This file is indexed.

/usr/lib/python2.7/dist-packages/networkx/algorithms/centrality/eigenvector.py is in python-networkx 1.11-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# coding=utf8
"""
Eigenvector centrality.
"""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import networkx as nx
__author__ = "\n".join(['Aric Hagberg (aric.hagberg@gmail.com)',
                        'Pieter Swart (swart@lanl.gov)',
                        'Sasha Gutfraind (ag362@cornell.edu)'])
__all__ = ['eigenvector_centrality',
           'eigenvector_centrality_numpy']

def eigenvector_centrality(G, max_iter=100, tol=1.0e-6, nstart=None,
                           weight='weight'):
    """Compute the eigenvector centrality for the graph G.

    Eigenvector centrality computes the centrality for a node based on the
    centrality of its neighbors. The eigenvector centrality for node `i` is

    .. math::

        \mathbf{Ax} = \lambda \mathbf{x}

    where `A` is the adjacency matrix of the graph G with eigenvalue `\lambda`.
    By virtue of the Perron–Frobenius theorem, there is a unique and positive
    solution if `\lambda` is the largest eigenvalue associated with the
    eigenvector of the adjacency matrix `A` ([2]_).

    Parameters
    ----------
    G : graph
      A networkx graph

    max_iter : integer, optional
      Maximum number of iterations in power method.

    tol : float, optional
      Error tolerance used to check convergence in power method iteration.

    nstart : dictionary, optional
      Starting value of eigenvector iteration for each node.

    weight : None or string, optional
      If None, all edge weights are considered equal.
      Otherwise holds the name of the edge attribute used as weight.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with eigenvector centrality as the value.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> centrality = nx.eigenvector_centrality(G)
    >>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
    ['0 0.37', '1 0.60', '2 0.60', '3 0.37']

    See Also
    --------
    eigenvector_centrality_numpy
    pagerank
    hits

    Notes
    -----
    The measure was introduced by [1]_.

    The eigenvector calculation is done by the power iteration method and has
    no guarantee of convergence. The iteration will stop after ``max_iter``
    iterations or an error tolerance of ``number_of_nodes(G)*tol`` has been
    reached.

    For directed graphs this is "left" eigenvector centrality which corresponds
    to the in-edges in the graph. For out-edges eigenvector centrality
    first reverse the graph with ``G.reverse()``.

    References
    ----------
    .. [1] Phillip Bonacich:
       Power and Centrality: A Family of Measures.
       American Journal of Sociology 92(5):1170–1182, 1986
       http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf
    .. [2] Mark E. J. Newman:
       Networks: An Introduction.
       Oxford University Press, USA, 2010, pp. 169.

    """
    from math import sqrt
    if type(G) == nx.MultiGraph or type(G) == nx.MultiDiGraph:
        raise nx.NetworkXException("Not defined for multigraphs.")

    if len(G) == 0:
        raise nx.NetworkXException("Empty graph.")

    if nstart is None:
        # choose starting vector with entries of 1/len(G)
        x = dict([(n,1.0/len(G)) for n in G])
    else:
        x = nstart
    # normalize starting vector
    s = 1.0/sum(x.values())
    for k in x:
        x[k] *= s
    nnodes = G.number_of_nodes()
    # make up to max_iter iterations
    for i in range(max_iter):
        xlast = x
        x = dict.fromkeys(xlast, 0)
        # do the multiplication y^T = x^T A
        for n in x:
            for nbr in G[n]:
                x[nbr] += xlast[n] * G[n][nbr].get(weight, 1)
        # normalize vector
        try:
            s = 1.0/sqrt(sum(v**2 for v in x.values()))
        # this should never be zero?
        except ZeroDivisionError:
            s = 1.0
        for n in x:
            x[n] *= s
        # check convergence
        err = sum([abs(x[n]-xlast[n]) for n in x])
        if err < nnodes*tol:
            return x

    raise nx.NetworkXError("""eigenvector_centrality():
power iteration failed to converge in %d iterations."%(i+1))""")


def eigenvector_centrality_numpy(G, weight='weight'):
    """Compute the eigenvector centrality for the graph G.

    Eigenvector centrality computes the centrality for a node based on the
    centrality of its neighbors. The eigenvector centrality for node `i` is

    .. math::

        \mathbf{Ax} = \lambda \mathbf{x}

    where `A` is the adjacency matrix of the graph G with eigenvalue `\lambda`.
    By virtue of the Perron–Frobenius theorem, there is a unique and positive
    solution if `\lambda` is the largest eigenvalue associated with the
    eigenvector of the adjacency matrix `A` ([2]_).

    Parameters
    ----------
    G : graph
      A networkx graph

    weight : None or string, optional
      The name of the edge attribute used as weight.
      If None, all edge weights are considered equal.

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with eigenvector centrality as the value.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> centrality = nx.eigenvector_centrality_numpy(G)
    >>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
    ['0 0.37', '1 0.60', '2 0.60', '3 0.37']

    See Also
    --------
    eigenvector_centrality
    pagerank
    hits

    Notes
    -----
    The measure was introduced by [1]_.

    This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to
    find the largest eigenvalue/eigenvector pair.

    For directed graphs this is "left" eigenvector centrality which corresponds
    to the in-edges in the graph. For out-edges eigenvector centrality
    first reverse the graph with G.reverse().

    References
    ----------
    .. [1] Phillip Bonacich:
       Power and Centrality: A Family of Measures.
       American Journal of Sociology 92(5):1170–1182, 1986
       http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf
    .. [2] Mark E. J. Newman:
       Networks: An Introduction.
       Oxford University Press, USA, 2010, pp. 169.
    """
    import scipy as sp
    from scipy.sparse import linalg
    if len(G) == 0:
        raise nx.NetworkXException('Empty graph.')
    M = nx.to_scipy_sparse_matrix(G, nodelist=G.nodes(), weight=weight,
                                  dtype=float)
    eigenvalue, eigenvector = linalg.eigs(M.T, k=1, which='LR')
    largest = eigenvector.flatten().real
    norm = sp.sign(largest.sum())*sp.linalg.norm(largest)
    centrality = dict(zip(G,map(float,largest/norm)))
    return centrality


# fixture for nose tests
def setup_module(module):
    from nose import SkipTest
    try:
        import scipy
    except:
        raise SkipTest("SciPy not available")