/usr/share/calc/intnum.cal is in apcalc-common 2.12.5.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | /*
* intnum - implementation of tanhsinh- and Gauss-Legendre quadrature
*
* Copyright (C) 2013 Christoph Zurnieden
*
* Calc is open software; you can redistribute it and/or modify it under
* the terms of the version 2.1 of the GNU Lesser General Public License
* as published by the Free Software Foundation.
*
* Calc is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
* Public License for more details.
*
* A copy of version 2.1 of the GNU Lesser General Public License is
* distributed with calc under the filename COPYING-LGPL. You should have
* received a copy with calc; if not, write to Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
static resource_debug_level;
resource_debug_level = config("resource_debug", 0);
read -once infinities;
static __CZ__tanhsinh_x;
static __CZ__tanhsinh_w;
static __CZ__tanhsinh_order;
static __CZ__tanhsinh_prec;
define quadtsdeletenodes()
{
free(__CZ__tanhsinh_x);
free(__CZ__tanhsinh_w);
free(__CZ__tanhsinh_order);
free(__CZ__tanhsinh_prec);
}
define quadtscomputenodes(order, expo, eps)
{
local t cht sht chp sum k PI places;
local h t0 x w;
if (__CZ__tanhsinh_order == order && __CZ__tanhsinh_prec == eps)
return 1;
__CZ__tanhsinh_order = order;
__CZ__tanhsinh_prec = eps;
__CZ__tanhsinh_x = list();
__CZ__tanhsinh_w = list();
/* The tanhsinh algorithm needs a slightly higher precision than G-L */
eps = epsilon(eps * 1e-2);
places = highbit(1 + int (1 / epsilon())) +1;
PI = pi();
sum = 0;
t0 = 2 ^ (-expo);
h = 2 * t0;
/*
* The author wanted to use the mpmath trick here which was
* advertised---and reasonably so!---to be faster. Didn't work out
* so well with calc.
* PI4 = PI/4;
* expt0 = bround(exp(t0),places);
* a = bround( PI4 * expt0,places);
* b = bround(PI4 / expt0,places);
* udelta = bround(exp(h),places);
* urdelta = bround(1/udelta,places);
*/
/* make use of x(-t) = -x(t), w(-t) = w(t) */
for (k = 0; k < 20 * order + 1; k++) {
/*
* x = tanh(pi/2 * sinh(t))
* w = pi/2 * cosh(t) / cosh(pi/2 * sinh(t))^2
*/
t = bround(t0 + k * h, places);
cht = bround(cosh(t), places);
sht = bround(sinh(t), places);
chp = bround(cosh(0.5 * PI * sht), places);
x = bround(tanh(0.5 * PI * sht), places);
w = bround((PI * h * cht) / (2 * chp ^ 2), places);
/*
* c = bround(exp(a-b),places);
* d = bround(1/c,places);
* co =bround( (c+d)/2,places);
* si =bround( (c-d)/2,places);
* x = bround(si / co,places);
* w = bround((a+b) / co^2,places);
*/
if (abs(x - 1) <= eps)
break;
append(__CZ__tanhsinh_x, x);
append(__CZ__tanhsinh_w, w);
/*
* a *= udelta;
* b *= urdelta;
*/
}
/* Normalize the weights to make them add up to 2 (two) */
/*
* for(k=0;k < size(__CZ__tanhsinh_w);k++)
* sum = bround(sum + __CZ__tanhsinh_w[k],places);
* sum *= 2;
* for(k=0;k < size(__CZ__tanhsinh_w);k++)
* __CZ__tanhsinh_w[k] = bround(2.0 * __CZ__tanhsinh_w[k] / sum,places);
*/
epsilon(eps);
return 1;
}
define quadtscore(a, b, n)
{
local k c d order eps places sum ret x x1 x2 xm w w1 w2 m sizel;
eps = epsilon(epsilon() * 1e-2);
places = highbit(1 + int (1 / epsilon())) +1;
m = int (4 + max(0, ln(places / 30.0) / ln(2))) + 2;
if (!isnull(n)) {
order = n;
m = ilog(order / 3, 2) + 1;
} else
order = 3 * 2 ^ (m - 1);
quadtscomputenodes(order, m, epsilon());
sizel = size(__CZ__tanhsinh_w);
if (isinfinite(a) || isinfinite(b)) {
/*
* x
* t = ------------
* 2
* sqrt(1 - y )
*/
if (isninf(a) && ispinf(b)) {
for (k = 0; k < sizel; k++) {
x1 = __CZ__tanhsinh_x[k];
x2 = -__CZ__tanhsinh_x[k];
w1 = __CZ__tanhsinh_w[k];
x = bround(x1 * (1 - x1 ^ 2) ^ (-1 / 2), places);
xm = bround(x2 * (1 - x2 ^ 2) ^ (-1 / 2), places);
w = bround(w1 * (((1 - x1 ^ 2) ^ (-1 / 2)) / (1 - x1 ^ 2)),
places);
w2 = bround(w1 * (((1 - x2 ^ 2) ^ (-1 / 2)) / (1 - x2 ^ 2)),
places);
sum += bround(w * f(x), places);
sum += bround(w2 * f(xm), places);
}
}
/*
* 1
* t = - - + b + 1
* x
*/
else if (isninf(a) && !iscinf(b)) {
for (k = 0; k < sizel; k++) {
x1 = __CZ__tanhsinh_x[k];
x2 = -__CZ__tanhsinh_x[k];
w1 = __CZ__tanhsinh_w[k];
x = bround((b + 1) - (2 / (x1 + 1)), places);
xm = bround((b + 1) - (2 / (x2 + 1)), places);
w = bround(w1 * (1 / 2 * (2 / (x1 + 1)) ^ 2), places);
w2 = bround(w1 * (1 / 2 * (2 / (x2 + 1)) ^ 2), places);
sum += bround(w * f(x), places);
sum += bround(w2 * f(xm), places);
}
}
/*
* 1
* t = - + a - 1
* x
*/
else if (!iscinf(a) && ispinf(b)) {
for (k = 0; k < sizel; k++) {
x1 = __CZ__tanhsinh_x[k];
x2 = -__CZ__tanhsinh_x[k];
w1 = __CZ__tanhsinh_w[k];
x = bround((a - 1) + (2 / (x1 + 1)), places);
xm = bround((a - 1) + (2 / (x2 + 1)), places);
w = bround(w1 * (((1 / 2) * (2 / (x1 + 1)) ^ 2)), places);
w2 = bround(w1 * (((1 / 2) * (2 / (x2 + 1)) ^ 2)), places);
sum += bround(w * f(x), places);
sum += bround(w2 * f(xm), places);
}
} else if (isninf(a) || isninf(b)) {
/*TODO: swap(a,b) and negate(w)? Lookup! */
return newerror("quadtscore: reverse limits?");
} else {
return
newerror("quadtscore: complex infinity not yet implemented");
}
ret = sum;
} else {
/* Avoid rounding errors */
if (a == -1 && b == 1) {
c = 1;
d = 0;
} else {
c = (b - a) / 2;
d = (b + a) / 2;
}
sum = 0;
for (k = 0; k < sizel; k++) {
sum +=
bround(__CZ__tanhsinh_w[k] * f(c * __CZ__tanhsinh_x[k] + d),
places);
sum +=
bround(__CZ__tanhsinh_w[k] * f(c * -__CZ__tanhsinh_x[k] + d),
places);
}
ret = c * sum;
}
epsilon(eps);
return ret;
}
static __CZ__quadts_error;
define quadts(a, b, points)
{
local k sp results epsbits nsect interval length segment slope C ;
local x1 x2 y1 y2 sum D1 D2 D3 D4;
if (param(0) < 2)
return newerror("quadts: not enough arguments");
epsbits = highbit(1 + int (1 / epsilon())) +1;
if (param(0) < 3 || isnull(points)) {
/* return as given */
return quadtscore(a, b);
} else {
if ((isinfinite(a) || isinfinite(b))
&& (!ismat(points) && !islist(points)))
return
newerror(strcat
("quadts: segments of infinite length ",
"are not yet supported"));
if (ismat(points) || islist(points)) {
sp = size(points);
if (sp == 0)
return
newerror(strcat
("quadts: variable 'points` must be a list or ",
"1d-matrix of a length > 0"));
/* check if all points are numbers */
for (k = 0; k < sp; k++) {
if (!isnum(points[k]))
return
newerror(strcat
("quadts: elements of 'points` must be",
" numbers only"));
}
/* We have n-1 intervals and a and b, hence n-1 + 2 results */
results = mat[sp + 1];
if (a != points[0]) {
results[0] = quadtscore(a, points[0]);
} else {
results[0] = 0;
}
if (sp == 1) {
if (b != points[0]) {
results[1] = quadtscore(points[0], b);
} else {
results[1] = 0;
}
} else {
for (k = 1; k < sp; k++) {
results[k] = quadtscore(points[k - 1], points[k]);
}
if (b != points[k - 1]) {
results[k] = quadtscore(points[k - 1], b);
} else {
results[k] = 0;
}
}
} else {
if (!isint(points) || points <= 0)
return newerror(strcat("quadts: variable 'points` must be a ",
"list or a positive integer"));
/* Taking "points" as the number of equally spaced intervals */
results = mat[points + 1];
/* It is easy if a,b lie on the real line */
if (isreal(a) && isreal(b)) {
length = abs(a - b);
segment = length / points;
for (k = 1; k <= points; k++) {
results[k - 1] =
quadtscore(a + (k - 1) * segment, a + k * segment);
}
} else {
/* We have at least one complex limit but treat "points" still
* as the number of equally spaced intervals on a straight line
* connecting a and b. Computing the segments here is a bit
* more complicated but not much, it should have been taught in
* highschool.
* Other contours by way of a list of points */
slope = (im(b) - im(a)) / (re(b) - re(a));
C = (im(a) + slope) * re(a);
length = abs(re(a) - re(b));
segment = length / points;
/* y = mx+C where m is the slope, x is the real part and y the
* imaginary part */
if(re(a)>re(b))swap(a,b);
for (k = re(a); k <= (re(b)); k+=segment) {
x1 = slope*(k) + C;
results[k] = quadtscore(k + x1 * 1i);
}
} /* else of isreal */
} /* else of ismat|islist */
} /* else of isnull(points) */
/* With a bit of undeserved luck we have a result by now. */
sp = size(results);
for (k = 0; k < sp; k++) {
sum += results[k];
}
return sum;
}
static __CZ__gl_x;
static __CZ__gl_w;
static __CZ__gl_order;
static __CZ__gl_prec;
define quadglcomputenodes(N)
{
local places k l x w t1 t2 t3 t4 t5 r tmp;
if (__CZ__gl_order == N && __CZ__gl_prec == epsilon())
return;
__CZ__gl_x = mat[N];
__CZ__gl_w = mat[N];
__CZ__gl_order = N;
__CZ__gl_prec = epsilon();
places = highbit(1 + int (1 / epsilon())) +1;
/*
* Compute roots and weights (doing it inline seems to be fastest)
* Trick shamelessly stolen from D. Bailey et .al (program "arprec")
*/
for (k = 1; k <= N//2; k++) {
r = bround(cos(pi() * (k - .25) / (N + .5)), places);
while (1) {
t1 = 1, t2 = 0;
for (l = 1; l <= N; l++) {
t3 = t2;
t2 = t1;
t1 = bround(((2 * l - 1) * r * t2 - (l - 1) * t3) / l, places);
}
t4 = bround(N * (r * t1 - t2) / ((r ^ 2) - 1), places);
t5 = r;
tmp = t1 / t4;
r = r - tmp;
if (abs(tmp) <= epsilon())
break;
}
x = r;
w = bround(2 / ((1 - r ^ 2) * t4 ^ 2), places);
__CZ__gl_x[k - 1] = x;
__CZ__gl_w[k - 1] = w;
__CZ__gl_x[N - k] = -__CZ__gl_x[k - 1];
__CZ__gl_w[N - k] = __CZ__gl_w[k - 1];
}
return;
}
define quadgldeletenodes()
{
free(__CZ__gl_x);
free(__CZ__gl_w);
free(__CZ__gl_order);
free(__CZ__gl_prec);
}
define quadglcore(a, b, n)
{
local k c d digs order eps places sum ret err x x1 w w1 m;
local phalf x2 px1 spx1 u b1 a1 half;
eps = epsilon(epsilon() * 1e-2);
places = highbit(1 + int (1 / epsilon())) +1;
if (!isnull(n))
order = n;
else {
m = int (4 + max(0, ln(places / 30.0) / ln(2))) + 2;
order = 3 * 2 ^ (m - 1);
}
quadglcomputenodes(order, 1);
if (isinfinite(a) || isinfinite(b)) {
if (isninf(a) && ispinf(b)) {
for (k = 0; k < order; k++) {
x1 = __CZ__gl_x[k];
w1 = __CZ__gl_w[k];
x = bround(x1 * (1 - x1 ^ 2) ^ (-1 / 2), places);
w = bround(w1 * (((1 - x1 ^ 2) ^ (-1 / 2)) / (1 - x1 ^ 2)),
places);
sum += bround(w * f(x), places);
}
} else if (isninf(a) && !iscinf(b)) {
for (k = 0; k < order; k++) {
x1 = __CZ__gl_x[k];
w1 = __CZ__gl_w[k];
x = bround((b + 1) - (2 / (x1 + 1)), places);
w = bround(w1 * (1 / 2 * (2 / (x1 + 1)) ^ 2), places);
sum += bround(w * f(x), places);
}
} else if (!iscinf(a) && ispinf(b)) {
for (k = 0; k < order; k++) {
x1 = __CZ__gl_x[k];
w1 = __CZ__gl_w[k];
x = bround((a - 1) + (2 / (x1 + 1)), places);
w = bround(w1 * (((1 / 2) * (2 / (x1 + 1)) ^ 2)), places);
sum += bround(w * f(x), places);
}
} else if (isninf(a) || isninf(b)) {
/*TODO: swap(a,b) and negate(w)? Lookup! */
return newerror("quadglcore: reverse limits?");
} else
return
newerror("quadglcore: complex infinity not yet implemented");
ret = sum;
} else {
/* Avoid rounding errors */
if (a == -1 && b == 1) {
c = 1;
d = 0;
} else {
c = (b - a) / 2;
d = (b + a) / 2;
}
sum = 0;
for (k = 0; k < order; k++) {
sum += bround(__CZ__gl_w[k] * f(c * __CZ__gl_x[k] + d), places);
}
ret = c * sum;
}
epsilon(eps);
return ret;
}
define quadgl(a, b, points)
{
local k sp results epsbits nsect interval length segment slope C x1 y1 x2
y2;
local sum D1 D2 D3 D4;
if (param(0) < 2)
return newerror("quadgl: not enough arguments");
epsbits = highbit(1 + int (1 / epsilon())) +1;
if (isnull(points)) {
/* return as given */
return quadglcore(a, b);
} else {
/* But if we could half the time needed to execute a single operation
* we could do all of it in just twice that time. */
if (isinfinite(a) || isinfinite(b)
&& (!ismat(points) && !islist(points)))
return
newerror(strcat
("quadgl: multiple segments of infinite length ",
"are not yet supported"));
if (ismat(points) || islist(points)) {
sp = size(points);
if (sp == 0)
return
newerror(strcat
("quadgl: variable 'points` must be a list or ",
"1d-matrix of a length > 0"));
/* check if all points are numbers */
for (k = 0; k < sp; k++) {
if (!isnum(points[k]))
return
newerror(strcat
("quadgl: elements of 'points` must be ",
"numbers only"));
}
/* We have n-1 intervals and a and b, hence n-1 + 2 results */
results = mat[sp + 1];
if (a != points[0]) {
results[0] = quadglcore(a, points[0]);
} else {
results[0] = 0;
}
if (sp == 1) {
if (b != points[0]) {
results[1] = quadglcore(points[0], b);
} else {
results[1] = 0;
}
} else {
for (k = 1; k < sp; k++) {
results[k] = quadglcore(points[k - 1], points[k]);
}
if (b != points[k - 1]) {
results[k] = quadglcore(points[k - 1], b);
} else {
results[k] = 0;
}
}
} else {
if (!isint(points) || points <= 0)
return newerror(strcat("quadgl: variable 'points` must be a ",
"list or a positive integer"));
/* Taking "points" as the number of equally spaced intervals */
results = mat[points + 1];
/* It is easy if a,b lie on the real line */
if (isreal(a) && isreal(b)) {
length = abs(a - b);
segment = length / points;
for (k = 1; k <= points; k++) {
results[k - 1] =
quadglcore(a + (k - 1) * segment, a + k * segment);
}
} else {
/* Other contours by way of a list of points */
slope = (im(b) - im(a)) / (re(b) - re(a));
C = (im(a) + slope) * re(a);
length = abs(re(a) - re(b));
segment = length / points;
/* y = mx+C where m is the slope, x is the real part and y the
* imaginary part */
if(re(a)>re(b))swap(a,b);
for (k = re(a); k <= (re(b)); k+=segment) {
x1 = slope*(k) + C;
results[k] = quadglcore(k + x1 * 1i);
}
} /* else of isreal */
} /* else of ismat|islist */
} /* else of isnull(points) */
/* With a bit of undeserved luck we have a result by now. */
sp = size(results);
for (k = 0; k < sp; k++) {
sum += results[k];
}
return sum;
}
define quad(a, b, points = -1, method = "tanhsinh")
{
if (isnull(a) || isnull(b) || param(0) < 2)
return newerror("quad: both limits must be given");
if (isstr(a)) {
if (strncmp(a, "cinf", 1) == 0)
return
newerror(strcat
("quad: complex infinity not yet supported, use",
" 'pinf' or 'ninf' respectively"));
}
if (isstr(b)) {
if (strncmp(b, "cinf", 1) == 0)
return
newerror(strcat
("quad: complex infinity not yet supported, use",
" 'pinf' or 'ninf' respectively"));
}
if (param(0) == 3) {
if (isstr(points))
method = points;
}
if (strncmp(method, "tanhsinh", 1) == 0) {
if (!isstr(points)) {
if (points == -1) {
return quadts(a, b);
} else {
return quadts(a, b, points);
}
} else {
return quadts(a, b);
}
}
if (strncmp(method, "gausslegendre", 1) == 0) {
if (!isstr(points)) {
if (points == -1) {
return quadgl(a, b);
} else {
return quadgl(a, b, points);
}
} else {
return quadgl(a, b);
}
}
}
define makerange(start, end, steps)
{
local ret k l step C length slope x1 x2 y1 y2;
local segment;
steps = int (steps);
if (steps < 1) {
return newerror("makerange: number of steps must be > 0");
}
if (!isnum(start) || !isnum(end)) {
return newerror("makerange: only numbers are supported yet");
}
if (isreal(start) && isreal(end)) {
step = (end - start) / (steps);
print step;
ret = mat[steps + 1];
for (k = 0; k <= steps; k++) {
ret[k] = k * step + start;
}
} else {
ret = mat[steps + 1];
if (re(start) > re(end)) {
swap(start, end);
}
slope = (im(end) - im(start)) / (re(end) - re(start));
C = im(start) - slope * re(start);
length = abs(re(start) - re(end));
segment = length / (steps);
for (k = re(start), l = 0; k <= (re(end)); k += segment, l++) {
x1 = slope * (k) + C;
ret[l] = k + x1 * 1i;
}
}
return ret;
}
define makecircle(radius, center, points)
{
local ret k a b twopi centerx centery;
if (!isint(points) || points < 2) {
return
newerror("makecircle: number of points is not a positive integer");
}
if (!isnum(center)) {
return newerror("makecircle: center does not lie on the complex plane");
}
if (!isreal(radius) || radius <= 0) {
return newerror("makecircle: radius is not a real > 0");
}
ret = mat[points];
twopi = 2 * pi();
centerx = re(center);
centery = im(center);
for (k = 0; k < points; k++) {
a = centerx + radius * cos(twopi * k / points);
b = centery + radius * sin(twopi * k / points);
ret[k] = a + b * 1i;
}
return ret;
}
define makeellipse(angle, a, b, center, points)
{
local ret k x y twopi centerx centery;
if (!isint(points) || points < 2) {
return
newerror("makeellipse: number of points is not a positive integer");
}
if (!isnum(center)) {
return
newerror("makeellipse: center does not lie on the complex plane");
}
if (!isreal(a) || a <= 0) {
return newerror("makecircle: a is not a real > 0");
}
if (!isreal(b) || b <= 0) {
return newerror("makecircle: b is not a real > 0");
}
if (!isreal(angle)) {
return newerror("makecircle: angle is not a real");
}
ret = mat[points];
twopi = 2 * pi();
centerx = re(center);
centery = im(center);
for (k = 0; k < points; k++) {
x = centerx + a * cos(twopi * k / points) * cos(angle)
- b * sin(twopi * k / points) * sin(angle);
y = centerx + a * cos(twopi * k / points) * sin(angle)
+ b * sin(twopi * k / points) * cos(angle);
ret[k] = x + y * 1i;
}
return ret;
}
define makepoints()
{
local ret k;
ret = mat[param(0)];
for (k = 0; k < param(0); k++) {
if (!isnum(param(k + 1))) {
return
newerror(strcat
("makepoints: parameter number \"", str(k + 1),
"\" is not a number"));
}
ret[k] = param(k + 1);
}
return ret;
}
config("resource_debug", resource_debug_level),;
if (config("resource_debug") & 3) {
print "quadtsdeletenodes()";
print "quadtscomputenodes(order, expo, eps)";
print "quadtscore(a,b,n)";
print "quadts(a,b,points)";
print "quadglcomputenodes(N)";
print "quadgldeletenodes()";
print "quadglcore(a,b,n)";
print "quadgl(a,b,points)";
print "quad(a,b,points=-1,method=\"tanhsinh\")";
print "makerange(start, end, steps)";
print "makecircle(radius, center, points)";
print "makeellipse(angle, a, b, center, points)";
print "makepoints(a1,[...])";
}
|