This file is indexed.

/usr/share/perl5/Lintian/Relation.pm is in lintian 2.5.81ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
# -*- perl -*-
# Lintian::Relation -- operations on dependencies and relationships

# Copyright (C) 1998 Christian Schwarz and Richard Braakman
# Copyright (C) 2004-2009 Russ Allbery <rra@debian.org>
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program.  If not, see <http://www.gnu.org/licenses/>.

package Lintian::Relation;

use strict;
use warnings;

use constant {
    VISIT_PRED_NAME => 0,
    VISIT_PRED_FULL => 1,
    VISIT_OR_CLAUSE_FULL => 3,
    VISIT_STOP_FIRST_MATCH => 4,
};

use Exporter qw(import);
our (@EXPORT_OK, %EXPORT_TAGS);
%EXPORT_TAGS = (
    constants => [
        qw(VISIT_PRED_NAME VISIT_PRED_FULL VISIT_OR_CLAUSE_FULL
          VISIT_STOP_FIRST_MATCH)
    ],
);
@EXPORT_OK = (@{ $EXPORT_TAGS{constants} });

use Lintian::Relation::Version qw(:all);

=head1 NAME

Lintian::Relation - Lintian operations on dependencies and relationships

=head1 SYNOPSIS

    my $depends = Lintian::Relation->new('foo | bar, baz');
    print "yes\n" if $depends->implies('baz');
    print "no\n" if $depends->implies('foo');

=head1 DESCRIPTION

This module provides functions for parsing and evaluating package
relationship fields such as Depends and Recommends for binary packages and
Build-Depends for source packages.  It parses a relationship into an
internal format and can then answer questions such as "does this
dependency require that a given package be installed" or "is this
relationship a superset of another relationship."

A dependency line is viewed as a predicate formula.  The comma separator
means "and", and the alternatives separator means "or".  A bare package
name is the predicate "a package of this name is available".  A package
name with a version clause is the predicate "a package of this name that
satisfies this version clause is available."  Architecture restrictions,
as specified in Policy for build dependencies, are supported and also
checked in the implication logic unless the new_noarch() constructor is
used.  With that constructor, architecture restrictions are ignored.

=head1 CLASS METHODS

=over 4

=item new(RELATION)

Creates a new Lintian::Relation object corresponding to the parsed
relationship RELATION.  This object can then be used to ask questions
about that relationship.  RELATION may be C<undef> or the empty string, in
which case the returned Lintian::Relation object is empty (always
satisfied).

=cut

# The internal parser which converts a single package element of a
# relationship into the parsed form used for later processing.  We permit
# substvars to be used as package names so that we can use these routines with
# the unparsed debian/control file.
sub parse_element {
    my ($class, $element) = @_;
    if (
        not $element =~ /
        ^\s*                            # skip leading whitespace
        (                               # package name or substvar (1)
         (?:                            #  start of the name
          [a-zA-Z0-9][a-zA-Z0-9+.-]*    #   start of a package name
          |                             #   or
          \$\{[a-zA-Z0-9:-]+\}          #   substvar
         )                              #  end of start of the name
         (?:                            #  substvars may be mixed in
          [a-zA-Z0-9+.-]+               #   package name portion
          |                             #   or
          \$\{[a-zA-Z0-9:-]+\}          #   substvar
         )*                             #  zero or more portions or substvars
        )                               # end of package name or substvar
        (?:[:]([a-z0-9-]+))?            # optional Multi-arch arch specification (2)
        (?:                             # start of optional version
         \s* \(                         # open parenthesis for version part
         \s* (<<|<=|=|>=|>>|<|>)        # relation part (3)
         \s* ([^\)]+)                   # version (4)
         \s* \)                         # closing parenthesis
        )?                              # end of optional version
        (?:                             # start of optional architecture
         \s* \[                         # open bracket for architecture
         \s* ([^\]]+)                   # architectures (5)
         \s* \]                         # closing bracket
        )?                              # end of optional architecture
        (?:                             # start of optional restriction
          \s* <                         # open bracket for restriction
          \s* ([^,]+)                   # don't parse restrictions now
          \s* >                         # closing bracket
        )?                              # end of optional restriction
    \s* $/x
      ) {
        # store the element as-is, so we can unparse it.
        return ['PRED-UNPARSABLE', $element];
    }

    my ($pkgname, $march, $relop, $relver, $bdarch, $restr)
      = ($1, $2, $3, $4, $5, $6);
    my @array;
    if (not defined($relop)) {
        # If there's no version, we don't need to do any further processing.
        # Otherwise, convert the legacy < and > relations to the current ones.
        @array = ('PRED', $pkgname, undef, undef, $bdarch, $march, $restr);
    } else {
        if ($relop eq '<') {
            $relop = '<<';
        } elsif ($relop eq '>') {
            $relop = '>>';
        }
        @array = ('PRED', $pkgname, $relop, $relver, $bdarch, $march, $restr);
    }

    # Optimise the memory usage of the array.  Understanding this
    # requires a bit of "Perl guts" knowledge.  Storing "undef" in an
    # array (or hash) actually creates a new empty "undefined" scalar.
    # This means that we pay the full overhead of Perl's SV struct for
    # each undef value in this array.
    #   Combine this with the fact that at least the BD-arch qualifier
    # is rare (in fact, always undef for binary relations) and
    # multi-arch qualifiers equally so (at least at the moment).
    # On unversioned relations, we end up paying for 4 (unique) empty
    # scalars.
    #   This overhead accumulates to 0.44M for the binary relations of
    # source:linux (on i386).
    #
    # Fortunately, perl allows us to do "out-of-bounds" access and
    # will simply return undef in this case.  This means, we can
    # basically get away with popping elements from the right hand
    # side of the array "for free".
    pop(@array) while (not defined($array[-1]));

    return \@array;
}

# Singleton "empty-relation" object.  Since these objects are immutable,
# there is no reason for having multiple "empty" objects.
my $EMPTY_RELATION = bless(['AND'], 'Lintian::Relation');

# Create a new Lintian::Relation object, parsing the argument into our
# internal format.
sub new {
    my ($class, $relation) = @_;
    $relation = '' unless defined($relation);
    my @result;
    for my $element (split(/\s*,\s*/o, $relation)) {
        next if $element eq '';
        my @alternatives;
        for my $alternative (split(/\s*\|\s*/o, $element)) {
            my $dep = $class->parse_element($alternative);
            next if not $dep;
            push(@alternatives, $dep);
        }
        if (@alternatives == 1) {
            push(@result, @alternatives);
        } else {
            push(@result, ['OR', @alternatives]);
        }
    }

    if ($class eq 'Lintian::Relation') {
        return $EMPTY_RELATION if not @result;
    }

    my $self;
    if (@result == 1) {
        $self = $result[0];
    } else {
        $self = ['AND', @result];
    }
    bless($self, $class);
    return $self;
}

=item new_norestriction(RELATION)

Creates a new Lintian::Relation object corresponding to the parsed
relationship RELATION, ignoring architecture restrictions and restriction
lists. This should be used in cases where we only care if a dependency is
present in some cases and we don't want to require that the architectures
match (such as when checking for proper build dependencies, since if there
are architecture constraints the maintainer is doing something beyond
Lintian's ability to analyze) or that the restrictions list match (Lintian
can't handle dependency implications with build profiles yet).  RELATION
may be C<undef> or the empty string, in which case the returned
Lintian::Relation object is empty (always satisfied).

=cut

sub new_norestriction {
    my ($class, $relation) = @_;
    $relation = '' unless defined($relation);
    $relation =~ s/\[[^,\]]*\]//g;
    # we have to make sure that the following does not match the less than
    # sign from a version comparison. We do this by doing a negative lookahead
    # and a negative lookbehind for the "opening" triangular bracket
    $relation =~ s/(?<!<)<(?![<=])[^,]*>//g;
    return $class->new($relation);
}

=item new_noarch(RELATION)

An alias for new_norestriction.

=cut

*new_noarch = \&new_norestriction;

=item and(RELATION, ...)

Creates a new Lintian::Relation object produced by AND'ing all the
relations together.  Semantically it is the similar to:

 Lintian::Relation->new (join (', ', @relations))

Except it can avoid some overhead and it works if some of the elements
are Lintian::Relation objects already.

=cut

sub and {
    my ($class, @args) = @_;
    my (@result, $last_rel, $rels);
    foreach my $arg (@args) {
        my $rel = $arg;
        unless ($arg && ref $arg eq 'Lintian::Relation') {
            # Optimize out empty entries.
            next unless $arg;
            $rel = Lintian::Relation->new($arg);
        }
        next if $rel->empty;
        ++$rels;
        $last_rel = $rel;
        if ($rel->[0] eq 'AND') {
            my @r = @$rel;
            push @result, @r[1..$#r];
        } else {
            push @result, $rel;
        }
    }

    if ($class eq 'Lintian::Relation') {
        return $EMPTY_RELATION if not @result;
        return $last_rel if $rels == 1;
    }

    my $self;
    if (@result == 1) {
        $self = $result[0];
    } else {
        $self = ['AND', @result];
    }
    bless($self, $class);
    return $self;
}

=back

=head1 INSTANCE METHODS

=over 4

=item duplicates()

Returns a list of duplicated elements within the relation object.  Each
element of the returned list will be a reference to an anonymous array
holding a set of relations considered duplicates of each other.  Two
relations are considered duplicates if one implies the other, meaning that
if one relationship is satisfied, the other is necessarily satisfied.
This relationship does not have to be commutative: the opposite
implication may not hold.

=cut

sub duplicates {
    my ($self) = @_;

    # There are no duplicates unless the top-level relationship is AND.
    if ($self->[0] ne 'AND') {
        return ();
    }

    # The logic here is a bit complex in order to merge sets of duplicate
    # dependencies.  We want foo (<< 2), foo (>> 1), foo (= 1.5) to end up as
    # one set of duplicates, even though the first doesn't imply the second.
    #
    # $dups holds a hash, where the key is the earliest dependency in a set
    # and the value is a hash whose keys are the other dependencies in the
    # set.  $seen holds a map from package names to the duplicate sets that
    # they're part of, if they're not the earliest package in a set.  If
    # either of the dependencies in a duplicate pair were already seen, add
    # the missing one of the pair to the existing set rather than creating a
    # new one.
    my (%dups, %seen);
    for (my $i = 1; $i < @$self; $i++) {
        my $self_i = $self->[$i];
        for (my $j = $i + 1; $j < @$self; $j++) {
            my $self_j = $self->[$j];
            my $forward = $self->implies_array($self_i, $self_j);
            my $reverse = $self->implies_array($self_j, $self_i);

            if ($forward or $reverse) {
                my $first = $self->unparse($self_i);
                my $second = $self->unparse($self_j);
                if ($seen{$first}) {
                    $dups{$seen{$first}}{$second} = $j;
                    $seen{$second} = $seen{$first};
                } elsif ($seen{$second}) {
                    $dups{$seen{$second}}{$first} = $i;
                    $seen{$first} = $seen{$second};
                } else {
                    $dups{$first} ||= {};
                    $dups{$first}{$second} = $j;
                    $seen{$second} = $first;
                }
            }
        }
    }

    # The sort maintains the original order in which we encountered the
    # dependencies, just in case that helps the user find the problems,
    # despite the fact we're using a hash.
    return map {
        [$_, sort { $dups{$_}{$a} <=> $dups{$_}{$b} } keys %{ $dups{$_} }]
    } keys %dups;
}

=item restriction_less()

Returns a restriction-less variant of this relation (or this relation
object if it has no restrictions).

=cut

sub restriction_less {
    my ($self) = @_;
    my @worklist = ($self);
    my $has_restrictions = 0;
    while (my $current = pop(@worklist)) {
        my $rel_type = $current->[0];
        if ($rel_type eq 'PRED') {
            if (defined($current->[4]) or defined($current->[6])) {
                $has_restrictions = 1;
                last;
            }
            next;
        }
        next if $rel_type eq 'PRED-UNPARSABLE';
        push(@worklist, @$current[1 .. $#$current]);
    }
    return $self if not $has_restrictions;
    return Lintian::Relation->new_norestriction($self->unparse);
}

=item implies(RELATION)

Returns true if the relationship implies RELATION, meaning that if the
Lintian::Relation object is satisfied, RELATION will always be satisfied.
RELATION may be either a string or another Lintian::Relation object.

By default, architecture restrictions are honored in RELATION if it is a
string.  If architecture restrictions should be ignored in RELATION,
create a Lintian::Relation object with new_noarch() and pass that in as
RELATION instead of the string.

=cut

# This internal function does the heavily lifting of comparing two
# elements.
#
# Takes two elements and returns true iff the second can be deduced from the
# first.  If the second is falsified by the first (in other words, if p
# actually implies not q), return 0.  Otherwise, return undef.  The 0 return
# is used by implies_element_inverse.
sub implies_element {
    my ($self, $p, $q) = @_;

    # If the names don't match, there is no relationship between them.
    return if $$p[1] ne $$q[1];

    # the restriction formula forms a disjunctive normal form expression one
    # way to check whether A <dnf1> implies A <dnf2> is to check:
    #
    # if dnf1 == dnf1 OR dnf2:
    #     the second dependency is superfluous because the first dependency
    #     applies in all cases the second one applies
    #
    # an easy way to check for equivalence of the two dnf expressions would be
    # to construct the truth table for both expressions ("dnf1" and "dnf1 OR
    # dnf2") for all involved profiles and then comparing whether they are
    # equal
    #
    # the size of the truth tables grows with 2 to the power of the amount of
    # involved profile names but since there currently only exist six possible
    # profile names (see data/fields/build-profiles) that should be okay
    #
    # FIXME: we are not doing this check yet so if we encounter a dependency
    # with build profiles we assume that one does not imply the other:
    return if defined $$p[6] or defined $$q[6];

    # If the names match, then the only difference is in the architecture or
    # version clauses.  First, check architecture.  The architectures for p
    # must be a superset of the architectures for q.
    my @p_arches = split(' ', defined($$p[4]) ? $$p[4] : '');
    my @q_arches = split(' ', defined($$q[4]) ? $$q[4] : '');
    if (@p_arches || @q_arches) {
        my $p_arch_neg = @p_arches && $p_arches[0] =~ /^!/;
        my $q_arch_neg = @q_arches && $q_arches[0] =~ /^!/;

        # If p has no arches, it is a superset of q and we should fall through
        # to the version check.
        if (not @p_arches) {
            # nothing
        }

        # If q has no arches, it is a superset of p and there are no useful
        # implications.
        elsif (not @q_arches) {
            return;
        }

        # Both have arches.  If neither are negated, we know nothing useful
        # unless q is a subset of p.
        elsif (not $p_arch_neg and not $q_arch_neg) {
            my %p_arches = map { $_ => 1 } @p_arches;
            my $subset = 1;
            for my $arch (@q_arches) {
                $subset = 0 unless $p_arches{$arch};
            }
            return unless $subset;
        }

        # If both are negated, we know nothing useful unless p is a subset of
        # q (and therefore has fewer things excluded, and therefore is more
        # general).
        elsif ($p_arch_neg and $q_arch_neg) {
            my %q_arches = map { $_ => 1 } @q_arches;
            my $subset = 1;
            for my $arch (@p_arches) {
                $subset = 0 unless $q_arches{$arch};
            }
            return unless $subset;
        }

        # If q is negated and p isn't, we'd need to know the full list of
        # arches to know if there's any relationship, so bail.
        elsif (not $p_arch_neg and $q_arch_neg) {
            return;
        }

        # If p is negated and q isn't, q is a subset of p iff none of the
        # negated arches in p are present in q.
        elsif ($p_arch_neg and not $q_arch_neg) {
            my %q_arches = map { $_ => 1 } @q_arches;
            my $subset = 1;
            for my $arch (@p_arches) {
                $subset = 0 if $q_arches{substr($arch, 1)};
            }
            return unless $subset;
        }
    }

    # Multi-arch architecture specification

    # According to the spec, only the special value "any" is allowed
    # and it is "recommended" to consider "other such package
    # relations as unsatisfiable".  That said, there seem to be an
    # interest in supporting ":<arch>" as well, so we will (probably)
    # have to accept those as well.
    #
    # Other than that, we would need to know that the package has the
    # field "Multi-arch: allowed", but we cannot check that here.  So
    # we assume that it is okay.
    #
    # For now assert that only the identity holds.  In practise, the
    # "pkg:X" (for any valid value of X) seems to imply "pkg:any",
    # fixing that is a TODO (because version clauses complicates
    # matters)
    if (defined $$p[5]) {
        # Assume the identity to hold
        return unless defined $$q[5] and $$p[5] eq $$q[5];
    } elsif (defined $$q[5]) {
        return unless $$q[5] eq 'any';
        # pkg:any implies pkg (but the reverse is not true).
        #
        # TODO: Review this case.  Are there cases where Q cannot
        # disprove P due to the ":any"-qualifier?  For now, we
        # assume there are no such cases.
    }

    # Now, down to version.  The implication is true if p's clause is stronger
    # than q's, or is equivalent.

    # If q has no version clause, then p's clause is always stronger.
    return 1 if not defined $$q[2];

    # If q does have a version clause, then p must also have one to have any
    # useful relationship.
    return if not defined $$p[2];

    # q wants an exact version, so p must provide that exact version.  p
    # disproves q if q's version is outside the range enforced by p.
    if ($$q[2] eq '=') {
        if ($$p[2] eq '<<') {
            return versions_lte($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '<=') {
            return versions_lt($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '>>') {
            return versions_gte($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '>=') {
            return versions_gt($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '=') {
            return versions_equal($$p[3], $$q[3]) ? 1 : 0;
        }
    }

    # A greater than clause may disprove a less than clause.  Otherwise, if
    # p's clause is <<, <=, or =, the version must be <= q's to imply q.
    if ($$q[2] eq '<=') {
        if ($$p[2] eq '>>') {
            return versions_gte($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '>=') {
            return versions_gt($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '=') {
            return versions_lte($$p[3], $$q[3]) ? 1 : 0;
        } else {
            return versions_lte($$p[3], $$q[3]) ? 1 : undef;
        }
    }

    # Similar, but << is stronger than <= so p's version must be << q's
    # version if the p relation is <= or =.
    if ($$q[2] eq '<<') {
        if ($$p[2] eq '>>' or $$p[2] eq '>=') {
            return versions_gte($$p[3], $$p[3]) ? 0 : undef;
        } elsif ($$p[2] eq '<<') {
            return versions_lte($$p[3], $$q[3]) ? 1 : undef;
        } elsif ($$p[2] eq '=') {
            return versions_lt($$p[3], $$q[3]) ? 1 : 0;
        } else {
            return versions_lt($$p[3], $$q[3]) ? 1 : undef;
        }
    }

    # Same logic as above, only inverted.
    if ($$q[2] eq '>=') {
        if ($$p[2] eq '<<') {
            return versions_lte($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '<=') {
            return versions_lt($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '=') {
            return versions_gte($$p[3], $$q[3]) ? 1 : 0;
        } else {
            return versions_gte($$p[3], $$q[3]) ? 1 : undef;
        }
    }
    if ($$q[2] eq '>>') {
        if ($$p[2] eq '<<' or $$p[2] eq '<=') {
            return versions_lte($$p[3], $$q[3]) ? 0 : undef;
        } elsif ($$p[2] eq '>>') {
            return versions_gte($$p[3], $$q[3]) ? 1 : undef;
        } elsif ($$p[2] eq '=') {
            return versions_gt($$p[3], $$q[3]) ? 1 : 0;
        } else {
            return versions_gt($$p[3], $$q[3]) ? 1 : undef;
        }
    }

    return;
}

# This internal function does the heavy of AND, OR, and NOT logic.  It expects
# two references to arrays instead of an object and a relation.
sub implies_array {
    my ($self, $p, $q) = @_;
    my $i;
    my $q0 = $q->[0];
    my $p0 = $p->[0];
    if ($q0 eq 'PRED') {
        if ($p0 eq 'PRED') {
            return $self->implies_element($p, $q);
        } elsif ($p0 eq 'AND') {
            $i = 1;
            while ($i < @$p) {
                return 1 if $self->implies_array($p->[$i++], $q);
            }
            return 0;
        } elsif ($p0 eq 'OR') {
            $i = 1;
            while ($i < @$p) {
                return 0 if not $self->implies_array($p->[$i++], $q);
            }
            return 1;
        } elsif ($p0 eq 'NOT') {
            return $self->implies_array_inverse($p->[1], $q);
        }
    } elsif ($q0 eq 'AND') {
        # Each of q's clauses must be deduced from p.
        $i = 1;
        while ($i < @$q) {
            return 0 if not $self->implies_array($p, $q->[$i++]);
        }
        return 1;
    } elsif ($q0 eq 'OR') {
        # If p is something other than OR, p needs to satisfy one of the
        # clauses of q.  If p is an AND clause, q is satisfied if any of the
        # clauses of p satisfy it.
        #
        # The interesting case is OR.  In this case, do an OR to OR comparison
        # to determine if q's clause is a superset of p's clause as follows:
        # take each branch of p and see if it satisfies a branch of q.  If
        # each branch of p satisfies some branch of q, return 1.  Otherwise,
        # return 0.
        #
        # Simple logic that requires that p satisfy at least one of the
        # clauses of q considered in isolation will miss that a|b satisfies
        # a|b|c, since a|b doesn't satisfy any of a, b, or c in isolation.
        if ($p0 eq 'PRED') {
            $i = 1;
            while ($i < @$q) {
                return 1 if $self->implies_array($p, $q->[$i++]);
            }
            return 0;
        } elsif ($p0 eq 'AND') {
            $i = 1;
            while ($i < @$p) {
                return 1 if $self->implies_array($p->[$i++], $q);
            }
            return 0;
        } elsif ($p0 eq 'OR') {
            for ($i = 1; $i < @$p; $i++) {
                my $j = 1;
                my $satisfies = 0;
                while ($j < @$q) {
                    if ($self->implies_array($p->[$i], $q->[$j++])) {
                        $satisfies = 1;
                        last;
                    }
                }
                return 0 unless $satisfies;
            }
            return 1;
        } elsif ($p->[0] eq 'NOT') {
            return $self->implies_array_inverse($p->[1], $q);
        }
    } elsif ($q0 eq 'NOT') {
        if ($p0 eq 'NOT') {
            return $self->implies_array($q->[1], $p->[1]);
        }
        return $self->implies_array_inverse($p, $q->[1]);
    } elsif ($q0 eq 'PRED-UNPARSABLE') {
        # Assume eqv. holds for unparsable elements.
        return 1 if $p0 eq $q0 and $p->[1] eq $q->[1];
    }
    return;
}

# The public interface.
sub implies {
    my ($self, $relation) = @_;
    if (ref($relation) ne 'Lintian::Relation') {
        $relation = Lintian::Relation->new($relation);
    }
    return $self->implies_array($self, $relation);
}

=item implies_inverse(RELATION)

Returns true if the relationship implies that RELATION is certainly false,
meaning that if the Lintian::Relation object is satisfied, RELATION cannot
be satisfied.  RELATION may be either a string or another
Lintian::Relation object.

As with implies(), by default, architecture restrictions are honored in
RELATION if it is a string.  If architecture restrictions should be
ignored in RELATION, create a Lintian::Relation object with new_noarch()
and pass that in as RELATION instead of the string.

=cut

# This internal function does the heavy lifting of inverse implication between
# two elements.  Takes two elements and returns true iff the falsehood of
# the second can be deduced from the truth of the first.  In other words, p
# implies not q, or restated, q implies not p.  (Since if a implies b, not b
# implies not a.)  Due to the return value of implies_element(), we can let it
# do most of the work.
sub implies_element_inverse {
    my ($self, $p, $q) = @_;
    my $result = $self->implies_element($p, $q);

    return if not defined($result);
    return $result ? 0 : 1;
}

# This internal function does the heavily lifting for AND, OR, and NOT
# handling for inverse implications.  It takes two references to arrays and
# returns true iff the falsehood of the second can be deduced from the truth
# of the first.
sub implies_array_inverse {
    my ($self, $p, $q) = @_;
    my $i;
    my $q0 = $q->[0];
    my $p0 = $p->[0];
    if ($q0 eq 'PRED') {
        if ($p0 eq 'PRED') {
            return $self->implies_element_inverse($p, $q);
        } elsif ($p0 eq 'AND') {
            # q's falsehood can be deduced from any of p's clauses
            $i = 1;
            while ($i < @$p) {
                return 1 if $self->implies_array_inverse($$p[$i++], $q);
            }
            return 0;
        } elsif ($p0 eq 'OR') {
            # q's falsehood must be deduced from each of p's clauses
            $i = 1;
            while ($i < @$p) {
                return 0 if not $self->implies_array_inverse($$p[$i++], $q);
            }
            return 1;
        } elsif ($p0 eq 'NOT') {
            return $self->implies_array($q, $$p[1]);
        }
    } elsif ($q0 eq 'AND') {
        # Any of q's clauses must be falsified by p.
        $i = 1;
        while ($i < @$q) {
            return 1 if $self->implies_array_inverse($p, $$q[$i++]);
        }
        return 0;
    } elsif ($q0 eq 'OR') {
        # Each of q's clauses must be falsified by p.
        $i = 1;
        while ($i < @$q) {
            return 0 if not $self->implies_array_inverse($p, $$q[$i++]);
        }
        return 1;
    } elsif ($q0 eq 'NOT') {
        return $self->implies_array($p, $$q[1]);
    }
}

# The public interface.
sub implies_inverse {
    my ($self, $relation) = @_;
    if (ref($relation) ne 'Lintian::Relation') {
        $relation = Lintian::Relation->new($relation);
    }
    return $self->implies_array_inverse($self, $relation);
}

=item unparse()

Returns the textual form of a relationship.  This converts the internal
form back into the textual representation and returns that, not the
original argument, so the spacing is standardized.  Returns undef on
internal failures (such as an object in an unexpected format).

=cut

# The second argument isn't part of the public API.  It's a partial relation
# that's not a blessed object and is used by unparse() internally so that it
# can recurse.
#
# We also support a NOT predicate.  This currently isn't ever generated by a
# regular relation, but it may someday be useful.
sub unparse {
    my ($self, $partial) = @_;
    my $relation = defined($partial) ? $partial : $self;
    my $rel_type = $relation->[0];
    if ($rel_type eq 'PRED') {
        my $text = $relation->[1];
        if (defined $relation->[5]) {
            $text .= ":$relation->[5]";
        }
        if (defined $relation->[2]) {
            $text .= " ($relation->[2] $relation->[3])";
        }
        if (defined $relation->[4]) {
            $text .= " [$relation->[4]]";
        }
        if (defined $relation->[6]) {
            $text .= " <$relation->[6]>";
        }
        return $text;
    } elsif ($rel_type eq 'AND' || $rel_type eq 'OR') {
        my $separator = ($relation->[0] eq 'AND') ? ', ' : ' | ';
        return join($separator,
            map {$self->unparse($_);} @$relation[1 .. $#$relation]);
    } elsif ($rel_type eq 'NOT') {
        return '! ' . $self->unparse($relation->[1]);
    } elsif ($rel_type eq 'PRED-UNPARSABLE') {
        # Return the original value
        return $relation->[1];
    } else {
        require Carp;
        Carp::confess("Case $relation->[0] not implemented");
    }
}

=item matches (REGEX[, WHAT])

Check if one of the predicates in this relation matches REGEX.  WHAT
determines what is tested against REGEX and if not given, defaults to
VISIT_PRED_NAME.

This method will return a truth value if REGEX matches at least one
predicate or clause (as defined by the WHAT parameter - see below).

NOTE: Often L</implies> (or L</implies_inverse>) is a better choice
than this method.  This method should generally only be used when
checking for a "pattern" package (e.g. phpapi-[\d\w+]+).


WHAT can be one of:

=over 4

=item VISIT_PRED_NAME

Match REGEX against the package name in each predicate (i.e. version
and architecture constrains are ignored).  Each predicate is tested in
isolation.  As an example:

 my $rel = Lintian::Relation->new ('somepkg | pkg-0 (>= 1)');
 # Will match (version is ignored)
 $rel->matches (qr/^pkg-\d$/, VISIT_PRED_NAME);

=item VISIT_PRED_FULL

Match REGEX against the full (normalized) predicate (i.e. including
version and architecture).  Each predicate is tested in isolation.
As an example:

 my $vrel = Lintian::Relation->new ('somepkg | pkg-0 (>= 1)');
 my $uvrel = Lintian::Relation->new ('somepkg | pkg-0');

 # Will NOT match (does not match with version)
 $vrel->matches (qr/^pkg-\d$/, VISIT_PRED_FULL);
 # Will match (this relation does not have a version)
 $uvrel->matches (qr/^pkg-\d$/, VISIT_PRED_FULL);

 # Will match (but only because there is a version)
 $vrel->matches (qr/^pkg-\d \(.*\)$/, VISIT_PRED_FULL);
 # Will NOT match (there is no version in the relation)
 $uvrel->matches (qr/^pkg-\d  \(.*\)$/, VISIT_PRED_FULL);

=item VISIT_OR_CLAUSE_FULL

Match REGEX against the full (normalized) OR clause.  Each predicate
will have both version and architecture constrains present.  As an
example:


 my $vpred = Lintian::Relation->new ('pkg-0 (>= 1)');
 my $orrel = Lintian::Relation->new ('somepkg | pkg-0 (>= 1)');
 my $rorrel = Lintian::Relation->new ('pkg-0 (>= 1) | somepkg');

 # Will match
 $vrel->matches (qr/^pkg-\d(?: \([^\)]\))?$/, VISIT_OR_CLAUSE_FULL);
 # These Will NOT match (does not match the "|" and the "somepkg" part)
 $orrel->matches (qr/^pkg-\d(?: \([^\)]\))?$/, VISIT_OR_CLAUSE_FULL);
 $rorrel->matches (qr/^pkg-\d(?: \([^\)]\))?$/, VISIT_OR_CLAUSE_FULL);

=back

=cut

sub matches {
    my ($self, $regex, $what) = @_;
    $what //= VISIT_PRED_NAME;
    return $self->visit(sub { m/$regex/ }, $what | VISIT_STOP_FIRST_MATCH);
}

=item visit (CODE[, FLAGS])

Visit clauses or predicates of this relation.  Each clause or
predicate is passed to CODE as first argument and will be available as
C<$_>.

The optional bitmask parameter, FLAGS, can be used to control what is
visited and such.  If FLAGS is not given, it defaults to
VISIT_PRED_NAME.  The possible values of FLAGS are:

=over 4

=item VISIT_PRED_NAME

The package name in each predicate is visited, but the version and
architecture part(s) are left out (if any).

=item VISIT_PRED_FULL

The full predicates are visited in turn.  The predicate will be
normalized (by L</unparse>).

=item VISIT_OR_CLAUSE_FULL

CODE will be passed the full OR clauses of this relation.  The clauses
will be normalized (by L</unparse>)

Note: It will not visit the underlying predicates in the clause.

=item VISIT_STOP_FIRST_MATCH

Stop the visits the first time CODE returns a truth value.  This is
similar to L<first|List::Util/first>, except visit will return the
value returned by CODE.

=back

Except where a given flag specifies otherwise, the return value of
visit is last value returned by CODE (or C<undef> for the empty
relation).

=cut

# The last argument is not part of the public API.  It's a partial
# relation that's not a blessed object and is used by visit()
# internally so that it can recurse.

sub visit {
    my ($self, $code, $flags, $partial) = @_;
    my $relation = $partial // $self;
    my $rel_type = $relation->[0];
    $flags //= 0;
    if ($rel_type eq 'PRED') {
        my $against = $relation->[1];
        $against = $self->unparse($relation) if $flags & VISIT_PRED_FULL;
        local $_ = $against;
        return $code->($against);
    } elsif (($flags & VISIT_OR_CLAUSE_FULL) == VISIT_OR_CLAUSE_FULL
        and $rel_type eq 'OR') {
        my $against = $self->unparse($relation);
        local $_ = $against;
        return $code->($against);
    } elsif ($rel_type eq 'AND'
        or $rel_type eq 'OR'
        or $rel_type eq 'NOT') {
        for my $rel (@$relation[1 .. $#$relation]) {
            my $ret = $self->visit($code, $flags, $rel);
            if ($ret && ($flags & VISIT_STOP_FIRST_MATCH)) {
                return $ret;
            }
        }
        return;
    }
}

=item empty

Returns a truth value if this relation is empty (i.e. it contains no
predicates).

=cut

sub empty {
    my ($self) = @_;
    return 1 if $self->[0] eq 'AND' and not $self->[1];
    return 0;
}

=item unparsable_predicates

Returns a list of predicates that were unparsable.

They are returned in the original textual representation and are also
sorted by said representation.

=cut

sub unparsable_predicates {
    my ($self) = @_;
    my @worklist = ($self);
    my @unparsable;
    while (my $current = pop(@worklist)) {
        my $rel_type = $current->[0];
        next if $rel_type eq 'PRED';
        if ($rel_type eq 'PRED-UNPARSABLE') {
            push(@unparsable, $current->[1]);
            next;
        }
        push(@worklist, @$current[1 .. $#$current]);
    }
    @unparsable = sort(@unparsable);
    return @unparsable;
}

=back

=head1 AUTHOR

Originally written by Russ Allbery <rra@debian.org> for Lintian.

=head1 SEE ALSO

lintian(1)

=cut

1;

# Local Variables:
# indent-tabs-mode: nil
# cperl-indent-level: 4
# End:
# vim: syntax=perl sw=4 sts=4 sr et