlgebraicDecompositionPackage
--R
--E 2925

--S 2926 of 3320
)d op specialTrigs
--R 
--R
--RThere is one unexposed function called specialTrigs :
--R   [1] (D1,List(Record(func: D1,pole: Boolean))) -> Union(D1,"failed")
--R             from ElementaryFunction(D3,D1)
--R             if D1 has Join(FunctionSpace(D3),RadicalCategory) and D3
--R             has Join(OrderedSet,IntegralDomain)
--R
--RExamples of specialTrigs from ElementaryFunction
--R
--E 2926

--S 2927 of 3320
)d op spherical
--R 
--R
--RThere is one exposed function called spherical :
--R   [1] Point(D2) -> Point(D2) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of spherical from CoordinateSystems
--R
--E 2927

--S 2928 of 3320
)d op split
--R 
--R
--RThere are 9 exposed functions called split :
--R   [1] D2 -> Factored(D2) from AlgFactor(D2) if D2 has UPOLYC(AN)
--R   [2] (D2,BinarySearchTree(D2)) -> Record(less: BinarySearchTree(D2),
--R            greater: BinarySearchTree(D2))
--R             from BinarySearchTree(D2) if D2 has ORDSET
--R   [3] D -> List(D) from D if D2 has SETCAT and D has DIVCAT(D2)
--R   [4] IntegrationResult(D3) -> IntegrationResult(D3)
--R             from IntegrationResultToFunction(D2,D3)
--R             if D3 has Join(AlgebraicallyClosedFunctionSpace(D2),
--R            TranscendentalFunctionCategory) and D2 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,LinearlyExplicitRingOver(
--R            Integer))
--R   [5] IntegrationResult(Fraction(Polynomial(D2))) -> IntegrationResult
--R            (Fraction(Polynomial(D2)))
--R             from IntegrationResultRFToFunction(D2)
--R             if D2 has Join(GcdDomain,RetractableTo(Integer),OrderedSet
--R            ,LinearlyExplicitRingOver(Integer))
--R   [6] (List(Matrix(D4)),Vector(D4)) -> List(List(Matrix(D4)))
--R             from RepresentationPackage2(D4) if D4 has FIELD and D4
--R             has RING
--R   [7] (List(Matrix(D4)),Vector(Vector(D4))) -> List(List(Matrix(D4)))
--R             from RepresentationPackage2(D4) if D4 has FIELD and D4
--R             has RING
--R   [8] (D,CharacterClass) -> List(D) from D if D has SRAGG
--R   [9] (D,Character) -> List(D) from D if D has SRAGG
--R
--RThere is one unexposed function called split :
--R   [1] (D2,(D2 -> D2)) -> Record(normal: D2,special: D2)
--R             from MonomialExtensionTools(D4,D2) if D2 has UPOLYC(D4) 
--R            and D4 has FIELD
--R
--RExamples of split from AlgFactor
--R
--R
--RExamples of split from BinarySearchTree
--R
--Rt1:=binarySearchTree [1,2,3,4] 
--Rsplit(3,t1)
--R
--R
--RExamples of split from DivisorCategory
--R
--R
--RExamples of split from IntegrationResultToFunction
--R
--R
--RExamples of split from IntegrationResultRFToFunction
--R
--R
--RExamples of split from MonomialExtensionTools
--R
--R
--RExamples of split from RepresentationPackage2
--R
--R
--RExamples of split from StringAggregate
--R
--E 2928

--S 2929 of 3320 done
)d op split!
--R 
--R
--RThere is one exposed function called split! :
--R   [1] (D,Integer) -> D from D
--R             if D has shallowlyMutable and D has URAGG(D2) and D2 has 
--R            TYPE
--R
--RExamples of split! from UnaryRecursiveAggregate
--R
--Rt1:=[1,4,2,-6,0,3,5,4,2,3] 
--Rt2:=split!(t1,4) 
--Rt1 
--Rt2
--R
--E 2929

--S 2930 of 3320
)d op splitConstant
--R 
--R
--RThere is one unexposed function called splitConstant :
--R   [1] (D2,Symbol) -> Record(const: D2,nconst: D2)
--R             from PatternMatchIntegration(D4,D2)
--R             if D4 has Join(OrderedSet,RetractableTo(Integer),GcdDomain
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4))
--R
--RExamples of splitConstant from PatternMatchIntegration
--R
--E 2930

--S 2931 of 3320
)d op splitDenominator
--R 
--R
--RThere are 3 exposed functions called splitDenominator :
--R   [1] D2 -> Record(num: D2,den: D3) from CommonDenominator(D3,D4,D2)
--R             if D3 has INTDOM and D4 has QFCAT(D3) and D2 has FLAGG(D4)
--R            
--R   [2] Matrix(D4) -> Record(num: Matrix(D3),den: D3)
--R             from MatrixCommonDenominator(D3,D4)
--R             if D4 has QFCAT(D3) and D3 has INTDOM
--R   [3] D2 -> Record(num: D2,den: D3)
--R             from UnivariatePolynomialCommonDenominator(D3,D4,D2)
--R             if D3 has INTDOM and D4 has QFCAT(D3) and D2 has UPOLYC(D4
--R            )
--R
--RThere are 2 unexposed functions called splitDenominator :
--R   [1] D2 -> Record(num: D5,den: D3) from InnerCommonDenominator(D3,D4,
--R            D5,D2)
--R             if D3 has INTDOM and D4 has QFCAT(D3) and D5 has FLAGG(D3)
--R            and D2 has FLAGG(D4)
--R   [2] (D2,List(Fraction(D5))) -> Record(eq: D6,rh: List(Fraction(D5)))
--R             from PrimitiveRatDE(D4,D5,D6,D2)
--R             if D4 has Join(Field,CharacteristicZero,RetractableTo(
--R            Fraction(Integer))) and D5 has UPOLYC(D4) and D6 has 
--R            LODOCAT(D5) and D2 has LODOCAT(FRAC(D5))
--R
--RExamples of splitDenominator from CommonDenominator
--R
--R
--RExamples of splitDenominator from InnerCommonDenominator
--R
--R
--RExamples of splitDenominator from MatrixCommonDenominator
--R
--R
--RExamples of splitDenominator from PrimitiveRatDE
--R
--R
--RExamples of splitDenominator from UnivariatePolynomialCommonDenominator
--R
--E 2931

--S 2932 of 3320
)d op splitLinear
--R 
--R
--RThere is one exposed function called splitLinear :
--R   [1] Expression(DoubleFloat) -> Expression(DoubleFloat) from 
--R            e04AgentsPackage
--R
--RExamples of splitLinear from e04AgentsPackage
--R
--E 2932

--S 2933 of 3320
)d op splitNodeOf!
--R 
--R
--RThere are 2 unexposed functions called splitNodeOf! :
--R   [1] (SplittingTree(D3,D4),SplittingTree(D3,D4),List(SplittingNode(D3
--R            ,D4)),((D4,D4) -> Boolean)) -> SplittingTree(D3,D4)
--R             from SplittingTree(D3,D4)
--R             if D3 has Join(SetCategory,Aggregate) and D4 has Join(
--R            SetCategory,Aggregate)
--R   [2] (SplittingTree(D2,D3),SplittingTree(D2,D3),List(SplittingNode(D2
--R            ,D3))) -> SplittingTree(D2,D3)
--R             from SplittingTree(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of splitNodeOf! from SplittingTree
--R
--E 2933

--S 2934 of 3320
)d op splitSquarefree
--R 
--R
--RThere is one unexposed function called splitSquarefree :
--R   [1] (D2,(D2 -> D2)) -> Record(normal: Factored(D2),special: Factored
--R            (D2))
--R             from MonomialExtensionTools(D4,D2) if D2 has UPOLYC(D4) 
--R            and D4 has FIELD
--R
--RExamples of splitSquarefree from MonomialExtensionTools
--R
--E 2934

--S 2935 of 3320
)d op sPol
--R 
--R
--RThere is one unexposed function called sPol :
--R   [1] Record(lcmfij: D4,totdeg: NonNegativeInteger,poli: D1,polj: D1)
--R             -> D1
--R             from GroebnerInternalPackage(D3,D4,D5,D1)
--R             if D4 has OAMONS and D1 has POLYCAT(D3,D4,D5) and D3 has 
--R            GCDDOM and D5 has ORDSET
--R
--RExamples of sPol from GroebnerInternalPackage
--R
--E 2935

--S 2936 of 3320
)d op sqfree
--R 
--R
--RThere is one unexposed function called sqfree :
--R   [1] D1 -> D1 from ParametricLinearEquations(D2,D3,D4,D1)
--R             if D2 has Join(EuclideanDomain,CharacteristicZero) and D3
--R             has Join(OrderedSet,ConvertibleTo(Symbol)) and D4 has 
--R            OAMONS and D1 has POLYCAT(D2,D4,D3)
--R
--RExamples of sqfree from ParametricLinearEquations
--R
--E 2936

--S 2937 of 3320 done
)d op sqfrFactor
--R 
--R
--RThere is one exposed function called sqfrFactor :
--R   [1] (D1,Integer) -> Factored(D1) from Factored(D1) if D1 has INTDOM
--R            
--R
--RExamples of sqfrFactor from Factored
--R
--Ra:=sqfrFactor(3,5) 
--RnthFlag(a,1)
--R
--E 2937

--S 2938 of 3320
)d op sqrt
--R 
--R
--RThere are 7 exposed functions called sqrt :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] (D,Integer) -> D from D if D has PADICCT(D2)
--R   [3] D -> D from D if D has RADCAT
--R   [4] Integer -> D from D if D has RCFIELD
--R   [5] Fraction(Integer) -> D from D if D has RCFIELD
--R   [6] (D,NonNegativeInteger) -> D from D if D has RCFIELD
--R   [7] D -> D from D if D has RCFIELD
--R
--RExamples of sqrt from FortranExpression
--R
--R
--RExamples of sqrt from PAdicIntegerCategory
--R
--R
--RExamples of sqrt from RadicalCategory
--R
--R
--RExamples of sqrt from RealClosedField
--R
--E 2938

--S 2939 of 3320
)d op square?
--R 
--R
--RThere are 2 exposed functions called square? :
--R   [1] D -> Boolean from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [2] D -> Boolean from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of square? from MatrixCategory
--R
--Rsquare? matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of square? from RectangularMatrixCategory
--R
--E 2939

--S 2940 of 3320
)d op squareFree
--R 
--R
--RThere are 3 exposed functions called squareFree :
--R   [1] D -> Factored(D) from D
--R             if D2 has GCDDOM and D2 has RING and D3 has OAMONS and D4
--R             has ORDSET and D has POLYCAT(D2,D3,D4)
--R   [2] D -> Factored(D) from D if D has UFD
--R   [3] RegularChain(D3,D4) -> List(SquareFreeRegularTriangularSet(D3,
--R            IndexedExponents(OrderedVariableList(D5)),OrderedVariableList(D5)
--R            ,NewSparseMultivariatePolynomial(D3,OrderedVariableList(D5))))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R
--RThere are 6 unexposed functions called squareFree :
--R   [1] D2 -> Factored(D2) from IntegerFactorizationPackage(D2) if D2
--R             has INS
--R   [2] D2 -> Factored(D2) from MultivariateSquareFree(D3,D4,D5,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has EUCDOM and 
--R            D2 has POLYCAT(D5,D3,D4)
--R   [3] SparseUnivariatePolynomial(D6) -> Factored(
--R            SparseUnivariatePolynomial(D6))
--R             from MultivariateSquareFree(D3,D4,D5,D6)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has EUCDOM and 
--R            D6 has POLYCAT(D5,D3,D4)
--R   [4] D2 -> Factored(D2) from PolynomialSquareFree(D3,D4,D5,D2)
--R             if D3 has ORDSET and D4 has OAMONS and D5 has GCDDOM and 
--R            D2 has POLYCAT(D5,D4,D3)
--R   [5] SparseUnivariatePolynomial(Fraction(D6)) -> Factored(
--R            SparseUnivariatePolynomial(Fraction(D6)))
--R             from SupFractionFactorizer(D3,D4,D5,D6)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has GCDDOM and 
--R            D6 has POLYCAT(D5,D3,D4)
--R   [6] D2 -> Factored(D2) from UnivariatePolynomialSquareFree(D3,D2)
--R             if D3 has INTDOM and D2 has Join(
--R            UnivariatePolynomialCategory(D3),IntegralDomain)with
--R               gcd : (%,%) -> %
--R
--RExamples of squareFree from IntegerFactorizationPackage
--R
--R
--RExamples of squareFree from MultivariateSquareFree
--R
--R
--RExamples of squareFree from PolynomialCategory
--R
--R
--RExamples of squareFree from PolynomialSquareFree
--R
--R
--RExamples of squareFree from SupFractionFactorizer
--R
--R
--RExamples of squareFree from UniqueFactorizationDomain
--R
--R
--RExamples of squareFree from UnivariatePolynomialSquareFree
--R
--R
--RExamples of squareFree from ZeroDimensionalSolvePackage
--R
--E 2940

--S 2941 of 3320
)d op squareFreeBasis
--R 
--R
--RThere is one exposed function called squareFreeBasis :
--R   [1] List(D3) -> List(D3)
--R             from CylindricalAlgebraicDecompositionUtilities(D2,D3)
--R             if D3 has UPOLYC(D2) and D2 has GCDDOM
--R
--RExamples of squareFreeBasis from CylindricalAlgebraicDecompositionUtilities
--R
--E 2941

--S 2942 of 3320
)d op squareFreeFactors
--R 
--R
--RThere is one unexposed function called squareFreeFactors :
--R   [1] D2 -> List(D2) from PolynomialSetUtilitiesPackage(D3,D4,D5,D2)
--R             if D3 has GCDDOM and D3 has INTDOM and D4 has OAMONS and 
--R            D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R
--RExamples of squareFreeFactors from PolynomialSetUtilitiesPackage
--R
--E 2942

--S 2943 of 3320
)d op squareFreeLexTriangular
--R 
--R
--RThere is one unexposed function called squareFreeLexTriangular :
--R   [1] (List(NewSparseMultivariatePolynomial(D4,OrderedVariableList(D5)
--R            )),Boolean) -> List(SquareFreeRegularTriangularSet(D4,
--R            IndexedExponents(OrderedVariableList(D5)),OrderedVariableList(D5)
--R            ,NewSparseMultivariatePolynomial(D4,OrderedVariableList(D5))))
--R             from LexTriangularPackage(D4,D5) if D4 has GCDDOM and D5: 
--R            LIST(SYMBOL)
--R
--RExamples of squareFreeLexTriangular from LexTriangularPackage
--R
--E 2943

--S 2944 of 3320
)d op squareFreePart
--R 
--R
--RThere are 3 exposed functions called squareFreePart :
--R   [1] D -> D from D
--R             if D has POLYCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has GCDDOM
--R   [2] (D2,D) -> List(Record(val: D2,tower: D)) from D
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5) and D has RSETCAT(D3,D4,D5,D2)
--R   [3] D -> D from D if D has UFD
--R
--RThere is one unexposed function called squareFreePart :
--R   [1] D1 -> D1 from UnivariatePolynomialSquareFree(D2,D1)
--R             if D2 has INTDOM and D1 has Join(
--R            UnivariatePolynomialCategory(D2),IntegralDomain)with
--R               gcd : (%,%) -> %
--R
--RExamples of squareFreePart from PolynomialCategory
--R
--R
--RExamples of squareFreePart from RegularTriangularSetCategory
--R
--R
--RExamples of squareFreePart from UniqueFactorizationDomain
--R
--R
--RExamples of squareFreePart from UnivariatePolynomialSquareFree
--R
--E 2944

--S 2945 of 3320
)d op squareFreePolynomial
--R 
--R
--RThere are 2 exposed functions called squareFreePolynomial :
--R   [1] SparseUnivariatePolynomial(Expression(D3)) -> Factored(
--R            SparseUnivariatePolynomial(Expression(D3)))
--R             from Expression(D3) if D3 has GCDDOM and D3 has INTDOM and
--R            D3 has ORDSET
--R   [2] SparseUnivariatePolynomial(D) -> Factored(
--R            SparseUnivariatePolynomial(D))
--R             from D if D has PFECAT
--R
--RExamples of squareFreePolynomial from Expression
--R
--R
--RExamples of squareFreePolynomial from PolynomialFactorizationExplicit
--R
--E 2945

--S 2946 of 3320
)d op squareFreePrim
--R 
--R
--RThere is one unexposed function called squareFreePrim :
--R   [1] D2 -> Factored(D2) from MultivariateSquareFree(D3,D4,D5,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has EUCDOM and 
--R            D2 has POLYCAT(D5,D3,D4)
--R
--RExamples of squareFreePrim from MultivariateSquareFree
--R
--E 2946

--S 2947 of 3320
)d op squareMatrix
--R 
--R
--RThere is one unexposed function called squareMatrix :
--R   [1] Matrix(D3) -> SquareMatrix(D2,D3) from SquareMatrix(D2,D3)
--R             if D3 has RING and D2: NNI
--R
--RExamples of squareMatrix from SquareMatrix
--R
--E 2947

--S 2948 of 3320 done
)d op squareTop
--R 
--R
--RThere is one exposed function called squareTop :
--R   [1] D -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R
--RExamples of squareTop from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..2] for j in 1..5] 
--RsquareTop m
--R
--E 2948

--S 2949 of 3320
)d op stablePol
--R 
--R
--RThere is one exposed function called stablePol :
--R   [1] SimpleCell(D2,D1) -> D1 from SimpleCell(D2,D1)
--R             if D1 has UPOLYC(D2) and D2 has RCFIELD
--R
--RExamples of stablePol from SimpleCell
--R
--E 2949

--S 2950 of 3320 done
)d op stack
--R 
--R
--RThere is one exposed function called stack :
--R   [1] List(D2) -> Stack(D2) from Stack(D2) if D2 has SETCAT
--R
--RExamples of stack from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5]
--R
--E 2950

--S 2951 of 3320
)d op standardBasisOfCyclicSubmodule
--R 
--R
--RThere is one exposed function called standardBasisOfCyclicSubmodule :
--R   [1] (List(Matrix(D4)),Vector(D4)) -> Matrix(D4)
--R             from RepresentationPackage2(D4) if D4 has EUCDOM and D4
--R             has RING
--R
--RExamples of standardBasisOfCyclicSubmodule from RepresentationPackage2
--R
--E 2951

--S 2952 of 3320
)d op standardDotHeader
--R 
--R
--RThere is one exposed function called standardDotHeader :
--R   [1]  -> List(String) from Graphviz
--R
--RExamples of standardDotHeader from Graphviz
--R
--Rheader:=standardDotHeader()
--R
--E 2952

--S 2953 of 3320
)d op startPolynomial
--R 
--R
--RThere is one unexposed function called startPolynomial :
--R   [1] D2 -> Record(start: D2,factors: Factored(D2))
--R             from ComplexRootFindingPackage(D3,D2)
--R             if D3 has Join(Field,OrderedRing) and D2 has UPOLYC(
--R            COMPLEX(D3))
--R
--RExamples of startPolynomial from ComplexRootFindingPackage
--R
--E 2953

--S 2954 of 3320
)d op startStats!
--R 
--R
--RThere is one unexposed function called startStats! :
--R   [1] String -> Void from TabulatedComputationPackage(D3,D4)
--R             if D3 has SETCAT and D4 has SETCAT
--R
--RExamples of startStats! from TabulatedComputationPackage
--R
--E 2954

--S 2955 of 3320
)d op startTable!
--R 
--R
--RThere are 2 exposed functions called startTable! :
--R   [1] (String,String,String) -> Void from QuasiComponentPackage(D3,D4,
--R            D5,D6,D7)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (String,String,String) -> Void
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of startTable! from QuasiComponentPackage
--R
--R
--RExamples of startTable! from SquareFreeQuasiComponentPackage
--R
--E 2955

--S 2956 of 3320
)d op startTableGcd!
--R 
--R
--RThere are 2 exposed functions called startTableGcd! :
--R   [1] (String,String,String) -> Void
--R             from RegularTriangularSetGcdPackage(D3,D4,D5,D6,D7)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (String,String,String) -> Void
--R             from SquareFreeRegularTriangularSetGcdPackage(D3,D4,D5,D6,
--R            D7)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of startTableGcd! from RegularTriangularSetGcdPackage
--R
--R
--RExamples of startTableGcd! from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2956

--S 2957 of 3320
)d op startTableInvSet!
--R 
--R
--RThere are 2 exposed functions called startTableInvSet! :
--R   [1] (String,String,String) -> Void
--R             from RegularTriangularSetGcdPackage(D3,D4,D5,D6,D7)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (String,String,String) -> Void
--R             from SquareFreeRegularTriangularSetGcdPackage(D3,D4,D5,D6,
--R            D7)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of startTableInvSet! from RegularTriangularSetGcdPackage
--R
--R
--RExamples of startTableInvSet! from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2957

--S 2958 of 3320
)d op status
--R 
--R
--RThere are 2 unexposed functions called status :
--R   [1] QuasiAlgebraicSet(D2,D3,D4,D5) -> Union(Boolean,"failed")
--R             from QuasiAlgebraicSet(D2,D3,D4,D5)
--R             if D2 has GCDDOM and D3 has ORDSET and D4 has OAMONS and 
--R            D5 has POLYCAT(D2,D4,D3)
--R   [2] SplittingNode(D2,D3) -> Boolean from SplittingNode(D2,D3)
--R             if D2 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of status from QuasiAlgebraicSet
--R
--R
--RExamples of status from SplittingNode
--R
--E 2958

--S 2959 of 3320 done
)d op statusIto
--R 
--R
--RThere is one exposed function called statusIto :
--R   [1]  -> OutputForm from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of statusIto from StochasticDifferential
--R
--Rdt:=introduce!(t,dt) 
--RdX:=introduce!(X,dX) 
--RdY:=introduce!(Y,dY) 
--RcopyBSD() 
--RcopyIto() 
--RcopyhQuadVar() 
--RstatusIto()
--R
--E 2959

--S 2960 of 3320
)d op stepBlowUp
--R 
--R
--RThere is one exposed function called stepBlowUp :
--R   [1] (DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY],D5)
--R            ,AffinePlane(D5),D4,D5) -> Record(mult: NonNegativeInteger,
--R            subMult: NonNegativeInteger,blUpRec: List(Record(recTransStr: 
--R            DistributedMultivariatePolynomial([construct,QUOTEX,QUOTEY],D5),
--R            recPoint: AffinePlane(D5),recChart: D4,definingExtension: D5)))
--R             from BlowUpPackage(D5,D6,D7,D8,D4)
--R             if D5 has FIELD and D6: LIST(SYMBOL) and D8 has DIRPCAT(#(
--R            D6),NNI) and D7 has FAMR(D5,D8) and D4 has BLMETCT
--R
--RExamples of stepBlowUp from BlowUpPackage
--R
--E 2960

--S 2961 of 3320
)d op stFunc1
--R 
--R
--RThere is one unexposed function called stFunc1 :
--R   [1] (D4 -> D4) -> (Stream(D3) -> Stream(D3))
--R             from UnivariateTaylorSeriesODESolver(D3,D4)
--R             if D4 has UTSCAT(D3) and D3 has ALGEBRA(FRAC(INT))
--R
--RExamples of stFunc1 from UnivariateTaylorSeriesODESolver
--R
--E 2961

--S 2962 of 3320
)d op stFunc2
--R 
--R
--RThere is one unexposed function called stFunc2 :
--R   [1] ((D4,D4) -> D4) -> ((Stream(D3),Stream(D3)) -> Stream(D3))
--R             from UnivariateTaylorSeriesODESolver(D3,D4)
--R             if D4 has UTSCAT(D3) and D3 has ALGEBRA(FRAC(INT))
--R
--RExamples of stFunc2 from UnivariateTaylorSeriesODESolver
--R
--E 2962

--S 2963 of 3320
)d op stFuncN
--R 
--R
--RThere is one unexposed function called stFuncN :
--R   [1] (List(D4) -> D4) -> (List(Stream(D3)) -> Stream(D3))
--R             from UnivariateTaylorSeriesODESolver(D3,D4)
--R             if D4 has UTSCAT(D3) and D3 has ALGEBRA(FRAC(INT))
--R
--RExamples of stFuncN from UnivariateTaylorSeriesODESolver
--R
--E 2963

--S 2964 of 3320
)d op stiffnessAndStabilityFactor
--R 
--R
--RThere is one exposed function called stiffnessAndStabilityFactor :
--R   [1] Matrix(Expression(DoubleFloat)) -> Record(stiffnessFactor: Float
--R            ,stabilityFactor: Float)
--R             from d02AgentsPackage
--R
--RExamples of stiffnessAndStabilityFactor from d02AgentsPackage
--R
--E 2964

--S 2965 of 3320
)d op stiffnessAndStabilityOfODEIF
--R 
--R
--RThere is one exposed function called stiffnessAndStabilityOfODEIF :
--R   [1] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
--R            Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
--R            DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
--R            relerr: DoubleFloat) -> Record(stiffnessFactor: Float,
--R            stabilityFactor: Float)
--R             from d02AgentsPackage
--R
--RExamples of stiffnessAndStabilityOfODEIF from d02AgentsPackage
--R
--E 2965

--S 2966 of 3320
)d op stirling1
--R 
--R
--RThere is one exposed function called stirling1 :
--R   [1] (D1,D1) -> D1 from IntegerCombinatoricFunctions(D1) if D1 has 
--R            INS
--R
--RExamples of stirling1 from IntegerCombinatoricFunctions
--R
--E 2966

--S 2967 of 3320
)d op stirling2
--R 
--R
--RThere is one exposed function called stirling2 :
--R   [1] (D1,D1) -> D1 from IntegerCombinatoricFunctions(D1) if D1 has 
--R            INS
--R
--RExamples of stirling2 from IntegerCombinatoricFunctions
--R
--E 2967

--S 2968 of 3320
)d op stop
--R 
--R
--RThere is one exposed function called stop :
--R   [1]  -> FortranCode from FortranCode
--R
--RExamples of stop from FortranCode
--R
--E 2968

--S 2969 of 3320
)d op stopMusserTrials
--R 
--R
--RThere are 2 unexposed functions called stopMusserTrials :
--R   [1]  -> PositiveInteger from GaloisGroupFactorizer(D2) if D2 has 
--R            UPOLYC(INT)
--R   [2] PositiveInteger -> PositiveInteger from GaloisGroupFactorizer(D2
--R            )
--R             if D2 has UPOLYC(INT)
--R
--RExamples of stopMusserTrials from GaloisGroupFactorizer
--R
--E 2969

--S 2970 of 3320
)d op stopTable!
--R 
--R
--RThere are 2 exposed functions called stopTable! :
--R   [1]  -> Void from QuasiComponentPackage(D2,D3,D4,D5,D6)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5)
--R         
--R   [2]  -> Void from SquareFreeQuasiComponentPackage(D2,D3,D4,D5,D6)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5)
--R         
--R
--RExamples of stopTable! from QuasiComponentPackage
--R
--R
--RExamples of stopTable! from SquareFreeQuasiComponentPackage
--R
--E 2970

--S 2971 of 3320
)d op stopTableGcd!
--R 
--R
--RThere are 2 exposed functions called stopTableGcd! :
--R   [1]  -> Void from RegularTriangularSetGcdPackage(D2,D3,D4,D5,D6)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5)
--R         
--R   [2]  -> Void from SquareFreeRegularTriangularSetGcdPackage(D2,D3,D4,
--R            D5,D6)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5)
--R         
--R
--RExamples of stopTableGcd! from RegularTriangularSetGcdPackage
--R
--R
--RExamples of stopTableGcd! from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2971

--S 2972 of 3320
)d op stopTableInvSet!
--R 
--R
--RThere are 2 exposed functions called stopTableInvSet! :
--R   [1]  -> Void from RegularTriangularSetGcdPackage(D2,D3,D4,D5,D6)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5)
--R         
--R   [2]  -> Void from SquareFreeRegularTriangularSetGcdPackage(D2,D3,D4,
--R            D5,D6)
--R             if D2 has GCDDOM and D3 has OAMONS and D4 has ORDSET and 
--R            D5 has RPOLCAT(D2,D3,D4) and D6 has RSETCAT(D2,D3,D4,D5)
--R         
--R
--RExamples of stopTableInvSet! from RegularTriangularSetGcdPackage
--R
--R
--RExamples of stopTableInvSet! from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2972

--S 2973 of 3320
)d op stoseIntegralLastSubResultant
--R 
--R
--RThere is one exposed function called stoseIntegralLastSubResultant :
--R   [1] (D2,D2,D3) -> List(Record(val: D2,tower: D3))
--R             from SquareFreeRegularTriangularSetGcdPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of stoseIntegralLastSubResultant from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2973

--S 2974 of 3320
)d op stoseInternalLastSubResultant
--R 
--R
--RThere are 2 exposed functions called stoseInternalLastSubResultant :
--R   [1] (D2,D2,D3,Boolean,Boolean) -> List(Record(val: D2,tower: D3))
--R             from SquareFreeRegularTriangularSetGcdPackage(D5,D6,D7,D2,
--R            D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D2 has RPOLCAT(D5,D6,D7) and D3 has RSETCAT(D5,D6,D7,D2)
--R         
--R   [2] (List(Record(val: List(D7),tower: D8)),D3,Boolean) -> List(
--R            Record(val: D7,tower: D8))
--R             from SquareFreeRegularTriangularSetGcdPackage(D5,D6,D3,D7,
--R            D8)
--R             if D7 has RPOLCAT(D5,D6,D3) and D8 has RSETCAT(D5,D6,D3,D7
--R            ) and D5 has GCDDOM and D6 has OAMONS and D3 has ORDSET
--R
--RExamples of stoseInternalLastSubResultant from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2974

--S 2975 of 3320
)d op stoseInvertible?
--R 
--R
--RThere are 2 exposed functions called stoseInvertible? :
--R   [1] (D2,D3) -> Boolean
--R             from SquareFreeRegularTriangularSetGcdPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R   [2] (D2,D3) -> List(Record(val: Boolean,tower: D3))
--R             from SquareFreeRegularTriangularSetGcdPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of stoseInvertible? from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2975

--S 2976 of 3320
--R-----------------)d op stoseInvertible?_reg (fix this)
--E 2976

--S 2977 of 3320
)d op stoseInvertibleSet
--R 
--R
--RThere is one exposed function called stoseInvertibleSet :
--R   [1] (D2,D3) -> List(D3)
--R             from SquareFreeRegularTriangularSetGcdPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of stoseInvertibleSet from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2977

--S 2978 of 3320
--R-----------------)d op stoseInvertibleSet_reg (fix this)
--E 2978

--S 2979 of 3320
--R-----------------)d op stoseInvertibleSet_sqfreg (fix this)
--E 2979

--S 2980 of 3320
--R-----------------)d op stoseInvertible?_sqfreg (fix this)
--E 2980

--S 2981 of 3320
)d op stoseLastSubResultant
--R 
--R
--RThere is one exposed function called stoseLastSubResultant :
--R   [1] (D2,D2,D3) -> List(Record(val: D2,tower: D3))
--R             from SquareFreeRegularTriangularSetGcdPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of stoseLastSubResultant from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2981

--S 2982 of 3320
)d op stosePrepareSubResAlgo
--R 
--R
--RThere is one exposed function called stosePrepareSubResAlgo :
--R   [1] (D2,D2,D3) -> List(Record(val: List(D2),tower: D3))
--R             from SquareFreeRegularTriangularSetGcdPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of stosePrepareSubResAlgo from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2982

--S 2983 of 3320
)d op stoseSquareFreePart
--R 
--R
--RThere is one exposed function called stoseSquareFreePart :
--R   [1] (D2,D3) -> List(Record(val: D2,tower: D3))
--R             from SquareFreeRegularTriangularSetGcdPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of stoseSquareFreePart from SquareFreeRegularTriangularSetGcdPackage
--R
--E 2983

--S 2984 of 3320
)d op string
--R 
--R
--RThere are 3 exposed functions called string :
--R   [1] D -> D1 from D
--R             if D has SEXCAT(D1,D2,D3,D4,D5) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D1 has 
--R            SETCAT
--R   [2] Integer -> D from D if D has STRICAT
--R   [3] Symbol -> String from Symbol
--R
--RThere is one unexposed function called string :
--R   [1] OutputForm -> OutputForm from OutputForm
--R
--RExamples of string from OutputForm
--R
--R
--RExamples of string from SExpressionCategory
--R
--R
--RExamples of string from StringCategory
--R
--R
--RExamples of string from Symbol
--R
--RS:="Hello"::Symbol 
--Rstring S
--R
--E 2984

--S 2985 of 3320
)d op string?
--R 
--R
--RThere is one exposed function called string? :
--R   [1] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RExamples of string? from SExpressionCategory
--R
--E 2985

--S 2986 of 3320
)d op stripCommentsAndBlanks
--R 
--R
--RThere is one exposed function called stripCommentsAndBlanks :
--R   [1] String -> String from TemplateUtilities
--R
--RExamples of stripCommentsAndBlanks from TemplateUtilities
--R
--E 2986

--S 2987 of 3320
)d op strongGenerators
--R 
--R
--RThere is one exposed function called strongGenerators :
--R   [1] PermutationGroup(D2) -> List(Permutation(D2)) from 
--R            PermutationGroup(D2)
--R             if D2 has SETCAT
--R
--RExamples of strongGenerators from PermutationGroup
--R
--E 2987

--S 2988 of 3320
)d op stronglyReduce
--R 
--R
--RThere is one exposed function called stronglyReduce :
--R   [1] (D1,D) -> D1 from D
--R             if D has TSETCAT(D2,D3,D4,D1) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D1 has RPOLCAT(D2,D3,D4)
--R            
--R
--RExamples of stronglyReduce from TriangularSetCategory
--R
--E 2988

--S 2989 of 3320
)d op stronglyReduced?
--R 
--R
--RThere are 2 exposed functions called stronglyReduced? :
--R   [1] D -> Boolean from D
--R             if D has TSETCAT(D2,D3,D4,D5) and D2 has INTDOM and D3
--R             has OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R            
--R   [2] (D2,D) -> Boolean from D
--R             if D has TSETCAT(D3,D4,D5,D2) and D3 has INTDOM and D4
--R             has OAMONS and D5 has ORDSET and D2 has RPOLCAT(D3,D4,D5)
--R            
--R
--RExamples of stronglyReduced? from TriangularSetCategory
--R
--E 2989

--S 2990 of 3320
)d op structuralConstants
--R 
--R
--RThere are 5 exposed functions called structuralConstants :
--R   [1] Vector(D) -> Vector(Matrix(D3)) from D if D has FINAALG(D3) and 
--R            D3 has COMRING
--R   [2]  -> Vector(Matrix(D2)) from D if D has FRNAALG(D2) and D2 has 
--R            COMRING
--R   [3] (List(Symbol),Matrix(Fraction(Polynomial(D4)))) -> Vector(Matrix
--R            (Fraction(Polynomial(D4))))
--R             from StructuralConstantsPackage(D4) if D4 has FIELD
--R   [4] (List(Symbol),Matrix(Polynomial(D4))) -> Vector(Matrix(
--R            Polynomial(D4)))
--R             from StructuralConstantsPackage(D4) if D4 has FIELD
--R   [5] List(Matrix(D3)) -> Vector(Matrix(D3))
--R             from StructuralConstantsPackage(D3) if D3 has FIELD
--R
--RThere is one unexposed function called structuralConstants :
--R   [1]  -> Vector(Matrix(D3)) from FramedNonAssociativeAlgebra&(D2,D3)
--R             if D3 has COMRING and D2 has FRNAALG(D3)
--R
--RExamples of structuralConstants from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of structuralConstants from FramedNonAssociativeAlgebra&
--R
--R
--RExamples of structuralConstants from FramedNonAssociativeAlgebra
--R
--R
--RExamples of structuralConstants from StructuralConstantsPackage
--R
--E 2990

--S 2991 of 3320
)d op sts2stst
--R 
--R
--RThere is one unexposed function called sts2stst :
--R   [1] (Symbol,Stream(Polynomial(D4))) -> Stream(Stream(Polynomial(D4))
--R            )
--R             from WeierstrassPreparation(D4) if D4 has FIELD
--R
--RExamples of sts2stst from WeierstrassPreparation
--R
--E 2991

--S 2992 of 3320
)d op SturmHabicht
--R 
--R
--RThere is one exposed function called SturmHabicht :
--R   [1] (UnivariatePolynomial(D4,D3),UnivariatePolynomial(D4,D3)) -> 
--R            Integer
--R             from SturmHabichtPackage(D3,D4) if D3 has OINTDOM and D4: 
--R            SYMBOL
--R
--RExamples of SturmHabicht from SturmHabichtPackage
--R
--E 2992

--S 2993 of 3320
)d op SturmHabichtCoefficients
--R 
--R
--RThere is one exposed function called SturmHabichtCoefficients :
--R   [1] (UnivariatePolynomial(D4,D3),UnivariatePolynomial(D4,D3)) -> 
--R            List(D3)
--R             from SturmHabichtPackage(D3,D4) if D3 has OINTDOM and D4: 
--R            SYMBOL
--R
--RExamples of SturmHabichtCoefficients from SturmHabichtPackage
--R
--E 2993

--S 2994 of 3320
)d op SturmHabichtSequence
--R 
--R
--RThere is one exposed function called SturmHabichtSequence :
--R   [1] (UnivariatePolynomial(D4,D3),UnivariatePolynomial(D4,D3)) -> 
--R            List(UnivariatePolynomial(D4,D3))
--R             from SturmHabichtPackage(D3,D4) if D3 has OINTDOM and D4: 
--R            SYMBOL
--R
--RExamples of SturmHabichtSequence from SturmHabichtPackage
--R
--E 2994

--S 2995 of 3320
)d op sturmSequence
--R 
--R
--RThere is one exposed function called sturmSequence :
--R   [1] D2 -> List(D2) from RealPolynomialUtilitiesPackage(D3,D2)
--R             if D3 has FIELD and D2 has UPOLYC(D3)
--R
--RExamples of sturmSequence from RealPolynomialUtilitiesPackage
--R
--E 2995

--S 2996 of 3320
)d op sturmVariationsOf
--R 
--R
--RThere is one exposed function called sturmVariationsOf :
--R   [1] List(D3) -> NonNegativeInteger from 
--R            RealPolynomialUtilitiesPackage(D3,D4)
--R             if D3 has ORDRING and D3 has FIELD and D4 has UPOLYC(D3)
--R         
--R
--RExamples of sturmVariationsOf from RealPolynomialUtilitiesPackage
--R
--E 2996

--S 2997 of 3320
)d op style
--R 
--R
--RThere is one exposed function called style :
--R   [1] String -> DrawOption from DrawOption
--R
--RThere is one unexposed function called style :
--R   [1] (List(DrawOption),String) -> String from DrawOptionFunctions0
--R         
--R
--RExamples of style from DrawOptionFunctions0
--R
--R
--RExamples of style from DrawOption
--R
--E 2997

--S 2998 of 3320
)d op sub
--R 
--R
--RThere is one unexposed function called sub :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of sub from OutputForm
--R
--E 2998

--S 2999 of 3320
)d op subCase?
--R 
--R
--RThere are 2 exposed functions called subCase? :
--R   [1] (Record(val: List(D6),tower: D7),Record(val: List(D6),tower: D7)
--R            ) -> Boolean
--R             from QuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6
--R            ) and D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET
--R   [2] (Record(val: List(D6),tower: D7),Record(val: List(D6),tower: D7)
--R            ) -> Boolean
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D7 has RSETCAT(D3,D4,D5,D6
--R            ) and D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET
--R
--RExamples of subCase? from QuasiComponentPackage
--R
--R
--RExamples of subCase? from SquareFreeQuasiComponentPackage
--R
--E 2999

--S 3000 of 3320
)d op subHeight
--R 
--R
--RThere is one unexposed function called subHeight :
--R   [1] OutputForm -> Integer from OutputForm
--R
--RExamples of subHeight from OutputForm
--R
--E 3000

--S 3001 of 3320 done
)d op subMatrix
--R 
--R
--RThere are 3 exposed functions called subMatrix :
--R   [1] (D1,List(PositiveInteger),List(PositiveInteger)) -> D1
--R             from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R   [2] (D1,Segment(PositiveInteger),Segment(PositiveInteger)) -> D1
--R             from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D4 has FLAGG(D3) and D5 has FLAGG(D3) 
--R            and D1 has MATCAT(D3,D4,D5)
--R   [3] (D,Integer,Integer,Integer,Integer) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R
--RExamples of subMatrix from MatrixManipulation
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RsubMatrix(M, 1..2,2..3)
--R
--RM := matrix([[a,b,c],[d,e,f],[g,h,i]]) 
--RsubMatrix(M, [1,2],[1,2]) 
--RsubMatrix(M, [1,3],[1,3])
--R
--R
--RExamples of subMatrix from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--RsubMatrix(m,1,3,2,4)
--R
--E 3001

--S 3002 of 3320
)d op submod
--R 
--R
--RThere is one exposed function called submod :
--R   [1] (D,D,D) -> D from D if D has INS
--R
--RExamples of submod from IntegerNumberSystem
--R
--E 3002

--S 3003 of 3320
)d op subMultV
--R 
--R
--RThere is one exposed function called subMultV :
--R   [1] D -> NonNegativeInteger from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of subMultV from InfinitlyClosePointCategory
--R
--E 3003

--S 3004 of 3320
)d op subNode?
--R 
--R
--RThere is one unexposed function called subNode? :
--R   [1] (SplittingNode(D3,D4),SplittingNode(D3,D4),((D4,D4) -> Boolean))
--R             -> Boolean
--R             from SplittingNode(D3,D4)
--R             if D4 has Join(SetCategory,Aggregate) and D3 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of subNode? from SplittingNode
--R
--E 3004

--S 3005 of 3320
)d op subNodeOf?
--R 
--R
--RThere is one unexposed function called subNodeOf? :
--R   [1] (SplittingNode(D4,D5),SplittingTree(D4,D5),((D5,D5) -> Boolean))
--R             -> Boolean
--R             from SplittingTree(D4,D5)
--R             if D4 has Join(SetCategory,Aggregate) and D5 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of subNodeOf? from SplittingTree
--R
--E 3005

--S 3006 of 3320
)d op subPolSet?
--R 
--R
--RThere are 2 exposed functions called subPolSet? :
--R   [1] (List(D6),List(D6)) -> Boolean from QuasiComponentPackage(D3,D4,
--R            D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (List(D6),List(D6)) -> Boolean
--R             from SquareFreeQuasiComponentPackage(D3,D4,D5,D6,D7)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D7 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of subPolSet? from QuasiComponentPackage
--R
--R
--RExamples of subPolSet? from SquareFreeQuasiComponentPackage
--R
--E 3006

--S 3007 of 3320
)d op subQuasiComponent?
--R 
--R
--RThere are 4 exposed functions called subQuasiComponent? :
--R   [1] (D2,D2) -> Boolean from QuasiComponentPackage(D3,D4,D5,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (D2,List(D2)) -> Boolean from QuasiComponentPackage(D4,D5,D6,D7,
--R            D2)
--R             if D2 has RSETCAT(D4,D5,D6,D7) and D4 has GCDDOM and D5
--R             has OAMONS and D6 has ORDSET and D7 has RPOLCAT(D4,D5,D6)
--R            
--R   [3] (D2,D2) -> Boolean from SquareFreeQuasiComponentPackage(D3,D4,D5
--R            ,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [4] (D2,List(D2)) -> Boolean
--R             from SquareFreeQuasiComponentPackage(D4,D5,D6,D7,D2)
--R             if D2 has RSETCAT(D4,D5,D6,D7) and D4 has GCDDOM and D5
--R             has OAMONS and D6 has ORDSET and D7 has RPOLCAT(D4,D5,D6)
--R            
--R
--RExamples of subQuasiComponent? from QuasiComponentPackage
--R
--R
--RExamples of subQuasiComponent? from SquareFreeQuasiComponentPackage
--R
--E 3007

--S 3008 of 3320
)d op subResultantChain
--R 
--R
--RThere is one exposed function called subResultantChain :
--R   [1] (D,D) -> List(D) from D
--R             if D2 has INTDOM and D2 has RING and D3 has OAMONS and D4
--R             has ORDSET and D has RPOLCAT(D2,D3,D4)
--R
--RExamples of subResultantChain from RecursivePolynomialCategory
--R
--E 3008

--S 3009 of 3320
)d op subResultantGcd
--R 
--R
--RThere are 2 exposed functions called subResultantGcd :
--R   [1] (D,D) -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET and D1 has INTDOM
--R   [2] (D,D) -> D from D if D has UPOLYC(D1) and D1 has RING and D1
--R             has INTDOM
--R
--RThere is one unexposed function called subResultantGcd :
--R   [1] (D1,D1) -> D1 from PseudoRemainderSequence(D2,D1)
--R             if D2 has INTDOM and D1 has UPOLYC(D2)
--R
--RExamples of subResultantGcd from PseudoRemainderSequence
--R
--R
--RExamples of subResultantGcd from RecursivePolynomialCategory
--R
--R
--RExamples of subResultantGcd from UnivariatePolynomialCategory
--R
--E 3009

--S 3010 of 3320
)d op subResultantGcdEuclidean
--R 
--R
--RThere is one unexposed function called subResultantGcdEuclidean :
--R   [1] (D2,D2) -> Record(coef1: D2,coef2: D2,gcd: D2)
--R             from PseudoRemainderSequence(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of subResultantGcdEuclidean from PseudoRemainderSequence
--R
--E 3010

--S 3011 of 3320
)d op subResultantsChain
--R 
--R
--RThere is one unexposed function called subResultantsChain :
--R   [1] (NewSparseUnivariatePolynomial(D2),NewSparseUnivariatePolynomial
--R            (D2)) -> List(NewSparseUnivariatePolynomial(D2))
--R             from NewSparseUnivariatePolynomial(D2) if D2 has INTDOM 
--R            and D2 has RING
--R
--RExamples of subResultantsChain from NewSparseUnivariatePolynomial
--R
--E 3011

--S 3012 of 3320
)d op subresultantSequence
--R 
--R
--RThere is one exposed function called subresultantSequence :
--R   [1] (UnivariatePolynomial(D4,D3),UnivariatePolynomial(D4,D3)) -> 
--R            List(UnivariatePolynomial(D4,D3))
--R             from SturmHabichtPackage(D3,D4) if D3 has OINTDOM and D4: 
--R            SYMBOL
--R
--RExamples of subresultantSequence from SturmHabichtPackage
--R
--E 3012

--S 3013 of 3320
)d op subresultantVector
--R 
--R
--RThere is one unexposed function called subresultantVector :
--R   [1] (D2,D2) -> PrimitiveArray(D2) from SubResultantPackage(D3,D2)
--R             if D3 has INTDOM and D2 has UPOLYC(D3)
--R
--RExamples of subresultantVector from SubResultantPackage
--R
--E 3013

--S 3014 of 3320
)d op subs1stVar
--R 
--R
--RThere is one exposed function called subs1stVar :
--R   [1] (D1,D1) -> D1 from PackageForPoly(D2,D1,D3,D4)
--R             if D2 has RING and D3 has DIRPCAT(D4,NNI) and D4: NNI and 
--R            D1 has FAMR(D2,D3)
--R
--RExamples of subs1stVar from PackageForPoly
--R
--E 3014

--S 3015 of 3320
)d op subs2ndVar
--R 
--R
--RThere is one exposed function called subs2ndVar :
--R   [1] (D1,D1) -> D1 from PackageForPoly(D2,D1,D3,D4)
--R             if D2 has RING and D3 has DIRPCAT(D4,NNI) and D4: NNI and 
--R            D1 has FAMR(D2,D3)
--R
--RExamples of subs2ndVar from PackageForPoly
--R
--E 3015

--S 3016 of 3320
)d op subscript
--R 
--R
--RThere is one exposed function called subscript :
--R   [1] (Symbol,List(OutputForm)) -> Symbol from Symbol
--R
--RExamples of subscript from Symbol
--R
--Rsubscript(Big,[a,1])
--R
--E 3016

--S 3017 of 3320
)d op subscriptedVariables
--R 
--R
--RThere is one exposed function called subscriptedVariables :
--R   [1] Expression(DoubleFloat) -> Expression(DoubleFloat) from 
--R            d03AgentsPackage
--R
--RExamples of subscriptedVariables from d03AgentsPackage
--R
--E 3017

--S 3018 of 3320
)d op subset?
--R 
--R
--RThere is one exposed function called subset? :
--R   [1] (D,D) -> Boolean from D if D has SETAGG(D2) and D2 has SETCAT
--R         
--R
--RExamples of subset? from SetAggregate
--R
--E 3018

--S 3019 of 3320
)d op subSet
--R 
--R
--RThere is one exposed function called subSet :
--R   [1] (Integer,Integer,Integer) -> List(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of subSet from SymmetricGroupCombinatoricFunctions
--R
--E 3019

--S 3020 of 3320
)d op subsInVar
--R 
--R
--RThere is one exposed function called subsInVar :
--R   [1] (D1,D1,Integer) -> D1 from PackageForPoly(D3,D1,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D1 has FAMR(D3,D4)
--R
--RExamples of subsInVar from PackageForPoly
--R
--E 3020

--S 3021 of 3320
)d op subspace
--R 
--R
--RThere are 3 exposed functions called subspace :
--R   [1] D -> SubSpace(3,D2) from D if D has SPACEC(D2) and D2 has RING
--R         
--R   [2] (ThreeDimensionalViewport,ThreeSpace(DoubleFloat)) -> 
--R            ThreeDimensionalViewport
--R             from ThreeDimensionalViewport
--R   [3] ThreeDimensionalViewport -> ThreeSpace(DoubleFloat)
--R             from ThreeDimensionalViewport
--R
--RThere is one unexposed function called subspace :
--R   [1]  -> SubSpace(D1,D2) from SubSpace(D1,D2) if D1: PI and D2 has 
--R            RING
--R
--RExamples of subspace from ThreeSpaceCategory
--R
--R
--RExamples of subspace from SubSpace
--R
--R
--RExamples of subspace from ThreeDimensionalViewport
--R
--E 3021

--S 3022 of 3320
)d op subst
--R 
--R
--RThere are 4 exposed functions called subst :
--R   [1] (Equation(D1),Equation(D1)) -> Equation(D1) from Equation(D1)
--R             if D1 has ES and D1 has TYPE
--R   [2] (D,List(Kernel(D)),List(D)) -> D from D if D has ES
--R   [3] (D,List(Equation(D))) -> D from D if D has ES
--R   [4] (D,Equation(D)) -> D from D if D has ES
--R
--RExamples of subst from Equation
--R
--R
--RExamples of subst from ExpressionSpace
--R
--E 3022

--S 3023 of 3320
)d op substitute
--R 
--R
--RThere is one unexposed function called substitute :
--R   [1] (D1,D1,ListMultiDictionary(D1)) -> ListMultiDictionary(D1)
--R             from ListMultiDictionary(D1) if D1 has SETCAT
--R
--RExamples of substitute from ListMultiDictionary
--R
--E 3023

--S 3024 of 3320
)d op substring?
--R 
--R
--RThere is one exposed function called substring? :
--R   [1] (D,D,Integer) -> Boolean from D if D has SRAGG
--R
--RExamples of substring? from StringAggregate
--R
--E 3024

--S 3025 of 3320
)d op subtractIfCan
--R 
--R
--RThere is one exposed function called subtractIfCan :
--R   [1] (D,D) -> Union(D,"failed") from D if D has CABMON
--R
--RExamples of subtractIfCan from CancellationAbelianMonoid
--R
--E 3025

--S 3026 of 3320
)d op subTriSet?
--R 
--R
--RThere are 2 exposed functions called subTriSet? :
--R   [1] (D2,D2) -> Boolean from QuasiComponentPackage(D3,D4,D5,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (D2,D2) -> Boolean from SquareFreeQuasiComponentPackage(D3,D4,D5
--R            ,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of subTriSet? from QuasiComponentPackage
--R
--R
--RExamples of subTriSet? from SquareFreeQuasiComponentPackage
--R
--E 3026

--S 3027 of 3320
)d op suchThat
--R 
--R
--RThere are 5 exposed functions called suchThat :
--R   [1] (D1,(D4 -> Boolean)) -> D1 from FunctionSpaceAttachPredicates(D3
--R            ,D1,D4)
--R             if D4 has TYPE and D3 has ORDSET and D1 has FS(D3)
--R   [2] (D1,List((D4 -> Boolean))) -> D1
--R             from FunctionSpaceAttachPredicates(D3,D1,D4)
--R             if D4 has TYPE and D3 has ORDSET and D1 has FS(D3)
--R   [3] (Symbol,(D4 -> Boolean)) -> Expression(Integer) from 
--R            AttachPredicates(D4)
--R             if D4 has TYPE
--R   [4] (Symbol,List((D4 -> Boolean))) -> Expression(Integer)
--R             from AttachPredicates(D4) if D4 has TYPE
--R   [5] (RewriteRule(D3,D4,D5),List(Symbol),(List(D5) -> Boolean)) -> 
--R            RewriteRule(D3,D4,D5)
--R             from RewriteRule(D3,D4,D5)
--R             if D5 has Join(FunctionSpace(D4),PatternMatchable(D3),
--R            ConvertibleTo(Pattern(D3))) and D3 has SETCAT and D4 has 
--R            Join(Ring,PatternMatchable(D3),OrderedSet,ConvertibleTo(
--R            Pattern(D3)))
--R
--RThere are 3 unexposed functions called suchThat :
--R   [1] (Pattern(D3),(D4 -> Boolean)) -> Pattern(D3)
--R             from PatternFunctions1(D3,D4) if D3 has SETCAT and D4 has 
--R            TYPE
--R   [2] (Pattern(D3),List((D4 -> Boolean))) -> Pattern(D3)
--R             from PatternFunctions1(D3,D4) if D3 has SETCAT and D4 has 
--R            TYPE
--R   [3] (Pattern(D4),List(Symbol),(List(D5) -> Boolean)) -> Pattern(D4)
--R             from PatternFunctions1(D4,D5) if D4 has SETCAT and D5 has 
--R            TYPE
--R
--RExamples of suchThat from PatternFunctions1
--R
--R
--RExamples of suchThat from FunctionSpaceAttachPredicates
--R
--R
--RExamples of suchThat from AttachPredicates
--R
--R
--RExamples of suchThat from RewriteRule
--R
--E 3027

--S 3028 of 3320
)d op suffix?
--R 
--R
--RThere is one exposed function called suffix? :
--R   [1] (D,D) -> Boolean from D if D has SRAGG
--R
--RExamples of suffix? from StringAggregate
--R
--E 3028

--S 3029 of 3320
)d op sum
--R 
--R
--RThere are 6 exposed functions called sum :
--R   [1] (D1,Symbol) -> D1 from FunctionSpaceSum(D3,D1)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer)) and D1 has Join
--R            (FunctionSpace(D3),CombinatorialOpsCategory,
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory)
--R         
--R   [2] (D1,SegmentBinding(D1)) -> D1 from FunctionSpaceSum(D3,D1)
--R             if D1 has Join(FunctionSpace(D3),CombinatorialOpsCategory,
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory) 
--R            and D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer))
--R   [3] (Polynomial(D4),Symbol) -> Fraction(Polynomial(D4))
--R             from RationalFunctionSum(D4)
--R             if D4 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer))
--R   [4] (Fraction(Polynomial(D4)),Symbol) -> Union(Fraction(Polynomial(
--R            D4)),Expression(D4))
--R             from RationalFunctionSum(D4)
--R             if D4 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer))
--R   [5] (Polynomial(D4),SegmentBinding(Polynomial(D4))) -> Fraction(
--R            Polynomial(D4))
--R             from RationalFunctionSum(D4)
--R             if D4 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer))
--R   [6] (Fraction(Polynomial(D4)),SegmentBinding(Fraction(Polynomial(D4)
--R            ))) -> Union(Fraction(Polynomial(D4)),Expression(D4))
--R             from RationalFunctionSum(D4)
--R             if D4 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer))
--R
--RThere are 5 unexposed functions called sum :
--R   [1] (D2,D3,Segment(D2)) -> Record(num: D2,den: Integer)
--R             from InnerPolySum(D5,D3,D6,D2)
--R             if D2 has POLYCAT(D6,D5,D3) and D5 has OAMONS and D3 has 
--R            ORDSET and D6 has INTDOM
--R   [2] (D2,D3) -> Record(num: D2,den: Integer) from InnerPolySum(D4,D3,
--R            D5,D2)
--R             if D4 has OAMONS and D3 has ORDSET and D5 has INTDOM and 
--R            D2 has POLYCAT(D5,D4,D3)
--R   [3] (OutputForm,OutputForm,OutputForm) -> OutputForm from OutputForm
--R            
--R   [4] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R   [5] OutputForm -> OutputForm from OutputForm
--R
--RExamples of sum from InnerPolySum
--R
--R
--RExamples of sum from OutputForm
--R
--R
--RExamples of sum from FunctionSpaceSum
--R
--R
--RExamples of sum from RationalFunctionSum
--R
--Rsum(i::Fraction(Polynomial(Integer)),i=1..n)
--R
--Rsum(i,i=1..n)
--R
--Rsum(i::Fraction(Polynomial(Integer)),i::Symbol)
--R
--Rsum(i::Polynomial(Integer),variable(i=1..n))
--R
--E 3029

--S 3030 of 3320 done
)d op summary
--R 
--R
--RThere is one exposed function called summary :
--R   [1]  -> Void from ApplicationProgramInterface
--R
--RExamples of summary from ApplicationProgramInterface
--R
--Rsummary()
--R
--E 3030

--S 3031 of 3320
)d op summation
--R 
--R
--RThere are 2 exposed functions called summation :
--R   [1] (D,SegmentBinding(D)) -> D from D if D has COMBOPC
--R   [2] (D,Symbol) -> D from D if D has COMBOPC
--R
--RThere are 2 unexposed functions called summation :
--R   [1] (D1,Symbol) -> D1 from CombinatorialFunction(D3,D1)
--R             if D3 has Join(OrderedSet,IntegralDomain) and D1 has FS(D3
--R            )
--R   [2] (D1,SegmentBinding(D1)) -> D1 from CombinatorialFunction(D3,D1)
--R             if D1 has FS(D3) and D3 has Join(OrderedSet,IntegralDomain
--R            )
--R
--RExamples of summation from CombinatorialFunction
--R
--R
--RExamples of summation from CombinatorialOpsCategory
--R
--E 3031

--S 3032 of 3320
)d op sumOfDivisors
--R 
--R
--RThere is one exposed function called sumOfDivisors :
--R   [1] Integer -> Integer from IntegerNumberTheoryFunctions
--R
--RExamples of sumOfDivisors from IntegerNumberTheoryFunctions
--R
--E 3032

--S 3033 of 3320
)d op sumOfKthPowerDivisors
--R 
--R
--RThere is one exposed function called sumOfKthPowerDivisors :
--R   [1] (Integer,NonNegativeInteger) -> Integer from 
--R            IntegerNumberTheoryFunctions
--R
--RExamples of sumOfKthPowerDivisors from IntegerNumberTheoryFunctions
--R
--E 3033

--S 3034 of 3320
)d op sumOfSquares
--R 
--R
--RThere is one exposed function called sumOfSquares :
--R   [1] Expression(DoubleFloat) -> Union(Expression(DoubleFloat),
--R            "failed")
--R             from e04AgentsPackage
--R
--RExamples of sumOfSquares from e04AgentsPackage
--R
--E 3034

--S 3035 of 3320
)d op sumSquares
--R 
--R
--RThere is one exposed function called sumSquares :
--R   [1] Integer -> List(Integer) from GaussianFactorizationPackage
--R
--RExamples of sumSquares from GaussianFactorizationPackage
--R
--E 3035

--S 3036 of 3320
)d op sup
--R 
--R
--RThere are 2 exposed functions called sup :
--R   [1] D -> D1 from D
--R             if D has INTCAT(D1) and D1 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R   [2] (D,D) -> D from D if D has OAMONS
--R
--RExamples of sup from IntervalCategory
--R
--R
--RExamples of sup from OrderedAbelianMonoidSup
--R
--E 3036

--S 3037 of 3320
)d op supDimElseRittWu?
--R 
--R
--RThere are 2 exposed functions called supDimElseRittWu? :
--R   [1] (D2,D2) -> Boolean from QuasiComponentPackage(D3,D4,D5,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R   [2] (D2,D2) -> Boolean from SquareFreeQuasiComponentPackage(D3,D4,D5
--R            ,D6,D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D2 has RSETCAT(D3,D4,D5,D6)
--R         
--R
--RExamples of supDimElseRittWu? from QuasiComponentPackage
--R
--R
--RExamples of supDimElseRittWu? from SquareFreeQuasiComponentPackage
--R
--E 3037

--S 3038 of 3320
)d op super
--R 
--R
--RThere is one unexposed function called super :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of super from OutputForm
--R
--E 3038

--S 3039 of 3320
)d op superHeight
--R 
--R
--RThere is one unexposed function called superHeight :
--R   [1] OutputForm -> Integer from OutputForm
--R
--RExamples of superHeight from OutputForm
--R
--E 3039

--S 3040 of 3320 done
)d op superscript
--R 
--R
--RThere is one exposed function called superscript :
--R   [1] (Symbol,List(OutputForm)) -> Symbol from Symbol
--R
--RExamples of superscript from Symbol
--R
--Rsuperscript(Big,[a,1])
--R
--E 3040

--S 3041 of 3320
)d op supersub
--R 
--R
--RThere is one unexposed function called supersub :
--R   [1] (OutputForm,List(OutputForm)) -> OutputForm from OutputForm
--R
--RExamples of supersub from OutputForm
--R
--E 3041

--S 3042 of 3320
)d op supp
--R 
--R
--RThere is one exposed function called supp :
--R   [1] D -> List(D2) from D if D has DIVCAT(D2) and D2 has SETCAT
--R
--RExamples of supp from DivisorCategory
--R
--E 3042

--S 3043 of 3320
)d op suppOfPole
--R 
--R
--RThere is one exposed function called suppOfPole :
--R   [1] D -> List(D2) from D if D has DIVCAT(D2) and D2 has SETCAT
--R
--RExamples of suppOfPole from DivisorCategory
--R
--E 3043

--S 3044 of 3320
)d op suppOfZero
--R 
--R
--RThere is one exposed function called suppOfZero :
--R   [1] D -> List(D2) from D if D has DIVCAT(D2) and D2 has SETCAT
--R
--RExamples of suppOfZero from DivisorCategory
--R
--E 3044

--S 3045 of 3320
)d op supRittWu?
--R 
--R
--RThere is one exposed function called supRittWu? :
--R   [1] (D,D) -> Boolean from D
--R             if D has RPOLCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of supRittWu? from RecursivePolynomialCategory
--R
--E 3045

--S 3046 of 3320
)d op surface
--R 
--R
--RThere is one exposed function called surface :
--R   [1] (D1,D1,D1) -> ParametricSurface(D1) from ParametricSurface(D1)
--R             if D1 has TYPE
--R
--RExamples of surface from ParametricSurface
--R
--E 3046

--S 3047 of 3320
)d op swap
--R 
--R
--RThere is one exposed function called swap :
--R   [1] Equation(D1) -> Equation(D1) from Equation(D1) if D1 has TYPE
--R         
--R
--RThere is one unexposed function called swap :
--R   [1] D1 -> D1 from CommuteUnivariatePolynomialCategory(D2,D3,D1)
--R             if D2 has RING and D3 has UPOLYC(D2) and D1 has UPOLYC(D3)
--R            
--R
--RExamples of swap from CommuteUnivariatePolynomialCategory
--R
--R
--RExamples of swap from Equation
--R
--E 3047

--S 3048 of 3320
)d op swap!
--R 
--R
--RThere is one exposed function called swap! :
--R   [1] (D,D2,D2) -> Void from D
--R             if D has shallowlyMutable and D has IXAGG(D2,D3) and D2
--R             has SETCAT and D3 has TYPE
--R
--RExamples of swap! from IndexedAggregate
--R
--E 3048

--S 3049 of 3320 done
)d op swapColumns!
--R 
--R
--RThere is one exposed function called swapColumns! :
--R   [1] (D,Integer,Integer) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R
--RExamples of swapColumns! from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--RswapColumns!(m,2,4)
--R
--E 3049

--S 3050 of 3320 done
)d op swapRows!
--R 
--R
--RThere is one exposed function called swapRows! :
--R   [1] (D,Integer,Integer) -> D from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R
--RExamples of swapRows! from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--RswapRows!(m,2,4)
--R
--E 3050

--S 3051 of 3320
)d op sylvesterMatrix
--R 
--R
--RThere is one unexposed function called sylvesterMatrix :
--R   [1] (D2,D2) -> D1 from BezoutMatrix(D3,D2,D1,D4,D5)
--R             if D3 has RING and D1 has MATCAT(D3,D4,D5) and D2 has 
--R            UPOLYC(D3) and D4 has FLAGG(D3) and D5 has FLAGG(D3)
--R
--RExamples of sylvesterMatrix from BezoutMatrix
--R
--E 3051

--S 3052 of 3320
)d op sylvesterSequence
--R 
--R
--RThere is one exposed function called sylvesterSequence :
--R   [1] (D2,D2) -> List(D2) from RealPolynomialUtilitiesPackage(D3,D2)
--R             if D3 has FIELD and D2 has UPOLYC(D3)
--R
--RExamples of sylvesterSequence from RealPolynomialUtilitiesPackage
--R
--E 3052

--S 3053 of 3320
)d op symbNameV
--R 
--R
--RThere is one exposed function called symbNameV :
--R   [1] D -> Symbol from D
--R             if D has INFCLCT(D4,D5,D6,D7,D8,D9,D10,D1,D2) and D4 has 
--R            FIELD and D6 has POLYCAT(D4,D7,OVAR(D5)) and D7 has DIRPCAT
--R            (#(D5),NNI) and D8 has PRSPCAT(D4) and D9 has LOCPOWC(D4) 
--R            and D10 has PLACESC(D4,D9) and D2 has BLMETCT
--R
--RExamples of symbNameV from InfinitlyClosePointCategory
--R
--E 3053

--S 3054 of 3320
)d op symbol
--R 
--R
--RThere is one exposed function called symbol :
--R   [1] D -> D1 from D
--R             if D has SEXCAT(D2,D1,D3,D4,D5) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D1 has 
--R            SETCAT
--R
--RExamples of symbol from SExpressionCategory
--R
--E 3054

--S 3055 of 3320
)d op symbol?
--R 
--R
--RThere is one exposed function called symbol? :
--R   [1] D -> Boolean from D
--R             if D has SEXCAT(D2,D3,D4,D5,D6) and D2 has SETCAT and D3
--R             has SETCAT and D4 has SETCAT and D5 has SETCAT and D6 has 
--R            SETCAT
--R
--RThere is one unexposed function called symbol? :
--R   [1] Pattern(D2) -> Boolean from Pattern(D2) if D2 has SETCAT
--R
--RExamples of symbol? from Pattern
--R
--R
--RExamples of symbol? from SExpressionCategory
--R
--E 3055

--S 3056 of 3320
)d op symbolIfCan
--R 
--R
--RThere is one unexposed function called symbolIfCan :
--R   [1] Kernel(D2) -> Union(Symbol,"failed") from Kernel(D2) if D2 has 
--R            ORDSET
--R
--RExamples of symbolIfCan from Kernel
--R
--E 3056

--S 3057 of 3320
)d op symbolTable
--R 
--R
--RThere is one exposed function called symbolTable :
--R   [1] List(Record(key: Symbol,entry: FortranType)) -> SymbolTable
--R             from SymbolTable
--R
--RExamples of symbolTable from SymbolTable
--R
--E 3057

--S 3058 of 3320
)d op symbolTableOf
--R 
--R
--RThere is one exposed function called symbolTableOf :
--R   [1] (Symbol,TheSymbolTable) -> SymbolTable from TheSymbolTable
--R
--RExamples of symbolTableOf from TheSymbolTable
--R
--E 3058

--S 3059 of 3320
)d op symFunc
--R 
--R
--RThere are 2 unexposed functions called symFunc :
--R   [1] List(D3) -> Vector(D3) from SymmetricFunctions(D3) if D3 has 
--R            RING
--R   [2] (D2,PositiveInteger) -> Vector(D2) from SymmetricFunctions(D2)
--R             if D2 has RING
--R
--RExamples of symFunc from SymmetricFunctions
--R
--E 3059

--S 3060 of 3320
)d op symmetric?
--R 
--R
--RThere are 2 exposed functions called symmetric? :
--R   [1] D -> Boolean from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [2] D -> Boolean from D
--R             if D has RMATCAT(D2,D3,D4,D5,D6) and D4 has RING and D5
--R             has DIRPCAT(D3,D4) and D6 has DIRPCAT(D2,D4)
--R
--RExamples of symmetric? from MatrixCategory
--R
--Rsymmetric? matrix [[j**i for i in 0..4] for j in 1..5]
--R
--R
--RExamples of symmetric? from RectangularMatrixCategory
--R
--E 3060

--S 3061 of 3320
)d op symmetricDifference
--R 
--R
--RThere is one exposed function called symmetricDifference :
--R   [1] (D,D) -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R
--RExamples of symmetricDifference from SetAggregate
--R
--E 3061

--S 3062 of 3320
)d op symmetricGroup
--R 
--R
--RThere are 2 exposed functions called symmetricGroup :
--R   [1] PositiveInteger -> PermutationGroup(Integer)
--R             from PermutationGroupExamples
--R   [2] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R
--RExamples of symmetricGroup from PermutationGroupExamples
--R
--E 3062

--S 3063 of 3320
)d op symmetricPower
--R 
--R
--RThere is one exposed function called symmetricPower :
--R   [1] (D,NonNegativeInteger) -> D from D
--R             if D has LODOCAT(D2) and D2 has RING and D2 has FIELD
--R
--RThere is one unexposed function called symmetricPower :
--R   [1] (D1,NonNegativeInteger,(D4 -> D4)) -> D1
--R             from LinearOrdinaryDifferentialOperatorsOps(D4,D1)
--R             if D4 has FIELD and D1 has LODOCAT(D4)
--R
--RExamples of symmetricPower from LinearOrdinaryDifferentialOperatorCategory
--R
--R
--RExamples of symmetricPower from LinearOrdinaryDifferentialOperatorsOps
--R
--E 3063

--S 3064 of 3320
)d op symmetricProduct
--R 
--R
--RThere is one exposed function called symmetricProduct :
--R   [1] (D,D) -> D from D if D has LODOCAT(D1) and D1 has RING and D1
--R             has FIELD
--R
--RThere is one unexposed function called symmetricProduct :
--R   [1] (D1,D1,(D3 -> D3)) -> D1
--R             from LinearOrdinaryDifferentialOperatorsOps(D3,D1)
--R             if D3 has FIELD and D1 has LODOCAT(D3)
--R
--RExamples of symmetricProduct from LinearOrdinaryDifferentialOperatorCategory
--R
--R
--RExamples of symmetricProduct from LinearOrdinaryDifferentialOperatorsOps
--R
--E 3064

--S 3065 of 3320
)d op symmetricRemainder
--R 
--R
--RThere is one exposed function called symmetricRemainder :
--R   [1] (D,D) -> D from D if D has INS
--R
--RExamples of symmetricRemainder from IntegerNumberSystem
--R
--E 3065

--S 3066 of 3320
)d op symmetricSquare
--R 
--R
--RThere is one exposed function called symmetricSquare :
--R   [1] D -> D from D if D has LODOCAT(D1) and D1 has RING and D1 has 
--R            FIELD
--R
--RExamples of symmetricSquare from LinearOrdinaryDifferentialOperatorCategory
--R
--E 3066

--S 3067 of 3320
)d op symmetricTensors
--R 
--R
--RThere are 2 exposed functions called symmetricTensors :
--R   [1] (Matrix(D3),PositiveInteger) -> Matrix(D3)
--R             from RepresentationPackage1(D3) if D3 has RING
--R   [2] (List(Matrix(D3)),PositiveInteger) -> List(Matrix(D3))
--R             from RepresentationPackage1(D3) if D3 has RING
--R
--RExamples of symmetricTensors from RepresentationPackage1
--R
--E 3067

--S 3068 of 3320
)d op systemCommand
--R 
--R
--RThere is one exposed function called systemCommand :
--R   [1] String -> Void from MoreSystemCommands
--R
--RExamples of systemCommand from MoreSystemCommands
--R
--E 3068

--S 3069 of 3320
)d op systemSizeIF
--R 
--R
--RThere is one exposed function called systemSizeIF :
--R   [1] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
--R            Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
--R            DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
--R            relerr: DoubleFloat) -> Float
--R             from d02AgentsPackage
--R
--RExamples of systemSizeIF from d02AgentsPackage
--R
--E 3069

--S 3070 of 3320
)d op t
--R 
--R
--RThere is one unexposed function called t :
--R   [1] NonNegativeInteger -> (() -> Float) from 
--R            RandomFloatDistributions
--R
--RExamples of t from RandomFloatDistributions
--R
--E 3070

--S 3071 of 3320
)d op tab
--R 
--R
--RThere is one unexposed function called tab :
--R   [1] List(D3) -> Tableau(List(D3)) from TableauxBumpers(D3) if D3
--R             has ORDSET
--R
--RExamples of tab from TableauxBumpers
--R
--E 3071

--S 3072 of 3320
)d op tab1
--R 
--R
--RThere is one unexposed function called tab1 :
--R   [1] List(List(D3)) -> List(List(List(D3))) from TableauxBumpers(D3)
--R             if D3 has ORDSET
--R
--RExamples of tab1 from TableauxBumpers
--R
--E 3072

--S 3073 of 3320 done
)d op table
--R 
--R
--RThere are 2 exposed functions called table :
--R   [1] List(Record(key: D2,entry: D3)) -> D from D
--R             if D2 has SETCAT and D3 has SETCAT and D has TBAGG(D2,D3)
--R            
--R   [2]  -> D from D if D has TBAGG(D1,D2) and D1 has SETCAT and D2 has 
--R            SETCAT
--R
--RExamples of table from TableAggregate
--R
--RData:=Record(age:Integer,gender:String) 
--Ra1:AssociationList(String,Data):=table() 
--Ra1."tim":=[55,"male"]$Data
--R
--E 3073

--S 3074 of 3320
)d op tableau
--R 
--R
--RThere is one exposed function called tableau :
--R   [1] List(List(D2)) -> Tableau(D2) from Tableau(D2) if D2 has SETCAT
--R            
--R
--RExamples of tableau from Tableau
--R
--E 3074

--S 3075 of 3320
)d op tableForDiscreteLogarithm
--R 
--R
--RThere is one exposed function called tableForDiscreteLogarithm :
--R   [1] Integer -> Table(PositiveInteger,NonNegativeInteger) from D if D
--R             has FFIELDC
--R
--RExamples of tableForDiscreteLogarithm from FiniteFieldCategory
--R
--E 3075

--S 3076 of 3320
)d op tablePow
--R 
--R
--RThere is one unexposed function called tablePow :
--R   [1] (NonNegativeInteger,D3,List(D5)) -> Union(Vector(List(D5)),
--R            "failed")
--R             from GenExEuclid(D3,D5) if D3 has EUCDOM and D5 has UPOLYC
--R            (D3)
--R
--RExamples of tablePow from GenExEuclid
--R
--E 3076

--S 3077 of 3320
)d op tail
--R 
--R
--RThere are 3 exposed functions called tail :
--R   [1] D -> D from D if D has DLAGG(D1) and D1 has TYPE
--R   [2] D -> D from D
--R             if D has RPOLCAT(D1,D2,D3) and D1 has RING and D2 has 
--R            OAMONS and D3 has ORDSET
--R   [3] D -> D from D if D has URAGG(D1) and D1 has TYPE
--R
--RExamples of tail from DoublyLinkedAggregate
--R
--R
--RExamples of tail from RecursivePolynomialCategory
--R
--R
--RExamples of tail from UnaryRecursiveAggregate
--R
--Rtail [1,4,2,-6,0,3,5,4,2,3]
--R
--E 3077

--S 3078 of 3320
)d op tan
--R 
--R
--RThere are 2 exposed functions called tan :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has TRIGCAT
--R
--RThere are 5 unexposed functions called tan :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of tan from ElementaryFunction
--R
--R
--RExamples of tan from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of tan from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of tan from FortranExpression
--R
--R
--RExamples of tan from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of tan from StreamTranscendentalFunctions
--R
--R
--RExamples of tan from TrigonometricFunctionCategory
--R
--E 3078

--S 3079 of 3320
)d op tan2cot
--R 
--R
--RThere is one exposed function called tan2cot :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of tan2cot from TranscendentalManipulations
--R
--E 3079

--S 3080 of 3320
)d op tan2trig
--R 
--R
--RThere is one exposed function called tan2trig :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of tan2trig from TranscendentalManipulations
--R
--E 3080

--S 3081 of 3320
)d op tanAn
--R 
--R
--RThere is one unexposed function called tanAn :
--R   [1] (D2,PositiveInteger) -> SparseUnivariatePolynomial(D2)
--R             from TangentExpansions(D2) if D2 has FIELD
--R
--RExamples of tanAn from TangentExpansions
--R
--E 3081

--S 3082 of 3320
)d op tanh
--R 
--R
--RThere are 2 exposed functions called tanh :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called tanh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of tanh from ElementaryFunction
--R
--R
--RExamples of tanh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of tanh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of tanh from FortranExpression
--R
--R
--RExamples of tanh from HyperbolicFunctionCategory
--R
--R
--RExamples of tanh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of tanh from StreamTranscendentalFunctions
--R
--E 3082

--S 3083 of 3320
)d op tanh  
--R 
--R
--RThere are 2 exposed functions called tanh :
--R   [1] FortranExpression(D1,D2,D3) -> FortranExpression(D1,D2,D3)
--R             from FortranExpression(D1,D2,D3)
--R             if D1: LIST(SYMBOL) and D2: LIST(SYMBOL) and D3 has FMTC
--R         
--R   [2] D -> D from D if D has HYPCAT
--R
--RThere are 5 unexposed functions called tanh :
--R   [1] D1 -> D1 from ElementaryFunction(D2,D1)
--R             if D2 has Join(OrderedSet,IntegralDomain) and D1 has Join(
--R            FunctionSpace(D2),RadicalCategory)
--R   [2] D1 -> D1 from ElementaryFunctionsUnivariateLaurentSeries(D2,D3,
--R            D1)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has UTSCAT(D2) and D1
--R             has ULSCCAT(D2,D3)
--R   [3] D1 -> D1 from ElementaryFunctionsUnivariatePuiseuxSeries(D2,D3,
--R            D1,D4)
--R             if D2 has ALGEBRA(FRAC(INT)) and D3 has ULSCAT(D2) and D1
--R             has UPXSCCA(D2,D3) and D4 has PTRANFN(D3)
--R   [4] Stream(D2) -> Stream(D2)
--R             from StreamTranscendentalFunctionsNonCommutative(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R   [5] Stream(D2) -> Stream(D2) from StreamTranscendentalFunctions(D2)
--R             if D2 has ALGEBRA(FRAC(INT))
--R
--RExamples of tanh from ElementaryFunction
--R
--R
--RExamples of tanh from ElementaryFunctionsUnivariateLaurentSeries
--R
--R
--RExamples of tanh from ElementaryFunctionsUnivariatePuiseuxSeries
--R
--R
--RExamples of tanh from FortranExpression
--R
--R
--RExamples of tanh from HyperbolicFunctionCategory
--R
--R
--RExamples of tanh from StreamTranscendentalFunctionsNonCommutative
--R
--R
--RExamples of tanh from StreamTranscendentalFunctions
--R
--E 3083

--S 3084 of 3320
)d op tanh2coth
--R 
--R
--RThere is one exposed function called tanh2coth :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of tanh2coth from TranscendentalManipulations
--R
--E 3084

--S 3085 of 3320
)d op tanh2trigh
--R 
--R
--RThere is one exposed function called tanh2trigh :
--R   [1] D1 -> D1 from TranscendentalManipulations(D2,D1)
--R             if D2 has Join(OrderedSet,GcdDomain) and D1 has Join(
--R            FunctionSpace(D2),TranscendentalFunctionCategory)
--R
--RExamples of tanh2trigh from TranscendentalManipulations
--R
--E 3085

--S 3086 of 3320
)d op tanhIfCan
--R 
--R
--RThere is one exposed function called tanhIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of tanhIfCan from PartialTranscendentalFunctions
--R
--E 3086

--S 3087 of 3320
)d op tanIfCan
--R 
--R
--RThere is one exposed function called tanIfCan :
--R   [1] D1 -> Union(D1,"failed") from D if D has PTRANFN(D1) and D1 has 
--R            TRANFUN
--R
--RExamples of tanIfCan from PartialTranscendentalFunctions
--R
--E 3087

--S 3088 of 3320
)d op tanintegrate
--R 
--R
--RThere is one unexposed function called tanintegrate :
--R   [1] (Fraction(D6),(D6 -> D6),((Integer,D5,D5) -> Union(List(D5),
--R            "failed"))) -> Record(answer: IntegrationResult(Fraction(D6)),a0
--R            : D5)
--R             from TranscendentalIntegration(D5,D6)
--R             if D5 has FIELD and D6 has UPOLYC(D5)
--R
--RExamples of tanintegrate from TranscendentalIntegration
--R
--E 3088

--S 3089 of 3320
)d op tanNa
--R 
--R
--RThere is one unexposed function called tanNa :
--R   [1] (D1,Integer) -> D1 from TangentExpansions(D1) if D1 has FIELD
--R         
--R
--RExamples of tanNa from TangentExpansions
--R
--E 3089

--S 3090 of 3320
)d op tanQ
--R 
--R
--RThere is one exposed function called tanQ :
--R   [1] (Fraction(Integer),D1) -> D1
--R             from ElementaryFunctionStructurePackage(D3,D1)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer),LinearlyExplicitRingOver(Integer)) and D1 has Join
--R            (AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R
--RExamples of tanQ from ElementaryFunctionStructurePackage
--R
--E 3090

--S 3091 of 3320
)d op tanSum
--R 
--R
--RThere is one unexposed function called tanSum :
--R   [1] List(D1) -> D1 from TangentExpansions(D1) if D1 has FIELD
--R
--RExamples of tanSum from TangentExpansions
--R
--E 3091

--S 3092 of 3320
)d op taylor
--R 
--R
--RThere are 10 exposed functions called taylor :
--R   [1] Symbol -> Any from ExpressionToUnivariatePowerSeries(D3,D4)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D4 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [2] D2 -> Any from ExpressionToUnivariatePowerSeries(D3,D2)
--R             if D3 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D3))
--R   [3] (D2,NonNegativeInteger) -> Any
--R             from ExpressionToUnivariatePowerSeries(D4,D2)
--R             if D4 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D2 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D4))
--R   [4] (D2,Equation(D2)) -> Any from ExpressionToUnivariatePowerSeries(
--R            D4,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [5] (D2,Equation(D2),NonNegativeInteger) -> Any
--R             from ExpressionToUnivariatePowerSeries(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(GcdDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [6] ((Integer -> D5),Equation(D5)) -> Any
--R             from GenerateUnivariatePowerSeries(D4,D5)
--R             if D5 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [7] (D2,Symbol,Equation(D2)) -> Any from 
--R            GenerateUnivariatePowerSeries(D5,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [8] ((Integer -> D6),Equation(D6),UniversalSegment(
--R            NonNegativeInteger)) -> Any
--R             from GenerateUnivariatePowerSeries(D5,D6)
--R             if D6 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D5)) and D5
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [9] (D2,Symbol,Equation(D2),UniversalSegment(NonNegativeInteger))
--R             -> Any
--R             from GenerateUnivariatePowerSeries(D6,D2)
--R             if D2 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D6)) and D6
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R   [10] D -> D1 from D if D has ULSCCAT(D2,D1) and D2 has RING and D1
--R             has UTSCAT(D2)
--R
--RExamples of taylor from ExpressionToUnivariatePowerSeries
--R
--R
--RExamples of taylor from GenerateUnivariatePowerSeries
--R
--R
--RExamples of taylor from UnivariateLaurentSeriesConstructorCategory
--R
--E 3092

--S 3093 of 3320
)d op taylorIfCan
--R 
--R
--RThere is one exposed function called taylorIfCan :
--R   [1] D -> Union(D1,"failed") from D
--R             if D has ULSCCAT(D2,D1) and D2 has RING and D1 has UTSCAT(
--R            D2)
--R
--RExamples of taylorIfCan from UnivariateLaurentSeriesConstructorCategory
--R
--E 3093

--S 3094 of 3320
)d op taylorQuoByVar
--R 
--R
--RThere is one unexposed function called taylorQuoByVar :
--R   [1] InnerSparseUnivariatePowerSeries(D1) -> 
--R            InnerSparseUnivariatePowerSeries(D1)
--R             from InnerSparseUnivariatePowerSeries(D1) if D1 has RING
--R         
--R
--RExamples of taylorQuoByVar from InnerSparseUnivariatePowerSeries
--R
--E 3094

--S 3095 of 3320
)d op taylorRep
--R 
--R
--RThere is one exposed function called taylorRep :
--R   [1] D -> D1 from D if D has ULSCCAT(D2,D1) and D2 has RING and D1
--R             has UTSCAT(D2)
--R
--RExamples of taylorRep from UnivariateLaurentSeriesConstructorCategory
--R
--E 3095

--S 3096 of 3320
)d op tensorMap
--R 
--R
--RThere is one exposed function called tensorMap :
--R   [1] (Stream(D3),(D3 -> List(D3))) -> Stream(D3) from StreamTensor(D3
--R            )
--R             if D3 has TYPE
--R
--RExamples of tensorMap from StreamTensor
--R
--E 3096

--S 3097 of 3320
)d op tensorProduct
--R 
--R
--RThere are 4 exposed functions called tensorProduct :
--R   [1] (Matrix(D2),Matrix(D2)) -> Matrix(D2) from 
--R            RepresentationPackage1(D2)
--R             if D2 has RING
--R   [2] (List(Matrix(D2)),List(Matrix(D2))) -> List(Matrix(D2))
--R             from RepresentationPackage1(D2) if D2 has RING
--R   [3] Matrix(D2) -> Matrix(D2) from RepresentationPackage1(D2) if D2
--R             has RING
--R   [4] List(Matrix(D2)) -> List(Matrix(D2)) from RepresentationPackage1
--R            (D2)
--R             if D2 has RING
--R
--RExamples of tensorProduct from RepresentationPackage1
--R
--E 3097

--S 3098 of 3320
)d op terms
--R 
--R
--RThere are 2 exposed functions called terms :
--R   [1] D -> List(Record(gen: D2,exp: D3)) from D
--R             if D has FAMONC(D2,D3) and D2 has SETCAT and D3 has CABMON
--R            
--R   [2] D -> Stream(Record(k: D3,c: D2)) from D
--R             if D has UPSCAT(D2,D3) and D2 has RING and D3 has OAMON
--R         
--R
--RThere is one unexposed function called terms :
--R   [1] MonoidRing(D2,D3) -> List(Record(coef: D2,monom: D3))
--R             from MonoidRing(D2,D3) if D2 has RING and D3 has MONOID
--R         
--R
--RExamples of terms from FreeAbelianMonoidCategory
--R
--R
--RExamples of terms from MonoidRing
--R
--R
--RExamples of terms from UnivariatePowerSeriesCategory
--R
--E 3098

--S 3099 of 3320
)d op test
--R 
--R
--RThere is one exposed function called test :
--R   [1] Boolean -> Boolean from Boolean
--R
--RExamples of test from Boolean
--R
--E 3099

--S 3100 of 3320
)d op testDim
--R 
--R
--RThere is one unexposed function called testDim :
--R   [1] (List(HomogeneousDistributedMultivariatePolynomial(D3,D4)),List(
--R            OrderedVariableList(D3))) -> Union(List(
--R            HomogeneousDistributedMultivariatePolynomial(D3,D4)),"failed")
--R             from GroebnerSolve(D3,D4,D5)
--R             if D3: LIST(SYMBOL) and D4 has GCDDOM and D5 has GCDDOM
--R         
--R
--RExamples of testDim from GroebnerSolve
--R
--E 3100

--S 3101 of 3320
)d op testModulus
--R 
--R
--RThere is one unexposed function called testModulus :
--R   [1] (D2,List(D4)) -> Boolean from GenExEuclid(D2,D4)
--R             if D4 has UPOLYC(D2) and D2 has EUCDOM
--R
--RExamples of testModulus from GenExEuclid
--R
--E 3101

--S 3102 of 3320
)d op tex
--R 
--R
--RThere is one exposed function called tex :
--R   [1] TexFormat -> List(String) from TexFormat
--R
--RExamples of tex from TexFormat
--R
--E 3102

--S 3103 of 3320
)d op theCurve
--R 
--R
--RThere are 3 exposed functions called theCurve :
--R   [1]  -> D4
--R             from GeneralPackageForAlgebraicFunctionField(D5,D6,D4,D7,
--R            D8,D9,D10,D11,D1,D2,D3)
--R             if D5 has FIELD and D6: LIST(SYMBOL) and D7 has DIRPCAT(#(
--R            D6),NNI) and D8 has PRSPCAT(D5) and D9 has LOCPOWC(D5) and 
--R            D10 has PLACESC(D5,D9) and D11 has DIVCAT(D10) and D1 has 
--R            INFCLCT(D5,D6,D4,D7,D8,D9,D10,D11,D3) and D3 has BLMETCT 
--R            and D4 has POLYCAT(D5,D7,OVAR(D6)) and D2 has DSTRCAT(D1)
--R         
--R   [2]  -> DistributedMultivariatePolynomial(D3,D2)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R            
--R   [3]  -> DistributedMultivariatePolynomial(D3,D2)
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FIELD and D3: LIST(SYMBOL) and D4 has BLMETCT
--R         
--R
--RExamples of theCurve from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of theCurve from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of theCurve from PackageForAlgebraicFunctionField
--R
--E 3103

--S 3104 of 3320
)d op thetaCoord
--R 
--R
--RThere is one unexposed function called thetaCoord :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of thetaCoord from PointPackage
--R
--E 3104

--S 3105 of 3320 done
)d op third
--R 
--R
--RThere is one exposed function called third :
--R   [1] D -> D1 from D if D has URAGG(D1) and D1 has TYPE
--R
--RExamples of third from UnaryRecursiveAggregate
--R
--Rthird [1,4,2,-6,0,3,5,4,2,3]
--R
--E 3105

--S 3106 of 3320
)d op times
--R 
--R
--RThere is one unexposed function called times :
--R   [1] (D1,D1,Automorphism(D4),(D4 -> D4)) -> D1
--R             from UnivariateSkewPolynomialCategoryOps(D4,D1)
--R             if D4 has RING and D1 has OREPCAT(D4)
--R
--RExamples of times from UnivariateSkewPolynomialCategoryOps
--R
--E 3106

--S 3107 of 3320
)d op times!
--R 
--R
--RThere is one unexposed function called times! :
--R   [1] (Matrix(D2),Matrix(D2),Matrix(D2)) -> Matrix(D2)
--R             from StorageEfficientMatrixOperations(D2) if D2 has RING
--R         
--R
--RExamples of times! from StorageEfficientMatrixOperations
--R
--E 3107

--S 3108 of 3320
)d op title
--R 
--R
--RThere are 2 exposed functions called title :
--R   [1] String -> DrawOption from DrawOption
--R   [2] (ThreeDimensionalViewport,String) -> Void from 
--R            ThreeDimensionalViewport
--R
--RThere are 2 unexposed functions called title :
--R   [1] (List(DrawOption),String) -> String from DrawOptionFunctions0
--R         
--R   [2] (TwoDimensionalViewport,String) -> Void from 
--R            TwoDimensionalViewport
--R
--RExamples of title from DrawOptionFunctions0
--R
--R
--RExamples of title from DrawOption
--R
--R
--RExamples of title from TwoDimensionalViewport
--R
--R
--RExamples of title from ThreeDimensionalViewport
--R
--E 3108

--S 3109 of 3320 done
)d op toint
--R 
--R
--RThere is one exposed function called toint :
--R   [1] String -> Integer from HexadecimalExpansion
--R
--RExamples of toint from HexadecimalExpansion
--R
--Rtoint("FE") 
--Rtoint("BFD25E8C")
--R
--E 3109

--S 3110 of 3320
--R----------------------)d op to_mod_pa  (fix this)
--E 3110

--S 3111 of 3320 done
)d op top
--R 
--R
--RThere are 4 exposed functions called top :
--R   [1] ArrayStack(D1) -> D1 from ArrayStack(D1) if D1 has SETCAT
--R   [2] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [3] D -> D1 from D if D has SKAGG(D1) and D1 has TYPE
--R   [4] Stack(D1) -> D1 from Stack(D1) if D1 has SETCAT
--R
--RExamples of top from ArrayStack
--R
--Ra:ArrayStack INT:= arrayStack [1,2,3,4,5] 
--Rtop a
--R
--R
--RExamples of top from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rtop a
--R
--R
--RExamples of top from StackAggregate
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rtop a
--R
--R
--RExamples of top from Stack
--R
--Ra:Stack INT:= stack [1,2,3,4,5] 
--Rtop a
--R
--E 3111

--S 3112 of 3320
)d op top!
--R 
--R
--RThere are 2 exposed functions called top! :
--R   [1] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT
--R   [2] D -> D1 from D if D has DQAGG(D1) and D1 has TYPE
--R
--RExamples of top! from Dequeue
--R
--Ra:Dequeue INT:= dequeue [1,2,3,4,5] 
--Rtop! a 
--Ra
--R
--R
--RExamples of top! from DequeueAggregate
--R
--E 3112

--S 3113 of 3320
)d op topFortranOutputStack
--R 
--R
--RThere is one exposed function called topFortranOutputStack :
--R   [1]  -> String from FortranOutputStackPackage
--R
--RExamples of topFortranOutputStack from FortranOutputStackPackage
--R
--E 3113

--S 3114 of 3320
)d op topPredicate
--R 
--R
--RThere is one unexposed function called topPredicate :
--R   [1] Pattern(D2) -> Record(var: List(Symbol),pred: Any) from Pattern(
--R            D2)
--R             if D2 has SETCAT
--R
--RExamples of topPredicate from Pattern
--R
--E 3114

--S 3115 of 3320
)d op toroidal
--R 
--R
--RThere is one exposed function called toroidal :
--R   [1] D2 -> (Point(D2) -> Point(D2)) from CoordinateSystems(D2)
--R             if D2 has Join(Field,TranscendentalFunctionCategory,
--R            RadicalCategory)
--R
--RExamples of toroidal from CoordinateSystems
--R
--E 3115

--S 3116 of 3320
)d op torsion?
--R 
--R
--RThere are 2 unexposed functions called torsion? :
--R   [1] FiniteDivisor(D4,D5,D6,D7) -> Boolean
--R             from PointsOfFiniteOrder(D3,D4,D5,D6,D7)
--R             if D4 has FS(D3) and D5 has UPOLYC(D4) and D6 has UPOLYC(
--R            FRAC(D5)) and D7 has FFCAT(D4,D5,D6) and D3 has Join(
--R            OrderedSet,IntegralDomain,RetractableTo(Integer))
--R   [2] FiniteDivisor(Fraction(Integer),D3,D4,D5) -> Boolean
--R             from PointsOfFiniteOrderRational(D3,D4,D5)
--R             if D3 has UPOLYC(FRAC(INT)) and D4 has UPOLYC(FRAC(D3)) 
--R            and D5 has FFCAT(FRAC(INT),D3,D4)
--R
--RExamples of torsion? from PointsOfFiniteOrder
--R
--R
--RExamples of torsion? from PointsOfFiniteOrderRational
--R
--E 3116

--S 3117 of 3320
)d op torsionIfCan
--R 
--R
--RThere are 2 unexposed functions called torsionIfCan :
--R   [1] FiniteDivisor(D4,D5,D6,D7) -> Union(Record(order: 
--R            NonNegativeInteger,function: D7),"failed")
--R             from PointsOfFiniteOrder(D3,D4,D5,D6,D7)
--R             if D4 has FS(D3) and D5 has UPOLYC(D4) and D6 has UPOLYC(
--R            FRAC(D5)) and D7 has FFCAT(D4,D5,D6) and D3 has Join(
--R            OrderedSet,IntegralDomain,RetractableTo(Integer))
--R   [2] FiniteDivisor(Fraction(Integer),D3,D4,D5) -> Union(Record(order
--R            : NonNegativeInteger,function: D5),"failed")
--R             from PointsOfFiniteOrderRational(D3,D4,D5)
--R             if D3 has UPOLYC(FRAC(INT)) and D4 has UPOLYC(FRAC(D3)) 
--R            and D5 has FFCAT(FRAC(INT),D3,D4)
--R
--RExamples of torsionIfCan from PointsOfFiniteOrder
--R
--R
--RExamples of torsionIfCan from PointsOfFiniteOrderRational
--R
--E 3117

--S 3118 of 3320
)d op toScale
--R 
--R
--RThere is one exposed function called toScale :
--R   [1] Boolean -> DrawOption from DrawOption
--R
--RThere is one unexposed function called toScale :
--R   [1] (List(DrawOption),Boolean) -> Boolean from DrawOptionFunctions0
--R            
--R
--RExamples of toScale from DrawOptionFunctions0
--R
--R
--RExamples of toScale from DrawOption
--R
--E 3118

--S 3119 of 3320
)d op toseInvertible?
--R 
--R
--RThere are 2 exposed functions called toseInvertible? :
--R   [1] (D2,D3) -> Boolean from RegularTriangularSetGcdPackage(D4,D5,D6,
--R            D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R   [2] (D2,D3) -> List(Record(val: Boolean,tower: D3))
--R             from RegularTriangularSetGcdPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of toseInvertible? from RegularTriangularSetGcdPackage
--R
--E 3119

--S 3120 of 3320
)d op toseInvertibleSet
--R 
--R
--RThere is one exposed function called toseInvertibleSet :
--R   [1] (D2,D3) -> List(D3) from RegularTriangularSetGcdPackage(D4,D5,D6
--R            ,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of toseInvertibleSet from RegularTriangularSetGcdPackage
--R
--E 3120

--S 3121 of 3320
)d op toseLastSubResultant
--R 
--R
--RThere is one exposed function called toseLastSubResultant :
--R   [1] (D2,D2,D3) -> List(Record(val: D2,tower: D3))
--R             from RegularTriangularSetGcdPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of toseLastSubResultant from RegularTriangularSetGcdPackage
--R
--E 3121

--S 3122 of 3320
)d op toseSquareFreePart
--R 
--R
--RThere is one exposed function called toseSquareFreePart :
--R   [1] (D2,D3) -> List(Record(val: D2,tower: D3))
--R             from RegularTriangularSetGcdPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of toseSquareFreePart from RegularTriangularSetGcdPackage
--R
--E 3122

--S 3123 of 3320
)d op totalDegree
--R 
--R
--RThere are 3 exposed functions called totalDegree :
--R   [1] D2 -> NonNegativeInteger from PackageForPoly(D3,D2,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D2 has FAMR(D3,D4)
--R   [2] (D,List(D5)) -> NonNegativeInteger from D
--R             if D has POLYCAT(D3,D4,D5) and D3 has RING and D4 has 
--R            OAMONS and D5 has ORDSET
--R   [3] D -> NonNegativeInteger from D
--R             if D has POLYCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R
--RExamples of totalDegree from PackageForPoly
--R
--R
--RExamples of totalDegree from PolynomialCategory
--R
--E 3123

--S 3124 of 3320 done
)d op totalDifferential
--R 
--R
--RThere is one unexposed function called totalDifferential :
--R   [1] Expression(D2) -> DeRhamComplex(D2,D3) from DeRhamComplex(D2,D3)
--R             if D2 has Join(Ring,OrderedSet) and D3: LIST(SYMBOL)
--R
--RExamples of totalDifferential from DeRhamComplex
--R
--Rder := DeRhamComplex(Integer,[x,y,z]) 
--Ra : BOP := operator('a) 
--RtotalDifferential(a(x,y,z))$der 
--RtotalDifferential(x^2+y^2+sin(x)*z^2)$der
--R
--E 3124

--S 3125 of 3320
)d op totalfract
--R 
--R
--RThere is one exposed function called totalfract :
--R   [1] D2 -> Record(sup: Polynomial(D5),inf: Polynomial(D5))
--R             from MPolyCatRationalFunctionFactorizer(D3,D4,D5,D2)
--R             if D3 has OAMONS and D4 has OrderedSetwith
--R               convert : % -> Symboland D5 has INTDOM and D2 has 
--R            POLYCAT(FRAC(POLY(D5)),D3,D4)
--R
--RExamples of totalfract from MPolyCatRationalFunctionFactorizer
--R
--E 3125

--S 3126 of 3320
)d op totalGroebner
--R 
--R
--RThere is one exposed function called totalGroebner :
--R   [1] (List(Polynomial(D3)),List(Symbol)) -> List(Polynomial(D3))
--R             from PolyGroebner(D3) if D3 has GCDDOM
--R
--RExamples of totalGroebner from PolyGroebner
--R
--E 3126

--S 3127 of 3320
)d op totalLex
--R 
--R
--RThere is one unexposed function called totalLex :
--R   [1] (Vector(D4),Vector(D4)) -> Boolean from OrderingFunctions(D3,D4)
--R             if D4 has OAMON and D3: NNI
--R
--RExamples of totalLex from OrderingFunctions
--R
--E 3127

--S 3128 of 3320
)d op totolex
--R 
--R
--RThere is one unexposed function called totolex :
--R   [1] List(HomogeneousDistributedMultivariatePolynomial(D3,D4)) -> 
--R            List(DistributedMultivariatePolynomial(D3,D4))
--R             from LinGroebnerPackage(D3,D4) if D3: LIST(SYMBOL) and D4
--R             has GCDDOM
--R
--RExamples of totolex from LinGroebnerPackage
--R
--E 3128

--S 3129 of 3320
)d op tower
--R 
--R
--RThere is one exposed function called tower :
--R   [1] D -> List(Kernel(D)) from D if D has ES
--R
--RExamples of tower from ExpressionSpace
--R
--E 3129

--S 3130 of 3320
)d op trace
--R 
--R
--RThere are 4 exposed functions called trace :
--R   [1] (D,PositiveInteger) -> D from D
--R             if D has FAXF(D2) and D2 has FIELD and D2 has FINITE
--R   [2] D -> D1 from D if D has FAXF(D1) and D1 has FIELD
--R   [3] D -> D1 from D
--R             if D has FINRALG(D1,D2) and D2 has UPOLYC(D1) and D1 has 
--R            COMRING
--R   [4] D -> D1 from D
--R             if D has SMATCAT(D2,D1,D3,D4) and D3 has DIRPCAT(D2,D1) 
--R            and D4 has DIRPCAT(D2,D1) and D1 has RING
--R
--RThere is one unexposed function called trace :
--R   [1] (Vector(D3),PositiveInteger) -> Vector(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of trace from FiniteAlgebraicExtensionField
--R
--R
--RExamples of trace from FiniteRankAlgebra
--R
--R
--RExamples of trace from InnerNormalBasisFieldFunctions
--R
--R
--RExamples of trace from SquareMatrixCategory
--R
--E 3130

--S 3131 of 3320
)d op trace2PowMod
--R 
--R
--RThere is one exposed function called trace2PowMod :
--R   [1] (D1,NonNegativeInteger,D1) -> D1 from DistinctDegreeFactorize(D3
--R            ,D1)
--R             if D3 has FFIELDC and D1 has UPOLYC(D3)
--R
--RExamples of trace2PowMod from DistinctDegreeFactorize
--R
--E 3131

--S 3132 of 3320
)d op traceMatrix
--R 
--R
--RThere are 2 exposed functions called traceMatrix :
--R   [1] Vector(D) -> Matrix(D3) from D
--R             if D has FINRALG(D3,D4) and D3 has COMRING and D4 has 
--R            UPOLYC(D3)
--R   [2]  -> Matrix(D2) from D
--R             if D has FRAMALG(D2,D3) and D2 has COMRING and D3 has 
--R            UPOLYC(D2)
--R
--RThere is one unexposed function called traceMatrix :
--R   [1]  -> Matrix(D3) from FramedAlgebra&(D2,D3,D4)
--R             if D3 has COMRING and D4 has UPOLYC(D3) and D2 has FRAMALG
--R            (D3,D4)
--R
--RExamples of traceMatrix from FiniteRankAlgebra
--R
--R
--RExamples of traceMatrix from FramedAlgebra&
--R
--R
--RExamples of traceMatrix from FramedAlgebra
--R
--E 3132

--S 3133 of 3320
)d op tracePowMod
--R 
--R
--RThere is one exposed function called tracePowMod :
--R   [1] (D1,NonNegativeInteger,D1) -> D1 from DistinctDegreeFactorize(D3
--R            ,D1)
--R             if D3 has FFIELDC and D1 has UPOLYC(D3)
--R
--RExamples of tracePowMod from DistinctDegreeFactorize
--R
--E 3133

--S 3134 of 3320
)d op trailingCoefficient
--R 
--R
--RThere is one unexposed function called trailingCoefficient :
--R   [1] LaurentPolynomial(D1,D2) -> D1 from LaurentPolynomial(D1,D2)
--R             if D1 has INTDOM and D2 has UPOLYC(D1)
--R
--RExamples of trailingCoefficient from LaurentPolynomial
--R
--E 3134

--S 3135 of 3320
)d op tRange
--R 
--R
--RThere are 2 unexposed functions called tRange :
--R   [1] Plot3D -> Segment(DoubleFloat) from Plot3D
--R   [2] Plot -> Segment(DoubleFloat) from Plot
--R
--RExamples of tRange from Plot3D
--R
--R
--RExamples of tRange from Plot
--R
--E 3135

--S 3136 of 3320
)d op transcendenceDegree
--R 
--R
--RThere is one exposed function called transcendenceDegree :
--R   [1]  -> NonNegativeInteger from D if D has XF(D2) and D2 has FIELD
--R         
--R
--RThere is one unexposed function called transcendenceDegree :
--R   [1]  -> NonNegativeInteger from FiniteAlgebraicExtensionField&(D2,D3
--R            )
--R             if D3 has FIELD and D2 has FAXF(D3)
--R
--RExamples of transcendenceDegree from FiniteAlgebraicExtensionField&
--R
--R
--RExamples of transcendenceDegree from ExtensionField
--R
--E 3136

--S 3137 of 3320
)d op transcendent?
--R 
--R
--RThere is one exposed function called transcendent? :
--R   [1] D -> Boolean from D if D has XF(D2) and D2 has FIELD
--R
--RExamples of transcendent? from ExtensionField
--R
--E 3137

--S 3138 of 3320
)d op transcendentalDecompose
--R 
--R
--RThere are 4 exposed functions called transcendentalDecompose :
--R   [1] (D2,D3,NonNegativeInteger) -> Record(done: List(D3),todo: List(
--R            Record(val: List(D2),tower: D3)))
--R             from RegularSetDecompositionPackage(D5,D6,D7,D2,D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D2 has RPOLCAT(D5,D6,D7) and D3 has RSETCAT(D5,D6,D7,D2)
--R         
--R   [2] (D2,D3) -> Record(done: List(D3),todo: List(Record(val: List(D2)
--R            ,tower: D3)))
--R             from RegularSetDecompositionPackage(D4,D5,D6,D2,D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has RSETCAT(D4,D5,D6,D2)
--R         
--R   [3] (D2,D3,NonNegativeInteger) -> Record(done: List(D3),todo: List(
--R            Record(val: List(D2),tower: D3)))
--R             from SquareFreeRegularSetDecompositionPackage(D5,D6,D7,D2,
--R            D3)
--R             if D5 has GCDDOM and D6 has OAMONS and D7 has ORDSET and 
--R            D2 has RPOLCAT(D5,D6,D7) and D3 has SFRTCAT(D5,D6,D7,D2)
--R         
--R   [4] (D2,D3) -> Record(done: List(D3),todo: List(Record(val: List(D2)
--R            ,tower: D3)))
--R             from SquareFreeRegularSetDecompositionPackage(D4,D5,D6,D2,
--R            D3)
--R             if D4 has GCDDOM and D5 has OAMONS and D6 has ORDSET and 
--R            D2 has RPOLCAT(D4,D5,D6) and D3 has SFRTCAT(D4,D5,D6,D2)
--R         
--R
--RExamples of transcendentalDecompose from RegularSetDecompositionPackage
--R
--R
--RExamples of transcendentalDecompose from SquareFreeRegularSetDecompositionPackage
--R
--E 3138

--S 3139 of 3320
)d op transCoord
--R 
--R
--RThere is one exposed function called transCoord :
--R   [1] D -> Integer from D if D has BLMETCT
--R
--RExamples of transCoord from BlowUpMethodCategory
--R
--E 3139

--S 3140 of 3320
)d op transform
--R 
--R
--RThere is one unexposed function called transform :
--R   [1] DistributedMultivariatePolynomial(D3,D4) -> 
--R            HomogeneousDistributedMultivariatePolynomial(D3,D4)
--R             from LinGroebnerPackage(D3,D4) if D3: LIST(SYMBOL) and D4
--R             has GCDDOM
--R
--RExamples of transform from LinGroebnerPackage
--R
--E 3140

--S 3141 of 3320
)d op translate
--R 
--R
--RThere are 4 exposed functions called translate :
--R   [1] (D1,D1,D1) -> DenavitHartenbergMatrix(D1)
--R             from DenavitHartenbergMatrix(D1)
--R             if D1 has Join(Field,TranscendentalFunctionCategory)
--R   [2] (D1,List(D4),Integer) -> D1 from PackageForPoly(D4,D1,D5,D6)
--R             if D4 has RING and D5 has DIRPCAT(D6,NNI) and D6: NNI and 
--R            D1 has FAMR(D4,D5)
--R   [3] (D1,List(D3)) -> D1 from PackageForPoly(D3,D1,D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D1 has FAMR(D3,D4)
--R   [4] (ThreeDimensionalViewport,Float,Float) -> Void
--R             from ThreeDimensionalViewport
--R
--RThere is one unexposed function called translate :
--R   [1] (TwoDimensionalViewport,PositiveInteger,Float,Float) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of translate from DenavitHartenbergMatrix
--R
--Rtranslate(1.0,2.0,3.0)
--R
--R
--RExamples of translate from PackageForPoly
--R
--R
--RExamples of translate from TwoDimensionalViewport
--R
--R
--RExamples of translate from ThreeDimensionalViewport
--R
--E 3141

--S 3142 of 3320
)d op translateToOrigin
--R 
--R
--RThere are 3 exposed functions called translateToOrigin :
--R   [1] (DistributedMultivariatePolynomial(D5,D4),
--R            ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(D4)) -> 
--R            DistributedMultivariatePolynomial(D5,
--R            PseudoAlgebraicClosureOfFiniteField(D4))
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D4,D5
--R            ,D6)
--R             if D4 has FFIELDC and D5: LIST(SYMBOL) and D6 has BLMETCT
--R            
--R   [2] (D1,D2,Integer) -> D1 from PolynomialPackageForCurve(D4,D1,D5,D6
--R            ,D2)
--R             if D4 has FIELD and D5 has DIRPCAT(D6,NNI) and D6: NNI and
--R            D1 has FAMR(D4,D5) and D2 has PRSPCAT(D4)
--R   [3] (D1,D2) -> D1 from PolynomialPackageForCurve(D3,D1,D4,D5,D2)
--R             if D3 has FIELD and D4 has DIRPCAT(D5,NNI) and D5: NNI and
--R            D1 has FAMR(D3,D4) and D2 has PRSPCAT(D3)
--R
--RExamples of translateToOrigin from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of translateToOrigin from PolynomialPackageForCurve
--R
--E 3142

--S 3143 of 3320
)d op transpose
--R 
--R
--RThere are 4 exposed functions called transpose :
--R   [1] (CartesianTensor(D2,D3,D4),Integer,Integer) -> CartesianTensor(
--R            D2,D3,D4)
--R             from CartesianTensor(D2,D3,D4) if D2: INT and D3: NNI and 
--R            D4 has COMRING
--R   [2] CartesianTensor(D1,D2,D3) -> CartesianTensor(D1,D2,D3)
--R             from CartesianTensor(D1,D2,D3) if D1: INT and D2: NNI and 
--R            D3 has COMRING
--R   [3] D -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R   [4] D1 -> D from D
--R             if D2 has RING and D has MATCAT(D2,D1,D3) and D1 has FLAGG
--R            (D2) and D3 has FLAGG(D2)
--R
--RThere is one unexposed function called transpose :
--R   [1] SquareMatrix(D1,D2) -> SquareMatrix(D1,D2) from SquareMatrix(D1,
--R            D2)
--R             if D1: NNI and D2 has RING
--R
--RExamples of transpose from CartesianTensor
--R
--Rm:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] 
--Rtm:CartesianTensor(1,2,Integer):=m 
--Rtn:CartesianTensor(1,2,Integer):=[tm,tm] 
--Rtranspose(tn,1,2)
--R
--Rm:SquareMatrix(2,Integer):=matrix [[1,2],[4,5]] 
--RTm:CartesianTensor(1,2,Integer):=m 
--Rtranspose(Tm)
--R
--R
--RExamples of transpose from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--Rtranspose m
--R
--Rtranspose([1,2,3])@Matrix(INT)
--R
--R
--RExamples of transpose from SquareMatrix
--R
--E 3143

--S 3144 of 3320
)d op trapezoidal
--R 
--R
--RThere is one exposed function called trapezoidal :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer) -> 
--R            Record(value: Float,error: Float,totalpts: Integer,success: 
--R            Boolean)
--R             from NumericalQuadrature
--R
--RExamples of trapezoidal from NumericalQuadrature
--R
--E 3144

--S 3145 of 3320
)d op trapezoidalo
--R 
--R
--RThere is one exposed function called trapezoidalo :
--R   [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer) -> 
--R            Record(value: Float,error: Float,totalpts: Integer,success: 
--R            Boolean)
--R             from NumericalQuadrature
--R
--RExamples of trapezoidalo from NumericalQuadrature
--R
--E 3145

--S 3146 of 3320
)d op traverse
--R 
--R
--RThere is one unexposed function called traverse :
--R   [1] (SubSpace(D2,D3),List(NonNegativeInteger)) -> SubSpace(D2,D3)
--R             from SubSpace(D2,D3) if D2: PI and D3 has RING
--R
--RExamples of traverse from SubSpace
--R
--E 3146

--S 3147 of 3320
)d op tree
--R 
--R
--RThere are 6 exposed functions called tree :
--R   [1] List(D2) -> D from D if D2 has SETCAT and D has DSTRCAT(D2)
--R   [2] D1 -> D from D if D has DSTRCAT(D1) and D1 has SETCAT
--R   [3] (D1,List(D)) -> D from D if D has DSTRCAT(D1) and D1 has SETCAT
--R            
--R   [4] D1 -> Tree(D1) from Tree(D1) if D1 has SETCAT
--R   [5] List(D2) -> Tree(D2) from Tree(D2) if D2 has SETCAT
--R   [6] (D1,List(Tree(D1))) -> Tree(D1) from Tree(D1) if D1 has SETCAT
--R         
--R
--RExamples of tree from DesingTreeCategory
--R
--R
--RExamples of tree from Tree
--R
--Rtree 6
--R
--Rtree [1,2,3,4]
--R
--Rt1:=tree [1,2,3,4] 
--Rtree(5,[t1])
--R
--E 3147

--S 3148 of 3320
)d op triangSolve
--R 
--R
--RThere are 3 exposed functions called triangSolve :
--R   [1] (List(Polynomial(D4)),Boolean,Boolean) -> List(RegularChain(D4,
--R            D5))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [2] (List(Polynomial(D4)),Boolean) -> List(RegularChain(D4,D5))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [3] List(Polynomial(D3)) -> List(RegularChain(D3,D4))
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R
--RExamples of triangSolve from ZeroDimensionalSolvePackage
--R
--E 3148

--S 3149 of 3320
)d op triangular?
--R 
--R
--RThere is one exposed function called triangular? :
--R   [1] D -> Boolean from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4) and 
--R            D2 has INTDOM
--R
--RExamples of triangular? from PolynomialSetCategory
--R
--E 3149

--S 3150 of 3320
)d op triangularSystems
--R 
--R
--RThere is one exposed function called triangularSystems :
--R   [1] (List(Fraction(Polynomial(D4))),List(Symbol)) -> List(List(
--R            Polynomial(D4)))
--R             from SystemSolvePackage(D4) if D4 has INTDOM
--R
--RExamples of triangularSystems from SystemSolvePackage
--R
--E 3150

--S 3151 of 3320
)d op triangulate
--R 
--R
--RThere are 2 unexposed functions called triangulate :
--R   [1] (Matrix(D4),Vector(D4)) -> Record(A: Matrix(D4),eqs: List(
--R            Record(C: Matrix(D4),g: Vector(D4),eq: D5,rh: D4)))
--R             from SystemODESolver(D4,D5) if D4 has FIELD and D5 has 
--R            LODOCAT(D4)
--R   [2] (Matrix(D5),Vector(D4)) -> Record(mat: Matrix(D5),vec: Vector(D4
--R            ))
--R             from SystemODESolver(D4,D5) if D4 has FIELD and D5 has 
--R            LODOCAT(D4)
--R
--RExamples of triangulate from SystemODESolver
--R
--E 3151

--S 3152 of 3320
)d op trigs
--R 
--R
--RThere are 2 exposed functions called trigs :
--R   [1] D1 -> D1 from ComplexTrigonometricManipulations(D2,D1)
--R             if D2 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(Complex(D2)))
--R            
--R   [2] D1 -> D1 from TrigonometricManipulations(D2,D1)
--R             if D2 has Join(GcdDomain,OrderedSet,RetractableTo(Integer)
--R            ,LinearlyExplicitRingOver(Integer)) and D1 has Join(
--R            AlgebraicallyClosedField,TranscendentalFunctionCategory,
--R            FunctionSpace(D2))
--R
--RExamples of trigs from ComplexTrigonometricManipulations
--R
--R
--RExamples of trigs from TrigonometricManipulations
--R
--E 3152

--S 3153 of 3320
)d op trigs2explogs
--R 
--R
--RThere is one unexposed function called trigs2explogs :
--R   [1] (D1,List(Kernel(D1)),List(Symbol)) -> D1
--R             from InnerTrigonometricManipulations(D4,D5,D1)
--R             if D1 has Join(FunctionSpace(Complex(D4)),RadicalCategory,
--R            TranscendentalFunctionCategory) and D4 has Join(
--R            IntegralDomain,OrderedSet) and D5 has Join(FunctionSpace(D4
--R            ),RadicalCategory,TranscendentalFunctionCategory)
--R
--RExamples of trigs2explogs from InnerTrigonometricManipulations
--R
--E 3153

--S 3154 of 3320
)d op trim
--R 
--R
--RThere are 2 exposed functions called trim :
--R   [1] (D,CharacterClass) -> D from D if D has SRAGG
--R   [2] (D,Character) -> D from D if D has SRAGG
--R
--RExamples of trim from StringAggregate
--R
--E 3154

--S 3155 of 3320
)d op trivialIdeal?
--R 
--R
--RThere is one exposed function called trivialIdeal? :
--R   [1] D -> Boolean from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R
--RExamples of trivialIdeal? from PolynomialSetCategory
--R
--E 3155

--S 3156 of 3320
)d op true
--R 
--R
--RThere is one exposed function called true :
--R   [1]  -> Boolean from Boolean
--R
--RExamples of true from Boolean
--R
--E 3156

--S 3157 of 3320
)d op trueEqual
--R 
--R
--RThere is one unexposed function called trueEqual :
--R   [1] (InnerAlgebraicNumber,InnerAlgebraicNumber) -> Boolean
--R             from InnerAlgebraicNumber
--R
--RExamples of trueEqual from InnerAlgebraicNumber
--R
--E 3157

--S 3158 of 3320
)d op trunc
--R 
--R
--RThere are 2 exposed functions called trunc :
--R   [1] (D,NonNegativeInteger) -> D from D
--R             if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
--R            
--R   [2] (D,NonNegativeInteger) -> D from D
--R             if D has XPOLYC(D2,D3) and D2 has ORDSET and D3 has RING
--R         
--R
--RExamples of trunc from FreeLieAlgebra
--R
--R
--RExamples of trunc from XPolynomialsCat
--R
--E 3158

--S 3159 of 3320
)d op truncate
--R 
--R
--RThere are 3 exposed functions called truncate :
--R   [1] D -> D from D if D has RNS
--R   [2] (D,D1,D1) -> D from D if D has UPSCAT(D2,D1) and D2 has RING and
--R            D1 has OAMON
--R   [3] (D,D1) -> D from D if D has UPSCAT(D2,D1) and D2 has RING and D1
--R             has OAMON
--R
--RExamples of truncate from RealNumberSystem
--R
--R
--RExamples of truncate from UnivariatePowerSeriesCategory
--R
--E 3159

--S 3160 of 3320
--R---------------)d op truncated_mul_add (fix this)
--E 3160

--S 3161 of 3320
--R---------------)d op truncated_multiplication (fix this)
--E 3161

--S 3162 of 3320
)d op tryFunctionalDecomposition
--R 
--R
--RThere is one unexposed function called tryFunctionalDecomposition :
--R   [1] Boolean -> Boolean from GaloisGroupFactorizer(D2) if D2 has 
--R            UPOLYC(INT)
--R
--RExamples of tryFunctionalDecomposition from GaloisGroupFactorizer
--R
--E 3162

--S 3163 of 3320
)d op tryFunctionalDecomposition?
--R 
--R
--RThere is one unexposed function called tryFunctionalDecomposition? :
--R   [1]  -> Boolean from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R            
--R
--RExamples of tryFunctionalDecomposition? from GaloisGroupFactorizer
--R
--E 3163

--S 3164 of 3320
)d op tube
--R 
--R
--RThere are 2 unexposed functions called tube :
--R   [1] (D2,DoubleFloat,Integer) -> TubePlot(D2) from NumericTubePlot(D2
--R            )
--R             if D2 has PSCURVE
--R   [2] (D1,List(List(Point(DoubleFloat))),Boolean) -> TubePlot(D1)
--R             from TubePlot(D1) if D1 has PSCURVE
--R
--RExamples of tube from NumericTubePlot
--R
--R
--RExamples of tube from TubePlot
--R
--E 3164

--S 3165 of 3320
)d op tubePlot
--R 
--R
--RThere are 4 unexposed functions called tubePlot :
--R   [1] (Expression(Integer),Expression(Integer),Expression(Integer),(
--R            DoubleFloat -> DoubleFloat),Segment(DoubleFloat),(DoubleFloat -> 
--R            DoubleFloat),Integer) -> TubePlot(Plot3D)
--R             from ExpressionTubePlot
--R   [2] (Expression(Integer),Expression(Integer),Expression(Integer),(
--R            DoubleFloat -> DoubleFloat),Segment(DoubleFloat),(DoubleFloat -> 
--R            DoubleFloat),Integer,String) -> TubePlot(Plot3D)
--R             from ExpressionTubePlot
--R   [3] (Expression(Integer),Expression(Integer),Expression(Integer),(
--R            DoubleFloat -> DoubleFloat),Segment(DoubleFloat),DoubleFloat,
--R            Integer) -> TubePlot(Plot3D)
--R             from ExpressionTubePlot
--R   [4] (Expression(Integer),Expression(Integer),Expression(Integer),(
--R            DoubleFloat -> DoubleFloat),Segment(DoubleFloat),DoubleFloat,
--R            Integer,String) -> TubePlot(Plot3D)
--R             from ExpressionTubePlot
--R
--RExamples of tubePlot from ExpressionTubePlot
--R
--E 3165

--S 3166 of 3320
)d op tubePoints
--R 
--R
--RThere is one exposed function called tubePoints :
--R   [1] PositiveInteger -> DrawOption from DrawOption
--R
--RThere is one unexposed function called tubePoints :
--R   [1] (List(DrawOption),PositiveInteger) -> PositiveInteger
--R             from DrawOptionFunctions0
--R
--RExamples of tubePoints from DrawOptionFunctions0
--R
--R
--RExamples of tubePoints from DrawOption
--R
--E 3166

--S 3167 of 3320
)d op tubePointsDefault
--R 
--R
--RThere are 2 exposed functions called tubePointsDefault :
--R   [1] PositiveInteger -> PositiveInteger from ViewDefaultsPackage
--R   [2]  -> PositiveInteger from ViewDefaultsPackage
--R
--RExamples of tubePointsDefault from ViewDefaultsPackage
--R
--E 3167

--S 3168 of 3320
)d op tubeRadius
--R 
--R
--RThere is one exposed function called tubeRadius :
--R   [1] Float -> DrawOption from DrawOption
--R
--RThere is one unexposed function called tubeRadius :
--R   [1] (List(DrawOption),Float) -> Float from DrawOptionFunctions0
--R
--RExamples of tubeRadius from DrawOptionFunctions0
--R
--R
--RExamples of tubeRadius from DrawOption
--R
--E 3168

--S 3169 of 3320
)d op tubeRadiusDefault
--R 
--R
--RThere are 2 exposed functions called tubeRadiusDefault :
--R   [1] Float -> DoubleFloat from ViewDefaultsPackage
--R   [2]  -> DoubleFloat from ViewDefaultsPackage
--R
--RExamples of tubeRadiusDefault from ViewDefaultsPackage
--R
--E 3169

--S 3170 of 3320
)d op tValues
--R 
--R
--RThere is one unexposed function called tValues :
--R   [1] Plot3D -> List(List(DoubleFloat)) from Plot3D
--R
--RExamples of tValues from Plot3D
--R
--E 3170

--S 3171 of 3320
)d op twist
--R 
--R
--RThere is one exposed function called twist :
--R   [1] ((D3,D4) -> D5) -> ((D4,D3) -> D5) from MappingPackage3(D3,D4,D5
--R            )
--R             if D3 has SETCAT and D4 has SETCAT and D5 has SETCAT
--R
--RExamples of twist from MappingPackage3
--R
--E 3171

--S 3172 of 3320
)d op twoFactor
--R 
--R
--RThere is one unexposed function called twoFactor :
--R   [1] (SparseUnivariatePolynomial(SparseUnivariatePolynomial(D4)),
--R            Integer) -> Factored(SparseUnivariatePolynomial(
--R            SparseUnivariatePolynomial(D4)))
--R             from TwoFactorize(D4) if D4 has FFIELDC
--R
--RExamples of twoFactor from TwoFactorize
--R
--E 3172

--S 3173 of 3320
)d op type
--R 
--R
--RThere is one exposed function called type :
--R   [1] D -> Union(left,center,right,vertical,horizontal) from D if D
--R             has BLMETCT
--R
--RExamples of type from BlowUpMethodCategory
--R
--E 3173

--S 3174 of 3320
)d op typeList
--R 
--R
--RThere is one exposed function called typeList :
--R   [1] (FortranScalarType,SymbolTable) -> List(Union(name: Symbol,
--R            bounds: List(Union(S: Symbol,P: Polynomial(Integer)))))
--R             from SymbolTable
--R
--RExamples of typeList from SymbolTable
--R
--E 3174

--S 3175 of 3320
)d op typeLists
--R 
--R
--RThere is one exposed function called typeLists :
--R   [1] SymbolTable -> List(List(Union(name: Symbol,bounds: List(Union(S
--R            : Symbol,P: Polynomial(Integer))))))
--R             from SymbolTable
--R
--RExamples of typeLists from SymbolTable
--R
--E 3175

--S 3176 of 3320
)d op unary?
--R 
--R
--RThere is one exposed function called unary? :
--R   [1] BasicOperator -> Boolean from BasicOperator
--R
--RExamples of unary? from BasicOperator
--R
--E 3176

--S 3177 of 3320
)d op unaryFunction
--R 
--R
--RThere is one unexposed function called unaryFunction :
--R   [1] Symbol -> (D4 -> D5) from MakeUnaryCompiledFunction(D3,D4,D5)
--R             if D3 has KONVERT(INFORM) and D4 has TYPE and D5 has TYPE
--R            
--R
--RExamples of unaryFunction from MakeUnaryCompiledFunction
--R
--E 3177

--S 3178 of 3320
)d op uncorrelated?
--R 
--R
--RThere are 3 exposed functions called uncorrelated? :
--R   [1] List(List(StochasticDifferential(D3))) -> Boolean
--R             from StochasticDifferential(D3)
--R             if D3 has Join(OrderedSet,IntegralDomain)
--R   [2] (List(StochasticDifferential(D3)),List(StochasticDifferential(D3
--R            ))) -> Boolean
--R             from StochasticDifferential(D3)
--R             if D3 has Join(OrderedSet,IntegralDomain)
--R   [3] (StochasticDifferential(D2),StochasticDifferential(D2)) -> 
--R            Boolean
--R             from StochasticDifferential(D2)
--R             if D2 has Join(OrderedSet,IntegralDomain)
--R
--RExamples of uncorrelated? from StochasticDifferential
--R
--E 3178

--S 3179 of 3320
)d op uncouplingMatrices
--R 
--R
--RThere is one unexposed function called uncouplingMatrices :
--R   [1] Matrix(D3) -> Vector(Matrix(D3)) from AssociatedEquations(D3,D4)
--R             if D3 has INTDOM and D4 has LODOCAT(D3)
--R
--RExamples of uncouplingMatrices from AssociatedEquations
--R
--E 3179

--S 3180 of 3320
)d op unexpand
--R 
--R
--RThere are 2 unexposed functions called unexpand :
--R   [1] XDistributedPolynomial(Symbol,D2) -> XPolynomial(D2) from 
--R            XPolynomial(D2)
--R             if D2 has RING
--R   [2] XDistributedPolynomial(D2,D3) -> XRecursivePolynomial(D2,D3)
--R             from XRecursivePolynomial(D2,D3) if D2 has ORDSET and D3
--R             has RING
--R
--RExamples of unexpand from XPolynomial
--R
--R
--RExamples of unexpand from XRecursivePolynomial
--R
--E 3180

--S 3181 of 3320
)d op uniform
--R 
--R
--RThere are 3 unexposed functions called uniform :
--R   [1] Set(D3) -> (() -> D3) from RandomDistributions(D3) if D3 has 
--R            SETCAT
--R   [2] (Float,Float) -> (() -> Float) from RandomFloatDistributions
--R   [3] Segment(Integer) -> (() -> Integer) from 
--R            RandomIntegerDistributions
--R
--RExamples of uniform from RandomDistributions
--R
--R
--RExamples of uniform from RandomFloatDistributions
--R
--R
--RExamples of uniform from RandomIntegerDistributions
--R
--E 3181

--S 3182 of 3320
)d op uniform01
--R 
--R
--RThere is one unexposed function called uniform01 :
--R   [1]  -> Float from RandomFloatDistributions
--R
--RExamples of uniform01 from RandomFloatDistributions
--R
--E 3182

--S 3183 of 3320
)d op union
--R 
--R
--RThere are 3 exposed functions called union :
--R   [1] (D1,D) -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R   [2] (D,D1) -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R   [3] (D,D) -> D from D if D has SETAGG(D1) and D1 has SETCAT
--R
--RThere are 2 unexposed functions called union :
--R   [1] (List(Kernel(D3)),List(Kernel(D3))) -> List(Kernel(D3))
--R             from IntegrationTools(D2,D3) if D3 has FS(D2) and D2 has 
--R            ORDSET
--R   [2] (PatternMatchResult(D1,D2),PatternMatchResult(D1,D2)) -> 
--R            PatternMatchResult(D1,D2)
--R             from PatternMatchResult(D1,D2) if D1 has SETCAT and D2
--R             has SETCAT
--R
--RExamples of union from IntegrationTools
--R
--R
--RExamples of union from PatternMatchResult
--R
--R
--RExamples of union from SetAggregate
--R
--E 3183

--S 3184 of 3320
)d op unit
--R 
--R
--RThere are 3 exposed functions called unit :
--R   [1] List(Float) -> DrawOption from DrawOption
--R   [2]  -> Union(D,"failed") from D
--R             if D has FINAALG(D1) and D1 has INTDOM and D1 has COMRING
--R            
--R   [3] Factored(D1) -> D1 from Factored(D1) if D1 has INTDOM
--R
--RExamples of unit from DrawOption
--R
--R
--RExamples of unit from FiniteRankNonAssociativeAlgebra
--R
--R
--RExamples of unit from Factored
--R
--Rf:=x*y^3-3*x^2*y^2+3*x^3*y-x^4 
--Runit f 
--Rg:=makeFR(z,factorList f) 
--Runit g
--R
--E 3184

--S 3185 of 3320
)d op unit?
--R 
--R
--RThere is one exposed function called unit? :
--R   [1] D -> Boolean from D if D has INTDOM
--R
--RExamples of unit? from IntegralDomain
--R
--E 3185

--S 3186 of 3320
)d op unitCanonical
--R 
--R
--RThere is one exposed function called unitCanonical :
--R   [1] D -> D from D if D has INTDOM
--R
--RExamples of unitCanonical from IntegralDomain
--R
--E 3186

--S 3187 of 3320
)d op unitNormal
--R 
--R
--RThere is one exposed function called unitNormal :
--R   [1] D -> Record(unit: D,canonical: D,associate: D) from D if D has 
--R            INTDOM
--R
--RExamples of unitNormal from IntegralDomain
--R
--E 3187

--S 3188 of 3320
)d op unitNormalize
--R 
--R
--RThere is one exposed function called unitNormalize :
--R   [1] Factored(D1) -> Factored(D1) from Factored(D1) if D1 has INTDOM
--R            
--R
--RExamples of unitNormalize from Factored
--R
--E 3188

--S 3189 of 3320
)d op units
--R 
--R
--RThere are 5 unexposed functions called units :
--R   [1] (List(DrawOption),List(Float)) -> List(Float) from 
--R            DrawOptionFunctions0
--R   [2] (GraphImage,List(Float)) -> List(Float) from GraphImage
--R   [3] GraphImage -> List(Float) from GraphImage
--R   [4] (TwoDimensionalViewport,PositiveInteger,Palette) -> Void
--R             from TwoDimensionalViewport
--R   [5] (TwoDimensionalViewport,PositiveInteger,String) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of units from DrawOptionFunctions0
--R
--R
--RExamples of units from GraphImage
--R
--R
--RExamples of units from TwoDimensionalViewport
--R
--E 3189

--S 3190 of 3320
)d op unitsColorDefault
--R 
--R
--RThere are 2 exposed functions called unitsColorDefault :
--R   [1]  -> Palette from ViewDefaultsPackage
--R   [2] Palette -> Palette from ViewDefaultsPackage
--R
--RExamples of unitsColorDefault from ViewDefaultsPackage
--R
--E 3190

--S 3191 of 3320
)d op unitVector
--R 
--R
--RThere is one exposed function called unitVector :
--R   [1] PositiveInteger -> D from D
--R             if D has DIRPCAT(D2,D3) and D3 has RING and D3 has TYPE
--R         
--R
--RThere are 2 unexposed functions called unitVector :
--R   [1] D1 -> GeneralModulePolynomial(D2,D3,D1,D4,D5,D6)
--R             from GeneralModulePolynomial(D2,D3,D1,D4,D5,D6)
--R             if D2: LIST(SYMBOL) and D3 has COMRING and D4 has DIRPCAT(
--R            #(D2),NNI) and D5: ((Record(index: D1,exponent: D4),Record(
--R            index: D1,exponent: D4)) -> Boolean) and D1 has ORDSET and 
--R            D6 has POLYCAT(D3,D4,OVAR(D2))
--R   [2] Point(DoubleFloat) -> Point(DoubleFloat) from TubePlotTools
--R
--RExamples of unitVector from DirectProductCategory
--R
--R
--RExamples of unitVector from GeneralModulePolynomial
--R
--R
--RExamples of unitVector from TubePlotTools
--R
--E 3191

--S 3192 of 3320
)d op univariate
--R 
--R
--RThere are 6 exposed functions called univariate :
--R   [1] (D,Kernel(D)) -> Fraction(SparseUnivariatePolynomial(D)) from D
--R             if D has FS(D3) and D3 has ORDSET and D3 has INTDOM
--R   [2] D2 -> SparseUnivariatePolynomial(D3) from PackageForPoly(D3,D2,
--R            D4,D5)
--R             if D3 has RING and D4 has DIRPCAT(D5,NNI) and D5: NNI and 
--R            D2 has FAMR(D3,D4)
--R   [3] (Polynomial(D5),Variable(D4)) -> UnivariatePolynomial(D4,
--R            Polynomial(D5))
--R             from PolynomialToUnivariatePolynomial(D4,D5)
--R             if D4: SYMBOL and D5 has RING
--R   [4] D -> SparseUnivariatePolynomial(D2) from D
--R             if D has POLYCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [5] (D,D2) -> SparseUnivariatePolynomial(D) from D
--R             if D3 has RING and D4 has OAMONS and D2 has ORDSET and D
--R             has POLYCAT(D3,D4,D2)
--R   [6] (Fraction(Polynomial(D4)),Symbol) -> Fraction(
--R            SparseUnivariatePolynomial(Fraction(Polynomial(D4))))
--R             from RationalFunction(D4) if D4 has INTDOM
--R
--RThere are 3 unexposed functions called univariate :
--R   [1] (D2,Kernel(D2),Kernel(D2),SparseUnivariatePolynomial(D2)) -> 
--R            SparseUnivariatePolynomial(Fraction(SparseUnivariatePolynomial(D2
--R            )))
--R             from GenusZeroIntegration(D5,D2,D6)
--R             if D2 has Join(FunctionSpace(D5),AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory) and D5 has Join(GcdDomain,
--R            RetractableTo(Integer),OrderedSet,CharacteristicZero,
--R            LinearlyExplicitRingOver(Integer)) and D6 has SETCAT
--R   [2] (D2,D3) -> Fraction(SparseUnivariatePolynomial(D2))
--R             from PolynomialCategoryQuotientFunctions(D4,D3,D5,D6,D2)
--R             if D4 has OAMONS and D3 has ORDSET and D5 has RING and D6
--R             has POLYCAT(D5,D4,D3) and D2 has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6
--R   [3] (D2,D3,SparseUnivariatePolynomial(D2)) -> 
--R            SparseUnivariatePolynomial(D2)
--R             from PolynomialCategoryQuotientFunctions(D4,D3,D5,D6,D2)
--R             if D2 has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6and D6 has POLYCAT(D5,D4,D3) and D4
--R             has OAMONS and D3 has ORDSET and D5 has RING
--R
--RExamples of univariate from FunctionSpace
--R
--R
--RExamples of univariate from GenusZeroIntegration
--R
--R
--RExamples of univariate from PackageForPoly
--R
--R
--RExamples of univariate from PolynomialToUnivariatePolynomial
--R
--R
--RExamples of univariate from PolynomialCategory
--R
--R
--RExamples of univariate from PolynomialCategoryQuotientFunctions
--R
--R
--RExamples of univariate from RationalFunction
--R
--E 3192

--S 3193 of 3320
)d op univariate?
--R 
--R
--RThere is one unexposed function called univariate? :
--R   [1] D2 -> Boolean from PolynomialSetUtilitiesPackage(D3,D4,D5,D2)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5)
--R
--RExamples of univariate? from PolynomialSetUtilitiesPackage
--R
--E 3193

--S 3194 of 3320
)d op univariatePolynomial
--R 
--R
--RThere are 2 exposed functions called univariatePolynomial :
--R   [1] (UnivariateFormalPowerSeries(D3),NonNegativeInteger) -> 
--R            UnivariatePolynomial(QUOTE(x),D3)
--R             from UnivariateFormalPowerSeries(D3) if D3 has RING
--R   [2] (UnivariateTaylorSeriesCZero(D3,D4),NonNegativeInteger) -> 
--R            UnivariatePolynomial(D4,D3)
--R             from UnivariateTaylorSeriesCZero(D3,D4) if D3 has RING and
--R            D4: SYMBOL
--R
--RThere are 2 unexposed functions called univariatePolynomial :
--R   [1] (SparseUnivariateTaylorSeries(D3,D4,D5),NonNegativeInteger) -> 
--R            UnivariatePolynomial(D4,D3)
--R             from SparseUnivariateTaylorSeries(D3,D4,D5)
--R             if D3 has RING and D4: SYMBOL and D5: D3
--R   [2] (UnivariateTaylorSeries(D3,D4,D5),NonNegativeInteger) -> 
--R            UnivariatePolynomial(D4,D3)
--R             from UnivariateTaylorSeries(D3,D4,D5)
--R             if D3 has RING and D4: SYMBOL and D5: D3
--R
--RExamples of univariatePolynomial from SparseUnivariateTaylorSeries
--R
--R
--RExamples of univariatePolynomial from UnivariateFormalPowerSeries
--R
--R
--RExamples of univariatePolynomial from UnivariateTaylorSeries
--R
--R
--RExamples of univariatePolynomial from UnivariateTaylorSeriesCZero
--R
--E 3194

--S 3195 of 3320
)d op univariatePolynomialsGcds
--R 
--R
--RThere are 2 unexposed functions called univariatePolynomialsGcds :
--R   [1] List(D5) -> List(D5) from PolynomialSetUtilitiesPackage(D2,D3,D4
--R            ,D5)
--R             if D5 has RPOLCAT(D2,D3,D4) and D2 has GCDDOM and D2 has 
--R            INTDOM and D3 has OAMONS and D4 has ORDSET
--R   [2] (List(D6),Boolean) -> List(D6)
--R             from PolynomialSetUtilitiesPackage(D3,D4,D5,D6)
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has GCDDOM and D3 has 
--R            INTDOM and D4 has OAMONS and D5 has ORDSET
--R
--RExamples of univariatePolynomialsGcds from PolynomialSetUtilitiesPackage
--R
--E 3195

--S 3196 of 3320
)d op univariateSolve
--R 
--R
--RThere are 5 exposed functions called univariateSolve :
--R   [1] RegularChain(D3,D4) -> List(Record(complexRoots: 
--R            SparseUnivariatePolynomial(D3),coordinates: List(Polynomial(D3)))
--R            )
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R   [2] (List(Polynomial(D4)),Boolean,Boolean,Boolean) -> List(Record(
--R            complexRoots: SparseUnivariatePolynomial(D4),coordinates: List(
--R            Polynomial(D4))))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [3] (List(Polynomial(D4)),Boolean,Boolean) -> List(Record(
--R            complexRoots: SparseUnivariatePolynomial(D4),coordinates: List(
--R            Polynomial(D4))))
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [4] (List(Polynomial(D4)),Boolean) -> List(Record(complexRoots: 
--R            SparseUnivariatePolynomial(D4),coordinates: List(Polynomial(D4)))
--R            )
--R             from ZeroDimensionalSolvePackage(D4,D5,D6)
--R             if D4 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D5: LIST(SYMBOL) and 
--R            D6: LIST(SYMBOL)
--R   [5] List(Polynomial(D3)) -> List(Record(complexRoots: 
--R            SparseUnivariatePolynomial(D3),coordinates: List(Polynomial(D3)))
--R            )
--R             from ZeroDimensionalSolvePackage(D3,D4,D5)
--R             if D3 has Join(OrderedRing,EuclideanDomain,
--R            CharacteristicZero,RealConstant) and D4: LIST(SYMBOL) and 
--R            D5: LIST(SYMBOL)
--R
--RExamples of univariateSolve from ZeroDimensionalSolvePackage
--R
--E 3196

--S 3197 of 3320
)d op univcase
--R 
--R
--RThere is one unexposed function called univcase :
--R   [1] (D2,D3) -> Factored(D2) from MultivariateSquareFree(D4,D3,D5,D2)
--R             if D4 has OAMONS and D3 has ORDSET and D5 has EUCDOM and 
--R            D2 has POLYCAT(D5,D4,D3)
--R
--RExamples of univcase from MultivariateSquareFree
--R
--E 3197

--S 3198 of 3320
)d op universe
--R 
--R
--RThere is one exposed function called universe :
--R   [1]  -> D from D if D has FSAGG(D1) and D1 has FINITE and D1 has 
--R            SETCAT
--R
--RExamples of universe from FiniteSetAggregate
--R
--E 3198

--S 3199 of 3320
)d op unmakeSUP
--R 
--R
--RThere is one exposed function called unmakeSUP :
--R   [1] SparseUnivariatePolynomial(D2) -> D from D if D2 has RING and D
--R             has UPOLYC(D2)
--R
--RExamples of unmakeSUP from UnivariatePolynomialCategory
--R
--E 3199

--S 3200 of 3320
)d op unparse
--R 
--R
--RThere is one unexposed function called unparse :
--R   [1] InputForm -> String from InputForm
--R
--RExamples of unparse from InputForm
--R
--E 3200

--S 3201 of 3320
)d op unprotectedRemoveRedundantFactors
--R 
--R
--RThere is one unexposed function called unprotectedRemoveRedundantFactors :
--R   [1] (D2,D2) -> List(D2) from PolynomialSetUtilitiesPackage(D3,D4,D5,
--R            D2)
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has RPOLCAT(D3,D4,D5)
--R
--RExamples of unprotectedRemoveRedundantFactors from PolynomialSetUtilitiesPackage
--R
--E 3201

--S 3202 of 3320
)d op unrankImproperPartitions0
--R 
--R
--RThere is one exposed function called unrankImproperPartitions0 :
--R   [1] (Integer,Integer,Integer) -> List(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of unrankImproperPartitions0 from SymmetricGroupCombinatoricFunctions
--R
--E 3202

--S 3203 of 3320
)d op unrankImproperPartitions1
--R 
--R
--RThere is one exposed function called unrankImproperPartitions1 :
--R   [1] (Integer,Integer,Integer) -> List(Integer)
--R             from SymmetricGroupCombinatoricFunctions
--R
--RExamples of unrankImproperPartitions1 from SymmetricGroupCombinatoricFunctions
--R
--E 3203

--S 3204 of 3320
)d op unravel
--R 
--R
--RThere is one exposed function called unravel :
--R   [1] List(D4) -> CartesianTensor(D2,D3,D4) from CartesianTensor(D2,D3
--R            ,D4)
--R             if D4 has COMRING and D2: INT and D3: NNI
--R
--RExamples of unravel from CartesianTensor
--R
--E 3204

--S 3205 of 3320
)d op untab
--R 
--R
--RThere is one unexposed function called untab :
--R   [1] (List(List(D3)),List(List(List(D3)))) -> List(List(D3))
--R             from TableauxBumpers(D3) if D3 has ORDSET
--R
--RExamples of untab from TableauxBumpers
--R
--E 3205

--S 3206 of 3320
)d op unvectorise
--R 
--R
--RThere is one exposed function called unvectorise :
--R   [1] Vector(D2) -> D from D if D2 has RING and D has UPOLYC(D2)
--R
--RThere are 2 unexposed functions called unvectorise :
--R   [1] Vector(D3) -> D1 from GaloisGroupPolynomialUtilities(D3,D1)
--R             if D3 has RING and D1 has UPOLYC(D3)
--R   [2] (Vector(Expression(D4)),Fraction(SparseUnivariatePolynomial(
--R            Expression(D4))),Integer) -> Fraction(SparseUnivariatePolynomial(
--R            Expression(D4)))
--R             from TransSolvePackageService(D4)
--R             if D4 has Join(IntegralDomain,OrderedSet)
--R
--RExamples of unvectorise from GaloisGroupPolynomialUtilities
--R
--R
--RExamples of unvectorise from TransSolvePackageService
--R
--R
--RExamples of unvectorise from UnivariatePolynomialCategory
--R
--Rt1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6 
--Rt2:=vectorise(t1,4) 
--Rt3:UP(x,FRAC(INT)):=unvectorise(t2)
--R
--E 3206

--S 3207 of 3320
)d op UnVectorise
--R 
--R
--RThere is one unexposed function called UnVectorise :
--R   [1] Vector(D2) -> ModMonic(D2,D3) from ModMonic(D2,D3)
--R             if D2 has RING and D3 has UPOLYC(D2)
--R
--RExamples of UnVectorise from ModMonic
--R
--E 3207

--S 3208 of 3320
)d op UP2ifCan
--R 
--R
--RThere is one unexposed function called UP2ifCan :
--R   [1] D2 -> Union(overq: SparseUnivariatePolynomial(Fraction(Integer))
--R            ,overan: SparseUnivariatePolynomial(AlgebraicNumber),failed: 
--R            Boolean)
--R             from FunctionSpaceUnivariatePolynomialFactor(D3,D4,D2)
--R             if D3 has Join(IntegralDomain,OrderedSet,RetractableTo(
--R            Integer)) and D4 has FS(D3) and D2 has UPOLYC(D4)
--R
--RExamples of UP2ifCan from FunctionSpaceUnivariatePolynomialFactor
--R
--E 3208

--S 3209 of 3320
)d op UP2UTS
--R 
--R
--RThere is one unexposed function called UP2UTS :
--R   [1] D2 -> D1 from UTSodetools(D3,D2,D4,D1)
--R             if D3 has RING and D2 has UPOLYC(D3) and D1 has UTSCAT(D3)
--R            and D4 has LODOCAT(D2)
--R
--RExamples of UP2UTS from UTSodetools
--R
--E 3209

--S 3210 of 3320
)d op updatD
--R 
--R
--RThere is one unexposed function called updatD :
--R   [1] (List(Record(lcmfij: D3,totdeg: NonNegativeInteger,poli: D5,polj
--R            : D5)),List(Record(lcmfij: D3,totdeg: NonNegativeInteger,poli: D5
--R            ,polj: D5))) -> List(Record(lcmfij: D3,totdeg: NonNegativeInteger
--R            ,poli: D5,polj: D5))
--R             from GroebnerInternalPackage(D2,D3,D4,D5)
--R             if D3 has OAMONS and D5 has POLYCAT(D2,D3,D4) and D2 has 
--R            GCDDOM and D4 has ORDSET
--R
--RExamples of updatD from GroebnerInternalPackage
--R
--E 3210

--S 3211 of 3320
)d op update
--R 
--R
--RThere is one unexposed function called update :
--R   [1] (TwoDimensionalViewport,GraphImage,PositiveInteger) -> Void
--R             from TwoDimensionalViewport
--R
--RExamples of update from TwoDimensionalViewport
--R
--E 3211

--S 3212 of 3320
)d op upDateBranches
--R 
--R
--RThere are 2 exposed functions called upDateBranches :
--R   [1] (List(D1),List(D2),List(Record(val: List(D1),tower: D2)),Record(
--R            done: List(D2),todo: List(Record(val: List(D1),tower: D2))),
--R            NonNegativeInteger) -> List(Record(val: List(D1),tower: D2))
--R             from RegularSetDecompositionPackage(D8,D9,D10,D1,D2)
--R             if D1 has RPOLCAT(D8,D9,D10) and D2 has RSETCAT(D8,D9,D10,
--R            D1) and D8 has GCDDOM and D9 has OAMONS and D10 has ORDSET
--R            
--R   [2] (List(D1),List(D2),List(Record(val: List(D1),tower: D2)),Record(
--R            done: List(D2),todo: List(Record(val: List(D1),tower: D2))),
--R            NonNegativeInteger) -> List(Record(val: List(D1),tower: D2))
--R             from SquareFreeRegularSetDecompositionPackage(D8,D9,D10,D1
--R            ,D2)
--R             if D1 has RPOLCAT(D8,D9,D10) and D2 has SFRTCAT(D8,D9,D10,
--R            D1) and D8 has GCDDOM and D9 has OAMONS and D10 has ORDSET
--R            
--R
--RExamples of upDateBranches from RegularSetDecompositionPackage
--R
--R
--RExamples of upDateBranches from SquareFreeRegularSetDecompositionPackage
--R
--E 3212

--S 3213 of 3320
)d op updateStatus!
--R 
--R
--RThere is one unexposed function called updateStatus! :
--R   [1] SplittingTree(D1,D2) -> SplittingTree(D1,D2) from SplittingTree(
--R            D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of updateStatus! from SplittingTree
--R
--E 3213

--S 3214 of 3320
)d op updatF
--R 
--R
--RThere is one unexposed function called updatF :
--R   [1] (D2,NonNegativeInteger,List(Record(totdeg: NonNegativeInteger,
--R            pol: D2))) -> List(Record(totdeg: NonNegativeInteger,pol: D2))
--R             from GroebnerInternalPackage(D4,D5,D6,D2)
--R             if D2 has POLYCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R
--RExamples of updatF from GroebnerInternalPackage
--R
--E 3214

--S 3215 of 3320
)d op upperCase
--R 
--R
--RThere are 3 exposed functions called upperCase :
--R   [1]  -> CharacterClass from CharacterClass
--R   [2] Character -> Character from Character
--R   [3] D -> D from D if D has SRAGG
--R
--RExamples of upperCase from CharacterClass
--R
--R
--RExamples of upperCase from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[upperCase c for c in chars]
--R
--R
--RExamples of upperCase from StringAggregate
--R
--E 3215

--S 3216 of 3320
)d op upperCase!
--R 
--R
--RThere is one exposed function called upperCase! :
--R   [1] D -> D from D if D has SRAGG
--R
--RExamples of upperCase! from StringAggregate
--R
--E 3216

--S 3217 of 3320 done
)d op upperCase?
--R 
--R
--RThere is one exposed function called upperCase? :
--R   [1] Character -> Boolean from Character
--R
--RExamples of upperCase? from Character
--R
--Rchars := [char "a", char "A", char "X", char "8", char "+"] 
--R[upperCase? c for c in chars]
--R
--E 3217

--S 3218 of 3320
)d op UpTriBddDenomInv
--R 
--R
--RThere is one unexposed function called UpTriBddDenomInv :
--R   [1] (D1,D2) -> D1 from TriangularMatrixOperations(D2,D3,D4,D1)
--R             if D2 has INTDOM and D3 has FLAGG(D2) and D4 has FLAGG(D2)
--R            and D1 has MATCAT(D2,D3,D4)
--R
--RExamples of UpTriBddDenomInv from TriangularMatrixOperations
--R
--E 3218

--S 3219 of 3320
)d op useEisensteinCriterion
--R 
--R
--RThere is one unexposed function called useEisensteinCriterion :
--R   [1] Boolean -> Boolean from GaloisGroupFactorizer(D2) if D2 has 
--R            UPOLYC(INT)
--R
--RExamples of useEisensteinCriterion from GaloisGroupFactorizer
--R
--E 3219

--S 3220 of 3320
)d op useEisensteinCriterion?
--R 
--R
--RThere is one unexposed function called useEisensteinCriterion? :
--R   [1]  -> Boolean from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R            
--R
--RExamples of useEisensteinCriterion? from GaloisGroupFactorizer
--R
--E 3220

--S 3221 of 3320
)d op useNagFunctions
--R 
--R
--RThere are 2 exposed functions called useNagFunctions :
--R   [1] Boolean -> Boolean from FortranExpression(D2,D3,D4)
--R             if D2: LIST(SYMBOL) and D3: LIST(SYMBOL) and D4 has FMTC
--R         
--R   [2]  -> Boolean from FortranExpression(D2,D3,D4)
--R             if D2: LIST(SYMBOL) and D3: LIST(SYMBOL) and D4 has FMTC
--R         
--R
--RExamples of useNagFunctions from FortranExpression
--R
--E 3221

--S 3222 of 3320
)d op userOrdered?
--R 
--R
--RThere is one unexposed function called userOrdered? :
--R   [1]  -> Boolean from UserDefinedPartialOrdering(D2) if D2 has SETCAT
--R            
--R
--RExamples of userOrdered? from UserDefinedPartialOrdering
--R
--E 3222

--S 3223 of 3320
)d op useSingleFactorBound
--R 
--R
--RThere is one unexposed function called useSingleFactorBound :
--R   [1] Boolean -> Boolean from GaloisGroupFactorizer(D2) if D2 has 
--R            UPOLYC(INT)
--R
--RExamples of useSingleFactorBound from GaloisGroupFactorizer
--R
--E 3223

--S 3224 of 3320
)d op useSingleFactorBound?
--R 
--R
--RThere is one unexposed function called useSingleFactorBound? :
--R   [1]  -> Boolean from GaloisGroupFactorizer(D2) if D2 has UPOLYC(INT)
--R            
--R
--RExamples of useSingleFactorBound? from GaloisGroupFactorizer
--R
--E 3224

--S 3225 of 3320
)d op usingTable?
--R 
--R
--RThere is one unexposed function called usingTable? :
--R   [1]  -> Boolean from TabulatedComputationPackage(D2,D3)
--R             if D2 has SETCAT and D3 has SETCAT
--R
--RExamples of usingTable? from TabulatedComputationPackage
--R
--E 3225

--S 3226 of 3320
)d op UTS2UP
--R 
--R
--RThere is one unexposed function called UTS2UP :
--R   [1] (D2,NonNegativeInteger) -> D1 from UTSodetools(D4,D1,D5,D2)
--R             if D4 has RING and D1 has UPOLYC(D4) and D5 has LODOCAT(D1
--R            ) and D2 has UTSCAT(D4)
--R
--RExamples of UTS2UP from UTSodetools
--R
--E 3226

--S 3227 of 3320
)d op validExponential
--R 
--R
--RThere is one exposed function called validExponential :
--R   [1] (List(Kernel(D1)),D1,Symbol) -> Union(D1,"failed")
--R             from ElementaryFunctionStructurePackage(D4,D1)
--R             if D1 has Join(AlgebraicallyClosedField,
--R            TranscendentalFunctionCategory,FunctionSpace(D4)) and D4
--R             has Join(IntegralDomain,OrderedSet,RetractableTo(Integer),
--R            LinearlyExplicitRingOver(Integer))
--R
--RExamples of validExponential from ElementaryFunctionStructurePackage
--R
--E 3227

--S 3228 of 3320
)d op value
--R 
--R
--RThere are 3 exposed functions called value :
--R   [1] OrdSetInts -> Integer from OrdSetInts
--R   [2] QueryEquation -> String from QueryEquation
--R   [3] D -> D1 from D if D has RCAGG(D1) and D1 has TYPE
--R
--RThere is one unexposed function called value :
--R   [1] SplittingNode(D1,D2) -> D1 from SplittingNode(D1,D2)
--R             if D1 has Join(SetCategory,Aggregate) and D2 has Join(
--R            SetCategory,Aggregate)
--R
--RExamples of value from OrdSetInts
--R
--R
--RExamples of value from QueryEquation
--R
--R
--RExamples of value from RecursiveAggregate
--R
--R
--RExamples of value from SplittingNode
--R
--E 3228

--S 3229 of 3320
)d op var1Steps
--R 
--R
--RThere is one exposed function called var1Steps :
--R   [1] PositiveInteger -> DrawOption from DrawOption
--R
--RThere is one unexposed function called var1Steps :
--R   [1] (List(DrawOption),PositiveInteger) -> PositiveInteger
--R             from DrawOptionFunctions0
--R
--RExamples of var1Steps from DrawOptionFunctions0
--R
--R
--RExamples of var1Steps from DrawOption
--R
--E 3229

--S 3230 of 3320
)d op var1StepsDefault
--R 
--R
--RThere are 2 exposed functions called var1StepsDefault :
--R   [1]  -> PositiveInteger from ViewDefaultsPackage
--R   [2] PositiveInteger -> PositiveInteger from ViewDefaultsPackage
--R
--RExamples of var1StepsDefault from ViewDefaultsPackage
--R
--E 3230

--S 3231 of 3320
)d op var2Steps
--R 
--R
--RThere is one exposed function called var2Steps :
--R   [1] PositiveInteger -> DrawOption from DrawOption
--R
--RThere is one unexposed function called var2Steps :
--R   [1] (List(DrawOption),PositiveInteger) -> PositiveInteger
--R             from DrawOptionFunctions0
--R
--RExamples of var2Steps from DrawOptionFunctions0
--R
--R
--RExamples of var2Steps from DrawOption
--R
--E 3231

--S 3232 of 3320
)d op var2StepsDefault
--R 
--R
--RThere are 2 exposed functions called var2StepsDefault :
--R   [1]  -> PositiveInteger from ViewDefaultsPackage
--R   [2] PositiveInteger -> PositiveInteger from ViewDefaultsPackage
--R
--RExamples of var2StepsDefault from ViewDefaultsPackage
--R
--E 3232

--S 3233 of 3320
)d op variable
--R 
--R
--RThere are 4 exposed functions called variable :
--R   [1] D -> D1 from D if D has DVARCAT(D1) and D1 has ORDSET
--R   [2] QueryEquation -> Symbol from QueryEquation
--R   [3] SegmentBinding(D2) -> Symbol from SegmentBinding(D2) if D2 has 
--R            TYPE
--R   [4] D -> Symbol from D if D has UPSCAT(D2,D3) and D2 has RING and D3
--R             has OAMON
--R
--RThere are 2 unexposed functions called variable :
--R   [1] Symbol -> Union(OrderedVariableList(D2),"failed")
--R             from OrderedVariableList(D2) if D2: LIST(SYMBOL)
--R   [2]  -> Symbol from Variable(D2) if D2: SYMBOL
--R
--RExamples of variable from DifferentialVariableCategory
--R
--R
--RExamples of variable from OrderedVariableList
--R
--R
--RExamples of variable from QueryEquation
--R
--R
--RExamples of variable from SegmentBinding
--R
--R
--RExamples of variable from UnivariatePowerSeriesCategory
--R
--R
--RExamples of variable from Variable
--R
--E 3233

--S 3234 of 3320
)d op variableName
--R 
--R
--RThere is one exposed function called variableName :
--R   [1] Symbol -> GuessOption from GuessOption
--R
--RThere is one unexposed function called variableName :
--R   [1] List(GuessOption) -> Symbol from GuessOptionFunctions0
--R
--RExamples of variableName from GuessOptionFunctions0
--R
--R
--RExamples of variableName from GuessOption
--R
--E 3234

--S 3235 of 3320
)d op variableOf
--R 
--R
--RThere is one exposed function called variableOf :
--R   [1] SimpleCell(D2,D3) -> Symbol from SimpleCell(D2,D3)
--R             if D2 has RCFIELD and D3 has UPOLYC(D2)
--R
--RExamples of variableOf from SimpleCell
--R
--E 3235

--S 3236 of 3320
)d op variables
--R 
--R
--RThere are 7 exposed functions called variables :
--R   [1] Record(lfn: List(Expression(DoubleFloat)),init: List(DoubleFloat
--R            )) -> List(Symbol)
--R             from e04AgentsPackage
--R   [2] FortranExpression(D2,D3,D4) -> List(Symbol)
--R             from FortranExpression(D2,D3,D4)
--R             if D2: LIST(SYMBOL) and D3: LIST(SYMBOL) and D4 has FMTC
--R         
--R   [3] D -> List(Symbol) from D if D has FS(D2) and D2 has ORDSET
--R   [4] D -> List(D4) from D
--R             if D has POLYCAT(D2,D3,D4) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET
--R   [5] D -> List(D4) from D
--R             if D has PSCAT(D2,D3,D4) and D2 has RING and D3 has OAMON 
--R            and D4 has ORDSET
--R   [6] D -> List(D4) from D
--R             if D has PSETCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            OAMONS and D4 has ORDSET and D5 has RPOLCAT(D2,D3,D4)
--R   [7] Fraction(Polynomial(D3)) -> List(Symbol) from RationalFunction(
--R            D3)
--R             if D3 has INTDOM
--R
--RThere are 3 unexposed functions called variables :
--R   [1] SparseUnivariatePolynomial(D6) -> List(D4)
--R             from FactoringUtilities(D3,D4,D5,D6)
--R             if D6 has POLYCAT(D5,D3,D4) and D3 has OAMONS and D4 has 
--R            ORDSET and D5 has RING
--R   [2] Pattern(D2) -> List(Pattern(D2)) from Pattern(D2) if D2 has 
--R            SETCAT
--R   [3] D2 -> List(D4) from PolynomialCategoryQuotientFunctions(D3,D4,D5
--R            ,D6,D2)
--R             if D3 has OAMONS and D4 has ORDSET and D5 has RING and D6
--R             has POLYCAT(D5,D3,D4) and D2 has Fieldwith
--R               coerce : D6 -> %
--R               numer : % -> D6
--R               denom : % -> D6
--R
--RExamples of variables from e04AgentsPackage
--R
--R
--RExamples of variables from FactoringUtilities
--R
--R
--RExamples of variables from FortranExpression
--R
--R
--RExamples of variables from FunctionSpace
--R
--R
--RExamples of variables from Pattern
--R
--R
--RExamples of variables from PolynomialCategory
--R
--R
--RExamples of variables from PolynomialCategoryQuotientFunctions
--R
--R
--RExamples of variables from PowerSeriesCategory
--R
--R
--RExamples of variables from PolynomialSetCategory
--R
--R
--RExamples of variables from RationalFunction
--R
--E 3236

--S 3237 of 3320
)d op variablesOf
--R 
--R
--RThere is one exposed function called variablesOf :
--R   [1] Cell(D2) -> List(Symbol) from Cell(D2) if D2 has RCFIELD
--R
--RExamples of variablesOf from Cell
--R
--E 3237

--S 3238 of 3320
)d op variationOfParameters
--R 
--R
--RThere is one unexposed function called variationOfParameters :
--R   [1] (D2,D3,List(D3)) -> Union(Vector(D3),"failed") from ODETools(D3,
--R            D2)
--R             if D3 has FIELD and D2 has LODOCAT(D3)
--R
--RExamples of variationOfParameters from ODETools
--R
--E 3238

--S 3239 of 3320
)d op vark
--R 
--R
--RThere is one unexposed function called vark :
--R   [1] (List(D5),Symbol) -> List(Kernel(D5)) from IntegrationTools(D4,
--R            D5)
--R             if D5 has FS(D4) and D4 has ORDSET
--R
--RExamples of vark from IntegrationTools
--R
--E 3239

--S 3240 of 3320
)d op varList
--R 
--R
--RThere are 4 exposed functions called varList :
--R   [1] (Symbol,NonNegativeInteger) -> List(Symbol) from 
--R            d03AgentsPackage
--R   [2] (Expression(DoubleFloat),NonNegativeInteger) -> List(Symbol)
--R             from e04AgentsPackage
--R   [3] D -> List(D2) from D
--R             if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
--R            
--R   [4] D -> List(D2) from D if D has XFALG(D2,D3) and D2 has ORDSET and
--R            D3 has RING
--R
--RThere are 5 unexposed functions called varList :
--R   [1] LieExponentials(D2,D3,D4) -> List(D2) from LieExponentials(D2,D3
--R            ,D4)
--R             if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
--R            Fraction(Integer))) and D4: PI
--R   [2] LyndonWord(D2) -> List(D2) from LyndonWord(D2) if D2 has ORDSET
--R            
--R   [3] Magma(D2) -> List(D2) from Magma(D2) if D2 has ORDSET
--R   [4] OrderedFreeMonoid(D2) -> List(D2) from OrderedFreeMonoid(D2) if 
--R            D2 has ORDSET
--R   [5] PoincareBirkhoffWittLyndonBasis(D2) -> List(D2)
--R             from PoincareBirkhoffWittLyndonBasis(D2) if D2 has ORDSET
--R            
--R
--RExamples of varList from d03AgentsPackage
--R
--R
--RExamples of varList from e04AgentsPackage
--R
--R
--RExamples of varList from FreeLieAlgebra
--R
--R
--RExamples of varList from LieExponentials
--R
--R
--RExamples of varList from LyndonWord
--R
--R
--RExamples of varList from Magma
--R
--R
--RExamples of varList from OrderedFreeMonoid
--R
--Rm1:=(x*y*y*z)$OFMONOID(Symbol) 
--RvarList m1
--R
--R
--RExamples of varList from PoincareBirkhoffWittLyndonBasis
--R
--R
--RExamples of varList from XFreeAlgebra
--R
--E 3240

--S 3241 of 3320
)d op varselect
--R 
--R
--RThere is one unexposed function called varselect :
--R   [1] (List(Kernel(D4)),Symbol) -> List(Kernel(D4))
--R             from IntegrationTools(D3,D4) if D4 has FS(D3) and D3 has 
--R            ORDSET
--R
--RExamples of varselect from IntegrationTools
--R
--E 3241

--S 3242 of 3320
)d op vconcat
--R 
--R
--RThere are 2 unexposed functions called vconcat :
--R   [1] List(OutputForm) -> OutputForm from OutputForm
--R   [2] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of vconcat from OutputForm
--R
--E 3242

--S 3243 of 3320
)d op vector
--R 
--R
--RThere are 2 exposed functions called vector :
--R   [1] List(Complex(DoubleFloat)) -> ComplexDoubleFloatVector
--R             from ComplexDoubleFloatVector
--R   [2] List(D2) -> Vector(D2) from Vector(D2) if D2 has TYPE
--R
--RExamples of vector from ComplexDoubleFloatVector
--R
--Rt1:List(Complex(DoubleFloat)):=[1+2*%i,3+4*%i,-5-6*%i] 
--Rt2:CDFVEC:=vector(t1)
--R
--R
--RExamples of vector from Vector
--R
--E 3243

--S 3244 of 3320
--R-----------------)d op vector_add_mul (fix this)
--E 3244

--S 3245 of 3320
--R-----------------)d op vector_combination (fix this)
--E 3245

--S 3246 of 3320
)d op vectorise
--R 
--R
--RThere are 2 exposed functions called vectorise :
--R   [1] (D,D) -> Vector(D) from D if D has PACPERC
--R   [2] (D,NonNegativeInteger) -> Vector(D3) from D
--R             if D has UPOLYC(D3) and D3 has RING
--R
--RExamples of vectorise from PseudoAlgebraicClosureOfPerfectFieldCategory
--R
--R
--RExamples of vectorise from UnivariatePolynomialCategory
--R
--Rt1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6 
--Rt2:=vectorise(t1,4)
--R
--E 3246

--S 3247 of 3320
)d op Vectorise
--R 
--R
--RThere is one unexposed function called Vectorise :
--R   [1] ModMonic(D2,D3) -> Vector(D2) from ModMonic(D2,D3)
--R             if D2 has RING and D3 has UPOLYC(D2)
--R
--RExamples of Vectorise from ModMonic
--R
--E 3247

--S 3248 of 3320
)d op vedf2vef
--R 
--R
--RThere is one exposed function called vedf2vef :
--R   [1] Vector(Expression(DoubleFloat)) -> Vector(Expression(Float))
--R             from ExpertSystemToolsPackage
--R
--RExamples of vedf2vef from ExpertSystemToolsPackage
--R
--E 3248

--S 3249 of 3320 done
)d op vertConcat
--R 
--R
--RThere are 2 exposed functions called vertConcat :
--R   [1] List(D1) -> D1 from MatrixManipulation(D3,D4,D5,D1)
--R             if D3 has FIELD and D1 has MATCAT(D3,D4,D5) and D4 has 
--R            FLAGG(D3) and D5 has FLAGG(D3)
--R   [2] (D,D) -> D from D
--R             if D has MATCAT(D1,D2,D3) and D1 has RING and D2 has FLAGG
--R            (D1) and D3 has FLAGG(D1)
--R
--RExamples of vertConcat from MatrixManipulation
--R
--RA := matrix([[a]]) 
--RB := matrix([[b]]) 
--RC := matrix([[c]]) 
--RA21 := vertConcat([A,B,C])
--R
--R
--RExamples of vertConcat from MatrixCategory
--R
--Rm:=matrix [[j**i for i in 0..4] for j in 1..5] 
--RvertConcat(m,m)
--R
--E 3249

--S 3250 of 3320 done
)d op vertSplit
--R 
--R
--RThere are 2 exposed functions called vertSplit :
--R   [1] (D2,PositiveInteger) -> List(D2) from MatrixManipulation(D4,D5,
--R            D6,D2)
--R             if D4 has FIELD and D5 has FLAGG(D4) and D6 has FLAGG(D4) 
--R            and D2 has MATCAT(D4,D5,D6)
--R   [2] (D2,List(PositiveInteger)) -> List(D2)
--R             from MatrixManipulation(D4,D5,D6,D2)
--R             if D4 has FIELD and D5 has FLAGG(D4) and D6 has FLAGG(D4) 
--R            and D2 has MATCAT(D4,D5,D6)
--R
--RExamples of vertSplit from MatrixManipulation
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= vertSplit(E, [1,2,1])
--R
--RE := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]]) 
--Rt1:= vertSplit(E, 2)
--R
--E 3250

--S 3251 of 3320
)d op viewDefaults
--R 
--R
--RThere is one exposed function called viewDefaults :
--R   [1]  -> Void from ViewDefaultsPackage
--R
--RExamples of viewDefaults from ViewDefaultsPackage
--R
--E 3251

--S 3252 of 3320
)d op viewDeltaXDefault
--R 
--R
--RThere are 2 exposed functions called viewDeltaXDefault :
--R   [1] Float -> Float from ThreeDimensionalViewport
--R   [2]  -> Float from ThreeDimensionalViewport
--R
--RExamples of viewDeltaXDefault from ThreeDimensionalViewport
--R
--E 3252

--S 3253 of 3320
)d op viewDeltaYDefault
--R 
--R
--RThere are 2 exposed functions called viewDeltaYDefault :
--R   [1] Float -> Float from ThreeDimensionalViewport
--R   [2]  -> Float from ThreeDimensionalViewport
--R
--RExamples of viewDeltaYDefault from ThreeDimensionalViewport
--R
--E 3253

--S 3254 of 3320
)d op viewPhiDefault
--R 
--R
--RThere are 2 exposed functions called viewPhiDefault :
--R   [1] Float -> Float from ThreeDimensionalViewport
--R   [2]  -> Float from ThreeDimensionalViewport
--R
--RExamples of viewPhiDefault from ThreeDimensionalViewport
--R
--E 3254

--S 3255 of 3320
)d op viewpoint
--R 
--R
--RThere are 7 exposed functions called viewpoint :
--R   [1] Record(theta: DoubleFloat,phi: DoubleFloat,scale: DoubleFloat,
--R            scaleX: DoubleFloat,scaleY: DoubleFloat,scaleZ: DoubleFloat,
--R            deltaX: DoubleFloat,deltaY: DoubleFloat) -> DrawOption
--R             from DrawOption
--R   [2] (ThreeDimensionalViewport,Float,Float,Float) -> Void
--R             from ThreeDimensionalViewport
--R   [3] (ThreeDimensionalViewport,Float,Float) -> Void
--R             from ThreeDimensionalViewport
--R   [4] (ThreeDimensionalViewport,Integer,Integer,Float,Float,Float) -> 
--R            Void
--R             from ThreeDimensionalViewport
--R   [5] (ThreeDimensionalViewport,Record(theta: DoubleFloat,phi: 
--R            DoubleFloat,scale: DoubleFloat,scaleX: DoubleFloat,scaleY: 
--R            DoubleFloat,scaleZ: DoubleFloat,deltaX: DoubleFloat,deltaY: 
--R            DoubleFloat)) -> Void
--R             from ThreeDimensionalViewport
--R   [6] ThreeDimensionalViewport -> Record(theta: DoubleFloat,phi: 
--R            DoubleFloat,scale: DoubleFloat,scaleX: DoubleFloat,scaleY: 
--R            DoubleFloat,scaleZ: DoubleFloat,deltaX: DoubleFloat,deltaY: 
--R            DoubleFloat)
--R             from ThreeDimensionalViewport
--R   [7] (ThreeDimensionalViewport,Float,Float,Float,Float,Float) -> Void
--R             from ThreeDimensionalViewport
--R
--RThere is one unexposed function called viewpoint :
--R   [1] (List(DrawOption),Record(theta: DoubleFloat,phi: DoubleFloat,
--R            scale: DoubleFloat,scaleX: DoubleFloat,scaleY: DoubleFloat,scaleZ
--R            : DoubleFloat,deltaX: DoubleFloat,deltaY: DoubleFloat)) -> 
--R            Record(theta: DoubleFloat,phi: DoubleFloat,scale: DoubleFloat,
--R            scaleX: DoubleFloat,scaleY: DoubleFloat,scaleZ: DoubleFloat,
--R            deltaX: DoubleFloat,deltaY: DoubleFloat)
--R             from DrawOptionFunctions0
--R
--RExamples of viewpoint from DrawOptionFunctions0
--R
--R
--RExamples of viewpoint from DrawOption
--R
--R
--RExamples of viewpoint from ThreeDimensionalViewport
--R
--E 3255

--S 3256 of 3320
)d op viewport2D
--R 
--R
--RThere is one unexposed function called viewport2D :
--R   [1]  -> TwoDimensionalViewport from TwoDimensionalViewport
--R
--RExamples of viewport2D from TwoDimensionalViewport
--R
--E 3256

--S 3257 of 3320
)d op viewport3D
--R 
--R
--RThere is one exposed function called viewport3D :
--R   [1]  -> ThreeDimensionalViewport from ThreeDimensionalViewport
--R
--RExamples of viewport3D from ThreeDimensionalViewport
--R
--E 3257

--S 3258 of 3320
)d op viewPosDefault
--R 
--R
--RThere are 2 exposed functions called viewPosDefault :
--R   [1]  -> List(NonNegativeInteger) from ViewDefaultsPackage
--R   [2] List(NonNegativeInteger) -> List(NonNegativeInteger)
--R             from ViewDefaultsPackage
--R
--RExamples of viewPosDefault from ViewDefaultsPackage
--R
--E 3258

--S 3259 of 3320
)d op viewSizeDefault
--R 
--R
--RThere are 2 exposed functions called viewSizeDefault :
--R   [1]  -> List(PositiveInteger) from ViewDefaultsPackage
--R   [2] List(PositiveInteger) -> List(PositiveInteger) from 
--R            ViewDefaultsPackage
--R
--RExamples of viewSizeDefault from ViewDefaultsPackage
--R
--E 3259

--S 3260 of 3320
)d op viewThetaDefault
--R 
--R
--RThere are 2 exposed functions called viewThetaDefault :
--R   [1] Float -> Float from ThreeDimensionalViewport
--R   [2]  -> Float from ThreeDimensionalViewport
--R
--RExamples of viewThetaDefault from ThreeDimensionalViewport
--R
--E 3260

--S 3261 of 3320
)d op viewWriteAvailable
--R 
--R
--RThere is one exposed function called viewWriteAvailable :
--R   [1]  -> List(String) from ViewDefaultsPackage
--R
--RExamples of viewWriteAvailable from ViewDefaultsPackage
--R
--E 3261

--S 3262 of 3320
)d op viewWriteDefault
--R 
--R
--RThere are 2 exposed functions called viewWriteDefault :
--R   [1]  -> List(String) from ViewDefaultsPackage
--R   [2] List(String) -> List(String) from ViewDefaultsPackage
--R
--RExamples of viewWriteDefault from ViewDefaultsPackage
--R
--E 3262

--S 3263 of 3320
)d op viewZoomDefault
--R 
--R
--RThere are 2 exposed functions called viewZoomDefault :
--R   [1] Float -> Float from ThreeDimensionalViewport
--R   [2]  -> Float from ThreeDimensionalViewport
--R
--RExamples of viewZoomDefault from ThreeDimensionalViewport
--R
--E 3263

--S 3264 of 3320
)d op virtualDegree
--R 
--R
--RThere is one unexposed function called virtualDegree :
--R   [1] D2 -> NonNegativeInteger from GroebnerInternalPackage(D3,D4,D5,
--R            D2)
--R             if D3 has GCDDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D2 has POLYCAT(D3,D4,D5)
--R
--RExamples of virtualDegree from GroebnerInternalPackage
--R
--E 3264

--S 3265 of 3320
)d op void
--R 
--R
--RThere is one exposed function called void :
--R   [1]  -> Void from Void
--R
--RExamples of void from Void
--R
--E 3265

--S 3266 of 3320
)d op vspace
--R 
--R
--RThere is one unexposed function called vspace :
--R   [1] Integer -> OutputForm from OutputForm
--R
--RExamples of vspace from OutputForm
--R
--E 3266

--S 3267 of 3320
)d op weakBiRank
--R 
--R
--RThere is one exposed function called weakBiRank :
--R   [1] D2 -> NonNegativeInteger from AlgebraPackage(D3,D2)
--R             if D3 has INTDOM and D2 has FRNAALG(D3)
--R
--RExamples of weakBiRank from AlgebraPackage
--R
--E 3267

--S 3268 of 3320
)d op weierstrass
--R 
--R
--RThere is one unexposed function called weierstrass :
--R   [1] (Symbol,TaylorSeries(D4)) -> List(TaylorSeries(D4))
--R             from WeierstrassPreparation(D4) if D4 has FIELD
--R
--RExamples of weierstrass from WeierstrassPreparation
--R
--E 3268

--S 3269 of 3320
)d op weight
--R 
--R
--RThere are 5 exposed functions called weight :
--R   [1] (BasicOperator,NonNegativeInteger) -> BasicOperator from 
--R            BasicOperator
--R   [2] BasicOperator -> NonNegativeInteger from BasicOperator
--R   [3] (D,D2) -> NonNegativeInteger from D
--R             if D has DPOLCAT(D3,D2,D4,D5) and D3 has RING and D2 has 
--R            ORDSET and D4 has DVARCAT(D2) and D5 has OAMONS
--R   [4] D -> NonNegativeInteger from D
--R             if D has DPOLCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            ORDSET and D4 has DVARCAT(D3) and D5 has OAMONS
--R   [5] D -> NonNegativeInteger from D if D has DVARCAT(D2) and D2 has 
--R            ORDSET
--R
--RExamples of weight from BasicOperator
--R
--R
--RExamples of weight from DifferentialPolynomialCategory
--R
--R
--RExamples of weight from DifferentialVariableCategory
--R
--E 3269

--S 3270 of 3320
)d op weighted
--R 
--R
--RThere is one unexposed function called weighted :
--R   [1] List(Record(value: D3,weight: Integer)) -> (() -> D3)
--R             from RandomDistributions(D3) if D3 has SETCAT
--R
--RExamples of weighted from RandomDistributions
--R
--E 3270

--S 3271 of 3320
)d op weights
--R 
--R
--RThere are 2 exposed functions called weights :
--R   [1] (D,D2) -> List(NonNegativeInteger) from D
--R             if D has DPOLCAT(D3,D2,D4,D5) and D3 has RING and D2 has 
--R            ORDSET and D4 has DVARCAT(D2) and D5 has OAMONS
--R   [2] D -> List(NonNegativeInteger) from D
--R             if D has DPOLCAT(D2,D3,D4,D5) and D2 has RING and D3 has 
--R            ORDSET and D4 has DVARCAT(D3) and D5 has OAMONS
--R
--RExamples of weights from DifferentialPolynomialCategory
--R
--E 3271

--S 3272 of 3320
)d op whatInfinity
--R 
--R
--RThere is one exposed function called whatInfinity :
--R   [1] OrderedCompletion(D2) -> SingleInteger from OrderedCompletion(D2
--R            )
--R             if D2 has SETCAT
--R
--RExamples of whatInfinity from OrderedCompletion
--R
--E 3272

--S 3273 of 3320
)d op whileLoop
--R 
--R
--RThere is one exposed function called whileLoop :
--R   [1] (Switch,FortranCode) -> FortranCode from FortranCode
--R
--RExamples of whileLoop from FortranCode
--R
--E 3273

--S 3274 of 3320
)d op wholePart
--R 
--R
--RThere are 4 exposed functions called wholePart :
--R   [1] ContinuedFraction(D1) -> D1 from ContinuedFraction(D1) if D1
--R             has EUCDOM
--R   [2] PartialFraction(D1) -> D1 from PartialFraction(D1) if D1 has 
--R            EUCDOM
--R   [3] D -> D1 from D if D has QFCAT(D1) and D1 has INTDOM and D1 has 
--R            EUCDOM
--R   [4] D -> Integer from D if D has RNS
--R
--RExamples of wholePart from ContinuedFraction
--R
--R
--RExamples of wholePart from PartialFraction
--R
--Ra:=(74/13)::PFR(INT) 
--RwholePart(a)
--R
--R
--RExamples of wholePart from QuotientFieldCategory
--R
--R
--RExamples of wholePart from RealNumberSystem
--R
--E 3274

--S 3275 of 3320
)d op wholeRadix
--R 
--R
--RThere is one exposed function called wholeRadix :
--R   [1] List(Integer) -> RadixExpansion(D2) from RadixExpansion(D2) if 
--R            D2: INT
--R
--RExamples of wholeRadix from RadixExpansion
--R
--E 3275

--S 3276 of 3320
)d op wholeRagits
--R 
--R
--RThere is one exposed function called wholeRagits :
--R   [1] RadixExpansion(D2) -> List(Integer) from RadixExpansion(D2) if 
--R            D2: INT
--R
--RExamples of wholeRagits from RadixExpansion
--R
--E 3276

--S 3277 of 3320
)d op width
--R 
--R
--RThere is one exposed function called width :
--R   [1] D -> D1 from D
--R             if D has INTCAT(D1) and D1 has Join(FloatingPointSystem,
--R            TranscendentalFunctionCategory)
--R
--RThere are 2 unexposed functions called width :
--R   [1]  -> Integer from OutputForm
--R   [2] OutputForm -> Integer from OutputForm
--R
--RExamples of width from IntervalCategory
--R
--R
--RExamples of width from OutputForm
--R
--E 3277

--S 3278 of 3320
)d op withPredicates
--R 
--R
--RThere is one unexposed function called withPredicates :
--R   [1] (Pattern(D2),List(Any)) -> Pattern(D2) from Pattern(D2) if D2
--R             has SETCAT
--R
--RExamples of withPredicates from Pattern
--R
--E 3278

--S 3279 of 3320
)d op wordInGenerators
--R 
--R
--RThere is one exposed function called wordInGenerators :
--R   [1] (Permutation(D3),PermutationGroup(D3)) -> List(
--R            NonNegativeInteger)
--R             from PermutationGroup(D3) if D3 has SETCAT
--R
--RExamples of wordInGenerators from PermutationGroup
--R
--E 3279

--S 3280 of 3320
)d op wordInStrongGenerators
--R 
--R
--RThere is one exposed function called wordInStrongGenerators :
--R   [1] (Permutation(D3),PermutationGroup(D3)) -> List(
--R            NonNegativeInteger)
--R             from PermutationGroup(D3) if D3 has SETCAT
--R
--RExamples of wordInStrongGenerators from PermutationGroup
--R
--E 3280

--S 3281 of 3320
)d op wordsForStrongGenerators
--R 
--R
--RThere is one exposed function called wordsForStrongGenerators :
--R   [1] PermutationGroup(D2) -> List(List(NonNegativeInteger))
--R             from PermutationGroup(D2) if D2 has SETCAT
--R
--RExamples of wordsForStrongGenerators from PermutationGroup
--R
--E 3281

--S 3282 of 3320
)d op wreath
--R 
--R
--RThere is one exposed function called wreath :
--R   [1] (SymmetricPolynomial(Fraction(Integer)),SymmetricPolynomial(
--R            Fraction(Integer))) -> SymmetricPolynomial(Fraction(Integer))
--R             from CycleIndicators
--R
--RExamples of wreath from CycleIndicators
--R
--E 3282

--S 3283 of 3320
)d op writable?
--R 
--R
--RThere is one exposed function called writable? :
--R   [1] D -> Boolean from D if D has FNCAT
--R
--RExamples of writable? from FileNameCategory
--R
--E 3283

--S 3284 of 3320
)d op write
--R 
--R
--RThere are 3 exposed functions called write :
--R   [1] (ThreeDimensionalViewport,String,List(String)) -> String
--R             from ThreeDimensionalViewport
--R   [2] (ThreeDimensionalViewport,String,String) -> String
--R             from ThreeDimensionalViewport
--R   [3] (ThreeDimensionalViewport,String) -> String from 
--R            ThreeDimensionalViewport
--R
--RThere are 3 unexposed functions called write :
--R   [1] (TwoDimensionalViewport,String,List(String)) -> String
--R             from TwoDimensionalViewport
--R   [2] (TwoDimensionalViewport,String,String) -> String
--R             from TwoDimensionalViewport
--R   [3] (TwoDimensionalViewport,String) -> String from 
--R            TwoDimensionalViewport
--R
--RExamples of write from TwoDimensionalViewport
--R
--R
--RExamples of write from ThreeDimensionalViewport
--R
--E 3284

--S 3285 of 3320
)d op write!
--R 
--R
--RThere is one exposed function called write! :
--R   [1] (D,D1) -> D1 from D
--R             if D has FILECAT(D2,D1) and D2 has SETCAT and D1 has 
--R            SETCAT
--R
--RExamples of write! from FileCategory
--R
--E 3285

--S 3286 of 3320 done
)d op writeDotGraph
--R 
--R
--RThere is one exposed function called writeDotGraph :
--R   [1] (List(String),List(String),String) -> Void from Graphviz
--R
--RExamples of writeDotGraph from Graphviz
--R
--Rheader:=standardDotHeader() 
--Rgraph:=sampleDotGraph() 
--RwriteDotGraph(header,graph,"NeuralNet")
--R
--E 3286

--S 3287 of 3320
)d op writeLine!
--R 
--R
--RThere are 2 exposed functions called writeLine! :
--R   [1] TextFile -> String from TextFile
--R   [2] (TextFile,String) -> String from TextFile
--R
--RExamples of writeLine! from TextFile
--R
--E 3287

--S 3288 of 3320
)d op writeObj
--R 
--R
--RThere is one exposed function called writeObj :
--R   [1] (SubSpace(3,DoubleFloat),String) -> Void from Export3D
--R
--RExamples of writeObj from Export3D
--R
--E 3288

--S 3289 of 3320
)d op wronskianMatrix
--R 
--R
--RThere are 2 unexposed functions called wronskianMatrix :
--R   [1] List(D3) -> Matrix(D3) from ODETools(D3,D4)
--R             if D3 has FIELD and D4 has LODOCAT(D3)
--R   [2] (List(D4),NonNegativeInteger) -> Matrix(D4) from ODETools(D4,D5)
--R             if D4 has FIELD and D5 has LODOCAT(D4)
--R
--RExamples of wronskianMatrix from ODETools
--R
--E 3289

--S 3290 of 3320
)d op wrregime
--R 
--R
--RThere is one unexposed function called wrregime :
--R   [1] (List(Record(eqzro: List(D7),neqzro: List(D7),wcond: List(
--R            Polynomial(D4)),bsoln: Record(partsol: Vector(Fraction(Polynomial
--R            (D4))),basis: List(Vector(Fraction(Polynomial(D4))))))),String)
--R             -> Integer
--R             from ParametricLinearEquations(D4,D5,D6,D7)
--R             if D4 has Join(EuclideanDomain,CharacteristicZero) and D7
--R             has POLYCAT(D4,D6,D5) and D5 has Join(OrderedSet,
--R            ConvertibleTo(Symbol)) and D6 has OAMONS
--R
--RExamples of wrregime from ParametricLinearEquations
--R
--E 3290

--S 3291 of 3320
)d op xCoord
--R 
--R
--RThere is one unexposed function called xCoord :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of xCoord from PointPackage
--R
--E 3291

--S 3292 of 3320
)d op xn
--R 
--R
--RThere is one unexposed function called xn :
--R   [1] NonNegativeInteger -> SparseUnivariatePolynomial(D3)
--R             from InnerNormalBasisFieldFunctions(D3) if D3 has FFIELDC
--R            
--R
--RExamples of xn from InnerNormalBasisFieldFunctions
--R
--E 3292

--S 3293 of 3320
)d op xor
--R 
--R
--RThere are 3 exposed functions called xor :
--R   [1] (Boolean,Boolean) -> Boolean from Boolean
--R   [2] (D,D) -> D from D if D has BTAGG
--R   [3] (SingleInteger,SingleInteger) -> SingleInteger from 
--R            SingleInteger
--R
--RExamples of xor from Boolean
--R
--R
--RExamples of xor from BitAggregate
--R
--R
--RExamples of xor from SingleInteger
--R
--E 3293

--S 3294 of 3320
)d op xRange
--R 
--R
--RThere are 2 exposed functions called xRange :
--R   [1] D -> Segment(DoubleFloat) from D if D has PPCURVE
--R   [2] D -> Segment(DoubleFloat) from D if D has PSCURVE
--R
--RExamples of xRange from PlottablePlaneCurveCategory
--R
--R
--RExamples of xRange from PlottableSpaceCurveCategory
--R
--E 3294

--S 3295 of 3320
)d op Y
--R 
--R
--RThere are 2 unexposed functions called Y :
--R   [1] (Stream(D3) -> Stream(D3)) -> Stream(D3)
--R             from ParadoxicalCombinatorsForStreams(D3) if D3 has TYPE
--R         
--R   [2] ((List(Stream(D4)) -> List(Stream(D4))),Integer) -> List(Stream(
--R            D4))
--R             from ParadoxicalCombinatorsForStreams(D4) if D4 has TYPE
--R         
--R
--RExamples of Y from ParadoxicalCombinatorsForStreams
--R
--E 3295

--S 3296 of 3320
)d op yCoord
--R 
--R
--RThere is one unexposed function called yCoord :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of yCoord from PointPackage
--R
--E 3296

--S 3297 of 3320
)d op yCoordinates
--R 
--R
--RThere is one exposed function called yCoordinates :
--R   [1] D -> Record(num: Vector(D3),den: D3) from D
--R             if D has FFCAT(D2,D3,D4) and D2 has UFD and D3 has UPOLYC(
--R            D2) and D4 has UPOLYC(FRAC(D3))
--R
--RExamples of yCoordinates from FunctionFieldCategory
--R
--E 3297

--S 3298 of 3320
)d op yellow
--R 
--R
--RThere is one exposed function called yellow :
--R   [1]  -> Color from Color
--R
--RExamples of yellow from Color
--R
--E 3298

--S 3299 of 3320
)d op youngGroup
--R 
--R
--RThere are 2 exposed functions called youngGroup :
--R   [1] List(Integer) -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R   [2] Partition -> PermutationGroup(Integer) from 
--R            PermutationGroupExamples
--R
--RExamples of youngGroup from PermutationGroupExamples
--R
--E 3299

--S 3300 of 3320
)d op yRange
--R 
--R
--RThere are 2 exposed functions called yRange :
--R   [1] D -> Segment(DoubleFloat) from D if D has PPCURVE
--R   [2] D -> Segment(DoubleFloat) from D if D has PSCURVE
--R
--RExamples of yRange from PlottablePlaneCurveCategory
--R
--R
--RExamples of yRange from PlottableSpaceCurveCategory
--R
--E 3300

--S 3301 of 3320
)d op Yun
--R 
--R
--RThere is one exposed function called Yun :
--R   [1] D2 -> Factored(D2) from FiniteFieldSquareFreeDecomposition(D3,D2
--R            )
--R             if D3 has FFIELDC and D2 has UPOLYC(D3)
--R
--RExamples of Yun from FiniteFieldSquareFreeDecomposition
--R
--E 3301

--S 3302 of 3320
)d op zag
--R 
--R
--RThere is one unexposed function called zag :
--R   [1] (OutputForm,OutputForm) -> OutputForm from OutputForm
--R
--RExamples of zag from OutputForm
--R
--E 3302

--S 3303 of 3320
)d op zCoord
--R 
--R
--RThere is one unexposed function called zCoord :
--R   [1] Point(D1) -> D1 from PointPackage(D1) if D1 has RING
--R
--RExamples of zCoord from PointPackage
--R
--E 3303

--S 3304 of 3320
)d op zero
--R 
--R
--RThere are 2 exposed functions called zero :
--R   [1] (NonNegativeInteger,NonNegativeInteger) -> D from D
--R             if D2 has RING and D has MATCAT(D2,D3,D4) and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [2] NonNegativeInteger -> D from D
--R             if D has VECTCAT(D2) and D2 has ABELMON and D2 has TYPE
--R         
--R
--RExamples of zero from MatrixCategory
--R
--Rz:Matrix(INT):=zero(3,3)
--R
--R
--RExamples of zero from VectorCategory
--R
--E 3304

--S 3305 of 3320
)d op zero?
--R 
--R
--RThere are 5 exposed functions called zero? :
--R   [1] D -> Boolean from D if D has ABELMON
--R   [2] PolynomialIdeals(D2,D3,D4,D5) -> Boolean
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R   [3] D2 -> Boolean from D if D has MAGCDOC(D2,D3) and D2 has TYPE and
--R            D3 has TYPE
--R   [4] D -> Boolean from D
--R             if D has MATCAT(D2,D3,D4) and D2 has RING and D3 has FLAGG
--R            (D2) and D4 has FLAGG(D2)
--R   [5] (D2,D) -> Boolean from D
--R             if D has RRCC(D3,D2) and D3 has Join(OrderedRing,Field) 
--R            and D2 has UPOLYC(D3)
--R
--RExamples of zero? from AbelianMonoid
--R
--R
--RExamples of zero? from PolynomialIdeals
--R
--R
--RExamples of zero? from ModularAlgebraicGcdOperations
--R
--R
--RExamples of zero? from MatrixCategory
--R
--R
--RExamples of zero? from RealRootCharacterizationCategory
--R
--E 3305

--S 3306 of 3320
)d op zeroDim?
--R 
--R
--RThere are 2 exposed functions called zeroDim? :
--R   [1] PolynomialIdeals(D2,D3,D4,D5) -> Boolean
--R             from PolynomialIdeals(D2,D3,D4,D5)
--R             if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D5
--R             has POLYCAT(D2,D3,D4)
--R   [2] (PolynomialIdeals(D3,D4,D5,D6),List(D5)) -> Boolean
--R             from PolynomialIdeals(D3,D4,D5,D6)
--R             if D5 has ORDSET and D3 has FIELD and D4 has OAMONS and D6
--R             has POLYCAT(D3,D4,D5)
--R
--RExamples of zeroDim? from PolynomialIdeals
--R
--E 3306

--S 3307 of 3320
)d op zeroDimensional?
--R 
--R
--RThere are 2 unexposed functions called zeroDimensional? :
--R   [1] List(Polynomial(D3)) -> Boolean from FGLMIfCanPackage(D3,D4)
--R             if D3 has GCDDOM and D4: LIST(SYMBOL)
--R   [2] List(NewSparseMultivariatePolynomial(D3,OrderedVariableList(D4))
--R            ) -> Boolean
--R             from LexTriangularPackage(D3,D4) if D3 has GCDDOM and D4: 
--R            LIST(SYMBOL)
--R
--RExamples of zeroDimensional? from FGLMIfCanPackage
--R
--R
--RExamples of zeroDimensional? from LexTriangularPackage
--R
--E 3307

--S 3308 of 3320
)d op zeroDimPrimary?
--R 
--R
--RThere is one exposed function called zeroDimPrimary? :
--R   [1] PolynomialIdeals(Fraction(Integer),DirectProduct(D4,
--R            NonNegativeInteger),OrderedVariableList(D3),
--R            DistributedMultivariatePolynomial(D3,Fraction(Integer))) -> 
--R            Boolean
--R             from IdealDecompositionPackage(D3,D4) if D3: LIST(SYMBOL) 
--R            and D4: NNI
--R
--RExamples of zeroDimPrimary? from IdealDecompositionPackage
--R
--E 3308

--S 3309 of 3320
)d op zeroDimPrime?
--R 
--R
--RThere is one exposed function called zeroDimPrime? :
--R   [1] PolynomialIdeals(Fraction(Integer),DirectProduct(D4,
--R            NonNegativeInteger),OrderedVariableList(D3),
--R            DistributedMultivariatePolynomial(D3,Fraction(Integer))) -> 
--R            Boolean
--R             from IdealDecompositionPackage(D3,D4) if D3: LIST(SYMBOL) 
--R            and D4: NNI
--R
--RExamples of zeroDimPrime? from IdealDecompositionPackage
--R
--E 3309

--S 3310 of 3320
)d op zeroMatrix
--R 
--R
--RThere are 3 exposed functions called zeroMatrix :
--R   [1] (Symbol,Polynomial(Integer),Polynomial(Integer)) -> FortranCode
--R             from FortranCodePackage1
--R   [2] (Symbol,SegmentBinding(Polynomial(Integer)),SegmentBinding(
--R            Polynomial(Integer))) -> FortranCode
--R             from FortranCodePackage1
--R   [3] (NonNegativeInteger,NonNegativeInteger,NonNegativeInteger) -> 
--R            ThreeDimensionalMatrix(D2)
--R             from ThreeDimensionalMatrix(D2) if D2 has RING and D2 has 
--R            SETCAT
--R
--RExamples of zeroMatrix from FortranCodePackage1
--R
--R
--RExamples of zeroMatrix from ThreeDimensionalMatrix
--R
--E 3310

--S 3311 of 3320
)d op zeroOf
--R 
--R
--RThere are 5 exposed functions called zeroOf :
--R   [1] (SparseUnivariatePolynomial(D),Symbol) -> D from D if D has ACF
--R            
--R   [2] SparseUnivariatePolynomial(D) -> D from D if D has ACF
--R   [3] Polynomial(D) -> D from D if D has ACF
--R   [4] (D,Symbol) -> D from D
--R             if D has ACFS(D2) and D2 has Join(OrderedSet,
--R            IntegralDomain)
--R   [5] D -> D from D if D has ACFS(D1) and D1 has Join(OrderedSet,
--R            IntegralDomain)
--R
--RExamples of zeroOf from AlgebraicallyClosedField
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RzeroOf(a,x)
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RzeroOf(a)
--R
--Ra:Polynomial(Integer):=-3*x^2+2*x-13 
--RzeroOf(a)
--R
--R
--RExamples of zeroOf from AlgebraicallyClosedFunctionSpace
--R
--E 3311

--S 3312 of 3320
)d op zeroSetSplit
--R 
--R
--RThere are 7 exposed functions called zeroSetSplit :
--R   [1] (List(D7),Boolean,Boolean,Boolean,Boolean) -> List(
--R            RegularTriangularSet(D4,D5,D6,D7))
--R             from RegularTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R   [2] (List(D7),Boolean,Boolean) -> List(RegularTriangularSet(D4,D5,D6
--R            ,D7))
--R             from RegularTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R   [3] (List(NewSparseMultivariatePolynomial(D4,OrderedVariableList(D5)
--R            )),Boolean,Boolean) -> List(RegularChain(D4,D5))
--R             from RegularChain(D4,D5) if D4 has GCDDOM and D5: LIST(
--R            SYMBOL)
--R   [4] (List(D7),Boolean) -> List(D) from D
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET and D has RSETCAT(D4,D5,D6,D7)
--R   [5] (List(D7),Boolean,Boolean,Boolean,Boolean) -> List(
--R            SquareFreeRegularTriangularSet(D4,D5,D6,D7))
--R             from SquareFreeRegularTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R   [6] (List(D7),Boolean,Boolean) -> List(
--R            SquareFreeRegularTriangularSet(D4,D5,D6,D7))
--R             from SquareFreeRegularTriangularSet(D4,D5,D6,D7)
--R             if D7 has RPOLCAT(D4,D5,D6) and D4 has GCDDOM and D5 has 
--R            OAMONS and D6 has ORDSET
--R   [7] List(D6) -> List(D) from D
--R             if D6 has RPOLCAT(D3,D4,D5) and D3 has INTDOM and D4 has 
--R            OAMONS and D5 has ORDSET and D has TSETCAT(D3,D4,D5,D6)
--R
--RThere are 3 unexposed functions called zeroSetSplit :
--R   [1] (List(D8),Boolean) -> List(D1)
--R             from LazardSetSolvingPackage(D5,D6,D7,D8,D9,D1)
--R             if D8 has RPOLCAT(D5,D6,D7) and D5 has GCDDOM and D6 has 
--R            OAMONS and D7 has ORDSET and D9 has RSETCAT(D5,D6,D7,D8) 
--R            and D1 has SFRTCAT(D5,D6,D7,D8)
--R   [2] (List(NewSparseMultivariatePolynomial(D4,OrderedVariableList(D5)
--R            )),Boolean) -> List(RegularChain(D4,D5))
--R             from LexTriangularPackage(D4,D5) if D4 has GCDDOM and D5: 
--R            LIST(SYMBOL)
--R   [3] (List(NewSparseMultivariatePolynomial(D4,OrderedVariableList(D5)
--R            )),Boolean) -> List(SquareFreeRegularTriangularSet(D4,
--R            IndexedExponents(OrderedVariableList(D5)),OrderedVariableList(D5)
--R            ,NewSparseMultivariatePolynomial(D4,OrderedVariableList(D5))))
--R             from LexTriangularPackage(D4,D5) if D4 has GCDDOM and D5: 
--R            LIST(SYMBOL)
--R
--RExamples of zeroSetSplit from LazardSetSolvingPackage
--R
--R
--RExamples of zeroSetSplit from LexTriangularPackage
--R
--R
--RExamples of zeroSetSplit from RegularTriangularSet
--R
--R
--RExamples of zeroSetSplit from RegularChain
--R
--R
--RExamples of zeroSetSplit from RegularTriangularSetCategory
--R
--R
--RExamples of zeroSetSplit from SquareFreeRegularTriangularSet
--R
--R
--RExamples of zeroSetSplit from TriangularSetCategory
--R
--E 3312

--S 3313 of 3320
)d op zeroSetSplitIntoTriangularSystems
--R 
--R
--RThere is one exposed function called zeroSetSplitIntoTriangularSystems :
--R   [1] List(D6) -> List(Record(close: D,open: List(D6))) from D
--R             if D3 has INTDOM and D4 has OAMONS and D5 has ORDSET and 
--R            D6 has RPOLCAT(D3,D4,D5) and D has TSETCAT(D3,D4,D5,D6)
--R
--RExamples of zeroSetSplitIntoTriangularSystems from TriangularSetCategory
--R
--E 3313

--S 3314 of 3320
)d op zerosOf
--R 
--R
--RThere are 6 exposed functions called zerosOf :
--R   [1] (SparseUnivariatePolynomial(D),Symbol) -> List(D) from D if D
--R             has ACF
--R   [2] SparseUnivariatePolynomial(D) -> List(D) from D if D has ACF
--R   [3] Polynomial(D) -> List(D) from D if D has ACF
--R   [4] (D,Symbol) -> List(D) from D
--R             if D3 has Join(OrderedSet,IntegralDomain) and D has ACFS(
--R            D3)
--R   [5] D -> List(D) from D
--R             if D2 has Join(OrderedSet,IntegralDomain) and D has ACFS(
--R            D2)
--R   [6] (Expression(DoubleFloat),List(Symbol),Segment(OrderedCompletion(
--R            DoubleFloat))) -> Stream(DoubleFloat)
--R             from ExpertSystemContinuityPackage
--R
--RExamples of zerosOf from AlgebraicallyClosedField
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RzerosOf(a,x)
--R
--Ra:SparseUnivariatePolynomial(Integer):=-3*x^3+2*x+13 
--RzerosOf(a)
--R
--Ra:Polynomial(Integer):=-3*x^2+2*x-13 
--RzerosOf(a)
--R
--R
--RExamples of zerosOf from AlgebraicallyClosedFunctionSpace
--R
--R
--RExamples of zerosOf from ExpertSystemContinuityPackage
--R
--E 3314

--S 3315 of 3320
)d op zeroSquareMatrix
--R 
--R
--RThere is one exposed function called zeroSquareMatrix :
--R   [1] (Symbol,Polynomial(Integer)) -> FortranCode from 
--R            FortranCodePackage1
--R
--RExamples of zeroSquareMatrix from FortranCodePackage1
--R
--E 3315

--S 3316 of 3320
)d op zeroVector
--R 
--R
--RThere is one exposed function called zeroVector :
--R   [1] (Symbol,Polynomial(Integer)) -> FortranCode from 
--R            FortranCodePackage1
--R
--RExamples of zeroVector from FortranCodePackage1
--R
--E 3316

--S 3317 of 3320
)d op zeta
--R 
--R
--RThere is one exposed function called zeta :
--R   [1]  -> DirichletRing(D1) from DirichletRing(D1) if D1 has RING
--R
--RExamples of zeta from DirichletRing
--R
--E 3317

--S 3318 of 3320
)d op ZetaFunction
--R 
--R
--RThere are 6 exposed functions called ZetaFunction :
--R   [1]  -> UnivariateTaylorSeriesCZero(Integer,t)
--R             from GeneralPackageForAlgebraicFunctionField(D6,D7,D8,D9,
--R            D10,D11,D12,D1,D2,D3,D4)
--R             if D6 has FINITE and D6 has FIELD and D7: LIST(SYMBOL) and
--R            D8 has POLYCAT(D6,D9,OVAR(D7)) and D9 has DIRPCAT(#(D7),NNI
--R            ) and D10 has PRSPCAT(D6) and D11 has LOCPOWC(D6) and D12
--R             has PLACESC(D6,D11) and D1 has DIVCAT(D12) and D2 has 
--R            INFCLCT(D6,D7,D8,D9,D10,D11,D12,D1,D4) and D4 has BLMETCT 
--R            and D3 has DSTRCAT(D2)
--R   [2] PositiveInteger -> UnivariateTaylorSeriesCZero(Integer,t)
--R             from GeneralPackageForAlgebraicFunctionField(D8,D9,D10,D11
--R            ,D12,D13,D1,D2,D3,D4,D5)
--R             if D8 has FINITE and D8 has FIELD and D9: LIST(SYMBOL) and
--R            D10 has POLYCAT(D8,D11,OVAR(D9)) and D11 has DIRPCAT(#(D9),
--R            NNI) and D12 has PRSPCAT(D8) and D13 has LOCPOWC(D8) and D1
--R             has PLACESC(D8,D13) and D2 has DIVCAT(D1) and D3 has 
--R            INFCLCT(D8,D9,D10,D11,D12,D13,D1,D2,D5) and D5 has BLMETCT 
--R            and D4 has DSTRCAT(D3)
--R   [3]  -> UnivariateTaylorSeriesCZero(Integer,t)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D2,D3
--R            ,D4)
--R             if PseudoAlgebraicClosureOfFiniteField(D2) has FINITE and 
--R            D2 has FFIELDC and D3: LIST(SYMBOL) and D4 has BLMETCT
--R   [4] PositiveInteger -> UnivariateTaylorSeriesCZero(Integer,t)
--R             from PackageForAlgebraicFunctionFieldOverFiniteField(D3,D4
--R            ,D5)
--R             if PseudoAlgebraicClosureOfFiniteField(D3) has FINITE and 
--R            D3 has FFIELDC and D4: LIST(SYMBOL) and D5 has BLMETCT
--R   [5]  -> UnivariateTaylorSeriesCZero(Integer,t)
--R             from PackageForAlgebraicFunctionField(D2,D3,D4)
--R             if D2 has FINITE and D2 has FIELD and D3: LIST(SYMBOL) and
--R            D4 has BLMETCT
--R   [6] PositiveInteger -> UnivariateTaylorSeriesCZero(Integer,t)
--R             from PackageForAlgebraicFunctionField(D3,D4,D5)
--R             if D3 has FINITE and D3 has FIELD and D4: LIST(SYMBOL) and
--R            D5 has BLMETCT
--R
--RExamples of ZetaFunction from GeneralPackageForAlgebraicFunctionField
--R
--R
--RExamples of ZetaFunction from PackageForAlgebraicFunctionFieldOverFiniteField
--R
--R
--RExamples of ZetaFunction from PackageForAlgebraicFunctionField
--R
--E 3318

--S 3319 of 3320
)d op zoom
--R 
--R
--RThere are 2 exposed functions called zoom :
--R   [1] (ThreeDimensionalViewport,Float,Float,Float) -> Void
--R             from ThreeDimensionalViewport
--R   [2] (ThreeDimensionalViewport,Float) -> Void from 
--R            ThreeDimensionalViewport
--R
--RThere are 3 unexposed functions called zoom :
--R   [1] (Plot3D,Segment(DoubleFloat),Segment(DoubleFloat),Segment(
--R            DoubleFloat)) -> Plot3D
--R             from Plot3D
--R   [2] (Plot,Segment(DoubleFloat),Segment(DoubleFloat)) -> Plot from 
--R            Plot
--R   [3] (Plot,Segment(DoubleFloat)) -> Plot from Plot
--R
--RExamples of zoom from Plot3D
--R
--R
--RExamples of zoom from Plot
--R
--R
--RExamples of zoom from ThreeDimensionalViewport
--R
--E 3319

--S 3320 of 3320
)d op zRange
--R 
--R
--RThere is one exposed function called zRange :
--R   [1] D -> Segment(DoubleFloat) from D if D has PSCURVE
--R
--RExamples of zRange from PlottableSpaceCurveCategory
--R
--E 3320
 
)spool
 
)lisp (bye)