This file is indexed.

/usr/share/perl5/Algorithm/Diff.pm is in libalgorithm-diff-perl 1.19.03-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
package Algorithm::Diff;
# Skip to first "=head" line for documentation.
use strict;

use integer;    # see below in _replaceNextLargerWith() for mod to make
                # if you don't use this
use vars qw( $VERSION @EXPORT_OK );
$VERSION = 1.19_03;
#          ^ ^^ ^^-- Incremented at will
#          | \+----- Incremented for non-trivial changes to features
#          \-------- Incremented for fundamental changes
require Exporter;
*import    = \&Exporter::import;
@EXPORT_OK = qw(
    prepare LCS LCSidx LCS_length
    diff sdiff compact_diff
    traverse_sequences traverse_balanced
);

# McIlroy-Hunt diff algorithm
# Adapted from the Smalltalk code of Mario I. Wolczko, <mario@wolczko.com>
# by Ned Konz, perl@bike-nomad.com
# Updates by Tye McQueen, http://perlmonks.org/?node=tye

# Create a hash that maps each element of $aCollection to the set of
# positions it occupies in $aCollection, restricted to the elements
# within the range of indexes specified by $start and $end.
# The fourth parameter is a subroutine reference that will be called to
# generate a string to use as a key.
# Additional parameters, if any, will be passed to this subroutine.
#
# my $hashRef = _withPositionsOfInInterval( \@array, $start, $end, $keyGen );

sub _withPositionsOfInInterval
{
    my $aCollection = shift;    # array ref
    my $start       = shift;
    my $end         = shift;
    my $keyGen      = shift;
    my %d;
    my $index;
    for ( $index = $start ; $index <= $end ; $index++ )
    {
        my $element = $aCollection->[$index];
        my $key = &$keyGen( $element, @_ );
        if ( exists( $d{$key} ) )
        {
            unshift ( @{ $d{$key} }, $index );
        }
        else
        {
            $d{$key} = [$index];
        }
    }
    return wantarray ? %d : \%d;
}

# Find the place at which aValue would normally be inserted into the
# array. If that place is already occupied by aValue, do nothing, and
# return undef. If the place does not exist (i.e., it is off the end of
# the array), add it to the end, otherwise replace the element at that
# point with aValue.  It is assumed that the array's values are numeric.
# This is where the bulk (75%) of the time is spent in this module, so
# try to make it fast!

sub _replaceNextLargerWith
{
    my ( $array, $aValue, $high ) = @_;
    $high ||= $#$array;

    # off the end?
    if ( $high == -1 || $aValue > $array->[-1] )
    {
        push ( @$array, $aValue );
        return $high + 1;
    }

    # binary search for insertion point...
    my $low = 0;
    my $index;
    my $found;
    while ( $low <= $high )
    {
        $index = ( $high + $low ) / 2;

        # $index = int(( $high + $low ) / 2);  # without 'use integer'
        $found = $array->[$index];

        if ( $aValue == $found )
        {
            return undef;
        }
        elsif ( $aValue > $found )
        {
            $low = $index + 1;
        }
        else
        {
            $high = $index - 1;
        }
    }

    # now insertion point is in $low.
    $array->[$low] = $aValue;    # overwrite next larger
    return $low;
}

# This method computes the longest common subsequence in $a and $b.

# Result is array or ref, whose contents is such that
#   $a->[ $i ] == $b->[ $result[ $i ] ]
# foreach $i in ( 0 .. $#result ) if $result[ $i ] is defined.

# An additional argument may be passed; this is a hash or key generating
# function that should return a string that uniquely identifies the given
# element.  It should be the case that if the key is the same, the elements
# will compare the same. If this parameter is undef or missing, the key
# will be the element as a string.

# By default, comparisons will use "eq" and elements will be turned into keys
# using the default stringizing operator '""'.

# Additional parameters, if any, will be passed to the key generation
# routine.

sub _longestCommonSubsequence
{
    my $a        = shift;    # array ref or hash ref
    my $b        = shift;    # array ref or hash ref
    my $counting = shift;    # scalar
    my $keyGen   = shift;    # code ref
    my $compare;             # code ref

    if ( ref($a) eq 'HASH' )
    {                        # prepared hash must be in $b
        my $tmp = $b;
        $b = $a;
        $a = $tmp;
    }

    # Check for bogus (non-ref) argument values
    if ( !ref($a) || !ref($b) )
    {
        my @callerInfo = caller(1);
        die 'error: must pass array or hash references to ' . $callerInfo[3];
    }

    # set up code refs
    # Note that these are optimized.
    if ( !defined($keyGen) )    # optimize for strings
    {
        $keyGen = sub { $_[0] };
        $compare = sub { my ( $a, $b ) = @_; $a eq $b };
    }
    else
    {
        $compare = sub {
            my $a = shift;
            my $b = shift;
            &$keyGen( $a, @_ ) eq &$keyGen( $b, @_ );
        };
    }

    my ( $aStart, $aFinish, $matchVector ) = ( 0, $#$a, [] );
    my ( $prunedCount, $bMatches ) = ( 0, {} );

    if ( ref($b) eq 'HASH' )    # was $bMatches prepared for us?
    {
        $bMatches = $b;
    }
    else
    {
        my ( $bStart, $bFinish ) = ( 0, $#$b );

        # First we prune off any common elements at the beginning
        while ( $aStart <= $aFinish
            and $bStart <= $bFinish
            and &$compare( $a->[$aStart], $b->[$bStart], @_ ) )
        {
            $matchVector->[ $aStart++ ] = $bStart++;
            $prunedCount++;
        }

        # now the end
        while ( $aStart <= $aFinish
            and $bStart <= $bFinish
            and &$compare( $a->[$aFinish], $b->[$bFinish], @_ ) )
        {
            $matchVector->[ $aFinish-- ] = $bFinish--;
            $prunedCount++;
        }

        # Now compute the equivalence classes of positions of elements
        $bMatches =
          _withPositionsOfInInterval( $b, $bStart, $bFinish, $keyGen, @_ );
    }
    my $thresh = [];
    my $links  = [];

    my ( $i, $ai, $j, $k );
    for ( $i = $aStart ; $i <= $aFinish ; $i++ )
    {
        $ai = &$keyGen( $a->[$i], @_ );
        if ( exists( $bMatches->{$ai} ) )
        {
            $k = 0;
            for $j ( @{ $bMatches->{$ai} } )
            {

                # optimization: most of the time this will be true
                if ( $k and $thresh->[$k] > $j and $thresh->[ $k - 1 ] < $j )
                {
                    $thresh->[$k] = $j;
                }
                else
                {
                    $k = _replaceNextLargerWith( $thresh, $j, $k );
                }

                # oddly, it's faster to always test this (CPU cache?).
                if ( defined($k) )
                {
                    $links->[$k] =
                      [ ( $k ? $links->[ $k - 1 ] : undef ), $i, $j ];
                }
            }
        }
    }

    if (@$thresh)
    {
        return $prunedCount + @$thresh if $counting;
        for ( my $link = $links->[$#$thresh] ; $link ; $link = $link->[0] )
        {
            $matchVector->[ $link->[1] ] = $link->[2];
        }
    }
    elsif ($counting)
    {
        return $prunedCount;
    }

    return wantarray ? @$matchVector : $matchVector;
}

sub traverse_sequences
{
    my $a                 = shift;          # array ref
    my $b                 = shift;          # array ref
    my $callbacks         = shift || {};
    my $keyGen            = shift;
    my $matchCallback     = $callbacks->{'MATCH'} || sub { };
    my $discardACallback  = $callbacks->{'DISCARD_A'} || sub { };
    my $finishedACallback = $callbacks->{'A_FINISHED'};
    my $discardBCallback  = $callbacks->{'DISCARD_B'} || sub { };
    my $finishedBCallback = $callbacks->{'B_FINISHED'};
    my $matchVector = _longestCommonSubsequence( $a, $b, 0, $keyGen, @_ );

    # Process all the lines in @$matchVector
    my $lastA = $#$a;
    my $lastB = $#$b;
    my $bi    = 0;
    my $ai;

    for ( $ai = 0 ; $ai <= $#$matchVector ; $ai++ )
    {
        my $bLine = $matchVector->[$ai];
        if ( defined($bLine) )    # matched
        {
            &$discardBCallback( $ai, $bi++, @_ ) while $bi < $bLine;
            &$matchCallback( $ai,    $bi++, @_ );
        }
        else
        {
            &$discardACallback( $ai, $bi, @_ );
        }
    }

    # The last entry (if any) processed was a match.
    # $ai and $bi point just past the last matching lines in their sequences.

    while ( $ai <= $lastA or $bi <= $lastB )
    {

        # last A?
        if ( $ai == $lastA + 1 and $bi <= $lastB )
        {
            if ( defined($finishedACallback) )
            {
                &$finishedACallback( $lastA, @_ );
                $finishedACallback = undef;
            }
            else
            {
                &$discardBCallback( $ai, $bi++, @_ ) while $bi <= $lastB;
            }
        }

        # last B?
        if ( $bi == $lastB + 1 and $ai <= $lastA )
        {
            if ( defined($finishedBCallback) )
            {
                &$finishedBCallback( $lastB, @_ );
                $finishedBCallback = undef;
            }
            else
            {
                &$discardACallback( $ai++, $bi, @_ ) while $ai <= $lastA;
            }
        }

        &$discardACallback( $ai++, $bi, @_ ) if $ai <= $lastA;
        &$discardBCallback( $ai, $bi++, @_ ) if $bi <= $lastB;
    }

    return 1;
}

sub traverse_balanced
{
    my $a                 = shift;              # array ref
    my $b                 = shift;              # array ref
    my $callbacks         = shift || {};
    my $keyGen            = shift;
    my $matchCallback     = $callbacks->{'MATCH'} || sub { };
    my $discardACallback  = $callbacks->{'DISCARD_A'} || sub { };
    my $discardBCallback  = $callbacks->{'DISCARD_B'} || sub { };
    my $changeCallback    = $callbacks->{'CHANGE'};
    my $matchVector = _longestCommonSubsequence( $a, $b, 0, $keyGen, @_ );

    # Process all the lines in match vector
    my $lastA = $#$a;
    my $lastB = $#$b;
    my $bi    = 0;
    my $ai    = 0;
    my $ma    = -1;
    my $mb;

    while (1)
    {

        # Find next match indices $ma and $mb
        do {
            $ma++;
        } while(
                $ma <= $#$matchVector
            &&  !defined $matchVector->[$ma]
        );

        last if $ma > $#$matchVector;    # end of matchVector?
        $mb = $matchVector->[$ma];

        # Proceed with discard a/b or change events until
        # next match
        while ( $ai < $ma || $bi < $mb )
        {

            if ( $ai < $ma && $bi < $mb )
            {

                # Change
                if ( defined $changeCallback )
                {
                    &$changeCallback( $ai++, $bi++, @_ );
                }
                else
                {
                    &$discardACallback( $ai++, $bi, @_ );
                    &$discardBCallback( $ai, $bi++, @_ );
                }
            }
            elsif ( $ai < $ma )
            {
                &$discardACallback( $ai++, $bi, @_ );
            }
            else
            {

                # $bi < $mb
                &$discardBCallback( $ai, $bi++, @_ );
            }
        }

        # Match
        &$matchCallback( $ai++, $bi++, @_ );
    }

    while ( $ai <= $lastA || $bi <= $lastB )
    {
        if ( $ai <= $lastA && $bi <= $lastB )
        {

            # Change
            if ( defined $changeCallback )
            {
                &$changeCallback( $ai++, $bi++, @_ );
            }
            else
            {
                &$discardACallback( $ai++, $bi, @_ );
                &$discardBCallback( $ai, $bi++, @_ );
            }
        }
        elsif ( $ai <= $lastA )
        {
            &$discardACallback( $ai++, $bi, @_ );
        }
        else
        {

            # $bi <= $lastB
            &$discardBCallback( $ai, $bi++, @_ );
        }
    }

    return 1;
}

sub prepare
{
    my $a       = shift;    # array ref
    my $keyGen  = shift;    # code ref

    # set up code ref
    $keyGen = sub { $_[0] } unless defined($keyGen);

    return scalar _withPositionsOfInInterval( $a, 0, $#$a, $keyGen, @_ );
}

sub LCS
{
    my $a = shift;                  # array ref
    my $b = shift;                  # array ref or hash ref
    my $matchVector = _longestCommonSubsequence( $a, $b, 0, @_ );
    my @retval;
    my $i;
    for ( $i = 0 ; $i <= $#$matchVector ; $i++ )
    {
        if ( defined( $matchVector->[$i] ) )
        {
            push ( @retval, $a->[$i] );
        }
    }
    return wantarray ? @retval : \@retval;
}

sub LCS_length
{
    my $a = shift;                          # array ref
    my $b = shift;                          # array ref or hash ref
    return _longestCommonSubsequence( $a, $b, 1, @_ );
}

sub LCSidx
{
    my $a= shift @_;
    my $b= shift @_;
    my $match= _longestCommonSubsequence( $a, $b, 0, @_ );
    my @am= grep defined $match->[$_], 0..$#$match;
    my @bm= @{$match}[@am];
    return \@am, \@bm;
}

sub compact_diff
{
    my $a= shift @_;
    my $b= shift @_;
    my( $am, $bm )= LCSidx( $a, $b, @_ );
    my @cdiff;
    my( $ai, $bi )= ( 0, 0 );
    push @cdiff, $ai, $bi;
    while( 1 ) {
        while(  @$am  &&  $ai == $am->[0]  &&  $bi == $bm->[0]  ) {
            shift @$am;
            shift @$bm;
            ++$ai, ++$bi;
        }
        push @cdiff, $ai, $bi;
        last   if  ! @$am;
        $ai = $am->[0];
        $bi = $bm->[0];
        push @cdiff, $ai, $bi;
    }
    push @cdiff, 0+@$a, 0+@$b
        if  $ai < @$a || $bi < @$b;
    return wantarray ? @cdiff : \@cdiff;
}

sub diff
{
    my $a      = shift;    # array ref
    my $b      = shift;    # array ref
    my $retval = [];
    my $hunk   = [];
    my $discard = sub {
        push @$hunk, [ '-', $_[0], $a->[ $_[0] ] ];
    };
    my $add = sub {
        push @$hunk, [ '+', $_[1], $b->[ $_[1] ] ];
    };
    my $match = sub {
        push @$retval, $hunk
            if 0 < @$hunk;
        $hunk = []
    };
    traverse_sequences( $a, $b,
        { MATCH => $match, DISCARD_A => $discard, DISCARD_B => $add }, @_ );
    &$match();
    return wantarray ? @$retval : $retval;
}

sub sdiff
{
    my $a      = shift;    # array ref
    my $b      = shift;    # array ref
    my $retval = [];
    my $discard = sub { push ( @$retval, [ '-', $a->[ $_[0] ], "" ] ) };
    my $add = sub { push ( @$retval, [ '+', "", $b->[ $_[1] ] ] ) };
    my $change = sub {
        push ( @$retval, [ 'c', $a->[ $_[0] ], $b->[ $_[1] ] ] );
    };
    my $match = sub {
        push ( @$retval, [ 'u', $a->[ $_[0] ], $b->[ $_[1] ] ] );
    };
    traverse_balanced(
        $a,
        $b,
        {
            MATCH     => $match,
            DISCARD_A => $discard,
            DISCARD_B => $add,
            CHANGE    => $change,
        },
        @_
    );
    return wantarray ? @$retval : $retval;
}

########################################
my $Root= __PACKAGE__;
package Algorithm::Diff::_impl;
use strict;

sub _Idx()  { 0 } # $me->[_Idx]: Ref to array of hunk indices
            # 1   # $me->[1]: Ref to first sequence
            # 2   # $me->[2]: Ref to second sequence
sub _End()  { 3 } # $me->[_End]: Diff between forward and reverse pos
sub _Same() { 4 } # $me->[_Same]: 1 if pos 1 contains unchanged items
sub _Base() { 5 } # $me->[_Base]: Added to range's min and max
sub _Pos()  { 6 } # $me->[_Pos]: Which hunk is currently selected
sub _Off()  { 7 } # $me->[_Off]: Offset into _Idx for current position
sub _Min() { -2 } # Added to _Off to get min instead of max+1

sub Die
{
    require Carp;
    Carp::confess( @_ );
}

sub _ChkPos
{
    my( $me )= @_;
    return   if  $me->[_Pos];
    my $meth= ( caller(1) )[3];
    Die( "Called $meth on 'reset' object" );
}

sub _ChkSeq
{
    my( $me, $seq )= @_;
    return $seq + $me->[_Off]
        if  1 == $seq  ||  2 == $seq;
    my $meth= ( caller(1) )[3];
    Die( "$meth: Invalid sequence number ($seq); must be 1 or 2" );
}

sub getObjPkg
{
    my( $us )= @_;
    return ref $us   if  ref $us;
    return $us . "::_obj";
}

sub new
{
    my( $us, $seq1, $seq2, $opts ) = @_;
    my @args;
    for( $opts->{keyGen} ) {
        push @args, $_   if  $_;
    }
    for( $opts->{keyGenArgs} ) {
        push @args, @$_   if  $_;
    }
    my $cdif= Algorithm::Diff::compact_diff( $seq1, $seq2, @args );
    my $same= 1;
    if(  0 == $cdif->[2]  &&  0 == $cdif->[3]  ) {
        $same= 0;
        splice @$cdif, 0, 2;
    }
    my @obj= ( $cdif, $seq1, $seq2 );
    $obj[_End] = (1+@$cdif)/2;
    $obj[_Same] = $same;
    $obj[_Base] = 0;
    my $me = bless \@obj, $us->getObjPkg();
    $me->Reset( 0 );
    return $me;
}

sub Reset
{
    my( $me, $pos )= @_;
    $pos= int( $pos || 0 );
    $pos += $me->[_End]
        if  $pos < 0;
    $pos= 0
        if  $pos < 0  ||  $me->[_End] <= $pos;
    $me->[_Pos]= $pos || !1;
    $me->[_Off]= 2*$pos - 1;
    return $me;
}

sub Base
{
    my( $me, $base )= @_;
    my $oldBase= $me->[_Base];
    $me->[_Base]= 0+$base   if  defined $base;
    return $oldBase;
}

sub Copy
{
    my( $me, $pos, $base )= @_;
    my @obj= @$me;
    my $you= bless \@obj, ref($me);
    $you->Reset( $pos )   if  defined $pos;
    $you->Base( $base );
    return $you;
}

sub Next {
    my( $me, $steps )= @_;
    $steps= 1   if  ! defined $steps;
    if( $steps ) {
        my $pos= $me->[_Pos];
        my $new= $pos + $steps;
        $new= 0   if  $pos  &&  $new < 0;
        $me->Reset( $new )
    }
    return $me->[_Pos];
}

sub Prev {
    my( $me, $steps )= @_;
    $steps= 1   if  ! defined $steps;
    my $pos= $me->Next(-$steps);
    $pos -= $me->[_End]   if  $pos;
    return $pos;
}

sub Diff {
    my( $me )= @_;
    $me->_ChkPos();
    return 0   if  $me->[_Same] == ( 1 & $me->[_Pos] );
    my $ret= 0;
    my $off= $me->[_Off];
    for my $seq ( 1, 2 ) {
        $ret |= $seq
            if  $me->[_Idx][ $off + $seq + _Min ]
            <   $me->[_Idx][ $off + $seq ];
    }
    return $ret;
}

sub Min {
    my( $me, $seq, $base )= @_;
    $me->_ChkPos();
    my $off= $me->_ChkSeq($seq);
    $base= $me->[_Base] if !defined $base;
    return $base + $me->[_Idx][ $off + _Min ];
}

sub Max {
    my( $me, $seq, $base )= @_;
    $me->_ChkPos();
    my $off= $me->_ChkSeq($seq);
    $base= $me->[_Base] if !defined $base;
    return $base + $me->[_Idx][ $off ] -1;
}

sub Range {
    my( $me, $seq, $base )= @_;
    $me->_ChkPos();
    my $off = $me->_ChkSeq($seq);
    if( !wantarray ) {
        return  $me->[_Idx][ $off ]
            -   $me->[_Idx][ $off + _Min ];
    }
    $base= $me->[_Base] if !defined $base;
    return  ( $base + $me->[_Idx][ $off + _Min ] )
        ..  ( $base + $me->[_Idx][ $off ] - 1 );
}

sub Items {
    my( $me, $seq )= @_;
    $me->_ChkPos();
    my $off = $me->_ChkSeq($seq);
    if( !wantarray ) {
        return  $me->[_Idx][ $off ]
            -   $me->[_Idx][ $off + _Min ];
    }
    return
        @{$me->[$seq]}[
                $me->[_Idx][ $off + _Min ]
            ..  ( $me->[_Idx][ $off ] - 1 )
        ];
}

sub Same {
    my( $me )= @_;
    $me->_ChkPos();
    return wantarray ? () : 0
        if  $me->[_Same] != ( 1 & $me->[_Pos] );
    return $me->Items(1);
}

my %getName;
BEGIN {
    %getName= (
        same => \&Same,
        diff => \&Diff,
        base => \&Base,
        min  => \&Min,
        max  => \&Max,
        range=> \&Range,
        items=> \&Items, # same thing
    );
}

sub Get
{
    my $me= shift @_;
    $me->_ChkPos();
    my @value;
    for my $arg (  @_  ) {
        for my $word (  split ' ', $arg  ) {
            my $meth;
            if(     $word !~ /^(-?\d+)?([a-zA-Z]+)([12])?$/
                ||  not  $meth= $getName{ lc $2 }
            ) {
                Die( $Root, ", Get: Invalid request ($word)" );
            }
            my( $base, $name, $seq )= ( $1, $2, $3 );
            push @value, scalar(
                4 == length($name)
                    ? $meth->( $me )
                    : $meth->( $me, $seq, $base )
            );
        }
    }
    if(  wantarray  ) {
        return @value;
    } elsif(  1 == @value  ) {
        return $value[0];
    }
    Die( 0+@value, " values requested from ",
        $Root, "'s Get in scalar context" );
}


my $Obj= getObjPkg($Root);
no strict 'refs';

for my $meth (  qw( new getObjPkg )  ) {
    *{$Root."::".$meth} = \&{$meth};
    *{$Obj ."::".$meth} = \&{$meth};
}
for my $meth (  qw(
    Next Prev Reset Copy Base Diff
    Same Items Range Min Max Get
    _ChkPos _ChkSeq
)  ) {
    *{$Obj."::".$meth} = \&{$meth};
}

1;
__END__

=head1 NAME

Algorithm::Diff - Compute `intelligent' differences between two files / lists

=head1 SYNOPSIS

    require Algorithm::Diff;

    # This example produces traditional 'diff' output:

    my $diff = Algorithm::Diff->new( \@seq1, \@seq2 );

    $diff->Base( 1 );   # Return line numbers, not indices
    while(  $diff->Next()  ) {
        next   if  $diff->Same();
        my $sep = '';
        if(  ! $diff->Items(2)  ) {
            printf "%d,%dd%d\n",
                $diff->Get(qw( Min1 Max1 Max2 ));
        } elsif(  ! $diff->Items(1)  ) {
            printf "%da%d,%d\n",
                $diff->Get(qw( Max1 Min2 Max2 ));
        } else {
            $sep = "---\n";
            printf "%d,%dc%d,%d\n",
                $diff->Get(qw( Min1 Max1 Min2 Max2 ));
        }
        print "< $_"   for  $diff->Items(1);
        print $sep;
        print "> $_"   for  $diff->Items(2);
    }


    # Alternate interfaces:

    use Algorithm::Diff qw(
        LCS LCS_length LCSidx
        diff sdiff compact_diff
        traverse_sequences traverse_balanced );

    @lcs    = LCS( \@seq1, \@seq2 );
    $lcsref = LCS( \@seq1, \@seq2 );
    $count  = LCS_length( \@seq1, \@seq2 );

    ( $seq1idxref, $seq2idxref ) = LCSidx( \@seq1, \@seq2 );


    # Complicated interfaces:

    @diffs  = diff( \@seq1, \@seq2 );

    @sdiffs = sdiff( \@seq1, \@seq2 );

    @cdiffs = compact_diff( \@seq1, \@seq2 );

    traverse_sequences(
        \@seq1,
        \@seq2,
        {   MATCH     => \&callback1,
            DISCARD_A => \&callback2,
            DISCARD_B => \&callback3,
        },
        \&key_generator,
        @extra_args,
    );

    traverse_balanced(
        \@seq1,
        \@seq2,
        {   MATCH     => \&callback1,
            DISCARD_A => \&callback2,
            DISCARD_B => \&callback3,
            CHANGE    => \&callback4,
        },
        \&key_generator,
        @extra_args,
    );


=head1 INTRODUCTION

(by Mark-Jason Dominus)

I once read an article written by the authors of C<diff>; they said
that they worked very hard on the algorithm until they found the
right one.

I think what they ended up using (and I hope someone will correct me,
because I am not very confident about this) was the `longest common
subsequence' method.  In the LCS problem, you have two sequences of
items:

    a b c d f g h j q z

    a b c d e f g i j k r x y z

and you want to find the longest sequence of items that is present in
both original sequences in the same order.  That is, you want to find
a new sequence I<S> which can be obtained from the first sequence by
deleting some items, and from the second sequence by deleting other
items.  You also want I<S> to be as long as possible.  In this case I<S>
is

    a b c d f g j z

From there it's only a small step to get diff-like output:

    e   h i   k   q r x y
    +   - +   +   - + + +

This module solves the LCS problem.  It also includes a canned function
to generate C<diff>-like output.

It might seem from the example above that the LCS of two sequences is
always pretty obvious, but that's not always the case, especially when
the two sequences have many repeated elements.  For example, consider

    a x b y c z p d q
    a b c a x b y c z

A naive approach might start by matching up the C<a> and C<b> that
appear at the beginning of each sequence, like this:

    a x b y c         z p d q
    a   b   c a b y c z

This finds the common subsequence C<a b c z>.  But actually, the LCS
is C<a x b y c z>:

          a x b y c z p d q
    a b c a x b y c z

or

    a       x b y c z p d q
    a b c a x b y c z

=head1 USAGE

(See also the README file and several example
scripts include with this module.)

This module now provides an object-oriented interface that uses less
memory and is easier to use than most of the previous procedural
interfaces.  It also still provides several exportable functions.  We'll
deal with these in ascending order of difficulty:  C<LCS>,
C<LCS_length>, C<LCSidx>, OO interface, C<prepare>, C<diff>, C<sdiff>,
C<traverse_sequences>, and C<traverse_balanced>.

=head2 C<LCS>

Given references to two lists of items, LCS returns an array containing
their longest common subsequence.  In scalar context, it returns a
reference to such a list.

    @lcs    = LCS( \@seq1, \@seq2 );
    $lcsref = LCS( \@seq1, \@seq2 );

C<LCS> may be passed an optional third parameter; this is a CODE
reference to a key generation function.  See L</KEY GENERATION
FUNCTIONS>.

    @lcs    = LCS( \@seq1, \@seq2, \&keyGen, @args );
    $lcsref = LCS( \@seq1, \@seq2, \&keyGen, @args );

Additional parameters, if any, will be passed to the key generation
routine.

=head2 C<LCS_length>

This is just like C<LCS> except it only returns the length of the
longest common subsequence.  This provides a performance gain of about
9% compared to C<LCS>.

=head2 C<LCSidx>

Like C<LCS> except it returns references to two arrays.  The first array
contains the indices into @seq1 where the LCS items are located.  The
second array contains the indices into @seq2 where the LCS items are located.

Therefore, the following three lists will contain the same values:

    my( $idx1, $idx2 ) = LCSidx( \@seq1, \@seq2 );
    my @list1 = @seq1[ @$idx1 ];
    my @list2 = @seq2[ @$idx2 ];
    my @list3 = LCS( \@seq1, \@seq2 );

=head2 C<new>

    $diff = Algorithm::Diffs->new( \@seq1, \@seq2 );
    $diff = Algorithm::Diffs->new( \@seq1, \@seq2, \%opts );

C<new> computes the smallest set of additions and deletions necessary
to turn the first sequence into the second and compactly records them
in the object.

You use the object to iterate over I<hunks>, where each hunk represents
a contiguous section of items which should be added, deleted, replaced,
or left unchanged.

The following summary of all of the methods looks a lot like Perl code
but some of the symbols have different meanings:

    [ ]     Encloses optional arguments
    :       Is followed by the default value for an optional argument
    |       Separates alternate return results

Method summary:

    $obj        = Algorithm::Diff->new( \@seq1, \@seq2, [ \%opts ] );
    $pos        = $obj->Next(  [ $count : 1 ] );
    $revPos     = $obj->Prev(  [ $count : 1 ] );
    $obj        = $obj->Reset( [ $pos : 0 ] );
    $copy       = $obj->Copy(  [ $pos, [ $newBase ] ] );
    $oldBase    = $obj->Base(  [ $newBase ] );

Note that all of the following methods C<die> if used on an object that
is "reset" (not currently pointing at any hunk).

    $bits       = $obj->Diff(  );
    @items|$cnt = $obj->Same(  );
    @items|$cnt = $obj->Items( $seqNum );
    @idxs |$cnt = $obj->Range( $seqNum, [ $base ] );
    $minIdx     = $obj->Min(   $seqNum, [ $base ] );
    $maxIdx     = $obj->Max(   $seqNum, [ $base ] );
    @values     = $obj->Get(   @names );

Passing in C<undef> for an optional argument is always treated the same
as if no argument were passed in.

=over

=item C<Next>

    $pos = $diff->Next();    # Move forward 1 hunk
    $pos = $diff->Next( 2 ); # Move forward 2 hunks
    $pos = $diff->Next(-5);  # Move backward 5 hunks

C<Next> moves the object to point at the next hunk.  The object starts
out "reset", which means it isn't pointing at any hunk.  If the object
is reset, then C<Next()> moves to the first hunk.

C<Next> returns a true value iff the move didn't go past the last hunk.
So C<Next(0)> will return true iff the object is not reset.

Actually, C<Next> returns the object's new position, which is a number
between 1 and the number of hunks (inclusive), or returns a false value.

=item C<Prev>

C<Prev($N)> is almost identical to C<Next(-$N)>; it moves to the $Nth
previous hunk.  On a 'reset' object, C<Prev()> [and C<Next(-1)>] move
to the last hunk.

The position returned by C<Prev> is relative to the I<end> of the
hunks; -1 for the last hunk, -2 for the second-to-last, etc.

=item C<Reset>

    $diff->Reset();     # Reset the object's position
    $diff->Reset($pos); # Move to the specified hunk
    $diff->Reset(1);    # Move to the first hunk
    $diff->Reset(-1);   # Move to the last hunk

C<Reset> returns the object, so, for example, you could use
C<< $diff->Reset()->Next(-1) >> to get the number of hunks.

=item C<Copy>

    $copy = $diff->Copy( $newPos, $newBase );

C<Copy> returns a copy of the object.  The copy and the original object
share most of their data, so making copies takes very little memory.
The copy maintains its own position (separate from the original), which
is the main purpose of copies.  It also maintains its own base.

By default, the copy's position starts out the same as the original
object's position.  But C<Copy> takes an optional first argument to set the
new position, so the following three snippets are equivalent:

    $copy = $diff->Copy($pos);

    $copy = $diff->Copy();
    $copy->Reset($pos);

    $copy = $diff->Copy()->Reset($pos);

C<Copy> takes an optional second argument to set the base for
the copy.  If you wish to change the base of the copy but leave
the position the same as in the original, here are two
equivalent ways:

    $copy = $diff->Copy();
    $copy->Base( 0 );

    $copy = $diff->Copy(undef,0);

Here are two equivalent way to get a "reset" copy:

    $copy = $diff->Copy(0);

    $copy = $diff->Copy()->Reset();

=item C<Diff>

    $bits = $obj->Diff();

C<Diff> returns a true value iff the current hunk contains items that are
different between the two sequences.  It actually returns one of the
follow 4 values:

=over 4

=item Z<>3

C<3==(1|2)>.  This hunk contains items from @seq1 and the items
from @seq2 that should replace them.  Both sequence 1 and 2
contain changed items so both the 1 and 2 bits are set.

=item Z<>2

This hunk only contains items from @seq2 that should be inserted (not
items from @seq1).  Only sequence 2 contains changed items so only the 2
bit is set.

=item Z<>1

This hunk only contains items from @seq1 that should be deleted (not
items from @seq2).  Only sequence 1 contains changed items so only the 1
bit is set.

=item Z<>0

This means that the items in this hunk are the same in both sequences.
Neither sequence 1 nor 2 contain changed items so neither the 1 nor the
2 bits are set.

=back

=item C<Same>

C<Same> returns a true value iff the current hunk contains items that
are the same in both sequences.  It actually returns the list of items
if they are the same or an empty list if they aren't.  In a scalar
context, it returns the size of the list.

=item C<Items>

    $count = $diff->Items(2);
    @items = $diff->Items($seqNum);

C<Items> returns the (number of) items from the specified sequence that
are part of the current hunk.

If the current hunk contains only insertions, then
C<< $diff->Items(1) >> will return an empty list (0 in a scalar context).
If the current hunk contains only deletions, then C<< $diff->Items(2) >>
will return an empty list (0 in a scalar context).

If the hunk contains replacements, then both C<< $diff->Items(1) >> and
C<< $diff->Items(2) >> will return different, non-empty lists.

Otherwise, the hunk contains identical items and all of the following
will return the same lists:

    @items = $diff->Items(1);
    @items = $diff->Items(2);
    @items = $diff->Same();

=item C<Range>

    $count = $diff->Range( $seqNum );
    @indices = $diff->Range( $seqNum );
    @indices = $diff->Range( $seqNum, $base );

C<Range> is like C<Items> except that it returns a list of I<indices> to
the items rather than the items themselves.  By default, the index of
the first item (in each sequence) is 0 but this can be changed by
calling the C<Base> method.  So, by default, the following two snippets
return the same lists:

    @list = $diff->Items(2);
    @list = @seq2[ $diff->Range(2) ];

You can also specify the base to use as the second argument.  So the
following two snippets I<always> return the same lists:

    @list = $diff->Items(1);
    @list = @seq1[ $diff->Range(1,0) ];

=item C<Base>

    $curBase = $diff->Base();
    $oldBase = $diff->Base($newBase);

C<Base> sets and/or returns the current base (usually 0 or 1) that is
used when you request range information.  The base defaults to 0 so
that range information is returned as array indices.  You can set the
base to 1 if you want to report traditional line numbers instead.

=item C<Min>

    $min1 = $diff->Min(1);
    $min = $diff->Min( $seqNum, $base );

C<Min> returns the first value that C<Range> would return (given the
same arguments) or returns C<undef> if C<Range> would return an empty
list.

=item C<Max>

C<Max> returns the last value that C<Range> would return or C<undef>.

=item C<Get>

    ( $n, $x, $r ) = $diff->Get(qw( min1 max1 range1 ));
    @values = $diff->Get(qw( 0min2 1max2 range2 same base ));

C<Get> returns one or more scalar values.  You pass in a list of the
names of the values you want returned.  Each name must match one of the
following regexes:

    /^(-?\d+)?(min|max)[12]$/i
    /^(range[12]|same|diff|base)$/i

The 1 or 2 after a name says which sequence you want the information
for (and where allowed, it is required).  The optional number before
"min" or "max" is the base to use.  So the following equalities hold:

    $diff->Get('min1') == $diff->Min(1)
    $diff->Get('0min2') == $diff->Min(2,0)

Using C<Get> in a scalar context when you've passed in more than one
name is a fatal error (C<die> is called).

=back

=head2 C<prepare>

Given a reference to a list of items, C<prepare> returns a reference
to a hash which can be used when comparing this sequence to other
sequences with C<LCS> or C<LCS_length>.

    $prep = prepare( \@seq1 );
    for $i ( 0 .. 10_000 )
    {
        @lcs = LCS( $prep, $seq[$i] );
        # do something useful with @lcs
    }

C<prepare> may be passed an optional third parameter; this is a CODE
reference to a key generation function.  See L</KEY GENERATION
FUNCTIONS>.

    $prep = prepare( \@seq1, \&keyGen );
    for $i ( 0 .. 10_000 )
    {
        @lcs = LCS( $seq[$i], $prep, \&keyGen );
        # do something useful with @lcs
    }

Using C<prepare> provides a performance gain of about 50% when calling LCS
many times compared with not preparing.

=head2 C<diff>

    @diffs     = diff( \@seq1, \@seq2 );
    $diffs_ref = diff( \@seq1, \@seq2 );

C<diff> computes the smallest set of additions and deletions necessary
to turn the first sequence into the second, and returns a description
of these changes.  The description is a list of I<hunks>; each hunk
represents a contiguous section of items which should be added,
deleted, or replaced.  (Hunks containing unchanged items are not
included.)

The return value of C<diff> is a list of hunks, or, in scalar context, a
reference to such a list.  If there are no differences, the list will be
empty.

Here is an example.  Calling C<diff> for the following two sequences:

    a b c e h j l m n p
    b c d e f j k l m r s t

would produce the following list:

    (
      [ [ '-', 0, 'a' ] ],

      [ [ '+', 2, 'd' ] ],

      [ [ '-', 4, 'h' ],
        [ '+', 4, 'f' ] ],

      [ [ '+', 6, 'k' ] ],

      [ [ '-',  8, 'n' ],
        [ '-',  9, 'p' ],
        [ '+',  9, 'r' ],
        [ '+', 10, 's' ],
        [ '+', 11, 't' ] ],
    )

There are five hunks here.  The first hunk says that the C<a> at
position 0 of the first sequence should be deleted (C<->).  The second
hunk says that the C<d> at position 2 of the second sequence should
be inserted (C<+>).  The third hunk says that the C<h> at position 4
of the first sequence should be removed and replaced with the C<f>
from position 4 of the second sequence.  And so on.

C<diff> may be passed an optional third parameter; this is a CODE
reference to a key generation function.  See L</KEY GENERATION
FUNCTIONS>.

Additional parameters, if any, will be passed to the key generation
routine.

=head2 C<sdiff>

    @sdiffs     = sdiff( \@seq1, \@seq2 );
    $sdiffs_ref = sdiff( \@seq1, \@seq2 );

C<sdiff> computes all necessary components to show two sequences
and their minimized differences side by side, just like the
Unix-utility I<sdiff> does:

    same             same
    before     |     after
    old        <     -
    -          >     new

It returns a list of array refs, each pointing to an array of
display instructions. In scalar context it returns a reference
to such a list. If there are no differences, the list will have one
entry per item, each indicating that the item was unchanged.

Display instructions consist of three elements: A modifier indicator
(C<+>: Element added, C<->: Element removed, C<u>: Element unmodified,
C<c>: Element changed) and the value of the old and new elements, to
be displayed side-by-side.

An C<sdiff> of the following two sequences:

    a b c e h j l m n p
    b c d e f j k l m r s t

results in

    ( [ '-', 'a', ''  ],
      [ 'u', 'b', 'b' ],
      [ 'u', 'c', 'c' ],
      [ '+', '',  'd' ],
      [ 'u', 'e', 'e' ],
      [ 'c', 'h', 'f' ],
      [ 'u', 'j', 'j' ],
      [ '+', '',  'k' ],
      [ 'u', 'l', 'l' ],
      [ 'u', 'm', 'm' ],
      [ 'c', 'n', 'r' ],
      [ 'c', 'p', 's' ],
      [ '+', '',  't' ],
    )

C<sdiff> may be passed an optional third parameter; this is a CODE
reference to a key generation function.  See L</KEY GENERATION
FUNCTIONS>.

Additional parameters, if any, will be passed to the key generation
routine.

=head2 C<compact_diff>

C<compact_diff> is much like C<sdiff> except it returns a much more
compact description consisting of just one flat list of indices.  An
example helps explain the format:

    my @a = qw( a b c   e  h j   l m n p      );
    my @b = qw(   b c d e f  j k l m    r s t );
    @cdiff = compact_diff( \@a, \@b );
    # Returns:
    #   @a      @b       @a       @b
    #  start   start   values   values
    (    0,      0,   #       =
         0,      0,   #    a  !
         1,      0,   #  b c  =  b c
         3,      2,   #       !  d
         3,      3,   #    e  =  e
         4,      4,   #    f  !  h
         5,      5,   #    j  =  j
         6,      6,   #       !  k
         6,      7,   #  l m  =  l m
         8,      9,   #  n p  !  r s t
        10,     12,   #
    );

The 0th, 2nd, 4th, etc. entries are all indices into @seq1 (@a in the
above example) indicating where a hunk begins.  The 1st, 3rd, 5th, etc.
entries are all indices into @seq2 (@b in the above example) indicating
where the same hunk begins.

So each pair of indices (except the last pair) describes where a hunk
begins (in each sequence).  Since each hunk must end at the item just
before the item that starts the next hunk, the next pair of indices can
be used to determine where the hunk ends.

So, the first 4 entries (0..3) describe the first hunk.  Entries 0 and 1
describe where the first hunk begins (and so are always both 0).
Entries 2 and 3 describe where the next hunk begins, so subtracting 1
from each tells us where the first hunk ends.  That is, the first hunk
contains items C<$diff[0]> through C<$diff[2] - 1> of the first sequence
and contains items C<$diff[1]> through C<$diff[3] - 1> of the second
sequence.

In other words, the first hunk consists of the following two lists of items:

               #  1st pair     2nd pair
               # of indices   of indices
    @list1 = @a[ $cdiff[0] .. $cdiff[2]-1 ];
    @list2 = @b[ $cdiff[1] .. $cdiff[3]-1 ];
               # Hunk start   Hunk end

Note that the hunks will always alternate between those that are part of
the LCS (those that contain unchanged items) and those that contain
changes.  This means that all we need to be told is whether the first
hunk is a 'same' or 'diff' hunk and we can determine which of the other
hunks contain 'same' items or 'diff' items.

By convention, we always make the first hunk contain unchanged items.
So the 1st, 3rd, 5th, etc. hunks (all odd-numbered hunks if you start
counting from 1) all contain unchanged items.  And the 2nd, 4th, 6th,
etc. hunks (all even-numbered hunks if you start counting from 1) all
contain changed items.

Since @a and @b don't begin with the same value, the first hunk in our
example is empty (otherwise we'd violate the above convention).  Note
that the first 4 index values in our example are all zero.  Plug these
values into our previous code block and we get:

    @hunk1a = @a[ 0 .. 0-1 ];
    @hunk1b = @b[ 0 .. 0-1 ];

And C<0..-1> returns the empty list.

Move down one pair of indices (2..5) and we get the offset ranges for
the second hunk, which contains changed items.

Since C<@diff[2..5]> contains (0,0,1,0) in our example, the second hunk
consists of these two lists of items:

        @hunk2a = @a[ $cdiff[2] .. $cdiff[4]-1 ];
        @hunk2b = @b[ $cdiff[3] .. $cdiff[5]-1 ];
    # or
        @hunk2a = @a[ 0 .. 1-1 ];
        @hunk2b = @b[ 0 .. 0-1 ];
    # or
        @hunk2a = @a[ 0 .. 0 ];
        @hunk2b = @b[ 0 .. -1 ];
    # or
        @hunk2a = ( 'a' );
        @hunk2b = ( );

That is, we would delete item 0 ('a') from @a.

Since C<@diff[4..7]> contains (1,0,3,2) in our example, the third hunk
consists of these two lists of items:

        @hunk3a = @a[ $cdiff[4] .. $cdiff[6]-1 ];
        @hunk3a = @b[ $cdiff[5] .. $cdiff[7]-1 ];
    # or
        @hunk3a = @a[ 1 .. 3-1 ];
        @hunk3a = @b[ 0 .. 2-1 ];
    # or
        @hunk3a = @a[ 1 .. 2 ];
        @hunk3a = @b[ 0 .. 1 ];
    # or
        @hunk3a = qw( b c );
        @hunk3a = qw( b c );

Note that this third hunk contains unchanged items as our convention demands.

You can continue this process until you reach the last two indices,
which will always be the number of items in each sequence.  This is
required so that subtracting one from each will give you the indices to
the last items in each sequence.

=head2 C<traverse_sequences>

C<traverse_sequences> used to be the most general facility provided by
this module (the new OO interface is more powerful and much easier to
use).

Imagine that there are two arrows.  Arrow A points to an element of
sequence A, and arrow B points to an element of the sequence B. 
Initially, the arrows point to the first elements of the respective
sequences.  C<traverse_sequences> will advance the arrows through the
sequences one element at a time, calling an appropriate user-specified
callback function before each advance.  It will advance the arrows in
such a way that if there are equal elements C<$A[$i]> and C<$B[$j]>
which are equal and which are part of the LCS, there will be some moment
during the execution of C<traverse_sequences> when arrow A is pointing
to C<$A[$i]> and arrow B is pointing to C<$B[$j]>.  When this happens,
C<traverse_sequences> will call the C<MATCH> callback function and then
it will advance both arrows.

Otherwise, one of the arrows is pointing to an element of its sequence
that is not part of the LCS.  C<traverse_sequences> will advance that
arrow and will call the C<DISCARD_A> or the C<DISCARD_B> callback,
depending on which arrow it advanced.  If both arrows point to elements
that are not part of the LCS, then C<traverse_sequences> will advance
one of them and call the appropriate callback, but it is not specified
which it will call.

The arguments to C<traverse_sequences> are the two sequences to
traverse, and a hash which specifies the callback functions, like this:

    traverse_sequences(
        \@seq1, \@seq2,
        {   MATCH => $callback_1,
            DISCARD_A => $callback_2,
            DISCARD_B => $callback_3,
        }
    );

Callbacks for MATCH, DISCARD_A, and DISCARD_B are invoked with at least
the indices of the two arrows as their arguments.  They are not expected
to return any values.  If a callback is omitted from the table, it is
not called.

Callbacks for A_FINISHED and B_FINISHED are invoked with at least the
corresponding index in A or B.

If arrow A reaches the end of its sequence, before arrow B does,
C<traverse_sequences> will call the C<A_FINISHED> callback when it
advances arrow B, if there is such a function; if not it will call
C<DISCARD_B> instead.  Similarly if arrow B finishes first. 
C<traverse_sequences> returns when both arrows are at the ends of their
respective sequences.  It returns true on success and false on failure. 
At present there is no way to fail.

C<traverse_sequences> may be passed an optional fourth parameter; this
is a CODE reference to a key generation function.  See L</KEY GENERATION
FUNCTIONS>.

Additional parameters, if any, will be passed to the key generation function.

If you want to pass additional parameters to your callbacks, but don't
need a custom key generation function, you can get the default by
passing undef:

    traverse_sequences(
        \@seq1, \@seq2,
        {   MATCH => $callback_1,
            DISCARD_A => $callback_2,
            DISCARD_B => $callback_3,
        },
        undef,     # default key-gen
        $myArgument1,
        $myArgument2,
        $myArgument3,
    );

C<traverse_sequences> does not have a useful return value; you are
expected to plug in the appropriate behavior with the callback
functions.

=head2 C<traverse_balanced>

C<traverse_balanced> is an alternative to C<traverse_sequences>. It
uses a different algorithm to iterate through the entries in the
computed LCS. Instead of sticking to one side and showing element changes
as insertions and deletions only, it will jump back and forth between
the two sequences and report I<changes> occurring as deletions on one
side followed immediately by an insertion on the other side.

In addition to the C<DISCARD_A>, C<DISCARD_B>, and C<MATCH> callbacks
supported by C<traverse_sequences>, C<traverse_balanced> supports
a C<CHANGE> callback indicating that one element got C<replaced> by another:

    traverse_balanced(
        \@seq1, \@seq2,
        {   MATCH => $callback_1,
            DISCARD_A => $callback_2,
            DISCARD_B => $callback_3,
            CHANGE    => $callback_4,
        }
    );

If no C<CHANGE> callback is specified, C<traverse_balanced>
will map C<CHANGE> events to C<DISCARD_A> and C<DISCARD_B> actions,
therefore resulting in a similar behaviour as C<traverse_sequences>
with different order of events.

C<traverse_balanced> might be a bit slower than C<traverse_sequences>,
noticeable only while processing huge amounts of data.

The C<sdiff> function of this module 
is implemented as call to C<traverse_balanced>.

C<traverse_balanced> does not have a useful return value; you are expected to
plug in the appropriate behavior with the callback functions.

=head1 KEY GENERATION FUNCTIONS

Most of the functions accept an optional extra parameter.  This is a
CODE reference to a key generating (hashing) function that should return
a string that uniquely identifies a given element.  It should be the
case that if two elements are to be considered equal, their keys should
be the same (and the other way around).  If no key generation function
is provided, the key will be the element as a string.

By default, comparisons will use "eq" and elements will be turned into keys
using the default stringizing operator '""'.

Where this is important is when you're comparing something other than
strings.  If it is the case that you have multiple different objects
that should be considered to be equal, you should supply a key
generation function. Otherwise, you have to make sure that your arrays
contain unique references.

For instance, consider this example:

    package Person;

    sub new
    {
        my $package = shift;
        return bless { name => '', ssn => '', @_ }, $package;
    }

    sub clone
    {
        my $old = shift;
        my $new = bless { %$old }, ref($old);
    }

    sub hash
    {
        return shift()->{'ssn'};
    }

    my $person1 = Person->new( name => 'Joe', ssn => '123-45-6789' );
    my $person2 = Person->new( name => 'Mary', ssn => '123-47-0000' );
    my $person3 = Person->new( name => 'Pete', ssn => '999-45-2222' );
    my $person4 = Person->new( name => 'Peggy', ssn => '123-45-9999' );
    my $person5 = Person->new( name => 'Frank', ssn => '000-45-9999' );

If you did this:

    my $array1 = [ $person1, $person2, $person4 ];
    my $array2 = [ $person1, $person3, $person4, $person5 ];
    Algorithm::Diff::diff( $array1, $array2 );

everything would work out OK (each of the objects would be converted
into a string like "Person=HASH(0x82425b0)" for comparison).

But if you did this:

    my $array1 = [ $person1, $person2, $person4 ];
    my $array2 = [ $person1, $person3, $person4->clone(), $person5 ];
    Algorithm::Diff::diff( $array1, $array2 );

$person4 and $person4->clone() (which have the same name and SSN)
would be seen as different objects. If you wanted them to be considered
equivalent, you would have to pass in a key generation function:

    my $array1 = [ $person1, $person2, $person4 ];
    my $array2 = [ $person1, $person3, $person4->clone(), $person5 ];
    Algorithm::Diff::diff( $array1, $array2, \&Person::hash );

This would use the 'ssn' field in each Person as a comparison key, and
so would consider $person4 and $person4->clone() as equal.

You may also pass additional parameters to the key generation function
if you wish.

=head1 ERROR CHECKING

If you pass these routines a non-reference and they expect a reference,
they will die with a message.

=head1 AUTHOR

This version released by Tye McQueen (http://perlmonks.org/?node=tye).

=head1 LICENSE

Parts Copyright (c) 2000-2004 Ned Konz.  All rights reserved.
Parts by Tye McQueen.

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl.

=head1 MAILING LIST

Mark-Jason still maintains a mailing list.  To join a low-volume mailing
list for announcements related to diff and Algorithm::Diff, send an
empty mail message to mjd-perl-diff-request@plover.com.

=head1 CREDITS

Versions through 0.59 (and much of this documentation) were written by:

Mark-Jason Dominus, mjd-perl-diff@plover.com

This version borrows some documentation and routine names from
Mark-Jason's, but Diff.pm's code was completely replaced.

This code was adapted from the Smalltalk code of Mario Wolczko
<mario@wolczko.com>, which is available at
ftp://st.cs.uiuc.edu/pub/Smalltalk/MANCHESTER/manchester/4.0/diff.st

C<sdiff> and C<traverse_balanced> were written by Mike Schilli
<m@perlmeister.com>.

The algorithm is that described in
I<A Fast Algorithm for Computing Longest Common Subsequences>,
CACM, vol.20, no.5, pp.350-353, May 1977, with a few
minor improvements to improve the speed.

Much work was done by Ned Konz (perl@bike-nomad.com).

The OO interface and some other changes are by Tye McQueen.

=cut