/usr/share/acl2-8.0dfsg/basis-a.lisp is in acl2-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 | ; ACL2 Version 8.0 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2017, Regents of the University of Texas
; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc. See the documentation topic NOTE-2-0.
; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; LICENSE for more details.
; Written by: Matt Kaufmann and J Strother Moore
; email: Kaufmann@cs.utexas.edu and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.
; The code in this file was originally placed in several different source
; files, but was moved here in order to support the creation of "toothbrush"
; applications -- that is, so that fewer ACL2 source files need to be loaded in
; order to support ACL2 applications. See community books file
; books/system/toothbrush/README.
(in-package "ACL2")
; Essay on Wormholes
; Once upon a time (Version 3.6 and earlier) the wormhole function had a
; pseudo-flg argument which allowed the user a quick way to determine whether
; it was appropriate to incur the expense of going into the wormhole. The idea
; was that the form could have one a free var in it, wormhole-output, and that
; when it was evaluated in raw Lisp that variable was bound to the last value
; returned by the wormhole. Since wormhole always returned nil anyway, this
; screwy semantics didn't matter. However, it was implemented in such a way
; that a poorly constructed pseudo-flg could survive guard verification and yet
; cause a hard error at runtime because during guard verification
; wormhole-output was bound to NIL but in actual evaluation it was entirely
; under the control of the wormhole forms.
; To fix this we have introduced wormhole-eval. It takes two important
; arguments, the name of the wormhole and a lambda expression. Both must be
; quoted. The lambda may have at most one argument but the body may contain
; any variables available in the environment of the wormhole-eval call. (A
; third argument to wormhole-eval is an arbitrary form that uses all the free
; vars of the lambda, thus insuring that translate will cause an error if the
; lambda uses variables unavailable in the context.) The body of the lambda
; must be a single-valued, non-state, non-stobj term.
; The idea is that the lambda expression is applied to the last value of the
; wormhole output and its value is assigned as the last value of the wormhole
; output. Wormhole-eval always returns nil. Translation of a wormhole-eval
; call enforces these restrictions. Furthermore, it translates the body of the
; lambda (even though the lambda is quoted). This is irrelevant since the
; wormhole-eval returns nil regardless of the lambda expression supplied.
; Similarly, translation computes an appropriate third argument to use all the
; free vars, so the user may just write nil there and a suitable form is
; inserted by translate.
; We arrange for wormhole-eval to be a macro in raw lisp that really does what
; is said above.
; To make it bullet-proof, when we generate guard clauses we go inside the
; lambda, generating a new variable symbol to use in place of the lambda formal
; denoting the last value of the wormhole output. Thus, if guard clauses can be
; verified, it doesn't matter what the wormhole actually returns as its value.
; Ev-rec, the interpreter for terms, treats wormhole-eval specially in the
; expected way, as does oneify. Thus, both interpreted and compiled calls of
; wormhole-eval are handled, and guard violations are handled politely.
; Now, how does this allow us to fix the wormhole pseudo-flg problem?
; The hidden global variable in Lisp used to record the status of the various
; wormholes is called *wormhole-status-alist*. The entry in this alist for
; a particular wormhole will be called the wormhole's ``status.'' The lambda
; expression in wormhole-eval maps the wormhole's status to a new status.
; The status of a wormhole is supposed to be a cons whose car is either :ENTER
; or :SKIP. However, in the absence of verifying the guards on the code inside
; wormholes and in light of the fact that users can set the status by
; manipulating wormhole-status in the wormhole it is hard to insure that the
; status is always as supposed. So we code rather defensively.
; When the ``function'' wormhole is called it may or may not actually enter a
; wormhole. ``Entering'' the wormhole means invoking the form on the given
; input, inside a side-effects undoing call of ld. That, in turn, involves
; setting up the ld specials and then reading, translating, and evaluating
; forms. Upon exit, cleanup must be done. So entering is expensive.
; Whether it enters the wormhole or not depends on the wormhole's status, and
; in particular it depends on what we call the wormhole's ``entry code''
; computed from the status as follows.
; If the wormhole's status satisfies wormhole-statusp then the situation is
; simple: wormhole enters the wormhole if the status is :ENTER and doesn't if
; the status is :SKIP. But we compute the entry code defensively: the entry
; code is :SKIP if and only if the wormhole's status is a cons whose car is
; :SKIP. Otherwise, the entry code is :ENTER.
; If we enter the wormhole, we take the wormhole input argument and stuff it
; into (@ wormhole-input), allowing the user to see it inside the ld code. We
; take the wormhole status and stuff it into (@ wormhole-status), allowing the
; user to see it and probably change it with (assign wormhole-status...). When
; we exit ld, we take (@ wormhole-status) and put it back into the hidden
; *wormhole-status-alist*.
; One subtlety arises: How to make wormholes re-entrant... The problem is that
; sometimes the current status is in the hidden alist and other times it is in
; (@ wormhole-status). So when we try to enter a new wormhole from within a
; wormhole -- which always happens by calling wormhole-eval -- the first thing
; we do is stuff the current (@ wormhole-status) into the hidden
; *wormhole-status-alist*. This means that the lambda expression for the new
; entrance is applied, it is applied to the ``most recent'' value of the status
; of that particular wormhole. The natural undoing of wormhole effects
; implements the restoration of (@ wormhole-status) upon exit from the
; recursive wormhole.
; If we wanted to convert our system code to logic mode we would want to verify
; the guards of the lambda bodies and the wormhole-status after ld. See the
; comment in push-accp. Here is a proposal for how to do that. First, insist
; that wormhole names are symbols. Indeed, they must be one argument,
; guard-verified Boolean functions. The guard for a call of wormhole-eval on a
; wormhole named foo should include the conjunct (foo nil) to insure that the
; initial value of the status is acceptable. The guard on the body of (lambda
; (whs) body) should be extended to include the hypothesis that (foo whs) is
; true and that (foo whs) --> (foo body) is true. We should then change
; wormhole so that if it calls ld it tests foo at runtime after the ld returns
; so we know that the final status satisfies foo. If we do this we can safely
; assume that every status seen by a lambda body in wormhole-eval will satisfy
; the foo invariant.
(defun wormhole-statusp (whs)
(declare (xargs :mode :logic :guard t))
(or (equal whs nil)
(and (consp whs)
(or (eq (car whs) :ENTER)
(eq (car whs) :SKIP)))))
(defun wormhole-entry-code (whs)
; Keep this function in sync with the inline code in wormhole1.
(declare (xargs :mode :logic :guard t))
(if (and (consp whs)
(eq (car whs) :SKIP))
:SKIP
:ENTER))
(defun wormhole-data (whs)
(declare (xargs :mode :logic :guard t))
(if (consp whs)
(cdr whs)
nil))
(defun set-wormhole-entry-code (whs code)
(declare (xargs :mode :logic
:guard (or (eq code :ENTER)
(eq code :SKIP))))
(if (consp whs)
(if (eq (car whs) code)
whs
(cons code (cdr whs)))
(if (eq code :enter)
whs
(cons :skip whs))))
(defun set-wormhole-data (whs data)
(declare (xargs :mode :logic :guard t))
(if (consp whs)
(if (equal (cdr whs) data)
whs
(cons (car whs) data))
(cons :enter data)))
(defun make-wormhole-status (old-status new-code new-data)
(declare (xargs :mode :logic
:guard (or (eq new-code :ENTER)
(eq new-code :SKIP))))
(if (consp old-status)
(if (and (eq new-code (car old-status))
(equal new-data (cdr old-status)))
old-status
(cons new-code new-data))
(cons new-code new-data)))
; (defthm wormhole-status-guarantees
; (if (or (eq code :enter)
; (eq code :skip))
; (and (implies (wormhole-statusp whs)
; (wormhole-statusp (set-wormhole-entry-code whs code)))
; (implies (wormhole-statusp whs)
; (wormhole-statusp (set-wormhole-data whs data)))
; (equal (wormhole-entry-code (set-wormhole-entry-code whs code))
; code)
; (equal (wormhole-data (set-wormhole-data whs data))
; data)
; (implies (wormhole-statusp whs)
; (equal (wormhole-data (set-wormhole-entry-code whs code))
; (wormhole-data whs)))
; (implies (wormhole-statusp whs)
; (equal (wormhole-entry-code
; (set-wormhole-data whs data))
; (wormhole-entry-code whs)))
; (implies (wormhole-statusp whs)
; (wormhole-statusp (make-wormhole-status whs code data)))
; (equal (wormhole-entry-code (make-wormhole-status whs code data))
; code)
; (equal (wormhole-data (make-wormhole-status whs code data))
; data))
; t)
; :rule-classes nil)
;
; (verify-guards wormhole-status-guarantees)
; In particular, given a legal code, set-wormhole-entry-code preserves
; wormhole-statusp and always returns an object with the given entry code
; (whether the status was well-formed or not). Furthermore, the guards on
; these functions are verified. Thus, they can be called safely even if the
; user has messed up our wormhole status. Of course, if the user has messed up
; the status, there is no guarantee about what happens inside the wormhole.
(defun tree-occur-eq (x y)
; Does symbol x occur in the cons tree y?
(declare (xargs :guard (symbolp x)))
(cond ((consp y)
(or (tree-occur-eq x (car y))
(tree-occur-eq x (cdr y))))
(t (eq x y))))
#+acl2-loop-only
(defun wormhole-eval (qname qlambda free-vars)
; A typical call of this function is
; (wormhole-eval 'my-wormhole
; '(lambda (output) (p x y output))
; (list x y))
; And the pragmatic semantics is that the lambda expression is applied to the
; last output of the wormhole my-wormhole, the result of of the application is
; stuffed back in as the last output, and the function logically returns nil.
; Note that free vars in the lambda must listed. This is so that the free vars
; of this wormhole-eval expression consists of the free vars of the lambda,
; even though the lambda appears quoted. Translate automatically replaces the
; lambda expression constant by the translated version of that same constant,
; and it replaces the supposed list of free vars by the actual free vars. So
; in fact the user calling wormhole-eval can just put nil in the free-vars arg
; and let translate fill it in. Translate can mangle the arguments of
; wormhole-eval because it always returns nil, regardless of its arguments.
; The guard is declared below to be t but actually we compute the guard for the
; body of the quoted lambda, with some fiddling about the bound variable.
(declare (xargs :mode :logic
:guard t)
(ignore qname qlambda free-vars))
nil)
(deflock *wormhole-lock*)
#-acl2-loop-only
(defmacro wormhole-eval (qname qlambda free-vars)
(declare (xargs :guard t))
; All calls of wormhole-eval that have survived translation are of a special
; form. Qname is a quoted object (used as the name of a wormhole), and qlambda
; is of one of the two forms:
; (i) (quote (lambda (whs) body)), or
; (ii) (quote (lambda () body))
; where whs (``wormhole status'') is a legal variable symbol, body is a fully
; translated term that may involve whs and other variables which returns one
; result. We furthermore know that the free vars in the lambda are the free
; vars of the term free-vars, which is typically just a list-expression of
; variable names supplied by translate. Finally, we know that whs appears as
; the lambda formal iff it is used in body.
; Wormholes may have arbitrary objects for names, so qname is not necessarily a
; quoted symbol. This may be the first entry into the wormhole of that name,
; in which case the most recent output of the wormhole is understood to be nil.
; Logically this function always returns nil. Actually, it applies the lambda
; expression to either (i) ``the most recent output'' of the named wormhole or
; (ii) no arguments, appropriately, and stores the result as the most recent
; output, and then returns nil.
(let* ((whs (if (car (cadr (cadr qlambda)))
(car (cadr (cadr qlambda))) ; Case (i)
(gensym))) ; Case (ii)
(val (gensym))
(form
; The code we lay down is the same in both cases, because we use the variable whs to
; store the old value of the status to see whether it has changed. But we have
; to generate a name if one isn't supplied.
`(progn
(cond (*wormholep*
(setq *wormhole-status-alist*
(put-assoc-equal
(f-get-global 'wormhole-name
*the-live-state*)
(f-get-global 'wormhole-status
*the-live-state*)
*wormhole-status-alist*))))
(let* ((*wormholep* t)
(,whs (cdr (assoc-equal ,qname *wormhole-status-alist*)))
(,val ,(caddr (cadr qlambda))))
(or (equal ,whs ,val)
(setq *wormhole-status-alist*
(put-assoc-equal ,qname ,val *wormhole-status-alist*)))
nil))))
(cond ((tree-occur-eq :no-wormhole-lock free-vars)
form)
(t `(with-wormhole-lock ,form)))))
(defmacro wormhole (name entry-lambda input form
&key
(current-package 'same current-packagep)
(ld-skip-proofsp 'same ld-skip-proofspp)
(ld-redefinition-action 'save ld-redefinition-actionp)
(ld-prompt ''wormhole-prompt)
(ld-missing-input-ok 'same ld-missing-input-okp)
(ld-pre-eval-filter 'same ld-pre-eval-filterp)
(ld-pre-eval-print 'same ld-pre-eval-printp)
(ld-post-eval-print 'same ld-post-eval-printp)
(ld-evisc-tuple 'same ld-evisc-tuplep)
(ld-error-triples 'same ld-error-triplesp)
(ld-error-action 'same ld-error-actionp)
(ld-query-control-alist 'same ld-query-control-alistp)
(ld-verbose 'same ld-verbosep)
(ld-user-stobjs-modified-warning ':same))
`(with-wormhole-lock
(prog2$
(wormhole-eval ,name ,entry-lambda
; It is probably harmless to allow a second lock under the one above, but there
; is no need, so we avoid it.
:no-wormhole-lock)
(wormhole1
,name
,input
,form
(list
,@(append
(if current-packagep
(list `(cons 'current-package ,current-package))
nil)
(if ld-skip-proofspp
(list `(cons 'ld-skip-proofsp ,ld-skip-proofsp))
nil)
(if ld-redefinition-actionp
(list `(cons 'ld-redefinition-action
,ld-redefinition-action))
nil)
(list `(cons 'ld-prompt ,ld-prompt))
(if ld-missing-input-okp
(list `(cons 'ld-missing-input-ok ,ld-missing-input-ok))
nil)
(if ld-pre-eval-filterp
(list `(cons 'ld-pre-eval-filter ,ld-pre-eval-filter))
nil)
(if ld-pre-eval-printp
(list `(cons 'ld-pre-eval-print ,ld-pre-eval-print))
nil)
(if ld-post-eval-printp
(list `(cons 'ld-post-eval-print ,ld-post-eval-print))
nil)
(if ld-evisc-tuplep
(list `(cons 'ld-evisc-tuple ,ld-evisc-tuple))
nil)
(if ld-error-triplesp
(list `(cons 'ld-error-triples ,ld-error-triples))
nil)
(if ld-error-actionp
(list `(cons 'ld-error-action ,ld-error-action))
nil)
(if ld-query-control-alistp
(list `(cons 'ld-query-control-alist ,ld-query-control-alist))
nil)
(if ld-verbosep
(list `(cons 'ld-verbose ,ld-verbose))
nil)
(if (eq ld-user-stobjs-modified-warning :same)
(list `(cons 'ld-user-stobjs-modified-warning
,ld-user-stobjs-modified-warning))
nil)))))))
(defun legal-constantp1 (name)
; This function should correctly distinguish between variables and
; constants for symbols that are known to satisfy
; legal-variable-or-constant-namep. Thus, if name satisfies this
; predicate then it cannot be a variable.
(declare (xargs :guard (symbolp name)))
(or (eq name t)
(eq name nil)
(let ((s (symbol-name name)))
(and (not (= (length s) 0))
(eql (char s 0) #\*)
(eql (char s (1- (length s))) #\*)))))
(defun lambda-keywordp (x)
(and (symbolp x)
(eql 1 (string<= "&" (symbol-name x)))))
(defun legal-variable-or-constant-namep (name)
; This function checks the syntax of variable or constant name
; symbols. In all cases, name must be a symbol that is not in the
; keyword package or among *common-lisp-specials-and-constants*
; (except t and nil), or in the main Lisp package but outside
; *common-lisp-symbols-from-main-lisp-package*, and that does not
; start with an ampersand. The function returns 'constant, 'variable,
; or nil.
; WARNING: T and nil are legal-variable-or-constant-nameps
; because we want to allow their use as constants.
; We now allow some variables (but still no constants) from the main Lisp
; package. See *common-lisp-specials-and-constants*. The following note
; explains why we have been cautious here.
; Historical Note
; This package restriction prohibits using some very common names as
; variables or constants, e.g., MAX and REST. Why do we do this? The
; reason is that there are a few such symbols, such as
; LAMBDA-LIST-KEYWORDS, which if bound or set could cause real
; trouble. Rather than attempt to identify all of the specials of
; CLTL that are prohibited as ACL2 variables, we just prohibit them
; all. One might be reminded of Alexander cutting the Gordian Knot.
; We could spend a lot of time unraveling complex questions about
; specials in CLTL or we can get on with it. When ACL2 prevents you
; from using REST as an argument, you should see the severed end of a
; once tangled rope.
; For example, akcl and lucid (and others perhaps) allow you to define
; (defun foo (boole-c2) boole-c2) but then (foo 3) causes an error.
; Note that boole-c2 is recognized as special (by
; system::proclaimed-special-p) in lucid, but not in akcl (by
; si::specialp); in fact it's a constant in both. Ugh.
; End of Historical Note.
(and (symbolp name)
(cond
((or (eq name t) (eq name nil))
'constant)
(t (let ((p (symbol-package-name name)))
(and (not (equal p "KEYWORD"))
(let ((s (symbol-name name)))
(cond
((and (not (= (length s) 0))
(eql (char s 0) #\*)
(eql (char s (1- (length s))) #\*))
; It was an oversight that a symbol with a symbol-name of "*" has always been
; considered a constant rather than a variable. The intention was to view "*"
; as a delimiter -- thus, even "**" is probably OK for a constant since the
; empty string is delimited. But it doesn't seem important to change this
; now. If we do make such a change, consider the following (at least).
; - It will be necessary to update :doc defconst.
; - Fix the error message for, e.g., (defconst foo::* 17), so that it doesn't
; say "does not begin and end with the character *".
; - Make sure the error message is correct for (defun foo (*) *). It should
; probably complain about the main Lisp package, not about "the syntax of a
; constant".
(if (equal p *main-lisp-package-name*)
nil
'constant))
((and (not (= (length s) 0))
(eql (char s 0) #\&))
nil)
((equal p *main-lisp-package-name*)
(and (not (member-eq
name
*common-lisp-specials-and-constants*))
(member-eq
name
*common-lisp-symbols-from-main-lisp-package*)
'variable))
(t 'variable)))))))))
(defun legal-variablep (name)
; Name may be used as a variable if it has the syntax of a variable
; (see legal-variable-or-constant-namep) and does not have the syntax of
; a constant, i.e., does not start and end with a *.
(eq (legal-variable-or-constant-namep name) 'variable))
(defun arglistp1 (lst)
; Every element of lst is a legal-variablep.
(cond ((atom lst) (null lst))
(t (and (legal-variablep (car lst))
(arglistp1 (cdr lst))))))
(defun arglistp (lst)
(and (arglistp1 lst)
(no-duplicatesp-eq lst)))
(defun find-first-bad-arg (args)
; This function is only called when args is known to be a non-arglistp
; that is a true list. It returns the first bad argument and a string
; that completes the phrase "... violates the rules because it ...".
(declare (xargs :guard (and (true-listp args)
(not (arglistp args)))))
(cond
;;((null args) (mv nil nil)) -- can't happen, given the guard!
((not (symbolp (car args))) (mv (car args) "is not a symbol"))
((legal-constantp1 (car args))
(mv (car args) "has the syntax of a constant"))
((lambda-keywordp (car args))
(mv (car args) "is a lambda keyword"))
((keywordp (car args))
(mv (car args) "is in the KEYWORD package"))
((member-eq (car args) *common-lisp-specials-and-constants*)
(mv (car args) "belongs to the list *common-lisp-specials-and-constants* ~
of symbols from the main Lisp package"))
((member-eq (car args) (cdr args))
(mv (car args) "occurs more than once in the list"))
((and (equal (symbol-package-name (car args)) *main-lisp-package-name*)
(not (member-eq (car args)
*common-lisp-symbols-from-main-lisp-package*)))
(mv (car args) "belongs to the main Lisp package but not to the list ~
*common-lisp-symbols-from-main-lisp-package*"))
(t (find-first-bad-arg (cdr args)))))
(defun process-defabbrev-declares (decls)
(cond ((endp decls) ())
; Here we do a cheap check that the declare form is illegal. It is tempting to
; use collect-declarations, but it take state. Anyhow, there is no soundness
; issue; the user will just be a bit surprised when the error shows up later as
; the macro defined by the defabbrev is applied.
((not (and (consp (car decls))
(eq (caar decls) 'DECLARE)
(true-list-listp (cdar decls))
(subsetp-eq (strip-cars (cdar decls))
'(IGNORE IGNORABLE TYPE))))
(er hard 'process-defabbrev-declares
"In a DEFABBREV form, each expression after the argument list ~
but before the body must be of the form (DECLARE decl1 .. ~
declk), where each dcli is of the form (IGNORE ..), (IGNORABLE ~
..), or (TYPE ..). The form ~x0 is thus illegal."
(car decls)))
(t
(cons (kwote (car decls))
(process-defabbrev-declares (cdr decls))))))
(defun defabbrev1 (lst)
(declare (xargs :guard (true-listp lst)))
(cond ((null lst) nil)
(t (cons (list 'list (list 'quote (car lst)) (car lst))
(defabbrev1 (cdr lst))))))
(defmacro defabbrev (fn args &rest body)
(cond ((null body)
(er hard (cons 'defabbrev fn)
"The body of this DEFABBREV form is missing."))
((not (true-listp args))
(er hard (cons 'defabbrev fn)
"The formal parameter list for a DEFABBREV must be a true list. ~
The argument list ~x0 is thus illegal."
args))
((not (arglistp args))
(mv-let (culprit explan)
(find-first-bad-arg args)
(er hard (cons 'defabbrev fn)
"The formal parameter list for a DEFABBREV must be a ~
list of distinct variables, but ~x0 does not meet these ~
conditions. The element ~x1 ~@2."
args culprit explan)))
(t
(mv-let (doc-string-list body)
(if (and (stringp (car body))
(cdr body))
(mv (list (car body)) (cdr body))
(mv nil body))
(cond ((null body)
(er hard (cons 'defabbrev fn)
"This DEFABBREV form has a doc string but no ~
body."))
((and (consp (car (last body)))
(eq (caar (last body)) 'declare))
(er hard (cons 'defabbrev fn)
"The body of this DEFABBREV form is a DECLARE ~
form, namely ~x0. This is illegal and probably ~
is not what was intended."
(car (last body))))
(t
`(defmacro ,fn ,args
,@doc-string-list
(list 'let
(list ,@(defabbrev1 args))
,@(process-defabbrev-declares
(butlast body 1))
',(car (last body))))))))))
; Essay on Evisceration
; We have designed the pretty printer so that it can print an
; "eviscerated" object, that is, an object that has had certain
; substructures removed. We discuss the prettyprinter in the Essay on
; the ACL2 Prettyprinter. The pretty printer has a flag, eviscp,
; which indicates whether the object has been eviscerated or not. If
; not, then the full object is printed as it stands. If so, then
; certain substructures of it are given special interpretation by the
; printer. In particular, when the printer encounters a cons of the
; form (:evisceration-mark . x) then x is a string and the cons is
; printed by printing the characters in x (without the double
; gritches).
; object pretty printed output
; (:evisceration-mark . "#") #
; (:evisceration-mark . "...") ...
; (:evisceration-mark . "<state>") <state>
; (:evisceration-mark . ":EVISCERATION-MARK") :EVISCERATION-MARK
; So suppose you have some object and you want to print it, implementing
; the CLTL conventions for *print-level* and *print-length*. Then you
; must first scan it, inserting :evisceration-mark forms where
; appropriate. But what if it contains some occurrences of
; :evisceration-mark? Then you must use evisceration mechanism to print
; them correctly! Once you have properly eviscerated the object, you can
; call the prettyprinter on it, telling it that the object has been
; eviscerated. If, on the other hand, you don't want to eviscerate it,
; then you needn't sweep it to protect the native :evisceration-marks:
; just call the prettyprinter with the eviscp flag off.
(defconst *evisceration-mark* :evisceration-mark)
; Note: It is important that the evisceration-mark be a keyword.
; One reason is that (:evisceration-mark . ":EVISCERATION-MARK")
; couldn't be used to print a non-keyword because the package might
; need to be printed. Another is that we exploit the fact that no
; event name nor any formal is *evisceration-mark*. See
; print-ldd-full-or-sketch. Furthermore, if the particular keyword
; chosen is changed, alter *anti-evisceration-mark* below!
(defconst *evisceration-hash-mark* (cons *evisceration-mark* "#"))
(defconst *evisceration-ellipsis-mark* (cons *evisceration-mark* "..."))
(defconst *evisceration-world-mark*
(cons *evisceration-mark* "<world>"))
(defconst *evisceration-state-mark*
(cons *evisceration-mark* "<state>"))
(defconst *evisceration-error-triple-marks*
(list nil nil *evisceration-state-mark*))
(defconst *evisceration-hiding-mark*
(cons *evisceration-mark* "<hidden>"))
(defconst *anti-evisceration-mark*
(cons *evisceration-mark* ":EVISCERATION-MARK"))
(defmacro evisceratedp (eviscp x)
; Warning: The value of x should be a consp.
`(and ,eviscp (eq (car ,x) *evisceration-mark*)))
; Essay on Iprinting
; Through Version_3.4, when ACL2 eviscerated a form using a print-level or
; print-length from an evisc-tuple, the resulting # and ... made it impossible
; to read the form back in. We have implemented "iprinting" (think
; "interactive printing") to deal with this problem. Our implementation uses
; an "iprint array", or "iprint-ar" for short, as described below. Now, when
; iprinting is enabled, then instead of # or ... we will see #@i# for i = 1, 2,
; etc. See :doc set-iprint for more information at the user level. In brief,
; the idea is to maintain a state global 'iprint-ar whose value is an ACL2
; array that associates each such i with its hidden value. (This use of #@i#
; allows us also to think of "iprinting" as standing for "index printing" or "i
; printing".)
; We implement this idea by modifying the recursive subroutines of eviscerate
; to accumulate each association of a positive i with its hidden value. When
; fmt (or fms, etc.) is called, eviscerate-top or eviscerate-stobjs-top will be
; called in order to update the existing 'iprint-ar with those new
; associations.
; We use index 0 to store the most recent i for which #@i# has been printed,
; assuming iprinting is enabled, or else (list i) if iprinting is disabled. We
; call such i the last-index, and it is initially 0. Note that state global
; 'iprint-ar is thus always bound to an installed ACL2 array.
; When state global 'iprint-fal has a non-nil value (which is exactly when
; set-iprint was last called with a non-nil value of :share), it is a
; fast-alist that inverts iprint-ar in the following sense: for every pair (i
; . v) in iprint-ar with 1 <= i <= last-index, (v . i) is in the value of
; 'iprint-fal. See :doc set-iprint for more about :share.
; We have to face a fundamental question: Do we use acons or aset1 as we
; encounter a new form to assign to some #@i# during those recursive
; subroutines? The latter is dangerous in case we interrupt before installing
; the result in the state global. So it's tempting to use acons -- but it
; could be inefficient to compress the iprint-ar on each top-level call. So
; instead we use acons to build up a new alist from scratch. Then at the
; top level, we apply aset1 for each entry if we can do so without needing to
; ``rollover'', i.e., set the last-index back to 0; otherwise we call compress1
; rather than making a series of aset1 calls. With luck this final step will
; be fast and unlikely to be interrupted from the time the first aset1 or
; compress1 is applied until the state global 'iprint-ar is updated.
; Let's also comment on why we have a soft and a hard bound (as described in
; :doc set-iprint). In general we allow indices to increase between successive
; top-level invocations, so that the user can read back in any forms that were
; printed. But the soft bound forces a rollover at the top level of LD when the
; last-index exceeds that bound, so that we don't hold on to a potentially
; unbounded amount of space for the objects in the iprint-ar. The hard bound
; (which generally exceeds the soft bound) steps in if the last-index exceeds
; it after pretty-printing a single form. Thus, if there are large objects and
; very long runs between successive top-level forms, space can be
; reclaimed. The hard bound is therefore probably less likely to be of use.
; We maintain the invariant that the dimension of state global 'iprint-ar
; exceeds the hard bound. Thus, when we update the 'iprint-ar in the normal
; case that the hard bound is not exceeded, then the dimension will not be
; exceeded either; that is, every update will be with an index that is in
; bounds. In order to maintain this invariant, the hard bound is untouchable,
; and its setter function compresses the global iprint-ar with a new dimension
; that exceeds the specified hard bound. Therefore the hard bound must be a
; number, not nil. Notice that with this invariant, we can avoid compressing
; twice when we roll over upon exceeding the hard or soft bound: we first reset
; the last-index to 0 and then do the compression, rather than compressing once
; for the increased dimension and once for the rollover.
; We also maintain the invariant that the maximum-length of the 'iprint-ar is
; always at least four times its dimension. See the comment about this in
; rollover-iprint-ar.
; It is tempting to cause an error when the user submits a form containing some
; #@j# and #@k# such that j <= last-index < k. In such a case, k is from
; before the rollover and j is from after the rollover, so these couldn't have
; been stored during a prettyprint of the same form. By default we avoid this
; restriction, because the user might want to read a list that includes some
; forms prettyprinted before the last rollover and other forms printed after
; the last rollover. But if iprint sharing is on, then a subform that had been
; printed before rollover might include iprint indices that have since changed,
; which might be highly confusing. So we make the above restriction on indices
; when iprint sharing is on, as documented in :doc set-iprint.
; We need to be sure that the global iprint-ar is installed as an ACL2 array, in
; order to avoid slow-array-warnings. See the comment in
; push-wormhole-undo-formi for how we deal with this issue in the presence of
; wormholes.
; End of Essay on Iprinting
(defconst *sharp-atsign-ar* ; see get-sharp-atsign
(let ((dim (1+ *iprint-hard-bound-default*)))
(compress1
'sharp-atsign-ar
(cons `(:HEADER :DIMENSIONS (,dim)
:MAXIMUM-LENGTH ,(1+ dim) ; no duplicates expected
:NAME sharp-atsign-ar)
(sharp-atsign-alist *iprint-hard-bound-default* nil)))))
(defun get-sharp-atsign (i)
; If i is below the hard bound, then we get the string #@i# from a fixed array,
; so that we don't have to keep consing up that string.
(declare (xargs :guard (posp i)))
(cond ((<= i *iprint-hard-bound-default*)
(aref1 'sharp-atsign-ar *sharp-atsign-ar* i))
(t (make-sharp-atsign i))))
(defun update-iprint-alist-fal (iprint-alist iprint-fal-new iprint-fal-old val)
; We are doing iprinting. Iprint-alist is either a positive integer,
; representing the last-index but no accumulated iprint-alist, or else is a
; non-empty alist of entries (i . val_i). See the Essay on Iprinting.
(let ((pair (and iprint-fal-old
(or (hons-get val iprint-fal-new)
(hons-get val iprint-fal-old)))))
(cond (pair
(mv (cdr pair) iprint-alist iprint-fal-new))
((consp iprint-alist)
(let ((index (1+ (caar iprint-alist))))
(mv index
(acons index val iprint-alist)
(and iprint-fal-old
(hons-acons val index iprint-fal-new)))))
(t
(let ((index (1+ iprint-alist)))
(mv index
(acons index val nil)
(and iprint-fal-old
(hons-acons val index iprint-fal-new))))))))
; We now define the most elementary eviscerator, the one that implements
; *print-level* and *print-length*. In this same pass we also arrange to
; hide any object in alist, where alist pairs objects with their
; evisceration strings -- or if not a string, with the appropriate
; evisceration pair.
(mutual-recursion
(defun eviscerate1 (x v max-v max-n alist evisc-table hiding-cars
iprint-alist iprint-fal-new iprint-fal-old eager-p)
; Iprint-alist is either a symbol, indicating that we are not doing iprinting; a
; positive integer, representing the last-index but no accumulated iprint-alist;
; or an accumulated alist of entries (i . val_i). See the Essay on Iprinting.
; Note that if iprint-alist is a symbol, then it is nil if no evisceration has
; been done based on print-length or print-level, else t.
; If iprint-fal-old is nil (i.e., if iprinting is off), then eager-p is
; essentially irrelevant; but as a sanity check, we insist that eager-p is nil
; in that case (as enforced by the assert$ call below).
(let* ((temp (or (hons-assoc-equal x alist)
(hons-assoc-equal x evisc-table)))
(eager-pair (and eager-p
(null (cdr temp))
(consp x)
(assert$
iprint-fal-old
(or (hons-get x iprint-fal-new)
(hons-get x iprint-fal-old))))))
(cond ((cdr temp)
(mv (cond ((stringp (cdr temp))
(cons *evisceration-mark* (cdr temp)))
(t (cdr temp)))
iprint-alist
iprint-fal-new))
((atom x)
(mv (cond ((eq x *evisceration-mark*) *anti-evisceration-mark*)
(t x))
iprint-alist
iprint-fal-new))
(eager-pair
(mv (cons *evisceration-mark*
(get-sharp-atsign (cdr eager-pair)))
iprint-alist
iprint-fal-new))
((= v max-v)
(cond ((symbolp iprint-alist)
(mv *evisceration-hash-mark* t iprint-fal-new))
(t
(mv-let (index iprint-alist iprint-fal-new)
(update-iprint-alist-fal iprint-alist
iprint-fal-new
iprint-fal-old
x)
(mv (cons *evisceration-mark*
(get-sharp-atsign index))
iprint-alist
iprint-fal-new)))))
((member-eq (car x) hiding-cars)
(mv *evisceration-hiding-mark* iprint-alist iprint-fal-new))
(t (eviscerate1-lst x (1+ v) 0 max-v max-n alist evisc-table
hiding-cars iprint-alist
iprint-fal-new iprint-fal-old eager-p)))))
(defun eviscerate1-lst (lst v n max-v max-n alist evisc-table hiding-cars
iprint-alist iprint-fal-new iprint-fal-old eager-p)
(let* ((temp (or (hons-assoc-equal lst alist)
(hons-assoc-equal lst evisc-table)))
(eager-pair (and eager-p
(null (cdr temp))
(consp lst)
(assert$
iprint-fal-old
(or (hons-get lst iprint-fal-new)
(hons-get lst iprint-fal-old))))))
(cond
((cdr temp)
(mv (cond ((stringp (cdr temp))
(cons *evisceration-mark* (cdr temp)))
(t (cdr temp)))
iprint-alist
iprint-fal-new))
((atom lst)
(mv (cond ((eq lst *evisceration-mark*) *anti-evisceration-mark*)
(t lst))
iprint-alist
iprint-fal-new))
(eager-pair
(mv (cons *evisceration-mark*
(get-sharp-atsign (cdr eager-pair)))
iprint-alist
iprint-fal-new))
((= n max-n)
(cond ((symbolp iprint-alist)
(mv (list *evisceration-ellipsis-mark*) t iprint-fal-new))
(t (mv-let (index iprint-alist iprint-fal-new)
(update-iprint-alist-fal iprint-alist
iprint-fal-new
iprint-fal-old
lst)
(mv (cons *evisceration-mark*
(get-sharp-atsign index))
iprint-alist
iprint-fal-new)))))
(t (mv-let (first iprint-alist iprint-fal-new)
(eviscerate1 (car lst) v max-v max-n alist evisc-table
hiding-cars iprint-alist
iprint-fal-new iprint-fal-old eager-p)
(mv-let (rest iprint-alist iprint-fal-new)
(eviscerate1-lst (cdr lst) v (1+ n)
max-v max-n alist evisc-table
hiding-cars iprint-alist
iprint-fal-new iprint-fal-old eager-p)
(mv (cons first rest) iprint-alist iprint-fal-new)))))))
)
(mutual-recursion
(defun eviscerate1p (x alist evisc-table hiding-cars)
; This function returns t iff (eviscerate1 x 0 -1 -1 alist evisc-table hidep)
; returns something other than x. That is, iff the evisceration of x either
; uses alist, evisc-table, hiding or the *anti-evisceration-mark* (assuming
; that print-level and print-length never max out).
(let ((temp (or (hons-assoc-equal x alist)
(hons-assoc-equal x evisc-table))))
(cond ((cdr temp) t)
((atom x)
(cond ((eq x *evisceration-mark*) t)
(t nil)))
((member-eq (car x) hiding-cars) t)
(t (eviscerate1p-lst x alist evisc-table hiding-cars)))))
(defun eviscerate1p-lst (lst alist evisc-table hiding-cars)
(let ((temp (or (hons-assoc-equal lst alist)
(hons-assoc-equal lst evisc-table))))
(cond ((cdr temp) t)
((atom lst)
(cond ((eq lst *evisceration-mark*) t)
(t nil)))
(t (or (eviscerate1p (car lst) alist evisc-table hiding-cars)
(eviscerate1p-lst (cdr lst) alist evisc-table
hiding-cars))))))
)
(defun eviscerate (x print-level print-length alist evisc-table hiding-cars
iprint-alist iprint-fal-new iprint-fal-old eager-p)
; See also eviscerate-top, which takes iprint-ar from the state and installs a
; new iprint-ar in the state, and update-iprint-alist, which describes the role
; of a non-symbol iprint-alist as per the Essay on Iprinting.
; Print-level and print-length should either be non-negative integers or nil.
; Alist and evisc-table are alists pairing arbitrary objects to strings or
; other objects. Hiding-cars is a list of symbols. Any x that starts with one
; of these symbols is printed as <hidden>. If alist or evisc-table pairs an
; object with a string, the string is printed in place of the object. If alist
; or evisc-table pairs an object with anything else, x, then x is substituted
; for the the object and is treated as eviscerated. In general, alist will
; come from an evisceration tuple and evisc-table will be the value of the
; 'evisc-table table in the current ACL2 world. We give priority to the former
; because the user may want to override the evisc-table, for example using ~P
; in a call of fmt.
; This function copies the structure x and replaces certain deep substructures
; with evisceration marks. The determination of which substructures to so
; abbreviate is based on the same algorithm used to define *print-level* and
; *print-length* in CLTL, with the additional identification of all occurrences
; of any object in alist or evisc-table.
; For example, if x is '(if (member x y) (+ (car x) 3) '(foo . b)) and
; print-level is 2 and print-length is 3 then the output is:
; (IF (MEMBER X Y)
; (+ (*evisceration-mark* . "#") 3)
; (*evisceration-mark* . "..."))
; See pg 373 of CLTL.
; Of course we are supposed to print this as:
; (IF (MEMBER X Y) (+ # 3) ...)
; We consider a couple of special cases to reduce unnecessary consing
; of eviscerated values.
(cond ((and (null print-level)
(null print-length))
; Warning: Observe that even if alist is nil, x might contain the
; *evisceration-mark* or hiding expressions and hence have a
; non-trivial evisceration
(cond ((eviscerate1p x alist evisc-table hiding-cars)
(eviscerate1 x 0 -1 -1 alist evisc-table hiding-cars
; Since we are not eviscerating based on print-level or print-length, there is
; no involvement of iprinting, so we pass nil for the remaining arguments.
nil nil nil nil))
(t (mv x iprint-alist iprint-fal-new))))
(t (eviscerate1 (if eager-p (hons-copy x) x)
0
(or print-level -1)
(or print-length -1)
alist
evisc-table
hiding-cars
iprint-alist
iprint-fal-new
iprint-fal-old
eager-p))))
(defun eviscerate-simple (x print-level print-length alist evisc-table
hiding-cars)
; This wrapper for eviscerate avoids the need to pass back multiple values when
; the iprint-alist is nil and we don't care if evisceration has occurred.
(mv-let (result null-iprint-alist null-iprint-fal)
(eviscerate x print-level print-length alist evisc-table hiding-cars
nil nil
; We normally pass in the current value of state global 'iprint-fal for the
; last argument, iprint-fal-old, of eviscerate. However, since iprint-alist is
; nil, we know that it's fine to pass in nil for iprint-fal-old, and similarly
; for eager-p.
nil nil)
(assert$ (and (booleanp null-iprint-alist)
(null null-iprint-fal))
result)))
(defun aset1-lst (name alist ar)
(declare (xargs :guard (eqlable-alistp alist))) ; really nat-alistp
(cond ((endp alist)
ar)
(t (aset1-lst name
(cdr alist)
(aset1 name ar (caar alist) (cdar alist))))))
; Next we define accessors for iprint arrays.
(defun iprint-hard-bound (state)
(f-get-global 'iprint-hard-bound state))
(defun iprint-soft-bound (state)
(f-get-global 'iprint-soft-bound state))
(defun iprint-last-index* (iprint-ar)
(declare (xargs :guard (array1p 'iprint-ar iprint-ar)))
(let ((x (aref1 'iprint-ar iprint-ar 0)))
(if (consp x) ; iprinting is disabled
(car x)
x)))
(defun iprint-last-index (state)
(iprint-last-index* (f-get-global 'iprint-ar state)))
(defun iprint-ar-illegal-index (index state)
(declare (xargs :guard (and (natp index) (state-p state))))
(or (zp index)
(let* ((iprint-ar (f-get-global 'iprint-ar state))
(bound (default 'iprint-ar iprint-ar)))
(if (null bound)
(> index (iprint-last-index* iprint-ar))
(> index bound)))))
(defun iprint-enabledp (state)
(natp (aref1 'iprint-ar (f-get-global 'iprint-ar state) 0)))
(defun iprint-ar-aref1 (index state)
; We do not try to determine if the index is appropriate, other than to avoid a
; guard violation on the aref1 call. See the Essay on Iprinting.
(declare (xargs :guard (and (posp index) (state-p state))))
(let ((iprint-ar (f-get-global 'iprint-ar state)))
;; PAPER:
; We use a raw Lisp error since otherwise we get an error such as "Can't throw
; to tag RAW-EV-FNCALL".
#-acl2-loop-only
(cond ((>= index (car (dimensions 'iprint-ar iprint-ar)))
; The following error probably never occurs, since we have already done a
; bounds check with iprint-ar-illegal-index.
(error
"Out of range index for iprinting: ~s.~%See :DOC set-iprint."
index)))
(aref1 'iprint-ar iprint-ar index)))
(defun collect-posp-indices-to-header (ar acc)
; Accumulates the reverse of ar onto acc, skipping entries with index 0 and
; stopping just before the :header.
(cond ((endp ar)
(er hard 'collect-posp-indices-to-header
"Implementation error: Failed to find :HEADER as expected!"))
((eq (caar ar) :HEADER)
acc)
(t
(collect-posp-indices-to-header (cdr ar)
(if (eql (caar ar) 0)
acc
(cons (car ar) acc))))))
(defun iprint-fal-name (iprint-fal)
(if (consp iprint-fal)
(cdr (last iprint-fal))
iprint-fal))
(defun iprint-eager-p (iprint-fal)
(eq (iprint-fal-name iprint-fal)
:eager))
(defun init-iprint-fal (sym state)
; Warning: Consider also calling init-iprint-ar when calling this function.
; The initial value of state global 'iprint-fal is nil if we are not to re-use
; indices, and otherwise is the atom, :iprint-fal. We choose a keyword so that
; fast-alist-summary can print that name nicely in any package.
(declare (xargs :guard (symbolp sym)))
(let* ((old-iprint-fal (f-get-global 'iprint-fal state))
(old-iprint-name (iprint-fal-name old-iprint-fal))
(new-iprint-fal (cond ((null sym) nil)
((eq sym t)
:iprint-fal)
((eq sym :same)
old-iprint-name)
(t sym))))
(prog2$ (and (consp old-iprint-fal) ; optimization
(fast-alist-free old-iprint-fal))
(pprogn (f-put-global 'iprint-fal new-iprint-fal state)
(mv (cond
((eq old-iprint-name new-iprint-fal)
nil)
(new-iprint-fal
(msg "Iprinting is enabled with~@0 sharing, with a ~
fast-alist whose name is ~x1."
(if (iprint-eager-p new-iprint-fal)
" eager"
"")
new-iprint-fal))
(t
(msg "Iprinting is enabled without sharing.")))
state)))))
(defun rollover-iprint-ar (iprint-alist last-index state)
; We assume that iprinting is enabled. Install a new iprint-ar, whose last
; index before rollover is intended to be last-index and whose alist is
; intended to extend state global 'iprint-ar, as the new (and compressed) value
; of state global 'iprint-ar.
(let* ((old-iprint-ar (f-get-global 'iprint-ar state))
(new-dim
; Clearly last-index exceeds the iprint-hard-bound, as required by one of our
; invariants (see the Essay on Iprinting), if we are rolling over because
; last-index exceeds that hard bound. But we can also call rollover-iprint-ar
; when exceeding the soft bound, which may be smaller than the hard bound (it
; probably is smaller, typically). The taking of this max is cheap so we
; always do it, so that rollover-iprint-ar will always preserve the above
; invariant.
; To illustrate the above point, evaluate the following forms in a fresh ACL2
; session and see the error if we bind new-dim to (1+ last-index).
; (set-ld-evisc-tuple (evisc-tuple 2 3 nil nil) state)
; (set-iprint t :soft-bound 2 :hard-bound 7)
; '((a b c d e) (a b c d e) (a b c d e))
; '((a b c d e) (a b c d e) (a b c d e) (a b c d e) (a b c d e))
(1+ (max (iprint-hard-bound state) last-index)))
(new-max-len
; A multiplier of 4 allows us to maintain the invariant that the maximum-length
; is always at least four times the dimension. This guarantees that the
; 'iprint-ar alist never reaches the maximum-length because it never reaches
; 4*d, where d is the dimension, as this alist has at most:
; - up to d-2 values for index >= 1 since the latest rollover;
; - up to d-2 values for index >= 1 before the latest rollover;
; - at most two headers (the 2nd is just before a new compression at rollover)
; - no two successive bindings of index 0
; So without considering index 0, the maximum is (d-2 + d-2 + 2) = 2d-1. Now
; for the bindings of index 0, double that and add one to get 4d-1.
; Thus, since the dimension never decreases (except when we reinitialize), we
; are assured that our use of aset1-lst in update-iprint-ar will never cause a
; recompression. See also corresponding comments in disable-iprint-ar and
; enable-iprint-ar.
(* 4 new-dim))
(new-header
(prog2$
(or (<= new-max-len *maximum-positive-32-bit-integer*)
(er hard 'rollover-iprint-ar
"Attempted to expand iprint-ar to a maximum-length of ~x0, ~
exceeding *maximum-positive-32-bit-integer*, which is ~x1."
new-max-len
*maximum-positive-32-bit-integer*))
`(:HEADER :DIMENSIONS (,new-dim)
:MAXIMUM-LENGTH ,new-max-len
:DEFAULT ,last-index
:NAME iprint-ar
:ORDER :none)))
(new-iprint-ar
(compress1 'iprint-ar
(cons new-header
(acons 0 0
(collect-posp-indices-to-header
old-iprint-ar
; If we change the :order to < from :none, then we need to reverse iprint-alist
; just below. But first read the comment in disable-iprint-ar to see why
; changing the :order from :none requires some thought.
iprint-alist))))))
(mv-let (msg state)
(init-iprint-fal :same state)
(declare (ignore msg))
(f-put-global 'iprint-ar new-iprint-ar state))))
(defun update-iprint-fal-rec (iprint-fal-new iprint-fal-old)
(cond ((atom iprint-fal-new) iprint-fal-old)
(t (update-iprint-fal-rec (cdr iprint-fal-new)
(hons-acons (caar iprint-fal-new)
(cdar iprint-fal-new)
iprint-fal-old)))))
(defun update-iprint-fal (iprint-fal-new state)
(cond
((atom iprint-fal-new) state) ; optimization
(t (f-put-global 'iprint-fal
(update-iprint-fal-rec iprint-fal-new
(f-get-global 'iprint-fal state))
state))))
(defun update-iprint-ar-fal (iprint-alist iprint-fal-new iprint-fal-old state)
; We assume that iprinting is enabled. Iprint-alist is known to be a consp.
; We update state globals 'iprint-ar and 'iprint-fal by updating them with the
; pairs in iprint-alist and iprint-fal-new, respectively.
(let ((last-index (caar iprint-alist)))
(cond ((> last-index (iprint-hard-bound state))
; We throw away iprint-fal-new, because we only want to re-use indices below
; last-index -- re-use of larger indices could quickly leave us pointing to
; stale values when re-printing (say, using without-evisc) recently-printed
; values.
(rollover-iprint-ar iprint-alist last-index state))
(t
(assert$
(or (null iprint-fal-old) ; might have passed in nil at top level
(equal (f-get-global 'iprint-fal state)
iprint-fal-old))
(pprogn
(update-iprint-fal iprint-fal-new state)
(f-put-global 'iprint-ar
; We know last-index <= (iprint-hard-bound state), and it is an invariant that
; this hard bound is less than the dimension of (@ iprint-ar). See the
; discussion of this invariant in the Essay on Iprinting. So last-index is
; less than that dimension, hence we can update with aset1 without encountering
; out-of-bounds indices.
(aset1-lst 'iprint-ar
(acons 0 last-index iprint-alist)
(f-get-global 'iprint-ar state))
state)))))))
(defun eviscerate-top (x print-level print-length alist evisc-table hiding-cars
state)
; We take iprint-ar from the state and then install a new iprint-ar in the state,
; in addition to returning the evisceration of x. See eviscerate and the Essay
; on Iprinting for more details.
(let ((iprint-fal-old (f-get-global 'iprint-fal state)))
(mv-let (result iprint-alist iprint-fal-new)
(eviscerate x print-level print-length alist evisc-table hiding-cars
(and (iprint-enabledp state)
(iprint-last-index state))
nil iprint-fal-old (iprint-eager-p iprint-fal-old))
(fast-alist-free-on-exit
iprint-fal-new
(let ((state
(cond
((eq iprint-alist t)
(f-put-global 'evisc-hitp-without-iprint t state))
((atom iprint-alist) state)
(t (update-iprint-ar-fal iprint-alist
iprint-fal-new
iprint-fal-old
state)))))
(mv result state))))))
; Essay on the ACL2 Prettyprinter
; The ACL2 prettyprinter is a two pass, linear time, exact prettyprinter. By
; "exact" we mean that if it has a page of width w and a big enough form, it
; will guarantee to use all the columns, i.e., the widest line will end in
; column w. The algorithm dates from about 1971 -- virtually the same code was
; in the earliest Edinburgh Pure Lisp Theorem Prover. This approach to
; prettyprinting was invented by Bob Boyer; see
; http://www.cs.utexas.edu/~boyer/pretty-print.pdf. Most prettyprinters are
; quadratic and inexact.
; The secret to this method is to make two linear passes, ppr1 and ppr2. The
; first pass builds a data structure, called a ``ppr tuple,'' that tells the
; second pass how to print.
; Some additional general principles of our prettyprinter are
; (i) Print flat whenever possible.
; (ii) However, don't print flat argument lists of length over 40; they're
; too hard to parse. (But this can be overridden by state global
; ppr-flat-right-margin.)
; (iii) Atoms and eviscerated things (which print like atoms, e.g., `<world>')
; may be printed on a single line.
; (iv) But parenthesized expressions should not be printed on a line with any
; other argument (unless the whole form fits on the line). Thus we may
; produce:
; `(foo (bar a) b c d)'
; and
; `(foo a b
; c d)'
; But we never produce
; `(foo (bar a) b
; c d)'
; preferring instead
; `(foo (bar a)
; b c d)'
; It is our belief that parenthesized expressions are hard to parse and
; after doing so the eye tends to miss little atoms (like b above)
; hiding in their shadows.
; To play with ppr we recommend executing this form:
; (ppr2 (ppr1 x (print-base) (print-radix) 30 0 state t)
; 0 *standard-co* state t)
; This will prettyprint x on a page of width 30, assuming that printing starts
; in column 0. To see the ppr tuple that drives the printer, just evaluate the
; inner ppr1 form,
; (ppr1 x (print-base) (print-radix) 30 0 state nil).
; The following test macro is handy. A typical call of the macro is
; (test 15 (foo (bar x) (mum :key1 val1 :key2 :val2)))
; Note that x is not evaluated. If you want to evaluate x and ppr the value,
; use
; (testfn 10
; (eviscerate-simple `(foo (bar x)
; (mum :key1 :val1 :key2 :val2)
; ',(w state))
; nil nil ; print-level and print-length
; (world-evisceration-alist state nil)
; nil
; nil)
; state)
; Note that x may be eviscerated, i.e., eviscerated objects in x are printed in
; their short form, not literally.
; (defun testfn (d x state)
; (declare (xargs :mode :program :stobjs (state)))
; (let ((tuple (ppr1 x (print-base) (print-radix) d 0 state t)))
; (pprogn
; (fms "~%Tuple: ~x0~%Output:~%" (list (cons #\0 tuple))
; *standard-co* state nil)
; (ppr2 tuple 0 *standard-co* state t)
; (fms "~%" nil *standard-co* state nil))))
;
; (defmacro test (d x)
; Ppr tuples record enough information about the widths of various forms so
; that it can be computed without having to recompute any part of it and so
; that the second pass can print without having to count characters.
; A ppr tuple has the form (token n . z). In the display below, the variables
; ti represent ppr tuples and the variables xi represent objects to be printed
; directly. Any xi could an eviscerated object, a list whose car is the
; evisceration mark.
; (FLAT n x1 ... xk) - Print the xi, separated by spaces, all on one
; line. The total width of output will be n.
; Note that k >= 1. Note also that such a FLAT
; represents k objects. A special case is (FLAT
; n x1), which represents one object. We make
; this observation because sometimes (in
; cons-ppr1) we `just know' that k=1 and the
; reason is: we know the FLAT we're holding
; represents a single object.
; (FLAT n x1... . xk)- Print the xi, separated by spaces, with xk
; separated by `. ', all on one line. Here xk
; is at atom or an eviscerated object.
; (FLAT n . xk) - Here, xk is an atom (or an eviscerated object).
; Print a dot, a space, and xk. The width will
; be n. Note that this FLAT does not actually
; represent an object. That is, no Lisp object
; prints as `. xk'.
; Note: All three forms of FLAT are really just (FLAT n . x) where x is a
; possibly improper list and the elements of x (and its final cdr) are printed,
; separated appropriately by spaces or dot.
; (MATCHED-KEYWORD n x1)
; - Exactly like (FLAT n x1), i.e., prints x1,
; but by virtue of being different from FLAT
; no other xi's are ever added. In this tuple,
; x1 is always a keyword and it will appear on
; a line by itself. Its associated value will
; appear below it in the column because we tried
; to put them on the same line but we did not have
; room.
; (DOT 1) - Print a dot.
; (QUOTE n . t1) - Print a single-quote followed by pretty-
; printing the ppr tuple t1.
; (WIDE n t1 t2 ...) - Here, t1 is a FLAT tuple of width j. We
; print an open paren, the contents of t1, a
; space, and then we prettyprint each of the
; remaining ti in a column. When we're done, we
; print a close paren. The width of the longest
; line we will print is n.
; (i n t1 ...) - We print an open paren, prettyprint t1, then
; do a newline. Then we prettyprint the
; remaining ti in the column that is i to the
; right of the paren. We conclude with a close
; paren. The width of the longest line we will
; print is n. We call this an `indent tuple'.
; (KEYPAIR n t1 . t2)- Here, t1 is a FLAT tuple of width j. We print
; t1, a space, and then prettyprint t2. The
; length of the longest line we will print is n.
; The sentences "The length of the longest line we will print is n."
; bears explanation. Consider
; (FOO (BAR X)
; (MUMBLE Y)
; Z)
;|<- 15 chars ->|
; 123456789012345
; The length of the longest line, n, is 15. That is, the length of the longest
; line counts the spaces from the start of the printing. In the case of a
; KEYPAIR tuple:
; :KEY (FOO
; (BAR X)
; Y)
;|<- 13 ->|
; we count the spaces from the beginning of the keyword. That is, we consider
; the whole block of text.
; Below we print test-term in two different widths, and display the ppr tuple
; that drives each of the two printings.
; (assign test-term
; '(FFF (GGG (HHH (QUOTE (A . B))))
; (III YYY ZZZ)))
;
;
; (ppr2 (ppr1 (@ test-term) (print-base) (print-radix) 30 0 state nil) 0
; *standard-co* state nil)
; ; =>
; (FFF (GGG (HHH '(A . B))) (WIDE 25 (FLAT 3 FFF)
; (III YYY ZZZ)) (FLAT 20 (GGG (HHH '(A . B))))
; (FLAT 14 (III YYY ZZZ)))
; <- 25 ->|
;
; (ppr2 (ppr1 (@ test-term) (print-base) (print-radix) 20 0 state nil) 0
; *standard-co* state nil)
; ; =>
; (FFF (1 20 (FLAT 3 FFF)
; (GGG (4 19 (FLAT 3 GGG)
; (HHH '(A . B))) (FLAT 15 (HHH '(A . B))))
; (III YYY ZZZ)) (FLAT 14 (III YYY ZZZ)))
;
; <- 20 ->|
; The function cons-ppr1, below, is the first interesting function in the nest.
; We want to build a tuple to print a given list form, like a function call.
; We basically get the tuple for the car and a list of tuples for the cdr and
; then use cons-ppr1 to combine them. The resulting list of tuples will be
; embedded in either a WIDE or an indent tuple. Thus, this list of tuples we
; will create describes a column of forms. The number of items in that column
; is not necessarily the same as the number of arguments of the function call.
; For example, the term (f a b c) might be prettyprinted as
; (f a
; b c)
; where b and c are printed flat on a single line. Thus, the three arguments
; of f end up being described by a list of two tuples, one for a and another
; for b and c.
; To form lists of tuples we just use cons-ppr1 to combine the tuples we get
; for each element.
; Let x and lst be, respectively, a ppr tuple for an element and a list of
; tuples for list of elements. Think of lst as describing a column of forms.
; Either x can become another item that column, or else x can be incorporated
; into the first item in that column. For example, suppose x will print as X
; and lst will print as a column containing y1, y2, etc. Then we have this
; choice for printing x and lst:
; lengthened column lengthened first row
; x x y1
; y1 y2
; ... ...
; We get the `lengthened column' behavior if we just cons x onto lst. We get
; the `lengthened row' behavior if we merge the tuples for x and y1. But we
; only merge if they both print flat.
; Now we lay down some macros that help with the efficiency of the FMT
; functions, by making it easy to declare various formals and function values
; to be fixnums. See the Essay on Fixnum Declarations.
(defmacro mv-letc (vars form body)
`(mv-let ,vars ,form
(declare (type (signed-byte 30) col))
,body))
(defmacro er-hard-val (val &rest args)
; Use (er-hard-val val ctx str ...) instead of (er hard? ctx str ...)
; when there is an expectation on the return type, which should be the
; type of val. Compilation with the cmulisp compiler produces many
; warnings if we do not use some such device.
`(prog2$ (er hard? ,@args)
,val))
(defmacro the-fixnum! (n ctx)
; See also the-half-fixnum!.
(let ((upper-bound (fixnum-bound)))
(declare (type (signed-byte 30) upper-bound))
(let ((lower-bound (- (1+ upper-bound))))
(declare (type (signed-byte 30) lower-bound))
`(the-fixnum
(let ((n ,n))
(if (and (<= n ,upper-bound)
(>= n ,lower-bound))
n
(er-hard-val 0 ,ctx
"The object ~x0 is not a fixnum ~
(precisely: not a (signed-byte 30))."
n)))))))
(defmacro the-half-fixnum! (n ctx)
; Same as the-fixnum!, but leaves some room.
(let ((upper-bound (floor (fixnum-bound) 2))) ; (1- (expt 2 28))
(declare (type (signed-byte 29) upper-bound))
(let ((lower-bound (- (1+ upper-bound))))
(declare (type (signed-byte 29) lower-bound))
`(the-fixnum
(let ((n ,n))
(if (and (<= n ,upper-bound)
(>= n ,lower-bound))
n
(er-hard-val 0 ,ctx
"The object ~x0 is not a `half-fixnum' ~
(precisely: not a (signed-byte 29))."
n)))))))
(defmacro the-unsigned-byte! (bits n ctx)
`(the (unsigned-byte ,bits)
(let ((n ,n) (bits ,bits))
(if (unsigned-byte-p bits n)
n
(er-hard-val 0 ,ctx
"The object ~x0 is not an (unsigned-byte ~x1)."
n bits)))))
(defmacro the-string! (s ctx)
`(if (stringp ,s)
(the string ,s)
(er-hard-val "" ,ctx
"Not a string: ~s0."
,s)))
(defun xxxjoin-fixnum (fn args root)
; This is rather like xxxjoin, but we wrap the-fixnum around all
; arguments.
(declare (xargs :guard (true-listp args)))
(if (cdr args)
(list 'the-fixnum
(list fn
(list 'the-fixnum (car args))
(xxxjoin-fixnum fn (cdr args) root)))
(if args ; one arg
(list 'the-fixnum (car args))
root)))
(defmacro +f (&rest args)
(xxxjoin-fixnum '+ args 0))
(defmacro -f (arg1 &optional arg2)
(if arg2
`(the-fixnum (- (the-fixnum ,arg1)
(the-fixnum ,arg2)))
`(the-fixnum (- (the-fixnum ,arg1)))))
(defmacro 1-f (x)
(list 'the-fixnum
(list '1- (list 'the-fixnum x))))
(defmacro 1+f (x)
(list 'the-fixnum
(list '1+ (list 'the-fixnum x))))
(defmacro charf (s i)
(list 'the 'character
(list 'char s i)))
(defmacro *f (&rest args)
(xxxjoin-fixnum '* args 1))
; Essay on the Printing of Dotted Pairs and
; It is instructive to realize that we print a dotted pair as though it were a
; list of length 3 and the dot was just a normal argument.
; In the little table below I show, for various values of d, two things: the
; characters output by
; (ppr2 (ppr1 `(xx . yy) (print-base) (print-radix) d 0 state nil)
; 0 *standard-co* state nil)
; and the ppr tuple produced by the ppr1 call.
;
; d output ppr tuple
; |<- 9 ->|
; 9 (XX . YY) (FLAT 9 (XX . YY))
; 8 (XX (3 8 (FLAT 2 XX) (FLAT 5 . YY))
; . YY)
; 7 (XX (2 7 (FLAT 2 XX) (FLAT 5 . YY))
; . YY)
; 6 (XX (1 6 (FLAT 2 XX) (FLAT 5 . YY))
; . YY)
; 5 (XX (2 5 (FLAT 2 XX) (DOT 1) (FLAT 3 YY))
; .
; YY)
; 4 (XX (1 4 (FLAT 2 XX) (DOT 1) (FLAT 3 YY))
; .
; YY)
; The fact that the dot is not necessarily connected to (on the same line as)
; the atom following it is the reason we have the (DOT 1) tuple. We have to
; represent the dot so that its placement is first class. So when we're
; assembling the tuple for a list, we cdr down the list using cons-ppr1 to put
; together the tuple for the car with the tuple for the cdr. If we reach a
; non-nil cdr, atm, we call cons-ppr1 on the dot tuple and the tuple
; representing the atm. Depending on the width we have, this may produce (FLAT
; n . atm) which attaches the dot to the atm, or ((DOT 1) (FLAT n atm)) which
; leaves the dot on a line by itself.
; We want keywords to appear on new lines. That means if the first element of
; lst is a keyword, don't merge (unless x is one too).
; BUG
; ACL2 p!>(let ((x '(foo bigggggggggggggggg . :littlllllllllllllle)))
; (ppr2 (ppr1 x (print-base) (print-radix) 40 0 state nil)
; 0 *standard-co* state nil))
; (x = (DOT 1)
; lst = ((FLAT 21 :LITTLLLLLLLLLLLLLLE))
; val = ((FLAT 23 . :LITTLLLLLLLLLLLLLLE)))
;
; HARD ACL2 ERROR in CONS-PPR1: I thought I could force it!
(defmacro ppr-flat-right-margin ()
'(f-get-global 'ppr-flat-right-margin state))
(defun set-ppr-flat-right-margin (val state)
(if (posp val)
(f-put-global 'ppr-flat-right-margin val state)
(prog2$ (illegal 'set-ppr-flat-right-margin
"Set-ppr-flat-right-margin takes a positive integer ~
argument, unlike ~x0."
(list (cons #\0 val)))
state)))
; Note: In the function below, column is NOT a number! Often in this code,
; ``col'' is used to represent the position of the character column into which
; we are printing. But ``column'' is a list of ppr tuples.
(defun keyword-param-valuep (tuple eviscp)
; We return t iff tuple represents a single object that could plausibly be the
; value of a keyword parameter. The (or i ii iii iv) below checks that tuple
; represents a single object, either by being (i) a FLAT tuple listing exactly
; one object (ii) a QUOTE tuple, (iii) a WIDE tuple, or (iv) an indent tuple.
; The only other kinds of tuples are KEYPAIR tuples, FLAT tuples representing
; dotted objects `. atm', FLAT tuples representing several objects `a b c', and
; MATCHED-KEYWORD tuples representing keywords whose associated values are on
; the next line. These wouldn't be provided as the value of a keyword
; argument.
(or (and (eq (car tuple) 'flat)
(not (or (atom (cddr tuple)) ; tuple is `. atm'
(evisceratedp eviscp (cddr tuple))))
(null (cdr (cddr tuple))))
(eq (car tuple) 'quote)
(eq (car tuple) 'wide)
(integerp (car tuple))))
(defun cons-ppr1 (x column width ppr-flat-right-margin eviscp)
; Here, x is a ppr tuple representing either a dot or a single object and
; column is a list of tuples corresponding to a list of objects (possibly a
; list of length greater than that of column). Intuitively, column will print
; as a column of objects and we want to add x to that column, either by
; extending the top row or adding a new row. In the most typical case, x might
; be (FLAT 3 ABC) and column is ((FLAT 7 DEF GHI) (...)). Thus our choices
; would be to produce
; lengthened column lengthened first row
; ABC ABC DEF GHI
; DEF GHI (...)
; (...)
; It is also here that we deal specially with keywords. If x is
; (FLAT 3 :ABC) and column is ((...) (...)) then we have the choice:
; lengthened column lengthened first row
; :ABC :ABC (...)
; (...) (...)
; (...)
; The default behavior is always to lengthen the column, which is just to cons
; x onto column.
(cond
((and (eq (car x) 'flat)
; Note: Since x represents a dot or an object, we know that it is not of the
; form (FLAT n . atm). Thus, (cddr x) is a list of length 1 containing a
; single (possibly eviscerated) object, x1. If that object is an atom (or
; prints like one) we'll consider merging it with whatever else is on the first
; row.
(or (atom (car (cddr x)))
(evisceratedp eviscp (car (cddr x))))
(consp column))
(let ((x1 (car (cddr x)))
(row1 (car column)))
; We know x represents the atom x1 (actually, x1 may be an eviscerated object,
; but if so it prints flat like an atom, e.g., `<world>'). Furthermore, we
; know column is non-empty and so has a first element, e.g., row1.
(cond
((keywordp x1)
; So x1 is a keyword. Are we looking at a keypair? We are if row1 represents
; a single value. By a ``single value'' we mean a single object that can be
; taken as the value of the keyword x1. If row1 represents a sequence of more
; than one object, e.g., (FLAT 5 a b c), then we are not in a keypair situation
; because keyword argument lists must be keyword/value pairs all the way down
; and we form these columns bottom up, so if b were a keyword in the proper
; context, we would have paired it with c as keypair, not merged it, or we
; would have put it in a MATCHED-KEYWORD, indicating that its associated value
; is below it in the column. If row1 does not represent a single value we act
; just like x1 had not been a keyword, i.e., we try to merge it with row1.
; This will shut down subsequent attempts to create keypairs above us.
(cond
((and (keyword-param-valuep row1 eviscp)
(or (null (cdr column))
(eq (car (cadr column)) 'keypair)
(eq (car (cadr column)) 'matched-keyword)))
; So x1 is a keyword, row1 represents a keyword parameter value, and
; the rest of the column represents keyword/value pairs. The last
; test is made by just checking the item on the column below row1. It
; would only be a keyword/value pair if the whole column consisted of
; those. We consider making a keypair of width n = width of key, plus
; space, plus width of widest line in row1. Note that we don't mind
; this running over the standard 40 character max line length because
; it is so iconic.
(let ((n (+ (cadr x) (+ 1 (cadr row1)))))
(cond ((<= n width)
(cons
(cons 'keypair (cons n (cons x row1)))
(cdr column)))
; Otherwise, we put x on a newline and leave the column as it was. Note that
; we convert x from a FLAT to a MATCHED-KEYWORD, so insure that it stays on a
; line by itself and to keyword/value pairs encountered above us in the
; bottom-up processing to be paired with KEYPAIR.
(t (cons (cons 'MATCHED-KEYWORD (cdr x))
column)))))
; In this case, we are not in the context of a keyword/value argument even
; though x is a keyword. So we act just like x is not a keyword and see
; whether we can merge it with row1. We merge only if row1 is FLAT already and
; the width of the merged row is acceptable. Even if row1 prints as `. atm' we
; will merge, giving rise to such displays as
; (foo a b c
; d e f . atm)
((eq (car row1) 'flat)
(let ((n (+ (cadr x) (+ 1 (cadr row1)))))
(cond ((and (<= n ppr-flat-right-margin) (<= n width))
(cons
(cons 'flat (cons n (cons x1 (cddr row1))))
(cdr column)))
(t (cons x column)))))
(t (cons x column))))
; In this case, x1 is not a keyword. But it is known to print in atom-like
; way, e.g., `ABC' or `<world>'. So we try a simple merge following the same
; scheme as above.
((eq (car row1) 'flat)
(let ((n (+ (cadr x) (+ 1 (cadr row1)))))
(cond ((and (<= n ppr-flat-right-margin) (<= n width))
(cons
(cons 'flat (cons n (cons x1 (cddr row1))))
(cdr column)))
(t (cons x column)))))
(t (cons x column)))))
((and (eq (car x) 'dot)
(consp column))
(let ((row1 (car column)))
(cond ((eq (car row1) 'flat)
; In this case we know (car (cddr row1)) is an atom (or an eviscerated object)
; and it becomes the cddr of the car of the answer, which puts the dot on the
; same line as the terminal cdr.
(let ((n (+ (cadr x) (+ 1 (cadr row1)))))
(cond ((and (<= n ppr-flat-right-margin) (<= n width))
(cons
(cons 'flat
(cons n (car (cddr row1))))
(cdr column)))
(t (cons x column)))))
(t (cons x column)))))
; In this case, x1 does not print flat. So we add a new row.
(t (cons x column))))
(defun flsz-integer (x print-base acc)
(declare (type (unsigned-byte 5) print-base)
(type (signed-byte 30) acc)
(xargs :guard (print-base-p print-base)))
(the-fixnum
(cond ((< x 0)
(flsz-integer (- x) print-base (1+f acc)))
((< x print-base) (1+f acc))
(t (flsz-integer (truncate x print-base) print-base (1+f acc))))))
(defun flsz-atom (x print-base print-radix acc state)
(declare (type (unsigned-byte 5) print-base)
(type (signed-byte 30) acc))
(the-fixnum
(cond ((> acc (the (signed-byte 30) 100000))
; In order to make it very simple to guarantee that flsz and flsz-atom return
; fixnums, we ensure that acc is small enough below. We could certainly
; provide a much more generous bound, but 100,000 seems safe at the moment!
100000)
((integerp x)
(flsz-integer x
print-base
(cond ((null print-radix)
acc)
((int= print-base 10) ; `.' suffix
(+f 1 acc))
(t ; #b, #o, or #x prefix
(+f 2 acc)))))
((symbolp x)
; For symbols we add together the length of the "package part" and the symbol
; name part. We include the colons in the package part.
(+f (cond
((keywordp x) (1+f acc))
((symbol-in-current-package-p x state)
acc)
(t
(let ((p (symbol-package-name x)))
(cond ((needs-slashes p state)
(+f 4 acc (the-half-fixnum! (length p)
'flsz-atom)))
(t (+f 2 acc (the-half-fixnum! (length p)
'flsz-atom)))))))
(let ((s (symbol-name x)))
(cond ((needs-slashes s state)
(+f 2 (the-half-fixnum! (length s) 'flsz-atom)))
(t (+f (the-half-fixnum! (length s) 'flsz-atom)))))))
((rationalp x)
(flsz-integer (numerator x)
print-base
(flsz-integer (denominator x)
print-base
(cond ((null print-radix)
(+f 1 acc))
((int= print-base 10) ; #10r prefix
(+f 5 acc))
(t ; #b, #o, or #x prefix
(+f 3 acc))))))
((complex-rationalp x)
(flsz-atom (realpart x)
print-base
print-radix
(flsz-atom (imagpart x) print-base print-radix acc state)
state))
((stringp x)
(+f 2 acc (the-half-fixnum! (length x) 'flsz-atom)))
((characterp x)
(+f acc
(cond ((eql x #\Newline) 9)
((eql x #\Rubout) 8)
((eql x #\Return) 8)
((eql x #\Space) 7)
((eql x #\Page) 6)
((eql x #\Tab) 5)
(t 3))))
(t 0))))
(defun flsz1 (x print-base print-radix j maximum state eviscp)
; Actually, maximum should be of type (signed-byte 29).
(declare (type (unsigned-byte 5) print-base)
(type (signed-byte 30) j maximum))
(the-fixnum
(cond ((> j maximum) j)
((atom x) (flsz-atom x print-base print-radix j state))
((evisceratedp eviscp x)
(+f j (the-half-fixnum! (length (cdr x)) 'flsz)))
((atom (cdr x))
(cond ((null (cdr x))
(flsz1 (car x) print-base print-radix (+f 2 j) maximum state
eviscp))
(t (flsz1 (cdr x)
print-base
print-radix
(flsz1 (car x) print-base print-radix (+f 5 j)
maximum state eviscp)
maximum state eviscp))))
((and (eq (car x) 'quote)
(consp (cdr x))
(null (cddr x)))
(flsz1 (cadr x) print-base print-radix (+f 1 j) maximum state
eviscp))
(t (flsz1 (cdr x)
print-base
print-radix
(flsz1 (car x) print-base print-radix (+f 1 j) maximum state
eviscp)
maximum state eviscp)))))
#+acl2-infix
(defun output-in-infixp (state)
(let ((infixp (f-get-global 'infixp state)))
(or (eq infixp t) (eq infixp :out))))
#+acl2-infix
(defun flatsize-infix (x print-base print-radix termp j max state eviscp)
; Suppose that printing x flat in infix notation causes k characters to come
; out. Then we return j+k. All answers greater than max are equivalent.
; If you think of j as the column into which you start printing flat, then this
; returns the column you'll print into after printing x. If that column
; exceeds max, which is the right margin, then it doesn't matter by how far it
; exceeds max.
; In our $ infix notation, flat output has two extra chars in it, the $ and
; space. But note that we use infix output only if infixp is t or :out.
(declare (ignore termp))
(+ 2 (flsz1 x print-base print-radix j max state eviscp)))
(defun flsz (x termp j maximum state eviscp)
#-acl2-infix (declare (ignore termp))
(cond #+acl2-infix
((output-in-infixp state)
(flatsize-infix x (print-base) (print-radix) termp j maximum state
eviscp))
(t (flsz1 x (print-base) (print-radix) j maximum state eviscp))))
(defun max-width (lst maximum)
(cond ((null lst) maximum)
((> (cadr (car lst)) maximum)
(max-width (cdr lst) (cadr (car lst))))
(t (max-width (cdr lst) maximum))))
(mutual-recursion
(defun ppr1 (x print-base print-radix width rpc state eviscp)
; We create a ppr tuple for x, i.e., a list structure that tells us how to
; prettyprint x, in a column of the given width. Rpc stands for `right paren
; count' and is the number of right parens that will follow the printed version
; of x. For example, in printing the x in (f (g (h x)) u) there will always be
; 2 right parens after it. So we cannot let x use the entire available width,
; only the width-2. Rpc would be 2. Eviscp indicates whether we are to think
; of evisc marks as printing as atom-like strings or whether they're just
; themselves as data.
(declare (type (signed-byte 30) print-base width rpc))
(let ((sz (flsz1 x print-base print-radix rpc width state eviscp)))
(declare (type (signed-byte 30) sz))
(cond ((or (atom x)
(evisceratedp eviscp x)
(and (<= sz width)
(<= sz (ppr-flat-right-margin))))
(cons 'flat (cons sz (list x))))
((and (eq (car x) 'quote)
(consp (cdr x))
(null (cddr x)))
(let* ((x1 (ppr1 (cadr x) print-base print-radix (+f width -1) rpc state
eviscp)))
(cons 'quote (cons (+ 1 (cadr x1)) x1))))
(t
(let* ((x1 (ppr1 (car x) print-base print-radix (+f width -1)
(the-fixnum (if (null (cdr x)) (+ rpc 1) 0))
state eviscp))
; If the fn is a symbol (or eviscerated, which we treat as a symbol), then the
; hd-sz is the length of the symbol. Else, hd-sz is nil. Think of (null
; hd-sz) as meaning "fn is a lambda expression".
(hd-sz (cond ((or (atom (car x))
(evisceratedp eviscp (car x)))
(cadr x1))
(t nil)))
; When printing the cdr of x, give each argument the full width (minus 1 for
; the minimal amount of indenting). Note that x2 contains the ppr tuples for
; the car and the cdr.
(x2 (cons x1
(ppr1-lst (cdr x) print-base print-radix (+f width -1)
(+f rpc 1) state eviscp)))
; If the fn is a symbol, then we get the maximum width of any single argument.
; Otherwise, we get the maximum width of the fn and its arguments.
(maximum (cond (hd-sz (max-width (cdr x2) -1))
(t (max-width x2 -1)))))
(cond ((null hd-sz)
; If the fn is lambda, we indent the args by 1 and report the width of the
; whole to be one more than the maximum computed above.
(cons 1 (cons (+ 1 maximum) x2)))
((<= (+ hd-sz (+ 2 maximum)) width)
; We can print WIDE if we have room for an open paren, the fn, a space, and the
; widest argument.
(cons 'wide
(cons (+ hd-sz (+ 2 maximum)) x2)))
((< maximum width)
; If the maximum is less than the width, we can do exact indenting of the
; arguments to make the widest argument come out on the right margin. This
; exactness property is one of the things that makes this algorithm produce
; such beautiful output: we get the largest possible indentation, which makes
; it easy to identify peer arguments. How much do we indent? width-maximum
; will guarantee that the widest argument ends on the right margin. However,
; we believe that it is more pleasing if argument columns occur at regular
; indents. So we limit our indenting to 5 and just give up the white space
; over on the right margin. Note that we compute the width of the whole term
; accordingly.
(cons (min 5 (+ width (- maximum)))
(cons (+ maximum (min 5 (+ width (- maximum))))
x2)))
; If maximum is not less than width, we indent by 1.
(t (cons 1 (cons (+ 1 maximum) x2)))))))))
; The next function computes a ppr tuple for each element of lst. Typically
; these are all arguments to a function. But of course, we prettyprint
; arbitrary constants and so have to handle the case that the list is not a
; true-list.
; If you haven't read about cons-ppr1, above, do so now.
(defun ppr1-lst (lst print-base print-radix width rpc state eviscp)
(declare (type (signed-byte 30) print-base width rpc))
(cond ((atom lst)
; If the list is empty and null, then nothing is printed (besides the parens
; which are being accounted for otherwise). If the list is terminated by some
; non-nil atom, we will print a dot and the atom. We do that by merging a dot
; tuple into the flat for the atom, if there's room on the line, using
; cons-ppr1. Where this merged flat will go, i.e., will it be indented under
; the car as happens in the Essay on the Printing of Dotted Pairs, is the
; concern of ppr1-lst, not the cons-ppr1. The cons-ppr1 below just produces a
; merged flat containing the dot, if the width permits.
(cond ((null lst) nil)
(t (cons-ppr1 '(dot 1)
(list (ppr1 lst print-base print-radix width rpc
state eviscp))
width (ppr-flat-right-margin) eviscp))))
; The case for an eviscerated terminal cdr is handled the same way.
((evisceratedp eviscp lst)
(cons-ppr1 '(dot 1)
(list (ppr1 lst print-base print-radix width rpc state
eviscp))
width (ppr-flat-right-margin) eviscp))
; If the list is a true singleton, we just use ppr1 and we pass it the rpc that
; was passed in because this last item will be followed by that many parens on
; the same line.
((null (cdr lst))
(list (ppr1 (car lst) print-base print-radix width rpc state eviscp)))
; Otherwise, we know that the car is followed by more elements. So its rpc is
; 0.
(t (cons-ppr1 (ppr1 (car lst) print-base print-radix width 0 state
eviscp)
(ppr1-lst (cdr lst) print-base print-radix width rpc
state eviscp)
width (ppr-flat-right-margin) eviscp))))
)
(defun newline (channel state)
(declare (xargs :guard (and (state-p state)
(symbolp channel)
(open-output-channel-p channel :character state))))
(princ$ #\Newline channel state))
(defun fmt-hard-right-margin (state)
(the-fixnum
(f-get-global 'fmt-hard-right-margin state)))
(defun fmt-soft-right-margin (state)
(the-fixnum
(f-get-global 'fmt-soft-right-margin state)))
(defun set-fmt-hard-right-margin (n state)
(cond
((and (integerp n)
(< 0 n))
(f-put-global 'fmt-hard-right-margin
(the-half-fixnum! n 'set-fmt-hard-right-margin)
state))
(t (let ((err (er hard 'set-fmt-hard-right-margin
"The fmt-hard-right-margin must be a positive ~
integer, but ~x0 is not."
n)))
(declare (ignore err))
state))))
(defun set-fmt-soft-right-margin (n state)
(cond
((and (integerp n)
(< 0 n))
(f-put-global 'fmt-soft-right-margin
(the-half-fixnum! n 'set-fmt-soft-right-margin)
state))
(t (let ((err (er hard 'set-fmt-soft-right-margin
"The fmt-soft-right-margin must be a positive ~
integer, but ~x0 is not."
n)))
(declare (ignore err))
state))))
(defun write-for-read (state)
(declare (xargs :guard (and (state-p state)
(f-boundp-global 'write-for-read state))))
(f-get-global 'write-for-read state))
(defun spaces1 (n col hard-right-margin channel state)
(declare (type (signed-byte 30) n col hard-right-margin))
(cond ((<= n 0) state)
((> col hard-right-margin)
(pprogn (if (write-for-read state)
state
(princ$ #\\ channel state))
(newline channel state)
(spaces1 n 0 hard-right-margin channel state)))
(t (pprogn (princ$ #\Space channel state)
(spaces1 (1-f n) (1+f col) hard-right-margin channel
state)))))
; The use of *acl2-built-in-spaces-array* to circumvent the call to spaces1
; under spaces has saved about 25% in GCL and a little more than 50% in
; Allegro.
(defun make-spaces-array-rec (n acc)
(if (zp n)
(cons (cons 0 "") acc)
(make-spaces-array-rec
(1- n)
(cons
(cons n
(coerce (make-list n :initial-element #\Space) 'string))
acc))))
(defun make-spaces-array (n)
(compress1
'acl2-built-in-spaces-array
(cons `(:HEADER :DIMENSIONS (,(1+ n))
:MAXIMUM-LENGTH ,(+ 2 n)
:DEFAULT nil ; should be ignored
:NAME acl2-built-in-spaces-array)
(make-spaces-array-rec n nil))))
(defconst *acl2-built-in-spaces-array*
; Keep the 200 below in sync with the code in spaces.
(make-spaces-array 200))
(defun spaces (n col channel state)
(declare (type (signed-byte 30) n col))
(let ((hard-right-margin (fmt-hard-right-margin state))
(result-col (+f n col)))
(declare (type (signed-byte 30) hard-right-margin result-col))
(if (and (<= result-col hard-right-margin)
; Keep the 200 below in sync with the code in *acl2-built-in-spaces-array*.
(<= n 200))
;; actually (1+ hard-right-margin) would do
(princ$ (aref1 'acl2-built-in-spaces-array
*acl2-built-in-spaces-array*
n)
channel state)
(spaces1 (the-fixnum! n 'spaces)
(the-fixnum col)
hard-right-margin
channel state))))
(mutual-recursion
(defun flpr1 (x channel state eviscp)
(cond ((atom x)
(prin1$ x channel state))
((evisceratedp eviscp x)
(princ$ (cdr x) channel state))
((and (eq (car x) 'quote)
(consp (cdr x))
(null (cddr x)))
(pprogn (princ$ #\' channel state)
(flpr1 (cadr x) channel state eviscp)))
(t (pprogn (princ$ #\( channel state)
(flpr11 x channel state eviscp)))))
(defun flpr11 (x channel state eviscp)
(pprogn
(flpr1 (car x) channel state eviscp)
(cond ((null (cdr x)) (princ$ #\) channel state))
((or (atom (cdr x))
(evisceratedp eviscp (cdr x)))
(pprogn
(princ$ " . " channel state)
(flpr1 (cdr x) channel state eviscp)
(princ$ #\) channel state)))
(t (pprogn
(princ$ #\Space channel state)
(flpr11 (cdr x) channel state eviscp))))))
)
#+(and acl2-infix (not acl2-loop-only))
(defun-one-output print-flat-infix (x termp file eviscp)
; Print x flat (without terpri's) in infix notation to the open output
; stream file. Give special treatment to :evisceration-mark iff
; eviscp. We only call this function if flatsize-infix assures us
; that x will fit on the line. See the Essay on Evisceration in this
; file to details on that subject.
(declare (ignore termp eviscp))
(let ((*print-case* :downcase)
(*print-pretty* nil))
(princ "$ " file)
(prin1 x file)))
(defun flpr (x termp channel state eviscp)
#-(and acl2-infix (not acl2-loop-only))
(declare (ignore termp))
#+(and acl2-infix (not acl2-loop-only))
(cond ((and (live-state-p state)
(output-in-infixp state))
(print-flat-infix x termp
(get-output-stream-from-channel channel)
eviscp)
(return-from flpr *the-live-state*)))
(flpr1 x channel state eviscp))
(defun ppr2-flat (x channel state eviscp)
; We print the elements of x, separated by spaces. If x is a non-nil atom, we
; print a dot and then x.
(cond ((null x) state)
((or (atom x)
(evisceratedp eviscp x))
(pprogn (princ$ #\. channel state)
(princ$ #\Space channel state)
(flpr1 x channel state eviscp)))
(t (pprogn
(flpr1 (car x) channel state eviscp)
(cond ((cdr x)
(pprogn (princ$ #\Space channel state)
(ppr2-flat (cdr x) channel state eviscp)))
(t state))))))
(mutual-recursion
(defun ppr2-column (lst loc col channel state eviscp)
; We print the elements of lst in a column. The column number is col and we
; assume the print head is currently in column loc, loc <= col. Thus, to
; indent to col we print col-loc spaces. After every element of lst but the
; last, we print a newline.
(cond ((null lst) state)
(t (pprogn
(spaces (+ col (- loc)) loc channel state)
(ppr2 (car lst) col channel state eviscp)
(cond ((null (cdr lst)) state)
(t (pprogn
(newline channel state)
(ppr2-column (cdr lst) 0 col
channel state eviscp))))))))
(defun ppr2 (x col channel state eviscp)
; We interpret the ppr tuple x.
(case
(car x)
(flat (ppr2-flat (cddr x) channel state eviscp))
(matched-keyword
(ppr2-flat (cddr x) channel state eviscp)) ; just like flat!
(dot (princ$ #\. channel state))
(quote (pprogn (princ$ #\' channel state)
(ppr2 (cddr x) (+ 1 col) channel state eviscp)))
(keypair (pprogn
(ppr2-flat (cddr (car (cddr x))) channel state eviscp)
(princ$ #\Space channel state)
(ppr2 (cdr (cddr x))
(+ col (+ 1 (cadr (car (cddr x)))))
channel state eviscp)))
(wide (pprogn
(princ$ #\( channel state)
(ppr2-flat (cddr (car (cddr x))) channel state eviscp)
(ppr2-column (cdr (cddr x))
(+ col (+ 1 (cadr (car (cddr x)))))
(+ col (+ 2 (cadr (car (cddr x)))))
channel state eviscp)
(princ$ #\) channel state)))
(otherwise (pprogn
(princ$ #\( channel state)
(ppr2 (car (cddr x)) (+ col (car x)) channel
state eviscp)
(cond ((cdr (cddr x))
(pprogn
(newline channel state)
(ppr2-column (cdr (cddr x))
0
(+ col (car x))
channel state eviscp)
(princ$ #\) channel state)))
(t (princ$ #\) channel state)))))))
)
; We used to set *fmt-ppr-indentation* below to 5, but it the indentation was
; sometimes odd because when printing a list, some elements could be indented
; and others not. At any rate, it should be less than the
; fmt-hard-right-margin in order to preserve the invariant that fmt0 is called
; on columns that do not exceed this value.
(defconst *fmt-ppr-indentation* 0)
(defun ppr (x col channel state eviscp)
; If eviscp is nil, then we pretty print x as given. Otherwise, x has been
; eviscerated and we give special importance to the *evisceration-mark*. NOTE
; WELL: This function does not eviscerate -- it assumes the evisceration has
; been done if needed.
(declare (type (signed-byte 30) col))
(let ((fmt-hard-right-margin (fmt-hard-right-margin state)))
(declare (type (signed-byte 30) fmt-hard-right-margin))
(cond
((< col fmt-hard-right-margin)
(ppr2 (ppr1 x (print-base) (print-radix)
(+f fmt-hard-right-margin (-f col))
0 state eviscp)
col channel state eviscp))
(t (let ((er
(er hard 'ppr
"The `col' argument to ppr must be less than value ~
of the state global variable ~
fmt-hard-right-margin, but ~x0 is not less than ~
~x1."
col fmt-hard-right-margin)))
(declare (ignore er))
state)))))
(defun scan-past-whitespace (s i maximum)
(declare (type (signed-byte 30) i maximum)
(type string s))
(the-fixnum
(cond ((< i maximum)
(cond ((member (charf s i) '(#\Space #\Tab #\Newline))
(scan-past-whitespace s (+f i 1) maximum))
(t i)))
(t maximum))))
(defun zero-one-or-more (x)
(let ((n (cond ((integerp x) x)
(t (length x)))))
(case n
(0 0)
(1 1)
(otherwise 2))))
(defun find-alternative-skip (s i maximum)
; This function finds the first character after a list of alternatives. i is
; the value of find-alternative-stop, i.e., it points to the ~ in the ~/ or ~]
; that closed the alternative used.
; Suppose s is "~#7~[ab~/cd~/ef~]acl2".
; 01234567890123456789
; If i is 11, the answer is 17.
;
(declare (type (signed-byte 30) i maximum)
(type string s))
(the-fixnum
(cond ((< i maximum)
(let ((char-s-i (charf s i)))
(declare (type character char-s-i))
(case char-s-i
(#\~
(let ((char-s-1+i (charf s (1+f i))))
(declare (type character char-s-1+i))
(case char-s-1+i
(#\] (+f 2 i))
(#\[ (find-alternative-skip
s
(find-alternative-skip s (+f 2 i)
maximum)
maximum))
(otherwise (find-alternative-skip
s (+f 2 i) maximum)))))
(otherwise
(find-alternative-skip s (+f 1 i) maximum)))))
(t (er-hard-val 0 'find-alternative-skip
"Illegal Fmt Syntax - While looking for the terminating ~
bracket of a tilde alternative directive in the string ~
below we ran off the end of the string.~|~%~x0"
s)))))
(defun find-alternative-start1 (x s i maximum)
(declare (type (signed-byte 30) x i maximum)
(type string s))
(the-fixnum
(cond ((= x 0) i)
((< i maximum)
(let ((char-s-i (charf s i)))
(declare (type character char-s-i))
(case char-s-i
(#\~
(let ((char-s-1+-i (charf s (1+f i))))
(declare (type character char-s-1+-i))
(case char-s-1+-i
(#\/ (find-alternative-start1
(1-f x) s (+f 2 i)
maximum))
(#\] (er-hard-val 0 'find-alternative-start1
"Illegal Fmt Syntax -- The tilde directive ~
terminating at position ~x0 of the string below ~
does not have enough alternative clauses. When ~
the terminal bracket was reached we still needed ~
~#1~[~/1 more alternative~/~x2 more ~
alternatives~].~|~%~x3"
i
(zero-one-or-more x)
x
s))
(#\[ (find-alternative-start1
x s
(find-alternative-skip s (+f 2 i) maximum)
maximum))
(otherwise
(find-alternative-start1
x s (+f 2 i) maximum)))))
(otherwise
(find-alternative-start1 x s (+f 1 i)
maximum)))))
(t (er-hard-val 0 'find-alternative-start1
"Illegal Fmt Syntax -- While searching for the appropriate ~
alternative clause of a tilde alternative directive in the ~
string below, we ran off the end of the string.~|~%~x0"
s)))))
(defun fmt-char (s i j maximum err-flg)
(declare (type (signed-byte 30) i maximum)
; We only increment i by a small amount, j.
(type (integer 0 100) j)
(type string s))
(the character
(cond ((< (+f i j) maximum) (charf s (+f i j)))
(t
(prog2$ ; return an arbitrary character
(cond (err-flg
(er hard 'fmt-char
"Illegal Fmt Syntax. The tilde directive at ~
location ~x0 in the fmt string below requires that ~
we look at the character ~x1 further down in the ~
string. But the string terminates at location ~
~x2.~|~%~x3"
i j maximum s))
(t nil))
#\a)))))
(defun find-alternative-start (x s i maximum)
; This function returns the index of the first character in the xth
; alternative, assuming i points to the ~ that begins the alternative
; directive. If x is not an integer, we assume it is a non-empty
; list. If its length is 1, pick the 0th alternative. Otherwise,
; pick the 1st. This means we can test on a list to get a "plural" test.
; Suppose s is "~#7~[ab~/cd~/ef~]acl2". The indices into s are
; 01234567890123456789
; This function is supposed to be called with i=0. Suppose register
; 7 contains a 1. That's the value of x. This function will return
; 9, the index of the beginning of alternative x.
(declare (type (signed-byte 30) i maximum)
(type string s))
(the-fixnum
(let ((x (cond ((integerp x) (the-fixnum! x 'find-alternative-start))
((and (consp x)
(atom (cdr x)))
0)
(t 1))))
(declare (type (signed-byte 30) x))
(cond ((not (and (eql (the character (fmt-char s i 3 maximum t)) #\~)
(eql (the character (fmt-char s i 4 maximum t)) #\[)))
(er-hard-val 0 'find-alternative-start
"Illegal Fmt Syntax: The tilde directive at ~x0 in the ~
fmt string below must be followed immediately by ~~[. ~
~|~%~x1"
i s))
(t (find-alternative-start1 x s (+f i 5) maximum))))))
(defun find-alternative-stop (s i maximum)
; This function finds the end of the alternative into which i is
; pointing. i is usually the first character of the current alternative.
; The answer points to the ~ in the ~/ or ~] closing the alternative.
; Suppose s is "~#7~[ab~/cd~/ef~]acl2".
; 01234567890123456789
; and i is 9. Then the answer is 11.
(declare (type (signed-byte 30) i maximum)
(type string s))
(the-fixnum
(cond ((< i maximum)
(let ((char-s-i (charf s i)))
(declare (type character char-s-i))
(case char-s-i
(#\~ (let ((char-s-1+i (charf s (1+f i))))
(declare (type character char-s-1+i))
(case char-s-1+i
(#\/ i)
(#\[ (find-alternative-stop
s
(find-alternative-skip s (+f 2 i) maximum)
maximum))
(#\] i)
(otherwise (find-alternative-stop
s (+f 2 i) maximum)))))
(otherwise (find-alternative-stop s (+f 1 i) maximum)))))
(t (er-hard-val 0 'find-alternative-stop
"Illegal Fmt Syntax -- While looking for the terminating ~
slash of a tilde alternative directive alternative clause ~
in the string below we ran off the end of the string. ~
~|~%~x0"
s)))))
(defun punctp (c)
(if (member c '(#\. #\, #\: #\; #\? #\! #\) #\]))
c
nil))
(defun fmt-tilde-s1 (s i maximum col channel state)
(declare (type (signed-byte 30) i maximum col)
(type string s))
(the2s
(signed-byte 30)
(cond ((not (< i maximum))
(mv col state))
((and (> col (fmt-hard-right-margin state))
(not (write-for-read state)))
(pprogn
(princ$ #\\ channel state)
(newline channel state)
(fmt-tilde-s1 s i maximum 0 channel state)))
(t
(let ((c (charf s i))
(fmt-soft-right-margin (fmt-soft-right-margin state)))
(declare (type character c)
(type (signed-byte 30) fmt-soft-right-margin))
(cond ((and (> col fmt-soft-right-margin)
(not (write-for-read state))
(eql c #\Space))
(pprogn
(newline channel state)
(fmt-tilde-s1 s
(scan-past-whitespace s (+f i 1) maximum)
maximum 0 channel state)))
((and (> col fmt-soft-right-margin)
(not (write-for-read state))
(or (eql c #\-)
(eql c #\_))
(not (int= (1+f i) maximum)))
; If we are beyond the soft right margin and we are about to print a
; hyphen or underscore and it is not the last character in the string,
; then print it and do a terpri. If it is the last character, as it
; is in say, the function name "1-", then we don't do the terpri and
; hope there is a better place to break soon. The motivating example
; for this was in seeing a list of function names get printed in a way
; that produced a comma as the first character of the newline, e.g.,
; "... EQL, 1+, 1-
; , ZEROP and PLUSP."
(pprogn
(princ$ c channel state)
(if (eql c #\-) state (princ$ #\- channel state))
(newline channel state)
(fmt-tilde-s1 s
(scan-past-whitespace s (+f i 1) maximum)
maximum 0 channel state)))
(t
(pprogn
(princ$ c channel state)
(fmt-tilde-s1 s (1+f i) maximum
(if (eql c #\Newline)
0
(1+f col))
channel state)))))))))
(defun fmt-tilde-cap-s1 (s i maximum col channel state)
(declare (type (signed-byte 30) i maximum col)
(type string s))
(the2s
(signed-byte 30)
(cond ((not (< i maximum))
(mv col state))
(t
(let ((c (charf s i)))
(declare (type character c))
(pprogn
(princ$ c channel state)
(fmt-tilde-cap-s1 s (1+f i) maximum
(if (eql c #\Newline)
0
(1+f col))
channel state)))))))
(defun fmt-var (s alist i maximum)
(declare (type (signed-byte 30) i maximum)
(type string s))
(let ((x (assoc (the character (fmt-char s i 2 maximum t)) alist)))
(cond (x (cdr x))
(t (er hard 'fmt-var
"Unbound Fmt Variable. The tilde directive at location ~x0 ~
in the fmt string below uses the variable ~x1. But ~
this variable is not bound in the association list, ~
~x2, supplied with the fmt string.~|~%~x3"
i (char s (+f i 2)) alist s)))))
(defun splat-atom (x print-base print-radix indent col channel state)
; See also splat-atom!, which ignores margins.
(let* ((sz (flsz-atom x print-base print-radix 0 state))
(too-bigp (> (+ col sz) (fmt-hard-right-margin state))))
(pprogn (if too-bigp
(pprogn (newline channel state)
(spaces indent 0 channel state))
state)
(prin1$ x channel state)
(mv (if too-bigp (+ indent sz) (+ col sz))
state))))
(defun splat-atom! (x print-base print-radix col channel state)
; See also splat-atom, which takes account of margins by possibly printing
; newlines.
(pprogn (prin1$ x channel state)
(mv (flsz-atom x print-base print-radix col state)
state)))
; Splat, below, prints out an arbitrary ACL2 object flat, introducing
; the single-gritch notation for quote and breaking lines between lexemes
; to avoid going over the hard right margin. It indents all but the first
; line by indent spaces.
(mutual-recursion
(defun splat (x print-base print-radix indent col channel state)
(cond ((atom x)
(splat-atom x print-base print-radix indent col channel state))
((and (eq (car x) 'quote)
(consp (cdr x))
(null (cddr x)))
(pprogn (princ$ #\' channel state)
(splat (cadr x) print-base print-radix indent (1+ col) channel
state)))
(t (pprogn (princ$ #\( channel state)
(splat1 x print-base print-radix indent (1+ col) channel
state)))))
(defun splat1 (x print-base print-radix indent col channel state)
(mv-let (col state)
(splat (car x) print-base print-radix indent col channel state)
(cond ((null (cdr x))
(pprogn (princ$ #\) channel state)
(mv (1+ col) state)))
((atom (cdr x))
(cond ((> (+ 3 col) (fmt-hard-right-margin state))
(pprogn (newline channel state)
(spaces indent 0 channel state)
(princ$ ". " channel state)
(mv-let (col state)
(splat (cdr x)
print-base print-radix indent
(+ indent 2)
channel state)
(pprogn (princ$ #\) channel state)
(mv (1+ col) state)))))
(t (pprogn
(princ$ " . " channel state)
(mv-let (col state)
(splat (cdr x)
print-base print-radix indent
(+ 3 col)
channel state)
(pprogn (princ$ #\) channel state)
(mv (1+ col) state)))))))
(t (pprogn
(princ$ #\Space channel state)
(splat1 (cdr x) print-base print-radix indent (1+ col)
channel state))))))
)
(defun number-of-digits (n print-base print-radix)
; We compute the width of the field necessary to express the integer n
; in the given print-base. We assume minus signs are printed but plus
; signs are not. Thus, if n is -123 we return 4, if n is 123 we
; return 3.
(cond ((< n 0) (1+ (number-of-digits (abs n) print-base print-radix)))
((< n print-base)
(cond ((null print-radix)
1)
((int= print-base 10) ; `.' suffix
2)
(t ; #b, #o, or #x prefix
3)))
(t (1+ (number-of-digits (floor n print-base) print-base
print-radix)))))
(defun left-pad-with-blanks (n width col channel state)
; Print the integer n right-justified in a field of width width.
; We return the final column (assuming we started in col) and state.
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(let ((d (the-half-fixnum! (number-of-digits n (print-base) (print-radix))
'left-pad-with-blanks)))
(declare (type (signed-byte 30) d))
(cond ((>= d width)
(pprogn (prin1$ n channel state)
(mv (+ col d) state)))
(t (pprogn
(spaces (- width d) col channel state)
(prin1$ n channel state)
(mv (the-fixnum! (+ col width) 'left-pad-with-blanks)
state)))))))
(defmacro maybe-newline (body)
; This macro is used in fmt0 to force a newline only when absolutely
; necessary. It knows the locals of fmt0, in particular, col,
; channel, and state. We wrap this macro around code that is about to
; print a character at col. Once upon a time we just started fmt0
; with a newline if we were past the hard right margin, but that
; produced occasional lines that ended naturally at the hard right
; margin and then had a backslash inserted in anticipation of the 0
; characters to follow. It was impossible to tell if more characters
; follow because there may be tilde commands between where you are and
; the end of the line, and they may or may not print things.
`(mv-letc (col state)
(cond
((and (> col (fmt-hard-right-margin state))
(not (write-for-read state)))
(pprogn (princ$ #\\ channel state)
(newline channel state)
(mv 0 state)))
(t (mv col state)))
,body))
; To support the convention that er, fmt, and even individual fmt
; commands such as ~X can control their own evisceration parameters,
; we now introduce the idea of an evisceration tuple, or evisc-tuple.
(defun evisc-tuple (print-level print-length alist hiding-cars)
; See :doc set-evisc-tuple for a lot of information about evisc-tuples. Also
; see the Essay on Iprinting for a related topic.
; This is really just a record constructor, but we haven't got defrec
; yet so we do it by hand. See set-evisc-tuple.
; We sometimes write out constant evisc tuples! However they are commented
; nearby with (evisc-tuple ...).
; The primitive consumers of evisc tuples all call eviscerate-top or
; eviscerate-stobjs-top.
; car cadr caddr cadddr
(list alist print-level print-length hiding-cars))
(defun standard-evisc-tuplep (x)
(or (null x)
(and (true-listp x)
(= (length x) 4)
(alistp (car x))
(or (null (cadr x))
(integerp (cadr x)))
(or (null (caddr x))
(integerp (caddr x)))
(symbol-listp (cadddr x)))))
(defun world-evisceration-alist (state alist)
(declare (xargs :stobjs state))
(let ((wrld (w state)))
(cond ((null wrld) ; loading during the build
alist)
(t (cons (cons wrld *evisceration-world-mark*)
alist)))))
(defun abbrev-evisc-tuple (state)
; As of January 2009 the abbrev-evisc-tuple is used in error, warning$,
; observation, pstack, break-on-error, and miscellany such as running commands
; where little output is desired, say for :ubt or rebuild. We don't put this
; complete of a specification into the documentation, however, in case later we
; tweak the set of uses of the abbrev-evisc-tuple. This comment should
; similarly not be viewed as definitive if it is long after January 2009.
(declare (xargs :stobjs state
:guard (f-boundp-global 'abbrev-evisc-tuple state)))
(let ((evisc-tuple (f-get-global 'abbrev-evisc-tuple state)))
(cond
((eq evisc-tuple :default)
(cons (world-evisceration-alist state nil)
'(5 7 nil)))
(t evisc-tuple))))
(defmacro gag-mode ()
'(f-get-global 'gag-mode state))
(defun term-evisc-tuple (flg state)
; This evisceration tuple is used when we are printing terms or lists of terms.
; If state global 'term-evisc-tuple has value other than :default, then we
; return that value. Otherwise:
; We don't hide the world or state because they aren't (usually) found in
; terms. This saves us a little time. If the global value of
; 'eviscerate-hide-terms is t, we print (HIDE ...) as <hidden>. Otherwise not.
; Flg controls whether we actually eviscerate on the basis of structural depth
; and length. If flg is t we do. The choice of the print-length 4 is
; motivated by the idea of being able to print IF as (IF # # #) rather than (IF
; # # ...). Print-level 3 lets us print a clause as ((NOT (PRIMEP #)) ...)
; rather than ((NOT #) ...).
(let ((evisc-tuple (f-get-global 'term-evisc-tuple state)))
(cond ((not (eq evisc-tuple :default))
evisc-tuple)
((f-get-global 'eviscerate-hide-terms state)
(cond (flg
;;; (evisc-tuple 3 4 nil '(hide))
'(nil 3 4 (hide)))
(t
;;; (evisc-tuple nil nil nil '(hide))
'(nil nil nil (hide)))))
(flg ;;; (evisc-tuple 3 4 nil nil)
'(nil 3 4 nil))
(t nil))))
(defun gag-mode-evisc-tuple (state)
(cond ((gag-mode)
(let ((val (f-get-global 'gag-mode-evisc-tuple state)))
(if (eq val :DEFAULT)
nil
val)))
(t (term-evisc-tuple nil state))))
(defun ld-evisc-tuple (state)
(let ((evisc-tuple (f-get-global 'ld-evisc-tuple state)))
(assert$ (not (eq evisc-tuple :default)) ; only abbrev, term evisc-tuples
evisc-tuple)))
#+(and acl2-infix (not acl2-loop-only))
(defun-one-output print-infix (x termp width rpc col file eviscp)
; X is an s-expression denoting a term (if termp = t) or an evg (if
; termp = nil). File is an open output file. Prettyprint x in infix
; notation to file. If eviscp is t then we are to give special treatment to
; the :evisceration-mark; otherwise not.
; This hook is modeled after the ACL2 pretty-printer, which has the following
; additional features. These features need not be implemented in the infix
; prettyprinter. The printer is assumed to be in column col, where col=0 means
; it is on the left margin. We are supposed to print our first character in
; that column. We are supposed to print in a field of width width. That is,
; the largest column into which we might print is col+width-2. Finally, assume
; that on the last line of the output somebody is going to write rpc additional
; characters and arrange for this not to overflow the col+width-2 limit. Rpc
; is used when, for example, we plan to print some punctuation, like a comma,
; after a form and want to ensure that we can do it without overflowing the
; right margin. (One might think that the desired effect could be obtained by
; setting width smaller, but that is wrong because it narrows the whole field
; and we only want to guarantee space on the last line.) Here is an example.
; Use ctrl-x = in emacs to see what columns things are in. The semi-colons are
; in column 0. Pretend they are all spaces, as they would be if the printing
; had been done by fmt-ppr.
; (foobar
; (here is a long arg)
; a)
; Here, col = 2, width = 23, and rpc = 19!
; Infix Hack:
; We simply print out $ followed by the expression. We print the
; expression in lower-case.
(declare (ignore termp width rpc col eviscp))
(let ((*print-case* :downcase)
(*print-pretty* t))
(princ "$ " file)
(prin1 x file)))
(defun fmt-ppr (x termp width rpc col channel state eviscp)
(declare (type (signed-byte 30) col))
#-(and acl2-infix (not acl2-loop-only))
(declare (ignore termp))
#+(and acl2-infix (not acl2-loop-only))
(cond
((and (live-state-p state)
(output-in-infixp state))
(print-infix x termp width rpc col
(get-output-stream-from-channel channel)
eviscp)
(return-from fmt-ppr *the-live-state*)))
(ppr2 (ppr1 x (print-base) (print-radix) width rpc state eviscp)
col channel state eviscp))
(mutual-recursion
(defun fmt0* (str0 str1 str2 str3 lst alist col channel state evisc-tuple)
; This odd function prints out the members of lst. If the list has no
; elements, str0 is used. If the list has 1 element, str1 is used
; with #\* bound to the element. If the list has two elements, str2
; is used with #\* bound to the first element and then str1 is used
; with #\* bound to the second. If the list has more than two
; elements, str3 is used with #\* bound successively to each element
; until there are only two left. The function is used in the
; implementation of ~&, ~v, and ~*.
(declare (type (signed-byte 30) col)
(type string str0 str1 str2 str3))
(the2s
(signed-byte 30)
(cond ((null lst)
(fmt0 str0 alist 0 (the-fixnum! (length str0) 'fmt0*) col channel
state evisc-tuple))
((null (cdr lst))
(fmt0 str1
(cons (cons #\* (car lst)) alist)
0 (the-fixnum! (length str1) 'fmt0*) col channel
state evisc-tuple))
((null (cddr lst))
(mv-letc (col state)
(fmt0 str2
(cons (cons #\* (car lst)) alist)
0 (the-fixnum! (length str2) 'fmt0*)
col channel state evisc-tuple)
(fmt0* str0 str1 str2 str3 (cdr lst) alist col channel
state evisc-tuple)))
(t (mv-letc (col state)
(fmt0 str3
(cons (cons #\* (car lst)) alist)
0 (the-fixnum! (length str3) 'fmt0*)
col channel state evisc-tuple)
(fmt0* str0 str1 str2 str3 (cdr lst) alist col channel
state evisc-tuple))))))
(defun fmt0&v (flg lst punct col channel state evisc-tuple)
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(case flg
(&
(case
punct
(#\. (fmt0* "" "~x*." "~x* and " "~x*, " lst nil col channel
state evisc-tuple))
(#\, (fmt0* "" "~x*," "~x* and " "~x*, " lst nil col channel
state evisc-tuple))
(#\: (fmt0* "" "~x*:" "~x* and " "~x*, " lst nil col channel
state evisc-tuple))
(#\; (fmt0* "" "~x*;" "~x* and " "~x*, " lst nil col channel
state evisc-tuple))
(#\! (fmt0* "" "~x*!" "~x* and " "~x*, " lst nil col channel
state evisc-tuple))
(#\) (fmt0* "" "~x*)" "~x* and " "~x*, " lst nil col channel
state evisc-tuple))
(#\? (fmt0* "" "~x*?" "~x* and " "~x*, " lst nil col channel
state evisc-tuple))
(otherwise
(fmt0* "" "~x*" "~x* and " "~x*, " lst nil col channel
state evisc-tuple))))
(otherwise
(case
punct
(#\. (fmt0* "" "~x*." "~x* or " "~x*, " lst nil col channel
state evisc-tuple))
(#\, (fmt0* "" "~x*," "~x* or " "~x*, " lst nil col channel
state evisc-tuple))
(#\: (fmt0* "" "~x*:" "~x* or " "~x*, " lst nil col channel
state evisc-tuple))
(#\; (fmt0* "" "~x*;" "~x* or " "~x*, " lst nil col channel
state evisc-tuple))
(#\! (fmt0* "" "~x*!" "~x* or " "~x*, " lst nil col channel
state evisc-tuple))
(#\) (fmt0* "" "~x*)" "~x* or " "~x*, " lst nil col channel
state evisc-tuple))
(#\? (fmt0* "" "~x*?" "~x* or " "~x*, " lst nil col channel
state evisc-tuple))
(otherwise
(fmt0* "" "~x*" "~x* or " "~x*, " lst nil col channel
state evisc-tuple)))))))
(defun spell-number (n cap col channel state evisc-tuple)
; If n is an integerp we spell out the name of the cardinal number n
; (for a few cases) or else we just print the decimal representation
; of n. E.g., n=4 makes us spell "four". If n is a consp then we
; assume its car is an integer and we spell the corresponding ordinal
; number, e.g., n= '(4 . th) makes us spell "fourth". We capitalize
; the word if cap is t.
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(let ((str
(cond ((integerp n)
(cond ((int= n 0) (if cap "Zero" "zero"))
((int= n 1) (if cap "One" "one"))
((int= n 2) (if cap "Two" "two"))
((int= n 3) (if cap "Three" "three"))
((int= n 4) (if cap "Four" "four"))
((int= n 5) (if cap "Five" "five"))
((int= n 6) (if cap "Six" "six"))
((int= n 7) (if cap "Seven" "seven"))
((int= n 8) (if cap "Eight" "eight"))
((int= n 9) (if cap "Nine" "nine"))
((int= n 10) (if cap "Ten" "ten"))
((int= n 11) (if cap "Eleven" "eleven"))
((int= n 12) (if cap "Twelve" "twelve"))
((int= n 13) (if cap "Thirteen" "thirteen"))
(t "~x0")))
((and (consp n)
(<= 0 (car n))
(<= (car n) 13))
(cond ((int= (car n) 0) (if cap "Zeroth" "zeroth"))
((int= (car n) 1) (if cap "First" "first"))
((int= (car n) 2) (if cap "Second" "second"))
((int= (car n) 3) (if cap "Third" "third"))
((int= (car n) 4) (if cap "Fourth" "fourth"))
((int= (car n) 5) (if cap "Fifth" "fifth"))
((int= (car n) 6) (if cap "Sixth" "sixth"))
((int= (car n) 7) (if cap "Seventh" "seventh"))
((int= (car n) 8) (if cap "Eighth" "eighth"))
((int= (car n) 9) (if cap "Ninth" "ninth"))
((int= (car n) 10) (if cap "Tenth" "tenth"))
((int= (car n) 11) (if cap "Eleventh" "eleventh"))
((int= (car n) 12) (if cap "Twelfth" "twelfth"))
(t (if cap "Thirteenth" "thirteenth"))))
(t (let ((d (mod (abs (car n)) 10)))
; We print -11th, -12th, -13th, ... -20th, -21st, -22nd, etc., though
; what business anyone has using negative ordinals I can't imagine.
(cond ((or (int= d 0)
(> d 3)
(int= (car n) -11)
(int= (car n) -12)
(int= (car n) -13))
"~x0th")
((int= d 1) "~x0st")
((int= d 2) "~x0nd")
(t "~x0rd")))))))
(fmt0 (the-string! str 'spell-number)
(cond ((integerp n)
(cond ((and (<= 0 n) (<= n 13)) nil)
(t (list (cons #\0 n)))))
(t (cond ((and (<= 0 (car n)) (<= (car n) 13)) nil)
(t (list (cons #\0 (car n)))))))
0 (the-fixnum! (length str) 'spell-number)
col channel state evisc-tuple))))
(defun fmt-tilde-s (s col channel state)
; If s is a symbol or a string, we print it out, breaking on hyphens but not
; being fooled by fmt directives inside it. We also allow s to be a number
; (not sure why this was ever allowed, but we continue to support it). We
; return the new col and state.
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(cond
((acl2-numberp s)
(pprogn (prin1$ s channel state)
(mv (flsz-atom s (print-base) (print-radix) col state) state)))
((stringp s)
(fmt-tilde-s1 s 0 (the-fixnum! (length s) 'fmt-tilde-s) col
channel state))
(t
(let ((str (symbol-name s)))
(cond
((keywordp s)
(cond
((needs-slashes str state)
(splat-atom s (print-base) (print-radix) 0 col channel state))
(t (fmt0 ":~s0" (list (cons #\0 str)) 0 4 col channel state nil))))
((symbol-in-current-package-p s state)
(cond
((needs-slashes str state)
(splat-atom s (print-base) (print-radix) 0 col channel state))
(t (fmt-tilde-s1 str 0
(the-fixnum! (length str) 'fmt-tilde-s)
col channel state))))
(t
(let ((p (symbol-package-name s)))
(cond
((or (needs-slashes p state)
(needs-slashes str state))
(splat-atom s (print-base) (print-radix) 0 col channel state))
(t (fmt0 "~s0::~-~s1"
(list (cons #\0 p)
(cons #\1 str))
0 10 col channel state nil)))))))))))
(defun fmt-tilde-cap-s (s col channel state)
; This variant of fmt-tilde-s avoids printing newlines during the printing of
; s.
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(cond
((acl2-numberp s)
(splat-atom! s (print-base) (print-radix) col channel state))
((stringp s)
(fmt-tilde-cap-s1 s 0 (the-fixnum! (length s) 'fmt-tilde-s) col
channel state))
(t
(let ((str (symbol-name s)))
(cond
((keywordp s)
(cond
((needs-slashes str state)
(splat-atom! s (print-base) (print-radix) col channel state))
(t (fmt0 ":~S0" (list (cons #\0 str)) 0 4 col channel state nil))))
((symbol-in-current-package-p s state)
(cond
((needs-slashes str state)
(splat-atom! s (print-base) (print-radix) col channel state))
(t (fmt-tilde-cap-s1 str 0
(the-fixnum! (length str) 'fmt-tilde-s)
col channel state))))
(t
(let ((p (symbol-package-name s)))
(cond
((or (needs-slashes p state)
(needs-slashes str state))
(splat-atom! s (print-base) (print-radix) col channel state))
(t (fmt0 "~S0::~S1"
(list (cons #\0 p)
(cons #\1 str))
0 10 col channel state nil)))))))))))
(defun fmt0 (s alist i maximum col channel state evisc-tuple)
(declare (type (signed-byte 30) i maximum col)
(type string s))
; WARNING: If you add new tilde-directives update :DOC fmt and the
; copies in :DOC fmt1 and :DOC fms.
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(cond
((>= i maximum)
(mv (the (signed-byte 30) col) state))
(t
(let ((c (charf s i)))
(declare (type character c))
(cond
((eql c #\~)
(let ((fmc (the character (fmt-char s i 1 maximum t))))
(declare (type character fmc))
(case
fmc
((#\p #\q #\P #\Q #\x #\y #\X #\Y)
; The only difference between pqPQ and xyXY is that the former can cause infix
; printing. (But see the comment below about "hyphenate" for how we can cause
; the latter to enable hyphenation.) However, as of this writing (Jan. 2009)
; it is far from clear that infix printing still works; so we consider it to be
; deprecated. Infix printing assumes the term has already been untranslated.
; The difference between the lowercase directives and the uppercase ones is
; that the uppercase ones take two fmt-vars, e.g., ~X01, and use the contents
; of the second one as the evisceration value. Otherwise the uppercase
; directives behave as their lowercase counterparts.
; On symbols, ~x and ~y are alike and just print starting in col. On non-
; symbols they both prettyprint. But ~y starts printing in col while ~x may do
; a terpri and indent first. ~x concludes with a terpri if it put out a terpri
; before printing. ~y always concludes with a terpri on non-symbols, so you
; know where you end up.
(maybe-newline
(let* ((caps (or (eql fmc #\P) (eql fmc #\Q)
(eql fmc #\X) (eql fmc #\Y)))
(px (or (eql fmc #\p) (eql fmc #\P)
(eql fmc #\x) (eql fmc #\X)))
(qy (not px))
(pq (or (eql fmc #\p) (eql fmc #\P)
(eql fmc #\q) (eql fmc #\Q)))
(local-evisc-tuple
(cond (caps
(fmt-var s alist (1+f i) maximum))
(t evisc-tuple)))
(evisc-table (table-alist 'evisc-table (w state)))
(eviscp (or local-evisc-tuple evisc-table)))
(mv-let
(x state)
(cond (eviscp (eviscerate-top
(fmt-var s alist i maximum)
(cadr local-evisc-tuple) ;;; print-level
(caddr local-evisc-tuple) ;;; print-length
(car local-evisc-tuple) ;;; alist
evisc-table
(cadddr local-evisc-tuple) ;;; hiding-cars
state))
(t (mv (fmt-var s alist i maximum)
state)))
; Through Version_3.4, ACL2 could hyphenate rule names during proof commentary
; because of the following COND branch in the case of ~x/~y/~X/~Y (though
; fmt-symbol-name has since been renamed as fmt-tilde-s). We have decided to
; opt instead for uniform treatment of ~x/~y/~X/~Y and ~p/~q/~P/~Q, modulo
; potential support for infix printing for the latter group (which we may
; eliminate in the future). By avoiding hyphenation we make it easier for a
; user to grab a rule name from the output, though now one might want to do
; some hyphenation by hand when preparing proof output for publication.
; ((and (or (symbolp x)
; (acl2-numberp x))
; (member-eq fmc '(#\x #\y #\X #\Y)))
; (mv-letc (col state)
; (fmt-tilde-s x col channel state)
; (fmt0 s alist
; (+f i (if (or (eql fmc #\X)
; (eql fmc #\Y))
; 4
; 3))
; maximum col channel state evisc-tuple)))
(let ((fmt-hard-right-margin
(fmt-hard-right-margin state)))
(declare (type (signed-byte 30) fmt-hard-right-margin))
(let ((sz (flsz x pq col fmt-hard-right-margin state
eviscp)))
(declare (type (signed-byte 30) sz))
(cond
((and px
(> col (the-fixnum *fmt-ppr-indentation*))
(>= sz fmt-hard-right-margin)
(not (>= (flsz x
pq
(the-fixnum
*fmt-ppr-indentation*)
fmt-hard-right-margin
state eviscp)
fmt-hard-right-margin)))
(pprogn
(newline channel state)
(spaces1 (the-fixnum *fmt-ppr-indentation*) 0
fmt-hard-right-margin
channel state)
(fmt0 s alist i maximum
(the-fixnum *fmt-ppr-indentation*)
channel state evisc-tuple)))
((or qy
(>= sz fmt-hard-right-margin))
(pprogn
(cond (qy
state)
((= col 0) state)
(t (newline channel state)))
(if qy
state
(spaces1 (the-fixnum *fmt-ppr-indentation*)
0 fmt-hard-right-margin channel state))
(let ((c (fmt-char s i
(the-fixnum
(if caps
4
3))
maximum nil)))
(cond ((punctp c)
(pprogn
(fmt-ppr
x
pq
(+f fmt-hard-right-margin
(-f (if qy
col
*fmt-ppr-indentation*)))
1
(the-fixnum
(if qy
col
*fmt-ppr-indentation*))
channel state eviscp)
(princ$ c channel state)
(newline channel state)
(fmt0 s alist
(scan-past-whitespace
s
(+f i (if caps
5
4))
maximum)
maximum 0 channel state
evisc-tuple)))
(t
(pprogn
(fmt-ppr
x
pq
(+f fmt-hard-right-margin
(-f (if qy
col
*fmt-ppr-indentation*)))
0
(the-fixnum
(if qy
col
*fmt-ppr-indentation*))
channel state eviscp)
(newline channel state)
(fmt0 s alist
(scan-past-whitespace
s
(+f i (if caps
4
3))
maximum)
maximum 0 channel state
evisc-tuple)))))))
(t (pprogn
(flpr x pq channel state eviscp)
(fmt0 s alist
(+f i (if caps
4
3))
maximum sz
channel state evisc-tuple))))))))))
(#\@ (let ((s1 (fmt-var s alist i maximum)))
(mv-letc (col state)
(cond ((stringp s1)
(fmt0 s1 alist 0
(the-fixnum! (length s1) 'fmt0)
col channel state evisc-tuple))
((consp s1)
(fmt0 (car s1)
(append (cdr s1) alist)
0
(the-fixnum! (length (car s1)) 'fmt0)
col channel state evisc-tuple))
(t (mv (er-hard-val 0 'fmt0
"Illegal Fmt Syntax. The ~
tilde-@ directive at position ~
~x0 of the string below is ~
illegal because its variable ~
evaluated to ~x1, which is ~
neither a string nor a ~
list.~|~%~x2"
i s1 s)
state)))
(fmt0 s alist (+f i 3) maximum col
channel state evisc-tuple))))
(#\# (let ((n (find-alternative-start
(fmt-var s alist i maximum) s i maximum)))
(declare (type (signed-byte 30) n))
(let ((m (find-alternative-stop s n maximum)))
(declare (type (signed-byte 30) m))
(let ((o (find-alternative-skip s m maximum)))
(declare (type (signed-byte 30) o))
(mv-letc (col state) (fmt0 s alist
(the-fixnum n)
(the-fixnum m)
col channel
state evisc-tuple)
(fmt0 s alist (the-fixnum o) maximum
col channel state evisc-tuple))))))
(#\* (let ((x (fmt-var s alist i maximum)))
(mv-letc (col state)
(fmt0* (car x) (cadr x) (caddr x) (cadddr x)
(car (cddddr x))
(append (cdr (cddddr x)) alist)
col channel state evisc-tuple)
(fmt0 s alist (+f i 3) maximum col
channel state evisc-tuple))))
(#\& (let ((i+3 (+f i 3)))
(declare (type (signed-byte 30) i+3))
(mv-letc (col state)
(fmt0&v '&
(fmt-var s alist i maximum)
(punctp (and (< i+3 maximum)
(char s i+3)))
col channel state evisc-tuple)
(fmt0 s alist
(the-fixnum
(cond
((punctp (and (< i+3 maximum)
(char s i+3)))
(+f i 4))
(t i+3)))
maximum
col channel state evisc-tuple))))
(#\v (let ((i+3 (+f i 3)))
(declare (type (signed-byte 30) i+3))
(mv-letc (col state)
(fmt0&v 'v
(fmt-var s alist i maximum)
(punctp (and (< i+3 maximum)
(char s i+3)))
col channel state evisc-tuple)
(fmt0 s alist
(the-fixnum
(cond
((punctp (and (< i+3 maximum)
(char s i+3)))
(+f i 4))
(t i+3)))
maximum
col channel state evisc-tuple))))
(#\n (maybe-newline
(mv-letc (col state)
(spell-number (fmt-var s alist i maximum)
nil col channel state evisc-tuple)
(fmt0 s alist (+f i 3) maximum col channel
state evisc-tuple))))
(#\N (maybe-newline
(mv-letc (col state)
(spell-number (fmt-var s alist i maximum)
t col channel state evisc-tuple)
(fmt0 s alist (+f i 3) maximum col channel
state evisc-tuple))))
(#\t (maybe-newline
(let ((goal-col (fmt-var s alist i maximum))
(fmt-hard-right-margin (fmt-hard-right-margin state)))
(declare (type (signed-byte 30)
goal-col fmt-hard-right-margin))
(pprogn
(cond ((> goal-col fmt-hard-right-margin)
(let ((er (er hard 'fmt0
"It is illegal to tab past the ~
value of (@ ~
fmt-hard-right-margin), ~x0, and ~
hence the directive ~~t~s1 to tab ~
to column ~x2 is illegal. See ~
:DOC set-fmt-hard-right-margin."
fmt-hard-right-margin
(string (fmt-char s i 2 maximum t))
goal-col)))
(declare (ignore er))
state))
((>= col goal-col)
(pprogn (newline channel state)
(spaces1 (the-fixnum goal-col) 0
fmt-hard-right-margin
channel state)))
(t (spaces1 (-f goal-col col) col
fmt-hard-right-margin
channel state)))
(fmt0 s alist (+f i 3) maximum
(the-fixnum goal-col)
channel state evisc-tuple)))))
(#\c (maybe-newline
(let ((pair (fmt-var s alist i maximum)))
(cond ((and (consp pair)
(integerp (car pair))
(integerp (cdr pair))
(>= (cdr pair) 0))
(mv-letc (col state)
(left-pad-with-blanks (car pair)
(cdr pair)
col channel state)
(fmt0 s alist (+f i 3) maximum col channel
state evisc-tuple)))
(t (mv (er-hard-val 0 'fmt0
"Illegal Fmt Syntax. The tilde-c ~
directive at position ~x0 of the string ~
below is illegal because its variable ~
evaluated to ~x1, which is not of the ~
form (n . width), where n and width are ~
integers and width is ~
nonnegative.~|~%~x2"
i pair s)
state))))))
((#\f #\F)
(maybe-newline
(mv-letc (col state)
(splat (fmt-var s alist i maximum)
(print-base) (print-radix)
(if (eql fmc #\F) (1+f col) 0)
col channel state)
(fmt0 s alist (+f i 3) maximum col channel
state evisc-tuple))))
(#\s (maybe-newline
(mv-letc (col state)
(fmt-tilde-s (fmt-var s alist i maximum) col
channel state)
(fmt0 s alist (+f i 3) maximum col channel
state evisc-tuple))))
(#\S (maybe-newline
(mv-letc (col state)
(fmt-tilde-cap-s (fmt-var s alist i maximum) col
channel state)
(fmt0 s alist (+f i 3) maximum col channel
state evisc-tuple))))
(#\Space (let ((fmt-hard-right-margin
(fmt-hard-right-margin state)))
(declare (type (signed-byte 30) fmt-hard-right-margin))
(pprogn
(cond ((> col fmt-hard-right-margin)
(newline channel state))
(t state))
(princ$ #\Space channel state)
(fmt0 s alist (+f i 2) maximum
(cond ((> col fmt-hard-right-margin)
1)
(t (1+f col)))
channel state evisc-tuple))))
(#\_ (maybe-newline
(let ((fmt-hard-right-margin
(fmt-hard-right-margin state)))
(declare (type (signed-byte 30) fmt-hard-right-margin))
(let ((n (the-half-fixnum! (fmt-var s alist i maximum)
'fmt0)))
(declare (type (signed-byte 30) n))
(let ((new-col (+f col n)))
(declare (type (signed-byte 30) new-col))
(pprogn
(spaces n col channel state)
(cond
((> new-col fmt-hard-right-margin)
(newline channel state))
(t state))
(fmt0 s alist (+f i 3) maximum
(the-fixnum
(cond
((> new-col fmt-hard-right-margin)
0)
(t new-col)))
channel state evisc-tuple)))))))
(#\Newline
(fmt0 s alist (scan-past-whitespace s (+f i 2) maximum)
maximum col channel state evisc-tuple))
(#\| (pprogn
(if (int= col 0) state (newline channel state))
(fmt0 s alist (+f i 2)
maximum 0 channel state evisc-tuple)))
(#\% (pprogn
(newline channel state)
(fmt0 s alist (+f i 2)
maximum 0 channel state evisc-tuple)))
(#\~ (maybe-newline
(pprogn
(princ$ #\~ channel state)
(fmt0 s alist (+f i 2) maximum (1+f col) channel
state evisc-tuple))))
(#\- (cond ((> col (fmt-soft-right-margin state))
(pprogn
(princ$ #\- channel state)
(newline channel state)
(fmt0 s alist
(scan-past-whitespace s (+f i 2) maximum)
maximum 0 channel state evisc-tuple)))
(t (fmt0 s alist (+f i 2) maximum col channel
state evisc-tuple))))
(otherwise (let ((x
(er hard 'fmt0
"Illegal Fmt Syntax. The tilde ~
directive at position ~x0 of the ~
string below is unrecognized.~|~%~x1"
i s)))
(declare (ignore x))
(mv 0 state))))))
((and (> col (fmt-soft-right-margin state))
(eql c #\Space))
(pprogn (newline channel state)
(fmt0 s alist
(scan-past-whitespace s (+f i 1) maximum)
maximum
0 channel state evisc-tuple)))
((and (>= col (fmt-soft-right-margin state))
(eql c #\-))
(pprogn (princ$ c channel state)
(newline channel state)
(fmt0 s alist
(scan-past-whitespace s (+f i 1) maximum)
maximum
0 channel state evisc-tuple)))
; ((and (eql c #\Space)
; I cut out this code in response to Kaufmann's complaint 38. The idea is
; *not* to ignore spaces after ~% directives. I've left the code here to
; remind me of what I used to do, in case I see output that is malformed.
; (int= col 0))
; (fmt0 s alist (+f i 1) maximum 0 channel state evisc-tuple))
(t (maybe-newline
(pprogn (princ$ c channel state)
(fmt0 s alist (+f i 1) maximum
(if (eql c #\Newline) 0 (+f col 1))
channel state evisc-tuple))))))))))
)
(defun tilde-*-&v-strings (flg lst punct)
; This function returns an object that when bound to #\0 will cause
; ~*0 to print a conjunction (flg='&) or disjunction (flg='v) of the
; strings in lst, followed by punctuation punct, which must be #\. or
; #\,.
; WARNING: This displayed strings are not equal to the strings in lst
; because whitespace may be inserted!
; ~& doesn't print a list of short strings very well because the first
; group is printed flat across the line, then when the line gets too
; long, the next string is indented and followed by a newline, which
; allows another bunch to be printed flat. This function prints them
; with ~s which actually breaks the strings up internally in a way
; that does not preserve their equality. "history-management.lisp"
; might have a newline inserted after the hyphen.
(case
flg
(&
(case
punct
(#\. (list "" "\"~s*\"." "\"~s*\" and " "\"~s*\", " lst))
(#\, (list "" "\"~s*\"," "\"~s*\" and " "\"~s*\", " lst))
(#\: (list "" "\"~s*\":" "\"~s*\" and " "\"~s*\", " lst))
(#\; (list "" "\"~s*\";" "\"~s*\" and " "\"~s*\", " lst))
(#\! (list "" "\"~s*\"!" "\"~s*\" and " "\"~s*\", " lst))
(#\) (list "" "\"~s*\")" "\"~s*\" and " "\"~s*\", " lst))
(#\? (list "" "\"~s*\"?" "\"~s*\" and " "\"~s*\", " lst))
(otherwise
(list "" "\"~s*\"" "\"~s*\" and " "\"~s*\", " lst))))
(otherwise
(case
punct
(#\. (list "" "\"~s*\"." "\"~s*\" or " "\"~s*\", " lst))
(#\, (list "" "\"~s*\"," "\"~s*\" or " "\"~s*\", " lst))
(#\: (list "" "\"~s*\":" "\"~s*\" or " "\"~s*\", " lst))
(#\; (list "" "\"~s*\";" "\"~s*\" or " "\"~s*\", " lst))
(#\! (list "" "\"~s*\"!" "\"~s*\" or " "\"~s*\", " lst))
(#\) (list "" "\"~s*\")" "\"~s*\" or " "\"~s*\", " lst))
(#\? (list "" "\"~s*\"?" "\"~s*\" or " "\"~s*\", " lst))
(otherwise
(list "" "\"~s*\"" "\"~s*\" or " "\"~s*\", " lst))))))
(defun fmt1 (str alist col channel state evisc-tuple)
; WARNING: The master copy of the tilde-directives list is in :DOC fmt.
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(mv-let (col state)
(fmt0 (the-string! str 'fmt1) alist 0
(the-fixnum! (length str) 'fmt1)
(the-fixnum! col 'fmt1)
channel state evisc-tuple)
(declare (type (signed-byte 30) col))
(prog2$ (and (eq channel *standard-co*)
(maybe-finish-output$ *standard-co* state))
(mv col state)))))
(defun fmt (str alist channel state evisc-tuple)
; WARNING: IF you change the list of tilde-directives, change the copy of it in
; the :DOC for fmt1 and fms.
; For a discussion of our style of pretty-printing, see
; http://www.cs.utexas.edu/~boyer/pretty-print.pdf.
(the2s
(signed-byte 30)
(pprogn
(newline channel state)
(fmt1 str alist 0 channel state evisc-tuple))))
(defun fms (str alist channel state evisc-tuple)
; WARNING: The master copy of the tilde-directives list is in :DOC fmt.
(pprogn
(newline channel state)
(mv-let (col state)
(fmt1 str alist 0 channel state evisc-tuple)
(declare (ignore col))
state)))
(defun fmt1! (str alist col channel state evisc-tuple)
; WARNING: The master copy of the tilde-directives list is in :DOC fmt.
(mv-let (erp col state)
(state-global-let*
((write-for-read t))
(mv-let (col state)
(fmt1 str alist col channel state evisc-tuple)
(mv nil col state)))
(declare (ignore erp))
(mv col state)))
(defun fmt! (str alist channel state evisc-tuple)
; WARNING: The master copy of the tilde-directives list is in :DOC fmt.
(mv-let (erp col state)
(state-global-let*
((write-for-read t))
(mv-let (col state)
(fmt str alist channel state evisc-tuple)
(mv nil col state)))
(declare (ignore erp))
(mv col state)))
(defun fms! (str alist channel state evisc-tuple)
; WARNING: The master copy of the tilde-directives list is in :DOC fmt.
(mv-let (erp val state)
(state-global-let*
((write-for-read t))
(pprogn (fms str alist channel state evisc-tuple)
(mv nil nil state)))
(declare (ignore erp val))
state))
(defmacro fmx (str &rest args)
(declare (xargs :guard (<= (length args) 10)))
`(fmt ,str ,(make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
args)
*standard-co* state nil))
(defun fmt-doc-example1 (lst i)
(cond ((null lst) nil)
(t (cons (cons "~c0 (~n1)~tc~y2~|"
(list (cons #\0 (cons i 5))
(cons #\1 (list i))
(cons #\2 (car lst))))
(fmt-doc-example1 (cdr lst) (1+ i))))))
(defun fmt-doc-example (x state)
(fmt "Here is a true list: ~x0. It has ~#1~[no elements~/a single ~
element~/~n2 elements~], ~@3~%~%We could print each element in square ~
brackets:~%(~*4). And if we wished to itemize them into column 15 we ~
could do it like this~%0123456789012345~%~*5End of example."
(list (cons #\0 x)
(cons #\1 (cond ((null x) 0) ((null (cdr x)) 1)(t 2)))
(cons #\2 (length x))
(cons #\3 (cond ((< (length x) 3) "and so we can't print the third one!")
(t (cons "the third of which is ~x0."
(list (cons #\0 (caddr x)))))))
(cons #\4 (list "[empty]"
"[the end: ~y*]"
"[almost there: ~y*], "
"[~y*], "
x))
(cons #\5 (list* "" "~@*" "~@*" "~@*"
(fmt-doc-example1 x 0)
(list (cons #\c 15)))))
*standard-co* state nil))
(defun fmt-abbrev1 (str alist col channel state suffix-msg)
(pprogn
(f-put-global 'evisc-hitp-without-iprint nil state)
(mv-let (col state)
(fmt1 str alist col channel state (abbrev-evisc-tuple state))
(fmt1 "~@0~@1"
(list
(cons #\0
(cond ((f-get-global 'evisc-hitp-without-iprint
state)
(assert$
(not (iprint-enabledp state))
"~|(See :DOC set-iprint to be able to see ~
elided values in this message.)"))
(t "")))
(cons #\1 suffix-msg))
col channel state nil))))
(defun fmt-abbrev (str alist col channel state suffix-msg)
(mv-let (col state)
(fmt-abbrev1 str alist col channel state suffix-msg)
(declare (ignore col))
state))
(defconst *fmt-ctx-spacers*
'(defun
#+:non-standard-analysis defun-std
mutual-recursion
defuns
defthm
#+:non-standard-analysis defthm-std
defaxiom
defconst
defstobj defabsstobj
defpkg
deflabel
deftheory
defchoose
verify-guards
verify-termination
defmacro
in-theory
in-arithmetic-theory
regenerate-tau-database
push-untouchable
remove-untouchable
reset-prehistory
set-body
table
encapsulate
include-book))
(defun fmt-ctx (ctx col channel state)
; We print the context in which an error has occurred. If infix printing is
; being used (infixp = t or :out) then ctx is just the event form itself and we
; print it with evisceration. Otherwise, we are more efficient in our choice
; of ctx and we interpret it according to its type, to make it convenient to
; construct the more common contexts. If ctx is nil, we print nothing. If ctx
; is a symbol, we print it from #\0 via "~x0". If ctx is a pair whose car is a
; symbol, we print its car and cdr from #\0 and #\1 respectively with "(~x0 ~x1
; ...)". Otherwise, we print it from #\0 with "~@0".
; We print no other words, spaces or punctuation. We return the new
; col and state.
(declare (type (signed-byte 30) col))
; The following bit of raw-Lisp code can be useful when observing
; "ACL2 Error in T:".
; #-acl2-loop-only
; (when (eq ctx t) (break))
(the2s
(signed-byte 30)
(cond #+acl2-infix
((output-in-infixp state)
(fmt1 "~p0"
(list (cons #\0 ctx))
col channel state
(evisc-tuple 1 2 nil nil)))
((null ctx)
(mv col state))
((symbolp ctx)
(fmt1 "~x0" (list (cons #\0 ctx)) col channel state nil))
((and (consp ctx)
(symbolp (car ctx)))
(fmt1 "(~@0~x1 ~x2 ...)"
(list (cons #\0
(if (member-eq (car ctx) *fmt-ctx-spacers*) " " ""))
(cons #\1 (car ctx))
(cons #\2 (cdr ctx)))
col channel state nil))
(t (fmt-abbrev1 "~@0" (list (cons #\0 ctx)) col channel state "")))))
(defun fmt-in-ctx (ctx col channel state)
; We print the phrase " in ctx: ", if ctx is non-nil, and return
; the new col and state.
(declare (type (signed-byte 30) col))
(the2s
(signed-byte 30)
(cond ((null ctx)
(fmt1 ": " nil col channel state nil))
(t (mv-let (col state)
(fmt1 " in " nil col channel state nil)
(mv-let (col state)
(fmt-ctx ctx col channel state)
(fmt1 ": " nil col channel state nil)))))))
(defun error-fms-channel (hardp ctx str alist channel state)
; This function prints the "ACL2 Error" banner and ctx, then the
; user's str and alist, and then two carriage returns. It returns state.
; Historical Note about ACL2
; Once upon a time we accomplished all this with something like: "ACL2
; Error (in ~xc): ~@s~%~%" and it bound #\c and #\s to ctx and str in
; alist. That suffers from the fact that it may overwrite the user's
; bindings of #\c and #\s -- unlikely if this error call was generated
; by our er macro. We rewrote the function this way simply so we
; would not have to remember that some variables are special.
(mv-let (col state)
(fmt1 (if hardp
"HARD ACL2 ERROR"
"ACL2 Error")
nil 0 channel state nil)
(mv-let (col state)
(fmt-in-ctx ctx col channel state)
(fmt-abbrev str alist col channel state ""))))
(defun error-fms (hardp ctx str alist state)
; See error-fms-channel. Here we also print extra newlines.
; Keep in sync with error-fms-cw.
(with-output-lock
(let ((chan (f-get-global 'standard-co state)))
(pprogn (newline chan state)
(newline chan state)
(error-fms-channel hardp ctx str alist chan state)
(newline chan state)
(newline chan state)))))
#-acl2-loop-only
(defvar *accumulated-warnings* nil)
(defun push-warning-frame (state)
#-acl2-loop-only
(setq *accumulated-warnings*
(cons nil *accumulated-warnings*))
state)
(defun absorb-frame (lst stk)
(if (consp stk)
(cons (union-equal lst (car stk))
(cdr stk))
stk))
(defun pop-warning-frame (accum-p state)
; When a "compound" event has a "sub-event" that generates warnings, we want
; the warning strings from the sub-event's summary to appear in the parent
; event's summary. Accum-p should be nil if and only if the sub-event whose
; warning frame we are popping had its warnings suppressed.
; Starting after Version_4.1, we use the ACL2 oracle to explain warning frames.
; Previously we kept these frames with a state global variable,
; 'accumulated-warnings, rather than in the raw lisp variable,
; *accumulated-warnings*. But then we introduced warning$-cw1 to support the
; definitions of translate1-cmp and translate-cmp, which do not modify the ACL2
; state. Since warning$-cw1 uses a wormhole, the warning frames based on a
; state global variable were unavailable when printing warning summaries.
#+acl2-loop-only
(declare (ignore accum-p))
#+acl2-loop-only
(mv-let (erp val state)
(read-acl2-oracle state)
(declare (ignore erp))
(mv val state))
#-acl2-loop-only
(let ((stk *accumulated-warnings*))
(cond ((consp stk)
(progn (setq *accumulated-warnings*
(if accum-p
(absorb-frame (car stk)
(cdr stk))
(cdr stk)))
(mv (car stk) state)))
(t (mv (er hard 'pop-warning-frame
"The 'accumulated-warnings stack is empty.")
state)))))
(defun push-warning (summary state)
#+acl2-loop-only
(declare (ignore summary))
#-acl2-loop-only
(when (consp *accumulated-warnings*)
; We used to cause an error, shown below, if the above test fails. But
; WARNINGs are increasingly used by non-events, such as :trans and (thm ...)
; and rather than protect them all with push-warning-frame/pop-warning-frame we
; are just adopting the policy of not pushing warnings if the stack isn't set
; up for them. Here is the old code.
; (prog2$ (er hard 'push-warning
; "The 'accumulated-warnings stack is empty but we were ~
; asked to add ~x0 to the top frame."
; summary)
; state)
(setq *accumulated-warnings*
(cons (add-to-set-equal summary (car *accumulated-warnings*))
(cdr *accumulated-warnings*))))
state)
; The ACL2 Record Facilities
; Our record facility gives us the ability to declare "new" types of
; structures which are represented as lists. If desired the lists
; are tagged with the name of the new record type. Otherwise they are
; not tagged and are called "cheap" records.
; The expression (DEFREC SHIP (X . Y) NIL) declares SHIP to
; be a tagged (non-cheap) record of two components X and Y. An
; example concrete SHIP is '(SHIP 2 . 4). Note that cheapness refers
; only to whether the record is tagged and whether the tag is tested
; upon access and change, not whether the final cdr is used.
; To make a ship: (MAKE SHIP :X x :Y y) or (MAKE SHIP :Y y :X x).
; To access the Xth component of the ship object obj: (ACCESS SHIP obj :X).
; To change the Xth component to val: (CHANGE SHIP obj :X val).
; Note the use of keywords in these forms.
; It is possible to change several fields at once, e.g.,
; (CHANGE SHIP obj :X val-x :Y val-y). In general, to cons up a changed
; record one only does the conses necessary.
; The implementation of records is as follows. DEFREC expands
; into a collection of macro definitions for certain generated function
; symbols. In the example above we define the macros:
; |Make SHIP record|
; |Access SHIP record field X|
; |Access SHIP record field Y|
; |Change SHIP record fields|
; The macro expression (MAKE SHIP ...) expands to a call of the first
; function. (ACCESS SHIP ... :X) expands to a call of the second.
; (CHANGE SHIP obj :X val-x :Y val-y) expands to
; (|Change SHIP record fields| obj :X val-x :Y val-y).
; The five new symbols above are defined as macros that further expand
; into raw CAR/CDR nests if the record is cheap and a similar nest
; that first checks the type of the record otherwise.
; In using the record facility I have sometimes pondered which fields I should
; allocate where to maximize access speed. Other times I have just laid them
; out in an arbitrary fashion. In any case, the following functions might be
; useful if you are wondering how to lay out a record. That is, grab the
; following progn and execute it in the full ACL2 system. (It cannot be
; executed at this point in basis.lisp because it uses functions defined
; elsewhere; it is here only to be easy to find when looking up the comments
; about records.) Note that it changes the default-defun-mode to :program. Then
; invoke :sbt n, where n is an integer.
; For example
; ACL2 g>:sbt 5
; The Binary Trees with Five Tips
; 2.400 ((2 . 2) 2 3 . 3)
; 2.600 (1 (3 . 3) 3 . 3)
; 2.800 (1 2 3 4 . 4)
; Sbt will print out all of the interesting binary trees with the
; given number of tips. The integer appearing at a tip is the number
; of car/cdrs necessary to access that field of a cheap record laid
; out as shown. That is also the number of conses required to change
; that single field. The decimal number in the left column is the
; average number of car/cdrs required to access a field, assuming all
; fields are accessed equally often. The number of trees generated
; grows exponentially with n. Roughly 100 trees are printed for size
; 10. Beware!
; The function (analyze-tree x state) is also helpful. E.g.,
; ACL2 g>(analyze-tree '((type-alist . term) cl-ids rewrittenp
; force-flg . rune-or-non-rune)
; state)
; Shape: ((2 . 2) 2 3 4 . 4)
; Field Depths:
; ((TYPE-ALIST . 2)
; (TERM . 2)
; (CL-IDS . 2)
; (REWRITTENP . 3)
; (FORCE-FLG . 4)
; (RUNE-OR-NON-RUNE . 4))
; Avg Depth: 2.833
; (progn
; (program)
; (defun bump-binary-tree (tree)
; (cond ((atom tree) (1+ tree))
; (t (cons (bump-binary-tree (car tree))
; (bump-binary-tree (cdr tree))))))
;
; (defun cons-binary-trees (t1 t2)
; (cons (bump-binary-tree t1) (bump-binary-tree t2)))
;
; (defun combine-binary-trees1 (t1 lst2 ans)
; (cond ((null lst2) ans)
; (t (combine-binary-trees1 t1 (cdr lst2)
; (cons (cons-binary-trees t1 (car lst2))
; ans)))))
;
; (defun combine-binary-trees (lst1 lst2 ans)
; (cond
; ((null lst1) ans)
; (t (combine-binary-trees (cdr lst1)
; lst2
; (combine-binary-trees1 (car lst1) lst2 ans)))))
;
; (mutual-recursion
;
; (defun all-binary-trees1 (i n)
; (cond ((= i 0) nil)
; (t (revappend (combine-binary-trees (all-binary-trees i)
; (all-binary-trees (- n i))
; nil)
; (all-binary-trees1 (1- i) n)))))
;
; (defun all-binary-trees (n)
; (cond ((= n 1) (list 0))
; (t (all-binary-trees1 (floor n 2) n))))
; )
;
; (defun total-access-time-binary-tree (x)
; (cond ((atom x) x)
; (t (+ (total-access-time-binary-tree (car x))
; (total-access-time-binary-tree (cdr x))))))
;
; (defun total-access-time-binary-tree-lst (lst)
;
; ; Pairs each tree in lst with its total-access-time.
;
; (cond ((null lst) nil)
; (t (cons (cons (total-access-time-binary-tree (car lst))
; (car lst))
; (total-access-time-binary-tree-lst (cdr lst))))))
;
; (defun show-binary-trees1 (n lst state)
; (cond ((null lst) state)
; (t (let* ((tat (floor (* (caar lst) 1000) n))
; (d0 (floor tat 1000))
; (d1 (- (floor tat 100) (* d0 10)))
; (d2 (- (floor tat 10) (+ (* d0 100) (* d1 10))))
; (d3 (- tat (+ (* d0 1000) (* d1 100) (* d2 10)))))
;
; (pprogn
; (mv-let (col state)
; (fmt1 "~x0.~x1~x2~x3 ~x4~%"
; (list (cons #\0 d0)
; (cons #\1 d1)
; (cons #\2 d2)
; (cons #\3 d3)
; (cons #\4 (cdar lst)))
; 0
; *standard-co* state nil)
; (declare (ignore col))
; state)
; (show-binary-trees1 n (cdr lst) state))))))
;
; (defun show-binary-trees (n state)
; (let ((lst (reverse
; (merge-sort-car->
; (total-access-time-binary-tree-lst
; (all-binary-trees n))))))
; (pprogn
; (fms "The Binary Trees with ~N0 Tips~%"
; (list (cons #\0 n))
; *standard-co* state nil)
; (show-binary-trees1 n lst state))))
;
; (defun analyze-tree1 (x i)
; (cond ((atom x) i)
; (t (cons (analyze-tree1 (car x) (1+ i))
; (analyze-tree1 (cdr x) (1+ i))))))
;
; (defun analyze-tree2 (x i)
; (cond ((atom x) (list (cons x i)))
; (t (append (analyze-tree2 (car x) (1+ i))
; (analyze-tree2 (cdr x) (1+ i))))))
;
; (defun analyze-tree3 (x)
; (cond ((atom x) 1)
; (t (+ (analyze-tree3 (car x)) (analyze-tree3 (cdr x))))))
;
; (defun analyze-tree (x state)
; (let* ((binary-tree (analyze-tree1 x 0))
; (alist (analyze-tree2 x 0))
; (n (analyze-tree3 x))
; (k (total-access-time-binary-tree binary-tree)))
; (let* ((tat (floor (* k 1000) n))
; (d0 (floor tat 1000))
; (d1 (- (floor tat 100) (* d0 10)))
; (d2 (- (floor tat 10) (+ (* d0 100) (* d1 10))))
; (d3 (- tat (+ (* d0 1000) (* d1 100) (* d2 10)))))
; (pprogn
; (fms "Shape: ~x0~%Field Depths: ~x1~%Avg Depth: ~x2.~x3~x4~x5~%"
; (list (cons #\0 binary-tree)
; (cons #\1 alist)
; (cons #\2 d0)
; (cons #\3 d1)
; (cons #\4 d2)
; (cons #\5 d3))
; *standard-co* state nil)
; (value :invisible)))))
;
; (defmacro sbt (n) `(pprogn (show-binary-trees ,n state) (value :invisible))))
;
(defun record-maker-function-name (name)
(intern-in-package-of-symbol
(coerce (append (coerce "Make " 'list)
(coerce (symbol-name name) 'list)
(coerce " record" 'list))
'string)
name))
; Record-accessor-function-name is now in axioms.lisp.
(defun record-changer-function-name (name)
(intern-in-package-of-symbol
(coerce
(append (coerce "Change " 'list)
(coerce (symbol-name name) 'list)
(coerce " record fields" 'list))
'string)
name))
(defmacro make (&rest args)
(cond ((keyword-value-listp (cdr args))
(cons (record-maker-function-name (car args)) (cdr args)))
(t (er hard 'record-error
"Make was given a non-keyword as a field specifier. ~
The offending form is ~x0."
(cons 'make args)))))
; Access is now in axioms.lisp.
(defmacro change (&rest args)
(cond ((keyword-value-listp (cddr args))
(cons (record-changer-function-name (car args)) (cdr args)))
(t (er hard 'record-error
"Change was given a non-keyword as a field specifier. ~
The offending form is ~x0."
(cons 'change args)))))
(defun make-record-car-cdrs1 (lst var)
(cond ((null lst) var)
(t (list (car lst) (make-record-car-cdrs1 (cdr lst) var)))))
(defun make-record-car-cdrs (field-layout car-cdr-lst)
(cond ((atom field-layout)
(cond ((null field-layout) nil)
(t (list (make-record-car-cdrs1 car-cdr-lst field-layout)))))
(t (append (make-record-car-cdrs (car field-layout)
(cons 'car car-cdr-lst))
(make-record-car-cdrs (cdr field-layout)
(cons 'cdr car-cdr-lst))))))
(defun make-record-accessors (name field-lst car-cdrs cheap)
(cond ((null field-lst) nil)
(t
(cons (cond
(cheap
(list 'defabbrev
(record-accessor-function-name name (car field-lst))
(list (car field-lst))
(car car-cdrs)))
(t (list 'defabbrev
(record-accessor-function-name name (car field-lst))
(list (car field-lst))
(sublis (list (cons 'name name)
(cons 'x (car field-lst))
(cons 'z (car car-cdrs)))
'(prog2$ (or (and (consp x)
(eq (car x) (quote name)))
(record-error (quote name) x))
z)))))
(make-record-accessors name
(cdr field-lst)
(cdr car-cdrs)
cheap)))))
(defun symbol-name-tree-occur (sym sym-tree)
; Sym is a symbol -- in fact, a keyword in proper usage -- and
; sym-tree is a tree of symbols. We ask whether a symbol with
; the same symbol-name as key occurs in sym-tree. If so, we return
; that symbol. Otherwise we return nil.
(cond ((symbolp sym-tree)
(cond ((equal (symbol-name sym) (symbol-name sym-tree))
sym-tree)
(t nil)))
((atom sym-tree)
nil)
(t (or (symbol-name-tree-occur sym (car sym-tree))
(symbol-name-tree-occur sym (cdr sym-tree))))))
(defun some-symbol-name-tree-occur (syms sym-tree)
(cond ((null syms) nil)
((symbol-name-tree-occur (car syms) sym-tree) t)
(t (some-symbol-name-tree-occur (cdr syms) sym-tree))))
(defun make-record-changer-cons (fields field-layout x)
; Fields is the list of keyword field specifiers that are being
; changed. Field-layout is the user's layout of the record. X is the
; name of the variable holding the instance of the record.
(cond ((not (some-symbol-name-tree-occur fields field-layout))
x)
((atom field-layout)
field-layout)
(t
(list 'cons
(make-record-changer-cons fields
(car field-layout)
(list 'car x))
(make-record-changer-cons fields
(cdr field-layout)
(list 'cdr x))))))
(defun make-record-changer-let-bindings (field-layout lst)
; Field-layout is the symbol tree provided by the user describing the
; layout of the fields. Lst is the keyword/value list in a change
; form. We want to bind each field name to the corresponding value.
; The only reason we take field-layout as an argument is that we
; don't know from :key which package 'key is in.
(cond ((null lst) nil)
(t (let ((var (symbol-name-tree-occur (car lst) field-layout)))
(cond ((null var)
(er hard 'record-error
"A make or change form has used ~x0 as though ~
it were a legal field specifier in a record ~
with the layout ~x1."
(car lst)
field-layout))
(t
(cons (list var (cadr lst))
(make-record-changer-let-bindings field-layout
(cddr lst)))))))))
(defun make-record-changer-let (name field-layout cheap rec lst)
(cond
(cheap
(list 'let (cons (list 'record-changer-not-to-be-used-elsewhere rec)
(make-record-changer-let-bindings field-layout lst))
(make-record-changer-cons
(evens lst)
field-layout
'record-changer-not-to-be-used-elsewhere)))
(t
(list 'let (cons (list 'record-changer-not-to-be-used-elsewhere rec)
(make-record-changer-let-bindings field-layout lst))
(sublis
(list (cons 'name name)
(cons 'cons-nest
(make-record-changer-cons
(evens lst)
field-layout
'(cdr record-changer-not-to-be-used-elsewhere))))
'(prog2$ (or (and (consp record-changer-not-to-be-used-elsewhere)
(eq (car record-changer-not-to-be-used-elsewhere)
(quote name)))
(record-error (quote name)
record-changer-not-to-be-used-elsewhere))
(cons (quote name) cons-nest)))))))
(defun make-record-changer (name field-layout cheap)
(list 'defmacro
(record-changer-function-name name)
'(&rest args)
(list 'make-record-changer-let
(kwote name)
(kwote field-layout)
cheap
'(car args)
'(cdr args))))
(defun make-record-maker-cons (fields field-layout)
; Fields is the list of keyword field specifiers being initialized in
; a record. Field-layout is the user's specification of the layout.
; We lay down a cons tree isomorphic to field-layout whose tips are
; either the corresponding tip of field-layout or nil according to
; whether the keyword corresponding to the field-layout tip is in fields.
(cond ((atom field-layout)
(cond ((some-symbol-name-tree-occur fields field-layout)
; The above call is a little strange isn't it? Field-layout is an
; atom, a symbol really, and here we are asking whether any element of
; fields symbol-name-tree-occurs in it. We're really just exploiting
; some-symbol-name-tree-occur to walk down fields for us taking the
; symbol-name of each element and seeing if it occurs in (i.e., in
; this case, is) the symbol name of field-layout.
field-layout)
(t nil)))
(t
(list 'cons
(make-record-maker-cons fields
(car field-layout))
(make-record-maker-cons fields
(cdr field-layout))))))
(defun make-record-maker-let (name field-layout cheap lst)
(cond
(cheap
(list 'let (make-record-changer-let-bindings field-layout lst)
(make-record-maker-cons (evens lst)
field-layout)))
(t
(list 'let (make-record-changer-let-bindings field-layout lst)
(list 'cons
(kwote name)
(make-record-maker-cons (evens lst)
field-layout))))))
(defun make-record-maker (name field-layout cheap)
(list 'defmacro
(record-maker-function-name name)
'(&rest args)
(list 'make-record-maker-let
(kwote name)
(kwote field-layout)
cheap
'args)))
(defun make-record-field-lst (field-layout)
(cond ((atom field-layout)
(cond ((null field-layout) nil)
(t (list field-layout))))
(t (append (make-record-field-lst (car field-layout))
(make-record-field-lst (cdr field-layout))))))
(defun record-maker-recognizer-name (name)
; We use the "WEAK-" prefix in order to avoid name clashes with stronger
; recognizers that one may wish to define.
(declare (xargs :guard (symbolp name)))
(intern-in-package-of-symbol
(concatenate 'string "WEAK-" (symbol-name name) "-P")
name))
(defun make-record-recognizer-body (field-layout)
(declare (xargs :guard t))
(cond
((consp field-layout)
(cond
((consp (car field-layout))
(cond
((consp (cdr field-layout))
`(and (consp x)
(let ((x (car x)))
,(make-record-recognizer-body (car field-layout)))
(let ((x (cdr x)))
,(make-record-recognizer-body (cdr field-layout)))))
(t
`(and (consp x)
(let ((x (car x)))
,(make-record-recognizer-body (car field-layout)))))))
((consp (cdr field-layout))
`(and (consp x)
(let ((x (cdr x)))
,(make-record-recognizer-body (cdr field-layout)))))
(t '(consp x))))
(t t)))
(defun make-record-recognizer (name field-layout cheap recog-name)
`(defun ,recog-name (x)
(declare (xargs :mode :logic :guard t))
,(cond (cheap (make-record-recognizer-body field-layout))
(t `(and (consp x)
(eq (car x) ',name)
(let ((x (cdr x)))
,(make-record-recognizer-body field-layout)))))))
(defun record-macros (name field-layout cheap recog-name)
(declare (xargs :guard (or recog-name (symbolp name))))
(let ((recog-name (or recog-name
(record-maker-recognizer-name name))))
(cons 'progn
(append
(make-record-accessors name
(make-record-field-lst field-layout)
(make-record-car-cdrs field-layout
(if cheap nil '(cdr)))
cheap)
(list (make-record-changer name field-layout cheap)
(make-record-maker name field-layout cheap)
(make-record-recognizer name field-layout cheap recog-name))))))
; WARNING: If you change the layout of records, you must change
; certain functions that build them in. Generally, these functions
; are defined before defrec was defined, but need to access
; components. See the warning associated with defrec rewrite-constant
; for a list of one group of such functions. You might also search
; for occurrences of the word defrec prior to this definition of it.
(defmacro defrec (name field-lst cheap &optional recog-name)
; Warning: If when cheap = nil, the car of a record is no longer name, then
; consider changing the definition or use of record-type.
; A recognizer with guard t has is defined using recog-name, if supplied; else,
; by default, its name for (defrec foo ...) is the symbol WEAK-FOO-P, in the
; same package as foo.
(record-macros name field-lst cheap recog-name))
(defmacro record-type (x)
; X is a non-cheap record, i.e., a record whose defrec has cheap = nil.
`(car ,x))
; Warning and Observation
; Essay on Inhibited Output and the Illusion of Windows
; The "io" in io?, below, stands for "inhibit output". Roughly speaking, it
; takes an unevaluated symbolic token denoting a "kind" of output, an output
; shape involving STATE, and a form with the indicated output signature.
; If the "kind" of output is currently inhibited, it returns all nils and the
; current state, e.g., (mv nil state nil) in the case where the output
; shape is something like (mv x state y). If the kind of output is not
; inhibited, the form is evaluated and its value is returned.
; If form always returned an error triple, this could be said as:
; `(cond ((member-eq ',token (f-get-global 'inhibit-output-lst state))
; (value nil))
; (t ,form))
; This whole macro is just a simple way to do optionally inhibited output.
; The introduction of an emacs window-based interface, led us to put a little
; more functionality into this macro. Each kind of output has a window
; associated with it. If the kind of output is uninhibited, the io? macro
; sends to *standard-co* certain auxiliary output which causes the
; *standard-co* output by form to be shipped to the designated window.
; The association of windows is accomplished via the constant
; *window-descriptions* below which contains elements of the form (token str
; clear cursor-at-top pop-up), where token is a "kind" of output, str
; identifies the associated window, and the remaining components specify
; options for how output to the window is handled by default. The io? macro
; provides keyword arguments for overriding these defaults. If :clear t is
; specified, the window is cleared before the text is written into it,
; otherwise the text is appended to the end. If :cursor-at-top t is specified,
; the cursor is left at the top of the inserted text, otherwise it is left at
; the bottom of the inserted text. If :pop-up t is specified, the window is
; raised to the top of the desktop, otherwise the window remains where it was.
; We have purposely avoided trying to suggest that windows are objects in ACL2.
; We have no way to create them or manage them. We merely ship a sequence of
; characters to *standard-co* and let the host do whatever it does with them.
; Extending ACL2 with some window abstraction is a desirable thing to do. I
; would like to be able to manipulate windows as ACL2 objects. But that is
; beyond the scope of the current work whose aim is merely to provide a more
; modern interface to ACL2 without doing too much violence to ACL2's
; applicative nature or to its claim to be Common Lisp. Those two constraints
; make the introduction of true window objects truly interesting.
; Finally io? allows for the entire io process to be illusory. This occurs if
; the commentp argument is t. In this case, the io? form is logically
; equivalent to NIL. The actual output is performed after opening a wormhole
; to state.
(defun io?-nil-output (lst default-bindings)
(cond ((null lst) nil)
(t (cons (cond ((eq (car lst) 'state) 'state)
((cadr (assoc-eq (car lst) default-bindings)))
(t nil))
(io?-nil-output (cdr lst) default-bindings)))))
(defmacro check-exact-free-vars (ctx vars form)
; A typical use of this macro is (check-free-vars io? vars form) which just
; expands to the translation of form provided all vars occurring freely in form
; are among vars and vice-versa. The first argument is the name of the calling
; routine, which is used in error reporting.
(declare (xargs :guard (symbol-listp vars)))
`(translate-and-test
(lambda (term)
(let ((vars ',vars)
(all-vars (all-vars term)))
(cond ((not (subsetp-eq all-vars vars))
(msg "Free vars problem with ~x0: Variable~#1~[~/s~] ~&1 ~
occur~#1~[s~/~] in ~x2 even though not declared."
',ctx
(set-difference-eq all-vars vars)
term))
((not (subsetp-eq vars all-vars))
(msg "Free vars problem with ~x0: Variable~#1~[~/s~] ~&1 ~
~#1~[does~/do~] not occur in ~x2 even though declared."
',ctx
(set-difference-eq vars all-vars)
term))
(t t))))
,form))
(defun formal-bindings (vars)
; For example, if vars is (ab cd) then return the object
; ((list (quote ab) (list 'quote ab)) (list (quote cd) (list 'quote cd))).
(if (endp vars)
nil
(cons (list 'list
(list 'quote (car vars))
(list 'list ''quote (car vars)))
(formal-bindings (cdr vars)))))
(defrec io-record
(io-marker . form)
t)
(defun push-io-record (io-marker form state)
(declare (xargs :stobjs state
:guard (f-boundp-global 'saved-output-reversed state)))
(f-put-global 'saved-output-reversed
(cons (make io-record
:io-marker io-marker
:form form)
(f-get-global 'saved-output-reversed state))
state))
(defun saved-output-token-p (token state)
(declare (xargs :stobjs state
:guard
(and (symbolp token)
(f-boundp-global 'saved-output-p state)
(f-boundp-global 'saved-output-token-lst state)
(or (eq (f-get-global 'saved-output-token-lst state)
:all)
(true-listp (f-get-global 'saved-output-token-lst
state))))))
(and (f-get-global 'saved-output-p state)
(or (eq (f-get-global 'saved-output-token-lst state) :all)
(member-eq token (f-get-global 'saved-output-token-lst state)))))
(defun io?-wormhole-bindings (i vars)
(declare (xargs :guard (and (true-listp vars)
(natp i))))
(cond ((endp vars) nil)
(t (cons (list (car vars)
`(nth ,i (@ wormhole-input)))
(io?-wormhole-bindings (1+ i) (cdr vars))))))
(defmacro io? (token commentp shape vars body
&key
(clear 'nil clear-argp)
(cursor-at-top 'nil cursor-at-top-argp)
(pop-up 'nil pop-up-argp)
(default-bindings 'nil)
(chk-translatable 't)
(io-marker 'nil))
; Typical use (io? error nil (mv col state) (x y) (fmt ...)), meaning execute
; the fmt statement unless 'error is on 'inhibit-output-lst. The mv expression
; is the shape of the output produced by the fmt expression, and the list (x y)
; for vars indicates the variables other than state that occur free in that
; expression. See the comment above, and see the Essay on Saved-output for a
; comment that gives a convenient macro for obtaining the free variables other
; than state that occur free in body.
; Default-bindings is a list of doublets (symbol value). It is used in order
; to supply a non-nil return value for other than state when io is suppressed.
; For example, fmt returns col and state, as suggested by the third (shape)
; argument below. Without the :default-bindings, this form would evaluate to
; (mv nil state) if event IO is inhibited. But there are fixnum declarations
; that require the first return value of fmt to be an integer, and we can
; specify the result in the inhibited case to be (mv 0 state) with the
; following :default-bindings:
; (io? event nil (mv col state) nil (fmt ...) :default-bindings ((col 0)))
; The values in :default-bindings are evaluated, so it would be equivalent to
; replace 0 with (- 4 4), for example.
; Keep argument list in sync with io?@par.
; Chk-translatable is only used when commentp is not nil, to check at translate
; time that the body passes translation relative to the given shape.
; (Otherwise such a check is only made when the wormhole call below is actually
; evaluated.)
; Parallelism blemish: avoid calling io? with commentp = t under
; with-output-lock. During experimentation, we have ACL2(p) hang in such a
; case, because of the interaction of locks created by wormhole1 and
; with-output-lock. (So more generally, avoid calling with-wormhole-lock in
; the scope of with-output-lock; the other way around is fine.)
(declare (xargs :guard (and (symbolp token)
(symbol-listp vars)
(no-duplicatesp vars)
(not (member-eq 'state vars))
(assoc-eq token *window-descriptions*))))
(let* ((associated-window (assoc-eq token *window-descriptions*))
(expansion
`(let* ((io?-output-inhibitedp
(member-eq ',token
(f-get-global 'inhibit-output-lst state)))
(io?-alist
(and (not io?-output-inhibitedp)
(list
(cons #\w ,(cadr associated-window))
(cons #\c ,(if clear-argp
clear
(caddr associated-window)))
(cons #\t ,(if cursor-at-top-argp
cursor-at-top
(cadddr associated-window)))
(cons #\p ,(if pop-up-argp
pop-up
(car (cddddr associated-window))))
; Peter Dillinger requested the following binding, so that he could specify a
; window prelude string that distinguishes between, for example, "prove",
; "event", and "summary" output, which with the default string would all just
; show up as window 4.
(cons #\k ,(symbol-name token))))))
(pprogn
(if (or io?-output-inhibitedp
(null (f-get-global 'window-interfacep state)))
state
(mv-let (io?-col state)
(fmt1! (f-get-global 'window-interface-prelude state)
io?-alist 0 *standard-co* state nil)
(declare (ignore io?-col))
state))
,(let ((body
`(check-vars-not-free
(io?-output-inhibitedp io?-alist)
(check-exact-free-vars io? (state ,@vars) ,body)))
(nil-output (if (eq shape 'state)
'state
(cons 'mv (io?-nil-output (cdr shape)
default-bindings))))
(postlude
`(mv-let
(io?-col state)
(if (or io?-output-inhibitedp
(null (f-get-global 'window-interfacep state)))
(mv 0 state)
(fmt1! (f-get-global 'window-interface-postlude state)
io?-alist 0 *standard-co* state nil))
(declare (ignore io?-col))
(check-vars-not-free
(io?-output-inhibitedp io?-alist io?-col)
,shape))))
(let ((body (if commentp
`(let ,(io?-wormhole-bindings 0 vars)
,body)
body)))
(cond
((eq shape 'state)
`(pprogn
(if io?-output-inhibitedp state ,body)
,postlude))
(t `(mv-let ,(cdr shape)
(if io?-output-inhibitedp
,nil-output
,body)
,postlude)))))))))
(cond
(commentp
(let ((form
(cond
((eq shape 'state)
`(pprogn ,expansion (value :q)))
(t
`(mv-let ,(cdr shape)
,expansion
(declare
(ignore ,@(remove1-eq 'state (cdr shape))))
(value :q))))))
`(prog2$
,(if chk-translatable
`(chk-translatable ,body ,shape)
nil)
(wormhole 'comment-window-io
'(lambda (whs)
(set-wormhole-entry-code whs :ENTER))
(list ,@vars)
',form
:ld-error-action :return!
:ld-verbose nil
:ld-pre-eval-print nil
:ld-prompt nil))))
(t `(pprogn
(cond ((saved-output-token-p ',token state)
(push-io-record ,io-marker
(list 'let
(list ,@(formal-bindings vars))
',expansion)
state))
(t state))
,expansion)))))
#+acl2-par
(defmacro io?@par (token commentp &rest rst)
; This macro is the same as io?, except that it provides the extra property
; that the commentp flag is overridden to use comment-window printing.
; Keep the argument list in sync with io?.
; Parallelism blemish: surround the io? call below with a suitable lock. Once
; this is done, remove any redundant locks around io?@par calls.
(declare (ignore commentp))
`(io? ,token t ,@rst))
(defmacro io?-prove (vars body &rest keyword-args)
; Keep in sync with io?-prove-cw.
`(io? prove nil state ,vars
(if (gag-mode) state ,body)
,@keyword-args))
(defun output-ignored-p (token state)
(and (not (saved-output-token-p token state))
(member-eq token
(f-get-global 'inhibit-output-lst state))))
(defun error1 (ctx str alist state)
; Warning: Keep this in sync with error1-safe and error1@par.
(pprogn
(io? error nil state (alist str ctx)
(error-fms nil ctx str alist state))
(mv t nil state)))
#+acl2-par
(defun error1@par (ctx str alist state)
; Keep in sync with error1. We accept state so that calls to error1 and
; error1@par look the same.
(declare (ignore state))
(prog2$
(io? error t state (alist str ctx)
(error-fms nil ctx str alist state)
:chk-translatable nil)
(mv@par t nil state)))
(defun error1-safe (ctx str alist state)
; Warning: Keep this in sync with error1.
; Note: One can rely on this returning a value component of nil.
(pprogn
(io? error nil state (alist str ctx)
(error-fms nil ctx str alist state))
(mv nil nil state)))
(defconst *uninhibited-warning-summaries*
'("Uncertified"
"Provisionally certified"
"Skip-proofs"
"Defaxioms"
"Ttags"
; Uncomment the following in order to see invariant-risk warnings during
; regression.
; "Invariant-risk"
; The above are included because of soundness. But the following are included
; so that we can see them even when inside include-book, since messages printed
; by missing-compiled-book may assume that such warnings are not inhibited.
"Compiled file"
"User-stobjs-modified"))
(defun warning-off-p1 (summary wrld ld-skip-proofsp)
; This function is used by warning$ to determine whether a given warning should
; be printed. See also warning-disabled-p, which we can use to avoid needless
; computation on behalf of disabled warnings.
(declare (xargs :guard (and (or (null summary)
(and (stringp summary)
(standard-string-p summary)))
(plist-worldp wrld)
(standard-string-alistp
(table-alist 'inhibit-warnings-table wrld)))))
(or (and summary
(assoc-string-equal
summary
(table-alist 'inhibit-warnings-table wrld)))
; The above is sufficient to turn off (warning$ "string" ...). But even when
; the above condition isn't met, we turn off all warnings -- with the exception
; of those related to soundness -- while including a book.
(and (or (eq ld-skip-proofsp 'include-book)
(eq ld-skip-proofsp 'include-book-with-locals)
(eq ld-skip-proofsp 'initialize-acl2))
(not (and summary
(member-string-equal
summary
*uninhibited-warning-summaries*))))))
(defun warning-off-p (summary state)
(warning-off-p1 summary (w state) (ld-skip-proofsp state)))
(defrec state-vars
; Warning: Keep this in sync with default-state-vars.
((safe-mode boot-strap-flg . temp-touchable-vars)
.
(guard-checking-on ld-skip-proofsp
temp-touchable-fns . parallel-execution-enabled))
nil)
(defmacro default-state-vars
(state-p &key
(safe-mode 'nil safe-mode-p)
(boot-strap-flg 'nil boot-strap-flg-p)
(temp-touchable-vars 'nil temp-touchable-vars-p)
(guard-checking-on 't guard-checking-on-p)
(ld-skip-proofsp 'nil ld-skip-proofsp-p)
(temp-touchable-fns 'nil temp-touchable-fns-p)
(parallel-execution-enabled 'nil parallel-execution-enabled-p))
; Warning: Keep this in sync with defrec state-vars.
; State-p is t to indicate that we use the current values of the relevant state
; globals. Otherwise we use the specified defaults, which are supplied above
; for convenience but can be changed there (i.e., in this code) if better
; default values are found.
(cond ((eq state-p t)
`(make state-vars
:safe-mode
,(if safe-mode-p
safe-mode
'(f-get-global 'safe-mode state))
:boot-strap-flg
,(if boot-strap-flg-p
boot-strap-flg
'(f-get-global 'boot-strap-flg state))
:temp-touchable-vars
,(if temp-touchable-vars-p
temp-touchable-vars
'(f-get-global 'temp-touchable-vars state))
:guard-checking-on
,(if guard-checking-on-p
guard-checking-on
'(f-get-global 'guard-checking-on state))
:ld-skip-proofsp
,(if ld-skip-proofsp-p
ld-skip-proofsp
'(f-get-global 'ld-skip-proofsp state))
:temp-touchable-fns
,(if temp-touchable-fns-p
temp-touchable-fns
'(f-get-global 'temp-touchable-fns state))
:parallel-execution-enabled
,(if parallel-execution-enabled-p
parallel-execution-enabled
'(f-get-global 'parallel-execution-enabled state))))
(t ; state-p is not t
`(make state-vars
:safe-mode ,safe-mode
:temp-touchable-vars ,temp-touchable-vars
:guard-checking-on ,guard-checking-on
:ld-skip-proofsp ,ld-skip-proofsp
:temp-touchable-fns ,temp-touchable-fns
:parallel-execution-enabled ,parallel-execution-enabled))))
(defun warning1-body (ctx summary str+ alist state)
; Str+ is either a string or a pair (str . raw-alist), where raw-alist is to be
; used in place of str and the input alist if we are in raw-warning-format
; mode.
(let ((channel (f-get-global 'proofs-co state)))
(pprogn
(if summary
(push-warning summary state)
state)
(cond
((f-get-global 'raw-warning-format state)
(cond ((consp str+)
(fms "~y0"
(list (cons #\0 (list :warning summary
(cons (list :ctx ctx)
(cdr str+)))))
channel state nil))
(t
(fms "(:WARNING ~x0~t1~y2)~%"
(list (cons #\0 summary)
(cons #\1 10) ; (length "(:WARNING ")
(cons #\2
(list (cons :ctx ctx)
(cons :fmt-string str+)
(cons :fmt-alist alist))))
channel state nil))))
(t (let ((str (cond ((consp str+)
(assert$ (and (stringp (car str+))
(alistp (cdr str+)))
(car str+)))
(t str+))))
(mv-let
(col state)
(fmt "ACL2 Warning~#0~[~/ [~s1]~]"
(list (cons #\0 (if summary 1 0))
(cons #\1 summary))
channel state nil)
(mv-let (col state)
(fmt-in-ctx ctx col channel state)
(fmt-abbrev str alist col channel state "~%~%")))))))))
(defmacro warning1-form (commentp)
; See warning1.
`(mv-let
(check-warning-off summary)
(cond ((consp summary)
(mv nil (car summary)))
(t (mv t summary)))
(cond
((and check-warning-off
,(if commentp
'(warning-off-p1 summary
wrld
(access state-vars state-vars
:ld-skip-proofsp))
'(warning-off-p summary state)))
,(if commentp nil 'state))
; Note: There are two io? expressions below. They are just alike except
; that the first uses the token WARNING! and the other uses WARNING. Keep
; them that way!
((and summary
(member-string-equal summary *uninhibited-warning-summaries*))
(io? WARNING! ,commentp state
(summary ctx alist str)
(warning1-body ctx summary str alist state)
:chk-translatable nil))
(t (io? WARNING ,commentp state
(summary ctx alist str)
(warning1-body ctx summary str alist state)
:chk-translatable nil)))))
(defun warning1 (ctx summary str alist state)
; This function prints the "ACL2 Warning" banner and ctx, then the
; user's summary, str and alist, and then two carriage returns.
(warning1-form nil))
(defmacro warning-disabled-p (summary)
; We can use this function to avoid needless computation on behalf of disabled
; warnings.
(declare (xargs :guard (stringp summary)))
(let ((tp (if (member-equal summary *uninhibited-warning-summaries*)
'warning!
'warning)))
`(or (output-ignored-p ',tp state)
(warning-off-p ,summary state))))
(defmacro observation1-body (commentp)
`(io? observation ,commentp state
(str alist ctx abbrev-p)
(let ((channel (f-get-global 'proofs-co state)))
(mv-let
(col state)
(fmt "ACL2 Observation" nil channel state nil)
(mv-let (col state)
(fmt-in-ctx ctx col channel state)
(cond (abbrev-p
(fmt-abbrev str alist col channel state "~|"))
((null abbrev-p)
(mv-let (col state)
(fmt1 str alist col channel state nil)
(declare (ignore col))
(newline channel state)))
(t
(prog2$ (er hard 'observation1
"The abbrev-p (fourth) argument of ~
observation1 must be t or nil, so the ~
value ~x0 is illegal."
abbrev-p)
state))))))
:chk-translatable nil))
(defun observation1 (ctx str alist abbrev-p state)
; This function prints the "ACL2 Observation" banner and ctx, then the
; user's str and alist, and then a carriage return.
(observation1-body nil))
(defun observation1-cw (ctx str alist abbrev-p)
(observation1-body t))
(defmacro observation (&rest args)
; A typical use of this macro might be:
; (observation ctx "5 :REWRITE rules are being stored under name ~x0." name).
`(cond
((or (eq (ld-skip-proofsp state) 'include-book)
(eq (ld-skip-proofsp state) 'include-book-with-locals)
(eq (ld-skip-proofsp state) 'initialize-acl2))
state)
(t
(observation1
,(car args)
,(cadr args)
,(make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
(cddr args))
t
state))))
(defmacro observation-cw (&rest args)
; See observation. This macro uses wormholes to avoid modifying state, and
; prints even when including books.
`(observation1-cw
,(car args)
,(cadr args)
,(make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4
#\5 #\6 #\7 #\8 #\9)
(cddr args))
t))
; Start stobj support in raw Lisp
(defrec defstobj-field-template
(((fieldp-name . type) . (init . length-name))
(accessor-name . updater-name)
resize-name
resizable
. other ; e.g., for hacking in community book books/add-ons/hash-stobjs.lisp
)
nil)
(defrec defstobj-template
((congruent-to . non-memoizable)
(recognizer . creator)
field-templates
inline)
nil)
(defun packn1 (lst)
(declare (xargs :guard (good-atom-listp lst)))
(cond ((endp lst) nil)
(t (append (explode-atom (car lst) 10)
(packn1 (cdr lst))))))
(defun packn-pos (lst witness)
(declare (xargs :guard (and (good-atom-listp lst)
(symbolp witness))))
(intern-in-package-of-symbol (coerce (packn1 lst) 'string)
witness))
(defun packn (lst)
(declare (xargs :guard (good-atom-listp lst)))
(let ((ans
; See comment in intern-in-package-of-symbol for an explanation of this trick.
(intern (coerce (packn1 lst) 'string)
"ACL2")))
ans))
(defun pack2 (n1 n2)
(packn (list n1 n2)))
(defun defstobj-fnname (root key1 key2 renaming-alist)
; Warning: Keep this in sync with stobj-updater-guess-from-accessor.
; This function generates the actual name we will use for a function generated
; by defstobj. Root and renaming-alist are, respectively, a symbol and an
; alist. Key1 describes which function name we are to generate and is one of
; :length, :resize, :recognizer, :accessor, :updater, or :creator. Key2
; describes the ``type'' of root. It is :top if root is the name of the live
; object (and hence, root starts with a $) and it is otherwise either :array or
; :non-array. Note that if renaming-alist is nil, then this function returns
; the ``default'' name used. If renaming-alist pairs some default name with an
; illegal name, the result is, of course, an illegal name.
(let* ((default-fnname
(case key1
(:recognizer
(case key2
(:top
(packn-pos
(list (coerce (append (coerce (symbol-name root) 'list)
'(#\P))
'string))
root))
(otherwise (packn-pos (list root "P") root))))
; This function can legitimately return nil for key1 values of :length
; and :resize. We are careful in the assoc-eq call below not to look
; for nil on the renaming-alist. That check is probably not
; necessary, but we include it for robustness.
(:length
(and (eq key2 :array)
(packn-pos (list root "-LENGTH") root)))
(:resize
(and (eq key2 :array)
(packn-pos (list "RESIZE-" root) root)))
(:accessor
(case key2
(:array (packn-pos (list root "I") root))
(otherwise root)))
(:updater
(case key2
(:array (packn-pos (list "UPDATE-" root "I") root))
(otherwise (packn-pos (list "UPDATE-" root) root))))
(:creator
(packn-pos (list "CREATE-" root) root))
(otherwise
(er hard 'defstobj-fnname
"Implementation error (bad case); please contact ACL2 ~
implementors."))))
(temp (and default-fnname ; see comment above
(assoc-eq default-fnname renaming-alist))))
(if temp (cadr temp) default-fnname)))
(defun defined-constant (name w)
; Name is a defined-constant if it has been declared with defconst.
; If name is a defined-constant then we can show that it satisfies
; legal-constantp, because when a name is declared as a constant we
; insist that it satisfy the syntactic check. But there are
; legal-constantps that aren't defined-constants, e.g., any symbol
; that could be (but hasn't yet been) declared as a constant. We
; check, below, that name is a symbolp just to guard the getprop.
; This function returns the quoted term that is the value of name, if
; name is a constant. That result is always non-nil (it may be (quote
; nil) of course).
(and (symbolp name)
(getpropc name 'const nil w)))
(defun fix-stobj-array-type (type wrld)
; Note: Wrld may be a world or nil. If wrld is nil and we are in raw Lisp,
; then this function should be called in a context where the symbol-value is
; available for any symbol introduced by a previous defconst event. Our
; intended use case meets that criterion: evaluation of a defstobj form during
; loading of the compiled file for a book.
(let* ((max (car (caddr type)))
(n (cond ((consp wrld)
(let ((qc (defined-constant max wrld)))
(and qc (unquote qc))))
#-acl2-loop-only
((eq wrld nil)
(and (symbolp max)
(symbol-value max)))
(t nil))))
(cond (n (list (car type)
(cadr type)
(list n)))
(t type))))
(defun defstobj-field-templates (field-descriptors renaming wrld)
; Note: Wrld may be a world or nil. See fix-stobj-array-type.
(cond
((endp field-descriptors) nil)
(t
(let* ((field-desc (car field-descriptors))
(field (if (atom field-desc)
field-desc
(car field-desc)))
(type (if (consp field-desc)
(or (cadr (assoc-keyword :type (cdr field-desc)))
t)
t))
(init (if (consp field-desc)
(cadr (assoc-keyword :initially (cdr field-desc)))
nil))
(resizable (if (consp field-desc)
(cadr (assoc-keyword :resizable (cdr field-desc)))
nil))
(key2 (if (and (consp type)
(eq (car type) 'array))
:array
:non-array))
(fieldp-name (defstobj-fnname field :recognizer key2 renaming))
(accessor-name (defstobj-fnname field :accessor key2 renaming))
(updater-name (defstobj-fnname field :updater key2 renaming))
(resize-name (defstobj-fnname field :resize key2 renaming))
(length-name (defstobj-fnname field :length key2 renaming)))
(cons (make defstobj-field-template
:fieldp-name fieldp-name
:type (cond ((and (consp type)
(eq (car type) 'array))
(fix-stobj-array-type type wrld))
(t type))
:init init
:accessor-name accessor-name
:updater-name updater-name
:length-name length-name
:resize-name resize-name
:resizable resizable)
(defstobj-field-templates
(cdr field-descriptors) renaming wrld))))))
(defconst *defstobj-keywords*
'(:renaming :inline :congruent-to :non-memoizable))
; The following function is used to implement a slightly generalized
; form of macro args, namely one in which we can provide an arbitrary
; number of ordinary arguments terminated by an arbitrary number of
; keyword argument pairs.
(defun partition-rest-and-keyword-args1 (x)
(cond ((endp x) (mv nil nil))
((keywordp (car x))
(mv nil x))
(t (mv-let (rest keypart)
(partition-rest-and-keyword-args1 (cdr x))
(mv (cons (car x) rest)
keypart)))))
(defun partition-rest-and-keyword-args2 (keypart keys alist)
; We return t if keypart is ill-formed as noted below. Otherwise, we
; return ((:keyn . vn) ... (:key1 . v1)).
(cond ((endp keypart) alist)
((and (keywordp (car keypart))
(consp (cdr keypart))
(not (assoc-eq (car keypart) alist))
(member (car keypart) keys))
(partition-rest-and-keyword-args2 (cddr keypart)
keys
(cons (cons (car keypart)
(cadr keypart))
alist)))
(t t)))
(defun partition-rest-and-keyword-args (x keys)
; X is assumed to be a list of the form (a1 ... an :key1 v1 ... :keyk
; vk), where no ai is a keyword. We return (mv erp rest alist), where
; erp is t iff the keyword section of x is ill-formed. When erp is
; nil, rest is '(a1 ... an) and alist is '((:key1 . v1) ... (:keyk
; . vk)).
; The keyword section is ill-formed if it contains a non-keyword in an
; even numbered element, if it binds the same keyword more than once,
; or if it binds a keyword other than those listed in keys.
(mv-let (rest keypart)
(partition-rest-and-keyword-args1 x)
(let ((alist (partition-rest-and-keyword-args2 keypart keys nil)))
(cond
((eq alist t) (mv t nil nil))
(t (mv nil rest alist))))))
(defun defstobj-template (name args wrld)
; Note: Wrld may be a world or nil. See fix-stobj-array-type.
; We unpack the args to get the renamed field descriptors. We return a
; defstobj-template with fields (namep create-name fields inline congruent-to),
; where: namep is the name of the recognizer for the single-threaded object;
; create-name is the name of the constructor for the stobj; fields is a list
; corresponding to the field descriptors, but normalized with respect to the
; renaming, types, etc.; inline is t if :inline t was specified in the defstobj
; event, else nil; and congruent-to is the :congruent-to field of the defstobj
; event (default: nil). A field in fields is of the form (recog-name type init
; accessor-name updater-name length-name resize-name resizable). The last
; three fields are nil unless type has the form (ARRAY ptype (n)), in which
; case ptype is a primitive type and n is a positive integer. Init is the evg
; of a constant term, i.e., should be quoted to be a treated as a term.
(mv-let
(erp field-descriptors key-alist)
(partition-rest-and-keyword-args args *defstobj-keywords*)
(cond
(erp
; If the defstobj has been admitted, this won't happen.
(er hard 'defstobj
"The keyword arguments to the DEFSTOBJ event must appear ~
after all field descriptors. The allowed keyword ~
arguments are ~&0, and these may not be duplicated. Thus, ~
~x1 is ill-formed."
*defstobj-keywords*
(list* 'defstobj name args)))
(t
(let ((renaming (cdr (assoc-eq :renaming key-alist)))
(inline (cdr (assoc-eq :inline key-alist)))
(congruent-to (cdr (assoc-eq :congruent-to key-alist)))
(non-memoizable (cdr (assoc-eq :non-memoizable key-alist))))
(make defstobj-template
:recognizer (defstobj-fnname name :recognizer :top renaming)
:creator (defstobj-fnname name :creator :top renaming)
:field-templates (defstobj-field-templates
field-descriptors renaming wrld)
:non-memoizable non-memoizable
:inline inline
:congruent-to congruent-to))))))
(defun simple-array-type (array-etype dimensions)
(declare (ignore dimensions))
(cond
((eq array-etype t)
`(simple-vector *))
((eq array-etype '*)
(er hard 'simple-array-type
"Implementation error: We had thought that * is an invalid type-spec! ~
~ Please contact the ACL2 implementors."))
(t `(simple-array ,array-etype (*)))))
#-acl2-loop-only
(defun-one-output stobj-copy-array-aref (a1 a2 i n)
(declare (type (unsigned-byte 29) i n))
; Copy the first n elements of array a1 into array a2, starting with index i,
; and then return a2. See also copy-array-svref and stobj-copy-array-fix-aref.
; Note that this copying does not copy substructures, so in the case that a1 is
; an array of stobjs, if 0 <= i < n then the ith element of a1 will be EQ to
; the ith element of a2 after the copy is complete.
(cond
((>= i n) a2)
(t (setf (aref a2 i)
(aref a1 i))
(stobj-copy-array-aref a1 a2
(the (unsigned-byte 29) (1+ i))
(the (unsigned-byte 29) n)))))
#-acl2-loop-only
(defun-one-output stobj-copy-array-svref (a1 a2 i n)
(declare (type (unsigned-byte 29) i n)
(type simple-vector a1 a2))
; This is a variant of copy-array-aref for simple vectors a1 and a2.
(cond
((>= i n) a2)
(t (setf (svref a2 i)
(svref a1 i))
(stobj-copy-array-svref a1 a2
(the (unsigned-byte 29) (1+ i))
(the (unsigned-byte 29) n)))))
#-acl2-loop-only
(defun-one-output stobj-copy-array-fix-aref (a1 a2 i n)
#+gcl ; declaration causes errors in cmucl and sbcl and may not be necessary
; except in gcl (to avoid boxing)
(declare (type (unsigned-byte 29) i n)
(type (simple-array (signed-byte 29) (*)) a1 a2))
; This is a variant of copy-array-aref for arrays of fixnums a1 and a2. We
; need this special version to avoid fixnum boxing in GCL during resizing.
(cond
((>= i n) a2)
(t (setf (aref a2 i)
(aref a1 i))
(stobj-copy-array-fix-aref a1 a2
(the (unsigned-byte 29) (1+ i))
(the (unsigned-byte 29) n)))))
(defmacro live-stobjp (name)
; Through Version_4.3, this macro was called the-live-stobj, and its body was
; `(eq ,name ,(the-live-var name)). However, we need a more permissive
; definition in support of congruent stobjs (and perhaps local stobjs and stobj
; fields of nested stobjs). Note that no ACL2 object is a simple-vector; in
; particular, a string is a vector but not a simple-vector.
`(typep ,name 'simple-vector))
(defconst *expt2-28* (expt 2 28))
(defun array-etype-is-fixnum-type (array-etype)
(declare (xargs :guard
(implies (consp array-etype)
(true-listp array-etype))))
(and (consp array-etype)
(case (car array-etype)
(integer
(let* ((e1 (cadr array-etype))
(int1 (if (integerp e1)
e1
(and (consp e1)
(integerp (car e1))
(1- (car e1)))))
(e2 (caddr array-etype))
(int2 (if (integerp e2)
e2
(and (consp e2)
(integerp (car e2))
(1- (car e2))))))
(and int1
int2
(>= int1 (- *expt2-28*))
(< int2 *expt2-28*))))
(mod
(and (integerp (cadr array-etype))
(< (cadr array-etype)
*expt2-28*)))
(unsigned-byte
(and (integerp (cadr array-etype))
(<= (cadr array-etype)
29)))
(signed-byte
(and (integerp (cadr array-etype))
(<= (cadr array-etype)
30))))))
(defun absstobj-name (name type)
; Warning: The (absstobj-name name :CREATOR) should equal (defstobj-fnname name
; :CREATOR :TOP nil), because of the use of the latter in
; parse-with-local-stobj.
(declare (type symbol name type))
(mv-let (prefix suffix)
(case type
(:A (mv nil "$A")) ; abstract
(:C (mv nil "$C")) ; concrete
(:CREATOR (mv "CREATE-" nil))
(:RECOGNIZER (mv nil "P"))
(:RECOGNIZER-LOGIC (mv nil "$AP"))
(:RECOGNIZER-EXEC (mv nil "$CP"))
(:CORR-FN (mv nil "$CORR"))
(:CORRESPONDENCE (mv nil "{CORRESPONDENCE}"))
(:PRESERVED (mv nil "{PRESERVED}"))
(:GUARD-THM (mv nil "{GUARD-THM}"))
(otherwise (mv (er hard 'absstobj-name
"Unrecognized type, ~x0."
type)
nil)))
(let* ((s (symbol-name name))
(s (if prefix (concatenate 'string prefix s) s))
(s (if suffix (concatenate 'string s suffix) s)))
(intern-in-package-of-symbol s name))))
(defun get-stobj-creator (stobj wrld)
; This function assumes that wrld is an ACL2 logical world, although wrld may
; be nil when we call this in raw Lisp.
; If stobj is a stobj name, return the name of its creator; else nil. We use
; the fact that the value of the 'stobj property is (*the-live-var* recognizer
; creator ...) for all user defined stobj names, is '(*the-live-state*) for
; STATE, and is nil for all other names.
(cond ((eq stobj 'state) 'state-p)
((not (symbolp stobj)) nil)
(wrld (caddr (getpropc stobj 'stobj nil wrld)))
(t
#-acl2-loop-only
(let ((d (get (the-live-var stobj)
'redundant-raw-lisp-discriminator)))
(cond ((eq (car d) 'defabsstobj)
; Then d is (defabsstobj name . keyword-alist).
(let ((tail (assoc-keyword :CREATOR d)))
(cond (tail (let* ((field-descriptor (cadr tail))
(c (if (consp field-descriptor)
(car field-descriptor)
field-descriptor)))
(assert$ (symbolp c)
c)))
(t (let ((name (cadr d)))
(absstobj-name name :CREATOR))))))
(t (caddr d))))
#+acl2-loop-only
(er hard 'stobj-creator
"Implementation error: The call ~x0 is illegal, because ~
get-stobj-creator must not be called inside the ACL2 loop (as ~
is the case here) with wrld = nil."
`(get-stobj-creator ,stobj nil)))))
(defmacro the$ (type val)
(cond ((eq type t)
val)
(t `(the ,type ,val))))
(defun defstobj-field-fns-raw-defs (var flush-var inline n field-templates)
; Warning: Keep the formals in the definitions below in sync with corresponding
; formals defstobj-field-fns-raw-defs. Otherwise trace$ may not work
; correctly; we saw such a problem in Version_5.0 for a resize function.
; Warning: See the guard remarks in the Essay on Defstobj Definitions.
#-hons (declare (ignorable flush-var)) ; irrelevant var without hons
(cond
((endp field-templates) nil)
(t
(append
(let* ((field-template (car field-templates))
(type (access defstobj-field-template field-template :type))
(init (access defstobj-field-template field-template :init))
(arrayp (and (consp type) (eq (car type) 'array)))
(array-etype0 (and arrayp (cadr type)))
(stobj-creator (get-stobj-creator (if arrayp array-etype0 type)
nil))
(scalar-type
(if stobj-creator t type)) ; only used when (not arrayp)
(array-etype (and arrayp
(if stobj-creator
; Stobj-creator is non-nil when array-etype is a stobj. The real element type,
; then, is simple-array rather than a simple-array-type, so we might say that
; the parent stobj array is not simple. But we will assume that the advantage
; of having a simple-vector for the parent stobj outweighs the advantage of
; having a simple-vector element type declaration.
t
array-etype0)))
(simple-type (and arrayp
(simple-array-type array-etype (caddr type))))
(array-length (and arrayp (car (caddr type))))
(vref (and arrayp
(if (eq (car simple-type) 'simple-vector)
'svref
'aref)))
(fix-vref (and arrayp
(if (array-etype-is-fixnum-type array-etype)
'fix-aref
vref)))
(accessor-name (access defstobj-field-template
field-template
:accessor-name))
(updater-name (access defstobj-field-template
field-template
:updater-name))
(length-name (access defstobj-field-template
field-template
:length-name))
(resize-name (access defstobj-field-template
field-template
:resize-name))
(resizable (access defstobj-field-template
field-template
:resizable)))
(cond
(arrayp
`((,length-name
(,var)
,@(and inline (list *stobj-inline-declare*))
,@(if (not resizable)
`((declare (ignore ,var))
,array-length)
`((the (and fixnum (integer 0 *))
(length (svref ,var ,n))))))
(,resize-name
(i ,var)
,@(if (not resizable)
`((declare (ignore i))
(prog2$
(er hard ',resize-name
"The array field corresponding to accessor ~x0 of ~
stobj ~x1 was not declared :resizable t. ~
Therefore, it is illegal to resize this array."
',accessor-name
',var)
,var))
`((if (not (and (integerp i)
(>= i 0)
(< i array-dimension-limit)))
(hard-error
',resize-name
"Attempted array resize failed because the requested ~
size ~x0 was not a nonnegative integer less than the ~
value of Common Lisp constant array-dimension-limit, ~
which is ~x1. These bounds on array sizes are fixed ~
by ACL2."
(list (cons #\0 i)
(cons #\1 array-dimension-limit)))
(let* ((var ,var)
(old (svref var ,n))
(min-index (min i (length old)))
(new (make-array$ i
; The :initial-element below is probably not necessary in the case
; that we are downsizing the array. At least, CLtL2 does not make any
; requirements about specifying an :initial-element, even when an
; :element-type is supplied. However, it seems harmless enough to go
; ahead and specify :initial-element even for downsizing: resizing is
; not expected to be fast, we save a case split here (at the expense
; of this comment!), and besides, we are protecting against the
; possibility that some Common Lisp will fail to respect the spec and
; will cause an error by trying to initialize a fixnum array (say)
; with NILs.
:initial-element
',init
:element-type
',array-etype)))
#+hons (memoize-flush ,flush-var)
(setf (svref var ,n)
(,(pack2 'stobj-copy-array- fix-vref)
old new 0 min-index))
,@(and stobj-creator
`((when (< (length old) i)
(loop for j from (length old) to (1- i)
do (setf (svref new j)
(,stobj-creator))))))
var)))))
(,accessor-name
(i ,var)
(declare (type (and fixnum (integer 0 *)) i))
,@(and inline (list *stobj-inline-declare*))
(the$ ,array-etype
(,vref (the ,simple-type (svref ,var ,n))
(the (and fixnum (integer 0 *)) i))))
(,updater-name
(i v ,var)
(declare (type (and fixnum (integer 0 *)) i)
,@(and (not (eq array-etype t))
`((type ,array-etype v))))
,@(and inline (list *stobj-inline-declare*))
(progn
#+hons (memoize-flush ,flush-var)
; See the long comment below for the updater in the scalar case, about
; supporting *1* functions.
(setf (,vref ,(if (eq simple-type t)
`(svref ,var ,n)
`(the ,simple-type (svref ,var ,n)))
(the (and fixnum (integer 0 *)) i))
(the$ ,array-etype v))
,var))))
((eq scalar-type t)
`((,accessor-name (,var)
,@(and inline (list *stobj-inline-declare*))
(svref ,var ,n))
(,updater-name (v ,var)
,@(and inline (list *stobj-inline-declare*))
(progn
#+hons (memoize-flush ,flush-var)
; For the case of a stobj field, we considered causing an error here since the
; raw Lisp code for stobj-let avoids calling updaters because there is no need:
; updates for fields that are stobjs have already updated destructively.
; However, a raw Lisp updater can be called by a *1* function, say *1*f,
; applied to live stobjs, when guard checking does not pass control to the raw
; Lisp function, f. Perhaps we could optimize to avoid this, but there is no
; need; this setf is fast and is only called on behalf of executing *1*
; function calls. See the comment referencing "defstobj-field-fns-raw-defs" in
; community book misc/nested-stobj-tests.lisp. To see this point in action,
; evaluate the forms under that comment after modifying this definition by
; uncommenting the following line of code.
; ,@(when stobj-creator '((break$))) ; see just above
(setf (svref ,var ,n) v)
,var))))
(t
(assert$
(not stobj-creator) ; scalar-type is t for stobj-creator
`((,accessor-name (,var)
,@(and inline (list *stobj-inline-declare*))
(the$ ,scalar-type
(aref (the (simple-array ,scalar-type (1))
(svref ,var ,n))
0)))
(,updater-name (v ,var)
,@(and (not (eq scalar-type t))
`((declare (type ,scalar-type v))))
,@(and inline (list *stobj-inline-declare*))
(progn
#+hons (memoize-flush ,flush-var)
(setf (aref (the (simple-array ,scalar-type (1))
(svref ,var ,n))
0)
(the$ ,scalar-type v))
,var)))))))
(defstobj-field-fns-raw-defs
var flush-var inline (1+ n) (cdr field-templates))))))
(defun defstobj-raw-init-fields (field-templates)
; Keep this in sync with defstobj-axiomatic-init-fields.
(cond
((endp field-templates) nil)
(t (let* ((field-template (car field-templates))
(type (access defstobj-field-template field-template :type))
(arrayp (and (consp type) (eq (car type) 'array)))
(array-etype0 (and arrayp (cadr type)))
(array-size (and arrayp (car (caddr type))))
(stobj-creator (get-stobj-creator (if arrayp array-etype0 type)
nil))
(array-etype (and arrayp
; See comment for this binding in defstobj-field-fns-raw-defs.
(if stobj-creator
t
array-etype0)))
(init (access defstobj-field-template field-template :init)))
(cond
(arrayp
(cons (cond (stobj-creator
(assert$
(null init) ; checked by chk-stobj-field-descriptor
(assert$
; We expect array-size to be a natural number, as this is checked by
; chk-stobj-field-descriptor (using fix-stobj-array-type). It is important
; that array-size not be a Lisp form that references the variable AR, even
; after macroexpasion, in order to avoid capture by the binding of AR below.
(natp array-size)
`(let ((ar (make-array$ ,array-size
; Do not be tempted to use :initial-element (,stobj-creator) here, because that
; would presumably share structure among all the created stobjs.
:element-type ',array-etype)))
(loop for i from 0 to ,(1- array-size)
do
(setf (svref ar i) (,stobj-creator)))
ar))))
(t `(make-array$ ,array-size
:element-type ',array-etype
:initial-element ',init)))
(defstobj-raw-init-fields (cdr field-templates))))
((eq type t)
(cons (kwote init)
(defstobj-raw-init-fields (cdr field-templates))))
(stobj-creator
(cons `(,stobj-creator)
(defstobj-raw-init-fields (cdr field-templates))))
(t (cons `(make-array$ 1
:element-type ',type
:initial-element ',init)
(defstobj-raw-init-fields (cdr field-templates)))))))))
(defun defstobj-raw-init-setf-forms (var index raw-init-fields acc)
(cond ((endp raw-init-fields) acc) ; no need to reverse
(t (defstobj-raw-init-setf-forms
var
(1+ index)
(cdr raw-init-fields)
(cons `(setf (svref ,var ,index)
,(car raw-init-fields))
acc)))))
(defun defstobj-raw-init (template)
; This function generates the initialization code for the live object
; representing the stobj name.
(let* ((field-templates (access defstobj-template template :field-templates))
(raw-init-fields (defstobj-raw-init-fields field-templates))
(len (length field-templates)))
`(cond
((< ,len call-arguments-limit)
; This check is necessary because GCL complains when VECTOR is called on more
; than 64 arguments. Actually, the other code -- where LIST is called instead
; of VECTOR -- is in principle just as problematic when field-templates is at
; least as long as call-arguments-limit. However, GCL has (through 2015 at
; least) been forgiving when LIST is called with too many arguments (as per
; call-arguments-limit).
(vector ,@raw-init-fields))
(t
(let ((v (make-array$ ,len)))
,@(defstobj-raw-init-setf-forms 'v 0 raw-init-fields nil)
v)))))
(defun defstobj-component-recognizer-calls (field-templates n var ans)
; Warning: See the guard remarks in the Essay on Defstobj Definitions.
; Given a list of defstobj-field-template records with n+1 field names -- for
; example regp, pcp, ... -- such that var is some symbol, v, we return a
; corresponding list -- for example ((regp (nth 0 v)) (pcp (nth 1 v)) ...).
; Except, for each field corresponding to a non-resizable array then we also
; include a corresponding length statement in the list.
(cond ((endp field-templates)
(reverse ans))
(t (defstobj-component-recognizer-calls
(cdr field-templates)
(+ n 1)
var
(let* ((type (access defstobj-field-template
(car field-templates)
:type))
(nonresizable-ar (and (consp type)
(eq (car type) 'array)
(not (access defstobj-field-template
(car field-templates)
:resizable))))
(pred-stmt `(,(access defstobj-field-template
(car field-templates)
:fieldp-name)
(nth ,n ,var))))
(if nonresizable-ar
(list* `(equal (len (nth ,n ,var)) ,(car (caddr type)))
pred-stmt
ans)
(cons pred-stmt ans)))))))
(defun stobjp (x known-stobjs w)
; We recognize whether x is to be treated as a stobj name. Known-stobjs is a
; list of all such names, or else T, standing for all stobj names in w. During
; translation, only certain known stobjs in w are considered stobjs, as per the
; user's :stobjs declare xargs. If you want to know whether x has been defined
; as a stobj in w, use known-stobjs = t.
; Slight abuse permitted: Sometimes known-stobjs will be a list of stobj flags!
; E.g., we might supply (NIL NIL STATE NIL $S) where (STATE $S) is technically
; required. But we should never ask if NIL is a stobj because we only ask this
; of variable symbols. But just to make this an ironclad guarantee, we include
; the first conjunct below.
(declare (xargs :guard (and (plist-worldp w)
(or (eq known-stobjs t)
(true-listp known-stobjs)))))
(and x
(symbolp x)
(if (eq known-stobjs t)
(getpropc x 'stobj nil w)
(member-eq x known-stobjs))))
(defun translate-stobj-type-to-guard (x var wrld)
; This function is a variant of translate-declaration-to-guard. Like that
; function, x is an alleged type about the variable symbol var -- think
; (DECLARE (TYPE x ...)) -- and results in an UNTRANSLATED term about var if x
; is seen to be a valid type-spec for ACL2. Unlike that function, here we
; allow x to be a stobj name, which may be used as a type in a field of another
; stobj (introduced after x). We return nil if x is not either sort of valid
; type spec.
; Our intended use of this function is in generation of guards for recognizers
; of stobj fields that may themselves be stobjs. We do not use this however in
; accessors or updaters, where translate-declaration-to-guard suffices: we do
; not want to generate a stobj recognizer since the child stobj is supplied
; explicitly using :stobjs.
(or (translate-declaration-to-guard x var wrld)
(let ((stobj-recog (and (not (eq x 'state))
(cadr
; Use stobjp below, not getprop, since we do not know that x is a symbol.
(stobjp x t wrld)))))
(and stobj-recog
(list stobj-recog var)))))
(defun defstobj-component-recognizer-axiomatic-defs (name template
field-templates wrld)
; Warning: See the guard remarks in the Essay on Defstobj Definitions.
; It is permissible for wrld to be nil, as this merely defeats additional
; checking by translate-declaration-to-guard.
; We return a list of defs (see defstobj-axiomatic-defs) for all the
; recognizers for the single-threaded resource named name with the given
; template. The answer contains the top-level recognizer as well as the
; definitions of all component recognizers. The answer contains defs for
; auxiliary functions used in array component recognizers. The defs are listed
; in an order suitable for processing (components first, then top-level).
(cond
((endp field-templates)
(let* ((recog-name (access defstobj-template template :recognizer))
(field-templates (access defstobj-template template
:field-templates))
(n (length field-templates)))
; Rockwell Addition: See comment below.
; Note: The recognizer for a stobj must be Boolean! That is why we
; conclude the AND below with a final T. The individual field
; recognizers need not be Boolean and sometimes are not! For example,
; a field with :TYPE (MEMBER e1 ... ek) won't be Boolean, nor with
; certain :TYPE (OR ...) involving MEMBER. The reason we want the
; stobj recognizer to be Boolean is so that we can replace it by T in
; guard conjectures for functions that have been translated with the
; stobj syntactic restrictions. See optimize-stobj-recognizers.
(list `(,recog-name (,name)
(declare (xargs :guard t
:verify-guards t))
(and (true-listp ,name)
(= (length ,name) ,n)
,@(defstobj-component-recognizer-calls
field-templates 0 name nil)
t)))))
(t
(let ((recog-name (access defstobj-field-template
(car field-templates)
:fieldp-name))
(type (access defstobj-field-template
(car field-templates)
:type)))
; Below we simply append the def or defs for this field to those for
; the rest. We get two defs for each array field and one def for each
; of the others.
(cons (cond
((and (consp type)
(eq (car type) 'array))
(let ((etype (cadr type)))
`(,recog-name (x)
(declare (xargs :guard t
:verify-guards t))
(if (atom x)
(equal x nil)
(and ,(translate-stobj-type-to-guard
etype '(car x) wrld)
(,recog-name (cdr x)))))))
(t (let ((type-term (translate-stobj-type-to-guard
type 'x wrld)))
; We might not use x in the type-term and so have to declare it ignorable.
`(,recog-name (x)
(declare (xargs :guard t
:verify-guards t)
(ignorable x))
,type-term))))
(defstobj-component-recognizer-axiomatic-defs
name template (cdr field-templates) wrld))))))
(defun congruent-stobj-rep (name wrld)
(assert$
wrld ; use congruent-stobj-rep-raw if wrld is not available
(or (getpropc name 'congruent-stobj-rep nil wrld)
name)))
(defun all-but-last (l)
(declare (xargs :guard (true-listp l) ; and let's verify termination/guards:
:mode :logic))
(cond ((endp l) nil)
((endp (cdr l)) nil)
(t (cons (car l) (all-but-last (cdr l))))))
(defun defstobj-raw-defs (name template congruent-stobj-rep wrld)
; Warning: See the guard remarks in the Essay on Defstobj Definitions.
; This function generates a list of defs. Each def is such that
; (defun . def) is a well-formed raw Lisp definition. The defuns can
; be executed in raw lisp to define the versions of the recognizers,
; accessors, and updaters (and for array fields, length and resize
; functions) that are run when we know the guards are satisfied. Many
; of these functions anticipate application to the live object itself.
; It is permissible for wrld to be nil, as this merely defeats additional
; checking by translate-declaration-to-guard. If wrld is nil, then
; congruent-stobj-rep should be the result of calling congruent-stobj-rep on
; name and the world where the corresponding defstobj is executed. If wrld is
; non-nil, then it should be an ACL2 world and congruent-stobj-rep is
; irrelevant.
; WARNING: If you change the formals of these generated raw defs be
; sure to change the formals of the corresponding axiomatic defs.
#-hons (declare (ignore congruent-stobj-rep))
(let* ((recog (access defstobj-template template :recognizer))
(creator (access defstobj-template template :creator))
(field-templates (access defstobj-template template :field-templates))
(inline (access defstobj-template template :inline)))
(append
(all-but-last
(defstobj-component-recognizer-axiomatic-defs name template
field-templates wrld))
`((,recog (,name)
(cond
((live-stobjp ,name)
t)
(t (and (true-listp ,name)
(= (length ,name) ,(length field-templates))
,@(defstobj-component-recognizer-calls
field-templates 0 name nil)))))
(,creator ()
,(defstobj-raw-init template))
,@(defstobj-field-fns-raw-defs
name
#-hons nil
#+hons (cond
((access defstobj-template template :non-memoizable)
nil)
(wrld (let ((congruent-to (access defstobj-template template
:congruent-to)))
(if congruent-to
(congruent-stobj-rep congruent-to wrld)
name)))
(t congruent-stobj-rep))
inline 0 field-templates)))))
(defun defconst-name (name)
(intern-in-package-of-symbol
(concatenate 'string "*" (symbol-name name) "*")
name))
(defun defstobj-defconsts (names index)
(if (endp names)
nil
(cons `(defconst ,(defconst-name (car names)) ,index)
(defstobj-defconsts (cdr names) (1+ index)))))
(defun strip-accessor-names (field-templates)
(if (endp field-templates)
nil
(cons (access defstobj-field-template (car field-templates)
:accessor-name)
(strip-accessor-names (cdr field-templates)))))
(defun the-live-var (name)
; If the user declares a single-threaded object named $S then we will
; use *the-live-$s* as the Lisp parameter holding the live object
; itself. One might wonder why we don't choose to name this object
; $s? Perhaps we could, since starting with Version 2.6 we no longer
; get the symbol-value of *the-live-$s* except at the top level,
; because of local stobjs. Below we explain our earlier thinking.
; Historical Plaque for Why the Live Var for $S Is Not $S
; [Otherwise] Consider how hard it would then be to define the raw defs
; (below). $S is the formal parameter, and naturally so since we want
; translate to enforce the rules on single-threadedness. The raw code
; has to check whether the actual is the live object. We could hardly
; write (eq $S $S).
(packn-pos (list "*THE-LIVE-" name "*") name))
(defun standard-co (state)
(f-get-global 'standard-co state))
#-acl2-loop-only
(defmacro defstobj (name &rest args)
; Warning: If you change this definition, consider the possibility of making
; corresponding changes to the #-acl2-loop-only definition of defabsstobj.
; This function is run when we evaluate (defstobj name . args) in raw lisp.
; A typical such form is
; (defstobj $st
; (flag :type t :initially run)
; (pc :type (integer 0 255) :initially 128)
; (mem :type (array (integer 0 255) (256)) :initially 0))
; Warning: If this event ever generates proof obligations, remove it from the
; list of exceptions in install-event just below its "Comment on irrelevance of
; skip-proofs".
; This function must contend with a problem analogous to the one addressed by
; acl2::defconst in acl2.lisp: the need to avoid re-declaration of the same
; stobj. We use redundant-raw-lisp-discriminator in much the same way as in
; the raw lisp defmacro of acl2::defconst.
(let* ((template (defstobj-template name args nil))
(congruent-to (access defstobj-template template :congruent-to))
(congruent-stobj-rep (if congruent-to
(congruent-stobj-rep-raw congruent-to)
name))
(non-memoizable (access defstobj-template template :non-memoizable))
(init (defstobj-raw-init template))
(the-live-name (the-live-var name)))
`(progn
; We place the defvar above the subsequent let*, in order to avoid
; warnings in Lisps such as CCL that compile on-the-fly.
(defvar ,the-live-name)
#+hons ,@(and (null congruent-to)
; It has occurred to us that this defg form might be avoidable when
; non-memoizable is true, since the purpose of st-lst is probably only to
; support memoize-flush. However, it seems harmless enough to lay down this
; form even when non-memoizable is true, so we go ahead and do so rather than
; think carefully about avoiding it.
`((defg ,(st-lst name) nil)))
; Now we lay down the defuns of the recognizers, accessors and updaters as
; generated by defstobj-raw-defs. The boilerplate below just adds the DEFUN to
; the front of each def generated, preserving the order of the defs as
; generated. We deal here with the :inline case; note that
; *stobj-inline-declare* was added in defstobj-field-fns-raw-defs.
,@(mapcar (function (lambda (def)
(if (member-equal *stobj-inline-declare* def)
(cons 'DEFABBREV
(remove-stobj-inline-declare def))
(cons 'DEFUN def))))
(defstobj-raw-defs name template congruent-stobj-rep nil))
,@(defstobj-defconsts
(strip-accessor-names (access defstobj-template template
:field-templates))
0)
(let* ((template ',template)
(congruent-stobj-rep ',congruent-stobj-rep)
(non-memoizable ',non-memoizable)
(boundp (boundp ',the-live-name))
(d (and boundp
(get ',the-live-name
'redundant-raw-lisp-discriminator)))
; d is expected to be of the form (DEFSTOBJ namep creator field-templates
; . congruent-stobj-rep).
(ok-p (and boundp
(consp d)
(eq (car d) 'defstobj)
(consp (cdr d))
(eq (cadr d) (access defstobj-template template
:recognizer))
(consp (cddr d))
(eq (caddr d) (access defstobj-template template
:creator))
(equal (cadddr d) (access defstobj-template template
:field-templates))
(eq (car (cddddr d)) congruent-stobj-rep)
(eq (cdr (cddddr d)) non-memoizable)
; We also formerly required:
; (stobj-initial-statep (symbol-value ',the-live-name)
; (access defstobj-template template
; :field-templates))
; However, the stobj need not have its initial value; consider a redundant
; defstobj in a book whose certification world has already modified the stobj,
; or a defstobj in a book whose value is modified in a make-event later in that
; book. Either way, ok-p would be false when this code is executed by loading
; the compiled file.
; We do not check the :inline :congruent-to fields, because these incur no
; proof obligations. If a second pass of encapsulate, or inclusion of a book,
; exposes a later non-local defstobj that is redundant with an earlier local
; one, then any problems will be caught during local compatibility checks.
)))
(cond
(ok-p ',name)
((and boundp (not (raw-mode-p *the-live-state*)))
(interface-er
"Illegal attempt to redeclare the single-threaded object ~s0."
',name))
(t
; Memoize-flush expects the variable (st-lst name) to be bound.
(setf ,the-live-name ,init)
(setf (get ',the-live-name 'redundant-raw-lisp-discriminator)
(list* 'defstobj
(access defstobj-template template
:recognizer)
(access defstobj-template template
:creator)
(access defstobj-template template
:field-templates)
congruent-stobj-rep
(access defstobj-template template
:non-memoizable)))
(let ((old (and boundp
; Since boundp, then by a test made above, we also know (raw-mode-p state).
; This boundp test could be omitted, since otherwise we know that the assoc-eq
; call below will return nil; the boundp check is just an optimization.
(assoc-eq ',name *user-stobj-alist*))))
(cond
(old ; hence raw-mode
(fms "Note: Redefining and reinitializing stobj ~x0 in raw ~
mode.~%"
(list (cons #\0 ',name))
(standard-co *the-live-state*) *the-live-state* nil)
(setf (cdr old)
(symbol-value ',the-live-name)))
(t
(assert$
(not (assoc-eq ',name *user-stobj-alist*))
(setq *user-stobj-alist*
(cons (cons ',name (symbol-value ',the-live-name))
*user-stobj-alist*))))))
',name))))))
; End of stobj support in raw lisp
; We need to have state globals bound for prin1$ etc. to work, because of calls
; of with-print-controls. We may also need the dolist form below for tracing,
; which uses current-package for printing and current-acl2-world for
; current-acl2-world suppression. State globals such as 'compiler-enabled,
; whose value depends on the host Common Lisp implementation, are initialized
; here rather than in *initial-global-table*, so that the value of any defconst
; (such as *initial-global-table*) is independent of the host Common Lisp
; implementation. That is important to avoid trivial soundness bugs based on
; variance of a defconst value from one underlying Lisp to another.
#-acl2-loop-only
(initialize-state-globals)
; Case-match (needed for parse-with-local-stobj, below)
(defun equal-x-constant (x const)
; x is an arbitrary term, const is a quoted constant, e.g., a list of
; the form (QUOTE guts). We return a term equivalent to (equal x
; const).
(declare (xargs :guard (and (consp const)
(eq (car const) 'quote)
(consp (cdr const)))))
(let ((guts (cadr const)))
(cond ((symbolp guts)
(list 'eq x const))
((or (acl2-numberp guts)
(characterp guts))
(list 'eql x guts))
((stringp guts)
(list 'equal x guts))
(t (list 'equal x const)))))
(defun match-tests-and-bindings (x pat tests bindings)
; We return two results. The first is a list of tests, in reverse
; order, that determine whether x matches the structure pat. We
; describe the language of pat below. The tests are accumulated onto
; tests, which should be nil initially. The second result is an alist
; containing entries of the form (sym expr), suitable for use as the
; bindings in the let we generate if the tests are satisfied. The
; bindings required by pat are accumulated onto bindings and thus are
; reverse order, although their order is actually irrelevant.
; For example, the pattern
; ('equal ('car ('cons u v)) u)
; matches only first order instances of (EQUAL (CAR (CONS u v)) u).
; The pattern
; ('equal (ev (simp x) a) (ev x a))
; matches only second order instances of (EQUAL (ev (simp x) a) (ev x a)),
; i.e., ev, simp, x, and a are all bound in the match.
; In general, the match requires that the cons structure of x be isomorphic
; to that of pat, down to the atoms in pat. Symbols in the pat denote
; variables that match anything and get bound to the structure matched.
; Occurrences of a symbol after the first match only structures equal to
; the binding. Non-symbolp atoms match themselves.
; There are some exceptions to the general scheme described above. A
; cons structure starting with QUOTE matches only itself. The symbols
; nil and t, and all symbols whose symbol-name starts with #\* match
; only structures equal to their values. (These symbols cannot be
; legally bound in ACL2 anyway, so this exceptional treatment does not
; restrict us further.) Any symbol starting with #\! matches only the
; value of the symbol whose name is obtained by dropping the #\!.
; This is a way of referring to already bound variables in the
; pattern. Finally, the symbol & matches anything and causes no
; binding.
(declare (xargs :guard (symbol-doublet-listp bindings)))
(cond
((symbolp pat)
(cond
((or (eq pat t)
(eq pat nil)
(keywordp pat))
(mv (cons (list 'eq x pat) tests) bindings))
((and (> (length (symbol-name pat)) 0)
(eql #\* (char (symbol-name pat) 0)))
(mv (cons (list 'equal x pat) tests) bindings))
((and (> (length (symbol-name pat)) 0)
(eql #\! (char (symbol-name pat) 0)))
(mv (cons (list 'equal x
(intern (coerce (cdr (coerce (symbol-name pat)
'list))
'string)
"ACL2"))
tests)
bindings))
((eq pat '&) (mv tests bindings))
(t (let ((binding (assoc-eq pat bindings)))
(cond ((null binding)
(mv tests (cons (list pat x) bindings)))
(t (mv (cons (list 'equal x (cadr binding)) tests)
bindings)))))))
((atom pat)
(mv (cons (equal-x-constant x (list 'quote pat)) tests)
bindings))
((and (eq (car pat) 'quote)
(consp (cdr pat))
(null (cddr pat)))
(mv (cons (equal-x-constant x pat) tests)
bindings))
(t (mv-let (tests1 bindings1)
(match-tests-and-bindings (list 'car x) (car pat)
(cons (list 'consp x) tests)
bindings)
(match-tests-and-bindings (list 'cdr x) (cdr pat)
tests1 bindings1)))))
(defun match-clause (x pat forms)
(declare (xargs :guard t))
(mv-let (tests bindings)
(match-tests-and-bindings x pat nil nil)
(list (if (null tests)
t
(cons 'and (reverse tests)))
(cons 'let (cons (reverse bindings) forms)))))
(defun match-clause-list (x clauses)
(declare (xargs :guard (alistp clauses)))
(cond ((consp clauses)
(if (eq (caar clauses) '&)
(list (match-clause x (caar clauses) (cdar clauses)))
(cons (match-clause x (caar clauses) (cdar clauses))
(match-clause-list x (cdr clauses)))))
(t '((t nil)))))
(defmacro case-match (&rest args)
(declare (xargs :guard (and (consp args)
(symbolp (car args))
(alistp (cdr args))
(null (cdr (member-equal (assoc-eq '& (cdr args))
(cdr args)))))))
(cons 'cond (match-clause-list (car args) (cdr args))))
; Local stobj support
(defun parse-with-local-stobj (x)
; x is a with-local-stobj form. We return (mv erp stobj-name mv-let-form
; creator-name).
(case-match x
((st
('mv-let . mv-let-body))
(cond ((symbolp st)
(mv nil st (cons 'mv-let mv-let-body)
(defstobj-fnname st :creator :top nil)))
(t (mv t nil nil nil))))
((st
('mv-let . mv-let-body)
creator)
(mv nil st (cons 'mv-let mv-let-body) creator))
(& (mv t nil nil nil))))
#-acl2-loop-only
(defun-one-output mv-let-for-with-local-stobj (mv-let-form st creator flet-fns
w program-p)
; If w is not nil, then it is the current ACL2 world and we are to oneify the
; appropriate subforms with the indicated program-p argument. If w is nil,
; then program-p is irrelevant.
; It was tempting to have an acl2-loop-only version of the body below as well,
; which would omit the binding of the live var. But if someone were to
; verify-termination of this function, we could presumably prove nil using the
; discrepancy between the two versions. So we take the attitude that
; with-local-stobj is a special form, like let, that is not defined.
; In the case that st is STATE, this form does not take responsibility for
; restoring state, for example by restoring values of state global variables
; and by closing channels that may have been created during evaluation of the
; producer form. A with-local-state form thus needs to take responsibility for
; restoring state; see for example the definition of channel-to-string.
(let ((producer (caddr mv-let-form))
(rest (cdddr mv-let-form)))
`(mv-let ,(cadr mv-let-form)
(let* (,@(and (not (eq st 'state))
`((,st (,creator))))
; We bind the live var so that user-stobj-alist-safe can catch misguided
; attempts to use functions like trans-eval in inappropriate contexts.
,@(cond ((eq st 'state)
'((*inside-with-local-state* t)
(*wormholep*
; We are in a local state, so it is irrelevant whether or not we are in a
; wormhole, since (conceptually at least) the local state will be thrown away
; after making changes to it.
nil)
(*file-clock* *file-clock*)
(*t-stack* *t-stack*)
(*t-stack-length* *t-stack-length*)
(*32-bit-integer-stack* *32-bit-integer-stack*)
(*32-bit-integer-stack-length*
*32-bit-integer-stack-length*)))
(t `((,(the-live-var st) ,st)))))
,(let ((p (if w
(oneify producer flet-fns w program-p)
producer)))
(if (eq st 'state)
; We should lock this computation when #+acl2-par, even though special
; variables that are let-bound (including those bound above) are thread-local.
`(if (f-get-global 'parallel-execution-enabled
*the-live-state*)
; Parallelism wart: this isn't really the right check for ACL2(p), because
; we've effectively disallowed the use of with-local-state, even when we're not
; executing in parallel! This bothers Rager, because he wants to use
; with-local-state in code that isn't executing in parallel (in his
; dissertation's supporting evidence, for reading in files that contain
; performance results). Instead, we should be calling
; warn-about-parallelism-hazard (similar to what we do in the definition of
; state-global-let*).
(er hard! 'with-local-state
"The use of with-local-state (or, ~
with-local-stobj where STATE is the stobj) is ~
disallowed with parallel execution enabled. ~
To disable parallel execution, see :DOC ~
set-parallel-execution.")
,p)
p)))
(declare (ignore ,st))
,@(if w
(if (cdr rest) ; rest is ((declare (ignore ...)) body)
(list (car rest)
(oneify (cadr rest) flet-fns w program-p))
(list (oneify (car rest) flet-fns w program-p)))
rest))))
#-acl2-loop-only ; see the comment in mv-let-for-with-local-stobj
(defmacro with-local-stobj (&rest args)
; Below are some tests of local stobjs.
; (defstobj foo bar xxx)
;
; (thm (equal (create-foo) '(nil nil))) ; succeeds
;
; (defun up1 (x foo)
; (declare (xargs :stobjs foo))
; (update-bar x foo))
;
; (bar foo) ; nil
;
; (up1 3 foo) ; <foo>
;
; (bar foo) ; 3
;
; (defun test (x) ; should fail; must use with-local-stobj explicitly
; (mv-let (a b foo)
; (let ((foo (create-foo)))
; (let ((foo (up1 (1+ x) foo)))
; (mv (bar foo) (xxx foo) foo)))
; (declare (ignore foo))
; (mv a b x)))
;
; (defun test (x)
; (declare (xargs :guard (acl2-numberp x) :verify-guards nil))
; (with-local-stobj
; foo
; (mv-let (a b foo)
; (let ((foo (up1 (1+ x) foo)))
; (mv (bar foo) (xxx foo) foo))
; (mv a b x))))
;
; (test 17) ; (18 NIL 17)
;
; (bar foo) ; 3
;
; (thm (equal (test x) (list (1+ x) nil x))) ; succeeds
;
; (thm (equal (test x) (list (1+ x) nil x)) ; succeeds
; :hints (("Goal"
; :in-theory
; (enable
; (:executable-counterpart create-foo)))))
;
; (thm (equal (test x) (list (1+ x) nil x)) ; fails, creating (NOT (NTH 1 (HIDE (CREATE-FOO))))
; :hints (("Goal"
; :in-theory
; (set-difference-theories
; (enable
; (:executable-counterpart create-foo))
; '(create-foo)))))
;
; (verify-guards test)
;
; (test 17) ; (18 nil 17)
;
; (bar foo) ; 3
;
; (defun test2 (x)
; (with-local-stobj
; foo
; (mv-let (a foo)
; (let ((foo (up1 (1+ x) foo))) (mv (bar foo) foo))
; (mv a x))))
;
; (test2 12) ; (13 12)
;
; (bar foo) ; 3
;
; (thm (equal (test x) (mv-let (x y) (test2 x) (mv x nil y)))) ; succeeds
;
; (create-foo) ; should get graceful error
;
; (defun test3 (x) ; Should be OK.
; (with-local-stobj
; foo
; (mv-let (a foo)
; (let ((foo (up1 (1+ x) foo))) (mv (bar foo) foo))
; a)))
;
; (test3 11) ; 12
;
; (bar foo) ; 3
;
; (defun test4 (x foo) ; Should be OK.
; (declare (xargs :stobjs foo
; :verify-guards nil))
; (let* ((x+1
; (with-local-stobj
; foo
; (mv-let (a foo)
; (let ((foo (up1 (1+ x) foo))) (mv (bar foo) foo))
; a)))
; (foo (up1 92 foo)))
; (mv x+1 foo)))
;
; (test4 19 foo) ; (20 <foo>)
;
; (bar foo) ; 92
;
; (defun test5 (x foo) ; Should be OK.
; (declare (xargs :stobjs foo
; :verify-guards nil))
; (let* ((foo (up1 23 foo))
; (x+1
; (with-local-stobj
; foo
; (mv-let (a foo)
; (let ((foo (up1 (1+ x) foo))) (mv (bar foo) foo))
; a))))
; (mv x+1 foo)))
;
; (test5 35 foo) ; (36 <foo>)
;
; (bar foo) ; 23
;
; (with-local-stobj ; should get macroexpansion error or the equivalent
; foo
; (mv foo 3))
;
; (defun trans-eval-test (x foo state) ; this part is ok
; (declare (xargs :stobjs (foo state)
; :mode :program))
; (mv-let (erp val state)
; (trans-eval '(update-bar (cons 3 (bar foo)) foo) 'top state t)
; (declare (ignore erp val))
; (mv x foo state)))
;
; (with-local-stobj ; should fail; cannot use with-local-stobj in top level loop
; foo
; (mv-let (x foo state)
; (trans-eval-test 3 foo state t)
; (mv x state)))
;
; (pprogn
; (with-local-stobj ; should fail with create-foo error
; foo
; (mv-let (x foo state)
; (trans-eval-test 3 foo state t)
; (declare (ignore x))
; state))
; (mv 3 state))
;
; (defun test6 (a state)
; (declare (xargs :mode :program :stobjs state))
; (with-local-stobj
; foo
; (mv-let (x foo state)
; (trans-eval-test a foo state t)
; (mv x state))))
;
; (test6 100 state) ; should get trans-eval error: user-stobj-alist mismatch
;
; (bar foo) ; 23, still -- trans-eval did not affect global state
; Below are some more tests, contributed by Rob Sumners.
; (defstobj foo foo-fld)
; (defstobj bar bar-fld)
;
; (defun test-wls1 (x)
; (with-local-stobj
; foo
; (mv-let (result foo)
; (let ((foo (update-foo-fld 2 foo)))
; (mv (with-local-stobj
; bar
; (mv-let (result bar)
; (let ((bar (update-bar-fld 3 bar)))
; (mv x bar))
; result))
; foo))
; result)))
;
; (test-wls1 129) ; 129
;
; :comp t
;
; (test-wls1 '(adjka 202)) ; '(ADJKA 202)
;
; (thm (equal (test-wls1 x) x))
;
; (defun test-wls2 (x)
; (with-local-stobj
; foo
; (mv-let (result foo)
; (let ((foo (update-foo-fld 2 foo)))
; (mv (with-local-stobj
; foo
; (mv-let (result foo)
; (let ((foo (update-foo-fld 3 foo)))
; (mv x foo))
; result))
; foo))
; result)))
;
; (test-wls2 129) ; 129
;
; :comp t
;
; (test-wls2 '(adjka 202)) ; (ADJKA 202)
;
; (thm (equal (test-wls2 x) x))
;
; (defun test-wls3 (x)
; (if (atom x) x
; (with-local-stobj
; foo
; (mv-let (result foo)
; (mv (cons (car x)
; (test-wls3 (cdr x)))
; foo)
; (let ((x result))
; (if (atom x) x (cons (car x) (cdr x))))))))
;
; (test-wls3 129) ; 129
;
; :comp t
;
; (test-wls3 '(adjka 202)) ; (ADJKA 202)
;
; (thm (equal (test-wls3 x) x))
(mv-let (erp st mv-let-form creator)
(parse-with-local-stobj args)
(if (or erp
(not (and (true-listp mv-let-form)
(<= 3 (length mv-let-form)))))
(er hard 'with-local-stobj
"Macroexpansion of a with-local-stobj call caused an error. ~
See :DOC with-local-stobj.")
(mv-let-for-with-local-stobj mv-let-form st creator nil nil nil))))
; The following definitions were moved here from other-events.lisp so that it
; is included in the toothbrush.
(defun parse-version (version)
; Version is an ACL2 version string, as in state global 'acl2-version. We
; return (mv major minor incrl rest), where either major is nil, indicating an
; ill-formed version; or else major, minor, and incrl are natural numbers
; indicating the major, minor, and incrl version, and rest is the part of the
; string starting with #\(, if any. For example,
; (parse-version "ACL2 Version 2.10") is (mv 2 10 0 "") and
; (parse-version "ACL2 Version 2.10.1(r)") is (mv 2 10 1 "(r)").
(declare (xargs :guard (stringp version)))
(let* ((root "ACL2 Version")
(pos0 (if (and (stringp version)
(<= 13 (length version))
(equal (subseq version 0 12) root)
(or (eql (char version 12) #\Space)
(eql (char version 12) #\_)))
13
nil))
(pos-lparen (position #\( version))
(end0 (or pos-lparen
(length version)))
(rest (subseq version end0 (length version)))
(from-pos0 (and pos0 (subseq version pos0 end0)))
(pos1-from-pos0 (and pos0 (position #\. from-pos0)))
(pos1 (and pos1-from-pos0 (+ pos0 pos1-from-pos0)))
(major (and pos1 (decimal-string-to-number
(subseq version pos0 pos1)
(- pos1 pos0) 0)))
(from-pos1 (and pos1 (subseq version (1+ pos1) end0)))
(pos2-from-pos1 (and pos1 (position #\. from-pos1)))
(pos2 (if pos2-from-pos1
(+ (1+ pos1) pos2-from-pos1)
(and pos1 end0)))
(minor (and pos2 (decimal-string-to-number
(subseq version (1+ pos1) pos2)
(1- (- pos2 pos1)) 0)))
(incrl (if (and pos2 (< pos2 end0))
(decimal-string-to-number
(subseq version (1+ pos2) end0)
(1- (- end0 pos2))
0)
0)))
(mv major minor incrl rest)))
#-acl2-loop-only
(defun-one-output latest-release-note-string ()
(mv-let (major minor incrl rest)
(parse-version (f-get-global 'acl2-version *the-live-state*))
(declare (ignore rest))
(if (zerop incrl)
(format nil "note-~s-~s" major minor)
(format nil "note-~s-~s-~s" major minor incrl))))
(defun pcd2 (n channel state)
(declare (xargs :guard (integerp n)))
(cond ((< n 10)
(pprogn (princ$ "0" channel state)
(princ$ n channel state)))
(t (princ$ n channel state))))
(defun power-rep (n b)
(if (< n b)
(list n)
(cons (rem n b)
(power-rep (floor n b) b))))
(defun decode-idate (n)
(let ((tuple (power-rep n 100)))
(cond
((< (len tuple) 6)
(er hard 'decode-idate
"Idates are supposed to decode to a list of at least length six ~
but ~x0 decoded to ~x1."
n tuple))
((equal (len tuple) 6) tuple)
(t
; In this case, tuple is (secs mins hrs day month yr1 yr2 ...) where 0
; <= yri < 100 and (yr1 yr2 ...) represents a big number, yr, in base
; 100. Yr is the number of years since 1900.
(let ((secs (nth 0 tuple))
(mins (nth 1 tuple))
(hrs (nth 2 tuple))
(day (nth 3 tuple))
(mo (nth 4 tuple))
(yr (power-eval (cdr (cddddr tuple)) 100)))
(list secs mins hrs day mo yr))))))
(defun print-idate (n channel state)
(let* ((x (decode-idate n))
(sec (car x))
(minimum (cadr x))
(hrs (caddr x))
(day (cadddr x))
(mo (car (cddddr x)))
(yr (cadr (cddddr x)))) ; yr = years since 1900. It is possible
; that yr > 99!
(pprogn
(princ$ (nth (1- mo)
'(|January| |February| |March| |April| |May|
|June| |July| |August| |September|
|October| |November| |December|))
channel state)
(princ$ #\Space channel state)
(princ$ day channel state)
(princ$ "," channel state)
(princ$ #\Space channel state)
(princ$ (+ 1900 yr) channel state)
(princ$ " " channel state)
(pcd2 hrs channel state)
(princ$ ":" channel state)
(pcd2 minimum channel state)
(princ$ ":" channel state)
(pcd2 sec channel state)
state)))
; This definition was originally in acl2-init.lisp, but cmulisp warned that
; *open-output-channel-key*, print-idate, and idate were undefined.
#-acl2-loop-only
(defun saved-build-date-string ()
(with-output-to-string
(str)
(setf (get 'tmp-channel *open-output-channel-key*)
str)
(print-idate (idate)
'tmp-channel
*the-live-state*)
(remprop 'tmp-channel *open-output-channel-key*)
str))
; Quitting
(defun good-bye-fn (status)
(declare (xargs :mode :logic :guard t))
#-acl2-loop-only
(exit-lisp (ifix status))
status)
(defmacro good-bye (&optional (status '0))
`(good-bye-fn ,status))
(defmacro exit (&optional (status '0))
`(good-bye-fn ,status))
(defmacro quit (&optional (status '0))
`(good-bye-fn ,status))
; Saving an Executable Image
#-acl2-loop-only
(defparameter *initial-cbd* nil)
#-acl2-loop-only
(defvar *return-from-lp* nil)
#-acl2-loop-only
(defvar *lp-init-forms* nil)
(defun save-exec-fn (exec-filename extra-startup-string host-lisp-args
toplevel-args inert-args return-from-lp
init-forms)
#-acl2-loop-only
(progn
(when (not (our-probe-file (directory-namestring exec-filename)))
; Without this check, CCL will create a directory for us; yet SBCL will not.
; We prefer consistent behavior across all Lisps. Here we choose to require
; the directory to exist already, to prevent users from creating directories
; they don't want by mistake.
(error "~s is unable to save to file ~s, because its directory does not ~
exist."
'save-exec exec-filename))
; Parallelism blemish: it may be a good idea to reset the parallelism variables
; in all #+acl2-par compilations before saving the image.
(when (and init-forms return-from-lp)
; For each of return-from-lp and init-forms, a non-nil value takes us through a
; different branch of LP. Rather than support the use of both, we cause an
; error.
(er hard 'save-exec
"The use of non-nil values for both :init-forms and :return-from-lp ~
is not supported for save-exec. Consider using only :init-forms, ~
with (value :q) as the final form."))
(setq *return-from-lp* return-from-lp)
(setq *lp-init-forms* init-forms)
#-sbcl (when toplevel-args
(er hard 'save-exec
"Keyword argument :toplevel-args is only allowed when the ~
host Lisp is SBCL."))
(if (not (eql *ld-level* 0))
(er hard 'save-exec
"Please type :q to exit the ACL2 read-eval-print loop and then try ~
again."))
(if (equal extra-startup-string "")
(er hard 'save-exec
"The extra-startup-string argument of save-exec must be ~x0 or ~
else a non-empty string."
nil)
(setq *saved-string*
(format
nil
"~a~%MODIFICATION NOTICE:~%~%~a~%"
*saved-string*
(cond ((null extra-startup-string)
"This ACL2 executable was created by saving a session.")
(t extra-startup-string)))))
#-(or gcl cmu sbcl allegro clisp ccl lispworks)
(er hard 'save-exec
"Sorry, but save-exec is not implemented for this Common Lisp.")
; The forms just below, before the call of save-exec-raw, are there so that the
; initial (lp) will set the :cbd correctly.
(f-put-global 'connected-book-directory nil *the-live-state*)
(setq *initial-cbd* nil)
(setq *startup-package-name* (package-name *package*))
(setq *saved-build-date-lst*
; By using setq here for *saved-build-date* instead of a let-binding for
; save-exec-raw, it happens that saving more than once in the same session (for
; Lisps that allow this, such as Allegro CL but not GCL) would result in extra
; "; then ..." strings. But that seems a minor problem, and avoids having to
; think about the effect of having a let-binding in force above a save of an
; image.
(cons (saved-build-date-string)
*saved-build-date-lst*))
(save-exec-raw exec-filename
host-lisp-args
#+sbcl toplevel-args
inert-args))
#+acl2-loop-only
(declare (ignore exec-filename extra-startup-string host-lisp-args
toplevel-args inert-args return-from-lp init-forms))
nil ; Won't get to here in GCL and perhaps other lisps
)
(defmacro save-exec (exec-filename extra-startup-string
&key
host-lisp-args toplevel-args inert-args
return-from-lp init-forms)
`(save-exec-fn ,exec-filename ,extra-startup-string ,host-lisp-args
,toplevel-args ,inert-args ,return-from-lp ,init-forms))
(defconst *slash-dot-dot*
(concatenate 'string *directory-separator-string* ".."))
(defconst *length-slash-dot-dot*
(length *slash-dot-dot*))
(defun find-dot-dot (full-pathname i)
; Termination and even guard-verification are proved in community book
; books/system/extend-pathname.lisp.
(declare (xargs :guard (and (stringp full-pathname)
(natp i)
(<= i (length full-pathname)))
:measure (nfix (- (length full-pathname) i))))
(let ((pos (search *slash-dot-dot* full-pathname :start2 i)))
(and pos
(let ((pos+3 (+ pos *length-slash-dot-dot*)))
(cond
((or (eql pos+3 (length full-pathname))
(eql (char full-pathname pos+3) *directory-separator*))
pos)
((mbt (<= pos+3 (length full-pathname)))
(find-dot-dot full-pathname pos+3)))))))
(mutual-recursion
; The :measure declarations in this mutual-recursion nest are in support of
; community book books/system/extend-pathname.lisp. The :guard declarations
; below are intended to be correct, but we won't really know until guards have
; been verified; it seems quite possible that the guards will need to be
; adjusted.
(defun cancel-dot-dots (full-pathname)
(declare (xargs :guard (stringp full-pathname)
:measure (* 2 (length full-pathname))))
(let ((p (find-dot-dot full-pathname 0)))
(cond ((and p
(mbt ; termination help
(and (natp p)
(stringp full-pathname)
(< p (length full-pathname)))))
(let ((new-p
(merge-using-dot-dot
(subseq full-pathname 0 p)
(subseq full-pathname (1+ p) (length full-pathname)))))
(and (mbt ; termination help
(and (stringp new-p)
(< (length new-p) (length full-pathname))))
(cancel-dot-dots new-p))))
(t full-pathname))))
(defun get-parent-directory (p0)
; P is an absolute pathname for a directory, not a file, where p does not end
; in "/". We return an absolute pathname for its parent directory, not
; including the trailing "/". See also get-directory-of-file, which is a
; related function for files.
(declare (xargs :guard (stringp p0)
:measure (1+ (* 2 (length p0)))))
(let* ((p (and (mbt (stringp p0))
(cancel-dot-dots p0)))
(posn (search *directory-separator-string* p :from-end t)))
(cond
(posn (subseq p 0 posn))
(t (er hard? 'get-parent-directory
"Implementation error! Unable to get parent directory for ~
directory ~x0."
p0)))))
(defun merge-using-dot-dot (p s)
; P is the absolute pathname of a directory without the final "/". S is a
; pathname (for a file or a directory) that may start with any number of
; sequences "../" and "./". We want to "cancel" the leading "../"s in s
; against directories at the end of p, and eliminate leading "./"s from s
; (including leading "." if that is all of s). The result should syntactically
; represent a directory (end with a "/" or "." or be "") if and only if s
; syntactically represents a directory.
; This code is intended to be simple, not necessarily efficient.
(declare (xargs :guard (and (stringp p)
(stringp s)
(not (equal s "")))
:measure (+ 1 (* 2 (+ (length p) (length s))))))
(cond
((not (mbt ; termination help
(and (stringp p)
(stringp s)
(not (equal s "")))))
nil)
((equal p "") s)
((equal s "..")
(concatenate 'string
(get-parent-directory p)
*directory-separator-string*))
((equal s ".")
(concatenate 'string
p
*directory-separator-string*))
((and (>= (length s) 3)
(eql (char s 0) #\.)
(eql (char s 1) #\.)
(eql (char s 2) #\/)
(mbt (<= (length (get-parent-directory p)) ; termination help
(length p))))
(merge-using-dot-dot (get-parent-directory p)
(subseq s 3 (length s))))
((and (>= (length s) 2)
(eql (char s 0) #\.)
(eql (char s 1) #\/))
(merge-using-dot-dot p (subseq s 2 (length s))))
(t
(concatenate 'string p *directory-separator-string* s))))
)
|