/usr/share/doc/llvm-6.0-doc/html/XRayExample.html is in llvm-6.0-doc 1:6.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Debugging with XRay — LLVM 6 documentation</title>
<link rel="stylesheet" href="_static/llvm-theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '6',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="XRay Flight Data Recorder Trace Format" href="XRayFDRFormat.html" />
<link rel="prev" title="XRay Instrumentation" href="XRay.html" />
<style type="text/css">
table.right { float: right; margin-left: 20px; }
table.right td { border: 1px solid #ccc; }
</style>
</head>
<body>
<div class="logo">
<a href="index.html">
<img src="_static/logo.png"
alt="LLVM Logo" width="250" height="88"/></a>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="XRayFDRFormat.html" title="XRay Flight Data Recorder Trace Format"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="XRay.html" title="XRay Instrumentation"
accesskey="P">previous</a> |</li>
<li><a href="http://llvm.org/">LLVM Home</a> | </li>
<li><a href="index.html">Documentation</a>»</li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="body" role="main">
<div class="section" id="debugging-with-xray">
<h1>Debugging with XRay<a class="headerlink" href="#debugging-with-xray" title="Permalink to this headline">¶</a></h1>
<p>This document shows an example of how you would go about analyzing applications
built with XRay instrumentation. Here we will attempt to debug <code class="docutils literal"><span class="pre">llc</span></code>
compiling some sample LLVM IR generated by Clang.</p>
<div class="contents local topic" id="contents">
<ul class="simple">
<li><a class="reference internal" href="#building-with-xray" id="id1">Building with XRay</a></li>
<li><a class="reference internal" href="#getting-traces" id="id2">Getting Traces</a></li>
<li><a class="reference internal" href="#the-llvm-xray-tool" id="id3">The <code class="docutils literal"><span class="pre">llvm-xray</span></code> Tool</a></li>
<li><a class="reference internal" href="#controlling-fidelity" id="id4">Controlling Fidelity</a><ul>
<li><a class="reference internal" href="#instruction-threshold" id="id5">Instruction Threshold</a></li>
<li><a class="reference internal" href="#instrumentation-attributes" id="id6">Instrumentation Attributes</a></li>
</ul>
</li>
<li><a class="reference internal" href="#the-xray-stack-tool" id="id7">The XRay stack tool</a></li>
<li><a class="reference internal" href="#flame-graph-generation" id="id8">Flame Graph Generation</a></li>
<li><a class="reference internal" href="#further-exploration" id="id9">Further Exploration</a></li>
<li><a class="reference internal" href="#next-steps" id="id10">Next Steps</a></li>
</ul>
</div>
<div class="section" id="building-with-xray">
<h2><a class="toc-backref" href="#id1">Building with XRay</a><a class="headerlink" href="#building-with-xray" title="Permalink to this headline">¶</a></h2>
<p>To debug an application with XRay instrumentation, we need to build it with a
Clang that supports the <code class="docutils literal"><span class="pre">-fxray-instrument</span></code> option. See <a class="reference external" href="XRay.html">XRay</a>
for more technical details of how XRay works for background information.</p>
<p>In our example, we need to add <code class="docutils literal"><span class="pre">-fxray-instrument</span></code> to the list of flags
passed to Clang when building a binary. Note that we need to link with Clang as
well to get the XRay runtime linked in appropriately. For building <code class="docutils literal"><span class="pre">llc</span></code> with
XRay, we do something similar below for our LLVM build:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ mkdir -p llvm-build && cd llvm-build
# Assume that the LLVM sources are at ../llvm
$ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_C_FLAGS_RELEASE="-fxray-instrument" -DCMAKE_CXX_FLAGS="-fxray-instrument" \
# Once this finishes, we should build llc
$ ninja llc
</pre></div>
</div>
<p>To verify that we have an XRay instrumented binary, we can use <code class="docutils literal"><span class="pre">objdump</span></code> to
look for the <code class="docutils literal"><span class="pre">xray_instr_map</span></code> section.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ objdump -h -j xray_instr_map ./bin/llc
./bin/llc: file format elf64-x86-64
Sections:
Idx Name Size VMA LMA File off Algn
14 xray_instr_map 00002fc0 00000000041516c6 00000000041516c6 03d516c6 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
</pre></div>
</div>
</div>
<div class="section" id="getting-traces">
<h2><a class="toc-backref" href="#id2">Getting Traces</a><a class="headerlink" href="#getting-traces" title="Permalink to this headline">¶</a></h2>
<p>By default, XRay does not write out the trace files or patch the application
before main starts. If we just run <code class="docutils literal"><span class="pre">llc</span></code> it should just work like a normally
built binary. However, if we want to get a full trace of the application’s
operations (of the functions we do end up instrumenting with XRay) then we need
to enable XRay at application start. To do this, XRay checks the
<code class="docutils literal"><span class="pre">XRAY_OPTIONS</span></code> environment variable.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span># The following doesn't create an XRay trace by default.
$ ./bin/llc input.ll
# We need to set the XRAY_OPTIONS to enable some features.
$ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./bin/llc input.ll
==69819==XRay: Log file in 'xray-log.llc.m35qPB'
</pre></div>
</div>
<p>At this point we now have an XRay trace we can start analysing.</p>
</div>
<div class="section" id="the-llvm-xray-tool">
<h2><a class="toc-backref" href="#id3">The <code class="docutils literal"><span class="pre">llvm-xray</span></code> Tool</a><a class="headerlink" href="#the-llvm-xray-tool" title="Permalink to this headline">¶</a></h2>
<p>Having a trace then allows us to do basic accounting of the functions that were
instrumented, and how much time we’re spending in parts of the code. To make
sense of this data, we use the <code class="docutils literal"><span class="pre">llvm-xray</span></code> tool which has a few subcommands
to help us understand our trace.</p>
<p>One of the simplest things we can do is to get an accounting of the functions
that have been instrumented. We can see an example accounting with <code class="docutils literal"><span class="pre">llvm-xray</span>
<span class="pre">account</span></code>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ llvm-xray account xray-log.llc.m35qPB -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
Functions with latencies: 29
funcid count [ min, med, 90p, 99p, max] sum function
187 360 [ 0.000000, 0.000001, 0.000014, 0.000032, 0.000075] 0.001596 LLLexer.cpp:446:0: llvm::LLLexer::LexIdentifier()
85 130 [ 0.000000, 0.000000, 0.000018, 0.000023, 0.000156] 0.000799 X86ISelDAGToDAG.cpp:1984:0: (anonymous namespace)::X86DAGToDAGISel::Select(llvm::SDNode*)
138 130 [ 0.000000, 0.000000, 0.000017, 0.000155, 0.000155] 0.000774 SelectionDAGISel.cpp:2963:0: llvm::SelectionDAGISel::SelectCodeCommon(llvm::SDNode*, unsigned char const*, unsigned int)
188 103 [ 0.000000, 0.000000, 0.000003, 0.000123, 0.000214] 0.000737 LLParser.cpp:2692:0: llvm::LLParser::ParseValID(llvm::ValID&, llvm::LLParser::PerFunctionState*)
88 1 [ 0.000562, 0.000562, 0.000562, 0.000562, 0.000562] 0.000562 X86ISelLowering.cpp:83:0: llvm::X86TargetLowering::X86TargetLowering(llvm::X86TargetMachine const&, llvm::X86Subtarget const&)
125 102 [ 0.000001, 0.000003, 0.000010, 0.000017, 0.000049] 0.000471 Verifier.cpp:3714:0: (anonymous namespace)::Verifier::visitInstruction(llvm::Instruction&)
90 8 [ 0.000023, 0.000035, 0.000106, 0.000106, 0.000106] 0.000342 X86ISelLowering.cpp:3363:0: llvm::X86TargetLowering::LowerCall(llvm::TargetLowering::CallLoweringInfo&, llvm::SmallVectorImpl<llvm::SDValue>&) const
124 32 [ 0.000003, 0.000007, 0.000016, 0.000041, 0.000041] 0.000310 Verifier.cpp:1967:0: (anonymous namespace)::Verifier::visitFunction(llvm::Function const&)
123 1 [ 0.000302, 0.000302, 0.000302, 0.000302, 0.000302] 0.000302 LLVMContextImpl.cpp:54:0: llvm::LLVMContextImpl::~LLVMContextImpl()
139 46 [ 0.000000, 0.000002, 0.000006, 0.000008, 0.000019] 0.000138 TargetLowering.cpp:506:0: llvm::TargetLowering::SimplifyDemandedBits(llvm::SDValue, llvm::APInt const&, llvm::APInt&, llvm::APInt&, llvm::TargetLowering::TargetLoweringOpt&, unsigned int, bool) const
</pre></div>
</div>
<p>This shows us that for our input file, <code class="docutils literal"><span class="pre">llc</span></code> spent the most cumulative time
in the lexer (a total of 1 millisecond). If we wanted for example to work with
this data in a spreadsheet, we can output the results as CSV using the
<code class="docutils literal"><span class="pre">-format=csv</span></code> option to the command for further analysis.</p>
<p>If we want to get a textual representation of the raw trace we can use the
<code class="docutils literal"><span class="pre">llvm-xray</span> <span class="pre">convert</span></code> tool to get YAML output. The first few lines of that
output for an example trace would look like the following:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ llvm-xray convert -f yaml -symbolize -instr_map=./bin/llc xray-log.llc.m35qPB
---
header:
version: 1
type: 0
constant-tsc: true
nonstop-tsc: true
cycle-frequency: 2601000000
records:
- { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426023268520 }
- { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426023523052 }
- { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426029925386 }
- { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426030031128 }
- { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426046951388 }
- { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047282020 }
- { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426047857332 }
- { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047984152 }
- { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048036584 }
- { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048042292 }
- { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048055056 }
- { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048067316 }
</pre></div>
</div>
</div>
<div class="section" id="controlling-fidelity">
<h2><a class="toc-backref" href="#id4">Controlling Fidelity</a><a class="headerlink" href="#controlling-fidelity" title="Permalink to this headline">¶</a></h2>
<p>So far in our examples, we haven’t been getting full coverage of the functions
we have in the binary. To get that, we need to modify the compiler flags so
that we can instrument more (if not all) the functions we have in the binary.
We have two options for doing that, and we explore both of these below.</p>
<div class="section" id="instruction-threshold">
<h3><a class="toc-backref" href="#id5">Instruction Threshold</a><a class="headerlink" href="#instruction-threshold" title="Permalink to this headline">¶</a></h3>
<p>The first “blunt” way of doing this is by setting the minimum threshold for
function bodies to 1. We can do that with the
<code class="docutils literal"><span class="pre">-fxray-instruction-threshold=N</span></code> flag when building our binary. We rebuild
<code class="docutils literal"><span class="pre">llc</span></code> with this option and observe the results:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ rm CMakeCache.txt
$ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_C_FLAGS_RELEASE="-fxray-instrument -fxray-instruction-threshold=1" \
-DCMAKE_CXX_FLAGS="-fxray-instrument -fxray-instruction-threshold=1"
$ ninja llc
$ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll
==69819==XRay: Log file in 'xray-log.llc.5rqxkU'
$ llvm-xray account xray-log.llc.5rqxkU -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
Functions with latencies: 36652
funcid count [ min, med, 90p, 99p, max] sum function
75 1 [ 0.672368, 0.672368, 0.672368, 0.672368, 0.672368] 0.672368 llc.cpp:271:0: main
78 1 [ 0.626455, 0.626455, 0.626455, 0.626455, 0.626455] 0.626455 llc.cpp:381:0: compileModule(char**, llvm::LLVMContext&)
139617 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1723:0: llvm::legacy::PassManager::run(llvm::Module&)
139610 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1681:0: llvm::legacy::PassManagerImpl::run(llvm::Module&)
139612 1 [ 0.470948, 0.470948, 0.470948, 0.470948, 0.470948] 0.470948 LegacyPassManager.cpp:1564:0: (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&)
139607 2 [ 0.147345, 0.315994, 0.315994, 0.315994, 0.315994] 0.463340 LegacyPassManager.cpp:1530:0: llvm::FPPassManager::runOnModule(llvm::Module&)
139605 21 [ 0.000002, 0.000002, 0.102593, 0.213336, 0.213336] 0.463331 LegacyPassManager.cpp:1491:0: llvm::FPPassManager::runOnFunction(llvm::Function&)
139563 26096 [ 0.000002, 0.000002, 0.000037, 0.000063, 0.000215] 0.225708 LegacyPassManager.cpp:1083:0: llvm::PMDataManager::findAnalysisPass(void const*, bool)
108055 188 [ 0.000002, 0.000120, 0.001375, 0.004523, 0.062624] 0.159279 MachineFunctionPass.cpp:38:0: llvm::MachineFunctionPass::runOnFunction(llvm::Function&)
62635 22 [ 0.000041, 0.000046, 0.000050, 0.126744, 0.126744] 0.127715 X86TargetMachine.cpp:242:0: llvm::X86TargetMachine::getSubtargetImpl(llvm::Function const&) const
</pre></div>
</div>
</div>
<div class="section" id="instrumentation-attributes">
<h3><a class="toc-backref" href="#id6">Instrumentation Attributes</a><a class="headerlink" href="#instrumentation-attributes" title="Permalink to this headline">¶</a></h3>
<p>The other way is to use configuration files for selecting which functions
should always be instrumented by the compiler. This gives us a way of ensuring
that certain functions are either always or never instrumented by not having to
add the attribute to the source.</p>
<p>To use this feature, you can define one file for the functions to always
instrument, and another for functions to never instrument. The format of these
files are exactly the same as the SanitizerLists files that control similar
things for the sanitizer implementations. For example, we can have two
different files like below:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="c1"># always-instrument.txt</span>
<span class="c1"># always instrument functions that match the following filters:</span>
<span class="n">fun</span><span class="p">:</span><span class="n">main</span>
<span class="c1"># never-instrument.txt</span>
<span class="c1"># never instrument functions that match the following filters:</span>
<span class="n">fun</span><span class="p">:</span><span class="n">__cxx_</span><span class="o">*</span>
</pre></div>
</div>
<p>Given the above two files we can re-build by providing those two files as
arguments to clang as <code class="docutils literal"><span class="pre">-fxray-always-instrument=always-instrument.txt</span></code> or
<code class="docutils literal"><span class="pre">-fxray-never-instrument=never-instrument.txt</span></code>.</p>
</div>
</div>
<div class="section" id="the-xray-stack-tool">
<h2><a class="toc-backref" href="#id7">The XRay stack tool</a><a class="headerlink" href="#the-xray-stack-tool" title="Permalink to this headline">¶</a></h2>
<p>Given a trace, and optionally an instrumentation map, the <code class="docutils literal"><span class="pre">llvm-xray</span> <span class="pre">stack</span></code>
command can be used to analyze a call stack graph constructed from the function
call timeline.</p>
<p>The simplest way to use the command is simply to output the top stacks by call
count and time spent.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc
Unique Stacks: 3069
Top 10 Stacks by leaf sum:
Sum: 9633790
lvl function count sum
#0 main 1 58421550
#1 compileModule(char**, llvm::LLVMContext&) 1 51440360
#2 llvm::legacy::PassManagerImpl::run(llvm::Module&) 1 40535375
#3 llvm::FPPassManager::runOnModule(llvm::Module&) 2 39337525
#4 llvm::FPPassManager::runOnFunction(llvm::Function&) 6 39331465
#5 llvm::PMDataManager::verifyPreservedAnalysis(llvm::Pass*) 399 16628590
#6 llvm::PMTopLevelManager::findAnalysisPass(void const*) 4584 15155600
#7 llvm::PMDataManager::findAnalysisPass(void const*, bool) 32088 9633790
..etc..
</pre></div>
</div>
<p>In the default mode, identical stacks on different threads are independently
aggregated. In a multithreaded program, you may end up having identical call
stacks fill your list of top calls.</p>
<p>To address this, you may specify the <code class="docutils literal"><span class="pre">-aggregate-threads</span></code> or
<code class="docutils literal"><span class="pre">-per-thread-stacks</span></code> flags. <code class="docutils literal"><span class="pre">-per-thread-stacks</span></code> treats the thread id as an
implicit root in each call stack tree, while <code class="docutils literal"><span class="pre">-aggregate-threads</span></code> combines
identical stacks from all threads.</p>
</div>
<div class="section" id="flame-graph-generation">
<h2><a class="toc-backref" href="#id8">Flame Graph Generation</a><a class="headerlink" href="#flame-graph-generation" title="Permalink to this headline">¶</a></h2>
<p>The <code class="docutils literal"><span class="pre">llvm-xray</span> <span class="pre">stack</span></code> tool may also be used to generate flamegraphs for
visualizing your instrumented invocations. The tool does not generate the graphs
themselves, but instead generates a format that can be used with Brendan Gregg’s
FlameGraph tool, currently available on <a class="reference external" href="https://github.com/brendangregg/FlameGraph">github</a>.</p>
<p>To generate output for a flamegraph, a few more options are necessary.</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">-all-stacks</span></code> - Emits all of the stacks instead of just the top stacks.</li>
<li><code class="docutils literal"><span class="pre">-stack-format</span></code> - Choose the flamegraph output format ‘flame’.</li>
<li><code class="docutils literal"><span class="pre">-aggregation-type</span></code> - Choose the metric to graph.</li>
</ul>
<p>You may pipe the command output directly to the flamegraph tool to obtain an
svg file.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc -stack-format=flame -aggregation-type=time -all-stacks | \
/path/to/FlameGraph/flamegraph.pl > flamegraph.svg
</pre></div>
</div>
<p>If you open the svg in a browser, mouse events allow exploring the call stacks.</p>
</div>
<div class="section" id="further-exploration">
<h2><a class="toc-backref" href="#id9">Further Exploration</a><a class="headerlink" href="#further-exploration" title="Permalink to this headline">¶</a></h2>
<p>The <code class="docutils literal"><span class="pre">llvm-xray</span></code> tool has a few other subcommands that are in various stages
of being developed. One interesting subcommand that can highlight a few
interesting things is the <code class="docutils literal"><span class="pre">graph</span></code> subcommand. Given for example the following
toy program that we build with XRay instrumentation, we can see how the
generated graph may be a helpful indicator of where time is being spent for the
application.</p>
<div class="highlight-c++"><div class="highlight"><pre><span></span><span class="c1">// sample.cc</span>
<span class="cp">#include</span> <span class="cpf"><iostream></span><span class="cp"></span>
<span class="cp">#include</span> <span class="cpf"><thread></span><span class="cp"></span>
<span class="p">[[</span><span class="n">clang</span><span class="o">::</span><span class="n">xray_always_instrument</span><span class="p">]]</span> <span class="kt">void</span> <span class="n">f</span><span class="p">()</span> <span class="p">{</span>
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="sc">'.'</span><span class="p">;</span>
<span class="p">}</span>
<span class="p">[[</span><span class="n">clang</span><span class="o">::</span><span class="n">xray_always_instrument</span><span class="p">]]</span> <span class="kt">void</span> <span class="n">g</span><span class="p">()</span> <span class="p">{</span>
<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">i</span> <span class="o"><</span> <span class="mi">1</span> <span class="o"><<</span> <span class="mi">10</span><span class="p">;</span> <span class="o">++</span><span class="n">i</span><span class="p">)</span> <span class="p">{</span>
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="sc">'-'</span><span class="p">;</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="kt">int</span> <span class="n">main</span><span class="p">(</span><span class="kt">int</span> <span class="n">argc</span><span class="p">,</span> <span class="kt">char</span><span class="o">*</span> <span class="n">argv</span><span class="p">[])</span> <span class="p">{</span>
<span class="n">std</span><span class="o">::</span><span class="kr">thread</span> <span class="n">t1</span><span class="p">([]</span> <span class="p">{</span>
<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">i</span> <span class="o"><</span> <span class="mi">1</span> <span class="o"><<</span> <span class="mi">10</span><span class="p">;</span> <span class="o">++</span><span class="n">i</span><span class="p">)</span>
<span class="n">f</span><span class="p">();</span>
<span class="p">});</span>
<span class="n">std</span><span class="o">::</span><span class="kr">thread</span> <span class="n">t2</span><span class="p">([]</span> <span class="p">{</span>
<span class="n">g</span><span class="p">();</span>
<span class="p">});</span>
<span class="n">t1</span><span class="p">.</span><span class="n">join</span><span class="p">();</span>
<span class="n">t2</span><span class="p">.</span><span class="n">join</span><span class="p">();</span>
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="sc">'\n'</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
<p>We then build the above with XRay instrumentation:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ clang++ -o sample -O3 sample.cc -std=c++11 -fxray-instrument -fxray-instruction-threshold=1
$ XRAY_OPTIONS="patch_premain=true" ./sample
</pre></div>
</div>
<p>We can then explore the graph rendering of the trace generated by this sample
application. We assume you have the graphviz toosl available in your system,
including both <code class="docutils literal"><span class="pre">unflatten</span></code> and <code class="docutils literal"><span class="pre">dot</span></code>. If you prefer rendering or exploring
the graph using another tool, then that should be feasible as well. <code class="docutils literal"><span class="pre">llvm-xray</span>
<span class="pre">graph</span></code> will create DOT format graphs which should be usable in most graph
rendering applications. One example invocation of the <code class="docutils literal"><span class="pre">llvm-xray</span> <span class="pre">graph</span></code>
command should yield some interesting insights to the workings of C++
applications:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>$ llvm-xray graph xray-log.sample.* -m sample -color-edges=sum -edge-label=sum \
| unflatten -f -l10 | dot -Tsvg -o sample.svg
</pre></div>
</div>
</div>
<div class="section" id="next-steps">
<h2><a class="toc-backref" href="#id10">Next Steps</a><a class="headerlink" href="#next-steps" title="Permalink to this headline">¶</a></h2>
<p>If you have some interesting analyses you’d like to implement as part of the
llvm-xray tool, please feel free to propose them on the llvm-dev@ mailing list.
The following are some ideas to inspire you in getting involved and potentially
making things better.</p>
<blockquote>
<div><ul class="simple">
<li>Implement a query/filtering library that allows for finding patterns in the
XRay traces.</li>
<li>A conversion from the XRay trace onto something that can be visualised
better by other tools (like the Chrome trace viewer for example).</li>
<li>Collecting function call stacks and how often they’re encountered in the
XRay trace.</li>
</ul>
</div></blockquote>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="XRayFDRFormat.html" title="XRay Flight Data Recorder Trace Format"
>next</a> |</li>
<li class="right" >
<a href="XRay.html" title="XRay Instrumentation"
>previous</a> |</li>
<li><a href="http://llvm.org/">LLVM Home</a> | </li>
<li><a href="index.html">Documentation</a>»</li>
</ul>
</div>
<div class="footer" role="contentinfo">
© Copyright 2003-2018, LLVM Project.
Last updated on 2018-04-05.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.6.7.
</div>
</body>
</html>
|