/usr/include/apr-1.0/apr_pools.h is in libapr1-dev 1.6.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 | /* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef APR_POOLS_H
#define APR_POOLS_H
/**
* @file apr_pools.h
* @brief APR memory allocation
*
* Resource allocation routines...
*
* designed so that we don't have to keep track of EVERYTHING so that
* it can be explicitly freed later (a fundamentally unsound strategy ---
* particularly in the presence of die()).
*
* Instead, we maintain pools, and allocate items (both memory and I/O
* handlers) from the pools --- currently there are two, one for
* per-transaction info, and one for config info. When a transaction is
* over, we can delete everything in the per-transaction apr_pool_t without
* fear, and without thinking too hard about it either.
*
* Note that most operations on pools are not thread-safe: a single pool
* should only be accessed by a single thread at any given time. The one
* exception to this rule is creating a subpool of a given pool: one or more
* threads can safely create subpools at the same time that another thread
* accesses the parent pool.
*/
#include "apr.h"
#include "apr_errno.h"
#include "apr_general.h" /* for APR_STRINGIFY */
#define APR_WANT_MEMFUNC /**< for no good reason? */
#include "apr_want.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup apr_pools Memory Pool Functions
* @ingroup APR
* @{
*/
/** The fundamental pool type */
typedef struct apr_pool_t apr_pool_t;
/**
* Declaration helper macro to construct apr_foo_pool_get()s.
*
* This standardized macro is used by opaque (APR) data types to return
* the apr_pool_t that is associated with the data type.
*
* APR_POOL_DECLARE_ACCESSOR() is used in a header file to declare the
* accessor function. A typical usage and result would be:
* <pre>
* APR_POOL_DECLARE_ACCESSOR(file);
* becomes:
* APR_DECLARE(apr_pool_t *) apr_file_pool_get(const apr_file_t *thefile);
* </pre>
* @remark Doxygen unwraps this macro (via doxygen.conf) to provide
* actual help for each specific occurrence of apr_foo_pool_get.
* @remark the linkage is specified for APR. It would be possible to expand
* the macros to support other linkages.
*/
#define APR_POOL_DECLARE_ACCESSOR(type) \
APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
(const apr_##type##_t *the##type)
/**
* Implementation helper macro to provide apr_foo_pool_get()s.
*
* In the implementation, the APR_POOL_IMPLEMENT_ACCESSOR() is used to
* actually define the function. It assumes the field is named "pool".
*/
#define APR_POOL_IMPLEMENT_ACCESSOR(type) \
APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
(const apr_##type##_t *the##type) \
{ return the##type->pool; }
/**
* Pool debug levels
*
* <pre>
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
* ---------------------------------
* | | | | | | | | x | General debug code enabled (useful in
* combination with --with-efence).
*
* | | | | | | | x | | Verbose output on stderr (report
* CREATE, CLEAR, DESTROY).
*
* | | | | x | | | | | Verbose output on stderr (report
* PALLOC, PCALLOC).
*
* | | | | | | x | | | Lifetime checking. On each use of a
* pool, check its lifetime. If the pool
* is out of scope, abort().
* In combination with the verbose flag
* above, it will output LIFE in such an
* event prior to aborting.
*
* | | | | | x | | | | Pool owner checking. On each use of a
* pool, check if the current thread is the
* pool's owner. If not, abort(). In
* combination with the verbose flag above,
* it will output OWNER in such an event
* prior to aborting. Use the debug
* function apr_pool_owner_set() to switch
* a pool's ownership.
*
* When no debug level was specified, assume general debug mode.
* If level 0 was specified, debugging is switched off.
* </pre>
*/
#if defined(APR_POOL_DEBUG)
/* If APR_POOL_DEBUG is blank, we get 1; if it is a number, we get -1. */
#if (APR_POOL_DEBUG - APR_POOL_DEBUG -1 == 1)
#undef APR_POOL_DEBUG
#define APR_POOL_DEBUG 1
#endif
#else
#define APR_POOL_DEBUG 0
#endif
/** the place in the code where the particular function was called */
#define APR_POOL__FILE_LINE__ __FILE__ ":" APR_STRINGIFY(__LINE__)
/** A function that is called when allocation fails. */
typedef int (*apr_abortfunc_t)(int retcode);
/*
* APR memory structure manipulators (pools, tables, and arrays).
*/
/*
* Initialization
*/
/**
* Setup all of the internal structures required to use pools
* @remark Programs do NOT need to call this directly. APR will call this
* automatically from apr_initialize.
* @internal
*/
APR_DECLARE(apr_status_t) apr_pool_initialize(void);
/**
* Tear down all of the internal structures required to use pools
* @remark Programs do NOT need to call this directly. APR will call this
* automatically from apr_terminate.
* @internal
*/
APR_DECLARE(void) apr_pool_terminate(void);
/*
* Pool creation/destruction
*/
#include "apr_allocator.h"
/**
* Create a new pool.
* @param newpool The pool we have just created.
* @param parent The parent pool. If this is NULL, the new pool is a root
* pool. If it is non-NULL, the new pool will inherit all
* of its parent pool's attributes, except the apr_pool_t will
* be a sub-pool.
* @param abort_fn A function to use if the pool cannot allocate more memory.
* @param allocator The allocator to use with the new pool. If NULL the
* allocator of the parent pool will be used.
* @remark This function is thread-safe, in the sense that multiple threads
* can safely create subpools of the same parent pool concurrently.
* Similarly, a subpool can be created by one thread at the same
* time that another thread accesses the parent pool.
*/
APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
apr_pool_t *parent,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
__attribute__((nonnull(1)));
/**
* Create a new pool.
* @deprecated @see apr_pool_create_unmanaged_ex.
*/
APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator);
/**
* Create a new unmanaged pool.
* @param newpool The pool we have just created.
* @param abort_fn A function to use if the pool cannot allocate more memory.
* @param allocator The allocator to use with the new pool. If NULL a
* new allocator will be created with the new pool as owner.
* @remark An unmanaged pool is a special pool without a parent; it will
* NOT be destroyed upon apr_terminate. It must be explicitly
* destroyed by calling apr_pool_destroy, to prevent memory leaks.
* Use of this function is discouraged, think twice about whether
* you really really need it.
* @warning Any child cleanups registered against the new pool, or
* against sub-pools thereof, will not be executed during an
* invocation of apr_proc_create(), so resources created in an
* "unmanaged" pool hierarchy will leak to child processes.
*/
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator)
__attribute__((nonnull(1)));
/**
* Debug version of apr_pool_create_ex.
* @param newpool @see apr_pool_create.
* @param parent @see apr_pool_create.
* @param abort_fn @see apr_pool_create.
* @param allocator @see apr_pool_create.
* @param file_line Where the function is called from.
* This is usually APR_POOL__FILE_LINE__.
* @remark Only available when APR_POOL_DEBUG is defined.
* Call this directly if you have your apr_pool_create_ex
* calls in a wrapper function and wish to override
* the file_line argument to reflect the caller of
* your wrapper function. If you do not have
* apr_pool_create_ex in a wrapper, trust the macro
* and don't call apr_pool_create_ex_debug directly.
*/
APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
apr_pool_t *parent,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
__attribute__((nonnull(1)));
#if APR_POOL_DEBUG
#define apr_pool_create_ex(newpool, parent, abort_fn, allocator) \
apr_pool_create_ex_debug(newpool, parent, abort_fn, allocator, \
APR_POOL__FILE_LINE__)
#endif
/**
* Debug version of apr_pool_create_core_ex.
* @deprecated @see apr_pool_create_unmanaged_ex_debug.
*/
APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line);
/**
* Debug version of apr_pool_create_unmanaged_ex.
* @param newpool @see apr_pool_create_unmanaged.
* @param abort_fn @see apr_pool_create_unmanaged.
* @param allocator @see apr_pool_create_unmanaged.
* @param file_line Where the function is called from.
* This is usually APR_POOL__FILE_LINE__.
* @remark Only available when APR_POOL_DEBUG is defined.
* Call this directly if you have your apr_pool_create_unmanaged_ex
* calls in a wrapper function and wish to override
* the file_line argument to reflect the caller of
* your wrapper function. If you do not have
* apr_pool_create_core_ex in a wrapper, trust the macro
* and don't call apr_pool_create_core_ex_debug directly.
*/
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
apr_abortfunc_t abort_fn,
apr_allocator_t *allocator,
const char *file_line)
__attribute__((nonnull(1)));
#if APR_POOL_DEBUG
#define apr_pool_create_core_ex(newpool, abort_fn, allocator) \
apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
APR_POOL__FILE_LINE__)
#define apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator) \
apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
APR_POOL__FILE_LINE__)
#endif
/**
* Create a new pool.
* @param newpool The pool we have just created.
* @param parent The parent pool. If this is NULL, the new pool is a root
* pool. If it is non-NULL, the new pool will inherit all
* of its parent pool's attributes, except the apr_pool_t will
* be a sub-pool.
* @remark This function is thread-safe, in the sense that multiple threads
* can safely create subpools of the same parent pool concurrently.
* Similarly, a subpool can be created by one thread at the same
* time that another thread accesses the parent pool.
*/
#if defined(DOXYGEN)
APR_DECLARE(apr_status_t) apr_pool_create(apr_pool_t **newpool,
apr_pool_t *parent);
#else
#if APR_POOL_DEBUG
#define apr_pool_create(newpool, parent) \
apr_pool_create_ex_debug(newpool, parent, NULL, NULL, \
APR_POOL__FILE_LINE__)
#else
#define apr_pool_create(newpool, parent) \
apr_pool_create_ex(newpool, parent, NULL, NULL)
#endif
#endif
/**
* Create a new unmanaged pool.
* @param newpool The pool we have just created.
*/
#if defined(DOXYGEN)
APR_DECLARE(apr_status_t) apr_pool_create_core(apr_pool_t **newpool);
APR_DECLARE(apr_status_t) apr_pool_create_unmanaged(apr_pool_t **newpool);
#else
#if APR_POOL_DEBUG
#define apr_pool_create_core(newpool) \
apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
APR_POOL__FILE_LINE__)
#define apr_pool_create_unmanaged(newpool) \
apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
APR_POOL__FILE_LINE__)
#else
#define apr_pool_create_core(newpool) \
apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
#define apr_pool_create_unmanaged(newpool) \
apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
#endif
#endif
/**
* Find the pool's allocator
* @param pool The pool to get the allocator from.
*/
APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool)
__attribute__((nonnull(1)));
/**
* Clear all memory in the pool and run all the cleanups. This also destroys all
* subpools.
* @param p The pool to clear
* @remark This does not actually free the memory, it just allows the pool
* to re-use this memory for the next allocation.
* @see apr_pool_destroy()
*/
APR_DECLARE(void) apr_pool_clear(apr_pool_t *p) __attribute__((nonnull(1)));
/**
* Debug version of apr_pool_clear.
* @param p See: apr_pool_clear.
* @param file_line Where the function is called from.
* This is usually APR_POOL__FILE_LINE__.
* @remark Only available when APR_POOL_DEBUG is defined.
* Call this directly if you have your apr_pool_clear
* calls in a wrapper function and wish to override
* the file_line argument to reflect the caller of
* your wrapper function. If you do not have
* apr_pool_clear in a wrapper, trust the macro
* and don't call apr_pool_destroy_clear directly.
*/
APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *p,
const char *file_line)
__attribute__((nonnull(1)));
#if APR_POOL_DEBUG
#define apr_pool_clear(p) \
apr_pool_clear_debug(p, APR_POOL__FILE_LINE__)
#endif
/**
* Destroy the pool. This takes similar action as apr_pool_clear() and then
* frees all the memory.
* @param p The pool to destroy
* @remark This will actually free the memory
*/
APR_DECLARE(void) apr_pool_destroy(apr_pool_t *p) __attribute__((nonnull(1)));
/**
* Debug version of apr_pool_destroy.
* @param p See: apr_pool_destroy.
* @param file_line Where the function is called from.
* This is usually APR_POOL__FILE_LINE__.
* @remark Only available when APR_POOL_DEBUG is defined.
* Call this directly if you have your apr_pool_destroy
* calls in a wrapper function and wish to override
* the file_line argument to reflect the caller of
* your wrapper function. If you do not have
* apr_pool_destroy in a wrapper, trust the macro
* and don't call apr_pool_destroy_debug directly.
*/
APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *p,
const char *file_line)
__attribute__((nonnull(1)));
#if APR_POOL_DEBUG
#define apr_pool_destroy(p) \
apr_pool_destroy_debug(p, APR_POOL__FILE_LINE__)
#endif
/*
* Memory allocation
*/
/**
* Allocate a block of memory from a pool
* @param p The pool to allocate from
* @param size The amount of memory to allocate
* @return The allocated memory
*/
APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size)
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
__attribute__((alloc_size(2)))
#endif
__attribute__((nonnull(1)));
/**
* Debug version of apr_palloc
* @param p See: apr_palloc
* @param size See: apr_palloc
* @param file_line Where the function is called from.
* This is usually APR_POOL__FILE_LINE__.
* @return See: apr_palloc
*/
APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *p, apr_size_t size,
const char *file_line)
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
__attribute__((alloc_size(2)))
#endif
__attribute__((nonnull(1)));
#if APR_POOL_DEBUG
#define apr_palloc(p, size) \
apr_palloc_debug(p, size, APR_POOL__FILE_LINE__)
#endif
/**
* Allocate a block of memory from a pool and set all of the memory to 0
* @param p The pool to allocate from
* @param size The amount of memory to allocate
* @return The allocated memory
*/
#if defined(DOXYGEN)
APR_DECLARE(void *) apr_pcalloc(apr_pool_t *p, apr_size_t size);
#elif !APR_POOL_DEBUG
#define apr_pcalloc(p, size) memset(apr_palloc(p, size), 0, size)
#endif
/**
* Debug version of apr_pcalloc
* @param p See: apr_pcalloc
* @param size See: apr_pcalloc
* @param file_line Where the function is called from.
* This is usually APR_POOL__FILE_LINE__.
* @return See: apr_pcalloc
*/
APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *p, apr_size_t size,
const char *file_line)
__attribute__((nonnull(1)));
#if APR_POOL_DEBUG
#define apr_pcalloc(p, size) \
apr_pcalloc_debug(p, size, APR_POOL__FILE_LINE__)
#endif
/*
* Pool Properties
*/
/**
* Set the function to be called when an allocation failure occurs.
* @remark If the program wants APR to exit on a memory allocation error,
* then this function can be called to set the callback to use (for
* performing cleanup and then exiting). If this function is not called,
* then APR will return an error and expect the calling program to
* deal with the error accordingly.
*/
APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abortfunc,
apr_pool_t *pool)
__attribute__((nonnull(2)));
/**
* Get the abort function associated with the specified pool.
* @param pool The pool for retrieving the abort function.
* @return The abort function for the given pool.
*/
APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool)
__attribute__((nonnull(1)));
/**
* Get the parent pool of the specified pool.
* @param pool The pool for retrieving the parent pool.
* @return The parent of the given pool.
*/
APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool)
__attribute__((nonnull(1)));
/**
* Determine if pool a is an ancestor of pool b.
* @param a The pool to search
* @param b The pool to search for
* @return True if a is an ancestor of b, NULL is considered an ancestor
* of all pools.
* @remark if compiled with APR_POOL_DEBUG, this function will also
* return true if A is a pool which has been guaranteed by the caller
* (using apr_pool_join) to have a lifetime at least as long as some
* ancestor of pool B.
*/
APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b);
/**
* Tag a pool (give it a name)
* @param pool The pool to tag
* @param tag The tag
*/
APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag)
__attribute__((nonnull(1)));
/*
* User data management
*/
/**
* Set the data associated with the current pool
* @param data The user data associated with the pool.
* @param key The key to use for association
* @param cleanup The cleanup program to use to cleanup the data (NULL if none)
* @param pool The current pool
* @warning The data to be attached to the pool should have a life span
* at least as long as the pool it is being attached to.
*
* Users of APR must take EXTREME care when choosing a key to
* use for their data. It is possible to accidentally overwrite
* data by choosing a key that another part of the program is using.
* Therefore it is advised that steps are taken to ensure that unique
* keys are used for all of the userdata objects in a particular pool
* (the same key in two different pools or a pool and one of its
* subpools is okay) at all times. Careful namespace prefixing of
* key names is a typical way to help ensure this uniqueness.
*
*/
APR_DECLARE(apr_status_t) apr_pool_userdata_set(const void *data,
const char *key,
apr_status_t (*cleanup)(void *),
apr_pool_t *pool)
__attribute__((nonnull(2,4)));
/**
* Set the data associated with the current pool
* @param data The user data associated with the pool.
* @param key The key to use for association
* @param cleanup The cleanup program to use to cleanup the data (NULL if none)
* @param pool The current pool
* @note same as apr_pool_userdata_set(), except that this version doesn't
* make a copy of the key (this function is useful, for example, when
* the key is a string literal)
* @warning This should NOT be used if the key could change addresses by
* any means between the apr_pool_userdata_setn() call and a
* subsequent apr_pool_userdata_get() on that key, such as if a
* static string is used as a userdata key in a DSO and the DSO could
* be unloaded and reloaded between the _setn() and the _get(). You
* MUST use apr_pool_userdata_set() in such cases.
* @warning More generally, the key and the data to be attached to the
* pool should have a life span at least as long as the pool itself.
*
*/
APR_DECLARE(apr_status_t) apr_pool_userdata_setn(
const void *data, const char *key,
apr_status_t (*cleanup)(void *),
apr_pool_t *pool)
__attribute__((nonnull(2,4)));
/**
* Return the data associated with the current pool.
* @param data The user data associated with the pool.
* @param key The key for the data to retrieve
* @param pool The current pool.
*/
APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key,
apr_pool_t *pool)
__attribute__((nonnull(1,2,3)));
/**
* @defgroup PoolCleanup Pool Cleanup Functions
*
* Cleanups are performed in the reverse order they were registered. That is:
* Last In, First Out. A cleanup function can safely allocate memory from
* the pool that is being cleaned up. It can also safely register additional
* cleanups which will be run LIFO, directly after the current cleanup
* terminates. Cleanups have to take caution in calling functions that
* create subpools. Subpools, created during cleanup will NOT automatically
* be cleaned up. In other words, cleanups are to clean up after themselves.
*
* @{
*/
/**
* Register a function to be called when a pool is cleared or destroyed
* @param p The pool to register the cleanup with
* @param data The data to pass to the cleanup function.
* @param plain_cleanup The function to call when the pool is cleared
* or destroyed
* @param child_cleanup The function to call when a child process is about
* to exec - this function is called in the child, obviously!
*/
APR_DECLARE(void) apr_pool_cleanup_register(
apr_pool_t *p, const void *data,
apr_status_t (*plain_cleanup)(void *),
apr_status_t (*child_cleanup)(void *))
__attribute__((nonnull(3,4)));
/**
* Register a function to be called when a pool is cleared or destroyed.
*
* Unlike apr_pool_cleanup_register which registers a cleanup
* that is called AFTER all subpools are destroyed, this function registers
* a function that will be called before any of the subpools are destroyed.
*
* @param p The pool to register the cleanup with
* @param data The data to pass to the cleanup function.
* @param plain_cleanup The function to call when the pool is cleared
* or destroyed
*/
APR_DECLARE(void) apr_pool_pre_cleanup_register(
apr_pool_t *p, const void *data,
apr_status_t (*plain_cleanup)(void *))
__attribute__((nonnull(3)));
/**
* Remove a previously registered cleanup function.
*
* The cleanup most recently registered with @a p having the same values of
* @a data and @a cleanup will be removed.
*
* @param p The pool to remove the cleanup from
* @param data The data of the registered cleanup
* @param cleanup The function to remove from cleanup
* @remarks For some strange reason only the plain_cleanup is handled by this
* function
*/
APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data,
apr_status_t (*cleanup)(void *))
__attribute__((nonnull(3)));
/**
* Replace the child cleanup function of a previously registered cleanup.
*
* The cleanup most recently registered with @a p having the same values of
* @a data and @a plain_cleanup will have the registered child cleanup
* function replaced with @a child_cleanup.
*
* @param p The pool of the registered cleanup
* @param data The data of the registered cleanup
* @param plain_cleanup The plain cleanup function of the registered cleanup
* @param child_cleanup The function to register as the child cleanup
*/
APR_DECLARE(void) apr_pool_child_cleanup_set(
apr_pool_t *p, const void *data,
apr_status_t (*plain_cleanup)(void *),
apr_status_t (*child_cleanup)(void *))
__attribute__((nonnull(3,4)));
/**
* Run the specified cleanup function immediately and unregister it.
*
* The cleanup most recently registered with @a p having the same values of
* @a data and @a cleanup will be removed and @a cleanup will be called
* with @a data as the argument.
*
* @param p The pool to remove the cleanup from
* @param data The data to remove from cleanup
* @param cleanup The function to remove from cleanup
*/
APR_DECLARE(apr_status_t) apr_pool_cleanup_run(apr_pool_t *p, void *data,
apr_status_t (*cleanup)(void *))
__attribute__((nonnull(3)));
/**
* An empty cleanup function.
*
* Passed to apr_pool_cleanup_register() when no cleanup is required.
*
* @param data The data to cleanup, will not be used by this function.
*/
APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data);
/**
* Run all registered child cleanups, in preparation for an exec()
* call in a forked child -- close files, etc., but *don't* flush I/O
* buffers, *don't* wait for subprocesses, and *don't* free any
* memory.
*/
APR_DECLARE(void) apr_pool_cleanup_for_exec(void);
/** @} */
/**
* @defgroup PoolDebug Pool Debugging functions.
*
* pools have nested lifetimes -- sub_pools are destroyed when the
* parent pool is cleared. We allow certain liberties with operations
* on things such as tables (and on other structures in a more general
* sense) where we allow the caller to insert values into a table which
* were not allocated from the table's pool. The table's data will
* remain valid as long as all the pools from which its values are
* allocated remain valid.
*
* For example, if B is a sub pool of A, and you build a table T in
* pool B, then it's safe to insert data allocated in A or B into T
* (because B lives at most as long as A does, and T is destroyed when
* B is cleared/destroyed). On the other hand, if S is a table in
* pool A, it is safe to insert data allocated in A into S, but it
* is *not safe* to insert data allocated from B into S... because
* B can be cleared/destroyed before A is (which would leave dangling
* pointers in T's data structures).
*
* In general we say that it is safe to insert data into a table T
* if the data is allocated in any ancestor of T's pool. This is the
* basis on which the APR_POOL_DEBUG code works -- it tests these ancestor
* relationships for all data inserted into tables. APR_POOL_DEBUG also
* provides tools (apr_pool_find, and apr_pool_is_ancestor) for other
* folks to implement similar restrictions for their own data
* structures.
*
* However, sometimes this ancestor requirement is inconvenient --
* sometimes it's necessary to create a sub pool where the sub pool is
* guaranteed to have the same lifetime as the parent pool. This is a
* guarantee implemented by the *caller*, not by the pool code. That
* is, the caller guarantees they won't destroy the sub pool
* individually prior to destroying the parent pool.
*
* In this case the caller must call apr_pool_join() to indicate this
* guarantee to the APR_POOL_DEBUG code.
*
* These functions are only implemented when #APR_POOL_DEBUG is set.
*
* @{
*/
#if APR_POOL_DEBUG || defined(DOXYGEN)
/**
* Guarantee that a subpool has the same lifetime as the parent.
* @param p The parent pool
* @param sub The subpool
*/
APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub)
__attribute__((nonnull(2)));
/**
* Find a pool from something allocated in it.
* @param mem The thing allocated in the pool
* @return The pool it is allocated in
*/
APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem);
/**
* Report the number of bytes currently in the pool
* @param p The pool to inspect
* @param recurse Recurse/include the subpools' sizes
* @return The number of bytes
*/
APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *p, int recurse)
__attribute__((nonnull(1)));
/**
* Lock a pool
* @param pool The pool to lock
* @param flag The flag
*/
APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag);
/* @} */
#else /* APR_POOL_DEBUG or DOXYGEN */
#ifdef apr_pool_join
#undef apr_pool_join
#endif
#define apr_pool_join(a,b)
#ifdef apr_pool_lock
#undef apr_pool_lock
#endif
#define apr_pool_lock(pool, lock)
#endif /* APR_POOL_DEBUG or DOXYGEN */
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* !APR_POOLS_H */
|