This file is indexed.

/usr/lib/python2.7/dist-packages/numpy/core/shape_base.py is in python-numpy 1:1.13.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
from __future__ import division, absolute_import, print_function

__all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'block', 'hstack',
           'stack', 'vstack']


from . import numeric as _nx
from .numeric import array, asanyarray, newaxis
from .multiarray import normalize_axis_index

def atleast_1d(*arys):
    """
    Convert inputs to arrays with at least one dimension.

    Scalar inputs are converted to 1-dimensional arrays, whilst
    higher-dimensional inputs are preserved.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more input arrays.

    Returns
    -------
    ret : ndarray
        An array, or list of arrays, each with ``a.ndim >= 1``.
        Copies are made only if necessary.

    See Also
    --------
    atleast_2d, atleast_3d

    Examples
    --------
    >>> np.atleast_1d(1.0)
    array([ 1.])

    >>> x = np.arange(9.0).reshape(3,3)
    >>> np.atleast_1d(x)
    array([[ 0.,  1.,  2.],
           [ 3.,  4.,  5.],
           [ 6.,  7.,  8.]])
    >>> np.atleast_1d(x) is x
    True

    >>> np.atleast_1d(1, [3, 4])
    [array([1]), array([3, 4])]

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if ary.ndim == 0:
            result = ary.reshape(1)
        else:
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res

def atleast_2d(*arys):
    """
    View inputs as arrays with at least two dimensions.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more array-like sequences.  Non-array inputs are converted
        to arrays.  Arrays that already have two or more dimensions are
        preserved.

    Returns
    -------
    res, res2, ... : ndarray
        An array, or list of arrays, each with ``a.ndim >= 2``.
        Copies are avoided where possible, and views with two or more
        dimensions are returned.

    See Also
    --------
    atleast_1d, atleast_3d

    Examples
    --------
    >>> np.atleast_2d(3.0)
    array([[ 3.]])

    >>> x = np.arange(3.0)
    >>> np.atleast_2d(x)
    array([[ 0.,  1.,  2.]])
    >>> np.atleast_2d(x).base is x
    True

    >>> np.atleast_2d(1, [1, 2], [[1, 2]])
    [array([[1]]), array([[1, 2]]), array([[1, 2]])]

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if ary.ndim == 0:
            result = ary.reshape(1, 1)
        elif ary.ndim == 1:
            result = ary[newaxis,:]
        else:
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res

def atleast_3d(*arys):
    """
    View inputs as arrays with at least three dimensions.

    Parameters
    ----------
    arys1, arys2, ... : array_like
        One or more array-like sequences.  Non-array inputs are converted to
        arrays.  Arrays that already have three or more dimensions are
        preserved.

    Returns
    -------
    res1, res2, ... : ndarray
        An array, or list of arrays, each with ``a.ndim >= 3``.  Copies are
        avoided where possible, and views with three or more dimensions are
        returned.  For example, a 1-D array of shape ``(N,)`` becomes a view
        of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a
        view of shape ``(M, N, 1)``.

    See Also
    --------
    atleast_1d, atleast_2d

    Examples
    --------
    >>> np.atleast_3d(3.0)
    array([[[ 3.]]])

    >>> x = np.arange(3.0)
    >>> np.atleast_3d(x).shape
    (1, 3, 1)

    >>> x = np.arange(12.0).reshape(4,3)
    >>> np.atleast_3d(x).shape
    (4, 3, 1)
    >>> np.atleast_3d(x).base is x.base  # x is a reshape, so not base itself
    True

    >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
    ...     print(arr, arr.shape)
    ...
    [[[1]
      [2]]] (1, 2, 1)
    [[[1]
      [2]]] (1, 2, 1)
    [[[1 2]]] (1, 1, 2)

    """
    res = []
    for ary in arys:
        ary = asanyarray(ary)
        if ary.ndim == 0:
            result = ary.reshape(1, 1, 1)
        elif ary.ndim == 1:
            result = ary[newaxis,:, newaxis]
        elif ary.ndim == 2:
            result = ary[:,:, newaxis]
        else:
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res


def vstack(tup):
    """
    Stack arrays in sequence vertically (row wise).

    Take a sequence of arrays and stack them vertically to make a single
    array. Rebuild arrays divided by `vsplit`.

    This function continues to be supported for backward compatibility, but
    you should prefer ``np.concatenate`` or ``np.stack``. The ``np.stack``
    function was added in NumPy 1.10.

    Parameters
    ----------
    tup : sequence of ndarrays
        Tuple containing arrays to be stacked. The arrays must have the same
        shape along all but the first axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    hstack : Stack arrays in sequence horizontally (column wise).
    dstack : Stack arrays in sequence depth wise (along third dimension).
    concatenate : Join a sequence of arrays along an existing axis.
    vsplit : Split array into a list of multiple sub-arrays vertically.
    block : Assemble arrays from blocks.

    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=0)`` if `tup` contains arrays that
    are at least 2-dimensional.

    Examples
    --------
    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.vstack((a,b))
    array([[1, 2, 3],
           [2, 3, 4]])

    >>> a = np.array([[1], [2], [3]])
    >>> b = np.array([[2], [3], [4]])
    >>> np.vstack((a,b))
    array([[1],
           [2],
           [3],
           [2],
           [3],
           [4]])

    """
    return _nx.concatenate([atleast_2d(_m) for _m in tup], 0)

def hstack(tup):
    """
    Stack arrays in sequence horizontally (column wise).

    Take a sequence of arrays and stack them horizontally to make
    a single array. Rebuild arrays divided by `hsplit`.

    This function continues to be supported for backward compatibility, but
    you should prefer ``np.concatenate`` or ``np.stack``. The ``np.stack``
    function was added in NumPy 1.10.

    Parameters
    ----------
    tup : sequence of ndarrays
        All arrays must have the same shape along all but the second axis.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays.

    See Also
    --------
    stack : Join a sequence of arrays along a new axis.
    vstack : Stack arrays in sequence vertically (row wise).
    dstack : Stack arrays in sequence depth wise (along third axis).
    concatenate : Join a sequence of arrays along an existing axis.
    hsplit : Split array along second axis.
    block : Assemble arrays from blocks.

    Notes
    -----
    Equivalent to ``np.concatenate(tup, axis=1)`` if `tup` contains arrays that
    are at least 2-dimensional.

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.hstack((a,b))
    array([1, 2, 3, 2, 3, 4])
    >>> a = np.array([[1],[2],[3]])
    >>> b = np.array([[2],[3],[4]])
    >>> np.hstack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrs = [atleast_1d(_m) for _m in tup]
    # As a special case, dimension 0 of 1-dimensional arrays is "horizontal"
    if arrs and arrs[0].ndim == 1:
        return _nx.concatenate(arrs, 0)
    else:
        return _nx.concatenate(arrs, 1)


def stack(arrays, axis=0):
    """
    Join a sequence of arrays along a new axis.

    The `axis` parameter specifies the index of the new axis in the dimensions
    of the result. For example, if ``axis=0`` it will be the first dimension
    and if ``axis=-1`` it will be the last dimension.

    .. versionadded:: 1.10.0

    Parameters
    ----------
    arrays : sequence of array_like
        Each array must have the same shape.
    axis : int, optional
        The axis in the result array along which the input arrays are stacked.

    Returns
    -------
    stacked : ndarray
        The stacked array has one more dimension than the input arrays.

    See Also
    --------
    concatenate : Join a sequence of arrays along an existing axis.
    split : Split array into a list of multiple sub-arrays of equal size.
    block : Assemble arrays from blocks.

    Examples
    --------
    >>> arrays = [np.random.randn(3, 4) for _ in range(10)]
    >>> np.stack(arrays, axis=0).shape
    (10, 3, 4)

    >>> np.stack(arrays, axis=1).shape
    (3, 10, 4)

    >>> np.stack(arrays, axis=2).shape
    (3, 4, 10)

    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.stack((a, b))
    array([[1, 2, 3],
           [2, 3, 4]])

    >>> np.stack((a, b), axis=-1)
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = [asanyarray(arr) for arr in arrays]
    if not arrays:
        raise ValueError('need at least one array to stack')

    shapes = set(arr.shape for arr in arrays)
    if len(shapes) != 1:
        raise ValueError('all input arrays must have the same shape')

    result_ndim = arrays[0].ndim + 1
    axis = normalize_axis_index(axis, result_ndim)

    sl = (slice(None),) * axis + (_nx.newaxis,)
    expanded_arrays = [arr[sl] for arr in arrays]
    return _nx.concatenate(expanded_arrays, axis=axis)


class _Recurser(object):
    """
    Utility class for recursing over nested iterables
    """
    def __init__(self, recurse_if):
        self.recurse_if = recurse_if

    def map_reduce(self, x, f_map=lambda x, **kwargs: x,
                            f_reduce=lambda x, **kwargs: x,
                            f_kwargs=lambda **kwargs: kwargs,
                            **kwargs):
        """
        Iterate over the nested list, applying:
        * ``f_map`` (T -> U) to items
        * ``f_reduce`` (Iterable[U] -> U) to mapped items

        For instance, ``map_reduce([[1, 2], 3, 4])`` is::

            f_reduce([
              f_reduce([
                f_map(1),
                f_map(2)
              ]),
              f_map(3),
              f_map(4)
            ]])


        State can be passed down through the calls with `f_kwargs`,
        to iterables of mapped items. When kwargs are passed, as in
        ``map_reduce([[1, 2], 3, 4], **kw)``, this becomes::

            kw1 = f_kwargs(**kw)
            kw2 = f_kwargs(**kw1)
            f_reduce([
              f_reduce([
                f_map(1), **kw2)
                f_map(2,  **kw2)
              ],      **kw1),
              f_map(3, **kw1),
              f_map(4, **kw1)
            ]],     **kw)
        """
        def f(x, **kwargs):
            if not self.recurse_if(x):
                return f_map(x, **kwargs)
            else:
                next_kwargs = f_kwargs(**kwargs)
                return f_reduce((
                    f(xi, **next_kwargs)
                    for xi in x
                ), **kwargs)
        return f(x, **kwargs)

    def walk(self, x, index=()):
        """
        Iterate over x, yielding (index, value, entering), where

        * ``index``: a tuple of indices up to this point
        * ``value``: equal to ``x[index[0]][...][index[-1]]``. On the first iteration, is
                     ``x`` itself
        * ``entering``: bool. The result of ``recurse_if(value)``
        """
        do_recurse = self.recurse_if(x)
        yield index, x, do_recurse

        if not do_recurse:
            return
        for i, xi in enumerate(x):
            # yield from ...
            for v in self.walk(xi, index + (i,)):
                yield v


def block(arrays):
    """
    Assemble an nd-array from nested lists of blocks.

    Blocks in the innermost lists are concatenated (see `concatenate`) along
    the last dimension (-1), then these are concatenated along the
    second-last dimension (-2), and so on until the outermost list is reached.

    Blocks can be of any dimension, but will not be broadcasted using the normal
    rules. Instead, leading axes of size 1 are inserted, to make ``block.ndim``
    the same for all blocks. This is primarily useful for working with scalars,
    and means that code like ``np.block([v, 1])`` is valid, where
    ``v.ndim == 1``.

    When the nested list is two levels deep, this allows block matrices to be
    constructed from their components.

    .. versionadded:: 1.13.0

    Parameters
    ----------
    arrays : nested list of array_like or scalars (but not tuples)
        If passed a single ndarray or scalar (a nested list of depth 0), this
        is returned unmodified (and not copied).

        Elements shapes must match along the appropriate axes (without
        broadcasting), but leading 1s will be prepended to the shape as
        necessary to make the dimensions match.

    Returns
    -------
    block_array : ndarray
        The array assembled from the given blocks.

        The dimensionality of the output is equal to the greatest of:
        * the dimensionality of all the inputs
        * the depth to which the input list is nested

    Raises
    ------
    ValueError
        * If list depths are mismatched - for instance, ``[[a, b], c]`` is
          illegal, and should be spelt ``[[a, b], [c]]``
        * If lists are empty - for instance, ``[[a, b], []]``

    See Also
    --------
    concatenate : Join a sequence of arrays together.
    stack : Stack arrays in sequence along a new dimension.
    hstack : Stack arrays in sequence horizontally (column wise).
    vstack : Stack arrays in sequence vertically (row wise).
    dstack : Stack arrays in sequence depth wise (along third dimension).
    vsplit : Split array into a list of multiple sub-arrays vertically.

    Notes
    -----

    When called with only scalars, ``np.block`` is equivalent to an ndarray
    call. So ``np.block([[1, 2], [3, 4]])`` is equivalent to
    ``np.array([[1, 2], [3, 4]])``.

    This function does not enforce that the blocks lie on a fixed grid.
    ``np.block([[a, b], [c, d]])`` is not restricted to arrays of the form::

        AAAbb
        AAAbb
        cccDD

    But is also allowed to produce, for some ``a, b, c, d``::

        AAAbb
        AAAbb
        cDDDD

    Since concatenation happens along the last axis first, `block` is _not_
    capable of producing the following directly::

        AAAbb
        cccbb
        cccDD

    Matlab's "square bracket stacking", ``[A, B, ...; p, q, ...]``, is
    equivalent to ``np.block([[A, B, ...], [p, q, ...]])``.

    Examples
    --------
    The most common use of this function is to build a block matrix

    >>> A = np.eye(2) * 2
    >>> B = np.eye(3) * 3
    >>> np.block([
    ...     [A,               np.zeros((2, 3))],
    ...     [np.ones((3, 2)), B               ]
    ... ])
    array([[ 2.,  0.,  0.,  0.,  0.],
           [ 0.,  2.,  0.,  0.,  0.],
           [ 1.,  1.,  3.,  0.,  0.],
           [ 1.,  1.,  0.,  3.,  0.],
           [ 1.,  1.,  0.,  0.,  3.]])

    With a list of depth 1, `block` can be used as `hstack`

    >>> np.block([1, 2, 3])              # hstack([1, 2, 3])
    array([1, 2, 3])

    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.block([a, b, 10])             # hstack([a, b, 10])
    array([1, 2, 3, 2, 3, 4, 10])

    >>> A = np.ones((2, 2), int)
    >>> B = 2 * A
    >>> np.block([A, B])                 # hstack([A, B])
    array([[1, 1, 2, 2],
           [1, 1, 2, 2]])

    With a list of depth 2, `block` can be used in place of `vstack`:

    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.block([[a], [b]])             # vstack([a, b])
    array([[1, 2, 3],
           [2, 3, 4]])

    >>> A = np.ones((2, 2), int)
    >>> B = 2 * A
    >>> np.block([[A], [B]])             # vstack([A, B])
    array([[1, 1],
           [1, 1],
           [2, 2],
           [2, 2]])

    It can also be used in places of `atleast_1d` and `atleast_2d`

    >>> a = np.array(0)
    >>> b = np.array([1])
    >>> np.block([a])                    # atleast_1d(a)
    array([0])
    >>> np.block([b])                    # atleast_1d(b)
    array([1])

    >>> np.block([[a]])                  # atleast_2d(a)
    array([[0]])
    >>> np.block([[b]])                  # atleast_2d(b)
    array([[1]])


    """
    def atleast_nd(x, ndim):
        x = asanyarray(x)
        diff = max(ndim - x.ndim, 0)
        return x[(None,)*diff + (Ellipsis,)]

    def format_index(index):
        return 'arrays' + ''.join('[{}]'.format(i) for i in index)

    rec = _Recurser(recurse_if=lambda x: type(x) is list)

    # ensure that the lists are all matched in depth
    list_ndim = None
    any_empty = False
    for index, value, entering in rec.walk(arrays):
        if type(value) is tuple:
            # not strictly necessary, but saves us from:
            #  - more than one way to do things - no point treating tuples like
            #    lists
            #  - horribly confusing behaviour that results when tuples are
            #    treated like ndarray
            raise TypeError(
                '{} is a tuple. '
                'Only lists can be used to arrange blocks, and np.block does '
                'not allow implicit conversion from tuple to ndarray.'.format(
                    format_index(index)
                )
            )
        if not entering:
            curr_depth = len(index)
        elif len(value) == 0:
            curr_depth = len(index) + 1
            any_empty = True
        else:
            continue

        if list_ndim is not None and list_ndim != curr_depth:
            raise ValueError(
                "List depths are mismatched. First element was at depth {}, "
                "but there is an element at depth {} ({})".format(
                    list_ndim,
                    curr_depth,
                    format_index(index)
                )
            )
        list_ndim = curr_depth

    # do this here so we catch depth mismatches first
    if any_empty:
        raise ValueError('Lists cannot be empty')

    # convert all the arrays to ndarrays
    arrays = rec.map_reduce(arrays,
        f_map=asanyarray,
        f_reduce=list
    )

    # determine the maximum dimension of the elements
    elem_ndim = rec.map_reduce(arrays,
        f_map=lambda xi: xi.ndim,
        f_reduce=max
    )
    ndim = max(list_ndim, elem_ndim)

    # first axis to concatenate along
    first_axis = ndim - list_ndim

    # Make all the elements the same dimension
    arrays = rec.map_reduce(arrays,
        f_map=lambda xi: atleast_nd(xi, ndim),
        f_reduce=list
    )

    # concatenate innermost lists on the right, outermost on the left
    return rec.map_reduce(arrays,
        f_reduce=lambda xs, axis: _nx.concatenate(list(xs), axis=axis),
        f_kwargs=lambda axis: dict(axis=axis+1),
        axis=first_axis
    )