/usr/include/llvm-6.0/llvm/ADT/APInt.h is in llvm-6.0-dev 1:6.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements a class to represent arbitrary precision
/// integral constant values and operations on them.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APINT_H
#define LLVM_ADT_APINT_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <climits>
#include <cstring>
#include <string>
namespace llvm {
class FoldingSetNodeID;
class StringRef;
class hash_code;
class raw_ostream;
template <typename T> class SmallVectorImpl;
template <typename T> class ArrayRef;
class APInt;
inline APInt operator-(APInt);
//===----------------------------------------------------------------------===//
// APInt Class
//===----------------------------------------------------------------------===//
/// \brief Class for arbitrary precision integers.
///
/// APInt is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
/// * All bit, byte, and word positions are zero-based.
/// * Once the bit width is set, it doesn't change except by the Truncate,
/// SignExtend, or ZeroExtend operations.
/// * All binary operators must be on APInt instances of the same bit width.
/// Attempting to use these operators on instances with different bit
/// widths will yield an assertion.
/// * The value is stored canonically as an unsigned value. For operations
/// where it makes a difference, there are both signed and unsigned variants
/// of the operation. For example, sdiv and udiv. However, because the bit
/// widths must be the same, operations such as Mul and Add produce the same
/// results regardless of whether the values are interpreted as signed or
/// not.
/// * In general, the class tries to follow the style of computation that LLVM
/// uses in its IR. This simplifies its use for LLVM.
///
class LLVM_NODISCARD APInt {
public:
typedef uint64_t WordType;
/// This enum is used to hold the constants we needed for APInt.
enum : unsigned {
/// Byte size of a word.
APINT_WORD_SIZE = sizeof(WordType),
/// Bits in a word.
APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
};
static const WordType WORD_MAX = ~WordType(0);
private:
/// This union is used to store the integer value. When the
/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
} U;
unsigned BitWidth; ///< The number of bits in this APInt.
friend struct DenseMapAPIntKeyInfo;
friend class APSInt;
/// \brief Fast internal constructor
///
/// This constructor is used only internally for speed of construction of
/// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
U.pVal = val;
}
/// \brief Determine if this APInt just has one word to store value.
///
/// \returns true if the number of bits <= 64, false otherwise.
bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
/// \brief Determine which word a bit is in.
///
/// \returns the word position for the specified bit position.
static unsigned whichWord(unsigned bitPosition) {
return bitPosition / APINT_BITS_PER_WORD;
}
/// \brief Determine which bit in a word a bit is in.
///
/// \returns the bit position in a word for the specified bit position
/// in the APInt.
static unsigned whichBit(unsigned bitPosition) {
return bitPosition % APINT_BITS_PER_WORD;
}
/// \brief Get a single bit mask.
///
/// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
/// This method generates and returns a uint64_t (word) mask for a single
/// bit at a specific bit position. This is used to mask the bit in the
/// corresponding word.
static uint64_t maskBit(unsigned bitPosition) {
return 1ULL << whichBit(bitPosition);
}
/// \brief Clear unused high order bits
///
/// This method is used internally to clear the top "N" bits in the high order
/// word that are not used by the APInt. This is needed after the most
/// significant word is assigned a value to ensure that those bits are
/// zero'd out.
APInt &clearUnusedBits() {
// Compute how many bits are used in the final word
unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
// Mask out the high bits.
uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
if (isSingleWord())
U.VAL &= mask;
else
U.pVal[getNumWords() - 1] &= mask;
return *this;
}
/// \brief Get the word corresponding to a bit position
/// \returns the corresponding word for the specified bit position.
uint64_t getWord(unsigned bitPosition) const {
return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
}
/// Utility method to change the bit width of this APInt to new bit width,
/// allocating and/or deallocating as necessary. There is no guarantee on the
/// value of any bits upon return. Caller should populate the bits after.
void reallocate(unsigned NewBitWidth);
/// \brief Convert a char array into an APInt
///
/// \param radix 2, 8, 10, 16, or 36
/// Converts a string into a number. The string must be non-empty
/// and well-formed as a number of the given base. The bit-width
/// must be sufficient to hold the result.
///
/// This is used by the constructors that take string arguments.
///
/// StringRef::getAsInteger is superficially similar but (1) does
/// not assume that the string is well-formed and (2) grows the
/// result to hold the input.
void fromString(unsigned numBits, StringRef str, uint8_t radix);
/// \brief An internal division function for dividing APInts.
///
/// This is used by the toString method to divide by the radix. It simply
/// provides a more convenient form of divide for internal use since KnuthDiv
/// has specific constraints on its inputs. If those constraints are not met
/// then it provides a simpler form of divide.
static void divide(const WordType *LHS, unsigned lhsWords,
const WordType *RHS, unsigned rhsWords, WordType *Quotient,
WordType *Remainder);
/// out-of-line slow case for inline constructor
void initSlowCase(uint64_t val, bool isSigned);
/// shared code between two array constructors
void initFromArray(ArrayRef<uint64_t> array);
/// out-of-line slow case for inline copy constructor
void initSlowCase(const APInt &that);
/// out-of-line slow case for shl
void shlSlowCase(unsigned ShiftAmt);
/// out-of-line slow case for lshr.
void lshrSlowCase(unsigned ShiftAmt);
/// out-of-line slow case for ashr.
void ashrSlowCase(unsigned ShiftAmt);
/// out-of-line slow case for operator=
void AssignSlowCase(const APInt &RHS);
/// out-of-line slow case for operator==
bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
/// out-of-line slow case for countLeadingZeros
unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countLeadingOnes.
unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countTrailingZeros.
unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countTrailingOnes
unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
/// out-of-line slow case for countPopulation
unsigned countPopulationSlowCase() const LLVM_READONLY;
/// out-of-line slow case for intersects.
bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
/// out-of-line slow case for isSubsetOf.
bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
/// out-of-line slow case for setBits.
void setBitsSlowCase(unsigned loBit, unsigned hiBit);
/// out-of-line slow case for flipAllBits.
void flipAllBitsSlowCase();
/// out-of-line slow case for operator&=.
void AndAssignSlowCase(const APInt& RHS);
/// out-of-line slow case for operator|=.
void OrAssignSlowCase(const APInt& RHS);
/// out-of-line slow case for operator^=.
void XorAssignSlowCase(const APInt& RHS);
/// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
/// to, or greater than RHS.
int compare(const APInt &RHS) const LLVM_READONLY;
/// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
/// to, or greater than RHS.
int compareSigned(const APInt &RHS) const LLVM_READONLY;
public:
/// \name Constructors
/// @{
/// \brief Create a new APInt of numBits width, initialized as val.
///
/// If isSigned is true then val is treated as if it were a signed value
/// (i.e. as an int64_t) and the appropriate sign extension to the bit width
/// will be done. Otherwise, no sign extension occurs (high order bits beyond
/// the range of val are zero filled).
///
/// \param numBits the bit width of the constructed APInt
/// \param val the initial value of the APInt
/// \param isSigned how to treat signedness of val
APInt(unsigned numBits, uint64_t val, bool isSigned = false)
: BitWidth(numBits) {
assert(BitWidth && "bitwidth too small");
if (isSingleWord()) {
U.VAL = val;
clearUnusedBits();
} else {
initSlowCase(val, isSigned);
}
}
/// \brief Construct an APInt of numBits width, initialized as bigVal[].
///
/// Note that bigVal.size() can be smaller or larger than the corresponding
/// bit width but any extraneous bits will be dropped.
///
/// \param numBits the bit width of the constructed APInt
/// \param bigVal a sequence of words to form the initial value of the APInt
APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
/// deprecated because this constructor is prone to ambiguity with the
/// APInt(unsigned, uint64_t, bool) constructor.
///
/// If this overload is ever deleted, care should be taken to prevent calls
/// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
/// constructor.
APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
/// \brief Construct an APInt from a string representation.
///
/// This constructor interprets the string \p str in the given radix. The
/// interpretation stops when the first character that is not suitable for the
/// radix is encountered, or the end of the string. Acceptable radix values
/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
/// string to require more bits than numBits.
///
/// \param numBits the bit width of the constructed APInt
/// \param str the string to be interpreted
/// \param radix the radix to use for the conversion
APInt(unsigned numBits, StringRef str, uint8_t radix);
/// Simply makes *this a copy of that.
/// @brief Copy Constructor.
APInt(const APInt &that) : BitWidth(that.BitWidth) {
if (isSingleWord())
U.VAL = that.U.VAL;
else
initSlowCase(that);
}
/// \brief Move Constructor.
APInt(APInt &&that) : BitWidth(that.BitWidth) {
memcpy(&U, &that.U, sizeof(U));
that.BitWidth = 0;
}
/// \brief Destructor.
~APInt() {
if (needsCleanup())
delete[] U.pVal;
}
/// \brief Default constructor that creates an uninteresting APInt
/// representing a 1-bit zero value.
///
/// This is useful for object deserialization (pair this with the static
/// method Read).
explicit APInt() : BitWidth(1) { U.VAL = 0; }
/// \brief Returns whether this instance allocated memory.
bool needsCleanup() const { return !isSingleWord(); }
/// Used to insert APInt objects, or objects that contain APInt objects, into
/// FoldingSets.
void Profile(FoldingSetNodeID &id) const;
/// @}
/// \name Value Tests
/// @{
/// \brief Determine sign of this APInt.
///
/// This tests the high bit of this APInt to determine if it is set.
///
/// \returns true if this APInt is negative, false otherwise
bool isNegative() const { return (*this)[BitWidth - 1]; }
/// \brief Determine if this APInt Value is non-negative (>= 0)
///
/// This tests the high bit of the APInt to determine if it is unset.
bool isNonNegative() const { return !isNegative(); }
/// \brief Determine if sign bit of this APInt is set.
///
/// This tests the high bit of this APInt to determine if it is set.
///
/// \returns true if this APInt has its sign bit set, false otherwise.
bool isSignBitSet() const { return (*this)[BitWidth-1]; }
/// \brief Determine if sign bit of this APInt is clear.
///
/// This tests the high bit of this APInt to determine if it is clear.
///
/// \returns true if this APInt has its sign bit clear, false otherwise.
bool isSignBitClear() const { return !isSignBitSet(); }
/// \brief Determine if this APInt Value is positive.
///
/// This tests if the value of this APInt is positive (> 0). Note
/// that 0 is not a positive value.
///
/// \returns true if this APInt is positive.
bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
/// \brief Determine if all bits are set
///
/// This checks to see if the value has all bits of the APInt are set or not.
bool isAllOnesValue() const {
if (isSingleWord())
return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
return countTrailingOnesSlowCase() == BitWidth;
}
/// \brief Determine if all bits are clear
///
/// This checks to see if the value has all bits of the APInt are clear or
/// not.
bool isNullValue() const { return !*this; }
/// \brief Determine if this is a value of 1.
///
/// This checks to see if the value of this APInt is one.
bool isOneValue() const {
if (isSingleWord())
return U.VAL == 1;
return countLeadingZerosSlowCase() == BitWidth - 1;
}
/// \brief Determine if this is the largest unsigned value.
///
/// This checks to see if the value of this APInt is the maximum unsigned
/// value for the APInt's bit width.
bool isMaxValue() const { return isAllOnesValue(); }
/// \brief Determine if this is the largest signed value.
///
/// This checks to see if the value of this APInt is the maximum signed
/// value for the APInt's bit width.
bool isMaxSignedValue() const {
if (isSingleWord())
return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
}
/// \brief Determine if this is the smallest unsigned value.
///
/// This checks to see if the value of this APInt is the minimum unsigned
/// value for the APInt's bit width.
bool isMinValue() const { return isNullValue(); }
/// \brief Determine if this is the smallest signed value.
///
/// This checks to see if the value of this APInt is the minimum signed
/// value for the APInt's bit width.
bool isMinSignedValue() const {
if (isSingleWord())
return U.VAL == (WordType(1) << (BitWidth - 1));
return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
}
/// \brief Check if this APInt has an N-bits unsigned integer value.
bool isIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getActiveBits() <= N;
}
/// \brief Check if this APInt has an N-bits signed integer value.
bool isSignedIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getMinSignedBits() <= N;
}
/// \brief Check if this APInt's value is a power of two greater than zero.
///
/// \returns true if the argument APInt value is a power of two > 0.
bool isPowerOf2() const {
if (isSingleWord())
return isPowerOf2_64(U.VAL);
return countPopulationSlowCase() == 1;
}
/// \brief Check if the APInt's value is returned by getSignMask.
///
/// \returns true if this is the value returned by getSignMask.
bool isSignMask() const { return isMinSignedValue(); }
/// \brief Convert APInt to a boolean value.
///
/// This converts the APInt to a boolean value as a test against zero.
bool getBoolValue() const { return !!*this; }
/// If this value is smaller than the specified limit, return it, otherwise
/// return the limit value. This causes the value to saturate to the limit.
uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
return ugt(Limit) ? Limit : getZExtValue();
}
/// \brief Check if the APInt consists of a repeated bit pattern.
///
/// e.g. 0x01010101 satisfies isSplat(8).
/// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
/// width without remainder.
bool isSplat(unsigned SplatSizeInBits) const;
/// \returns true if this APInt value is a sequence of \param numBits ones
/// starting at the least significant bit with the remainder zero.
bool isMask(unsigned numBits) const {
assert(numBits != 0 && "numBits must be non-zero");
assert(numBits <= BitWidth && "numBits out of range");
if (isSingleWord())
return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
unsigned Ones = countTrailingOnesSlowCase();
return (numBits == Ones) &&
((Ones + countLeadingZerosSlowCase()) == BitWidth);
}
/// \returns true if this APInt is a non-empty sequence of ones starting at
/// the least significant bit with the remainder zero.
/// Ex. isMask(0x0000FFFFU) == true.
bool isMask() const {
if (isSingleWord())
return isMask_64(U.VAL);
unsigned Ones = countTrailingOnesSlowCase();
return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
}
/// \brief Return true if this APInt value contains a sequence of ones with
/// the remainder zero.
bool isShiftedMask() const {
if (isSingleWord())
return isShiftedMask_64(U.VAL);
unsigned Ones = countPopulationSlowCase();
unsigned LeadZ = countLeadingZerosSlowCase();
return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
}
/// @}
/// \name Value Generators
/// @{
/// \brief Gets maximum unsigned value of APInt for specific bit width.
static APInt getMaxValue(unsigned numBits) {
return getAllOnesValue(numBits);
}
/// \brief Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMaxValue(unsigned numBits) {
APInt API = getAllOnesValue(numBits);
API.clearBit(numBits - 1);
return API;
}
/// \brief Gets minimum unsigned value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
/// \brief Gets minimum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits) {
APInt API(numBits, 0);
API.setBit(numBits - 1);
return API;
}
/// \brief Get the SignMask for a specific bit width.
///
/// This is just a wrapper function of getSignedMinValue(), and it helps code
/// readability when we want to get a SignMask.
static APInt getSignMask(unsigned BitWidth) {
return getSignedMinValue(BitWidth);
}
/// \brief Get the all-ones value.
///
/// \returns the all-ones value for an APInt of the specified bit-width.
static APInt getAllOnesValue(unsigned numBits) {
return APInt(numBits, WORD_MAX, true);
}
/// \brief Get the '0' value.
///
/// \returns the '0' value for an APInt of the specified bit-width.
static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
/// \brief Compute an APInt containing numBits highbits from this APInt.
///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the low bits and right shift to the least significant bit.
///
/// \returns the high "numBits" bits of this APInt.
APInt getHiBits(unsigned numBits) const;
/// \brief Compute an APInt containing numBits lowbits from this APInt.
///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the high bits.
///
/// \returns the low "numBits" bits of this APInt.
APInt getLoBits(unsigned numBits) const;
/// \brief Return an APInt with exactly one bit set in the result.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
APInt Res(numBits, 0);
Res.setBit(BitNo);
return Res;
}
/// \brief Get a value with a block of bits set.
///
/// Constructs an APInt value that has a contiguous range of bits set. The
/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
/// bits will be zero. For example, with parameters(32, 0, 16) you would get
/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
/// example, with parameters (32, 28, 4), you would get 0xF000000F.
///
/// \param numBits the intended bit width of the result
/// \param loBit the index of the lowest bit set.
/// \param hiBit the index of the highest bit set.
///
/// \returns An APInt value with the requested bits set.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
APInt Res(numBits, 0);
Res.setBits(loBit, hiBit);
return Res;
}
/// \brief Get a value with upper bits starting at loBit set.
///
/// Constructs an APInt value that has a contiguous range of bits set. The
/// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
/// bits will be zero. For example, with parameters(32, 12) you would get
/// 0xFFFFF000.
///
/// \param numBits the intended bit width of the result
/// \param loBit the index of the lowest bit to set.
///
/// \returns An APInt value with the requested bits set.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
APInt Res(numBits, 0);
Res.setBitsFrom(loBit);
return Res;
}
/// \brief Get a value with high bits set
///
/// Constructs an APInt value that has the top hiBitsSet bits set.
///
/// \param numBits the bitwidth of the result
/// \param hiBitsSet the number of high-order bits set in the result.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
APInt Res(numBits, 0);
Res.setHighBits(hiBitsSet);
return Res;
}
/// \brief Get a value with low bits set
///
/// Constructs an APInt value that has the bottom loBitsSet bits set.
///
/// \param numBits the bitwidth of the result
/// \param loBitsSet the number of low-order bits set in the result.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
APInt Res(numBits, 0);
Res.setLowBits(loBitsSet);
return Res;
}
/// \brief Return a value containing V broadcasted over NewLen bits.
static APInt getSplat(unsigned NewLen, const APInt &V);
/// \brief Determine if two APInts have the same value, after zero-extending
/// one of them (if needed!) to ensure that the bit-widths match.
static bool isSameValue(const APInt &I1, const APInt &I2) {
if (I1.getBitWidth() == I2.getBitWidth())
return I1 == I2;
if (I1.getBitWidth() > I2.getBitWidth())
return I1 == I2.zext(I1.getBitWidth());
return I1.zext(I2.getBitWidth()) == I2;
}
/// \brief Overload to compute a hash_code for an APInt value.
friend hash_code hash_value(const APInt &Arg);
/// This function returns a pointer to the internal storage of the APInt.
/// This is useful for writing out the APInt in binary form without any
/// conversions.
const uint64_t *getRawData() const {
if (isSingleWord())
return &U.VAL;
return &U.pVal[0];
}
/// @}
/// \name Unary Operators
/// @{
/// \brief Postfix increment operator.
///
/// Increments *this by 1.
///
/// \returns a new APInt value representing the original value of *this.
const APInt operator++(int) {
APInt API(*this);
++(*this);
return API;
}
/// \brief Prefix increment operator.
///
/// \returns *this incremented by one
APInt &operator++();
/// \brief Postfix decrement operator.
///
/// Decrements *this by 1.
///
/// \returns a new APInt value representing the original value of *this.
const APInt operator--(int) {
APInt API(*this);
--(*this);
return API;
}
/// \brief Prefix decrement operator.
///
/// \returns *this decremented by one.
APInt &operator--();
/// \brief Logical negation operator.
///
/// Performs logical negation operation on this APInt.
///
/// \returns true if *this is zero, false otherwise.
bool operator!() const {
if (isSingleWord())
return U.VAL == 0;
return countLeadingZerosSlowCase() == BitWidth;
}
/// @}
/// \name Assignment Operators
/// @{
/// \brief Copy assignment operator.
///
/// \returns *this after assignment of RHS.
APInt &operator=(const APInt &RHS) {
// If the bitwidths are the same, we can avoid mucking with memory
if (isSingleWord() && RHS.isSingleWord()) {
U.VAL = RHS.U.VAL;
BitWidth = RHS.BitWidth;
return clearUnusedBits();
}
AssignSlowCase(RHS);
return *this;
}
/// @brief Move assignment operator.
APInt &operator=(APInt &&that) {
assert(this != &that && "Self-move not supported");
if (!isSingleWord())
delete[] U.pVal;
// Use memcpy so that type based alias analysis sees both VAL and pVal
// as modified.
memcpy(&U, &that.U, sizeof(U));
BitWidth = that.BitWidth;
that.BitWidth = 0;
return *this;
}
/// \brief Assignment operator.
///
/// The RHS value is assigned to *this. If the significant bits in RHS exceed
/// the bit width, the excess bits are truncated. If the bit width is larger
/// than 64, the value is zero filled in the unspecified high order bits.
///
/// \returns *this after assignment of RHS value.
APInt &operator=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL = RHS;
clearUnusedBits();
} else {
U.pVal[0] = RHS;
memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
}
return *this;
}
/// \brief Bitwise AND assignment operator.
///
/// Performs a bitwise AND operation on this APInt and RHS. The result is
/// assigned to *this.
///
/// \returns *this after ANDing with RHS.
APInt &operator&=(const APInt &RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
U.VAL &= RHS.U.VAL;
else
AndAssignSlowCase(RHS);
return *this;
}
/// \brief Bitwise AND assignment operator.
///
/// Performs a bitwise AND operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
APInt &operator&=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL &= RHS;
return *this;
}
U.pVal[0] &= RHS;
memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
return *this;
}
/// \brief Bitwise OR assignment operator.
///
/// Performs a bitwise OR operation on this APInt and RHS. The result is
/// assigned *this;
///
/// \returns *this after ORing with RHS.
APInt &operator|=(const APInt &RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
U.VAL |= RHS.U.VAL;
else
OrAssignSlowCase(RHS);
return *this;
}
/// \brief Bitwise OR assignment operator.
///
/// Performs a bitwise OR operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
APInt &operator|=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL |= RHS;
clearUnusedBits();
} else {
U.pVal[0] |= RHS;
}
return *this;
}
/// \brief Bitwise XOR assignment operator.
///
/// Performs a bitwise XOR operation on this APInt and RHS. The result is
/// assigned to *this.
///
/// \returns *this after XORing with RHS.
APInt &operator^=(const APInt &RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
U.VAL ^= RHS.U.VAL;
else
XorAssignSlowCase(RHS);
return *this;
}
/// \brief Bitwise XOR assignment operator.
///
/// Performs a bitwise XOR operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
APInt &operator^=(uint64_t RHS) {
if (isSingleWord()) {
U.VAL ^= RHS;
clearUnusedBits();
} else {
U.pVal[0] ^= RHS;
}
return *this;
}
/// \brief Multiplication assignment operator.
///
/// Multiplies this APInt by RHS and assigns the result to *this.
///
/// \returns *this
APInt &operator*=(const APInt &RHS);
APInt &operator*=(uint64_t RHS);
/// \brief Addition assignment operator.
///
/// Adds RHS to *this and assigns the result to *this.
///
/// \returns *this
APInt &operator+=(const APInt &RHS);
APInt &operator+=(uint64_t RHS);
/// \brief Subtraction assignment operator.
///
/// Subtracts RHS from *this and assigns the result to *this.
///
/// \returns *this
APInt &operator-=(const APInt &RHS);
APInt &operator-=(uint64_t RHS);
/// \brief Left-shift assignment function.
///
/// Shifts *this left by shiftAmt and assigns the result to *this.
///
/// \returns *this after shifting left by ShiftAmt
APInt &operator<<=(unsigned ShiftAmt) {
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
if (ShiftAmt == BitWidth)
U.VAL = 0;
else
U.VAL <<= ShiftAmt;
return clearUnusedBits();
}
shlSlowCase(ShiftAmt);
return *this;
}
/// \brief Left-shift assignment function.
///
/// Shifts *this left by shiftAmt and assigns the result to *this.
///
/// \returns *this after shifting left by ShiftAmt
APInt &operator<<=(const APInt &ShiftAmt);
/// @}
/// \name Binary Operators
/// @{
/// \brief Multiplication operator.
///
/// Multiplies this APInt by RHS and returns the result.
APInt operator*(const APInt &RHS) const;
/// \brief Left logical shift operator.
///
/// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(unsigned Bits) const { return shl(Bits); }
/// \brief Left logical shift operator.
///
/// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(const APInt &Bits) const { return shl(Bits); }
/// \brief Arithmetic right-shift function.
///
/// Arithmetic right-shift this APInt by shiftAmt.
APInt ashr(unsigned ShiftAmt) const {
APInt R(*this);
R.ashrInPlace(ShiftAmt);
return R;
}
/// Arithmetic right-shift this APInt by ShiftAmt in place.
void ashrInPlace(unsigned ShiftAmt) {
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
if (ShiftAmt == BitWidth)
U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
else
U.VAL = SExtVAL >> ShiftAmt;
clearUnusedBits();
return;
}
ashrSlowCase(ShiftAmt);
}
/// \brief Logical right-shift function.
///
/// Logical right-shift this APInt by shiftAmt.
APInt lshr(unsigned shiftAmt) const {
APInt R(*this);
R.lshrInPlace(shiftAmt);
return R;
}
/// Logical right-shift this APInt by ShiftAmt in place.
void lshrInPlace(unsigned ShiftAmt) {
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
if (ShiftAmt == BitWidth)
U.VAL = 0;
else
U.VAL >>= ShiftAmt;
return;
}
lshrSlowCase(ShiftAmt);
}
/// \brief Left-shift function.
///
/// Left-shift this APInt by shiftAmt.
APInt shl(unsigned shiftAmt) const {
APInt R(*this);
R <<= shiftAmt;
return R;
}
/// \brief Rotate left by rotateAmt.
APInt rotl(unsigned rotateAmt) const;
/// \brief Rotate right by rotateAmt.
APInt rotr(unsigned rotateAmt) const;
/// \brief Arithmetic right-shift function.
///
/// Arithmetic right-shift this APInt by shiftAmt.
APInt ashr(const APInt &ShiftAmt) const {
APInt R(*this);
R.ashrInPlace(ShiftAmt);
return R;
}
/// Arithmetic right-shift this APInt by shiftAmt in place.
void ashrInPlace(const APInt &shiftAmt);
/// \brief Logical right-shift function.
///
/// Logical right-shift this APInt by shiftAmt.
APInt lshr(const APInt &ShiftAmt) const {
APInt R(*this);
R.lshrInPlace(ShiftAmt);
return R;
}
/// Logical right-shift this APInt by ShiftAmt in place.
void lshrInPlace(const APInt &ShiftAmt);
/// \brief Left-shift function.
///
/// Left-shift this APInt by shiftAmt.
APInt shl(const APInt &ShiftAmt) const {
APInt R(*this);
R <<= ShiftAmt;
return R;
}
/// \brief Rotate left by rotateAmt.
APInt rotl(const APInt &rotateAmt) const;
/// \brief Rotate right by rotateAmt.
APInt rotr(const APInt &rotateAmt) const;
/// \brief Unsigned division operation.
///
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
/// RHS are treated as unsigned quantities for purposes of this division.
///
/// \returns a new APInt value containing the division result
APInt udiv(const APInt &RHS) const;
APInt udiv(uint64_t RHS) const;
/// \brief Signed division function for APInt.
///
/// Signed divide this APInt by APInt RHS.
APInt sdiv(const APInt &RHS) const;
APInt sdiv(int64_t RHS) const;
/// \brief Unsigned remainder operation.
///
/// Perform an unsigned remainder operation on this APInt with RHS being the
/// divisor. Both this and RHS are treated as unsigned quantities for purposes
/// of this operation. Note that this is a true remainder operation and not a
/// modulo operation because the sign follows the sign of the dividend which
/// is *this.
///
/// \returns a new APInt value containing the remainder result
APInt urem(const APInt &RHS) const;
uint64_t urem(uint64_t RHS) const;
/// \brief Function for signed remainder operation.
///
/// Signed remainder operation on APInt.
APInt srem(const APInt &RHS) const;
int64_t srem(int64_t RHS) const;
/// \brief Dual division/remainder interface.
///
/// Sometimes it is convenient to divide two APInt values and obtain both the
/// quotient and remainder. This function does both operations in the same
/// computation making it a little more efficient. The pair of input arguments
/// may overlap with the pair of output arguments. It is safe to call
/// udivrem(X, Y, X, Y), for example.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
APInt &Remainder);
static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
uint64_t &Remainder);
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
APInt &Remainder);
static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
int64_t &Remainder);
// Operations that return overflow indicators.
APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
APInt usub_ov(const APInt &RHS, bool &Overflow) const;
APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
APInt smul_ov(const APInt &RHS, bool &Overflow) const;
APInt umul_ov(const APInt &RHS, bool &Overflow) const;
APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
/// \brief Array-indexing support.
///
/// \returns the bit value at bitPosition
bool operator[](unsigned bitPosition) const {
assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
}
/// @}
/// \name Comparison Operators
/// @{
/// \brief Equality operator.
///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
bool operator==(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
if (isSingleWord())
return U.VAL == RHS.U.VAL;
return EqualSlowCase(RHS);
}
/// \brief Equality operator.
///
/// Compares this APInt with a uint64_t for the validity of the equality
/// relationship.
///
/// \returns true if *this == Val
bool operator==(uint64_t Val) const {
return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
}
/// \brief Equality comparison.
///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
///
/// \returns true if *this == Val
bool eq(const APInt &RHS) const { return (*this) == RHS; }
/// \brief Inequality operator.
///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
/// \brief Inequality operator.
///
/// Compares this APInt with a uint64_t for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool operator!=(uint64_t Val) const { return !((*this) == Val); }
/// \brief Inequality comparison
///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
///
/// \returns true if *this != Val
bool ne(const APInt &RHS) const { return !((*this) == RHS); }
/// \brief Unsigned less than comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when both are considered unsigned.
bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
/// \brief Unsigned less than comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when considered unsigned.
bool ult(uint64_t RHS) const {
// Only need to check active bits if not a single word.
return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
}
/// \brief Signed less than comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-than relationship.
///
/// \returns true if *this < RHS when both are considered signed.
bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
/// \brief Signed less than comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the less-than relationship.
///
/// \returns true if *this < RHS when considered signed.
bool slt(int64_t RHS) const {
return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
: getSExtValue() < RHS;
}
/// \brief Unsigned less or equal comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when both are considered unsigned.
bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
/// \brief Unsigned less or equal comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when considered unsigned.
bool ule(uint64_t RHS) const { return !ugt(RHS); }
/// \brief Signed less or equal comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when both are considered signed.
bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
/// \brief Signed less or equal comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for the
/// validity of the less-or-equal relationship.
///
/// \returns true if *this <= RHS when considered signed.
bool sle(uint64_t RHS) const { return !sgt(RHS); }
/// \brief Unsigned greather than comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when both are considered unsigned.
bool ugt(const APInt &RHS) const { return !ule(RHS); }
/// \brief Unsigned greater than comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when considered unsigned.
bool ugt(uint64_t RHS) const {
// Only need to check active bits if not a single word.
return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
}
/// \brief Signed greather than comparison
///
/// Regards both *this and RHS as signed quantities and compares them for the
/// validity of the greater-than relationship.
///
/// \returns true if *this > RHS when both are considered signed.
bool sgt(const APInt &RHS) const { return !sle(RHS); }
/// \brief Signed greater than comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-than relationship.
///
/// \returns true if *this > RHS when considered signed.
bool sgt(int64_t RHS) const {
return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
: getSExtValue() > RHS;
}
/// \brief Unsigned greater or equal comparison
///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when both are considered unsigned.
bool uge(const APInt &RHS) const { return !ult(RHS); }
/// \brief Unsigned greater or equal comparison
///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when considered unsigned.
bool uge(uint64_t RHS) const { return !ult(RHS); }
/// \brief Signed greather or equal comparison
///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when both are considered signed.
bool sge(const APInt &RHS) const { return !slt(RHS); }
/// \brief Signed greater or equal comparison
///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
///
/// \returns true if *this >= RHS when considered signed.
bool sge(int64_t RHS) const { return !slt(RHS); }
/// This operation tests if there are any pairs of corresponding bits
/// between this APInt and RHS that are both set.
bool intersects(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return (U.VAL & RHS.U.VAL) != 0;
return intersectsSlowCase(RHS);
}
/// This operation checks that all bits set in this APInt are also set in RHS.
bool isSubsetOf(const APInt &RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return (U.VAL & ~RHS.U.VAL) == 0;
return isSubsetOfSlowCase(RHS);
}
/// @}
/// \name Resizing Operators
/// @{
/// \brief Truncate to new width.
///
/// Truncate the APInt to a specified width. It is an error to specify a width
/// that is greater than or equal to the current width.
APInt trunc(unsigned width) const;
/// \brief Sign extend to a new width.
///
/// This operation sign extends the APInt to a new width. If the high order
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
/// It is an error to specify a width that is less than or equal to the
/// current width.
APInt sext(unsigned width) const;
/// \brief Zero extend to a new width.
///
/// This operation zero extends the APInt to a new width. The high order bits
/// are filled with 0 bits. It is an error to specify a width that is less
/// than or equal to the current width.
APInt zext(unsigned width) const;
/// \brief Sign extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, truncated, or left alone to make it that width.
APInt sextOrTrunc(unsigned width) const;
/// \brief Zero extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, truncated, or left alone to make it that width.
APInt zextOrTrunc(unsigned width) const;
/// \brief Sign extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, or left alone to make it that width.
APInt sextOrSelf(unsigned width) const;
/// \brief Zero extend or truncate to width
///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, or left alone to make it that width.
APInt zextOrSelf(unsigned width) const;
/// @}
/// \name Bit Manipulation Operators
/// @{
/// \brief Set every bit to 1.
void setAllBits() {
if (isSingleWord())
U.VAL = WORD_MAX;
else
// Set all the bits in all the words.
memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
// Clear the unused ones
clearUnusedBits();
}
/// \brief Set a given bit to 1.
///
/// Set the given bit to 1 whose position is given as "bitPosition".
void setBit(unsigned BitPosition) {
assert(BitPosition <= BitWidth && "BitPosition out of range");
WordType Mask = maskBit(BitPosition);
if (isSingleWord())
U.VAL |= Mask;
else
U.pVal[whichWord(BitPosition)] |= Mask;
}
/// Set the sign bit to 1.
void setSignBit() {
setBit(BitWidth - 1);
}
/// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
void setBits(unsigned loBit, unsigned hiBit) {
assert(hiBit <= BitWidth && "hiBit out of range");
assert(loBit <= BitWidth && "loBit out of range");
assert(loBit <= hiBit && "loBit greater than hiBit");
if (loBit == hiBit)
return;
if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
mask <<= loBit;
if (isSingleWord())
U.VAL |= mask;
else
U.pVal[0] |= mask;
} else {
setBitsSlowCase(loBit, hiBit);
}
}
/// Set the top bits starting from loBit.
void setBitsFrom(unsigned loBit) {
return setBits(loBit, BitWidth);
}
/// Set the bottom loBits bits.
void setLowBits(unsigned loBits) {
return setBits(0, loBits);
}
/// Set the top hiBits bits.
void setHighBits(unsigned hiBits) {
return setBits(BitWidth - hiBits, BitWidth);
}
/// \brief Set every bit to 0.
void clearAllBits() {
if (isSingleWord())
U.VAL = 0;
else
memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
}
/// \brief Set a given bit to 0.
///
/// Set the given bit to 0 whose position is given as "bitPosition".
void clearBit(unsigned BitPosition) {
assert(BitPosition <= BitWidth && "BitPosition out of range");
WordType Mask = ~maskBit(BitPosition);
if (isSingleWord())
U.VAL &= Mask;
else
U.pVal[whichWord(BitPosition)] &= Mask;
}
/// Set the sign bit to 0.
void clearSignBit() {
clearBit(BitWidth - 1);
}
/// \brief Toggle every bit to its opposite value.
void flipAllBits() {
if (isSingleWord()) {
U.VAL ^= WORD_MAX;
clearUnusedBits();
} else {
flipAllBitsSlowCase();
}
}
/// \brief Toggles a given bit to its opposite value.
///
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
void flipBit(unsigned bitPosition);
/// Negate this APInt in place.
void negate() {
flipAllBits();
++(*this);
}
/// Insert the bits from a smaller APInt starting at bitPosition.
void insertBits(const APInt &SubBits, unsigned bitPosition);
/// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
APInt extractBits(unsigned numBits, unsigned bitPosition) const;
/// @}
/// \name Value Characterization Functions
/// @{
/// \brief Return the number of bits in the APInt.
unsigned getBitWidth() const { return BitWidth; }
/// \brief Get the number of words.
///
/// Here one word's bitwidth equals to that of uint64_t.
///
/// \returns the number of words to hold the integer value of this APInt.
unsigned getNumWords() const { return getNumWords(BitWidth); }
/// \brief Get the number of words.
///
/// *NOTE* Here one word's bitwidth equals to that of uint64_t.
///
/// \returns the number of words to hold the integer value with a given bit
/// width.
static unsigned getNumWords(unsigned BitWidth) {
return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
}
/// \brief Compute the number of active bits in the value
///
/// This function returns the number of active bits which is defined as the
/// bit width minus the number of leading zeros. This is used in several
/// computations to see how "wide" the value is.
unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
/// \brief Compute the number of active words in the value of this APInt.
///
/// This is used in conjunction with getActiveData to extract the raw value of
/// the APInt.
unsigned getActiveWords() const {
unsigned numActiveBits = getActiveBits();
return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
}
/// \brief Get the minimum bit size for this signed APInt
///
/// Computes the minimum bit width for this APInt while considering it to be a
/// signed (and probably negative) value. If the value is not negative, this
/// function returns the same value as getActiveBits()+1. Otherwise, it
/// returns the smallest bit width that will retain the negative value. For
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
/// for -1, this function will always return 1.
unsigned getMinSignedBits() const {
if (isNegative())
return BitWidth - countLeadingOnes() + 1;
return getActiveBits() + 1;
}
/// \brief Get zero extended value
///
/// This method attempts to return the value of this APInt as a zero extended
/// uint64_t. The bitwidth must be <= 64 or the value must fit within a
/// uint64_t. Otherwise an assertion will result.
uint64_t getZExtValue() const {
if (isSingleWord())
return U.VAL;
assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
return U.pVal[0];
}
/// \brief Get sign extended value
///
/// This method attempts to return the value of this APInt as a sign extended
/// int64_t. The bit width must be <= 64 or the value must fit within an
/// int64_t. Otherwise an assertion will result.
int64_t getSExtValue() const {
if (isSingleWord())
return SignExtend64(U.VAL, BitWidth);
assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
return int64_t(U.pVal[0]);
}
/// \brief Get bits required for string value.
///
/// This method determines how many bits are required to hold the APInt
/// equivalent of the string given by \p str.
static unsigned getBitsNeeded(StringRef str, uint8_t radix);
/// \brief The APInt version of the countLeadingZeros functions in
/// MathExtras.h.
///
/// It counts the number of zeros from the most significant bit to the first
/// one bit.
///
/// \returns BitWidth if the value is zero, otherwise returns the number of
/// zeros from the most significant bit to the first one bits.
unsigned countLeadingZeros() const {
if (isSingleWord()) {
unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
return llvm::countLeadingZeros(U.VAL) - unusedBits;
}
return countLeadingZerosSlowCase();
}
/// \brief Count the number of leading one bits.
///
/// This function is an APInt version of the countLeadingOnes
/// functions in MathExtras.h. It counts the number of ones from the most
/// significant bit to the first zero bit.
///
/// \returns 0 if the high order bit is not set, otherwise returns the number
/// of 1 bits from the most significant to the least
unsigned countLeadingOnes() const {
if (isSingleWord())
return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
return countLeadingOnesSlowCase();
}
/// Computes the number of leading bits of this APInt that are equal to its
/// sign bit.
unsigned getNumSignBits() const {
return isNegative() ? countLeadingOnes() : countLeadingZeros();
}
/// \brief Count the number of trailing zero bits.
///
/// This function is an APInt version of the countTrailingZeros
/// functions in MathExtras.h. It counts the number of zeros from the least
/// significant bit to the first set bit.
///
/// \returns BitWidth if the value is zero, otherwise returns the number of
/// zeros from the least significant bit to the first one bit.
unsigned countTrailingZeros() const {
if (isSingleWord())
return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
return countTrailingZerosSlowCase();
}
/// \brief Count the number of trailing one bits.
///
/// This function is an APInt version of the countTrailingOnes
/// functions in MathExtras.h. It counts the number of ones from the least
/// significant bit to the first zero bit.
///
/// \returns BitWidth if the value is all ones, otherwise returns the number
/// of ones from the least significant bit to the first zero bit.
unsigned countTrailingOnes() const {
if (isSingleWord())
return llvm::countTrailingOnes(U.VAL);
return countTrailingOnesSlowCase();
}
/// \brief Count the number of bits set.
///
/// This function is an APInt version of the countPopulation functions
/// in MathExtras.h. It counts the number of 1 bits in the APInt value.
///
/// \returns 0 if the value is zero, otherwise returns the number of set bits.
unsigned countPopulation() const {
if (isSingleWord())
return llvm::countPopulation(U.VAL);
return countPopulationSlowCase();
}
/// @}
/// \name Conversion Functions
/// @{
void print(raw_ostream &OS, bool isSigned) const;
/// Converts an APInt to a string and append it to Str. Str is commonly a
/// SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
bool formatAsCLiteral = false) const;
/// Considers the APInt to be unsigned and converts it into a string in the
/// radix given. The radix can be 2, 8, 10 16, or 36.
void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
toString(Str, Radix, false, false);
}
/// Considers the APInt to be signed and converts it into a string in the
/// radix given. The radix can be 2, 8, 10, 16, or 36.
void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
toString(Str, Radix, true, false);
}
/// \brief Return the APInt as a std::string.
///
/// Note that this is an inefficient method. It is better to pass in a
/// SmallVector/SmallString to the methods above to avoid thrashing the heap
/// for the string.
std::string toString(unsigned Radix, bool Signed) const;
/// \returns a byte-swapped representation of this APInt Value.
APInt byteSwap() const;
/// \returns the value with the bit representation reversed of this APInt
/// Value.
APInt reverseBits() const;
/// \brief Converts this APInt to a double value.
double roundToDouble(bool isSigned) const;
/// \brief Converts this unsigned APInt to a double value.
double roundToDouble() const { return roundToDouble(false); }
/// \brief Converts this signed APInt to a double value.
double signedRoundToDouble() const { return roundToDouble(true); }
/// \brief Converts APInt bits to a double
///
/// The conversion does not do a translation from integer to double, it just
/// re-interprets the bits as a double. Note that it is valid to do this on
/// any bit width. Exactly 64 bits will be translated.
double bitsToDouble() const {
return BitsToDouble(getWord(0));
}
/// \brief Converts APInt bits to a double
///
/// The conversion does not do a translation from integer to float, it just
/// re-interprets the bits as a float. Note that it is valid to do this on
/// any bit width. Exactly 32 bits will be translated.
float bitsToFloat() const {
return BitsToFloat(getWord(0));
}
/// \brief Converts a double to APInt bits.
///
/// The conversion does not do a translation from double to integer, it just
/// re-interprets the bits of the double.
static APInt doubleToBits(double V) {
return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
}
/// \brief Converts a float to APInt bits.
///
/// The conversion does not do a translation from float to integer, it just
/// re-interprets the bits of the float.
static APInt floatToBits(float V) {
return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
}
/// @}
/// \name Mathematics Operations
/// @{
/// \returns the floor log base 2 of this APInt.
unsigned logBase2() const { return getActiveBits() - 1; }
/// \returns the ceil log base 2 of this APInt.
unsigned ceilLogBase2() const {
APInt temp(*this);
--temp;
return temp.getActiveBits();
}
/// \returns the nearest log base 2 of this APInt. Ties round up.
///
/// NOTE: When we have a BitWidth of 1, we define:
///
/// log2(0) = UINT32_MAX
/// log2(1) = 0
///
/// to get around any mathematical concerns resulting from
/// referencing 2 in a space where 2 does no exist.
unsigned nearestLogBase2() const {
// Special case when we have a bitwidth of 1. If VAL is 1, then we
// get 0. If VAL is 0, we get WORD_MAX which gets truncated to
// UINT32_MAX.
if (BitWidth == 1)
return U.VAL - 1;
// Handle the zero case.
if (isNullValue())
return UINT32_MAX;
// The non-zero case is handled by computing:
//
// nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
//
// where x[i] is referring to the value of the ith bit of x.
unsigned lg = logBase2();
return lg + unsigned((*this)[lg - 1]);
}
/// \returns the log base 2 of this APInt if its an exact power of two, -1
/// otherwise
int32_t exactLogBase2() const {
if (!isPowerOf2())
return -1;
return logBase2();
}
/// \brief Compute the square root
APInt sqrt() const;
/// \brief Get the absolute value;
///
/// If *this is < 0 then return -(*this), otherwise *this;
APInt abs() const {
if (isNegative())
return -(*this);
return *this;
}
/// \returns the multiplicative inverse for a given modulo.
APInt multiplicativeInverse(const APInt &modulo) const;
/// @}
/// \name Support for division by constant
/// @{
/// Calculate the magic number for signed division by a constant.
struct ms;
ms magic() const;
/// Calculate the magic number for unsigned division by a constant.
struct mu;
mu magicu(unsigned LeadingZeros = 0) const;
/// @}
/// \name Building-block Operations for APInt and APFloat
/// @{
// These building block operations operate on a representation of arbitrary
// precision, two's-complement, bignum integer values. They should be
// sufficient to implement APInt and APFloat bignum requirements. Inputs are
// generally a pointer to the base of an array of integer parts, representing
// an unsigned bignum, and a count of how many parts there are.
/// Sets the least significant part of a bignum to the input value, and zeroes
/// out higher parts.
static void tcSet(WordType *, WordType, unsigned);
/// Assign one bignum to another.
static void tcAssign(WordType *, const WordType *, unsigned);
/// Returns true if a bignum is zero, false otherwise.
static bool tcIsZero(const WordType *, unsigned);
/// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
static int tcExtractBit(const WordType *, unsigned bit);
/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
/// significant bit of DST. All high bits above srcBITS in DST are
/// zero-filled.
static void tcExtract(WordType *, unsigned dstCount,
const WordType *, unsigned srcBits,
unsigned srcLSB);
/// Set the given bit of a bignum. Zero-based.
static void tcSetBit(WordType *, unsigned bit);
/// Clear the given bit of a bignum. Zero-based.
static void tcClearBit(WordType *, unsigned bit);
/// Returns the bit number of the least or most significant set bit of a
/// number. If the input number has no bits set -1U is returned.
static unsigned tcLSB(const WordType *, unsigned n);
static unsigned tcMSB(const WordType *parts, unsigned n);
/// Negate a bignum in-place.
static void tcNegate(WordType *, unsigned);
/// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static WordType tcAdd(WordType *, const WordType *,
WordType carry, unsigned);
/// DST += RHS. Returns the carry flag.
static WordType tcAddPart(WordType *, WordType, unsigned);
/// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static WordType tcSubtract(WordType *, const WordType *,
WordType carry, unsigned);
/// DST -= RHS. Returns the carry flag.
static WordType tcSubtractPart(WordType *, WordType, unsigned);
/// DST += SRC * MULTIPLIER + PART if add is true
/// DST = SRC * MULTIPLIER + PART if add is false
///
/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
/// start at the same point, i.e. DST == SRC.
///
/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
/// Otherwise DST is filled with the least significant DSTPARTS parts of the
/// result, and if all of the omitted higher parts were zero return zero,
/// otherwise overflow occurred and return one.
static int tcMultiplyPart(WordType *dst, const WordType *src,
WordType multiplier, WordType carry,
unsigned srcParts, unsigned dstParts,
bool add);
/// DST = LHS * RHS, where DST has the same width as the operands and is
/// filled with the least significant parts of the result. Returns one if
/// overflow occurred, otherwise zero. DST must be disjoint from both
/// operands.
static int tcMultiply(WordType *, const WordType *, const WordType *,
unsigned);
/// DST = LHS * RHS, where DST has width the sum of the widths of the
/// operands. No overflow occurs. DST must be disjoint from both operands.
static void tcFullMultiply(WordType *, const WordType *,
const WordType *, unsigned, unsigned);
/// If RHS is zero LHS and REMAINDER are left unchanged, return one.
/// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
/// REMAINDER to the remainder, return zero. i.e.
///
/// OLD_LHS = RHS * LHS + REMAINDER
///
/// SCRATCH is a bignum of the same size as the operands and result for use by
/// the routine; its contents need not be initialized and are destroyed. LHS,
/// REMAINDER and SCRATCH must be distinct.
static int tcDivide(WordType *lhs, const WordType *rhs,
WordType *remainder, WordType *scratch,
unsigned parts);
/// Shift a bignum left Count bits. Shifted in bits are zero. There are no
/// restrictions on Count.
static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
/// Shift a bignum right Count bits. Shifted in bits are zero. There are no
/// restrictions on Count.
static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
/// The obvious AND, OR and XOR and complement operations.
static void tcAnd(WordType *, const WordType *, unsigned);
static void tcOr(WordType *, const WordType *, unsigned);
static void tcXor(WordType *, const WordType *, unsigned);
static void tcComplement(WordType *, unsigned);
/// Comparison (unsigned) of two bignums.
static int tcCompare(const WordType *, const WordType *, unsigned);
/// Increment a bignum in-place. Return the carry flag.
static WordType tcIncrement(WordType *dst, unsigned parts) {
return tcAddPart(dst, 1, parts);
}
/// Decrement a bignum in-place. Return the borrow flag.
static WordType tcDecrement(WordType *dst, unsigned parts) {
return tcSubtractPart(dst, 1, parts);
}
/// Set the least significant BITS and clear the rest.
static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
/// \brief debug method
void dump() const;
/// @}
};
/// Magic data for optimising signed division by a constant.
struct APInt::ms {
APInt m; ///< magic number
unsigned s; ///< shift amount
};
/// Magic data for optimising unsigned division by a constant.
struct APInt::mu {
APInt m; ///< magic number
bool a; ///< add indicator
unsigned s; ///< shift amount
};
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
/// \brief Unary bitwise complement operator.
///
/// \returns an APInt that is the bitwise complement of \p v.
inline APInt operator~(APInt v) {
v.flipAllBits();
return v;
}
inline APInt operator&(APInt a, const APInt &b) {
a &= b;
return a;
}
inline APInt operator&(const APInt &a, APInt &&b) {
b &= a;
return std::move(b);
}
inline APInt operator&(APInt a, uint64_t RHS) {
a &= RHS;
return a;
}
inline APInt operator&(uint64_t LHS, APInt b) {
b &= LHS;
return b;
}
inline APInt operator|(APInt a, const APInt &b) {
a |= b;
return a;
}
inline APInt operator|(const APInt &a, APInt &&b) {
b |= a;
return std::move(b);
}
inline APInt operator|(APInt a, uint64_t RHS) {
a |= RHS;
return a;
}
inline APInt operator|(uint64_t LHS, APInt b) {
b |= LHS;
return b;
}
inline APInt operator^(APInt a, const APInt &b) {
a ^= b;
return a;
}
inline APInt operator^(const APInt &a, APInt &&b) {
b ^= a;
return std::move(b);
}
inline APInt operator^(APInt a, uint64_t RHS) {
a ^= RHS;
return a;
}
inline APInt operator^(uint64_t LHS, APInt b) {
b ^= LHS;
return b;
}
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
I.print(OS, true);
return OS;
}
inline APInt operator-(APInt v) {
v.negate();
return v;
}
inline APInt operator+(APInt a, const APInt &b) {
a += b;
return a;
}
inline APInt operator+(const APInt &a, APInt &&b) {
b += a;
return std::move(b);
}
inline APInt operator+(APInt a, uint64_t RHS) {
a += RHS;
return a;
}
inline APInt operator+(uint64_t LHS, APInt b) {
b += LHS;
return b;
}
inline APInt operator-(APInt a, const APInt &b) {
a -= b;
return a;
}
inline APInt operator-(const APInt &a, APInt &&b) {
b.negate();
b += a;
return std::move(b);
}
inline APInt operator-(APInt a, uint64_t RHS) {
a -= RHS;
return a;
}
inline APInt operator-(uint64_t LHS, APInt b) {
b.negate();
b += LHS;
return b;
}
inline APInt operator*(APInt a, uint64_t RHS) {
a *= RHS;
return a;
}
inline APInt operator*(uint64_t LHS, APInt b) {
b *= LHS;
return b;
}
namespace APIntOps {
/// \brief Determine the smaller of two APInts considered to be signed.
inline const APInt &smin(const APInt &A, const APInt &B) {
return A.slt(B) ? A : B;
}
/// \brief Determine the larger of two APInts considered to be signed.
inline const APInt &smax(const APInt &A, const APInt &B) {
return A.sgt(B) ? A : B;
}
/// \brief Determine the smaller of two APInts considered to be signed.
inline const APInt &umin(const APInt &A, const APInt &B) {
return A.ult(B) ? A : B;
}
/// \brief Determine the larger of two APInts considered to be unsigned.
inline const APInt &umax(const APInt &A, const APInt &B) {
return A.ugt(B) ? A : B;
}
/// \brief Compute GCD of two unsigned APInt values.
///
/// This function returns the greatest common divisor of the two APInt values
/// using Stein's algorithm.
///
/// \returns the greatest common divisor of A and B.
APInt GreatestCommonDivisor(APInt A, APInt B);
/// \brief Converts the given APInt to a double value.
///
/// Treats the APInt as an unsigned value for conversion purposes.
inline double RoundAPIntToDouble(const APInt &APIVal) {
return APIVal.roundToDouble();
}
/// \brief Converts the given APInt to a double value.
///
/// Treats the APInt as a signed value for conversion purposes.
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
return APIVal.signedRoundToDouble();
}
/// \brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt &APIVal) {
return float(RoundAPIntToDouble(APIVal));
}
/// \brief Converts the given APInt to a float value.
///
/// Treast the APInt as a signed value for conversion purposes.
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
return float(APIVal.signedRoundToDouble());
}
/// \brief Converts the given double value into a APInt.
///
/// This function convert a double value to an APInt value.
APInt RoundDoubleToAPInt(double Double, unsigned width);
/// \brief Converts a float value into a APInt.
///
/// Converts a float value into an APInt value.
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
return RoundDoubleToAPInt(double(Float), width);
}
} // End of APIntOps namespace
// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const APInt &Arg);
} // End of llvm namespace
#endif
|