This file is indexed.

/usr/include/mdds-1.2/mdds/segment_tree.hpp is in libmdds-dev 1.3.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/*************************************************************************
 *
 * Copyright (c) 2010-2015 Kohei Yoshida
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 ************************************************************************/

#ifndef INCLUDED_MDDS_SEGMENTTREE_HPP
#define INCLUDED_MDDS_SEGMENTTREE_HPP

#include "mdds/node.hpp"
#include "mdds/global.hpp"

#include <vector>
#include <iostream>
#include <map>
#include <unordered_map>
#include <memory>

#ifdef MDDS_UNIT_TEST
#include <sstream>
#endif

namespace mdds {

template<typename _Key, typename _Value>
class rectangle_set;

template<typename _Key, typename _Value>
class segment_tree
{
    friend class rectangle_set<_Key, _Value>;
public:
    typedef _Key        key_type;
    typedef _Value      value_type;
    typedef size_t      size_type;
    typedef ::std::vector<value_type> search_result_type;

#ifdef MDDS_UNIT_TEST
    struct segment_data
    {
        key_type    begin_key;
        key_type    end_key;
        value_type   pdata;

        segment_data(key_type _beg, key_type _end, value_type p) :
            begin_key(_beg), end_key(_end), pdata(p) {}

        bool operator==(const segment_data& r) const
        {
            return begin_key == r.begin_key && end_key == r.end_key && pdata == r.pdata;
        }

        bool operator!=(const segment_data& r) const
        {
            return !operator==(r);
        }
    };

    struct segment_map_printer : public ::std::unary_function< ::std::pair<value_type, ::std::pair<key_type, key_type> >, void>
    {
        void operator() (const ::std::pair<value_type, ::std::pair<key_type, key_type> >& r) const
        {
            using namespace std;
            cout << r.second.first << "-" << r.second.second << ": " << r.first->name << endl;
        }
    };
#endif

public:
    typedef ::std::vector<value_type> data_chain_type;
    typedef std::unordered_map<value_type, ::std::pair<key_type, key_type> > segment_map_type;
    typedef ::std::map<value_type, ::std::pair<key_type, key_type> >               sorted_segment_map_type;

    struct nonleaf_value_type
    {
        key_type low;   /// low range value (inclusive)
        key_type high;  /// high range value (non-inclusive)
        data_chain_type* data_chain;

        bool operator== (const nonleaf_value_type& r) const
        {
            return low == r.low && high == r.high && data_chain == r.data_chain;
        }
    };

    struct leaf_value_type
    {
        key_type key;
        data_chain_type* data_chain;

        bool operator== (const leaf_value_type& r) const
        {
            return key == r.key && data_chain == r.data_chain;
        }
    };

    struct fill_nonleaf_value_handler;
    struct init_handler;
    struct dispose_handler;
#ifdef MDDS_UNIT_TEST
    struct to_string_handler;
#endif

    typedef __st::node<segment_tree> node;
    typedef typename node::node_ptr node_ptr;

    typedef typename __st::nonleaf_node<segment_tree> nonleaf_node;

    struct fill_nonleaf_value_handler
    {
        void operator() (__st::nonleaf_node<segment_tree>& _self, const __st::node_base* left_node, const __st::node_base* right_node)
        {
            // Parent node should carry the range of all of its child nodes.
            if (left_node)
            {
                _self.value_nonleaf.low  = left_node->is_leaf ?
                    static_cast<const node*>(left_node)->value_leaf.key :
                    static_cast<const nonleaf_node*>(left_node)->value_nonleaf.low;
            }
            else
            {
                // Having a left node is prerequisite.
                throw general_error("segment_tree::fill_nonleaf_value_handler: Having a left node is prerequisite.");
            }

            if (right_node)
            {
                if (right_node->is_leaf)
                {
                    // When the child nodes are leaf nodes, the upper bound
                    // must be the value of the node that comes after the
                    // right leaf node (if such node exists).

                    const node* p = static_cast<const node*>(right_node);
                    if (p->next)
                        _self.value_nonleaf.high = p->next->value_leaf.key;
                    else
                        _self.value_nonleaf.high = p->value_leaf.key;
                }
                else
                {
                    _self.value_nonleaf.high = static_cast<const nonleaf_node*>(right_node)->value_nonleaf.high;
                }
            }
            else
            {
                _self.value_nonleaf.high = left_node->is_leaf ?
                    static_cast<const node*>(left_node)->value_leaf.key :
                    static_cast<const nonleaf_node*>(left_node)->value_nonleaf.high;
            }
        }
    };

#ifdef MDDS_UNIT_TEST
    struct to_string_handler
    {
        std::string operator() (const node& _self) const
        {
            std::ostringstream os;
            os << "[" << _self.value_leaf.key << "] ";
            return os.str();
        }

        std::string operator() (const __st::nonleaf_node<segment_tree>& _self) const
        {
            std::ostringstream os;
            os << "[" << _self.value_nonleaf.low << "-" << _self.value_nonleaf.high << ")";
            if (_self.value_nonleaf.data_chain)
            {
                os << " { ";
                typename data_chain_type::const_iterator
                    itr,
                    itr_beg = _self.value_nonleaf.data_chain->begin(),
                    itr_end = _self.value_nonleaf.data_chain->end();
                for (itr = itr_beg; itr != itr_end; ++itr)
                {
                    if (itr != itr_beg)
                        os << ", ";
                    os << (*itr)->name;
                }
                os << " }";
            }
            os << " ";
            return os.str();
        }
    };
#endif

    struct init_handler
    {
        void operator() (node& _self)
        {
            _self.value_leaf.data_chain = nullptr;
        }

        void operator() (__st::nonleaf_node<segment_tree>& _self)
        {
            _self.value_nonleaf.data_chain = nullptr;
        }
    };

    struct dispose_handler
    {
        void operator() (node& _self)
        {
            delete _self.value_leaf.data_chain;
        }

        void operator() (__st::nonleaf_node<segment_tree>& _self)
        {
            delete _self.value_nonleaf.data_chain;
        }
    };

#ifdef MDDS_UNIT_TEST
    struct node_printer : public ::std::unary_function<const __st::node_base*, void>
    {
        void operator() (const __st::node_base* p) const
        {
            if (p->is_leaf)
                std::cout << static_cast<const node*>(p)->to_string() << " ";
            else
                std::cout << static_cast<const nonleaf_node*>(p)->to_string() << " ";
        }
    };
#endif

private:

    /**
     * This base class takes care of collecting data chain pointers during
     * tree descend for search.
     */
    class search_result_base
    {
    public:
        typedef std::vector<data_chain_type*>       res_chains_type;
        typedef std::shared_ptr<res_chains_type>    res_chains_ptr;
    public:

        search_result_base() :
            mp_res_chains(static_cast<res_chains_type*>(nullptr)) {}

        search_result_base(const search_result_base& r) :
            mp_res_chains(r.mp_res_chains) {}

        size_t size() const
        {
            size_t combined = 0;
            if (!mp_res_chains)
                return combined;

            typename res_chains_type::const_iterator
                itr = mp_res_chains->begin(), itr_end = mp_res_chains->end();
            for (; itr != itr_end; ++itr)
                combined += (*itr)->size();
            return combined;
        }

        void push_back_chain(data_chain_type* chain)
        {
            if (!chain || chain->empty())
                return;

            if (!mp_res_chains)
                mp_res_chains.reset(new res_chains_type);
            mp_res_chains->push_back(chain);
        }

    res_chains_ptr& get_res_chains() { return mp_res_chains; }

    private:
        res_chains_ptr  mp_res_chains;
    };

    class iterator_base
    {
    protected:
        typedef typename search_result_base::res_chains_type res_chains_type;
        typedef typename search_result_base::res_chains_ptr res_chains_ptr;

        iterator_base(const res_chains_ptr& p) :
            mp_res_chains(p), m_end_pos(true) {}

    public:
        typedef ::std::bidirectional_iterator_tag           iterator_category;
        typedef typename data_chain_type::value_type        value_type;
        typedef typename data_chain_type::pointer           pointer;
        typedef typename data_chain_type::reference         reference;
        typedef typename data_chain_type::difference_type   difference_type;

        iterator_base() :
            mp_res_chains(static_cast<res_chains_type*>(nullptr)), m_end_pos(true) {}

        iterator_base(const iterator_base& r) :
            mp_res_chains(r.mp_res_chains),
            m_cur_chain(r.m_cur_chain),
            m_cur_pos_in_chain(r.m_cur_pos_in_chain),
            m_end_pos(r.m_end_pos) {}

        iterator_base& operator= (const iterator_base& r)
        {
            mp_res_chains = r.mp_res_chains;
            m_cur_chain = r.m_cur_chain;
            m_cur_pos_in_chain = r.m_cur_pos_in_chain;
            m_end_pos = r.m_end_pos;
            return *this;
        }

        typename data_chain_type::value_type* operator++ ()
        {
            // We don't check for end position flag for performance reasons.
            // The caller is responsible for making sure not to increment past
            // end position.

            // When reaching the end position, the internal iterators still
            // need to be pointing at the last item before the end position.
            // This is why we need to make copies of the iterators, and copy
            // them back once done.

            typename data_chain_type::iterator cur_pos_in_chain = m_cur_pos_in_chain;

            if (++cur_pos_in_chain == (*m_cur_chain)->end())
            {
                // End of current chain.  Inspect the next chain if exists.
                typename res_chains_type::iterator cur_chain = m_cur_chain;
                ++cur_chain;
                if (cur_chain == mp_res_chains->end())
                {
                    m_end_pos = true;
                    return nullptr;
                }
                m_cur_chain = cur_chain;
                m_cur_pos_in_chain = (*m_cur_chain)->begin();
            }
            else
                ++m_cur_pos_in_chain;

            return operator->();
        }

        typename data_chain_type::value_type* operator-- ()
        {
            if (!mp_res_chains)
                return nullptr;

            if (m_end_pos)
            {
                m_end_pos = false;
                return &(*m_cur_pos_in_chain);
            }

            if (m_cur_pos_in_chain == (*m_cur_chain)->begin())
            {
                if (m_cur_chain == mp_res_chains->begin())
                {
                    // Already at the first data chain.  Don't move the iterator position.
                    return nullptr;
                }
                --m_cur_chain;
                m_cur_pos_in_chain = (*m_cur_chain)->end();
            }
            --m_cur_pos_in_chain;
            return operator->();
        }

        bool operator== (const iterator_base& r) const
        {
            if (mp_res_chains.get())
            {
                // non-empty result set.
                return mp_res_chains.get() == r.mp_res_chains.get() &&
                    m_cur_chain == r.m_cur_chain && m_cur_pos_in_chain == r.m_cur_pos_in_chain &&
                    m_end_pos == r.m_end_pos;
            }

            // empty result set.
            if (r.mp_res_chains.get())
                return false;
            return m_end_pos == r.m_end_pos;
        }

        bool operator!= (const iterator_base& r) const { return !operator==(r); }

        typename data_chain_type::value_type& operator*()
        {
            return *m_cur_pos_in_chain;
        }

        typename data_chain_type::value_type* operator->()
        {
            return &(*m_cur_pos_in_chain);
        }

    protected:
        void move_to_front()
        {
            if (!mp_res_chains)
            {
                // Empty data set.
                m_end_pos = true;
                return;
            }

            // We assume that there is at least one chain list, and no
            // empty chain list exists.  So, skip the check.
            m_cur_chain = mp_res_chains->begin();
            m_cur_pos_in_chain = (*m_cur_chain)->begin();
            m_end_pos = false;
        }

        void move_to_end()
        {
            m_end_pos = true;
            if (!mp_res_chains)
                // Empty data set.
                return;

            m_cur_chain = mp_res_chains->end();
            --m_cur_chain;
            m_cur_pos_in_chain = (*m_cur_chain)->end();
            --m_cur_pos_in_chain;
        }

    private:
        res_chains_ptr mp_res_chains;
        typename res_chains_type::iterator  m_cur_chain;
        typename data_chain_type::iterator  m_cur_pos_in_chain;
        bool m_end_pos:1;
    };

public:

    class search_result : public search_result_base
    {
        typedef typename search_result_base::res_chains_type res_chains_type;
        typedef typename search_result_base::res_chains_ptr res_chains_ptr;
    public:

        class iterator : public iterator_base
        {
            friend class segment_tree<_Key,_Value>::search_result;
        private:
            iterator(const res_chains_ptr& p) : iterator_base(p) {}
        public:
            iterator() : iterator_base() {}
        };

        typename search_result::iterator begin()
        {
            typename search_result::iterator itr(search_result_base::get_res_chains());
            itr.move_to_front();
            return itr;
        }

        typename search_result::iterator end()
        {
            typename search_result::iterator itr(search_result_base::get_res_chains());
            itr.move_to_end();
            return itr;
        }
    };

    class search_result_vector_inserter : public ::std::unary_function<data_chain_type*, void>
    {
    public:
        search_result_vector_inserter(search_result_type& result) : m_result(result) {}
        void operator() (data_chain_type* node_data)
        {
            if (!node_data)
                return;

            typename data_chain_type::const_iterator itr = node_data->begin(), itr_end = node_data->end();
            for (; itr != itr_end; ++itr)
                m_result.push_back(*itr);
        }
    private:
        search_result_type& m_result;
    };

    class search_result_inserter : public ::std::unary_function<data_chain_type*, void>
    {
    public:
        search_result_inserter(search_result_base& result) : m_result(result) {}
        void operator() (data_chain_type* node_data)
        {
            if (!node_data)
                return;

            m_result.push_back_chain(node_data);
        }
    private:
        search_result_base& m_result;
    };

    segment_tree();
    segment_tree(const segment_tree& r);
    ~segment_tree();

    /**
     * Equality between two segment_tree instances is evaluated by comparing
     * the segments that they store.  The trees are not compared.
     */
    bool operator==(const segment_tree& r) const;

    bool operator!=(const segment_tree& r) const { return !operator==(r); }

    /**
     * Check whether or not the internal tree is in a valid state.  The tree
     * must be valid in order to perform searches.
     *
     * @return true if the tree is valid, false otherwise.
     */
    bool is_tree_valid() const { return m_valid_tree; }

    /**
     * Build or re-build tree based on the current set of segments.
     */
    void build_tree();

    /**
     * Insert a new segment.
     *
     * @param begin_key begin point of the segment.  The value is inclusive.
     * @param end_key end point of the segment.  The value is non-inclusive.
     * @param pdata pointer to the data instance associated with this segment.
     *               Note that <i>the caller must manage the life cycle of the
     *               data instance</i>.
     */
    bool insert(key_type begin_key, key_type end_key, value_type pdata);

    /**
     * Search the tree and collect all segments that include a specified
     * point.
     *
     * @param point specified point value
     * @param result doubly-linked list of data instances associated with
     *                   the segments that include the specified point.
     *                   <i>Note that the search result gets appended to the
     *                   list; the list will not get emptied on each
     *                   search.</i>  It is caller's responsibility to empty
     *                   the list before passing it to this method in case the
     *                   caller so desires.
     *
     * @return true if the search is performed successfully, false if the
     *         search has ended prematurely due to error conditions.
     */
    bool search(key_type point, search_result_type& result) const;

    /**
     * Search the tree and collect all segments that include a specified
     * point.
     *
     * @param point specified point value
     *
     * @return object containing the result of the search, which can be
     *         accessed via iterator.
     */
    search_result search(key_type point) const;

    /**
     * Remove a segment that matches by the value.  This will <i>not</i>
     * invalidate the tree; however, if you have removed lots of segments, you
     * might want to re-build the tree to shrink its size.
     *
     * @param value value to remove a segment by.
     */
    void remove(value_type value);

    /**
     * Remove all segments data.
     */
    void clear();

    /**
     * Return the number of segments currently stored in this container.
     */
    size_t size() const;

    /**
     * Return whether or not the container stores any segments or none at all.
     */
    bool empty() const;

    /**
     * Return the number of leaf nodes.
     *
     * @return number of leaf nodes.
     */
    size_t leaf_size() const;

#ifdef MDDS_UNIT_TEST
    void dump_tree() const;
    void dump_leaf_nodes() const;
    void dump_segment_data() const;
    bool verify_node_lists() const;

    struct leaf_node_check
    {
        key_type key;
        data_chain_type data_chain;
    };

    bool verify_leaf_nodes(const ::std::vector<leaf_node_check>& checks) const;

    /**
     * Verify the validity of the segment data array.
     *
     * @param checks null-terminated array of expected values.  The last item
     *               must have a nullptr pdata value to terminate the array.
     */
    bool verify_segment_data(const segment_map_type& checks) const;
#endif

private:
    /**
     * To be called from rectangle_set.
     */
    void search(key_type point, search_result_base& result) const;

    typedef std::vector<__st::node_base*> node_list_type;
    typedef std::map<value_type, std::unique_ptr<node_list_type>> data_node_map_type;

    static void create_leaf_node_instances(const ::std::vector<key_type>& keys, node_ptr& left, node_ptr& right);

    /**
     * Descend the tree from the root node, and mark appropriate nodes, both
     * leaf and non-leaf, based on segment's end points.  When marking nodes,
     * record their positions as a list of node pointers.
     */
    void descend_tree_and_mark(
        __st::node_base* pnode, value_type pdata, key_type begin_key, key_type end_key, node_list_type* plist);

    void build_leaf_nodes();

    /**
     * Go through the list of nodes, and remove the specified data pointer
     * value from the nodes.
     */
    void remove_data_from_nodes(node_list_type* plist, const value_type pdata);
    void remove_data_from_chain(data_chain_type& chain, const value_type pdata);

    void clear_all_nodes();

#ifdef MDDS_UNIT_TEST
    static bool has_data_pointer(const node_list_type& node_list, const value_type pdata);
    static void print_leaf_value(const leaf_value_type& v);
#endif

private:
    std::vector<nonleaf_node> m_nonleaf_node_pool;

    segment_map_type m_segment_data;

    /**
     * For each data pointer, it keeps track of all nodes, leaf or non-leaf,
     * that stores the data pointer label.  This data is used when removing
     * segments by the data pointer value.
     */
    data_node_map_type m_tagged_node_map;

    nonleaf_node* m_root_node;
    node_ptr   m_left_leaf;
    node_ptr   m_right_leaf;
    bool m_valid_tree:1;
};

}

#include "segment_tree_def.inl"

#endif