This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/tests/test_convert_numpy.py is in python-networkx 1.11-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from nose import SkipTest
from nose.tools import assert_raises, assert_true, assert_equal

import networkx as nx
from networkx.generators.classic import barbell_graph,cycle_graph,path_graph
from networkx.testing.utils import assert_graphs_equal


class TestConvertNumpy(object):
    numpy=1 # nosetests attribute, use nosetests -a 'not numpy' to skip test
    @classmethod
    def setupClass(cls):
        global np
        global np_assert_equal
        try:
            import numpy as np
            np_assert_equal=np.testing.assert_equal
        except ImportError:
            raise SkipTest('NumPy not available.')

    def __init__(self):
        self.G1 = barbell_graph(10, 3)
        self.G2 = cycle_graph(10, create_using=nx.DiGraph())

        self.G3 = self.create_weighted(nx.Graph())
        self.G4 = self.create_weighted(nx.DiGraph())

    def create_weighted(self, G):
        g = cycle_graph(4)
        e = g.edges()
        source = [u for u,v in e]
        dest = [v for u,v in e]
        weight = [s+10 for s in source]
        ex = zip(source, dest, weight)
        G.add_weighted_edges_from(ex)
        return G

    def assert_equal(self, G1, G2):
        assert_true( sorted(G1.nodes())==sorted(G2.nodes()) )
        assert_true( sorted(G1.edges())==sorted(G2.edges()) )

    def identity_conversion(self, G, A, create_using):
        GG = nx.from_numpy_matrix(A, create_using=create_using)
        self.assert_equal(G, GG)
        GW = nx.to_networkx_graph(A, create_using=create_using)
        self.assert_equal(G, GW)
        GI = create_using.__class__(A)
        self.assert_equal(G, GI)

    def test_shape(self):
        "Conversion from non-square array."
        A=np.array([[1,2,3],[4,5,6]])
        assert_raises(nx.NetworkXError, nx.from_numpy_matrix, A)

    def test_identity_graph_matrix(self):
        "Conversion from graph to matrix to graph."
        A = nx.to_numpy_matrix(self.G1)
        self.identity_conversion(self.G1, A, nx.Graph())

    def test_identity_graph_array(self):
        "Conversion from graph to array to graph."
        A = nx.to_numpy_matrix(self.G1)
        A = np.asarray(A)
        self.identity_conversion(self.G1, A, nx.Graph())

    def test_identity_digraph_matrix(self):
        """Conversion from digraph to matrix to digraph."""
        A = nx.to_numpy_matrix(self.G2)
        self.identity_conversion(self.G2, A, nx.DiGraph())

    def test_identity_digraph_array(self):
        """Conversion from digraph to array to digraph."""
        A = nx.to_numpy_matrix(self.G2)
        A = np.asarray(A)
        self.identity_conversion(self.G2, A, nx.DiGraph())

    def test_identity_weighted_graph_matrix(self):
        """Conversion from weighted graph to matrix to weighted graph."""
        A = nx.to_numpy_matrix(self.G3)
        self.identity_conversion(self.G3, A, nx.Graph())

    def test_identity_weighted_graph_array(self):
        """Conversion from weighted graph to array to weighted graph."""
        A = nx.to_numpy_matrix(self.G3)
        A = np.asarray(A)
        self.identity_conversion(self.G3, A, nx.Graph())

    def test_identity_weighted_digraph_matrix(self):
        """Conversion from weighted digraph to matrix to weighted digraph."""
        A = nx.to_numpy_matrix(self.G4)
        self.identity_conversion(self.G4, A, nx.DiGraph())

    def test_identity_weighted_digraph_array(self):
        """Conversion from weighted digraph to array to weighted digraph."""
        A = nx.to_numpy_matrix(self.G4)
        A = np.asarray(A)
        self.identity_conversion(self.G4, A, nx.DiGraph())

    def test_nodelist(self):
        """Conversion from graph to matrix to graph with nodelist."""
        P4 = path_graph(4)
        P3 = path_graph(3)
        nodelist = P3.nodes()
        A = nx.to_numpy_matrix(P4, nodelist=nodelist)
        GA = nx.Graph(A)
        self.assert_equal(GA, P3)

        # Make nodelist ambiguous by containing duplicates.
        nodelist += [nodelist[0]]
        assert_raises(nx.NetworkXError, nx.to_numpy_matrix, P3, nodelist=nodelist)

    def test_weight_keyword(self):
        WP4 = nx.Graph()
        WP4.add_edges_from( (n,n+1,dict(weight=0.5,other=0.3)) for n in range(3) )
        P4 = path_graph(4)
        A = nx.to_numpy_matrix(P4)
        np_assert_equal(A, nx.to_numpy_matrix(WP4,weight=None))
        np_assert_equal(0.5*A, nx.to_numpy_matrix(WP4))
        np_assert_equal(0.3*A, nx.to_numpy_matrix(WP4,weight='other'))

    def test_from_numpy_matrix_type(self):
        A=np.matrix([[1]])
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),int)

        A=np.matrix([[1]]).astype(np.float)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),float)

        A=np.matrix([[1]]).astype(np.str)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),str)

        A=np.matrix([[1]]).astype(np.bool)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),bool)

        A=np.matrix([[1]]).astype(np.complex)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),complex)

        A=np.matrix([[1]]).astype(np.object)
        assert_raises(TypeError,nx.from_numpy_matrix,A)

    def test_from_numpy_matrix_dtype(self):
        dt=[('weight',float),('cost',int)]
        A=np.matrix([[(1.0,2)]],dtype=dt)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),float)
        assert_equal(type(G[0][0]['cost']),int)
        assert_equal(G[0][0]['cost'],2)
        assert_equal(G[0][0]['weight'],1.0)

    def test_to_numpy_recarray(self):
        G=nx.Graph()
        G.add_edge(1,2,weight=7.0,cost=5)
        A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
        assert_equal(sorted(A.dtype.names),['cost','weight'])
        assert_equal(A.weight[0,1],7.0)
        assert_equal(A.weight[0,0],0.0)
        assert_equal(A.cost[0,1],5)
        assert_equal(A.cost[0,0],0)

    def test_numpy_multigraph(self):
        G=nx.MultiGraph()
        G.add_edge(1,2,weight=7)
        G.add_edge(1,2,weight=70)
        A=nx.to_numpy_matrix(G)
        assert_equal(A[1,0],77)
        A=nx.to_numpy_matrix(G,multigraph_weight=min)
        assert_equal(A[1,0],7)
        A=nx.to_numpy_matrix(G,multigraph_weight=max)
        assert_equal(A[1,0],70)

    def test_from_numpy_matrix_parallel_edges(self):
        """Tests that the :func:`networkx.from_numpy_matrix` function
        interprets integer weights as the number of parallel edges when
        creating a multigraph.

        """
        A = np.matrix([[1, 1], [1, 2]])
        # First, with a simple graph, each integer entry in the adjacency
        # matrix is interpreted as the weight of a single edge in the graph.
        expected = nx.DiGraph()
        edges = [(0, 0), (0, 1), (1, 0)]
        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
        expected.add_edge(1, 1, weight=2)
        actual = nx.from_numpy_matrix(A, parallel_edges=True,
                                      create_using=nx.DiGraph())
        assert_graphs_equal(actual, expected)
        actual = nx.from_numpy_matrix(A, parallel_edges=False,
                                      create_using=nx.DiGraph())
        assert_graphs_equal(actual, expected)
        # Now each integer entry in the adjacency matrix is interpreted as the
        # number of parallel edges in the graph if the appropriate keyword
        # argument is specified.
        edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
        expected = nx.MultiDiGraph()
        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
        actual = nx.from_numpy_matrix(A, parallel_edges=True,
                                      create_using=nx.MultiDiGraph())
        assert_graphs_equal(actual, expected)
        expected = nx.MultiDiGraph()
        expected.add_edges_from(set(edges), weight=1)
        # The sole self-loop (edge 0) on vertex 1 should have weight 2.
        expected[1][1][0]['weight'] = 2
        actual = nx.from_numpy_matrix(A, parallel_edges=False,
                                      create_using=nx.MultiDiGraph())
        assert_graphs_equal(actual, expected)

    def test_symmetric(self):
        """Tests that a symmetric matrix has edges added only once to an
        undirected multigraph when using :func:`networkx.from_numpy_matrix`.

        """
        A = np.matrix([[0, 1], [1, 0]])
        G = nx.from_numpy_matrix(A, create_using=nx.MultiGraph())
        expected = nx.MultiGraph()
        expected.add_edge(0, 1, weight=1)
        assert_graphs_equal(G, expected)