/usr/include/boost/multiprecision/tommath.hpp is in libboost1.65-dev 1.65.1+dfsg-0ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 | ///////////////////////////////////////////////////////////////////////////////
// Copyright 2011 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_MP_TOMMATH_BACKEND_HPP
#define BOOST_MATH_MP_TOMMATH_BACKEND_HPP
#include <boost/multiprecision/number.hpp>
#include <boost/multiprecision/rational_adaptor.hpp>
#include <boost/multiprecision/detail/integer_ops.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/cstdint.hpp>
#include <boost/scoped_array.hpp>
#include <boost/functional/hash_fwd.hpp>
#include <tommath.h>
#include <cmath>
#include <limits>
#include <climits>
namespace boost{ namespace multiprecision{ namespace backends{
namespace detail{
inline void check_tommath_result(unsigned v)
{
if(v != MP_OKAY)
{
BOOST_THROW_EXCEPTION(std::runtime_error(mp_error_to_string(v)));
}
}
}
struct tommath_int;
void eval_multiply(tommath_int& t, const tommath_int& o);
void eval_add(tommath_int& t, const tommath_int& o);
struct tommath_int
{
typedef mpl::list<boost::int32_t, boost::long_long_type> signed_types;
typedef mpl::list<boost::uint32_t, boost::ulong_long_type> unsigned_types;
typedef mpl::list<long double> float_types;
tommath_int()
{
detail::check_tommath_result(mp_init(&m_data));
}
tommath_int(const tommath_int& o)
{
detail::check_tommath_result(mp_init_copy(&m_data, const_cast< ::mp_int*>(&o.m_data)));
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
tommath_int(tommath_int&& o) BOOST_NOEXCEPT
{
m_data = o.m_data;
o.m_data.dp = 0;
}
tommath_int& operator = (tommath_int&& o)
{
mp_exch(&m_data, &o.m_data);
return *this;
}
#endif
tommath_int& operator = (const tommath_int& o)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
if(o.m_data.dp)
detail::check_tommath_result(mp_copy(const_cast< ::mp_int*>(&o.m_data), &m_data));
return *this;
}
tommath_int& operator = (boost::ulong_long_type i)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
boost::ulong_long_type mask = ((1uLL << std::numeric_limits<unsigned>::digits) - 1);
unsigned shift = 0;
::mp_int t;
detail::check_tommath_result(mp_init(&t));
mp_zero(&m_data);
while(i)
{
detail::check_tommath_result(mp_set_int(&t, static_cast<unsigned>(i & mask)));
if(shift)
detail::check_tommath_result(mp_mul_2d(&t, shift, &t));
detail::check_tommath_result((mp_add(&m_data, &t, &m_data)));
shift += std::numeric_limits<unsigned>::digits;
i >>= std::numeric_limits<unsigned>::digits;
}
mp_clear(&t);
return *this;
}
tommath_int& operator = (boost::long_long_type i)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
bool neg = i < 0;
*this = boost::multiprecision::detail::unsigned_abs(i);
if(neg)
detail::check_tommath_result(mp_neg(&m_data, &m_data));
return *this;
}
//
// Note that although mp_set_int takes an unsigned long as an argument
// it only sets the first 32-bits to the result, and ignores the rest.
// So use uint32_t as the largest type to pass to this function.
//
tommath_int& operator = (boost::uint32_t i)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
detail::check_tommath_result((mp_set_int(&m_data, i)));
return *this;
}
tommath_int& operator = (boost::int32_t i)
{
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
bool neg = i < 0;
*this = boost::multiprecision::detail::unsigned_abs(i);
if(neg)
detail::check_tommath_result(mp_neg(&m_data, &m_data));
return *this;
}
tommath_int& operator = (long double a)
{
using std::frexp;
using std::ldexp;
using std::floor;
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
if (a == 0) {
detail::check_tommath_result(mp_set_int(&m_data, 0));
return *this;
}
if (a == 1) {
detail::check_tommath_result(mp_set_int(&m_data, 1));
return *this;
}
BOOST_ASSERT(!(boost::math::isinf)(a));
BOOST_ASSERT(!(boost::math::isnan)(a));
int e;
long double f, term;
detail::check_tommath_result(mp_set_int(&m_data, 0u));
::mp_int t;
detail::check_tommath_result(mp_init(&t));
f = frexp(a, &e);
static const int shift = std::numeric_limits<int>::digits - 1;
while(f)
{
// extract int sized bits from f:
f = ldexp(f, shift);
term = floor(f);
e -= shift;
detail::check_tommath_result(mp_mul_2d(&m_data, shift, &m_data));
if(term > 0)
{
detail::check_tommath_result(mp_set_int(&t, static_cast<int>(term)));
detail::check_tommath_result(mp_add(&m_data, &t, &m_data));
}
else
{
detail::check_tommath_result(mp_set_int(&t, static_cast<int>(-term)));
detail::check_tommath_result(mp_sub(&m_data, &t, &m_data));
}
f -= term;
}
if(e > 0)
detail::check_tommath_result(mp_mul_2d(&m_data, e, &m_data));
else if(e < 0)
{
tommath_int t2;
detail::check_tommath_result(mp_div_2d(&m_data, -e, &m_data, &t2.data()));
}
mp_clear(&t);
return *this;
}
tommath_int& operator = (const char* s)
{
//
// We don't use libtommath's own routine because it doesn't error check the input :-(
//
if(m_data.dp == 0)
detail::check_tommath_result(mp_init(&m_data));
std::size_t n = s ? std::strlen(s) : 0;
*this = static_cast<boost::uint32_t>(0u);
unsigned radix = 10;
bool isneg = false;
if(n && (*s == '-'))
{
--n;
++s;
isneg = true;
}
if(n && (*s == '0'))
{
if((n > 1) && ((s[1] == 'x') || (s[1] == 'X')))
{
radix = 16;
s +=2;
n -= 2;
}
else
{
radix = 8;
n -= 1;
}
}
if(n)
{
if(radix == 8 || radix == 16)
{
unsigned shift = radix == 8 ? 3 : 4;
unsigned block_count = DIGIT_BIT / shift;
unsigned block_shift = shift * block_count;
boost::ulong_long_type val, block;
while(*s)
{
block = 0;
for(unsigned i = 0; (i < block_count); ++i)
{
if(*s >= '0' && *s <= '9')
val = *s - '0';
else if(*s >= 'a' && *s <= 'f')
val = 10 + *s - 'a';
else if(*s >= 'A' && *s <= 'F')
val = 10 + *s - 'A';
else
val = 400;
if(val > radix)
{
BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string."));
}
block <<= shift;
block |= val;
if(!*++s)
{
// final shift is different:
block_shift = (i + 1) * shift;
break;
}
}
detail::check_tommath_result(mp_mul_2d(&data(), block_shift, &data()));
if(data().used)
data().dp[0] |= block;
else
*this = block;
}
}
else
{
// Base 10, we extract blocks of size 10^9 at a time, that way
// the number of multiplications is kept to a minimum:
boost::uint32_t block_mult = 1000000000;
while(*s)
{
boost::uint32_t block = 0;
for(unsigned i = 0; i < 9; ++i)
{
boost::uint32_t val;
if(*s >= '0' && *s <= '9')
val = *s - '0';
else
BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected character encountered in input."));
block *= 10;
block += val;
if(!*++s)
{
static const boost::uint32_t block_multiplier[9] = { 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
block_mult = block_multiplier[i];
break;
}
}
tommath_int t;
t = block_mult;
eval_multiply(*this, t);
t = block;
eval_add(*this, t);
}
}
}
if(isneg)
this->negate();
return *this;
}
std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags f)const
{
BOOST_ASSERT(m_data.dp);
int base = 10;
if((f & std::ios_base::oct) == std::ios_base::oct)
base = 8;
else if((f & std::ios_base::hex) == std::ios_base::hex)
base = 16;
//
// sanity check, bases 8 and 16 are only available for positive numbers:
//
if((base != 10) && m_data.sign)
BOOST_THROW_EXCEPTION(std::runtime_error("Formatted output in bases 8 or 16 is only available for positive numbers"));
int s;
detail::check_tommath_result(mp_radix_size(const_cast< ::mp_int*>(&m_data), base, &s));
boost::scoped_array<char> a(new char[s+1]);
detail::check_tommath_result(mp_toradix_n(const_cast< ::mp_int*>(&m_data), a.get(), base, s+1));
std::string result = a.get();
if((base != 10) && (f & std::ios_base::showbase))
{
int pos = result[0] == '-' ? 1 : 0;
const char* pp = base == 8 ? "0" : "0x";
result.insert(static_cast<std::string::size_type>(pos), pp);
}
if((f & std::ios_base::showpos) && (result[0] != '-'))
result.insert(static_cast<std::string::size_type>(0), 1, '+');
return result;
}
~tommath_int()
{
if(m_data.dp)
mp_clear(&m_data);
}
void negate()
{
BOOST_ASSERT(m_data.dp);
mp_neg(&m_data, &m_data);
}
int compare(const tommath_int& o)const
{
BOOST_ASSERT(m_data.dp && o.m_data.dp);
return mp_cmp(const_cast< ::mp_int*>(&m_data), const_cast< ::mp_int*>(&o.m_data));
}
template <class V>
int compare(V v)const
{
tommath_int d;
tommath_int t(*this);
detail::check_tommath_result(mp_shrink(&t.data()));
d = v;
return t.compare(d);
}
::mp_int& data()
{
BOOST_ASSERT(m_data.dp);
return m_data;
}
const ::mp_int& data()const
{
BOOST_ASSERT(m_data.dp);
return m_data;
}
void swap(tommath_int& o)BOOST_NOEXCEPT
{
mp_exch(&m_data, &o.data());
}
protected:
::mp_int m_data;
};
#define BOOST_MP_TOMMATH_BIT_OP_CHECK(x)\
if(SIGN(&x.data()))\
BOOST_THROW_EXCEPTION(std::runtime_error("Bitwise operations on libtommath negative valued integers are disabled as they produce unpredictable results"))
int eval_get_sign(const tommath_int& val);
inline void eval_add(tommath_int& t, const tommath_int& o)
{
detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_subtract(tommath_int& t, const tommath_int& o)
{
detail::check_tommath_result(mp_sub(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_multiply(tommath_int& t, const tommath_int& o)
{
detail::check_tommath_result(mp_mul(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_divide(tommath_int& t, const tommath_int& o)
{
using default_ops::eval_is_zero;
tommath_int temp;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
detail::check_tommath_result(mp_div(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data(), &temp.data()));
}
inline void eval_modulus(tommath_int& t, const tommath_int& o)
{
using default_ops::eval_is_zero;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
bool neg = eval_get_sign(t) < 0;
bool neg2 = eval_get_sign(o) < 0;
detail::check_tommath_result(mp_mod(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
if((neg != neg2) && (eval_get_sign(t) != 0))
{
t.negate();
detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
t.negate();
}
else if(neg && (t.compare(o) == 0))
{
mp_zero(&t.data());
}
}
template <class UI>
inline void eval_left_shift(tommath_int& t, UI i)
{
detail::check_tommath_result(mp_mul_2d(&t.data(), static_cast<unsigned>(i), &t.data()));
}
template <class UI>
inline void eval_right_shift(tommath_int& t, UI i)
{
using default_ops::eval_increment;
using default_ops::eval_decrement;
bool neg = eval_get_sign(t) < 0;
tommath_int d;
if(neg)
eval_increment(t);
detail::check_tommath_result(mp_div_2d(&t.data(), static_cast<unsigned>(i), &t.data(), &d.data()));
if(neg)
eval_decrement(t);
}
template <class UI>
inline void eval_left_shift(tommath_int& t, const tommath_int& v, UI i)
{
detail::check_tommath_result(mp_mul_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned>(i), &t.data()));
}
/*
template <class UI>
inline void eval_right_shift(tommath_int& t, const tommath_int& v, UI i)
{
tommath_int d;
detail::check_tommath_result(mp_div_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned long>(i), &t.data(), &d.data()));
}
*/
inline void eval_bitwise_and(tommath_int& result, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_and(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_or(tommath_int& result, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_or(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_xor(tommath_int& result, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_xor(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_add(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
detail::check_tommath_result(mp_add(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_subtract(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
detail::check_tommath_result(mp_sub(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_multiply(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
detail::check_tommath_result(mp_mul(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
}
inline void eval_divide(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
using default_ops::eval_is_zero;
tommath_int d;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data(), &d.data()));
}
inline void eval_modulus(tommath_int& t, const tommath_int& p, const tommath_int& o)
{
using default_ops::eval_is_zero;
if(eval_is_zero(o))
BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
bool neg = eval_get_sign(p) < 0;
bool neg2 = eval_get_sign(o) < 0;
detail::check_tommath_result(mp_mod(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
if((neg != neg2) && (eval_get_sign(t) != 0))
{
t.negate();
detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
t.negate();
}
else if(neg && (t.compare(o) == 0))
{
mp_zero(&t.data());
}
}
inline void eval_bitwise_and(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_and(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_or(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_or(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
inline void eval_bitwise_xor(tommath_int& result, const tommath_int& u, const tommath_int& v)
{
BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
detail::check_tommath_result(mp_xor(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
}
/*
inline void eval_complement(tommath_int& result, const tommath_int& u)
{
//
// Although this code works, it doesn't really do what the user might expect....
// and it's hard to see how it ever could. Disabled for now:
//
result = u;
for(int i = 0; i < result.data().used; ++i)
{
result.data().dp[i] = MP_MASK & ~(result.data().dp[i]);
}
//
// We now need to pad out the left of the value with 1's to round up to a whole number of
// CHAR_BIT * sizeof(mp_digit) units. Otherwise we'll end up with a very strange number of
// bits set!
//
unsigned shift = result.data().used * DIGIT_BIT; // How many bits we're actually using
// How many bits we actually need, reduced by one to account for a mythical sign bit:
int padding = result.data().used * std::numeric_limits<mp_digit>::digits - shift - 1;
while(padding >= std::numeric_limits<mp_digit>::digits)
padding -= std::numeric_limits<mp_digit>::digits;
// Create a mask providing the extra bits we need and add to result:
tommath_int mask;
mask = static_cast<boost::long_long_type>((1u << padding) - 1);
eval_left_shift(mask, shift);
add(result, mask);
}
*/
inline bool eval_is_zero(const tommath_int& val)
{
return mp_iszero(&val.data());
}
inline int eval_get_sign(const tommath_int& val)
{
return mp_iszero(&val.data()) ? 0 : SIGN(&val.data()) ? -1 : 1;
}
template <class A>
inline void eval_convert_to(A* result, const tommath_int& val)
{
*result = boost::lexical_cast<A>(val.str(0, std::ios_base::fmtflags(0)));
}
inline void eval_convert_to(char* result, const tommath_int& val)
{
*result = static_cast<char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_convert_to(unsigned char* result, const tommath_int& val)
{
*result = static_cast<unsigned char>(boost::lexical_cast<unsigned>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_convert_to(signed char* result, const tommath_int& val)
{
*result = static_cast<signed char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
}
inline void eval_abs(tommath_int& result, const tommath_int& val)
{
detail::check_tommath_result(mp_abs(const_cast< ::mp_int*>(&val.data()), &result.data()));
}
inline void eval_gcd(tommath_int& result, const tommath_int& a, const tommath_int& b)
{
detail::check_tommath_result(mp_gcd(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
}
inline void eval_lcm(tommath_int& result, const tommath_int& a, const tommath_int& b)
{
detail::check_tommath_result(mp_lcm(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
}
inline void eval_powm(tommath_int& result, const tommath_int& base, const tommath_int& p, const tommath_int& m)
{
if(eval_get_sign(p) < 0)
{
BOOST_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent."));
}
detail::check_tommath_result(mp_exptmod(const_cast< ::mp_int*>(&base.data()), const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&m.data()), &result.data()));
}
inline void eval_qr(const tommath_int& x, const tommath_int& y,
tommath_int& q, tommath_int& r)
{
detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&x.data()), const_cast< ::mp_int*>(&y.data()), &q.data(), &r.data()));
}
inline unsigned eval_lsb(const tommath_int& val)
{
int c = eval_get_sign(val);
if(c == 0)
{
BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
}
if(c < 0)
{
BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
}
return mp_cnt_lsb(const_cast< ::mp_int*>(&val.data()));
}
inline unsigned eval_msb(const tommath_int& val)
{
int c = eval_get_sign(val);
if(c == 0)
{
BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
}
if(c < 0)
{
BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
}
return mp_count_bits(const_cast< ::mp_int*>(&val.data())) - 1;
}
template <class Integer>
inline typename enable_if<is_unsigned<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
{
static const mp_digit m = (static_cast<mp_digit>(1) << DIGIT_BIT) - 1;
if(val <= m)
{
mp_digit d;
detail::check_tommath_result(mp_mod_d(const_cast< ::mp_int*>(&x.data()), static_cast<mp_digit>(val), &d));
return d;
}
else
{
return default_ops::eval_integer_modulus(x, val);
}
}
template <class Integer>
inline typename enable_if<is_signed<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
{
return eval_integer_modulus(x, boost::multiprecision::detail::unsigned_abs(val));
}
inline std::size_t hash_value(const tommath_int& val)
{
std::size_t result = 0;
std::size_t len = val.data().used;
for(std::size_t i = 0; i < len; ++i)
boost::hash_combine(result, val.data().dp[i]);
boost::hash_combine(result, val.data().sign);
return result;
}
} // namespace backends
using boost::multiprecision::backends::tommath_int;
template<>
struct number_category<tommath_int> : public mpl::int_<number_kind_integer>{};
typedef number<tommath_int > tom_int;
typedef rational_adaptor<tommath_int> tommath_rational;
typedef number<tommath_rational> tom_rational;
}} // namespaces
namespace std{
template<boost::multiprecision::expression_template_option ExpressionTemplates>
class numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >
{
typedef boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> number_type;
public:
BOOST_STATIC_CONSTEXPR bool is_specialized = true;
//
// Largest and smallest numbers are bounded only by available memory, set
// to zero:
//
static number_type (min)()
{
return number_type();
}
static number_type (max)()
{
return number_type();
}
static number_type lowest() { return (min)(); }
BOOST_STATIC_CONSTEXPR int digits = INT_MAX;
BOOST_STATIC_CONSTEXPR int digits10 = (INT_MAX / 1000) * 301L;
BOOST_STATIC_CONSTEXPR int max_digits10 = digits10 + 3;
BOOST_STATIC_CONSTEXPR bool is_signed = true;
BOOST_STATIC_CONSTEXPR bool is_integer = true;
BOOST_STATIC_CONSTEXPR bool is_exact = true;
BOOST_STATIC_CONSTEXPR int radix = 2;
static number_type epsilon() { return number_type(); }
static number_type round_error() { return number_type(); }
BOOST_STATIC_CONSTEXPR int min_exponent = 0;
BOOST_STATIC_CONSTEXPR int min_exponent10 = 0;
BOOST_STATIC_CONSTEXPR int max_exponent = 0;
BOOST_STATIC_CONSTEXPR int max_exponent10 = 0;
BOOST_STATIC_CONSTEXPR bool has_infinity = false;
BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
static number_type infinity() { return number_type(); }
static number_type quiet_NaN() { return number_type(); }
static number_type signaling_NaN() { return number_type(); }
static number_type denorm_min() { return number_type(); }
BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
BOOST_STATIC_CONSTEXPR bool is_bounded = false;
BOOST_STATIC_CONSTEXPR bool is_modulo = false;
BOOST_STATIC_CONSTEXPR bool traps = false;
BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
BOOST_STATIC_CONSTEXPR float_round_style round_style = round_toward_zero;
};
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_digits10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_signed;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_integer;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_exact;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::radix;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_infinity;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_quiet_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_signaling_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm_loss;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_iec559;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_bounded;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_modulo;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::traps;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::tinyness_before;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::round_style;
#endif
}
#endif
|