This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/generators/random_graphs.py is in python-networkx 1.11-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
# -*- coding: utf-8 -*-
"""
Generators for random graphs.

"""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = "\n".join(['Aric Hagberg (hagberg@lanl.gov)',
                        'Pieter Swart (swart@lanl.gov)',
                        'Dan Schult (dschult@colgate.edu)'])
import itertools
import random
import math
import networkx as nx
from networkx.generators.classic import empty_graph, path_graph, complete_graph

from collections import defaultdict

__all__ = ['fast_gnp_random_graph',
           'gnp_random_graph',
           'dense_gnm_random_graph',
           'gnm_random_graph',
           'erdos_renyi_graph',
           'binomial_graph',
           'newman_watts_strogatz_graph',
           'watts_strogatz_graph',
           'connected_watts_strogatz_graph',
           'random_regular_graph',
           'barabasi_albert_graph',
           'powerlaw_cluster_graph',
           'duplication_divergence_graph',
           'random_lobster',
           'random_shell_graph',
           'random_powerlaw_tree',
           'random_powerlaw_tree_sequence']


#-------------------------------------------------------------------------
#  Some Famous Random Graphs
#-------------------------------------------------------------------------


def fast_gnp_random_graph(n, p, seed=None, directed=False):
    """Returns a `G_{n,p}` random graph, also known as an Erdős-Rényi graph or
    a binomial graph.

    Parameters
    ----------
    n : int
        The number of nodes.
    p : float
        Probability for edge creation.
    seed : int, optional
        Seed for random number generator (default=None).
    directed : bool, optional (default=False)
        If ``True``, this function returns a directed graph.

    Notes
    -----
    The `G_{n,p}` graph algorithm chooses each of the `[n (n - 1)] / 2`
    (undirected) or `n (n - 1)` (directed) possible edges with probability `p`.

    This algorithm runs in `O(n + m)` time, where `m` is the expected number of
    edges, which equals `p n (n - 1) / 2`. This should be faster than
    :func:`gnp_random_graph` when `p` is small and the expected number of edges
    is small (that is, the graph is sparse).

    See Also
    --------
    gnp_random_graph

    References
    ----------
    .. [1] Vladimir Batagelj and Ulrik Brandes,
       "Efficient generation of large random networks",
       Phys. Rev. E, 71, 036113, 2005.
    """
    G = empty_graph(n)
    G.name="fast_gnp_random_graph(%s,%s)"%(n,p)

    if not seed is None:
        random.seed(seed)

    if p <= 0 or p >= 1:
        return nx.gnp_random_graph(n,p,directed=directed)

    w = -1
    lp = math.log(1.0 - p)

    if directed:
        G = nx.DiGraph(G)
        # Nodes in graph are from 0,n-1 (start with v as the first node index).
        v = 0
        while v < n:
            lr = math.log(1.0 - random.random())
            w = w + 1 + int(lr/lp)
            if v == w: # avoid self loops
                w = w + 1
            while  w >= n and v < n:
                w = w - n
                v = v + 1
                if v == w: # avoid self loops
                    w = w + 1
            if v < n:
                G.add_edge(v, w)
    else:
        # Nodes in graph are from 0,n-1 (start with v as the second node index).
        v = 1
        while v < n:
            lr = math.log(1.0 - random.random())
            w = w + 1 + int(lr/lp)
            while w >= v and v < n:
                w = w - v
                v = v + 1
            if v < n:
                G.add_edge(v, w)
    return G


def gnp_random_graph(n, p, seed=None, directed=False):
    """Returns a `G_{n,p}` random graph, also known as an Erdős-Rényi graph or
    a binomial graph.

    The `G_{n,p}` model chooses each of the possible edges with probability
    ``p``.

    The functions :func:`binomial_graph` and :func:`erdos_renyi_graph` are
    aliases of this function.

    Parameters
    ----------
    n : int
        The number of nodes.
    p : float
        Probability for edge creation.
    seed : int, optional
        Seed for random number generator (default=None).
    directed : bool, optional (default=False)
        If ``True``, this function returns a directed graph.

    See Also
    --------
    fast_gnp_random_graph

    Notes
    -----
    This algorithm runs in `O(n^2)` time.  For sparse graphs (that is, for
    small values of `p`), :func:`fast_gnp_random_graph` is a faster algorithm.

    References
    ----------
    .. [1] P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
    .. [2] E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
    """
    if directed:
        G=nx.DiGraph()
    else:
        G=nx.Graph()
    G.add_nodes_from(range(n))
    G.name="gnp_random_graph(%s,%s)"%(n,p)
    if p<=0:
        return G
    if p>=1:
        return complete_graph(n,create_using=G)

    if not seed is None:
        random.seed(seed)

    if G.is_directed():
        edges=itertools.permutations(range(n),2)
    else:
        edges=itertools.combinations(range(n),2)

    for e in edges:
        if random.random() < p:
            G.add_edge(*e)
    return G


# add some aliases to common names
binomial_graph=gnp_random_graph
erdos_renyi_graph=gnp_random_graph

def dense_gnm_random_graph(n, m, seed=None):
    """Returns a `G_{n,m}` random graph.

    In the `G_{n,m}` model, a graph is chosen uniformly at random from the set
    of all graphs with `n` nodes and `m` edges.

    This algorithm should be faster than :func:`gnm_random_graph` for dense
    graphs.

    Parameters
    ----------
    n : int
        The number of nodes.
    m : int
        The number of edges.
    seed : int, optional
        Seed for random number generator (default=None).

    See Also
    --------
    gnm_random_graph()

    Notes
    -----
    Algorithm by Keith M. Briggs Mar 31, 2006.
    Inspired by Knuth's Algorithm S (Selection sampling technique),
    in section 3.4.2 of [1]_.

    References
    ----------
    .. [1] Donald E. Knuth, The Art of Computer Programming,
        Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
    """
    mmax=n*(n-1)/2
    if m>=mmax:
        G=complete_graph(n)
    else:
        G=empty_graph(n)
    G.name="dense_gnm_random_graph(%s,%s)"%(n,m)

    if n==1 or m>=mmax:
        return G

    if seed is not None:
        random.seed(seed)

    u=0
    v=1
    t=0
    k=0
    while True:
        if random.randrange(mmax-t)<m-k:
            G.add_edge(u,v)
            k+=1
            if k==m: return G
        t+=1
        v+=1
        if v==n: # go to next row of adjacency matrix
            u+=1
            v=u+1

def gnm_random_graph(n, m, seed=None, directed=False):
    """Returns a `G_{n,m}` random graph.

    In the `G_{n,m}` model, a graph is chosen uniformly at random from the set
    of all graphs with `n` nodes and `m` edges.

    This algorithm should be faster than :func:`dense_gnm_random_graph` for
    sparse graphs.

    Parameters
    ----------
    n : int
        The number of nodes.
    m : int
        The number of edges.
    seed : int, optional
        Seed for random number generator (default=None).
    directed : bool, optional (default=False)
        If True return a directed graph

    See also
    --------
    dense_gnm_random_graph

    """
    if directed:
        G=nx.DiGraph()
    else:
        G=nx.Graph()
    G.add_nodes_from(range(n))
    G.name="gnm_random_graph(%s,%s)"%(n,m)

    if seed is not None:
        random.seed(seed)

    if n==1:
        return G
    max_edges=n*(n-1)
    if not directed:
        max_edges/=2.0
    if m>=max_edges:
        return complete_graph(n,create_using=G)

    nlist=G.nodes()
    edge_count=0
    while edge_count < m:
        # generate random edge,u,v
        u = random.choice(nlist)
        v = random.choice(nlist)
        if u==v or G.has_edge(u,v):
            continue
        else:
            G.add_edge(u,v)
            edge_count=edge_count+1
    return G


def newman_watts_strogatz_graph(n, k, p, seed=None):
    """Return a Newman–Watts–Strogatz small-world graph.

    Parameters
    ----------
    n : int
        The number of nodes.
    k : int
        Each node is joined with its ``k`` nearest neighbors in a ring
        topology.
    p : float
        The probability of adding a new edge for each edge.
    seed : int, optional
        The seed for the random number generator (the default is ``None``).

    Notes
    -----
    First create a ring over ``n`` nodes.  Then each node in the ring is
    connected with its ``k`` nearest neighbors (or ``k - 1`` neighbors if ``k``
    is odd).  Then shortcuts are created by adding new edges as follows: for
    each edge ``(u, v)`` in the underlying "``n``-ring with ``k`` nearest
    neighbors" with probability ``p`` add a new edge ``(u, w)`` with
    randomly-chosen existing node ``w``.  In contrast with
    :func:`watts_strogatz_graph`, no edges are removed.

    See Also
    --------
    watts_strogatz_graph()

    References
    ----------
    .. [1] M. E. J. Newman and D. J. Watts,
       Renormalization group analysis of the small-world network model,
       Physics Letters A, 263, 341, 1999.
       http://dx.doi.org/10.1016/S0375-9601(99)00757-4
    """
    if seed is not None:
        random.seed(seed)
    if k>=n:
        raise nx.NetworkXError("k>=n, choose smaller k or larger n")
    G=empty_graph(n)
    G.name="newman_watts_strogatz_graph(%s,%s,%s)"%(n,k,p)
    nlist = G.nodes()
    fromv = nlist
    # connect the k/2 neighbors
    for j in range(1, k // 2+1):
        tov = fromv[j:] + fromv[0:j] # the first j are now last
        for i in range(len(fromv)):
            G.add_edge(fromv[i], tov[i])
    # for each edge u-v, with probability p, randomly select existing
    # node w and add new edge u-w
    e = G.edges()
    for (u, v) in e:
        if random.random() < p:
            w = random.choice(nlist)
            # no self-loops and reject if edge u-w exists
            # is that the correct NWS model?
            while w == u or G.has_edge(u, w):
                w = random.choice(nlist)
                if G.degree(u) >= n-1:
                    break # skip this rewiring
            else:
                G.add_edge(u,w)
    return G


def watts_strogatz_graph(n, k, p, seed=None):
    """Return a Watts–Strogatz small-world graph.

    Parameters
    ----------
    n : int
        The number of nodes
    k : int
        Each node is joined with its ``k`` nearest neighbors in a ring
        topology.
    p : float
        The probability of rewiring each edge
    seed : int, optional
        Seed for random number generator (default=None)

    See Also
    --------
    newman_watts_strogatz_graph()
    connected_watts_strogatz_graph()

    Notes
    -----
    First create a ring over ``n`` nodes.  Then each node in the ring is joined
    to its ``k`` nearest neighbors (or ``k - 1`` neighbors if ``k`` is odd).
    Then shortcuts are created by replacing some edges as follows: for each
    edge ``(u, v)`` in the underlying "``n``-ring with ``k`` nearest neighbors"
    with probability ``p`` replace it with a new edge ``(u, w)`` with uniformly
    random choice of existing node ``w``.

    In contrast with :func:`newman_watts_strogatz_graph`, the random rewiring
    does not increase the number of edges. The rewired graph is not guaranteed
    to be connected as in :func:`connected_watts_strogatz_graph`.

    References
    ----------
    .. [1] Duncan J. Watts and Steven H. Strogatz,
       Collective dynamics of small-world networks,
       Nature, 393, pp. 440--442, 1998.
    """
    if k>=n:
        raise nx.NetworkXError("k>=n, choose smaller k or larger n")
    if seed is not None:
        random.seed(seed)

    G = nx.Graph()
    G.name="watts_strogatz_graph(%s,%s,%s)"%(n,k,p)
    nodes = list(range(n)) # nodes are labeled 0 to n-1
    # connect each node to k/2 neighbors
    for j in range(1, k // 2+1):
        targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
        G.add_edges_from(zip(nodes,targets))
    # rewire edges from each node
    # loop over all nodes in order (label) and neighbors in order (distance)
    # no self loops or multiple edges allowed
    for j in range(1, k // 2+1): # outer loop is neighbors
        targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
        # inner loop in node order
        for u,v in zip(nodes,targets):
            if random.random() < p:
                w = random.choice(nodes)
                # Enforce no self-loops or multiple edges
                while w == u or G.has_edge(u, w):
                    w = random.choice(nodes)
                    if G.degree(u) >= n-1:
                        break # skip this rewiring
                else:
                    G.remove_edge(u,v)
                    G.add_edge(u,w)
    return G

def connected_watts_strogatz_graph(n, k, p, tries=100, seed=None):
    """Returns a connected Watts–Strogatz small-world graph.

    Attempts to generate a connected graph by repeated generation of
    Watts–Strogatz small-world graphs.  An exception is raised if the maximum
    number of tries is exceeded.

    Parameters
    ----------
    n : int
        The number of nodes
    k : int
        Each node is joined with its ``k`` nearest neighbors in a ring
        topology.
    p : float
        The probability of rewiring each edge
    tries : int
        Number of attempts to generate a connected graph.
    seed : int, optional
         The seed for random number generator.

    See Also
    --------
    newman_watts_strogatz_graph()
    watts_strogatz_graph()

    """
    G = watts_strogatz_graph(n, k, p, seed)
    t=1
    while not nx.is_connected(G):
        G = watts_strogatz_graph(n, k, p, seed)
        t=t+1
        if t>tries:
            raise nx.NetworkXError("Maximum number of tries exceeded")
    return G


def random_regular_graph(d, n, seed=None):
    """Returns a random ``d``-regular graph on ``n`` nodes.

    The resulting graph has no self-loops or parallel edges.

    Parameters
    ----------
    d : int
      The degree of each node.
    n : integer
      The number of nodes. The value of ``n * d`` must be even.
    seed : hashable object
        The seed for random number generator.

    Notes
    -----
    The nodes are numbered from ``0`` to ``n - 1``.

    Kim and Vu's paper [2]_ shows that this algorithm samples in an
    asymptotically uniform way from the space of random graphs when
    `d = O(n^{1 / 3 - \epsilon})`.

    Raises
    ------

    NetworkXError
        If ``n * d`` is odd or ``d`` is greater than or equal to ``n``.

    References
    ----------
    .. [1] A. Steger and N. Wormald,
       Generating random regular graphs quickly,
       Probability and Computing 8 (1999), 377-396, 1999.
       http://citeseer.ist.psu.edu/steger99generating.html

    .. [2] Jeong Han Kim and Van H. Vu,
       Generating random regular graphs,
       Proceedings of the thirty-fifth ACM symposium on Theory of computing,
       San Diego, CA, USA, pp 213--222, 2003.
       http://portal.acm.org/citation.cfm?id=780542.780576
    """
    if (n * d) % 2 != 0:
        raise nx.NetworkXError("n * d must be even")

    if not 0 <= d < n:
        raise nx.NetworkXError("the 0 <= d < n inequality must be satisfied")

    if d == 0:
        return empty_graph(n)

    if seed is not None:
        random.seed(seed)

    def _suitable(edges, potential_edges):
    # Helper subroutine to check if there are suitable edges remaining
    # If False, the generation of the graph has failed
        if not potential_edges:
            return True
        for s1 in potential_edges:
            for s2 in potential_edges:
                # Two iterators on the same dictionary are guaranteed
                # to visit it in the same order if there are no
                # intervening modifications.
                if s1 == s2:
                    # Only need to consider s1-s2 pair one time
                    break
                if s1 > s2:
                    s1, s2 = s2, s1
                if (s1, s2) not in edges:
                    return True
        return False

    def _try_creation():
        # Attempt to create an edge set

        edges = set()
        stubs = list(range(n)) * d

        while stubs:
            potential_edges = defaultdict(lambda: 0)
            random.shuffle(stubs)
            stubiter = iter(stubs)
            for s1, s2 in zip(stubiter, stubiter):
                if s1 > s2:
                    s1, s2 = s2, s1
                if s1 != s2 and ((s1, s2) not in edges):
                    edges.add((s1, s2))
                else:
                    potential_edges[s1] += 1
                    potential_edges[s2] += 1

            if not _suitable(edges, potential_edges):
                return None # failed to find suitable edge set

            stubs = [node for node, potential in potential_edges.items()
                     for _ in range(potential)]
        return edges

    # Even though a suitable edge set exists,
    # the generation of such a set is not guaranteed.
    # Try repeatedly to find one.
    edges = _try_creation()
    while edges is None:
        edges = _try_creation()

    G = nx.Graph()
    G.name = "random_regular_graph(%s, %s)" % (d, n)
    G.add_edges_from(edges)

    return G

def _random_subset(seq,m):
    """ Return m unique elements from seq.

    This differs from random.sample which can return repeated
    elements if seq holds repeated elements.
    """
    targets=set()
    while len(targets)<m:
        x=random.choice(seq)
        targets.add(x)
    return targets

def barabasi_albert_graph(n, m, seed=None):
    """Returns a random graph according to the Barabási–Albert preferential
    attachment model.

    A graph of ``n`` nodes is grown by attaching new nodes each with ``m``
    edges that are preferentially attached to existing nodes with high degree.

    Parameters
    ----------
    n : int
        Number of nodes
    m : int
        Number of edges to attach from a new node to existing nodes
    seed : int, optional
        Seed for random number generator (default=None).

    Returns
    -------
    G : Graph

    Raises
    ------
    NetworkXError
        If ``m`` does not satisfy ``1 <= m < n``.

    References
    ----------
    .. [1] A. L. Barabási and R. Albert "Emergence of scaling in
       random networks", Science 286, pp 509-512, 1999.
    """

    if m < 1 or  m >=n:
        raise nx.NetworkXError("Barabási–Albert network must have m >= 1"
                               " and m < n, m = %d, n = %d" % (m, n))
    if seed is not None:
        random.seed(seed)

    # Add m initial nodes (m0 in barabasi-speak)
    G=empty_graph(m)
    G.name="barabasi_albert_graph(%s,%s)"%(n,m)
    # Target nodes for new edges
    targets=list(range(m))
    # List of existing nodes, with nodes repeated once for each adjacent edge
    repeated_nodes=[]
    # Start adding the other n-m nodes. The first node is m.
    source=m
    while source<n:
        # Add edges to m nodes from the source.
        G.add_edges_from(zip([source]*m,targets))
        # Add one node to the list for each new edge just created.
        repeated_nodes.extend(targets)
        # And the new node "source" has m edges to add to the list.
        repeated_nodes.extend([source]*m)
        # Now choose m unique nodes from the existing nodes
        # Pick uniformly from repeated_nodes (preferential attachement)
        targets = _random_subset(repeated_nodes,m)
        source += 1
    return G

def powerlaw_cluster_graph(n, m, p, seed=None):
    """Holme and Kim algorithm for growing graphs with powerlaw
    degree distribution and approximate average clustering.

    Parameters
    ----------
    n : int
        the number of nodes
    m : int
        the number of random edges to add for each new node
    p : float,
        Probability of adding a triangle after adding a random edge
    seed : int, optional
        Seed for random number generator (default=None).

    Notes
    -----
    The average clustering has a hard time getting above a certain
    cutoff that depends on ``m``.  This cutoff is often quite low.  The
    transitivity (fraction of triangles to possible triangles) seems to
    decrease with network size.

    It is essentially the Barabási–Albert (BA) growth model with an
    extra step that each random edge is followed by a chance of
    making an edge to one of its neighbors too (and thus a triangle).

    This algorithm improves on BA in the sense that it enables a
    higher average clustering to be attained if desired.

    It seems possible to have a disconnected graph with this algorithm
    since the initial ``m`` nodes may not be all linked to a new node
    on the first iteration like the BA model.

    Raises
    ------
    NetworkXError
        If ``m`` does not satisfy ``1 <= m <= n`` or ``p`` does not
        satisfy ``0 <= p <= 1``.

    References
    ----------
    .. [1] P. Holme and B. J. Kim,
       "Growing scale-free networks with tunable clustering",
       Phys. Rev. E, 65, 026107, 2002.
    """

    if m < 1 or n < m:
        raise nx.NetworkXError(\
              "NetworkXError must have m>1 and m<n, m=%d,n=%d"%(m,n))

    if p > 1 or p < 0:
        raise nx.NetworkXError(\
              "NetworkXError p must be in [0,1], p=%f"%(p))
    if seed is not None:
        random.seed(seed)

    G=empty_graph(m) # add m initial nodes (m0 in barabasi-speak)
    G.name="Powerlaw-Cluster Graph"
    repeated_nodes=G.nodes()  # list of existing nodes to sample from
                           # with nodes repeated once for each adjacent edge
    source=m               # next node is m
    while source<n:        # Now add the other n-1 nodes
        possible_targets = _random_subset(repeated_nodes,m)
        # do one preferential attachment for new node
        target=possible_targets.pop()
        G.add_edge(source,target)
        repeated_nodes.append(target) # add one node to list for each new link
        count=1
        while count<m:  # add m-1 more new links
            if random.random()<p: # clustering step: add triangle
                neighborhood=[nbr for nbr in G.neighbors(target) \
                               if not G.has_edge(source,nbr) \
                               and not nbr==source]
                if neighborhood: # if there is a neighbor without a link
                    nbr=random.choice(neighborhood)
                    G.add_edge(source,nbr) # add triangle
                    repeated_nodes.append(nbr)
                    count=count+1
                    continue # go to top of while loop
            # else do preferential attachment step if above fails
            target=possible_targets.pop()
            G.add_edge(source,target)
            repeated_nodes.append(target)
            count=count+1

        repeated_nodes.extend([source]*m)  # add source node to list m times
        source += 1
    return G

def duplication_divergence_graph(n, p, seed=None):
    """Returns an undirected graph using the duplication-divergence model.

    A graph of ``n`` nodes is created by duplicating the initial nodes
    and retaining edges incident to the original nodes with a retention
    probability ``p``.

    Parameters
    ----------
    n : int
        The desired number of nodes in the graph.
    p : float
        The probability for retaining the edge of the replicated node.
    seed : int, optional
        A seed for the random number generator of ``random`` (default=None).

    Returns
    -------
    G : Graph

    Raises
    ------
    NetworkXError
        If `p` is not a valid probability.
        If `n` is less than 2.

    References
    ----------
    .. [1] I. Ispolatov, P. L. Krapivsky, A. Yuryev,
       "Duplication-divergence model of protein interaction network",
       Phys. Rev. E, 71, 061911, 2005.

    """
    if p > 1 or p < 0:
        msg = "NetworkXError p={0} is not in [0,1].".format(p)
        raise nx.NetworkXError(msg)
    if n < 2:
        msg = 'n must be greater than or equal to 2'
        raise nx.NetworkXError(msg)
    if seed is not None:
        random.seed(seed)

    G = nx.Graph()
    G.graph['name'] = "Duplication-Divergence Graph"

    # Initialize the graph with two connected nodes.
    G.add_edge(0,1)
    i = 2
    while i < n:
        # Choose a random node from current graph to duplicate.
        random_node = random.choice(G.nodes())
        # Make the replica.
        G.add_node(i)
        # flag indicates whether at least one edge is connected on the replica.
        flag=False
        for nbr in G.neighbors(random_node):
            if random.random() < p:
                # Link retention step.
                G.add_edge(i, nbr)
                flag = True
        if not flag:
            # Delete replica if no edges retained.
            G.remove_node(i)
        else:
            # Successful duplication.
            i += 1
    return G

def random_lobster(n, p1, p2, seed=None):
    """Returns a random lobster graph.

     A lobster is a tree that reduces to a caterpillar when pruning all
     leaf nodes. A caterpillar is a tree that reduces to a path graph
     when pruning all leaf nodes; setting ``p2`` to zero produces a caterillar.

     Parameters
     ----------
     n : int
         The expected number of nodes in the backbone
     p1 : float
         Probability of adding an edge to the backbone
     p2 : float
         Probability of adding an edge one level beyond backbone
     seed : int, optional
         Seed for random number generator (default=None).
    """
    # a necessary ingredient in any self-respecting graph library
    if seed is not None:
        random.seed(seed)
    llen=int(2*random.random()*n + 0.5)
    L=path_graph(llen)
    L.name="random_lobster(%d,%s,%s)"%(n,p1,p2)
    # build caterpillar: add edges to path graph with probability p1
    current_node=llen-1
    for n in range(llen):
        if random.random()<p1: # add fuzzy caterpillar parts
            current_node+=1
            L.add_edge(n,current_node)
            if random.random()<p2: # add crunchy lobster bits
                current_node+=1
                L.add_edge(current_node-1,current_node)
    return L # voila, un lobster!

def random_shell_graph(constructor, seed=None):
    """Returns a random shell graph for the constructor given.

    Parameters
    ----------
    constructor : list of three-tuples
        Represents the parameters for a shell, starting at the center
        shell.  Each element of the list must be of the form ``(n, m,
        d)``, where ``n`` is the number of nodes in the shell, ``m`` is
        the number of edges in the shell, and ``d`` is the ratio of
        inter-shell (next) edges to intra-shell edges. If ``d`` is zero,
        there will be no intra-shell edges, and if ``d`` is one there
        will be all possible intra-shell edges.
    seed : int, optional
        Seed for random number generator (default=None).

    Examples
    --------
    >>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
    >>> G = nx.random_shell_graph(constructor)

    """
    G=empty_graph(0)
    G.name="random_shell_graph(constructor)"

    if seed is not None:
        random.seed(seed)

    glist=[]
    intra_edges=[]
    nnodes=0
    # create gnm graphs for each shell
    for (n,m,d) in constructor:
        inter_edges=int(m*d)
        intra_edges.append(m-inter_edges)
        g=nx.convert_node_labels_to_integers(
            gnm_random_graph(n,inter_edges),
            first_label=nnodes)
        glist.append(g)
        nnodes+=n
        G=nx.operators.union(G,g)

    # connect the shells randomly
    for gi in range(len(glist)-1):
        nlist1=glist[gi].nodes()
        nlist2=glist[gi+1].nodes()
        total_edges=intra_edges[gi]
        edge_count=0
        while edge_count < total_edges:
            u = random.choice(nlist1)
            v = random.choice(nlist2)
            if u==v or G.has_edge(u,v):
                continue
            else:
                G.add_edge(u,v)
                edge_count=edge_count+1
    return G


def random_powerlaw_tree(n, gamma=3, seed=None, tries=100):
    """Returns a tree with a power law degree distribution.

    Parameters
    ----------
    n : int
        The number of nodes.
    gamma : float
        Exponent of the power law.
    seed : int, optional
        Seed for random number generator (default=None).
    tries : int
        Number of attempts to adjust the sequence to make it a tree.

    Raises
    ------
    NetworkXError
        If no valid sequence is found within the maximum number of
        attempts.

    Notes
    -----
    A trial power law degree sequence is chosen and then elements are
    swapped with new elements from a powerlaw distribution until the
    sequence makes a tree (by checking, for example, that the number of
    edges is one smaller than the number of nodes).

    """
    from networkx.generators.degree_seq import degree_sequence_tree
    try:
        s=random_powerlaw_tree_sequence(n,
                                        gamma=gamma,
                                        seed=seed,
                                        tries=tries)
    except:
        raise nx.NetworkXError(\
              "Exceeded max (%d) attempts for a valid tree sequence."%tries)
    G=degree_sequence_tree(s)
    G.name="random_powerlaw_tree(%s,%s)"%(n,gamma)
    return G


def random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100):
    """Returns a degree sequence for a tree with a power law distribution.

    Parameters
    ----------
    n : int,
        The number of nodes.
    gamma : float
        Exponent of the power law.
    seed : int, optional
        Seed for random number generator (default=None).
    tries : int
        Number of attempts to adjust the sequence to make it a tree.

    Raises
    ------
    NetworkXError
        If no valid sequence is found within the maximum number of
        attempts.

    Notes
    -----
    A trial power law degree sequence is chosen and then elements are
    swapped with new elements from a power law distribution until
    the sequence makes a tree (by checking, for example, that the number of
    edges is one smaller than the number of nodes).

    """
    if seed is not None:
        random.seed(seed)

    # get trial sequence
    z=nx.utils.powerlaw_sequence(n,exponent=gamma)
    # round to integer values in the range [0,n]
    zseq=[min(n, max( int(round(s)),0 )) for s in z]

    # another sequence to swap values from
    z=nx.utils.powerlaw_sequence(tries,exponent=gamma)
    # round to integer values in the range [0,n]
    swap=[min(n, max( int(round(s)),0 )) for s in z]

    for deg in swap:
        if n-sum(zseq)/2.0 == 1.0: # is a tree, return sequence
            return zseq
        index=random.randint(0,n-1)
        zseq[index]=swap.pop()

    raise nx.NetworkXError(\
          "Exceeded max (%d) attempts for a valid tree sequence."%tries)
    return False