This file is indexed.

/usr/include/sigc++-2.0/sigc++/functors/functor_trait.h is in libsigc++-2.0-dev 2.10.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// -*- c++ -*-
/* Do not edit! -- generated file */
#ifndef _SIGC_FUNCTORS_FUNCTOR_TRAIT_H_
#define _SIGC_FUNCTORS_FUNCTOR_TRAIT_H_
#include <sigc++/type_traits.h>
#include <type_traits>

namespace sigc {

//TODO: When we can break ABI, replace nil by something else, such as sigc_nil.
// nil is a keyword in Objective C++. When gcc is used for compiling Objective C++
// programs, nil is defined as a preprocessor macro.
// https://bugzilla.gnome.org/show_bug.cgi?id=695235
#if defined(nil) && defined(SIGC_PRAGMA_PUSH_POP_MACRO)
  #define SIGC_NIL_HAS_BEEN_PUSHED 1
  #pragma push_macro("nil")
  #undef nil
#endif

/** nil struct type.
 * The nil struct type is used as default template argument in the
 * unnumbered sigc::signal and sigc::slot templates.
 *
 * @ingroup signal
 * @ingroup slot
 */
#ifndef DOXYGEN_SHOULD_SKIP_THIS
struct nil;
#else
struct nil {};
#endif

#ifdef SIGC_NIL_HAS_BEEN_PUSHED
  #undef SIGC_NIL_HAS_BEEN_PUSHED
  #pragma pop_macro("nil")
#endif

/** @defgroup sigcfunctors Functors
 * Functors are copyable types that define operator()().
 *
 * Types that define operator()() overloads with different return types are referred to
 * as multi-type functors. Multi-type functors are only partially supported in libsigc++.
 *
 * Closures are functors that store all information needed to invoke a callback from operator()().
 *
 * Adaptors are functors that alter the signature of a functor's operator()().
 *
 * libsigc++ defines numerous functors, closures and adaptors.
 * Since libsigc++ is a callback library, most functors are also closures.
 * The documentation doesn't distinguish between functors and closures.
 *
 * The basic functor types libsigc++ provides are created with ptr_fun() and mem_fun()
 * and can be converted into slots implicitly.
 * The set of adaptors that ships with libsigc++ is documented in the @ref adaptors module.
 *
 * If you want to mix user-defined and third party functors with libsigc++,
 * and you want them to be implicitly convertible into slots, libsigc++ must know
 * the result type of your functors. There are different ways to achieve that.
 *
 * - Derive your functors from sigc::functor_base and place
 *   <tt>typedef T_return result_type;</tt> in the class definition.
 * - Use the macro SIGC_FUNCTOR_TRAIT(T_functor,T_return) in namespace sigc.
 *   Multi-type functors are only partly supported.
 * - For functors not derived from sigc::functor_base, and not specified with
 *   SIGC_FUNCTOR_TRAIT(), libsigc++ tries to deduce the result type with the
 *   C++11 decltype() specifier. That attempt usually succeeds if the functor
 *   has a single operator()(), but it fails if operator()() is overloaded.
 * - Use the macro #SIGC_FUNCTORS_HAVE_RESULT_TYPE, if you want libsigc++ to assume
 *   that result_type is defined in all user-defined or third party functors,
 *   whose result type can't be deduced in any other way.
 *
 * If all these ways to deduce the result type fail, void is assumed.
 *
 * With libsigc++ versions before 2.6, the macro 
 * #SIGC_FUNCTORS_DEDUCE_RESULT_TYPE_WITH_DECLTYPE activated the test with
 * decltype(). That macro is now unneccesary and deprecated.
 */

/** A hint to the compiler.
 * All functors which define @p result_type should publically inherit from this hint.
 *
 * @ingroup sigcfunctors
 */
struct functor_base {};

/** Helper class, to determine if decltype() can deduce the result type of a functor.
 *
 * @ingroup sigcfunctors
 */
template <typename T_functor>
class can_deduce_result_type_with_decltype
{
private:
  struct biggerthanint
  {
    int memory1;
    int memory2;
    int memory3;
    int memory4;
  };

  static biggerthanint checksize(...);

  // If decltype(&X_functor::operator()) can't be evaluated, this checksize() overload
  // is ignored because of the SFINAE rule (Substitution Failure Is Not An Error).
  template <typename X_functor>
  static int checksize(X_functor* obj, decltype(&X_functor::operator()) p = nullptr);

public:
  static const bool value
#ifndef DOXYGEN_SHOULD_SKIP_THIS
    = sizeof(checksize(static_cast<T_functor*>(nullptr))) == sizeof(int)
#endif
    ;
};


/** Trait that specifies the return type of any type.
 * Template specializations for functors derived from sigc::functor_base,
 * for other functors whose result type can be deduced with decltype(),
 * for function pointers and for class methods are provided.
 *
 * @tparam T_functor Functor type.
 * @tparam I_derives_functor_base Whether @p T_functor inherits from sigc::functor_base.
 * @tparam I_can_use_decltype Whether the result type of @p T_functor can be deduced
 *                            with decltype().
 *
 * @ingroup sigcfunctors
 */
template <class T_functor,
          bool I_derives_functor_base = std::is_base_of<functor_base,T_functor>::value,
          bool I_can_use_decltype = can_deduce_result_type_with_decltype<T_functor>::value>
struct functor_trait
{
  typedef void result_type;
  typedef T_functor functor_type;
};

#ifndef DOXYGEN_SHOULD_SKIP_THIS
template <class T_functor, bool I_can_use_decltype>
struct functor_trait<T_functor, true, I_can_use_decltype>
{
  typedef typename T_functor::result_type result_type;
  typedef T_functor functor_type;
};

template <typename T_functor>
struct functor_trait<T_functor, false, true>
{
  typedef typename functor_trait<decltype(&T_functor::operator()), false, false>::result_type result_type;
  typedef T_functor functor_type;
};
#endif // DOXYGEN_SHOULD_SKIP_THIS

/** Helper macro, if you want to mix user-defined and third party functors with libsigc++.
 *
 * If you want to mix functors not derived from sigc::functor_base with libsigc++, and
 * these functors define @p result_type, use this macro inside namespace sigc like so:
 * @code
 * namespace sigc { SIGC_FUNCTORS_HAVE_RESULT_TYPE }
 * @endcode
 *
 * @ingroup sigcfunctors
 */
#define SIGC_FUNCTORS_HAVE_RESULT_TYPE                 \
template <class T_functor>                             \
struct functor_trait<T_functor, false, false>          \
{                                                      \
  typedef typename T_functor::result_type result_type; \
  typedef T_functor functor_type;                      \
};

/** Helper macro, if you want to mix user-defined and third party functors with libsigc++.
 *
 * If you want to mix functors not derived from sigc::functor_base with libsigc++, and
 * these functors don't define @p result_type, use this macro inside namespace sigc
 * to expose the return type of the functors like so:
 * @code
 * namespace sigc {
 *   SIGC_FUNCTOR_TRAIT(first_functor_type, return_type_of_first_functor_type)
 *   SIGC_FUNCTOR_TRAIT(second_functor_type, return_type_of_second_functor_type)
 *   ...
 * }
 * @endcode
 *
 * @ingroup sigcfunctors
 */
#define SIGC_FUNCTOR_TRAIT(T_functor,T_return) \
template <>                                    \
struct functor_trait<T_functor, false, false>  \
{                                              \
  typedef T_return result_type;                \
  typedef T_functor functor_type;              \
};                                             \
template <>                                    \
struct functor_trait<T_functor, false, true>   \
{                                              \
  typedef T_return result_type;                \
  typedef T_functor functor_type;              \
};

#ifndef SIGCXX_DISABLE_DEPRECATED
/** Helper macro, if you want to mix user-defined and third party functors with libsigc++.
 *
 * If you want to mix functors not derived from sigc::functor_base with libsigc++,
 * and your compiler can deduce the result type of the functor with the C++11
 * keyword <tt>decltype</tt>, use this macro inside namespace sigc like so:
 * @code
 * namespace sigc {
 *   SIGC_FUNCTORS_DEDUCE_RESULT_TYPE_WITH_DECLTYPE
 * }
 * @endcode
 *
 * Functors with overloaded operator()() are not supported.
 *
 * @newin{2,2,11}
 *
 * @deprecated This macro does nothing. The test it activated in libsigc++
 *             versions before 2.6, is now unconditionally activated.
 *
 * @ingroup sigcfunctors
 */
#define SIGC_FUNCTORS_DEDUCE_RESULT_TYPE_WITH_DECLTYPE // Empty
#endif // SIGCXX_DISABLE_DEPRECATED

#ifndef DOXYGEN_SHOULD_SKIP_THIS
// detect the return type and the functor version of non-functor types.
template <class T_return> class pointer_functor0;
template <class T_return>
struct functor_trait<T_return (*)(), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor0<T_return> functor_type;
};

template <class T_arg1, class T_return> class pointer_functor1;
template <class T_arg1, class T_return>
struct functor_trait<T_return (*)(T_arg1), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor1<T_arg1, T_return> functor_type;
};

template <class T_arg1, class T_arg2, class T_return> class pointer_functor2;
template <class T_arg1, class T_arg2, class T_return>
struct functor_trait<T_return (*)(T_arg1, T_arg2), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor2<T_arg1, T_arg2, T_return> functor_type;
};

template <class T_arg1, class T_arg2, class T_arg3, class T_return> class pointer_functor3;
template <class T_arg1, class T_arg2, class T_arg3, class T_return>
struct functor_trait<T_return (*)(T_arg1, T_arg2, T_arg3), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor3<T_arg1, T_arg2, T_arg3, T_return> functor_type;
};

template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_return> class pointer_functor4;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_return>
struct functor_trait<T_return (*)(T_arg1, T_arg2, T_arg3, T_arg4), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor4<T_arg1, T_arg2, T_arg3, T_arg4, T_return> functor_type;
};

template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_return> class pointer_functor5;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_return>
struct functor_trait<T_return (*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor5<T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_return> functor_type;
};

template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_return> class pointer_functor6;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_return>
struct functor_trait<T_return (*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor6<T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6, T_return> functor_type;
};

template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_arg7, class T_return> class pointer_functor7;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_arg7, class T_return>
struct functor_trait<T_return (*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6, T_arg7), false, false>
{
  typedef T_return result_type;
  typedef pointer_functor7<T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6, T_arg7, T_return> functor_type;
};


template <class T_return, class T_obj> class mem_functor0;
template <class T_return, class T_obj> class const_mem_functor0;
template <class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(), false, false>
{
  typedef T_return result_type;
  typedef mem_functor0<T_return, T_obj> functor_type;
};
template <class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)() const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor0<T_return, T_obj> functor_type;
};

template <class T_return, class T_obj, class T_arg1> class mem_functor1;
template <class T_return, class T_obj, class T_arg1> class const_mem_functor1;
template <class T_arg1, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1), false, false>
{
  typedef T_return result_type;
  typedef mem_functor1<T_return, T_obj, T_arg1> functor_type;
};
template <class T_arg1, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1) const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor1<T_return, T_obj, T_arg1> functor_type;
};

template <class T_return, class T_obj, class T_arg1, class T_arg2> class mem_functor2;
template <class T_return, class T_obj, class T_arg1, class T_arg2> class const_mem_functor2;
template <class T_arg1, class T_arg2, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2), false, false>
{
  typedef T_return result_type;
  typedef mem_functor2<T_return, T_obj, T_arg1, T_arg2> functor_type;
};
template <class T_arg1, class T_arg2, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2) const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor2<T_return, T_obj, T_arg1, T_arg2> functor_type;
};

template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3> class mem_functor3;
template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3> class const_mem_functor3;
template <class T_arg1, class T_arg2, class T_arg3, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3), false, false>
{
  typedef T_return result_type;
  typedef mem_functor3<T_return, T_obj, T_arg1, T_arg2, T_arg3> functor_type;
};
template <class T_arg1, class T_arg2, class T_arg3, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3) const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor3<T_return, T_obj, T_arg1, T_arg2, T_arg3> functor_type;
};

template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4> class mem_functor4;
template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4> class const_mem_functor4;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4), false, false>
{
  typedef T_return result_type;
  typedef mem_functor4<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4> functor_type;
};
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4) const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor4<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4> functor_type;
};

template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5> class mem_functor5;
template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5> class const_mem_functor5;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5), false, false>
{
  typedef T_return result_type;
  typedef mem_functor5<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4, T_arg5> functor_type;
};
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5) const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor5<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4, T_arg5> functor_type;
};

template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6> class mem_functor6;
template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6> class const_mem_functor6;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6), false, false>
{
  typedef T_return result_type;
  typedef mem_functor6<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6> functor_type;
};
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6) const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor6<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6> functor_type;
};

template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_arg7> class mem_functor7;
template <class T_return, class T_obj, class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_arg7> class const_mem_functor7;
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_arg7, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6, T_arg7), false, false>
{
  typedef T_return result_type;
  typedef mem_functor7<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6, T_arg7> functor_type;
};
template <class T_arg1, class T_arg2, class T_arg3, class T_arg4, class T_arg5, class T_arg6, class T_arg7, class T_return, class T_obj>
struct functor_trait<T_return (T_obj::*)(T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6, T_arg7) const, false, false>
{
  typedef T_return result_type;
  typedef const_mem_functor7<T_return, T_obj, T_arg1, T_arg2, T_arg3, T_arg4, T_arg5, T_arg6, T_arg7> functor_type;
};


#endif // DOXYGEN_SHOULD_SKIP_THIS

} /* namespace sigc */
#endif /* _SIGC_FUNCTORS_FUNCTOR_TRAIT_H_ */