This file is indexed.

/usr/include/llvm-6.0/llvm/ADT/DenseMap.h is in llvm-6.0-dev 1:6.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DenseMap class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_DENSEMAP_H
#define LLVM_ADT_DENSEMAP_H

#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/EpochTracker.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ReverseIteration.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <new>
#include <type_traits>
#include <utility>

namespace llvm {

namespace detail {

// We extend a pair to allow users to override the bucket type with their own
// implementation without requiring two members.
template <typename KeyT, typename ValueT>
struct DenseMapPair : public std::pair<KeyT, ValueT> {
  KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
  ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
  const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
};

} // end namespace detail

template <
    typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
    typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
class DenseMapIterator;

template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
          typename BucketT>
class DenseMapBase : public DebugEpochBase {
  template <typename T>
  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;

public:
  using size_type = unsigned;
  using key_type = KeyT;
  using mapped_type = ValueT;
  using value_type = BucketT;

  using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
  using const_iterator =
      DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;

  inline iterator begin() {
    // When the map is empty, avoid the overhead of advancing/retreating past
    // empty buckets.
    if (empty())
      return end();
    if (shouldReverseIterate<KeyT>())
      return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
    return makeIterator(getBuckets(), getBucketsEnd(), *this);
  }
  inline iterator end() {
    return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
  }
  inline const_iterator begin() const {
    if (empty())
      return end();
    if (shouldReverseIterate<KeyT>())
      return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
    return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
  }
  inline const_iterator end() const {
    return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
  }

  LLVM_NODISCARD bool empty() const {
    return getNumEntries() == 0;
  }
  unsigned size() const { return getNumEntries(); }

  /// Grow the densemap so that it can contain at least \p NumEntries items
  /// before resizing again.
  void reserve(size_type NumEntries) {
    auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
    incrementEpoch();
    if (NumBuckets > getNumBuckets())
      grow(NumBuckets);
  }

  void clear() {
    incrementEpoch();
    if (getNumEntries() == 0 && getNumTombstones() == 0) return;

    // If the capacity of the array is huge, and the # elements used is small,
    // shrink the array.
    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
      shrink_and_clear();
      return;
    }

    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) {
      // Use a simpler loop when these are trivial types.
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
        P->getFirst() = EmptyKey;
    } else {
      unsigned NumEntries = getNumEntries();
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
          if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
            P->getSecond().~ValueT();
            --NumEntries;
          }
          P->getFirst() = EmptyKey;
        }
      }
      assert(NumEntries == 0 && "Node count imbalance!");
    }
    setNumEntries(0);
    setNumTombstones(0);
  }

  /// Return 1 if the specified key is in the map, 0 otherwise.
  size_type count(const_arg_type_t<KeyT> Val) const {
    const BucketT *TheBucket;
    return LookupBucketFor(Val, TheBucket) ? 1 : 0;
  }

  iterator find(const_arg_type_t<KeyT> Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeIterator(TheBucket, getBucketsEnd(), *this, true);
    return end();
  }
  const_iterator find(const_arg_type_t<KeyT> Val) const {
    const BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
    return end();
  }

  /// Alternate version of find() which allows a different, and possibly
  /// less expensive, key type.
  /// The DenseMapInfo is responsible for supplying methods
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
  /// type used.
  template<class LookupKeyT>
  iterator find_as(const LookupKeyT &Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeIterator(TheBucket, getBucketsEnd(), *this, true);
    return end();
  }
  template<class LookupKeyT>
  const_iterator find_as(const LookupKeyT &Val) const {
    const BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
    return end();
  }

  /// lookup - Return the entry for the specified key, or a default
  /// constructed value if no such entry exists.
  ValueT lookup(const_arg_type_t<KeyT> Val) const {
    const BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return TheBucket->getSecond();
    return ValueT();
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // If the key is already in the map, it returns false and doesn't update the
  // value.
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    return try_emplace(KV.first, KV.second);
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // If the key is already in the map, it returns false and doesn't update the
  // value.
  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
    return try_emplace(std::move(KV.first), std::move(KV.second));
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // The value is constructed in-place if the key is not in the map, otherwise
  // it is not moved.
  template <typename... Ts>
  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return std::make_pair(
               makeIterator(TheBucket, getBucketsEnd(), *this, true),
               false); // Already in map.

    // Otherwise, insert the new element.
    TheBucket =
        InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
    return std::make_pair(
             makeIterator(TheBucket, getBucketsEnd(), *this, true),
             true);
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // The value is constructed in-place if the key is not in the map, otherwise
  // it is not moved.
  template <typename... Ts>
  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return std::make_pair(
               makeIterator(TheBucket, getBucketsEnd(), *this, true),
               false); // Already in map.

    // Otherwise, insert the new element.
    TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
    return std::make_pair(
             makeIterator(TheBucket, getBucketsEnd(), *this, true),
             true);
  }

  /// Alternate version of insert() which allows a different, and possibly
  /// less expensive, key type.
  /// The DenseMapInfo is responsible for supplying methods
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
  /// type used.
  template <typename LookupKeyT>
  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
                                      const LookupKeyT &Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return std::make_pair(
               makeIterator(TheBucket, getBucketsEnd(), *this, true),
               false); // Already in map.

    // Otherwise, insert the new element.
    TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
                                           std::move(KV.second), Val);
    return std::make_pair(
             makeIterator(TheBucket, getBucketsEnd(), *this, true),
             true);
  }

  /// insert - Range insertion of pairs.
  template<typename InputIt>
  void insert(InputIt I, InputIt E) {
    for (; I != E; ++I)
      insert(*I);
  }

  bool erase(const KeyT &Val) {
    BucketT *TheBucket;
    if (!LookupBucketFor(Val, TheBucket))
      return false; // not in map.

    TheBucket->getSecond().~ValueT();
    TheBucket->getFirst() = getTombstoneKey();
    decrementNumEntries();
    incrementNumTombstones();
    return true;
  }
  void erase(iterator I) {
    BucketT *TheBucket = &*I;
    TheBucket->getSecond().~ValueT();
    TheBucket->getFirst() = getTombstoneKey();
    decrementNumEntries();
    incrementNumTombstones();
  }

  value_type& FindAndConstruct(const KeyT &Key) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return *TheBucket;

    return *InsertIntoBucket(TheBucket, Key);
  }

  ValueT &operator[](const KeyT &Key) {
    return FindAndConstruct(Key).second;
  }

  value_type& FindAndConstruct(KeyT &&Key) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return *TheBucket;

    return *InsertIntoBucket(TheBucket, std::move(Key));
  }

  ValueT &operator[](KeyT &&Key) {
    return FindAndConstruct(std::move(Key)).second;
  }

  /// isPointerIntoBucketsArray - Return true if the specified pointer points
  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
  /// value in the DenseMap).
  bool isPointerIntoBucketsArray(const void *Ptr) const {
    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
  }

  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
  /// array.  In conjunction with the previous method, this can be used to
  /// determine whether an insertion caused the DenseMap to reallocate.
  const void *getPointerIntoBucketsArray() const { return getBuckets(); }

protected:
  DenseMapBase() = default;

  void destroyAll() {
    if (getNumBuckets() == 0) // Nothing to do.
      return;

    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
          !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
        P->getSecond().~ValueT();
      P->getFirst().~KeyT();
    }
  }

  void initEmpty() {
    setNumEntries(0);
    setNumTombstones(0);

    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
           "# initial buckets must be a power of two!");
    const KeyT EmptyKey = getEmptyKey();
    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
      ::new (&B->getFirst()) KeyT(EmptyKey);
  }

  /// Returns the number of buckets to allocate to ensure that the DenseMap can
  /// accommodate \p NumEntries without need to grow().
  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
    // Ensure that "NumEntries * 4 < NumBuckets * 3"
    if (NumEntries == 0)
      return 0;
    // +1 is required because of the strict equality.
    // For example if NumEntries is 48, we need to return 401.
    return NextPowerOf2(NumEntries * 4 / 3 + 1);
  }

  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
    initEmpty();

    // Insert all the old elements.
    const KeyT EmptyKey = getEmptyKey();
    const KeyT TombstoneKey = getTombstoneKey();
    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
      if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
          !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
        // Insert the key/value into the new table.
        BucketT *DestBucket;
        bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
        (void)FoundVal; // silence warning.
        assert(!FoundVal && "Key already in new map?");
        DestBucket->getFirst() = std::move(B->getFirst());
        ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
        incrementNumEntries();

        // Free the value.
        B->getSecond().~ValueT();
      }
      B->getFirst().~KeyT();
    }
  }

  template <typename OtherBaseT>
  void copyFrom(
      const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
    assert(&other != this);
    assert(getNumBuckets() == other.getNumBuckets());

    setNumEntries(other.getNumEntries());
    setNumTombstones(other.getNumTombstones());

    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
      memcpy(getBuckets(), other.getBuckets(),
             getNumBuckets() * sizeof(BucketT));
    else
      for (size_t i = 0; i < getNumBuckets(); ++i) {
        ::new (&getBuckets()[i].getFirst())
            KeyT(other.getBuckets()[i].getFirst());
        if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
            !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
          ::new (&getBuckets()[i].getSecond())
              ValueT(other.getBuckets()[i].getSecond());
      }
  }

  static unsigned getHashValue(const KeyT &Val) {
    return KeyInfoT::getHashValue(Val);
  }

  template<typename LookupKeyT>
  static unsigned getHashValue(const LookupKeyT &Val) {
    return KeyInfoT::getHashValue(Val);
  }

  static const KeyT getEmptyKey() {
    static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
                  "Must pass the derived type to this template!");
    return KeyInfoT::getEmptyKey();
  }

  static const KeyT getTombstoneKey() {
    return KeyInfoT::getTombstoneKey();
  }

private:
  iterator makeIterator(BucketT *P, BucketT *E,
                        DebugEpochBase &Epoch,
                        bool NoAdvance=false) {
    if (shouldReverseIterate<KeyT>()) {
      BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
      return iterator(B, E, Epoch, NoAdvance);
    }
    return iterator(P, E, Epoch, NoAdvance);
  }

  const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
                                   const DebugEpochBase &Epoch,
                                   const bool NoAdvance=false) const {
    if (shouldReverseIterate<KeyT>()) {
      const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
      return const_iterator(B, E, Epoch, NoAdvance);
    }
    return const_iterator(P, E, Epoch, NoAdvance);
  }

  unsigned getNumEntries() const {
    return static_cast<const DerivedT *>(this)->getNumEntries();
  }

  void setNumEntries(unsigned Num) {
    static_cast<DerivedT *>(this)->setNumEntries(Num);
  }

  void incrementNumEntries() {
    setNumEntries(getNumEntries() + 1);
  }

  void decrementNumEntries() {
    setNumEntries(getNumEntries() - 1);
  }

  unsigned getNumTombstones() const {
    return static_cast<const DerivedT *>(this)->getNumTombstones();
  }

  void setNumTombstones(unsigned Num) {
    static_cast<DerivedT *>(this)->setNumTombstones(Num);
  }

  void incrementNumTombstones() {
    setNumTombstones(getNumTombstones() + 1);
  }

  void decrementNumTombstones() {
    setNumTombstones(getNumTombstones() - 1);
  }

  const BucketT *getBuckets() const {
    return static_cast<const DerivedT *>(this)->getBuckets();
  }

  BucketT *getBuckets() {
    return static_cast<DerivedT *>(this)->getBuckets();
  }

  unsigned getNumBuckets() const {
    return static_cast<const DerivedT *>(this)->getNumBuckets();
  }

  BucketT *getBucketsEnd() {
    return getBuckets() + getNumBuckets();
  }

  const BucketT *getBucketsEnd() const {
    return getBuckets() + getNumBuckets();
  }

  void grow(unsigned AtLeast) {
    static_cast<DerivedT *>(this)->grow(AtLeast);
  }

  void shrink_and_clear() {
    static_cast<DerivedT *>(this)->shrink_and_clear();
  }

  template <typename KeyArg, typename... ValueArgs>
  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
                            ValueArgs &&... Values) {
    TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);

    TheBucket->getFirst() = std::forward<KeyArg>(Key);
    ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
    return TheBucket;
  }

  template <typename LookupKeyT>
  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
                                      ValueT &&Value, LookupKeyT &Lookup) {
    TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);

    TheBucket->getFirst() = std::move(Key);
    ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
    return TheBucket;
  }

  template <typename LookupKeyT>
  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
                                BucketT *TheBucket) {
    incrementEpoch();

    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
    // the buckets are empty (meaning that many are filled with tombstones),
    // grow the table.
    //
    // The later case is tricky.  For example, if we had one empty bucket with
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
    // probe almost the entire table until it found the empty bucket.  If the
    // table completely filled with tombstones, no lookup would ever succeed,
    // causing infinite loops in lookup.
    unsigned NewNumEntries = getNumEntries() + 1;
    unsigned NumBuckets = getNumBuckets();
    if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
      this->grow(NumBuckets * 2);
      LookupBucketFor(Lookup, TheBucket);
      NumBuckets = getNumBuckets();
    } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
                             NumBuckets/8)) {
      this->grow(NumBuckets);
      LookupBucketFor(Lookup, TheBucket);
    }
    assert(TheBucket);

    // Only update the state after we've grown our bucket space appropriately
    // so that when growing buckets we have self-consistent entry count.
    incrementNumEntries();

    // If we are writing over a tombstone, remember this.
    const KeyT EmptyKey = getEmptyKey();
    if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
      decrementNumTombstones();

    return TheBucket;
  }

  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
  /// FoundBucket.  If the bucket contains the key and a value, this returns
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
  /// returns false.
  template<typename LookupKeyT>
  bool LookupBucketFor(const LookupKeyT &Val,
                       const BucketT *&FoundBucket) const {
    const BucketT *BucketsPtr = getBuckets();
    const unsigned NumBuckets = getNumBuckets();

    if (NumBuckets == 0) {
      FoundBucket = nullptr;
      return false;
    }

    // FoundTombstone - Keep track of whether we find a tombstone while probing.
    const BucketT *FoundTombstone = nullptr;
    const KeyT EmptyKey = getEmptyKey();
    const KeyT TombstoneKey = getTombstoneKey();
    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
           !KeyInfoT::isEqual(Val, TombstoneKey) &&
           "Empty/Tombstone value shouldn't be inserted into map!");

    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
    unsigned ProbeAmt = 1;
    while (true) {
      const BucketT *ThisBucket = BucketsPtr + BucketNo;
      // Found Val's bucket?  If so, return it.
      if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
        FoundBucket = ThisBucket;
        return true;
      }

      // If we found an empty bucket, the key doesn't exist in the set.
      // Insert it and return the default value.
      if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
        // If we've already seen a tombstone while probing, fill it in instead
        // of the empty bucket we eventually probed to.
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
        return false;
      }

      // If this is a tombstone, remember it.  If Val ends up not in the map, we
      // prefer to return it than something that would require more probing.
      if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
          !FoundTombstone)
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.

      // Otherwise, it's a hash collision or a tombstone, continue quadratic
      // probing.
      BucketNo += ProbeAmt++;
      BucketNo &= (NumBuckets-1);
    }
  }

  template <typename LookupKeyT>
  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
    const BucketT *ConstFoundBucket;
    bool Result = const_cast<const DenseMapBase *>(this)
      ->LookupBucketFor(Val, ConstFoundBucket);
    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
    return Result;
  }

public:
  /// Return the approximate size (in bytes) of the actual map.
  /// This is just the raw memory used by DenseMap.
  /// If entries are pointers to objects, the size of the referenced objects
  /// are not included.
  size_t getMemorySize() const {
    return getNumBuckets() * sizeof(BucketT);
  }
};

template <typename KeyT, typename ValueT,
          typename KeyInfoT = DenseMapInfo<KeyT>,
          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
                                     KeyT, ValueT, KeyInfoT, BucketT> {
  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  // Lift some types from the dependent base class into this class for
  // simplicity of referring to them.
  using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  BucketT *Buckets;
  unsigned NumEntries;
  unsigned NumTombstones;
  unsigned NumBuckets;

public:
  /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
  /// this number of elements can be inserted in the map without grow()
  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }

  DenseMap(const DenseMap &other) : BaseT() {
    init(0);
    copyFrom(other);
  }

  DenseMap(DenseMap &&other) : BaseT() {
    init(0);
    swap(other);
  }

  template<typename InputIt>
  DenseMap(const InputIt &I, const InputIt &E) {
    init(std::distance(I, E));
    this->insert(I, E);
  }

  ~DenseMap() {
    this->destroyAll();
    operator delete(Buckets);
  }

  void swap(DenseMap& RHS) {
    this->incrementEpoch();
    RHS.incrementEpoch();
    std::swap(Buckets, RHS.Buckets);
    std::swap(NumEntries, RHS.NumEntries);
    std::swap(NumTombstones, RHS.NumTombstones);
    std::swap(NumBuckets, RHS.NumBuckets);
  }

  DenseMap& operator=(const DenseMap& other) {
    if (&other != this)
      copyFrom(other);
    return *this;
  }

  DenseMap& operator=(DenseMap &&other) {
    this->destroyAll();
    operator delete(Buckets);
    init(0);
    swap(other);
    return *this;
  }

  void copyFrom(const DenseMap& other) {
    this->destroyAll();
    operator delete(Buckets);
    if (allocateBuckets(other.NumBuckets)) {
      this->BaseT::copyFrom(other);
    } else {
      NumEntries = 0;
      NumTombstones = 0;
    }
  }

  void init(unsigned InitNumEntries) {
    auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
    if (allocateBuckets(InitBuckets)) {
      this->BaseT::initEmpty();
    } else {
      NumEntries = 0;
      NumTombstones = 0;
    }
  }

  void grow(unsigned AtLeast) {
    unsigned OldNumBuckets = NumBuckets;
    BucketT *OldBuckets = Buckets;

    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
    assert(Buckets);
    if (!OldBuckets) {
      this->BaseT::initEmpty();
      return;
    }

    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);

    // Free the old table.
    operator delete(OldBuckets);
  }

  void shrink_and_clear() {
    unsigned OldNumEntries = NumEntries;
    this->destroyAll();

    // Reduce the number of buckets.
    unsigned NewNumBuckets = 0;
    if (OldNumEntries)
      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
    if (NewNumBuckets == NumBuckets) {
      this->BaseT::initEmpty();
      return;
    }

    operator delete(Buckets);
    init(NewNumBuckets);
  }

private:
  unsigned getNumEntries() const {
    return NumEntries;
  }

  void setNumEntries(unsigned Num) {
    NumEntries = Num;
  }

  unsigned getNumTombstones() const {
    return NumTombstones;
  }

  void setNumTombstones(unsigned Num) {
    NumTombstones = Num;
  }

  BucketT *getBuckets() const {
    return Buckets;
  }

  unsigned getNumBuckets() const {
    return NumBuckets;
  }

  bool allocateBuckets(unsigned Num) {
    NumBuckets = Num;
    if (NumBuckets == 0) {
      Buckets = nullptr;
      return false;
    }

    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
    return true;
  }
};

template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
          typename KeyInfoT = DenseMapInfo<KeyT>,
          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
class SmallDenseMap
    : public DenseMapBase<
          SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
          ValueT, KeyInfoT, BucketT> {
  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  // Lift some types from the dependent base class into this class for
  // simplicity of referring to them.
  using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  static_assert(isPowerOf2_64(InlineBuckets),
                "InlineBuckets must be a power of 2.");

  unsigned Small : 1;
  unsigned NumEntries : 31;
  unsigned NumTombstones;

  struct LargeRep {
    BucketT *Buckets;
    unsigned NumBuckets;
  };

  /// A "union" of an inline bucket array and the struct representing
  /// a large bucket. This union will be discriminated by the 'Small' bit.
  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;

public:
  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
    init(NumInitBuckets);
  }

  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
    init(0);
    copyFrom(other);
  }

  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
    init(0);
    swap(other);
  }

  template<typename InputIt>
  SmallDenseMap(const InputIt &I, const InputIt &E) {
    init(NextPowerOf2(std::distance(I, E)));
    this->insert(I, E);
  }

  ~SmallDenseMap() {
    this->destroyAll();
    deallocateBuckets();
  }

  void swap(SmallDenseMap& RHS) {
    unsigned TmpNumEntries = RHS.NumEntries;
    RHS.NumEntries = NumEntries;
    NumEntries = TmpNumEntries;
    std::swap(NumTombstones, RHS.NumTombstones);

    const KeyT EmptyKey = this->getEmptyKey();
    const KeyT TombstoneKey = this->getTombstoneKey();
    if (Small && RHS.Small) {
      // If we're swapping inline bucket arrays, we have to cope with some of
      // the tricky bits of DenseMap's storage system: the buckets are not
      // fully initialized. Thus we swap every key, but we may have
      // a one-directional move of the value.
      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
        BucketT *LHSB = &getInlineBuckets()[i],
                *RHSB = &RHS.getInlineBuckets()[i];
        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
                            !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
                            !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
        if (hasLHSValue && hasRHSValue) {
          // Swap together if we can...
          std::swap(*LHSB, *RHSB);
          continue;
        }
        // Swap separately and handle any assymetry.
        std::swap(LHSB->getFirst(), RHSB->getFirst());
        if (hasLHSValue) {
          ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
          LHSB->getSecond().~ValueT();
        } else if (hasRHSValue) {
          ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
          RHSB->getSecond().~ValueT();
        }
      }
      return;
    }
    if (!Small && !RHS.Small) {
      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
      return;
    }

    SmallDenseMap &SmallSide = Small ? *this : RHS;
    SmallDenseMap &LargeSide = Small ? RHS : *this;

    // First stash the large side's rep and move the small side across.
    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
    LargeSide.getLargeRep()->~LargeRep();
    LargeSide.Small = true;
    // This is similar to the standard move-from-old-buckets, but the bucket
    // count hasn't actually rotated in this case. So we have to carefully
    // move construct the keys and values into their new locations, but there
    // is no need to re-hash things.
    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
              *OldB = &SmallSide.getInlineBuckets()[i];
      ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
      OldB->getFirst().~KeyT();
      if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
          !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
        ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
        OldB->getSecond().~ValueT();
      }
    }

    // The hard part of moving the small buckets across is done, just move
    // the TmpRep into its new home.
    SmallSide.Small = false;
    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
  }

  SmallDenseMap& operator=(const SmallDenseMap& other) {
    if (&other != this)
      copyFrom(other);
    return *this;
  }

  SmallDenseMap& operator=(SmallDenseMap &&other) {
    this->destroyAll();
    deallocateBuckets();
    init(0);
    swap(other);
    return *this;
  }

  void copyFrom(const SmallDenseMap& other) {
    this->destroyAll();
    deallocateBuckets();
    Small = true;
    if (other.getNumBuckets() > InlineBuckets) {
      Small = false;
      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
    }
    this->BaseT::copyFrom(other);
  }

  void init(unsigned InitBuckets) {
    Small = true;
    if (InitBuckets > InlineBuckets) {
      Small = false;
      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
    }
    this->BaseT::initEmpty();
  }

  void grow(unsigned AtLeast) {
    if (AtLeast >= InlineBuckets)
      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));

    if (Small) {
      if (AtLeast < InlineBuckets)
        return; // Nothing to do.

      // First move the inline buckets into a temporary storage.
      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
      BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
      BucketT *TmpEnd = TmpBegin;

      // Loop over the buckets, moving non-empty, non-tombstones into the
      // temporary storage. Have the loop move the TmpEnd forward as it goes.
      const KeyT EmptyKey = this->getEmptyKey();
      const KeyT TombstoneKey = this->getTombstoneKey();
      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
            !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
                 "Too many inline buckets!");
          ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
          ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
          ++TmpEnd;
          P->getSecond().~ValueT();
        }
        P->getFirst().~KeyT();
      }

      // Now make this map use the large rep, and move all the entries back
      // into it.
      Small = false;
      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
      this->moveFromOldBuckets(TmpBegin, TmpEnd);
      return;
    }

    LargeRep OldRep = std::move(*getLargeRep());
    getLargeRep()->~LargeRep();
    if (AtLeast <= InlineBuckets) {
      Small = true;
    } else {
      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
    }

    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);

    // Free the old table.
    operator delete(OldRep.Buckets);
  }

  void shrink_and_clear() {
    unsigned OldSize = this->size();
    this->destroyAll();

    // Reduce the number of buckets.
    unsigned NewNumBuckets = 0;
    if (OldSize) {
      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
        NewNumBuckets = 64;
    }
    if ((Small && NewNumBuckets <= InlineBuckets) ||
        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
      this->BaseT::initEmpty();
      return;
    }

    deallocateBuckets();
    init(NewNumBuckets);
  }

private:
  unsigned getNumEntries() const {
    return NumEntries;
  }

  void setNumEntries(unsigned Num) {
    // NumEntries is hardcoded to be 31 bits wide.
    assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
    NumEntries = Num;
  }

  unsigned getNumTombstones() const {
    return NumTombstones;
  }

  void setNumTombstones(unsigned Num) {
    NumTombstones = Num;
  }

  const BucketT *getInlineBuckets() const {
    assert(Small);
    // Note that this cast does not violate aliasing rules as we assert that
    // the memory's dynamic type is the small, inline bucket buffer, and the
    // 'storage.buffer' static type is 'char *'.
    return reinterpret_cast<const BucketT *>(storage.buffer);
  }

  BucketT *getInlineBuckets() {
    return const_cast<BucketT *>(
      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
  }

  const LargeRep *getLargeRep() const {
    assert(!Small);
    // Note, same rule about aliasing as with getInlineBuckets.
    return reinterpret_cast<const LargeRep *>(storage.buffer);
  }

  LargeRep *getLargeRep() {
    return const_cast<LargeRep *>(
      const_cast<const SmallDenseMap *>(this)->getLargeRep());
  }

  const BucketT *getBuckets() const {
    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
  }

  BucketT *getBuckets() {
    return const_cast<BucketT *>(
      const_cast<const SmallDenseMap *>(this)->getBuckets());
  }

  unsigned getNumBuckets() const {
    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
  }

  void deallocateBuckets() {
    if (Small)
      return;

    operator delete(getLargeRep()->Buckets);
    getLargeRep()->~LargeRep();
  }

  LargeRep allocateBuckets(unsigned Num) {
    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
    LargeRep Rep = {
      static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
    };
    return Rep;
  }
};

template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
          bool IsConst>
class DenseMapIterator : DebugEpochBase::HandleBase {
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;

  using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;

public:
  using difference_type = ptrdiff_t;
  using value_type =
      typename std::conditional<IsConst, const Bucket, Bucket>::type;
  using pointer = value_type *;
  using reference = value_type &;
  using iterator_category = std::forward_iterator_tag;

private:
  pointer Ptr = nullptr;
  pointer End = nullptr;

public:
  DenseMapIterator() = default;

  DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
                   bool NoAdvance = false)
      : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
    assert(isHandleInSync() && "invalid construction!");

    if (NoAdvance) return;
    if (shouldReverseIterate<KeyT>()) {
      RetreatPastEmptyBuckets();
      return;
    }
    AdvancePastEmptyBuckets();
  }

  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
  // for const iterator destinations so it doesn't end up as a user defined copy
  // constructor.
  template <bool IsConstSrc,
            typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
  DenseMapIterator(
      const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
      : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}

  reference operator*() const {
    assert(isHandleInSync() && "invalid iterator access!");
    if (shouldReverseIterate<KeyT>())
      return Ptr[-1];
    return *Ptr;
  }
  pointer operator->() const {
    assert(isHandleInSync() && "invalid iterator access!");
    if (shouldReverseIterate<KeyT>())
      return &(Ptr[-1]);
    return Ptr;
  }

  bool operator==(const ConstIterator &RHS) const {
    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
    assert(getEpochAddress() == RHS.getEpochAddress() &&
           "comparing incomparable iterators!");
    return Ptr == RHS.Ptr;
  }
  bool operator!=(const ConstIterator &RHS) const {
    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
    assert(getEpochAddress() == RHS.getEpochAddress() &&
           "comparing incomparable iterators!");
    return Ptr != RHS.Ptr;
  }

  inline DenseMapIterator& operator++() {  // Preincrement
    assert(isHandleInSync() && "invalid iterator access!");
    if (shouldReverseIterate<KeyT>()) {
      --Ptr;
      RetreatPastEmptyBuckets();
      return *this;
    }
    ++Ptr;
    AdvancePastEmptyBuckets();
    return *this;
  }
  DenseMapIterator operator++(int) {  // Postincrement
    assert(isHandleInSync() && "invalid iterator access!");
    DenseMapIterator tmp = *this; ++*this; return tmp;
  }

private:
  void AdvancePastEmptyBuckets() {
    assert(Ptr <= End);
    const KeyT Empty = KeyInfoT::getEmptyKey();
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();

    while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
                          KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
      ++Ptr;
  }

  void RetreatPastEmptyBuckets() {
    assert(Ptr >= End);
    const KeyT Empty = KeyInfoT::getEmptyKey();
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();

    while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
                          KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
      --Ptr;
  }
};

template <typename KeyT, typename ValueT, typename KeyInfoT>
inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
  return X.getMemorySize();
}

} // end namespace llvm

#endif // LLVM_ADT_DENSEMAP_H