This file is indexed.

/usr/include/kj/units.h is in libcapnp-dev 0.6.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.

#ifndef KJ_UNITS_H_
#define KJ_UNITS_H_

#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

#include "common.h"
#include <inttypes.h>

namespace kj {

// =======================================================================================
// IDs

template <typename UnderlyingType, typename Label>
struct Id {
  // A type-safe numeric ID.  `UnderlyingType` is the underlying integer representation.  `Label`
  // distinguishes this Id from other Id types.  Sample usage:
  //
  //   class Foo;
  //   typedef Id<uint, Foo> FooId;
  //
  //   class Bar;
  //   typedef Id<uint, Bar> BarId;
  //
  // You can now use the FooId and BarId types without any possibility of accidentally using a
  // FooId when you really wanted a BarId or vice-versa.

  UnderlyingType value;

  inline constexpr Id(): value(0) {}
  inline constexpr explicit Id(int value): value(value) {}

  inline constexpr bool operator==(const Id& other) const { return value == other.value; }
  inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
  inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
  inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
  inline constexpr bool operator< (const Id& other) const { return value <  other.value; }
  inline constexpr bool operator> (const Id& other) const { return value >  other.value; }
};

// =======================================================================================
// Quantity and UnitRatio -- implement unit analysis via the type system

struct Unsafe_ {};
constexpr Unsafe_ unsafe = Unsafe_();
// Use as a parameter to constructors that are unsafe to indicate that you really do mean it.

template <uint64_t maxN, typename T>
class Bounded;
template <uint value>
class BoundedConst;

template <typename T> constexpr bool isIntegral() { return false; }
template <> constexpr bool isIntegral<char>() { return true; }
template <> constexpr bool isIntegral<signed char>() { return true; }
template <> constexpr bool isIntegral<short>() { return true; }
template <> constexpr bool isIntegral<int>() { return true; }
template <> constexpr bool isIntegral<long>() { return true; }
template <> constexpr bool isIntegral<long long>() { return true; }
template <> constexpr bool isIntegral<unsigned char>() { return true; }
template <> constexpr bool isIntegral<unsigned short>() { return true; }
template <> constexpr bool isIntegral<unsigned int>() { return true; }
template <> constexpr bool isIntegral<unsigned long>() { return true; }
template <> constexpr bool isIntegral<unsigned long long>() { return true; }

template <typename T>
struct IsIntegralOrBounded_ { static constexpr bool value = isIntegral<T>(); };
template <uint64_t m, typename T>
struct IsIntegralOrBounded_<Bounded<m, T>> { static constexpr bool value = true; };
template <uint v>
struct IsIntegralOrBounded_<BoundedConst<v>> { static constexpr bool value = true; };

template <typename T>
inline constexpr bool isIntegralOrBounded() { return IsIntegralOrBounded_<T>::value; }

template <typename Number, typename Unit1, typename Unit2>
class UnitRatio {
  // A multiplier used to convert Quantities of one unit to Quantities of another unit.  See
  // Quantity, below.
  //
  // Construct this type by dividing one Quantity by another of a different unit.  Use this type
  // by multiplying it by a Quantity, or dividing a Quantity by it.

  static_assert(isIntegralOrBounded<Number>(),
      "Underlying type for UnitRatio must be integer.");

public:
  inline UnitRatio() {}

  constexpr UnitRatio(Number unit1PerUnit2, decltype(unsafe)): unit1PerUnit2(unit1PerUnit2) {}
  // This constructor was intended to be private, but GCC complains about it being private in a
  // bunch of places that don't appear to even call it, so I made it public.  Oh well.

  template <typename OtherNumber>
  inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
      : unit1PerUnit2(other.unit1PerUnit2) {}

  template <typename OtherNumber>
  inline constexpr UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>
      operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>(
        unit1PerUnit2 + other.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber>
  inline constexpr UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>
      operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>(
        unit1PerUnit2 - other.unit1PerUnit2, unsafe);
  }

  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
      operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
    // U1 / U2 * U3 / U1 = U3 / U2
    return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
        unit1PerUnit2 * other.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
      operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
    // U1 / U2 * U2 / U3 = U1 / U3
    return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
        unit1PerUnit2 * other.unit1PerUnit2, unsafe);
  }

  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
      operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
    // (U1 / U2) / (U1 / U3) = U3 / U2
    return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
        unit1PerUnit2 / other.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename Unit3>
  inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
      operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
    // (U1 / U2) / (U3 / U2) = U1 / U3
    return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
        unit1PerUnit2 / other.unit1PerUnit2, unsafe);
  }

  template <typename OtherNumber>
  inline decltype(Number() / OtherNumber())
      operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
    return unit1PerUnit2 / other.unit1PerUnit2;
  }

  inline bool operator==(UnitRatio other) const { return unit1PerUnit2 == other.unit1PerUnit2; }
  inline bool operator!=(UnitRatio other) const { return unit1PerUnit2 != other.unit1PerUnit2; }

private:
  Number unit1PerUnit2;

  template <typename OtherNumber, typename OtherUnit>
  friend class Quantity;
  template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
  friend class UnitRatio;

  template <typename N1, typename N2, typename U1, typename U2, typename>
  friend inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
      operator*(N1, UnitRatio<N2, U1, U2>);
};

template <typename N1, typename N2, typename U1, typename U2,
          typename = EnableIf<isIntegralOrBounded<N1>() && isIntegralOrBounded<N2>()>>
inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
    operator*(N1 n, UnitRatio<N2, U1, U2> r) {
  return UnitRatio<decltype(N1() * N2()), U1, U2>(n * r.unit1PerUnit2, unsafe);
}

template <typename Number, typename Unit>
class Quantity {
  // A type-safe numeric quantity, specified in terms of some unit.  Two Quantities cannot be used
  // in arithmetic unless they use the same unit.  The `Unit` type parameter is only used to prevent
  // accidental mixing of units; this type is never instantiated and can very well be incomplete.
  // `Number` is the underlying primitive numeric type.
  //
  // Quantities support most basic arithmetic operators, intelligently handling units, and
  // automatically casting the underlying type in the same way that the compiler would.
  //
  // To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
  // To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
  // To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
  //
  // The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
  // one quantity by another.  For example, multiplying meters by meters won't get you square
  // meters; it will get you a compiler error.  It would be interesting to see if template
  // metaprogramming could properly deal with such things but this isn't needed for the present
  // use case.
  //
  // Sample usage:
  //
  //   class SecondsLabel;
  //   typedef Quantity<double, SecondsLabel> Seconds;
  //   constexpr Seconds SECONDS = unit<Seconds>();
  //
  //   class MinutesLabel;
  //   typedef Quantity<double, MinutesLabel> Minutes;
  //   constexpr Minutes MINUTES = unit<Minutes>();
  //
  //   constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
  //       60 * SECONDS / MINUTES;
  //
  //   void waitFor(Seconds seconds) {
  //     sleep(seconds / SECONDS);
  //   }
  //   void waitFor(Minutes minutes) {
  //     waitFor(minutes * SECONDS_PER_MINUTE);
  //   }
  //
  //   void waitThreeMinutes() {
  //     waitFor(3 * MINUTES);
  //   }

  static_assert(isIntegralOrBounded<Number>(),
      "Underlying type for Quantity must be integer.");

public:
  inline constexpr Quantity() = default;

  inline constexpr Quantity(MaxValue_): value(maxValue) {}
  inline constexpr Quantity(MinValue_): value(minValue) {}
  // Allow initialization from maxValue and minValue.
  // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
  // parameters, causing the compiler to complain of a duplicate constructor definition, so we
  // specify MaxValue_ and MinValue_ types explicitly.

  inline constexpr Quantity(Number value, decltype(unsafe)): value(value) {}
  // This constructor was intended to be private, but GCC complains about it being private in a
  // bunch of places that don't appear to even call it, so I made it public.  Oh well.

  template <typename OtherNumber>
  inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
      : value(other.value) {}

  template <typename OtherNumber>
  inline Quantity& operator=(const Quantity<OtherNumber, Unit>& other) {
    value = other.value;
    return *this;
  }

  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number() + OtherNumber()), Unit>
      operator+(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number() + OtherNumber()), Unit>(value + other.value, unsafe);
  }
  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number() - OtherNumber()), Unit>
      operator-(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number() - OtherNumber()), Unit>(value - other.value, unsafe);
  }
  template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
  inline constexpr Quantity<decltype(Number() * OtherNumber()), Unit>
      operator*(OtherNumber other) const {
    return Quantity<decltype(Number() * other), Unit>(value * other, unsafe);
  }
  template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
  inline constexpr Quantity<decltype(Number() / OtherNumber()), Unit>
      operator/(OtherNumber other) const {
    return Quantity<decltype(Number() / other), Unit>(value / other, unsafe);
  }
  template <typename OtherNumber>
  inline constexpr decltype(Number() / OtherNumber())
      operator/(const Quantity<OtherNumber, Unit>& other) const {
    return value / other.value;
  }
  template <typename OtherNumber>
  inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
      operator%(const Quantity<OtherNumber, Unit>& other) const {
    return Quantity<decltype(Number() % OtherNumber()), Unit>(value % other.value, unsafe);
  }

  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number() * OtherNumber()), OtherUnit>
      operator*(UnitRatio<OtherNumber, OtherUnit, Unit> ratio) const {
    return Quantity<decltype(Number() * OtherNumber()), OtherUnit>(
        value * ratio.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number() / OtherNumber()), OtherUnit>
      operator/(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
    return Quantity<decltype(Number() / OtherNumber()), OtherUnit>(
        value / ratio.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
      operator%(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
    return Quantity<decltype(Number() % OtherNumber()), Unit>(
        value % ratio.unit1PerUnit2, unsafe);
  }
  template <typename OtherNumber, typename OtherUnit>
  inline constexpr UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>
      operator/(Quantity<OtherNumber, OtherUnit> other) const {
    return UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>(
        value / other.value, unsafe);
  }

  template <typename OtherNumber>
  inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
    return value == other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
    return value != other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
    return value <= other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
    return value >= other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
    return value < other.value;
  }
  template <typename OtherNumber>
  inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
    return value > other.value;
  }

  template <typename OtherNumber>
  inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
    value += other.value;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
    value -= other.value;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator*=(OtherNumber other) {
    value *= other;
    return *this;
  }
  template <typename OtherNumber>
  inline Quantity& operator/=(OtherNumber other) {
    value /= other.value;
    return *this;
  }

private:
  Number value;

  template <typename OtherNumber, typename OtherUnit>
  friend class Quantity;

  template <typename Number1, typename Number2, typename Unit2>
  friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
      -> Quantity<decltype(Number1() * Number2()), Unit2>;
};

template <typename T> struct Unit_ {
  static inline constexpr T get() { return T(1); }
};
template <typename T, typename U>
struct Unit_<Quantity<T, U>> {
  static inline constexpr Quantity<decltype(Unit_<T>::get()), U> get() {
    return Quantity<decltype(Unit_<T>::get()), U>(Unit_<T>::get(), unsafe);
  }
};

template <typename T>
inline constexpr auto unit() -> decltype(Unit_<T>::get()) { return Unit_<T>::get(); }
// unit<Quantity<T, U>>() returns a Quantity of value 1.  It also, intentionally, works on basic
// numeric types.

template <typename Number1, typename Number2, typename Unit>
inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
    -> Quantity<decltype(Number1() * Number2()), Unit> {
  return Quantity<decltype(Number1() * Number2()), Unit>(a * b.value, unsafe);
}

template <typename Number1, typename Number2, typename Unit, typename Unit2>
inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
    Quantity<Number2, Unit> measure)
    -> decltype(measure * ratio) {
  return measure * ratio;
}

// =======================================================================================
// Absolute measures

template <typename T, typename Label>
class Absolute {
  // Wraps some other value -- typically a Quantity -- but represents a value measured based on
  // some absolute origin.  For example, if `Duration` is a type representing a time duration,
  // Absolute<Duration, UnixEpoch> might be a calendar date.
  //
  // Since Absolute represents measurements relative to some arbitrary origin, the only sensible
  // arithmetic to perform on them is addition and subtraction.

  // TODO(someday):  Do the same automatic expansion of integer width that Quantity does?  Doesn't
  //   matter for our time use case, where we always use 64-bit anyway.  Note that fixing this
  //   would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
  //   units, which is actually totally logical and kind of neat.

public:
  inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
  inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
  inline constexpr T operator-(const Absolute& other) const { return value - other.value; }

  inline Absolute& operator+=(const T& other) { value += other; return *this; }
  inline Absolute& operator-=(const T& other) { value -= other; return *this; }

  inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
  inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
  inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
  inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
  inline constexpr bool operator< (const Absolute& other) const { return value <  other.value; }
  inline constexpr bool operator> (const Absolute& other) const { return value >  other.value; }

private:
  T value;

  explicit constexpr Absolute(T value): value(value) {}

  template <typename U>
  friend inline constexpr U origin();
};

template <typename T, typename Label>
inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
  return b + a;
}

template <typename T> struct UnitOf_ { typedef T Type; };
template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
template <typename T>
using UnitOf = typename UnitOf_<T>::Type;
// UnitOf<Absolute<T, U>> is T.  UnitOf<AnythingElse> is AnythingElse.

template <typename T>
inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
// origin<Absolute<T, U>>() returns an Absolute of value 0.  It also, intentionally, works on basic
// numeric types.

// =======================================================================================
// Overflow avoidance

template <uint64_t n, uint accum = 0>
struct BitCount_ {
  static constexpr uint value = BitCount_<(n >> 1), accum + 1>::value;
};
template <uint accum>
struct BitCount_<0, accum> {
  static constexpr uint value = accum;
};

template <uint64_t n>
inline constexpr uint bitCount() { return BitCount_<n>::value; }
// Number of bits required to represent the number `n`.

template <uint bitCountBitCount> struct AtLeastUInt_ {
  static_assert(bitCountBitCount < 7, "don't know how to represent integers over 64 bits");
};
template <> struct AtLeastUInt_<0> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<1> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<2> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<3> { typedef uint8_t Type; };
template <> struct AtLeastUInt_<4> { typedef uint16_t Type; };
template <> struct AtLeastUInt_<5> { typedef uint32_t Type; };
template <> struct AtLeastUInt_<6> { typedef uint64_t Type; };

template <uint bits>
using AtLeastUInt = typename AtLeastUInt_<bitCount<max(bits, 1) - 1>()>::Type;
// AtLeastUInt<n> is an unsigned integer of at least n bits. E.g. AtLeastUInt<12> is uint16_t.

// -------------------------------------------------------------------

template <uint value>
class BoundedConst {
  // A constant integer value on which we can do bit size analysis.

public:
  BoundedConst() = default;

  inline constexpr uint unwrap() const { return value; }

#define OP(op, check) \
  template <uint other> \
  inline constexpr BoundedConst<(value op other)> \
      operator op(BoundedConst<other>) const { \
    static_assert(check, "overflow in BoundedConst arithmetic"); \
    return BoundedConst<(value op other)>(); \
  }
#define COMPARE_OP(op) \
  template <uint other> \
  inline constexpr bool operator op(BoundedConst<other>) const { \
    return value op other; \
  }

  OP(+, value + other >= value)
  OP(-, value - other <= value)
  OP(*, value * other / other == value)
  OP(/, true)   // div by zero already errors out; no other division ever overflows
  OP(%, true)   // mod by zero already errors out; no other modulus ever overflows
  OP(<<, value << other >= value)
  OP(>>, true)  // right shift can't overflow
  OP(&, true)   // bitwise ops can't overflow
  OP(|, true)   // bitwise ops can't overflow

  COMPARE_OP(==)
  COMPARE_OP(!=)
  COMPARE_OP(< )
  COMPARE_OP(> )
  COMPARE_OP(<=)
  COMPARE_OP(>=)
#undef OP
#undef COMPARE_OP
};

template <uint64_t m, typename T>
struct Unit_<Bounded<m, T>> {
  static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
};

template <uint value>
struct Unit_<BoundedConst<value>> {
  static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
};

template <uint value>
inline constexpr BoundedConst<value> bounded() {
  return BoundedConst<value>();
}

template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedAdd() {
  static_assert(a + b >= a, "possible overflow detected");
  return a + b;
}
template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedSub() {
  static_assert(a - b <= a, "possible underflow detected");
  return a - b;
}
template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedMul() {
  static_assert(a * b / b == a, "possible overflow detected");
  return a * b;
}
template <uint64_t a, uint64_t b>
static constexpr uint64_t boundedLShift() {
  static_assert(a << b >= a, "possible overflow detected");
  return a << b;
}

template <uint a, uint b>
inline constexpr BoundedConst<kj::min(a, b)> min(BoundedConst<a>, BoundedConst<b>) {
  return bounded<kj::min(a, b)>();
}
template <uint a, uint b>
inline constexpr BoundedConst<kj::max(a, b)> max(BoundedConst<a>, BoundedConst<b>) {
  return bounded<kj::max(a, b)>();
}
// We need to override min() and max() between constants because the ternary operator in the
// default implementation would complain.

// -------------------------------------------------------------------

template <uint64_t maxN, typename T>
class Bounded {
public:
  static_assert(maxN <= T(kj::maxValue), "possible overflow detected");

  Bounded() = default;

  Bounded(const Bounded& other) = default;
  template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
  inline constexpr Bounded(OtherInt value): value(value) {
    static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
  }
  template <uint64_t otherMax, typename OtherT>
  inline constexpr Bounded(const Bounded<otherMax, OtherT>& other)
      : value(other.value) {
    static_assert(otherMax <= maxN, "possible overflow detected");
  }
  template <uint otherValue>
  inline constexpr Bounded(BoundedConst<otherValue>)
      : value(otherValue) {
    static_assert(otherValue <= maxN, "overflow detected");
  }

  Bounded& operator=(const Bounded& other) = default;
  template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
  Bounded& operator=(OtherInt other) {
    static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
    value = other;
    return *this;
  }
  template <uint64_t otherMax, typename OtherT>
  inline Bounded& operator=(const Bounded<otherMax, OtherT>& other) {
    static_assert(otherMax <= maxN, "possible overflow detected");
    value = other.value;
    return *this;
  }
  template <uint otherValue>
  inline Bounded& operator=(BoundedConst<otherValue>) {
    static_assert(otherValue <= maxN, "overflow detected");
    value = otherValue;
    return *this;
  }

  inline constexpr T unwrap() const { return value; }

#define OP(op, newMax) \
  template <uint64_t otherMax, typename otherT> \
  inline constexpr Bounded<newMax, decltype(T() op otherT())> \
      operator op(const Bounded<otherMax, otherT>& other) const { \
    return Bounded<newMax, decltype(T() op otherT())>(value op other.value, unsafe); \
  }
#define COMPARE_OP(op) \
  template <uint64_t otherMax, typename OtherT> \
  inline constexpr bool operator op(const Bounded<otherMax, OtherT>& other) const { \
    return value op other.value; \
  }

  OP(+, (boundedAdd<maxN, otherMax>()))
  OP(*, (boundedMul<maxN, otherMax>()))
  OP(/, maxN)
  OP(%, otherMax - 1)

  // operator- is intentionally omitted because we mostly use this with unsigned types, and
  // subtraction requires proof that subtrahend is not greater than the minuend.

  COMPARE_OP(==)
  COMPARE_OP(!=)
  COMPARE_OP(< )
  COMPARE_OP(> )
  COMPARE_OP(<=)
  COMPARE_OP(>=)

#undef OP
#undef COMPARE_OP

  template <uint64_t newMax, typename ErrorFunc>
  inline Bounded<newMax, T> assertMax(ErrorFunc&& func) const {
    // Assert that the number is no more than `newMax`. Otherwise, call `func`.
    static_assert(newMax < maxN, "this bounded size assertion is redundant");
    if (KJ_UNLIKELY(value > newMax)) func();
    return Bounded<newMax, T>(value, unsafe);
  }

  template <uint64_t otherMax, typename OtherT, typename ErrorFunc>
  inline Bounded<maxN, decltype(T() - OtherT())> subtractChecked(
      const Bounded<otherMax, OtherT>& other, ErrorFunc&& func) const {
    // Subtract a number, calling func() if the result would underflow.
    if (KJ_UNLIKELY(value < other.value)) func();
    return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
  }

  template <uint otherValue, typename ErrorFunc>
  inline Bounded<maxN - otherValue, T> subtractChecked(
      BoundedConst<otherValue>, ErrorFunc&& func) const {
    // Subtract a number, calling func() if the result would underflow.
    static_assert(otherValue <= maxN, "underflow detected");
    if (KJ_UNLIKELY(value < otherValue)) func();
    return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
  }

  template <uint64_t otherMax, typename OtherT>
  inline Maybe<Bounded<maxN, decltype(T() - OtherT())>> trySubtract(
      const Bounded<otherMax, OtherT>& other) const {
    // Subtract a number, calling func() if the result would underflow.
    if (value < other.value) {
      return nullptr;
    } else {
      return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
    }
  }

  template <uint otherValue>
  inline Maybe<Bounded<maxN - otherValue, T>> trySubtract(BoundedConst<otherValue>) const {
    // Subtract a number, calling func() if the result would underflow.
    if (value < otherValue) {
      return nullptr;
    } else {
      return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
    }
  }

  inline constexpr Bounded(T value, decltype(unsafe)): value(value) {}
  template <uint64_t otherMax, typename OtherT>
  inline constexpr Bounded(Bounded<otherMax, OtherT> value, decltype(unsafe))
      : value(value.value) {}
  // Mainly for internal use.
  //
  // Only use these as a last resort, with ample commentary on why you think it's safe.

private:
  T value;

  template <uint64_t, typename>
  friend class Bounded;
};

template <typename Number>
inline constexpr Bounded<Number(kj::maxValue), Number> bounded(Number value) {
  return Bounded<Number(kj::maxValue), Number>(value, unsafe);
}

inline constexpr Bounded<1, uint8_t> bounded(bool value) {
  return Bounded<1, uint8_t>(value, unsafe);
}

template <uint bits, typename Number>
inline constexpr Bounded<maxValueForBits<bits>(), Number> assumeBits(Number value) {
  return Bounded<maxValueForBits<bits>(), Number>(value, unsafe);
}

template <uint bits, uint64_t maxN, typename T>
inline constexpr Bounded<maxValueForBits<bits>(), T> assumeBits(Bounded<maxN, T> value) {
  return Bounded<maxValueForBits<bits>(), T>(value, unsafe);
}

template <uint bits, typename Number, typename Unit>
inline constexpr auto assumeBits(Quantity<Number, Unit> value)
    -> Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit> {
  return Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit>(
      assumeBits<bits>(value / unit<Quantity<Number, Unit>>()), unsafe);
}

template <uint64_t maxN, typename Number>
inline constexpr Bounded<maxN, Number> assumeMax(Number value) {
  return Bounded<maxN, Number>(value, unsafe);
}

template <uint64_t newMaxN, uint64_t maxN, typename T>
inline constexpr Bounded<newMaxN, T> assumeMax(Bounded<maxN, T> value) {
  return Bounded<newMaxN, T>(value, unsafe);
}

template <uint64_t maxN, typename Number, typename Unit>
inline constexpr auto assumeMax(Quantity<Number, Unit> value)
    -> Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit> {
  return Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit>(
      assumeMax<maxN>(value / unit<Quantity<Number, Unit>>()), unsafe);
}

template <uint maxN, typename Number>
inline constexpr Bounded<maxN, Number> assumeMax(BoundedConst<maxN>, Number value) {
  return assumeMax<maxN>(value);
}

template <uint newMaxN, uint64_t maxN, typename T>
inline constexpr Bounded<newMaxN, T> assumeMax(BoundedConst<maxN>, Bounded<maxN, T> value) {
  return assumeMax<maxN>(value);
}

template <uint maxN, typename Number, typename Unit>
inline constexpr auto assumeMax(Quantity<BoundedConst<maxN>, Unit>, Quantity<Number, Unit> value)
    -> decltype(assumeMax<maxN>(value)) {
  return assumeMax<maxN>(value);
}

template <uint64_t newMax, uint64_t maxN, typename T, typename ErrorFunc>
inline Bounded<newMax, T> assertMax(Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
  // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
  // if not.
  static_assert(newMax < maxN, "this bounded size assertion is redundant");
  return value.template assertMax<newMax>(kj::fwd<ErrorFunc>(errorFunc));
}

template <uint64_t newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
inline Quantity<Bounded<newMax, T>, Unit> assertMax(
    Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
  // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
  // if not.
  static_assert(newMax < maxN, "this bounded size assertion is redundant");
  return (value / unit<decltype(value)>()).template assertMax<newMax>(
      kj::fwd<ErrorFunc>(errorFunc)) * unit<decltype(value)>();
}

template <uint newMax, uint64_t maxN, typename T, typename ErrorFunc>
inline Bounded<newMax, T> assertMax(
    BoundedConst<newMax>, Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
  return assertMax<newMax>(value, kj::mv(errorFunc));
}

template <uint newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
inline Quantity<Bounded<newMax, T>, Unit> assertMax(
    Quantity<BoundedConst<newMax>, Unit>,
    Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
  return assertMax<newMax>(value, kj::mv(errorFunc));
}

template <uint64_t newBits, uint64_t maxN, typename T, typename ErrorFunc = ThrowOverflow>
inline Bounded<maxValueForBits<newBits>(), T> assertMaxBits(
    Bounded<maxN, T> value, ErrorFunc&& errorFunc = ErrorFunc()) {
  // Assert that the bounded value requires no more than the given number of bits, calling
  // errorFunc() if not.
  return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
}

template <uint64_t newBits, uint64_t maxN, typename T, typename Unit,
          typename ErrorFunc = ThrowOverflow>
inline Quantity<Bounded<maxValueForBits<newBits>(), T>, Unit> assertMaxBits(
    Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc = ErrorFunc()) {
  // Assert that the bounded value requires no more than the given number of bits, calling
  // errorFunc() if not.
  return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
}

template <typename newT, uint64_t maxN, typename T>
inline constexpr Bounded<maxN, newT> upgradeBound(Bounded<maxN, T> value) {
  return value;
}

template <typename newT, uint64_t maxN, typename T, typename Unit>
inline constexpr Quantity<Bounded<maxN, newT>, Unit> upgradeBound(
    Quantity<Bounded<maxN, T>, Unit> value) {
  return value;
}

template <uint64_t maxN, typename T, typename Other, typename ErrorFunc>
inline auto subtractChecked(Bounded<maxN, T> value, Other other, ErrorFunc&& errorFunc)
    -> decltype(value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc))) {
  return value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc));
}

template <typename T, typename U, typename Unit, typename ErrorFunc>
inline auto subtractChecked(Quantity<T, Unit> value, Quantity<U, Unit> other, ErrorFunc&& errorFunc)
    -> Quantity<decltype(subtractChecked(T(), U(), kj::fwd<ErrorFunc>(errorFunc))), Unit> {
  return subtractChecked(value / unit<Quantity<T, Unit>>(),
                         other / unit<Quantity<U, Unit>>(),
                         kj::fwd<ErrorFunc>(errorFunc))
      * unit<Quantity<T, Unit>>();
}

template <uint64_t maxN, typename T, typename Other>
inline auto trySubtract(Bounded<maxN, T> value, Other other)
    -> decltype(value.trySubtract(other)) {
  return value.trySubtract(other);
}

template <typename T, typename U, typename Unit>
inline auto trySubtract(Quantity<T, Unit> value, Quantity<U, Unit> other)
    -> Maybe<Quantity<decltype(subtractChecked(T(), U(), int())), Unit>> {
  return trySubtract(value / unit<Quantity<T, Unit>>(),
                     other / unit<Quantity<U, Unit>>())
      .map([](decltype(subtractChecked(T(), U(), int())) x) {
    return x * unit<Quantity<T, Unit>>();
  });
}

template <uint64_t aN, uint64_t bN, typename A, typename B>
inline constexpr Bounded<kj::min(aN, bN), WiderType<A, B>>
min(Bounded<aN, A> a, Bounded<bN, B> b) {
  return Bounded<kj::min(aN, bN), WiderType<A, B>>(kj::min(a.unwrap(), b.unwrap()), unsafe);
}
template <uint64_t aN, uint64_t bN, typename A, typename B>
inline constexpr Bounded<kj::max(aN, bN), WiderType<A, B>>
max(Bounded<aN, A> a, Bounded<bN, B> b) {
  return Bounded<kj::max(aN, bN), WiderType<A, B>>(kj::max(a.unwrap(), b.unwrap()), unsafe);
}
// We need to override min() and max() because:
// 1) WiderType<> might not choose the correct bounds.
// 2) One of the two sides of the ternary operator in the default implementation would fail to
//    typecheck even though it is OK in practice.

// -------------------------------------------------------------------
// Operators between Bounded and BoundedConst

#define OP(op, newMax) \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr Bounded<(newMax), decltype(T() op uint())> operator op( \
    Bounded<maxN, T> value, BoundedConst<cvalue>) { \
  return Bounded<(newMax), decltype(T() op uint())>(value.unwrap() op cvalue, unsafe); \
}

#define REVERSE_OP(op, newMax) \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr Bounded<(newMax), decltype(uint() op T())> operator op( \
    BoundedConst<cvalue>, Bounded<maxN, T> value) { \
  return Bounded<(newMax), decltype(uint() op T())>(cvalue op value.unwrap(), unsafe); \
}

#define COMPARE_OP(op) \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr bool operator op(Bounded<maxN, T> value, BoundedConst<cvalue>) { \
  return value.unwrap() op cvalue; \
} \
template <uint64_t maxN, uint cvalue, typename T> \
inline constexpr bool operator op(BoundedConst<cvalue>, Bounded<maxN, T> value) { \
  return cvalue op value.unwrap(); \
}

OP(+, (boundedAdd<maxN, cvalue>()))
REVERSE_OP(+, (boundedAdd<maxN, cvalue>()))

OP(*, (boundedMul<maxN, cvalue>()))
REVERSE_OP(*, (boundedAdd<maxN, cvalue>()))

OP(/, maxN / cvalue)
REVERSE_OP(/, cvalue)  // denominator could be 1

OP(%, cvalue - 1)
REVERSE_OP(%, maxN - 1)

OP(<<, (boundedLShift<maxN, cvalue>()))
REVERSE_OP(<<, (boundedLShift<cvalue, maxN>()))

OP(>>, maxN >> cvalue)
REVERSE_OP(>>, cvalue >> maxN)

OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
REVERSE_OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)

OP(|, maxN | cvalue)
REVERSE_OP(|, maxN | cvalue)

COMPARE_OP(==)
COMPARE_OP(!=)
COMPARE_OP(< )
COMPARE_OP(> )
COMPARE_OP(<=)
COMPARE_OP(>=)

#undef OP
#undef REVERSE_OP
#undef COMPARE_OP

template <uint64_t maxN, uint cvalue, typename T>
inline constexpr Bounded<cvalue, decltype(uint() - T())>
    operator-(BoundedConst<cvalue>, Bounded<maxN, T> value) {
  // We allow subtraction of a variable from a constant only if the constant is greater than or
  // equal to the maximum possible value of the variable. Since the variable could be zero, the
  // result can be as large as the constant.
  //
  // We do not allow subtraction of a constant from a variable because there's never a guarantee it
  // won't underflow (unless the constant is zero, which is silly).
  static_assert(cvalue >= maxN, "possible underflow detected");
  return Bounded<cvalue, decltype(uint() - T())>(cvalue - value.unwrap(), unsafe);
}

template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::min(aN, b), A> min(Bounded<aN, A> a, BoundedConst<b>) {
  return Bounded<kj::min(aN, b), A>(kj::min(b, a.unwrap()), unsafe);
}
template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::min(aN, b), A> min(BoundedConst<b>, Bounded<aN, A> a) {
  return Bounded<kj::min(aN, b), A>(kj::min(a.unwrap(), b), unsafe);
}
template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::max(aN, b), A> max(Bounded<aN, A> a, BoundedConst<b>) {
  return Bounded<kj::max(aN, b), A>(kj::max(b, a.unwrap()), unsafe);
}
template <uint64_t aN, uint b, typename A>
inline constexpr Bounded<kj::max(aN, b), A> max(BoundedConst<b>, Bounded<aN, A> a) {
  return Bounded<kj::max(aN, b), A>(kj::max(a.unwrap(), b), unsafe);
}
// We need to override min() between a Bounded and a constant since:
// 1) WiderType<> might choose BoundedConst over a 1-byte Bounded, which is wrong.
// 2) To clamp the bounds of the output type.
// 3) Same ternary operator typechecking issues.

// -------------------------------------------------------------------

template <uint64_t maxN, typename T>
class SafeUnwrapper {
public:
  inline explicit constexpr SafeUnwrapper(Bounded<maxN, T> value): value(value.unwrap()) {}

  template <typename U, typename = EnableIf<isIntegral<U>()>>
  inline constexpr operator U() const {
    static_assert(maxN <= U(maxValue), "possible truncation detected");
    return value;
  }

  inline constexpr operator bool() const {
    static_assert(maxN <= 1, "possible truncation detected");
    return value;
  }

private:
  T value;
};

template <uint64_t maxN, typename T>
inline constexpr SafeUnwrapper<maxN, T> unbound(Bounded<maxN, T> bounded) {
  // Unwraps the bounded value, returning a value that can be implicitly cast to any integer type.
  // If this implicit cast could truncate, a compile-time error will be raised.
  return SafeUnwrapper<maxN, T>(bounded);
}

template <uint64_t value>
class SafeConstUnwrapper {
public:
  template <typename T, typename = EnableIf<isIntegral<T>()>>
  inline constexpr operator T() const {
    static_assert(value <= T(maxValue), "this operation will truncate");
    return value;
  }

  inline constexpr operator bool() const {
    static_assert(value <= 1, "this operation will truncate");
    return value;
  }
};

template <uint value>
inline constexpr SafeConstUnwrapper<value> unbound(BoundedConst<value>) {
  return SafeConstUnwrapper<value>();
}

template <typename T, typename U>
inline constexpr T unboundAs(U value) {
  return unbound(value);
}

template <uint64_t requestedMax, uint64_t maxN, typename T>
inline constexpr T unboundMax(Bounded<maxN, T> value) {
  // Explicitly ungaurd expecting a value that is at most `maxN`.
  static_assert(maxN <= requestedMax, "possible overflow detected");
  return value.unwrap();
}

template <uint64_t requestedMax, uint value>
inline constexpr uint unboundMax(BoundedConst<value>) {
  // Explicitly ungaurd expecting a value that is at most `maxN`.
  static_assert(value <= requestedMax, "overflow detected");
  return value;
}

template <uint bits, typename T>
inline constexpr auto unboundMaxBits(T value) ->
    decltype(unboundMax<maxValueForBits<bits>()>(value)) {
  // Explicitly ungaurd expecting a value that fits into `bits` bits.
  return unboundMax<maxValueForBits<bits>()>(value);
}

#define OP(op) \
template <uint64_t maxN, typename T, typename U> \
inline constexpr auto operator op(T a, SafeUnwrapper<maxN, U> b) -> decltype(a op (T)b) { \
  return a op (AtLeastUInt<sizeof(T)*8>)b; \
} \
template <uint64_t maxN, typename T, typename U> \
inline constexpr auto operator op(SafeUnwrapper<maxN, U> b, T a) -> decltype((T)b op a) { \
  return (AtLeastUInt<sizeof(T)*8>)b op a; \
} \
template <uint64_t value, typename T> \
inline constexpr auto operator op(T a, SafeConstUnwrapper<value> b) -> decltype(a op (T)b) { \
  return a op (AtLeastUInt<sizeof(T)*8>)b; \
} \
template <uint64_t value, typename T> \
inline constexpr auto operator op(SafeConstUnwrapper<value> b, T a) -> decltype((T)b op a) { \
  return (AtLeastUInt<sizeof(T)*8>)b op a; \
}

OP(+)
OP(-)
OP(*)
OP(/)
OP(%)
OP(<<)
OP(>>)
OP(&)
OP(|)
OP(==)
OP(!=)
OP(<=)
OP(>=)
OP(<)
OP(>)

#undef OP

// -------------------------------------------------------------------

template <uint64_t maxN, typename T>
class Range<Bounded<maxN, T>> {
public:
  inline constexpr Range(Bounded<maxN, T> begin, Bounded<maxN, T> end)
      : inner(unbound(begin), unbound(end)) {}
  inline explicit constexpr Range(Bounded<maxN, T> end)
      : inner(unbound(end)) {}

  class Iterator {
  public:
    Iterator() = default;
    inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}

    inline Bounded<maxN, T> operator* () const { return Bounded<maxN, T>(*inner, unsafe); }
    inline Iterator& operator++() { ++inner; return *this; }

    inline bool operator==(const Iterator& other) const { return inner == other.inner; }
    inline bool operator!=(const Iterator& other) const { return inner != other.inner; }

  private:
    typename Range<T>::Iterator inner;
  };

  inline Iterator begin() const { return Iterator(inner.begin()); }
  inline Iterator end() const { return Iterator(inner.end()); }

private:
  Range<T> inner;
};

template <typename T, typename U>
class Range<Quantity<T, U>> {
public:
  inline constexpr Range(Quantity<T, U> begin, Quantity<T, U> end)
      : inner(begin / unit<Quantity<T, U>>(), end / unit<Quantity<T, U>>()) {}
  inline explicit constexpr Range(Quantity<T, U> end)
      : inner(end / unit<Quantity<T, U>>()) {}

  class Iterator {
  public:
    Iterator() = default;
    inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}

    inline Quantity<T, U> operator* () const { return *inner * unit<Quantity<T, U>>(); }
    inline Iterator& operator++() { ++inner; return *this; }

    inline bool operator==(const Iterator& other) const { return inner == other.inner; }
    inline bool operator!=(const Iterator& other) const { return inner != other.inner; }

  private:
    typename Range<T>::Iterator inner;
  };

  inline Iterator begin() const { return Iterator(inner.begin()); }
  inline Iterator end() const { return Iterator(inner.end()); }

private:
  Range<T> inner;
};

template <uint value>
inline constexpr Range<Bounded<value, uint>> zeroTo(BoundedConst<value> end) {
  return Range<Bounded<value, uint>>(end);
}

template <uint value, typename Unit>
inline constexpr Range<Quantity<Bounded<value, uint>, Unit>>
    zeroTo(Quantity<BoundedConst<value>, Unit> end) {
  return Range<Quantity<Bounded<value, uint>, Unit>>(end);
}

}  // namespace kj

#endif  // KJ_UNITS_H_