This file is indexed.

/usr/include/google/protobuf/message.h is in libprotobuf-dev 3.0.0-9.1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// Defines Message, the abstract interface implemented by non-lite
// protocol message objects.  Although it's possible to implement this
// interface manually, most users will use the protocol compiler to
// generate implementations.
//
// Example usage:
//
// Say you have a message defined as:
//
//   message Foo {
//     optional string text = 1;
//     repeated int32 numbers = 2;
//   }
//
// Then, if you used the protocol compiler to generate a class from the above
// definition, you could use it like so:
//
//   string data;  // Will store a serialized version of the message.
//
//   {
//     // Create a message and serialize it.
//     Foo foo;
//     foo.set_text("Hello World!");
//     foo.add_numbers(1);
//     foo.add_numbers(5);
//     foo.add_numbers(42);
//
//     foo.SerializeToString(&data);
//   }
//
//   {
//     // Parse the serialized message and check that it contains the
//     // correct data.
//     Foo foo;
//     foo.ParseFromString(data);
//
//     assert(foo.text() == "Hello World!");
//     assert(foo.numbers_size() == 3);
//     assert(foo.numbers(0) == 1);
//     assert(foo.numbers(1) == 5);
//     assert(foo.numbers(2) == 42);
//   }
//
//   {
//     // Same as the last block, but do it dynamically via the Message
//     // reflection interface.
//     Message* foo = new Foo;
//     const Descriptor* descriptor = foo->GetDescriptor();
//
//     // Get the descriptors for the fields we're interested in and verify
//     // their types.
//     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
//     assert(text_field != NULL);
//     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
//     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
//     const FieldDescriptor* numbers_field = descriptor->
//                                            FindFieldByName("numbers");
//     assert(numbers_field != NULL);
//     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
//     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
//
//     // Parse the message.
//     foo->ParseFromString(data);
//
//     // Use the reflection interface to examine the contents.
//     const Reflection* reflection = foo->GetReflection();
//     assert(reflection->GetString(*foo, text_field) == "Hello World!");
//     assert(reflection->FieldSize(*foo, numbers_field) == 3);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
//     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
//
//     delete foo;
//   }

#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
#define GOOGLE_PROTOBUF_MESSAGE_H__

#include <iosfwd>
#include <string>
#include <google/protobuf/stubs/type_traits.h>
#include <vector>

#include <google/protobuf/arena.h>
#include <google/protobuf/message_lite.h>

#include <google/protobuf/stubs/common.h>
#include <google/protobuf/descriptor.h>


#define GOOGLE_PROTOBUF_HAS_ONEOF
#define GOOGLE_PROTOBUF_HAS_ARENAS

namespace google {
namespace protobuf {

// Defined in this file.
class Message;
class Reflection;
class MessageFactory;

// Defined in other files.
class MapKey;
class MapValueRef;
class MapIterator;
class MapReflectionTester;

namespace internal {
class MapFieldBase;
}
class UnknownFieldSet;         // unknown_field_set.h
namespace io {
class ZeroCopyInputStream;     // zero_copy_stream.h
class ZeroCopyOutputStream;    // zero_copy_stream.h
class CodedInputStream;        // coded_stream.h
class CodedOutputStream;       // coded_stream.h
}
namespace python {
class MapReflectionFriend;     // scalar_map_container.h
}


template<typename T>
class RepeatedField;     // repeated_field.h

template<typename T>
class RepeatedPtrField;  // repeated_field.h

// A container to hold message metadata.
struct Metadata {
  const Descriptor* descriptor;
  const Reflection* reflection;
};

// Abstract interface for protocol messages.
//
// See also MessageLite, which contains most every-day operations.  Message
// adds descriptors and reflection on top of that.
//
// The methods of this class that are virtual but not pure-virtual have
// default implementations based on reflection.  Message classes which are
// optimized for speed will want to override these with faster implementations,
// but classes optimized for code size may be happy with keeping them.  See
// the optimize_for option in descriptor.proto.
class LIBPROTOBUF_EXPORT Message : public MessageLite {
 public:
  inline Message() {}
  virtual ~Message() {}

  // Basic Operations ------------------------------------------------

  // Construct a new instance of the same type.  Ownership is passed to the
  // caller.  (This is also defined in MessageLite, but is defined again here
  // for return-type covariance.)
  virtual Message* New() const = 0;

  // Construct a new instance on the arena. Ownership is passed to the caller
  // if arena is a NULL. Default implementation allows for API compatibility
  // during the Arena transition.
  virtual Message* New(::google::protobuf::Arena* arena) const {
    Message* message = New();
    if (arena != NULL) {
      arena->Own(message);
    }
    return message;
  }

  // Make this message into a copy of the given message.  The given message
  // must have the same descriptor, but need not necessarily be the same class.
  // By default this is just implemented as "Clear(); MergeFrom(from);".
  virtual void CopyFrom(const Message& from);

  // Merge the fields from the given message into this message.  Singular
  // fields will be overwritten, if specified in from, except for embedded
  // messages which will be merged.  Repeated fields will be concatenated.
  // The given message must be of the same type as this message (i.e. the
  // exact same class).
  virtual void MergeFrom(const Message& from);

  // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
  // a nice error message.
  void CheckInitialized() const;

  // Slowly build a list of all required fields that are not set.
  // This is much, much slower than IsInitialized() as it is implemented
  // purely via reflection.  Generally, you should not call this unless you
  // have already determined that an error exists by calling IsInitialized().
  void FindInitializationErrors(std::vector<string>* errors) const;

  // Like FindInitializationErrors, but joins all the strings, delimited by
  // commas, and returns them.
  string InitializationErrorString() const;

  // Clears all unknown fields from this message and all embedded messages.
  // Normally, if unknown tag numbers are encountered when parsing a message,
  // the tag and value are stored in the message's UnknownFieldSet and
  // then written back out when the message is serialized.  This allows servers
  // which simply route messages to other servers to pass through messages
  // that have new field definitions which they don't yet know about.  However,
  // this behavior can have security implications.  To avoid it, call this
  // method after parsing.
  //
  // See Reflection::GetUnknownFields() for more on unknown fields.
  virtual void DiscardUnknownFields();

  // Computes (an estimate of) the total number of bytes currently used for
  // storing the message in memory.  The default implementation calls the
  // Reflection object's SpaceUsed() method.
  //
  // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
  // using reflection (rather than the generated code implementation for
  // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
  // fields defined for the proto.
  virtual int SpaceUsed() const;

  // Debugging & Testing----------------------------------------------

  // Generates a human readable form of this message, useful for debugging
  // and other purposes.
  string DebugString() const;
  // Like DebugString(), but with less whitespace.
  string ShortDebugString() const;
  // Like DebugString(), but do not escape UTF-8 byte sequences.
  string Utf8DebugString() const;
  // Convenience function useful in GDB.  Prints DebugString() to stdout.
  void PrintDebugString() const;

  // Heavy I/O -------------------------------------------------------
  // Additional parsing and serialization methods not implemented by
  // MessageLite because they are not supported by the lite library.

  // Parse a protocol buffer from a file descriptor.  If successful, the entire
  // input will be consumed.
  bool ParseFromFileDescriptor(int file_descriptor);
  // Like ParseFromFileDescriptor(), but accepts messages that are missing
  // required fields.
  bool ParsePartialFromFileDescriptor(int file_descriptor);
  // Parse a protocol buffer from a C++ istream.  If successful, the entire
  // input will be consumed.
  bool ParseFromIstream(istream* input);
  // Like ParseFromIstream(), but accepts messages that are missing
  // required fields.
  bool ParsePartialFromIstream(istream* input);

  // Serialize the message and write it to the given file descriptor.  All
  // required fields must be set.
  bool SerializeToFileDescriptor(int file_descriptor) const;
  // Like SerializeToFileDescriptor(), but allows missing required fields.
  bool SerializePartialToFileDescriptor(int file_descriptor) const;
  // Serialize the message and write it to the given C++ ostream.  All
  // required fields must be set.
  bool SerializeToOstream(ostream* output) const;
  // Like SerializeToOstream(), but allows missing required fields.
  bool SerializePartialToOstream(ostream* output) const;


  // Reflection-based methods ----------------------------------------
  // These methods are pure-virtual in MessageLite, but Message provides
  // reflection-based default implementations.

  virtual string GetTypeName() const;
  virtual void Clear();
  virtual bool IsInitialized() const;
  virtual void CheckTypeAndMergeFrom(const MessageLite& other);
  virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
  virtual int ByteSize() const;
  virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;

 private:
  // This is called only by the default implementation of ByteSize(), to
  // update the cached size.  If you override ByteSize(), you do not need
  // to override this.  If you do not override ByteSize(), you MUST override
  // this; the default implementation will crash.
  //
  // The method is private because subclasses should never call it; only
  // override it.  Yes, C++ lets you do that.  Crazy, huh?
  virtual void SetCachedSize(int size) const;

 public:

  // Introspection ---------------------------------------------------

  // Typedef for backwards-compatibility.
  typedef google::protobuf::Reflection Reflection;

  // Get a Descriptor for this message's type.  This describes what
  // fields the message contains, the types of those fields, etc.
  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }

  // Get the Reflection interface for this Message, which can be used to
  // read and modify the fields of the Message dynamically (in other words,
  // without knowing the message type at compile time).  This object remains
  // property of the Message.
  //
  // This method remains virtual in case a subclass does not implement
  // reflection and wants to override the default behavior.
  virtual const Reflection* GetReflection() const {
    return GetMetadata().reflection;
  }

 protected:
  // Get a struct containing the metadata for the Message. Most subclasses only
  // need to implement this method, rather than the GetDescriptor() and
  // GetReflection() wrappers.
  virtual Metadata GetMetadata() const  = 0;


 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
};

namespace internal {
// Forward-declare interfaces used to implement RepeatedFieldRef.
// These are protobuf internals that users shouldn't care about.
class RepeatedFieldAccessor;
}  // namespace internal

// Forward-declare RepeatedFieldRef templates. The second type parameter is
// used for SFINAE tricks. Users should ignore it.
template<typename T, typename Enable = void>
class RepeatedFieldRef;

template<typename T, typename Enable = void>
class MutableRepeatedFieldRef;

// This interface contains methods that can be used to dynamically access
// and modify the fields of a protocol message.  Their semantics are
// similar to the accessors the protocol compiler generates.
//
// To get the Reflection for a given Message, call Message::GetReflection().
//
// This interface is separate from Message only for efficiency reasons;
// the vast majority of implementations of Message will share the same
// implementation of Reflection (GeneratedMessageReflection,
// defined in generated_message.h), and all Messages of a particular class
// should share the same Reflection object (though you should not rely on
// the latter fact).
//
// There are several ways that these methods can be used incorrectly.  For
// example, any of the following conditions will lead to undefined
// results (probably assertion failures):
// - The FieldDescriptor is not a field of this message type.
// - The method called is not appropriate for the field's type.  For
//   each field type in FieldDescriptor::TYPE_*, there is only one
//   Get*() method, one Set*() method, and one Add*() method that is
//   valid for that type.  It should be obvious which (except maybe
//   for TYPE_BYTES, which are represented using strings in C++).
// - A Get*() or Set*() method for singular fields is called on a repeated
//   field.
// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
//   field.
// - The Message object passed to any method is not of the right type for
//   this Reflection object (i.e. message.GetReflection() != reflection).
//
// You might wonder why there is not any abstract representation for a field
// of arbitrary type.  E.g., why isn't there just a "GetField()" method that
// returns "const Field&", where "Field" is some class with accessors like
// "GetInt32Value()".  The problem is that someone would have to deal with
// allocating these Field objects.  For generated message classes, having to
// allocate space for an additional object to wrap every field would at least
// double the message's memory footprint, probably worse.  Allocating the
// objects on-demand, on the other hand, would be expensive and prone to
// memory leaks.  So, instead we ended up with this flat interface.
//
// TODO(kenton):  Create a utility class which callers can use to read and
//   write fields from a Reflection without paying attention to the type.
class LIBPROTOBUF_EXPORT Reflection {
 public:
  inline Reflection() {}
  virtual ~Reflection();

  // Get the UnknownFieldSet for the message.  This contains fields which
  // were seen when the Message was parsed but were not recognized according
  // to the Message's definition. For proto3 protos, this method will always
  // return an empty UnknownFieldSet.
  virtual const UnknownFieldSet& GetUnknownFields(
      const Message& message) const = 0;
  // Get a mutable pointer to the UnknownFieldSet for the message.  This
  // contains fields which were seen when the Message was parsed but were not
  // recognized according to the Message's definition. For proto3 protos, this
  // method will return a valid mutable UnknownFieldSet pointer but modifying
  // it won't affect the serialized bytes of the message.
  virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;

  // Estimate the amount of memory used by the message object.
  virtual int SpaceUsed(const Message& message) const = 0;

  // Check if the given non-repeated field is set.
  virtual bool HasField(const Message& message,
                        const FieldDescriptor* field) const = 0;

  // Get the number of elements of a repeated field.
  virtual int FieldSize(const Message& message,
                        const FieldDescriptor* field) const = 0;

  // Clear the value of a field, so that HasField() returns false or
  // FieldSize() returns zero.
  virtual void ClearField(Message* message,
                          const FieldDescriptor* field) const = 0;

  // Check if the oneof is set. Returns true if any field in oneof
  // is set, false otherwise.
  // TODO(jieluo) - make it pure virtual after updating all
  // the subclasses.
  virtual bool HasOneof(const Message& /*message*/,
                        const OneofDescriptor* /*oneof_descriptor*/) const {
    return false;
  }

  virtual void ClearOneof(Message* /*message*/,
                          const OneofDescriptor* /*oneof_descriptor*/) const {}

  // Returns the field descriptor if the oneof is set. NULL otherwise.
  // TODO(jieluo) - make it pure virtual.
  virtual const FieldDescriptor* GetOneofFieldDescriptor(
      const Message& /*message*/,
      const OneofDescriptor* /*oneof_descriptor*/) const {
    return NULL;
  }

  // Removes the last element of a repeated field.
  // We don't provide a way to remove any element other than the last
  // because it invites inefficient use, such as O(n^2) filtering loops
  // that should have been O(n).  If you want to remove an element other
  // than the last, the best way to do it is to re-arrange the elements
  // (using Swap()) so that the one you want removed is at the end, then
  // call RemoveLast().
  virtual void RemoveLast(Message* message,
                          const FieldDescriptor* field) const = 0;
  // Removes the last element of a repeated message field, and returns the
  // pointer to the caller.  Caller takes ownership of the returned pointer.
  virtual Message* ReleaseLast(Message* message,
                               const FieldDescriptor* field) const = 0;

  // Swap the complete contents of two messages.
  virtual void Swap(Message* message1, Message* message2) const = 0;

  // Swap fields listed in fields vector of two messages.
  virtual void SwapFields(Message* message1,
                          Message* message2,
                          const std::vector<const FieldDescriptor*>& fields)
      const = 0;

  // Swap two elements of a repeated field.
  virtual void SwapElements(Message* message,
                            const FieldDescriptor* field,
                            int index1,
                            int index2) const = 0;

  // List all fields of the message which are currently set.  This includes
  // extensions.  Singular fields will only be listed if HasField(field) would
  // return true and repeated fields will only be listed if FieldSize(field)
  // would return non-zero.  Fields (both normal fields and extension fields)
  // will be listed ordered by field number.
  virtual void ListFields(
      const Message& message,
      std::vector<const FieldDescriptor*>* output) const = 0;

  // Singular field getters ------------------------------------------
  // These get the value of a non-repeated field.  They return the default
  // value for fields that aren't set.

  virtual int32  GetInt32 (const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual int64  GetInt64 (const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual uint32 GetUInt32(const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual uint64 GetUInt64(const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual float  GetFloat (const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual double GetDouble(const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual bool   GetBool  (const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual string GetString(const Message& message,
                           const FieldDescriptor* field) const = 0;
  virtual const EnumValueDescriptor* GetEnum(
      const Message& message, const FieldDescriptor* field) const = 0;

  // GetEnumValue() returns an enum field's value as an integer rather than
  // an EnumValueDescriptor*. If the integer value does not correspond to a
  // known value descriptor, a new value descriptor is created. (Such a value
  // will only be present when the new unknown-enum-value semantics are enabled
  // for a message.)
  virtual int GetEnumValue(
      const Message& message, const FieldDescriptor* field) const;

  // See MutableMessage() for the meaning of the "factory" parameter.
  virtual const Message& GetMessage(const Message& message,
                                    const FieldDescriptor* field,
                                    MessageFactory* factory = NULL) const = 0;

  // Get a string value without copying, if possible.
  //
  // GetString() necessarily returns a copy of the string.  This can be
  // inefficient when the string is already stored in a string object in the
  // underlying message.  GetStringReference() will return a reference to the
  // underlying string in this case.  Otherwise, it will copy the string into
  // *scratch and return that.
  //
  // Note:  It is perfectly reasonable and useful to write code like:
  //     str = reflection->GetStringReference(field, &str);
  //   This line would ensure that only one copy of the string is made
  //   regardless of the field's underlying representation.  When initializing
  //   a newly-constructed string, though, it's just as fast and more readable
  //   to use code like:
  //     string str = reflection->GetString(message, field);
  virtual const string& GetStringReference(const Message& message,
                                           const FieldDescriptor* field,
                                           string* scratch) const = 0;


  // Singular field mutators -----------------------------------------
  // These mutate the value of a non-repeated field.

  virtual void SetInt32 (Message* message,
                         const FieldDescriptor* field, int32  value) const = 0;
  virtual void SetInt64 (Message* message,
                         const FieldDescriptor* field, int64  value) const = 0;
  virtual void SetUInt32(Message* message,
                         const FieldDescriptor* field, uint32 value) const = 0;
  virtual void SetUInt64(Message* message,
                         const FieldDescriptor* field, uint64 value) const = 0;
  virtual void SetFloat (Message* message,
                         const FieldDescriptor* field, float  value) const = 0;
  virtual void SetDouble(Message* message,
                         const FieldDescriptor* field, double value) const = 0;
  virtual void SetBool  (Message* message,
                         const FieldDescriptor* field, bool   value) const = 0;
  virtual void SetString(Message* message,
                         const FieldDescriptor* field,
                         const string& value) const = 0;
  virtual void SetEnum  (Message* message,
                         const FieldDescriptor* field,
                         const EnumValueDescriptor* value) const = 0;
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
  // If the value does not correspond to a known enum value, either behavior is
  // undefined (for proto2 messages), or the value is accepted silently for
  // messages with new unknown-enum-value semantics.
  virtual void SetEnumValue(Message* message,
                            const FieldDescriptor* field,
                            int value) const;

  // Get a mutable pointer to a field with a message type.  If a MessageFactory
  // is provided, it will be used to construct instances of the sub-message;
  // otherwise, the default factory is used.  If the field is an extension that
  // does not live in the same pool as the containing message's descriptor (e.g.
  // it lives in an overlay pool), then a MessageFactory must be provided.
  // If you have no idea what that meant, then you probably don't need to worry
  // about it (don't provide a MessageFactory).  WARNING:  If the
  // FieldDescriptor is for a compiled-in extension, then
  // factory->GetPrototype(field->message_type()) MUST return an instance of
  // the compiled-in class for this type, NOT DynamicMessage.
  virtual Message* MutableMessage(Message* message,
                                  const FieldDescriptor* field,
                                  MessageFactory* factory = NULL) const = 0;
  // Replaces the message specified by 'field' with the already-allocated object
  // sub_message, passing ownership to the message.  If the field contained a
  // message, that message is deleted.  If sub_message is NULL, the field is
  // cleared.
  virtual void SetAllocatedMessage(Message* message,
                                   Message* sub_message,
                                   const FieldDescriptor* field) const = 0;
  // Releases the message specified by 'field' and returns the pointer,
  // ReleaseMessage() will return the message the message object if it exists.
  // Otherwise, it may or may not return NULL.  In any case, if the return value
  // is non-NULL, the caller takes ownership of the pointer.
  // If the field existed (HasField() is true), then the returned pointer will
  // be the same as the pointer returned by MutableMessage().
  // This function has the same effect as ClearField().
  virtual Message* ReleaseMessage(Message* message,
                                  const FieldDescriptor* field,
                                  MessageFactory* factory = NULL) const = 0;


  // Repeated field getters ------------------------------------------
  // These get the value of one element of a repeated field.

  virtual int32  GetRepeatedInt32 (const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual int64  GetRepeatedInt64 (const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual uint32 GetRepeatedUInt32(const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual uint64 GetRepeatedUInt64(const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual float  GetRepeatedFloat (const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual double GetRepeatedDouble(const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual bool   GetRepeatedBool  (const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual string GetRepeatedString(const Message& message,
                                   const FieldDescriptor* field,
                                   int index) const = 0;
  virtual const EnumValueDescriptor* GetRepeatedEnum(
      const Message& message,
      const FieldDescriptor* field, int index) const = 0;
  // GetRepeatedEnumValue() returns an enum field's value as an integer rather
  // than an EnumValueDescriptor*. If the integer value does not correspond to a
  // known value descriptor, a new value descriptor is created. (Such a value
  // will only be present when the new unknown-enum-value semantics are enabled
  // for a message.)
  virtual int GetRepeatedEnumValue(
      const Message& message,
      const FieldDescriptor* field, int index) const;
  virtual const Message& GetRepeatedMessage(
      const Message& message,
      const FieldDescriptor* field, int index) const = 0;

  // See GetStringReference(), above.
  virtual const string& GetRepeatedStringReference(
      const Message& message, const FieldDescriptor* field,
      int index, string* scratch) const = 0;


  // Repeated field mutators -----------------------------------------
  // These mutate the value of one element of a repeated field.

  virtual void SetRepeatedInt32 (Message* message,
                                 const FieldDescriptor* field,
                                 int index, int32  value) const = 0;
  virtual void SetRepeatedInt64 (Message* message,
                                 const FieldDescriptor* field,
                                 int index, int64  value) const = 0;
  virtual void SetRepeatedUInt32(Message* message,
                                 const FieldDescriptor* field,
                                 int index, uint32 value) const = 0;
  virtual void SetRepeatedUInt64(Message* message,
                                 const FieldDescriptor* field,
                                 int index, uint64 value) const = 0;
  virtual void SetRepeatedFloat (Message* message,
                                 const FieldDescriptor* field,
                                 int index, float  value) const = 0;
  virtual void SetRepeatedDouble(Message* message,
                                 const FieldDescriptor* field,
                                 int index, double value) const = 0;
  virtual void SetRepeatedBool  (Message* message,
                                 const FieldDescriptor* field,
                                 int index, bool   value) const = 0;
  virtual void SetRepeatedString(Message* message,
                                 const FieldDescriptor* field,
                                 int index, const string& value) const = 0;
  virtual void SetRepeatedEnum(Message* message,
                               const FieldDescriptor* field, int index,
                               const EnumValueDescriptor* value) const = 0;
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
  // If the value does not correspond to a known enum value, either behavior is
  // undefined (for proto2 messages), or the value is accepted silently for
  // messages with new unknown-enum-value semantics.
  virtual void SetRepeatedEnumValue(Message* message,
                                    const FieldDescriptor* field, int index,
                                    int value) const;
  // Get a mutable pointer to an element of a repeated field with a message
  // type.
  virtual Message* MutableRepeatedMessage(
      Message* message, const FieldDescriptor* field, int index) const = 0;


  // Repeated field adders -------------------------------------------
  // These add an element to a repeated field.

  virtual void AddInt32 (Message* message,
                         const FieldDescriptor* field, int32  value) const = 0;
  virtual void AddInt64 (Message* message,
                         const FieldDescriptor* field, int64  value) const = 0;
  virtual void AddUInt32(Message* message,
                         const FieldDescriptor* field, uint32 value) const = 0;
  virtual void AddUInt64(Message* message,
                         const FieldDescriptor* field, uint64 value) const = 0;
  virtual void AddFloat (Message* message,
                         const FieldDescriptor* field, float  value) const = 0;
  virtual void AddDouble(Message* message,
                         const FieldDescriptor* field, double value) const = 0;
  virtual void AddBool  (Message* message,
                         const FieldDescriptor* field, bool   value) const = 0;
  virtual void AddString(Message* message,
                         const FieldDescriptor* field,
                         const string& value) const = 0;
  virtual void AddEnum  (Message* message,
                         const FieldDescriptor* field,
                         const EnumValueDescriptor* value) const = 0;
  // Set an enum field's value with an integer rather than EnumValueDescriptor.
  // If the value does not correspond to a known enum value, either behavior is
  // undefined (for proto2 messages), or the value is accepted silently for
  // messages with new unknown-enum-value semantics.
  virtual void AddEnumValue(Message* message,
                            const FieldDescriptor* field,
                            int value) const;
  // See MutableMessage() for comments on the "factory" parameter.
  virtual Message* AddMessage(Message* message,
                              const FieldDescriptor* field,
                              MessageFactory* factory = NULL) const = 0;

  // Appends an already-allocated object 'new_entry' to the repeated field
  // specifyed by 'field' passing ownership to the message.
  // TODO(tmarek): Make virtual after all subclasses have been
  // updated.
  virtual void AddAllocatedMessage(Message* /* message */,
                                   const FieldDescriptor* /*field */,
                                   Message* /* new_entry */) const {}


  // Get a RepeatedFieldRef object that can be used to read the underlying
  // repeated field. The type parameter T must be set according to the
  // field's cpp type. The following table shows the mapping from cpp type
  // to acceptable T.
  //
  //   field->cpp_type()      T
  //   CPPTYPE_INT32        int32
  //   CPPTYPE_UINT32       uint32
  //   CPPTYPE_INT64        int64
  //   CPPTYPE_UINT64       uint64
  //   CPPTYPE_DOUBLE       double
  //   CPPTYPE_FLOAT        float
  //   CPPTYPE_BOOL         bool
  //   CPPTYPE_ENUM         generated enum type or int32
  //   CPPTYPE_STRING       string
  //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
  //
  // A RepeatedFieldRef object can be copied and the resulted object will point
  // to the same repeated field in the same message. The object can be used as
  // long as the message is not destroyed.
  //
  // Note that to use this method users need to include the header file
  // "google/protobuf/reflection.h" (which defines the RepeatedFieldRef
  // class templates).
  template<typename T>
  RepeatedFieldRef<T> GetRepeatedFieldRef(
      const Message& message, const FieldDescriptor* field) const;

  // Like GetRepeatedFieldRef() but return an object that can also be used
  // manipulate the underlying repeated field.
  template<typename T>
  MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
      Message* message, const FieldDescriptor* field) const;

  // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
  // access. The following repeated field accesors will be removed in the
  // future.
  //
  // Repeated field accessors  -------------------------------------------------
  // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
  // access to the data in a RepeatedField.  The methods below provide aggregate
  // access by exposing the RepeatedField object itself with the Message.
  // Applying these templates to inappropriate types will lead to an undefined
  // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
  // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
  //
  // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);

  // DEPRECATED. Please use GetRepeatedFieldRef().
  //
  // for T = Cord and all protobuf scalar types except enums.
  template<typename T>
  const RepeatedField<T>& GetRepeatedField(
      const Message&, const FieldDescriptor*) const;

  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
  //
  // for T = Cord and all protobuf scalar types except enums.
  template<typename T>
  RepeatedField<T>* MutableRepeatedField(
      Message*, const FieldDescriptor*) const;

  // DEPRECATED. Please use GetRepeatedFieldRef().
  //
  // for T = string, google::protobuf::internal::StringPieceField
  //         google::protobuf::Message & descendants.
  template<typename T>
  const RepeatedPtrField<T>& GetRepeatedPtrField(
      const Message&, const FieldDescriptor*) const;

  // DEPRECATED. Please use GetMutableRepeatedFieldRef().
  //
  // for T = string, google::protobuf::internal::StringPieceField
  //         google::protobuf::Message & descendants.
  template<typename T>
  RepeatedPtrField<T>* MutableRepeatedPtrField(
      Message*, const FieldDescriptor*) const;

  // Extensions ----------------------------------------------------------------

  // Try to find an extension of this message type by fully-qualified field
  // name.  Returns NULL if no extension is known for this name or number.
  virtual const FieldDescriptor* FindKnownExtensionByName(
      const string& name) const = 0;

  // Try to find an extension of this message type by field number.
  // Returns NULL if no extension is known for this name or number.
  virtual const FieldDescriptor* FindKnownExtensionByNumber(
      int number) const = 0;

  // Feature Flags -------------------------------------------------------------

  // Does this message support storing arbitrary integer values in enum fields?
  // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
  // take arbitrary integer values, and the legacy GetEnum() getter will
  // dynamically create an EnumValueDescriptor for any integer value without
  // one. If |false|, setting an unknown enum value via the integer-based
  // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
  //
  // Generic code that uses reflection to handle messages with enum fields
  // should check this flag before using the integer-based setter, and either
  // downgrade to a compatible value or use the UnknownFieldSet if not. For
  // example:
  //
  // int new_value = GetValueFromApplicationLogic();
  // if (reflection->SupportsUnknownEnumValues()) {
  //     reflection->SetEnumValue(message, field, new_value);
  // } else {
  //     if (field_descriptor->enum_type()->
  //             FindValueByNumver(new_value) != NULL) {
  //         reflection->SetEnumValue(message, field, new_value);
  //     } else if (emit_unknown_enum_values) {
  //         reflection->MutableUnknownFields(message)->AddVarint(
  //             field->number(),
  //             new_value);
  //     } else {
  //         // convert value to a compatible/default value.
  //         new_value = CompatibleDowngrade(new_value);
  //         reflection->SetEnumValue(message, field, new_value);
  //     }
  // }
  virtual bool SupportsUnknownEnumValues() const { return false; }

  // Returns the MessageFactory associated with this message.  This can be
  // useful for determining if a message is a generated message or not, for
  // example:
  //
  // if (message->GetReflection()->GetMessageFactory() ==
  //     google::protobuf::MessageFactory::generated_factory()) {
  //   // This is a generated message.
  // }
  //
  // It can also be used to create more messages of this type, though
  // Message::New() is an easier way to accomplish this.
  virtual MessageFactory* GetMessageFactory() const;

  // ---------------------------------------------------------------------------

 protected:
  // Obtain a pointer to a Repeated Field Structure and do some type checking:
  //   on field->cpp_type(),
  //   on field->field_option().ctype() (if ctype >= 0)
  //   of field->message_type() (if message_type != NULL).
  // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
  virtual void* MutableRawRepeatedField(
      Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
      int ctype, const Descriptor* message_type) const = 0;

  // TODO(jieluo) - make it pure virtual after updating all the subclasses.
  virtual const void* GetRawRepeatedField(
      const Message& message, const FieldDescriptor* field,
      FieldDescriptor::CppType cpptype, int ctype,
      const Descriptor* message_type) const {
    return MutableRawRepeatedField(
        const_cast<Message*>(&message), field, cpptype, ctype, message_type);
  }

  // The following methods are used to implement (Mutable)RepeatedFieldRef.
  // A Ref object will store a raw pointer to the repeated field data (obtained
  // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
  // RepeatedFieldAccessor) which will be used to access the raw data.
  //
  // TODO(xiaofeng): Make these methods pure-virtual.

  // Returns a raw pointer to the repeated field
  //
  // "cpp_type" and "message_type" are decuded from the type parameter T passed
  // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
  // "message_type" should be set to its descriptor. Otherwise "message_type"
  // should be set to NULL. Implementations of this method should check whether
  // "cpp_type"/"message_type" is consistent with the actual type of the field.
  // We use 1 routine rather than 2 (const vs mutable) because it is protected
  // and it doesn't change the message.
  virtual void* RepeatedFieldData(
      Message* message, const FieldDescriptor* field,
      FieldDescriptor::CppType cpp_type,
      const Descriptor* message_type) const;

  // The returned pointer should point to a singleton instance which implements
  // the RepeatedFieldAccessor interface.
  virtual const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
      const FieldDescriptor* field) const;

 private:
  template<typename T, typename Enable>
  friend class RepeatedFieldRef;
  template<typename T, typename Enable>
  friend class MutableRepeatedFieldRef;
  friend class ::google::protobuf::python::MapReflectionFriend;

  // Special version for specialized implementations of string.  We can't call
  // MutableRawRepeatedField directly here because we don't have access to
  // FieldOptions::* which are defined in descriptor.pb.h.  Including that
  // file here is not possible because it would cause a circular include cycle.
  // We use 1 routine rather than 2 (const vs mutable) because it is private
  // and mutable a repeated string field doesn't change the message.
  void* MutableRawRepeatedString(
      Message* message, const FieldDescriptor* field, bool is_string) const;

  friend class MapReflectionTester;
  // TODO(jieluo) - make the map APIs pure virtual after updating
  // all the subclasses.
  // Returns true if key is in map. Returns false if key is not in map field.
  virtual bool ContainsMapKey(const Message& /* message*/,
                              const FieldDescriptor* /* field */,
                              const MapKey& /* key */) const {
    return false;
  }

  // If key is in map field: Saves the value pointer to val and returns
  // false. If key in not in map field: Insert the key into map, saves
  // value pointer to val and retuns true.
  virtual bool InsertOrLookupMapValue(Message* /* message */,
                                      const FieldDescriptor* /* field */,
                                      const MapKey& /* key */,
                                      MapValueRef* /* val */) const {
    return false;
  }

  // Delete and returns true if key is in the map field. Returns false
  // otherwise.
  virtual bool DeleteMapValue(Message* /* mesage */,
                              const FieldDescriptor* /* field */,
                              const MapKey& /* key */) const {
    return false;
  }

  // Returns a MapIterator referring to the first element in the map field.
  // If the map field is empty, this function returns the same as
  // reflection::MapEnd. Mutation to the field may invalidate the iterator.
  virtual MapIterator MapBegin(
      Message* message,
      const FieldDescriptor* field) const;

  // Returns a MapIterator referring to the theoretical element that would
  // follow the last element in the map field. It does not point to any
  // real element. Mutation to the field may invalidate the iterator.
  virtual MapIterator MapEnd(
      Message* message,
      const FieldDescriptor* field) const;

  // Get the number of <key, value> pair of a map field. The result may be
  // different from FieldSize which can have duplicate keys.
  virtual int MapSize(const Message& /* message */,
                      const FieldDescriptor* /* field */) const {
    return 0;
  }

  // Help method for MapIterator.
  friend class MapIterator;
  virtual internal::MapFieldBase* MapData(
      Message* /* message */, const FieldDescriptor* /* field */) const {
    return NULL;
  }

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
};

// Abstract interface for a factory for message objects.
class LIBPROTOBUF_EXPORT MessageFactory {
 public:
  inline MessageFactory() {}
  virtual ~MessageFactory();

  // Given a Descriptor, gets or constructs the default (prototype) Message
  // of that type.  You can then call that message's New() method to construct
  // a mutable message of that type.
  //
  // Calling this method twice with the same Descriptor returns the same
  // object.  The returned object remains property of the factory.  Also, any
  // objects created by calling the prototype's New() method share some data
  // with the prototype, so these must be destroyed before the MessageFactory
  // is destroyed.
  //
  // The given descriptor must outlive the returned message, and hence must
  // outlive the MessageFactory.
  //
  // Some implementations do not support all types.  GetPrototype() will
  // return NULL if the descriptor passed in is not supported.
  //
  // This method may or may not be thread-safe depending on the implementation.
  // Each implementation should document its own degree thread-safety.
  virtual const Message* GetPrototype(const Descriptor* type) = 0;

  // Gets a MessageFactory which supports all generated, compiled-in messages.
  // In other words, for any compiled-in type FooMessage, the following is true:
  //   MessageFactory::generated_factory()->GetPrototype(
  //     FooMessage::descriptor()) == FooMessage::default_instance()
  // This factory supports all types which are found in
  // DescriptorPool::generated_pool().  If given a descriptor from any other
  // pool, GetPrototype() will return NULL.  (You can also check if a
  // descriptor is for a generated message by checking if
  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
  //
  // This factory is 100% thread-safe; calling GetPrototype() does not modify
  // any shared data.
  //
  // This factory is a singleton.  The caller must not delete the object.
  static MessageFactory* generated_factory();

  // For internal use only:  Registers a .proto file at static initialization
  // time, to be placed in generated_factory.  The first time GetPrototype()
  // is called with a descriptor from this file, |register_messages| will be
  // called, with the file name as the parameter.  It must call
  // InternalRegisterGeneratedMessage() (below) to register each message type
  // in the file.  This strange mechanism is necessary because descriptors are
  // built lazily, so we can't register types by their descriptor until we
  // know that the descriptor exists.  |filename| must be a permanent string.
  static void InternalRegisterGeneratedFile(
      const char* filename, void (*register_messages)(const string&));

  // For internal use only:  Registers a message type.  Called only by the
  // functions which are registered with InternalRegisterGeneratedFile(),
  // above.
  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
                                               const Message* prototype);


 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
};

#define DECLARE_GET_REPEATED_FIELD(TYPE)                         \
template<>                                                       \
LIBPROTOBUF_EXPORT                                               \
const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>(   \
    const Message& message, const FieldDescriptor* field) const; \
                                                                 \
template<>                                                       \
LIBPROTOBUF_EXPORT                                               \
RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>(     \
    Message* message, const FieldDescriptor* field) const;

DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)
DECLARE_GET_REPEATED_FIELD(uint32)
DECLARE_GET_REPEATED_FIELD(uint64)
DECLARE_GET_REPEATED_FIELD(float)
DECLARE_GET_REPEATED_FIELD(double)
DECLARE_GET_REPEATED_FIELD(bool)

#undef DECLARE_GET_REPEATED_FIELD

// =============================================================================
// Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
// specializations for <string>, <StringPieceField> and <Message> and handle
// everything else with the default template which will match any type having
// a method with signature "static const google::protobuf::Descriptor* descriptor()".
// Such a type presumably is a descendant of google::protobuf::Message.

template<>
inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<RepeatedPtrField<string>* >(
      MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
}

template<>
inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<string>* >(
      MutableRawRepeatedString(message, field, true));
}


// -----

template<>
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<const RepeatedPtrField<Message>* >(
      GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
                          -1, NULL));
}

template<>
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<Message>* >(
      MutableRawRepeatedField(message, field,
          FieldDescriptor::CPPTYPE_MESSAGE, -1,
          NULL));
}

template<typename PB>
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
    const Message& message, const FieldDescriptor* field) const {
  return *static_cast<const RepeatedPtrField<PB>* >(
      GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
                          -1, PB::default_instance().GetDescriptor()));
}

template<typename PB>
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
    Message* message, const FieldDescriptor* field) const {
  return static_cast<RepeatedPtrField<PB>* >(
      MutableRawRepeatedField(message, field,
          FieldDescriptor::CPPTYPE_MESSAGE, -1,
          PB::default_instance().GetDescriptor()));
}
}  // namespace protobuf

}  // namespace google
#endif  // GOOGLE_PROTOBUF_MESSAGE_H__