/usr/include/llvm-6.0/llvm/IR/CallSite.h is in llvm-6.0-dev 1:6.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 | //===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CallSite class, which is a handy wrapper for code that
// wants to treat Call and Invoke instructions in a generic way. When in non-
// mutation context (e.g. an analysis) ImmutableCallSite should be used.
// Finally, when some degree of customization is necessary between these two
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
//
// NOTE: These classes are supposed to have "value semantics". So they should be
// passed by value, not by reference; they should not be "new"ed or "delete"d.
// They are efficiently copyable, assignable and constructable, with cost
// equivalent to copying a pointer (notice that they have only a single data
// member). The internal representation carries a flag which indicates which of
// the two variants is enclosed. This allows for cheaper checks when various
// accessors of CallSite are employed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CALLSITE_H
#define LLVM_IR_CALLSITE_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstdint>
#include <iterator>
namespace llvm {
namespace Intrinsic {
enum ID : unsigned;
}
template <typename FunTy = const Function,
typename BBTy = const BasicBlock,
typename ValTy = const Value,
typename UserTy = const User,
typename UseTy = const Use,
typename InstrTy = const Instruction,
typename CallTy = const CallInst,
typename InvokeTy = const InvokeInst,
typename IterTy = User::const_op_iterator>
class CallSiteBase {
protected:
PointerIntPair<InstrTy*, 1, bool> I;
CallSiteBase() = default;
CallSiteBase(CallTy *CI) : I(CI, true) { assert(CI); }
CallSiteBase(InvokeTy *II) : I(II, false) { assert(II); }
explicit CallSiteBase(ValTy *II) { *this = get(II); }
private:
/// This static method is like a constructor. It will create an appropriate
/// call site for a Call or Invoke instruction, but it can also create a null
/// initialized CallSiteBase object for something which is NOT a call site.
static CallSiteBase get(ValTy *V) {
if (InstrTy *II = dyn_cast<InstrTy>(V)) {
if (II->getOpcode() == Instruction::Call)
return CallSiteBase(static_cast<CallTy*>(II));
else if (II->getOpcode() == Instruction::Invoke)
return CallSiteBase(static_cast<InvokeTy*>(II));
}
return CallSiteBase();
}
public:
/// Return true if a CallInst is enclosed. Note that !isCall() does not mean
/// an InvokeInst is enclosed. It may also signify a NULL instruction pointer.
bool isCall() const { return I.getInt(); }
/// Return true if a InvokeInst is enclosed.
bool isInvoke() const { return getInstruction() && !I.getInt(); }
InstrTy *getInstruction() const { return I.getPointer(); }
InstrTy *operator->() const { return I.getPointer(); }
explicit operator bool() const { return I.getPointer(); }
/// Get the basic block containing the call site.
BBTy* getParent() const { return getInstruction()->getParent(); }
/// Return the pointer to function that is being called.
ValTy *getCalledValue() const {
assert(getInstruction() && "Not a call or invoke instruction!");
return *getCallee();
}
/// Return the function being called if this is a direct call, otherwise
/// return null (if it's an indirect call).
FunTy *getCalledFunction() const {
return dyn_cast<FunTy>(getCalledValue());
}
/// Return true if the callsite is an indirect call.
bool isIndirectCall() const {
const Value *V = getCalledValue();
if (!V)
return false;
if (isa<FunTy>(V) || isa<Constant>(V))
return false;
if (const CallInst *CI = dyn_cast<CallInst>(getInstruction())) {
if (CI->isInlineAsm())
return false;
}
return true;
}
/// Set the callee to the specified value.
void setCalledFunction(Value *V) {
assert(getInstruction() && "Not a call or invoke instruction!");
*getCallee() = V;
}
/// Return the intrinsic ID of the intrinsic called by this CallSite,
/// or Intrinsic::not_intrinsic if the called function is not an
/// intrinsic, or if this CallSite is an indirect call.
Intrinsic::ID getIntrinsicID() const {
if (auto *F = getCalledFunction())
return F->getIntrinsicID();
// Don't use Intrinsic::not_intrinsic, as it will require pulling
// Intrinsics.h into every header that uses CallSite.
return static_cast<Intrinsic::ID>(0);
}
/// Determine whether the passed iterator points to the callee operand's Use.
bool isCallee(Value::const_user_iterator UI) const {
return isCallee(&UI.getUse());
}
/// Determine whether this Use is the callee operand's Use.
bool isCallee(const Use *U) const { return getCallee() == U; }
/// Determine whether the passed iterator points to an argument operand.
bool isArgOperand(Value::const_user_iterator UI) const {
return isArgOperand(&UI.getUse());
}
/// Determine whether the passed use points to an argument operand.
bool isArgOperand(const Use *U) const {
assert(getInstruction() == U->getUser());
return arg_begin() <= U && U < arg_end();
}
/// Determine whether the passed iterator points to a bundle operand.
bool isBundleOperand(Value::const_user_iterator UI) const {
return isBundleOperand(&UI.getUse());
}
/// Determine whether the passed use points to a bundle operand.
bool isBundleOperand(const Use *U) const {
assert(getInstruction() == U->getUser());
if (!hasOperandBundles())
return false;
unsigned OperandNo = U - (*this)->op_begin();
return getBundleOperandsStartIndex() <= OperandNo &&
OperandNo < getBundleOperandsEndIndex();
}
/// Determine whether the passed iterator points to a data operand.
bool isDataOperand(Value::const_user_iterator UI) const {
return isDataOperand(&UI.getUse());
}
/// Determine whether the passed use points to a data operand.
bool isDataOperand(const Use *U) const {
return data_operands_begin() <= U && U < data_operands_end();
}
ValTy *getArgument(unsigned ArgNo) const {
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
return *(arg_begin() + ArgNo);
}
void setArgument(unsigned ArgNo, Value* newVal) {
assert(getInstruction() && "Not a call or invoke instruction!");
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
getInstruction()->setOperand(ArgNo, newVal);
}
/// Given a value use iterator, returns the argument that corresponds to it.
/// Iterator must actually correspond to an argument.
unsigned getArgumentNo(Value::const_user_iterator I) const {
return getArgumentNo(&I.getUse());
}
/// Given a use for an argument, get the argument number that corresponds to
/// it.
unsigned getArgumentNo(const Use *U) const {
assert(getInstruction() && "Not a call or invoke instruction!");
assert(isArgOperand(U) && "Argument # out of range!");
return U - arg_begin();
}
/// The type of iterator to use when looping over actual arguments at this
/// call site.
using arg_iterator = IterTy;
iterator_range<IterTy> args() const {
return make_range(arg_begin(), arg_end());
}
bool arg_empty() const { return arg_end() == arg_begin(); }
unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
/// Given a value use iterator, return the data operand corresponding to it.
/// Iterator must actually correspond to a data operand.
unsigned getDataOperandNo(Value::const_user_iterator UI) const {
return getDataOperandNo(&UI.getUse());
}
/// Given a use for a data operand, get the data operand number that
/// corresponds to it.
unsigned getDataOperandNo(const Use *U) const {
assert(getInstruction() && "Not a call or invoke instruction!");
assert(isDataOperand(U) && "Data operand # out of range!");
return U - data_operands_begin();
}
/// Type of iterator to use when looping over data operands at this call site
/// (see below).
using data_operand_iterator = IterTy;
/// data_operands_begin/data_operands_end - Return iterators iterating over
/// the call / invoke argument list and bundle operands. For invokes, this is
/// the set of instruction operands except the invoke target and the two
/// successor blocks; and for calls this is the set of instruction operands
/// except the call target.
IterTy data_operands_begin() const {
assert(getInstruction() && "Not a call or invoke instruction!");
return (*this)->op_begin();
}
IterTy data_operands_end() const {
assert(getInstruction() && "Not a call or invoke instruction!");
return (*this)->op_end() - (isCall() ? 1 : 3);
}
iterator_range<IterTy> data_ops() const {
return make_range(data_operands_begin(), data_operands_end());
}
bool data_operands_empty() const {
return data_operands_end() == data_operands_begin();
}
unsigned data_operands_size() const {
return std::distance(data_operands_begin(), data_operands_end());
}
/// Return the type of the instruction that generated this call site.
Type *getType() const { return (*this)->getType(); }
/// Return the caller function for this call site.
FunTy *getCaller() const { return (*this)->getParent()->getParent(); }
/// Tests if this call site must be tail call optimized. Only a CallInst can
/// be tail call optimized.
bool isMustTailCall() const {
return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
}
/// Tests if this call site is marked as a tail call.
bool isTailCall() const {
return isCall() && cast<CallInst>(getInstruction())->isTailCall();
}
#define CALLSITE_DELEGATE_GETTER(METHOD) \
InstrTy *II = getInstruction(); \
return isCall() \
? cast<CallInst>(II)->METHOD \
: cast<InvokeInst>(II)->METHOD
#define CALLSITE_DELEGATE_SETTER(METHOD) \
InstrTy *II = getInstruction(); \
if (isCall()) \
cast<CallInst>(II)->METHOD; \
else \
cast<InvokeInst>(II)->METHOD
unsigned getNumArgOperands() const {
CALLSITE_DELEGATE_GETTER(getNumArgOperands());
}
ValTy *getArgOperand(unsigned i) const {
CALLSITE_DELEGATE_GETTER(getArgOperand(i));
}
ValTy *getReturnedArgOperand() const {
CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
}
bool isInlineAsm() const {
if (isCall())
return cast<CallInst>(getInstruction())->isInlineAsm();
return false;
}
/// Get the calling convention of the call.
CallingConv::ID getCallingConv() const {
CALLSITE_DELEGATE_GETTER(getCallingConv());
}
/// Set the calling convention of the call.
void setCallingConv(CallingConv::ID CC) {
CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
}
FunctionType *getFunctionType() const {
CALLSITE_DELEGATE_GETTER(getFunctionType());
}
void mutateFunctionType(FunctionType *Ty) const {
CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
}
/// Get the parameter attributes of the call.
AttributeList getAttributes() const {
CALLSITE_DELEGATE_GETTER(getAttributes());
}
/// Set the parameter attributes of the call.
void setAttributes(AttributeList PAL) {
CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
}
void addAttribute(unsigned i, Attribute::AttrKind Kind) {
CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
}
void addAttribute(unsigned i, Attribute Attr) {
CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
}
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind));
}
void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
}
void removeAttribute(unsigned i, StringRef Kind) {
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
}
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind));
}
/// Return true if this function has the given attribute.
bool hasFnAttr(Attribute::AttrKind Kind) const {
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
}
/// Return true if this function has the given attribute.
bool hasFnAttr(StringRef Kind) const {
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
}
/// Return true if this return value has the given attribute.
bool hasRetAttr(Attribute::AttrKind Kind) const {
CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind));
}
/// Return true if the call or the callee has the given attribute.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind));
}
Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
}
Attribute getAttribute(unsigned i, StringRef Kind) const {
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
}
/// Return true if the data operand at index \p i directly or indirectly has
/// the attribute \p A.
///
/// Normal call or invoke arguments have per operand attributes, as specified
/// in the attribute set attached to this instruction, while operand bundle
/// operands may have some attributes implied by the type of its containing
/// operand bundle.
bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
}
/// Extract the alignment of the return value.
unsigned getRetAlignment() const {
CALLSITE_DELEGATE_GETTER(getRetAlignment());
}
/// Extract the alignment for a call or parameter (0=unknown).
unsigned getParamAlignment(unsigned ArgNo) const {
CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo));
}
/// Extract the number of dereferenceable bytes for a call or parameter
/// (0=unknown).
uint64_t getDereferenceableBytes(unsigned i) const {
CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
}
/// Extract the number of dereferenceable_or_null bytes for a call or
/// parameter (0=unknown).
uint64_t getDereferenceableOrNullBytes(unsigned i) const {
CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
}
/// Determine if the return value is marked with NoAlias attribute.
bool returnDoesNotAlias() const {
CALLSITE_DELEGATE_GETTER(returnDoesNotAlias());
}
/// Return true if the call should not be treated as a call to a builtin.
bool isNoBuiltin() const {
CALLSITE_DELEGATE_GETTER(isNoBuiltin());
}
/// Return true if the call requires strict floating point semantics.
bool isStrictFP() const {
CALLSITE_DELEGATE_GETTER(isStrictFP());
}
/// Return true if the call should not be inlined.
bool isNoInline() const {
CALLSITE_DELEGATE_GETTER(isNoInline());
}
void setIsNoInline(bool Value = true) {
CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
}
/// Determine if the call does not access memory.
bool doesNotAccessMemory() const {
CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
}
void setDoesNotAccessMemory() {
CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
}
/// Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const {
CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
}
void setOnlyReadsMemory() {
CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
}
/// Determine if the call does not access or only writes memory.
bool doesNotReadMemory() const {
CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
}
void setDoesNotReadMemory() {
CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
}
/// Determine if the call can access memmory only using pointers based
/// on its arguments.
bool onlyAccessesArgMemory() const {
CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
}
void setOnlyAccessesArgMemory() {
CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
}
/// Determine if the function may only access memory that is
/// inaccessible from the IR.
bool onlyAccessesInaccessibleMemory() const {
CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemory());
}
void setOnlyAccessesInaccessibleMemory() {
CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemory());
}
/// Determine if the function may only access memory that is
/// either inaccessible from the IR or pointed to by its arguments.
bool onlyAccessesInaccessibleMemOrArgMem() const {
CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemOrArgMem());
}
void setOnlyAccessesInaccessibleMemOrArgMem() {
CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemOrArgMem());
}
/// Determine if the call cannot return.
bool doesNotReturn() const {
CALLSITE_DELEGATE_GETTER(doesNotReturn());
}
void setDoesNotReturn() {
CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
}
/// Determine if the call cannot unwind.
bool doesNotThrow() const {
CALLSITE_DELEGATE_GETTER(doesNotThrow());
}
void setDoesNotThrow() {
CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
}
/// Determine if the call can be duplicated.
bool cannotDuplicate() const {
CALLSITE_DELEGATE_GETTER(cannotDuplicate());
}
void setCannotDuplicate() {
CALLSITE_DELEGATE_SETTER(setCannotDuplicate());
}
/// Determine if the call is convergent.
bool isConvergent() const {
CALLSITE_DELEGATE_GETTER(isConvergent());
}
void setConvergent() {
CALLSITE_DELEGATE_SETTER(setConvergent());
}
void setNotConvergent() {
CALLSITE_DELEGATE_SETTER(setNotConvergent());
}
unsigned getNumOperandBundles() const {
CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
}
bool hasOperandBundles() const {
CALLSITE_DELEGATE_GETTER(hasOperandBundles());
}
unsigned getBundleOperandsStartIndex() const {
CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
}
unsigned getBundleOperandsEndIndex() const {
CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
}
unsigned getNumTotalBundleOperands() const {
CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
}
OperandBundleUse getOperandBundleAt(unsigned Index) const {
CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
}
Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
}
Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
}
unsigned countOperandBundlesOfType(uint32_t ID) const {
CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
}
bool isBundleOperand(unsigned Idx) const {
CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx));
}
IterTy arg_begin() const {
CALLSITE_DELEGATE_GETTER(arg_begin());
}
IterTy arg_end() const {
CALLSITE_DELEGATE_GETTER(arg_end());
}
#undef CALLSITE_DELEGATE_GETTER
#undef CALLSITE_DELEGATE_SETTER
void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
const Instruction *II = getInstruction();
// Since this is actually a getter that "looks like" a setter, don't use the
// above macros to avoid confusion.
if (isCall())
cast<CallInst>(II)->getOperandBundlesAsDefs(Defs);
else
cast<InvokeInst>(II)->getOperandBundlesAsDefs(Defs);
}
/// Determine whether this data operand is not captured.
bool doesNotCapture(unsigned OpNo) const {
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
}
/// Determine whether this argument is passed by value.
bool isByValArgument(unsigned ArgNo) const {
return paramHasAttr(ArgNo, Attribute::ByVal);
}
/// Determine whether this argument is passed in an alloca.
bool isInAllocaArgument(unsigned ArgNo) const {
return paramHasAttr(ArgNo, Attribute::InAlloca);
}
/// Determine whether this argument is passed by value or in an alloca.
bool isByValOrInAllocaArgument(unsigned ArgNo) const {
return paramHasAttr(ArgNo, Attribute::ByVal) ||
paramHasAttr(ArgNo, Attribute::InAlloca);
}
/// Determine if there are is an inalloca argument. Only the last argument can
/// have the inalloca attribute.
bool hasInAllocaArgument() const {
return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
}
bool doesNotAccessMemory(unsigned OpNo) const {
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
}
bool onlyReadsMemory(unsigned OpNo) const {
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
}
bool doesNotReadMemory(unsigned OpNo) const {
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
}
/// Return true if the return value is known to be not null.
/// This may be because it has the nonnull attribute, or because at least
/// one byte is dereferenceable and the pointer is in addrspace(0).
bool isReturnNonNull() const {
if (hasRetAttr(Attribute::NonNull))
return true;
else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
getType()->getPointerAddressSpace() == 0)
return true;
return false;
}
/// Returns true if this CallSite passes the given Value* as an argument to
/// the called function.
bool hasArgument(const Value *Arg) const {
for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
++AI)
if (AI->get() == Arg)
return true;
return false;
}
private:
IterTy getCallee() const {
if (isCall()) // Skip Callee
return cast<CallInst>(getInstruction())->op_end() - 1;
else // Skip BB, BB, Callee
return cast<InvokeInst>(getInstruction())->op_end() - 3;
}
};
class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
Instruction, CallInst, InvokeInst,
User::op_iterator> {
public:
CallSite() = default;
CallSite(CallSiteBase B) : CallSiteBase(B) {}
CallSite(CallInst *CI) : CallSiteBase(CI) {}
CallSite(InvokeInst *II) : CallSiteBase(II) {}
explicit CallSite(Instruction *II) : CallSiteBase(II) {}
explicit CallSite(Value *V) : CallSiteBase(V) {}
bool operator==(const CallSite &CS) const { return I == CS.I; }
bool operator!=(const CallSite &CS) const { return I != CS.I; }
bool operator<(const CallSite &CS) const {
return getInstruction() < CS.getInstruction();
}
private:
friend struct DenseMapInfo<CallSite>;
User::op_iterator getCallee() const;
};
template <> struct DenseMapInfo<CallSite> {
using BaseInfo = DenseMapInfo<decltype(CallSite::I)>;
static CallSite getEmptyKey() {
CallSite CS;
CS.I = BaseInfo::getEmptyKey();
return CS;
}
static CallSite getTombstoneKey() {
CallSite CS;
CS.I = BaseInfo::getTombstoneKey();
return CS;
}
static unsigned getHashValue(const CallSite &CS) {
return BaseInfo::getHashValue(CS.I);
}
static bool isEqual(const CallSite &LHS, const CallSite &RHS) {
return LHS == RHS;
}
};
/// Establish a view to a call site for examination.
class ImmutableCallSite : public CallSiteBase<> {
public:
ImmutableCallSite() = default;
ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
};
} // end namespace llvm
#endif // LLVM_IR_CALLSITE_H
|