/usr/include/llvm-6.0/llvm/IR/CFG.h is in llvm-6.0-dev 1:6.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines specializations of GraphTraits that allow Function and
// BasicBlock graphs to be treated as proper graphs for generic algorithms.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CFG_H
#define LLVM_IR_CFG_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/type_traits.h"
#include <cassert>
#include <cstddef>
#include <iterator>
namespace llvm {
//===----------------------------------------------------------------------===//
// BasicBlock pred_iterator definition
//===----------------------------------------------------------------------===//
template <class Ptr, class USE_iterator> // Predecessor Iterator
class PredIterator : public std::iterator<std::forward_iterator_tag,
Ptr, ptrdiff_t, Ptr*, Ptr*> {
using super =
std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*>;
using Self = PredIterator<Ptr, USE_iterator>;
USE_iterator It;
inline void advancePastNonTerminators() {
// Loop to ignore non-terminator uses (for example BlockAddresses).
while (!It.atEnd() && !isa<TerminatorInst>(*It))
++It;
}
public:
using pointer = typename super::pointer;
using reference = typename super::reference;
PredIterator() = default;
explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
advancePastNonTerminators();
}
inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
inline bool operator==(const Self& x) const { return It == x.It; }
inline bool operator!=(const Self& x) const { return !operator==(x); }
inline reference operator*() const {
assert(!It.atEnd() && "pred_iterator out of range!");
return cast<TerminatorInst>(*It)->getParent();
}
inline pointer *operator->() const { return &operator*(); }
inline Self& operator++() { // Preincrement
assert(!It.atEnd() && "pred_iterator out of range!");
++It; advancePastNonTerminators();
return *this;
}
inline Self operator++(int) { // Postincrement
Self tmp = *this; ++*this; return tmp;
}
/// getOperandNo - Return the operand number in the predecessor's
/// terminator of the successor.
unsigned getOperandNo() const {
return It.getOperandNo();
}
/// getUse - Return the operand Use in the predecessor's terminator
/// of the successor.
Use &getUse() const {
return It.getUse();
}
};
using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
using const_pred_iterator =
PredIterator<const BasicBlock, Value::const_user_iterator>;
using pred_range = iterator_range<pred_iterator>;
using pred_const_range = iterator_range<const_pred_iterator>;
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
return const_pred_iterator(BB);
}
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
inline const_pred_iterator pred_end(const BasicBlock *BB) {
return const_pred_iterator(BB, true);
}
inline bool pred_empty(const BasicBlock *BB) {
return pred_begin(BB) == pred_end(BB);
}
inline pred_range predecessors(BasicBlock *BB) {
return pred_range(pred_begin(BB), pred_end(BB));
}
inline pred_const_range predecessors(const BasicBlock *BB) {
return pred_const_range(pred_begin(BB), pred_end(BB));
}
//===----------------------------------------------------------------------===//
// BasicBlock succ_iterator helpers
//===----------------------------------------------------------------------===//
using succ_iterator =
TerminatorInst::SuccIterator<TerminatorInst *, BasicBlock>;
using succ_const_iterator =
TerminatorInst::SuccIterator<const TerminatorInst *, const BasicBlock>;
using succ_range = iterator_range<succ_iterator>;
using succ_const_range = iterator_range<succ_const_iterator>;
inline succ_iterator succ_begin(BasicBlock *BB) {
return succ_iterator(BB->getTerminator());
}
inline succ_const_iterator succ_begin(const BasicBlock *BB) {
return succ_const_iterator(BB->getTerminator());
}
inline succ_iterator succ_end(BasicBlock *BB) {
return succ_iterator(BB->getTerminator(), true);
}
inline succ_const_iterator succ_end(const BasicBlock *BB) {
return succ_const_iterator(BB->getTerminator(), true);
}
inline bool succ_empty(const BasicBlock *BB) {
return succ_begin(BB) == succ_end(BB);
}
inline succ_range successors(BasicBlock *BB) {
return succ_range(succ_begin(BB), succ_end(BB));
}
inline succ_const_range successors(const BasicBlock *BB) {
return succ_const_range(succ_begin(BB), succ_end(BB));
}
template <typename T, typename U>
struct isPodLike<TerminatorInst::SuccIterator<T, U>> {
static const bool value = isPodLike<T>::value;
};
//===--------------------------------------------------------------------===//
// GraphTraits specializations for basic block graphs (CFGs)
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks...
template <> struct GraphTraits<BasicBlock*> {
using NodeRef = BasicBlock *;
using ChildIteratorType = succ_iterator;
static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};
template <> struct GraphTraits<const BasicBlock*> {
using NodeRef = const BasicBlock *;
using ChildIteratorType = succ_const_iterator;
static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
};
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<BasicBlock*>> {
using NodeRef = BasicBlock *;
using ChildIteratorType = pred_iterator;
static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};
template <> struct GraphTraits<Inverse<const BasicBlock*>> {
using NodeRef = const BasicBlock *;
using ChildIteratorType = const_pred_iterator;
static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
};
//===--------------------------------------------------------------------===//
// GraphTraits specializations for function basic block graphs (CFGs)
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... these are the same as the basic block iterators,
// except that the root node is implicitly the first node of the function.
//
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator = pointer_iterator<Function::iterator>;
static nodes_iterator nodes_begin(Function *F) {
return nodes_iterator(F->begin());
}
static nodes_iterator nodes_end(Function *F) {
return nodes_iterator(F->end());
}
static size_t size(Function *F) { return F->size(); }
};
template <> struct GraphTraits<const Function*> :
public GraphTraits<const BasicBlock*> {
static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator = pointer_iterator<Function::const_iterator>;
static nodes_iterator nodes_begin(const Function *F) {
return nodes_iterator(F->begin());
}
static nodes_iterator nodes_end(const Function *F) {
return nodes_iterator(F->end());
}
static size_t size(const Function *F) { return F->size(); }
};
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<Function*>> :
public GraphTraits<Inverse<BasicBlock*>> {
static NodeRef getEntryNode(Inverse<Function *> G) {
return &G.Graph->getEntryBlock();
}
};
template <> struct GraphTraits<Inverse<const Function*>> :
public GraphTraits<Inverse<const BasicBlock*>> {
static NodeRef getEntryNode(Inverse<const Function *> G) {
return &G.Graph->getEntryBlock();
}
};
} // end namespace llvm
#endif // LLVM_IR_CFG_H
|