This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/algorithms/tests/test_dag.py is in python-networkx 1.11-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
from itertools import combinations
from nose.tools import *
from networkx.testing.utils import assert_edges_equal
import networkx as nx


class TestDAG:

    def setUp(self):
        pass

    def test_topological_sort1(self):
        DG = nx.DiGraph()
        DG.add_edges_from([(1, 2), (1, 3), (2, 3)])
        assert_equal(nx.topological_sort(DG), [1, 2, 3])
        assert_equal(nx.topological_sort_recursive(DG), [1, 2, 3])

        DG.add_edge(3, 2)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)

        DG.remove_edge(2, 3)
        assert_equal(nx.topological_sort(DG), [1, 3, 2])
        assert_equal(nx.topological_sort_recursive(DG), [1, 3, 2])

    def test_reverse_topological_sort1(self):
        DG = nx.DiGraph()
        DG.add_edges_from([(1, 2), (1, 3), (2, 3)])
        assert_equal(nx.topological_sort(DG, reverse=True), [3, 2, 1])
        assert_equal(
            nx.topological_sort_recursive(DG, reverse=True), [3, 2, 1])

        DG.add_edge(3, 2)
        assert_raises(nx.NetworkXUnfeasible,
                      nx.topological_sort, DG, reverse=True)
        assert_raises(nx.NetworkXUnfeasible,
                      nx.topological_sort_recursive, DG, reverse=True)

        DG.remove_edge(2, 3)
        assert_equal(nx.topological_sort(DG, reverse=True), [2, 3, 1])
        assert_equal(
            nx.topological_sort_recursive(DG, reverse=True), [2, 3, 1])

    def test_is_directed_acyclic_graph(self):
        G = nx.generators.complete_graph(2)
        assert_false(nx.is_directed_acyclic_graph(G))
        assert_false(nx.is_directed_acyclic_graph(G.to_directed()))
        assert_false(nx.is_directed_acyclic_graph(nx.Graph([(3, 4), (4, 5)])))
        assert_true(nx.is_directed_acyclic_graph(nx.DiGraph([(3, 4), (4, 5)])))

    def test_topological_sort2(self):
        DG = nx.DiGraph({1: [2], 2: [3], 3: [4],
                         4: [5], 5: [1], 11: [12],
                         12: [13], 13: [14], 14: [15]})
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)

        assert_false(nx.is_directed_acyclic_graph(DG))

        DG.remove_edge(1, 2)
        assert_equal(nx.topological_sort_recursive(DG),
                     [11, 12, 13, 14, 15, 2, 3, 4, 5, 1])
        assert_equal(nx.topological_sort(DG),
                     [11, 12, 13, 14, 15, 2, 3, 4, 5, 1])
        assert_true(nx.is_directed_acyclic_graph(DG))

    def test_topological_sort3(self):
        DG = nx.DiGraph()
        DG.add_edges_from([(1, i) for i in range(2, 5)])
        DG.add_edges_from([(2, i) for i in range(5, 9)])
        DG.add_edges_from([(6, i) for i in range(9, 12)])
        DG.add_edges_from([(4, i) for i in range(12, 15)])

        def validate(order):
            ok_(isinstance(order, list))
            assert_equal(set(order), set(DG))
            for u, v in combinations(order, 2):
                assert_false(nx.has_path(DG, v, u))
        validate(nx.topological_sort_recursive(DG))
        validate(nx.topological_sort(DG))

        DG.add_edge(14, 1)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort, DG)
        assert_raises(nx.NetworkXUnfeasible, nx.topological_sort_recursive, DG)

    def test_topological_sort4(self):
        G = nx.Graph()
        G.add_edge(1, 2)
        assert_raises(nx.NetworkXError, nx.topological_sort, G)
        assert_raises(nx.NetworkXError, nx.topological_sort_recursive, G)

    def test_topological_sort5(self):
        G = nx.DiGraph()
        G.add_edge(0, 1)
        assert_equal(nx.topological_sort_recursive(G), [0, 1])
        assert_equal(nx.topological_sort(G), [0, 1])

    def test_nbunch_argument(self):
        G = nx.DiGraph()
        G.add_edges_from([(1, 2), (2, 3), (1, 4), (1, 5), (2, 6)])
        assert_equal(nx.topological_sort(G), [1, 2, 3, 6, 4, 5])
        assert_equal(nx.topological_sort_recursive(G), [1, 5, 4, 2, 6, 3])
        assert_equal(nx.topological_sort(G, [1]), [1, 2, 3, 6, 4, 5])
        assert_equal(nx.topological_sort_recursive(G, [1]), [1, 5, 4, 2, 6, 3])
        assert_equal(nx.topological_sort(G, [5]), [5])
        assert_equal(nx.topological_sort_recursive(G, [5]), [5])

    def test_ancestors(self):
        G = nx.DiGraph()
        ancestors = nx.algorithms.dag.ancestors
        G.add_edges_from([
            (1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)])
        assert_equal(ancestors(G, 6), set([1, 2, 4, 5]))
        assert_equal(ancestors(G, 3), set([1, 4]))
        assert_equal(ancestors(G, 1), set())
        assert_raises(nx.NetworkXError, ancestors, G, 8)

    def test_descendants(self):
        G = nx.DiGraph()
        descendants = nx.algorithms.dag.descendants
        G.add_edges_from([
            (1, 2), (1, 3), (4, 2), (4, 3), (4, 5), (2, 6), (5, 6)])
        assert_equal(descendants(G, 1), set([2, 3, 6]))
        assert_equal(descendants(G, 4), set([2, 3, 5, 6]))
        assert_equal(descendants(G, 3), set())
        assert_raises(nx.NetworkXError, descendants, G, 8)

    def test_transitive_closure(self):
        G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
        transitive_closure = nx.algorithms.dag.transitive_closure
        solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
        assert_edges_equal(transitive_closure(G).edges(), solution)
        G = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
        solution = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)]
        assert_edges_equal(transitive_closure(G).edges(), solution)
        G = nx.Graph([(1, 2), (2, 3), (3, 4)])
        assert_raises(nx.NetworkXNotImplemented, transitive_closure, G)

    def _check_antichains(self, solution, result):
        sol = [frozenset(a) for a in solution]
        res = [frozenset(a) for a in result]
        assert_true(set(sol) == set(res))

    def test_antichains(self):
        antichains = nx.algorithms.dag.antichains
        G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
        solution = [[], [4], [3], [2], [1]]
        self._check_antichains(list(antichains(G)), solution)
        G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)])
        solution = [[], [4], [7], [7, 4], [6], [6, 4], [6, 7], [6, 7, 4],
                    [5], [5, 4], [3], [3, 4], [2], [1]]
        self._check_antichains(list(antichains(G)), solution)
        G = nx.DiGraph([(1, 2), (1, 3), (3, 4), (3, 5), (5, 6)])
        solution = [[], [6], [5], [4], [4, 6], [4, 5], [3], [2], [2, 6],
                    [2, 5], [2, 4], [2, 4, 6], [2, 4, 5], [2, 3], [1]]
        self._check_antichains(list(antichains(G)), solution)
        G = nx.DiGraph({0: [1, 2], 1: [4], 2: [3], 3: [4]})
        solution = [[], [4], [3], [2], [1], [1, 3], [1, 2], [0]]
        self._check_antichains(list(antichains(G)), solution)
        G = nx.DiGraph()
        self._check_antichains(list(antichains(G)), [[]])
        G = nx.DiGraph()
        G.add_nodes_from([0, 1, 2])
        solution = [[], [0], [1], [1, 0], [2], [2, 0], [2, 1], [2, 1, 0]]
        self._check_antichains(list(antichains(G)), solution)
        f = lambda x: list(antichains(x))
        G = nx.Graph([(1, 2), (2, 3), (3, 4)])
        assert_raises(nx.NetworkXNotImplemented, f, G)
        G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
        assert_raises(nx.NetworkXUnfeasible, f, G)

    def test_dag_longest_path(self):
        longest_path = nx.algorithms.dag.dag_longest_path
        G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)])
        assert_equal(longest_path(G), [1, 2, 3, 5, 6])
        G = nx.DiGraph(
            [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)])
        assert_equal(longest_path(G), [1, 2, 3, 4, 5])
        G = nx.Graph()
        assert_raises(nx.NetworkXNotImplemented, longest_path, G)

    def test_dag_longest_path_length(self):
        longest_path_length = nx.algorithms.dag.dag_longest_path_length
        G = nx.DiGraph([(1, 2), (2, 3), (2, 4), (3, 5), (5, 6), (5, 7)])
        assert_equal(longest_path_length(G), 4)
        G = nx.DiGraph(
            [(1, 2), (2, 3), (3, 4), (4, 5), (1, 3), (1, 5), (3, 5)])
        assert_equal(longest_path_length(G), 4)
        G = nx.Graph()
        assert_raises(nx.NetworkXNotImplemented, longest_path_length, G)


def test_is_aperiodic_cycle():
    G = nx.DiGraph()
    G.add_cycle([1, 2, 3, 4])
    assert_false(nx.is_aperiodic(G))


def test_is_aperiodic_cycle2():
    G = nx.DiGraph()
    G.add_cycle([1, 2, 3, 4])
    G.add_cycle([3, 4, 5, 6, 7])
    assert_true(nx.is_aperiodic(G))


def test_is_aperiodic_cycle3():
    G = nx.DiGraph()
    G.add_cycle([1, 2, 3, 4])
    G.add_cycle([3, 4, 5, 6])
    assert_false(nx.is_aperiodic(G))


def test_is_aperiodic_cycle4():
    G = nx.DiGraph()
    G.add_cycle([1, 2, 3, 4])
    G.add_edge(1, 3)
    assert_true(nx.is_aperiodic(G))


def test_is_aperiodic_selfloop():
    G = nx.DiGraph()
    G.add_cycle([1, 2, 3, 4])
    G.add_edge(1, 1)
    assert_true(nx.is_aperiodic(G))


def test_is_aperiodic_raise():
    G = nx.Graph()
    assert_raises(nx.NetworkXError,
                  nx.is_aperiodic,
                  G)


def test_is_aperiodic_bipartite():
    # Bipartite graph
    G = nx.DiGraph(nx.davis_southern_women_graph())
    assert_false(nx.is_aperiodic(G))


def test_is_aperiodic_rary_tree():
    G = nx.full_rary_tree(3, 27, create_using=nx.DiGraph())
    assert_false(nx.is_aperiodic(G))


def test_is_aperiodic_disconnected():
    # disconnected graph
    G = nx.DiGraph()
    G.add_cycle([1, 2, 3, 4])
    G.add_cycle([5, 6, 7, 8])
    assert_false(nx.is_aperiodic(G))
    G.add_edge(1, 3)
    G.add_edge(5, 7)
    assert_true(nx.is_aperiodic(G))


def test_is_aperiodic_disconnected2():
    G = nx.DiGraph()
    G.add_cycle([0, 1, 2])
    G.add_edge(3, 3)
    assert_false(nx.is_aperiodic(G))