/usr/include/dpdk/rte_crypto_sym.h is in libdpdk-dev 17.11.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 | /*-
* BSD LICENSE
*
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_CRYPTO_SYM_H_
#define _RTE_CRYPTO_SYM_H_
/**
* @file rte_crypto_sym.h
*
* RTE Definitions for Symmetric Cryptography
*
* Defines symmetric cipher and authentication algorithms and modes, as well
* as supported symmetric crypto operation combinations.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <string.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_common.h>
/** Symmetric Cipher Algorithms */
enum rte_crypto_cipher_algorithm {
RTE_CRYPTO_CIPHER_NULL = 1,
/**< NULL cipher algorithm. No mode applies to the NULL algorithm. */
RTE_CRYPTO_CIPHER_3DES_CBC,
/**< Triple DES algorithm in CBC mode */
RTE_CRYPTO_CIPHER_3DES_CTR,
/**< Triple DES algorithm in CTR mode */
RTE_CRYPTO_CIPHER_3DES_ECB,
/**< Triple DES algorithm in ECB mode */
RTE_CRYPTO_CIPHER_AES_CBC,
/**< AES algorithm in CBC mode */
RTE_CRYPTO_CIPHER_AES_CTR,
/**< AES algorithm in Counter mode */
RTE_CRYPTO_CIPHER_AES_ECB,
/**< AES algorithm in ECB mode */
RTE_CRYPTO_CIPHER_AES_F8,
/**< AES algorithm in F8 mode */
RTE_CRYPTO_CIPHER_AES_XTS,
/**< AES algorithm in XTS mode */
RTE_CRYPTO_CIPHER_ARC4,
/**< (A)RC4 cipher algorithm */
RTE_CRYPTO_CIPHER_KASUMI_F8,
/**< KASUMI algorithm in F8 mode */
RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
/**< SNOW 3G algorithm in UEA2 mode */
RTE_CRYPTO_CIPHER_ZUC_EEA3,
/**< ZUC algorithm in EEA3 mode */
RTE_CRYPTO_CIPHER_DES_CBC,
/**< DES algorithm in CBC mode */
RTE_CRYPTO_CIPHER_AES_DOCSISBPI,
/**< AES algorithm using modes required by
* DOCSIS Baseline Privacy Plus Spec.
* Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
* for m_src and m_dst in the rte_crypto_sym_op must be NULL.
*/
RTE_CRYPTO_CIPHER_DES_DOCSISBPI,
/**< DES algorithm using modes required by
* DOCSIS Baseline Privacy Plus Spec.
* Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
* for m_src and m_dst in the rte_crypto_sym_op must be NULL.
*/
RTE_CRYPTO_CIPHER_LIST_END
};
/** Cipher algorithm name strings */
extern const char *
rte_crypto_cipher_algorithm_strings[];
/** Symmetric Cipher Direction */
enum rte_crypto_cipher_operation {
RTE_CRYPTO_CIPHER_OP_ENCRYPT,
/**< Encrypt cipher operation */
RTE_CRYPTO_CIPHER_OP_DECRYPT
/**< Decrypt cipher operation */
};
/** Cipher operation name strings */
extern const char *
rte_crypto_cipher_operation_strings[];
/**
* Symmetric Cipher Setup Data.
*
* This structure contains data relating to Cipher (Encryption and Decryption)
* use to create a session.
*/
struct rte_crypto_cipher_xform {
enum rte_crypto_cipher_operation op;
/**< This parameter determines if the cipher operation is an encrypt or
* a decrypt operation. For the RC4 algorithm and the F8/CTR modes,
* only encrypt operations are valid.
*/
enum rte_crypto_cipher_algorithm algo;
/**< Cipher algorithm */
struct {
uint8_t *data; /**< pointer to key data */
uint16_t length;/**< key length in bytes */
} key;
/**< Cipher key
*
* For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will
* point to a concatenation of the AES encryption key followed by a
* keymask. As per RFC3711, the keymask should be padded with trailing
* bytes to match the length of the encryption key used.
*
* For AES-XTS mode of operation, two keys must be provided and
* key.data must point to the two keys concatenated together (Key1 ||
* Key2). The cipher key length will contain the total size of both
* keys.
*
* Cipher key length is in bytes. For AES it can be 128 bits (16 bytes),
* 192 bits (24 bytes) or 256 bits (32 bytes).
*
* For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length
* should be set to the combined length of the encryption key and the
* keymask. Since the keymask and the encryption key are the same size,
* key.length should be set to 2 x the AES encryption key length.
*
* For the AES-XTS mode of operation:
* - Two keys must be provided and key.length refers to total length of
* the two keys.
* - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes).
* - Both keys must have the same size.
**/
struct {
uint16_t offset;
/**< Starting point for Initialisation Vector or Counter,
* specified as number of bytes from start of crypto
* operation (rte_crypto_op).
*
* - For block ciphers in CBC or F8 mode, or for KASUMI
* in F8 mode, or for SNOW 3G in UEA2 mode, this is the
* Initialisation Vector (IV) value.
*
* - For block ciphers in CTR mode, this is the counter.
*
* - For GCM mode, this is either the IV (if the length
* is 96 bits) or J0 (for other sizes), where J0 is as
* defined by NIST SP800-38D. Regardless of the IV
* length, a full 16 bytes needs to be allocated.
*
* - For CCM mode, the first byte is reserved, and the
* nonce should be written starting at &iv[1] (to allow
* space for the implementation to write in the flags
* in the first byte). Note that a full 16 bytes should
* be allocated, even though the length field will
* have a value less than this. Note that the PMDs may
* modify the memory reserved (the first byte and the
* final padding)
*
* - For AES-XTS, this is the 128bit tweak, i, from
* IEEE Std 1619-2007.
*
* For optimum performance, the data pointed to SHOULD
* be 8-byte aligned.
*/
uint16_t length;
/**< Length of valid IV data.
*
* - For block ciphers in CBC or F8 mode, or for KASUMI
* in F8 mode, or for SNOW 3G in UEA2 mode, this is the
* length of the IV (which must be the same as the
* block length of the cipher).
*
* - For block ciphers in CTR mode, this is the length
* of the counter (which must be the same as the block
* length of the cipher).
*
* - For GCM mode, this is either 12 (for 96-bit IVs)
* or 16, in which case data points to J0.
*
* - For CCM mode, this is the length of the nonce,
* which can be in the range 7 to 13 inclusive.
*/
} iv; /**< Initialisation vector parameters */
};
/** Symmetric Authentication / Hash Algorithms */
enum rte_crypto_auth_algorithm {
RTE_CRYPTO_AUTH_NULL = 1,
/**< NULL hash algorithm. */
RTE_CRYPTO_AUTH_AES_CBC_MAC,
/**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */
RTE_CRYPTO_AUTH_AES_CMAC,
/**< AES CMAC algorithm. */
RTE_CRYPTO_AUTH_AES_GMAC,
/**< AES GMAC algorithm. */
RTE_CRYPTO_AUTH_AES_XCBC_MAC,
/**< AES XCBC algorithm. */
RTE_CRYPTO_AUTH_KASUMI_F9,
/**< KASUMI algorithm in F9 mode. */
RTE_CRYPTO_AUTH_MD5,
/**< MD5 algorithm */
RTE_CRYPTO_AUTH_MD5_HMAC,
/**< HMAC using MD5 algorithm */
RTE_CRYPTO_AUTH_SHA1,
/**< 128 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA1_HMAC,
/**< HMAC using 128 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA224,
/**< 224 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA224_HMAC,
/**< HMAC using 224 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA256,
/**< 256 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA256_HMAC,
/**< HMAC using 256 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA384,
/**< 384 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA384_HMAC,
/**< HMAC using 384 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA512,
/**< 512 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA512_HMAC,
/**< HMAC using 512 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SNOW3G_UIA2,
/**< SNOW 3G algorithm in UIA2 mode. */
RTE_CRYPTO_AUTH_ZUC_EIA3,
/**< ZUC algorithm in EIA3 mode */
RTE_CRYPTO_AUTH_LIST_END
};
/** Authentication algorithm name strings */
extern const char *
rte_crypto_auth_algorithm_strings[];
/** Symmetric Authentication / Hash Operations */
enum rte_crypto_auth_operation {
RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */
RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */
};
/** Authentication operation name strings */
extern const char *
rte_crypto_auth_operation_strings[];
/**
* Authentication / Hash transform data.
*
* This structure contains data relating to an authentication/hash crypto
* transforms. The fields op, algo and digest_length are common to all
* authentication transforms and MUST be set.
*/
struct rte_crypto_auth_xform {
enum rte_crypto_auth_operation op;
/**< Authentication operation type */
enum rte_crypto_auth_algorithm algo;
/**< Authentication algorithm selection */
struct {
uint8_t *data; /**< pointer to key data */
uint16_t length;/**< key length in bytes */
} key;
/**< Authentication key data.
* The authentication key length MUST be less than or equal to the
* block size of the algorithm. It is the callers responsibility to
* ensure that the key length is compliant with the standard being used
* (for example RFC 2104, FIPS 198a).
*/
struct {
uint16_t offset;
/**< Starting point for Initialisation Vector or Counter,
* specified as number of bytes from start of crypto
* operation (rte_crypto_op).
*
* - For SNOW 3G in UIA2 mode, for ZUC in EIA3 mode and
* for AES-GMAC, this is the authentication
* Initialisation Vector (IV) value.
*
* - For KASUMI in F9 mode and other authentication
* algorithms, this field is not used.
*
* For optimum performance, the data pointed to SHOULD
* be 8-byte aligned.
*/
uint16_t length;
/**< Length of valid IV data.
*
* - For SNOW3G in UIA2 mode, for ZUC in EIA3 mode and
* for AES-GMAC, this is the length of the IV.
*
* - For KASUMI in F9 mode and other authentication
* algorithms, this field is not used.
*
*/
} iv; /**< Initialisation vector parameters */
uint16_t digest_length;
/**< Length of the digest to be returned. If the verify option is set,
* this specifies the length of the digest to be compared for the
* session.
*
* It is the caller's responsibility to ensure that the
* digest length is compliant with the hash algorithm being used.
* If the value is less than the maximum length allowed by the hash,
* the result shall be truncated.
*/
};
/** Symmetric AEAD Algorithms */
enum rte_crypto_aead_algorithm {
RTE_CRYPTO_AEAD_AES_CCM = 1,
/**< AES algorithm in CCM mode. */
RTE_CRYPTO_AEAD_AES_GCM,
/**< AES algorithm in GCM mode. */
RTE_CRYPTO_AEAD_LIST_END
};
/** AEAD algorithm name strings */
extern const char *
rte_crypto_aead_algorithm_strings[];
/** Symmetric AEAD Operations */
enum rte_crypto_aead_operation {
RTE_CRYPTO_AEAD_OP_ENCRYPT,
/**< Encrypt and generate digest */
RTE_CRYPTO_AEAD_OP_DECRYPT
/**< Verify digest and decrypt */
};
/** Authentication operation name strings */
extern const char *
rte_crypto_aead_operation_strings[];
struct rte_crypto_aead_xform {
enum rte_crypto_aead_operation op;
/**< AEAD operation type */
enum rte_crypto_aead_algorithm algo;
/**< AEAD algorithm selection */
struct {
uint8_t *data; /**< pointer to key data */
uint16_t length;/**< key length in bytes */
} key;
struct {
uint16_t offset;
/**< Starting point for Initialisation Vector or Counter,
* specified as number of bytes from start of crypto
* operation (rte_crypto_op).
*
* - For GCM mode, this is either the IV (if the length
* is 96 bits) or J0 (for other sizes), where J0 is as
* defined by NIST SP800-38D. Regardless of the IV
* length, a full 16 bytes needs to be allocated.
*
* - For CCM mode, the first byte is reserved, and the
* nonce should be written starting at &iv[1] (to allow
* space for the implementation to write in the flags
* in the first byte). Note that a full 16 bytes should
* be allocated, even though the length field will
* have a value less than this.
*
* For optimum performance, the data pointed to SHOULD
* be 8-byte aligned.
*/
uint16_t length;
/**< Length of valid IV data.
*
* - For GCM mode, this is either 12 (for 96-bit IVs)
* or 16, in which case data points to J0.
*
* - For CCM mode, this is the length of the nonce,
* which can be in the range 7 to 13 inclusive.
*/
} iv; /**< Initialisation vector parameters */
uint16_t digest_length;
uint16_t aad_length;
/**< The length of the additional authenticated data (AAD) in bytes.
* For CCM mode, this is the length of the actual AAD, even though
* it is required to reserve 18 bytes before the AAD and padding
* at the end of it, so a multiple of 16 bytes is allocated.
*/
};
/** Crypto transformation types */
enum rte_crypto_sym_xform_type {
RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */
RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */
RTE_CRYPTO_SYM_XFORM_CIPHER, /**< Cipher xform */
RTE_CRYPTO_SYM_XFORM_AEAD /**< AEAD xform */
};
/**
* Symmetric crypto transform structure.
*
* This is used to specify the crypto transforms required, multiple transforms
* can be chained together to specify a chain transforms such as authentication
* then cipher, or cipher then authentication. Each transform structure can
* hold a single transform, the type field is used to specify which transform
* is contained within the union
*/
struct rte_crypto_sym_xform {
struct rte_crypto_sym_xform *next;
/**< next xform in chain */
enum rte_crypto_sym_xform_type type
; /**< xform type */
RTE_STD_C11
union {
struct rte_crypto_auth_xform auth;
/**< Authentication / hash xform */
struct rte_crypto_cipher_xform cipher;
/**< Cipher xform */
struct rte_crypto_aead_xform aead;
/**< AEAD xform */
};
};
struct rte_cryptodev_sym_session;
/**
* Symmetric Cryptographic Operation.
*
* This structure contains data relating to performing symmetric cryptographic
* processing on a referenced mbuf data buffer.
*
* When a symmetric crypto operation is enqueued with the device for processing
* it must have a valid *rte_mbuf* structure attached, via m_src parameter,
* which contains the source data which the crypto operation is to be performed
* on.
* While the mbuf is in use by a crypto operation no part of the mbuf should be
* changed by the application as the device may read or write to any part of the
* mbuf. In the case of hardware crypto devices some or all of the mbuf
* may be DMAed in and out of the device, so writing over the original data,
* though only the part specified by the rte_crypto_sym_op for transformation
* will be changed.
* Out-of-place (OOP) operation, where the source mbuf is different to the
* destination mbuf, is a special case. Data will be copied from m_src to m_dst.
* The part copied includes all the parts of the source mbuf that will be
* operated on, based on the cipher.data.offset+cipher.data.length and
* auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part
* indicated by the cipher parameters will be transformed, any extra data around
* this indicated by the auth parameters will be copied unchanged from source to
* destination mbuf.
* Also in OOP operation the cipher.data.offset and auth.data.offset apply to
* both source and destination mbufs. As these offsets are relative to the
* data_off parameter in each mbuf this can result in the data written to the
* destination buffer being at a different alignment, relative to buffer start,
* to the data in the source buffer.
*/
struct rte_crypto_sym_op {
struct rte_mbuf *m_src; /**< source mbuf */
struct rte_mbuf *m_dst; /**< destination mbuf */
RTE_STD_C11
union {
struct rte_cryptodev_sym_session *session;
/**< Handle for the initialised session context */
struct rte_crypto_sym_xform *xform;
/**< Session-less API crypto operation parameters */
struct rte_security_session *sec_session;
/**< Handle for the initialised security session context */
};
RTE_STD_C11
union {
struct {
struct {
uint32_t offset;
/**< Starting point for AEAD processing, specified as
* number of bytes from start of packet in source
* buffer.
*/
uint32_t length;
/**< The message length, in bytes, of the source buffer
* on which the cryptographic operation will be
* computed. This must be a multiple of the block size
*/
} data; /**< Data offsets and length for AEAD */
struct {
uint8_t *data;
/**< This points to the location where the digest result
* should be inserted (in the case of digest generation)
* or where the purported digest exists (in the case of
* digest verification).
*
* At session creation time, the client specified the
* digest result length with the digest_length member
* of the @ref rte_crypto_auth_xform structure. For
* physical crypto devices the caller must allocate at
* least digest_length of physically contiguous memory
* at this location.
*
* For digest generation, the digest result will
* overwrite any data at this location.
*
* @note
* For GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), for
* "digest result" read "authentication tag T".
*/
rte_iova_t phys_addr;
/**< Physical address of digest */
} digest; /**< Digest parameters */
struct {
uint8_t *data;
/**< Pointer to Additional Authenticated Data (AAD)
* needed for authenticated cipher mechanisms (CCM and
* GCM)
*
* Specifically for CCM (@ref RTE_CRYPTO_AEAD_AES_CCM),
* the caller should setup this field as follows:
*
* - the additional authentication data itself should
* be written starting at an offset of 18 bytes into
* the array, leaving room for the first block (16 bytes)
* and the length encoding in the first two bytes of the
* second block.
*
* - the array should be big enough to hold the above
* fields, plus any padding to round this up to the
* nearest multiple of the block size (16 bytes).
* Padding will be added by the implementation.
*
* - Note that PMDs may modify the memory reserved
* (first 18 bytes and the final padding).
*
* Finally, for GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), the
* caller should setup this field as follows:
*
* - the AAD is written in starting at byte 0
* - the array must be big enough to hold the AAD, plus
* any space to round this up to the nearest multiple
* of the block size (16 bytes).
*
*/
rte_iova_t phys_addr; /**< physical address */
} aad;
/**< Additional authentication parameters */
} aead;
struct {
struct {
struct {
uint32_t offset;
/**< Starting point for cipher processing,
* specified as number of bytes from start
* of data in the source buffer.
* The result of the cipher operation will be
* written back into the output buffer
* starting at this location.
*
* @note
* For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
* KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
* and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
* this field should be in bits.
*/
uint32_t length;
/**< The message length, in bytes, of the
* source buffer on which the cryptographic
* operation will be computed.
* This must be a multiple of the block size
* if a block cipher is being used. This is
* also the same as the result length.
*
* @note
* For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2,
* KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
* and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
* this field should be in bits.
*/
} data; /**< Data offsets and length for ciphering */
} cipher;
struct {
struct {
uint32_t offset;
/**< Starting point for hash processing,
* specified as number of bytes from start of
* packet in source buffer.
*
* @note
* For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
* KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
* and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
* this field should be in bits.
*
* @note
* For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
* this offset should be such that
* data to authenticate starts at COUNT.
*/
uint32_t length;
/**< The message length, in bytes, of the source
* buffer that the hash will be computed on.
*
* @note
* For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
* KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
* and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
* this field should be in bits.
*
* @note
* For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
* the length should include the COUNT,
* FRESH, message, direction bit and padding
* (to be multiple of 8 bits).
*/
} data;
/**< Data offsets and length for authentication */
struct {
uint8_t *data;
/**< This points to the location where
* the digest result should be inserted
* (in the case of digest generation)
* or where the purported digest exists
* (in the case of digest verification).
*
* At session creation time, the client
* specified the digest result length with
* the digest_length member of the
* @ref rte_crypto_auth_xform structure.
* For physical crypto devices the caller
* must allocate at least digest_length of
* physically contiguous memory at this
* location.
*
* For digest generation, the digest result
* will overwrite any data at this location.
*
*/
rte_iova_t phys_addr;
/**< Physical address of digest */
} digest; /**< Digest parameters */
} auth;
};
};
};
/**
* Reset the fields of a symmetric operation to their default values.
*
* @param op The crypto operation to be reset.
*/
static inline void
__rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op)
{
memset(op, 0, sizeof(*op));
}
/**
* Allocate space for symmetric crypto xforms in the private data space of the
* crypto operation. This also defaults the crypto xform type to
* RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms
* in the crypto operation
*
* @return
* - On success returns pointer to first crypto xform in crypto operations chain
* - On failure returns NULL
*/
static inline struct rte_crypto_sym_xform *
__rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op,
void *priv_data, uint8_t nb_xforms)
{
struct rte_crypto_sym_xform *xform;
sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data;
do {
xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED;
xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL;
} while (xform);
return sym_op->xform;
}
/**
* Attach a session to a symmetric crypto operation
*
* @param sym_op crypto operation
* @param sess cryptodev session
*/
static inline int
__rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op,
struct rte_cryptodev_sym_session *sess)
{
sym_op->session = sess;
return 0;
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_CRYPTO_SYM_H_ */
|