This file is indexed.

/usr/share/pyshared/swignifit/interface_methods.py is in python-pypsignifit 3.0~beta.20120611.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
#/usr/bin/env python
# encoding: utf-8
# vi: set ft=python sts=4 ts=4 sw=4 et:

######################################################################
#
#   See COPYING file distributed along with the psignifit package for
#   the copyright and license terms
#
######################################################################
import numpy as np
import swignifit.swignifit_raw as sfr
import swignifit.utility as sfu
import operator as op

def bootstrap(data, start=None, nsamples=2000, nafc=2, sigmoid="logistic",
        core="ab", priors=None, cuts=None, parametric=True, gammaislambda=False ):
    """ Parametric bootstrap of a psychometric function.

    Parameters
    ----------

    data : A list of lists or an array of data.
        The first column should be stimulus intensity, the second column should
        be number of correct responses (in 2AFC) or number of yes- responses (in
        Yes/No), the third column should be number of trials. See also: the examples
        section below.

    start : sequence of floats of length number of model parameters
        Generating values for the bootstrap samples. If this is None, the
        generating value will be the MAP estimate. Length should be 4 for Yes/No
        and 3 for nAFC.

    nsamples : number
        Number of bootstrap samples to be drawn.

    nafc : int
        Number of alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.

    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.

    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.

    priors : sequence of strings length number of parameters
        Constraints on the likelihood estimation. These are expressed in the form of a list of
        prior names. Valid prior choices include:
                Uniform(%g,%g)
                Gauss(%g,%g)
                Beta(%g,%g)
                Gamma(%g,%g)
                nGamma(%g,%g)
                if an invalid prior or `None` is selected, no constraints are imposed at all.
        See `swignifit.utility.available_priors()` for all available sigmoids.

    cuts : a single number or a sequence of numbers.
        Cuts indicating the performances that should be considered 'threshold'
        performances. This means that in a 2AFC task, cuts==0.5 the 'threshold'
        is somewhere around 75%% correct performance, depending on the lapse
        rate parametric boolean to indicate whether or not the bootstrap
        procedure should be parametric or not.

    parametric : boolean
        If `True` do parametric, otherwise do a non-parametric bootstrap.

    gammaislambda : boolean
        Set the gamma == lambda prior.

    Returns
    -------

    (samples,estimates,deviance,
    threshold, th_bias, th_acceleration,
    slope, slope_bias, slope_accelerateion
    Rkd,Rpd,outliers,influential)

    samples : numpy array, shape: (nsamples, nblocks)
        the bootstrap sampled data

    estimates : numpy array, shape: (nsamples, nblocks)
        estimated parameters associated with the data sets

    deviance : numpy array, length: nsamples
        deviances for the bootstraped datasets

    threshold : numpy array, shape: (nsamples, ncuts)
        thresholds/cuts for each bootstraped datasets

    th_bias : numpy array, shape: (ncuts)
        the bias term associated with the threshold

    th_acc : numpy array, shape: (ncuts)
        the acceleration constant associated with the threshold

    slope : numpy array, shape: (nsamples, ncuts)
        slope at each cuts for each bootstraped datasets

    sl_bias : numpy array, shape: (ncuts)
        bias term associated with the slope

    sl_acc : numpy array, shape: (ncuts)
        acceleration term associated with the slope

    Rkd : numpy array, length: nsamples
        correlations between block index and deviance residuals

    Rpd : numpy array, length: nsamples
        correlations between model prediction and deviance residuals

    outliers : numpy array of booleans, length nblocks
        points that are outliers

    influential : numpy array of booleans, length nblocks
        points that are influential observations

    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> priors = ('flat','flat','Uniform(0,0.1)')
    >>> samples,est,D,thres,thbias,thacc,slope,slbias,slacc,Rkd,Rpd,out,influ \
            = bootstrap(d,nsamples=2000,priors=priors)
    >>> np.mean(est[:,0])
    2.7547034408466811
    >>> mean(est[:,1])
    1.4057297989923003

    """
    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda)

    cuts = sfu.get_cuts(cuts)
    ncuts = len(cuts)
    if start is not None:
        start = sfu.get_start(start, nparams)

    bs_list = sfr.bootstrap(nsamples, dataset, pmf, cuts, start, True, parametric)
    jk_list = sfr.jackknifedata(dataset, pmf)

    nblocks = dataset.getNblocks()

    # construct the massive tuple of return values
    samples = np.zeros((nsamples, nblocks), dtype=np.int32)
    estimates = np.zeros((nsamples, nparams))
    deviance = np.zeros((nsamples))
    thres = np.zeros((nsamples, ncuts))
    slope = np.zeros((nsamples, ncuts))
    Rpd = np.zeros((nsamples))
    Rkd = np.zeros((nsamples))
    for row_index in xrange(nsamples):
        samples[row_index] = bs_list.getData(row_index)
        estimates[row_index] = bs_list.getEst(row_index)
        deviance[row_index] = bs_list.getdeviance(row_index)
        thres[row_index] = [bs_list.getThres_byPos(row_index, j) for j in xrange(ncuts)]
        slope[row_index] = [bs_list.getSlope_byPos(row_index, j) for j in xrange(ncuts)]
        Rpd[row_index] = bs_list.getRpd(row_index)
        Rkd[row_index] = bs_list.getRkd(row_index)

    thacc = np.zeros((ncuts))
    thbias = np.zeros((ncuts))
    slacc = np.zeros((ncuts))
    slbias = np.zeros((ncuts))
    for cut in xrange(ncuts):
        thacc[cut] = bs_list.getAcc_t(cut)
        thbias[cut] = bs_list.getBias_t(cut)
        slacc[cut] = bs_list.getAcc_s(cut)
        slbias[cut] = bs_list.getBias_s(cut)

    ci_lower = sfr.vector_double(nparams)
    ci_upper = sfr.vector_double(nparams)

    for param in xrange(nparams):
        ci_lower[param] = bs_list.getPercentile(0.025, param)
        ci_upper[param] = bs_list.getPercentile(0.975, param)

    outliers = np.zeros((nblocks), dtype=np.bool)
    influential = np.zeros((nblocks))

    for block in xrange(nblocks):
        outliers[block] = jk_list.outlier(block)
        influential[block] = jk_list.influential(block, ci_lower, ci_upper)

    return samples, estimates, deviance, thres, thbias, thacc, slope, slbias, slacc, Rpd, Rkd, outliers, influential

def mcmc( data, start=None, nsamples=10000, nafc=2, sigmoid='logistic',
        core='mw0.1', priors=None, stepwidths=None, sampler="MetropolisHastings", gammaislambda=False):
    """ Markov Chain Monte Carlo sampling for a psychometric function.

    Parameters
    ----------

    data : A list of lists or an array of data.
        The first column should be stimulus intensity, the second column should
        be number of correct responses (in 2AFC) or number of yes- responses (in
        Yes/No), the third column should be number of trials. See also: the examples
        section below.

    start : sequence of floats of length number of model parameters
        Starting values for the markov chain. If this is None, the MAP estimate
        will be used.

    nsamples : int
        Number of samples to be taken from the posterior (note that due to
        suboptimal sampling, this number may be much lower than the effective
        number of samples.

    nafc : int
        Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.

    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.

    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.

    priors : sequence of strings length number of parameters
        Prior distributions on the parameters of the psychometric function.
        These are expressed in the form of a list of prior names.
        Valid prior choices include:
                Uniform(%g,%g)
                Gauss(%g,%g)
                Beta(%g,%g)
                Gamma(%g,%g)
                nGamma(%g,%g)
                if an invalid prior or `None` is selected, no constraints are imposed at all.
        See `swignifit.utility.available_priors()` for all available sigmoids.

        if an invalid prior is selected, no constraints are imposed on that
        parameter resulting in an improper prior distribution.

    stepwidths : sequence of floats of length number of model parameters
        Standard deviations of the proposal distribution. The best choice is
        sometimes a bit tricky here. However, as a rule of thumb we can
        state: if the stepwidths are too small, the samples might not cover
        the whole posterior, if the stepwidths are too large, most steps
        will leave the area of high posterior density and will therefore be
        rejected.  Thus, in general stepwidths should be somewhere in the
        middle.

    sampler : string
        The type of MCMC sampler to use.
        See: `sw.utility.available_samplers()` for a list of available samplers.

    gammaislambda : boolean
        Set the gamma == lambda prior.


    Output
    ------

    (estimates, deviance, posterior_predictive_data,
    posterior_predictive_deviances, posterior_predictive_Rpd,
    posterior_predictive_Rkd, logposterior_ratios, accept_rate)

    estimates : numpy array, shape: (nsamples, nparameters)
        Parameters sampled from the posterior density of parameters given the data.

    deviances : numpy array, length: nsamples
        Associated deviances for each estimate

    posterior_predictive_data : numpy array, shape: (nsamples, nblocks)
        Data that are simulated by sampling from the joint posterior of data and
        parameters. They are important for model checking.

    posterior_predictive_deviances : numpy array, length: nsamples
        The deviances that are associated with the posterior predictive data. A
        particular way of model checking could be to compare the deviances and the
        posterior predicitive deviances. For a good model these should be relatively
        similar.

    posterior_predictive_Rpd : numpy array, length: nsamples
        Correlations between psychometric function and deviance residuals
        associated with posterior predictive data

    posterior_predictive_Rkd : numpy array, length: nsamples
        Correlations between block index and deviance residuals associated with
        posterior predictive data.

    logposterior_ratios :  numpy array, shape: (nsamples, nblocks)
        Ratios between the full posetrior and the posterior for a single block
        for all samples. Used for calculating the KL-Divergence to detrmine
        influential observations in the Bayesian paradigm.

    accept_rate : float
        The number of proposed MCMC samples that were accepted.

    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> priors = ('Gauss(0,1000)','Gauss(0,1000)','Beta(3,100)')
    >>> stepwidths = (1.,1.,0.01)
    >>> (estimates, deviance, posterior_predictive_data,
         posterior_predictive_deviances, posterior_predictive_Rpd,
         posterior_predictive_Rkd, logposterior_ratios, accept_rate) \
         = mcmc(d,nsamples=10000,priors=priors,stepwidths=stepwidths)
    >>> mean(estimates[:,0])
    2.4811791550665272
    >>> mean(estimates[:,1])
    7.4935217545849184
    """

    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda)

    if start is not None:
        start = sfu.get_start(start, nparams)
    else:
        # use mapestimate
        opt = sfr.PsiOptimizer(pmf, dataset)
        start = opt.optimize(pmf, dataset)

    proposal = sfr.GaussRandom()
    if sampler not in sfu.sampler_dict.keys():
        raise sfu.PsignifitException("The sampler: " + sampler + " is not available.")
    else:
        sampler  = sfu.sampler_dict[sampler](pmf, dataset, proposal)
    sampler.setTheta(start)

    if stepwidths != None:
        stepwidths = np.array(stepwidths)
        if len(stepwidths.shape)==2:
            if isinstance ( sampler, sfr.GenericMetropolis ):
                sampler.findOptimalStepwidth ( sfu.make_pilotsample ( stepwidths ) )
            elif isinstance ( sampler, sfr.MetropolisHastings ):
                sampler.setStepSize ( sfr.vector_double( stepwidths.std(0) ) )
            else:
                raise sfu.PsignifitException("You provided a pilot sample but the selected sampler does not support pilot samples")
        elif len(stepwidths) != nparams:
            raise sfu.PsignifitException("You specified \'"+str(len(stepwidths))+\
                    "\' stepwidth(s), but there are \'"+str(nparams)+ "\' parameters.")
        else:
            if isinstance ( sampler, sfr.DefaultMCMC ):
                for i,p in enumerate(stepwidths):
                    p = sfu.get_prior(p)
                    sampler.set_proposal(i, p)
            else:
                sampler.setStepSize(sfr.vector_double(stepwidths))

    post = sampler.sample(nsamples)

    nblocks = dataset.getNblocks()

    estimates = np.zeros((nsamples, nparams))
    deviance = np.zeros(nsamples)
    posterior_predictive_data = np.zeros((nsamples, nblocks))
    posterior_predictive_deviances = np.zeros(nsamples)
    posterior_predictive_Rpd = np.zeros(nsamples)
    posterior_predictive_Rkd = np.zeros(nsamples)
    logposterior_ratios = np.zeros((nsamples, nblocks))

    for i in xrange(nsamples):
        for j in xrange(nparams):
            estimates[i, j] = post.getEst(i, j)
        deviance[i] = post.getdeviance(i)
        for j in xrange(nblocks):
            posterior_predictive_data[i, j] = post.getppData(i, j)
            logposterior_ratios[i,j] = post.getlogratio(i,j)
        posterior_predictive_deviances[i] = post.getppDeviance(i)
        posterior_predictive_Rpd[i] = post.getppRpd(i)
        posterior_predictive_Rkd[i] = post.getppRkd(i)

    accept_rate = post.get_accept_rate()

    return (estimates, deviance, posterior_predictive_data,
        posterior_predictive_deviances, posterior_predictive_Rpd,
        posterior_predictive_Rkd, logposterior_ratios, accept_rate)

def mapestimate ( data, nafc=2, sigmoid='logistic', core='ab', priors=None,
        cuts = None, start=None, gammaislambda=False):
    """ MAP or constrained maximum likelihood estimation for a psychometric function.

    Parameters
    ----------

    data : A list of lists or an array of data.
        The first column should be stimulus intensity, the second column should
        be number of correct responses (in 2AFC) or number of yes- responses (in
        Yes/No), the third column should be number of trials. See also: the examples
        section below.

    nafc : int
        Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.

    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.

    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.

    priors : sequence of strings length number of parameters
        Prior distributions on the parameters of the psychometric function.
        These are expressed in the form of a list of prior names.
        Valid prior choices include:
                Uniform(%g,%g)
                Gauss(%g,%g)
                Beta(%g,%g)
                Gamma(%g,%g)
                nGamma(%g,%g)
                if an invalid prior or `None` is selected, no constraints are imposed at all.
        See `swignifit.utility.available_priors()` for all available sigmoids.

        if an invalid prior is selected, no constraints are imposed on that
        parameter resulting in an improper prior distribution.

    cuts : sequence of floats
        Cuts at which thresholds should be determined.  That is if cuts =
        (.25,.5,.75), thresholds (F^{-1} ( 0.25 ), F^{-1} ( 0.5 ), F^{-1} ( 0.75
        )) are returned.  Here F^{-1} denotes the inverse of the function
        specified by sigmoid. If cuts==None, this is modified to cuts=[0.5].

    start : sequence of floats of length number of model parameters
        Values at which to start the optimization, if None the starting value is
        determined using a coarse grid search.

    Output
    ------

    estimate, fisher, thres, slope, deviance

    estimate : numpy array length nparams
        the map/cml estimate

    fisher : numpy array shape (nparams, nparams)
        the fisher matrix

    thres : numpy array length ncuts
        the model prediction at the cuts

    slope : numpy array length ncuts
        the gradient of the psychometric function at the cuts

    deviance : numpy array length 1
        the deviance for the estimate

    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> priors = ('flat','flat','Uniform(0,0.1)')
    >>> estimate, fisher, thres, slope, deviance = mapestimate ( d, priors=priors )
    >>> estimate
    array([ 2.75180624,  1.45717745,  0.01555658])
    >>> deviance
    array(8.0713313642328242)

    """

    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data,
            nafc, sigmoid, core, priors, gammaislambda=gammaislambda)

    cuts = sfu.get_cuts(cuts)

    opt = sfr.PsiOptimizer(pmf, dataset)
    estimate = opt.optimize(pmf, dataset, sfu.get_start(start, nparams) if start is not
            None else None)
    H = pmf.ddnegllikeli(estimate, dataset)
    thres = [pmf.getThres(estimate, c) for c in cuts]
    slope = [pmf.getSlope(estimate, th) for th in thres]
    deviance = pmf.deviance(estimate, dataset)

    # convert to numpy stuff
    estimate = np.array(estimate)
    fisher = np.zeros((nparams,nparams))
    for (i,j) in ((i,j) for i in xrange(nparams) for j in xrange(nparams)):
        fisher[i,j] = sfr.doublep_value(H(i,j))
    thres = np.array(thres)
    slope = np.array(slope)
    deviance = np.array(deviance)

    return estimate, fisher, thres, slope, deviance

def diagnostics(data, params, nafc=2, sigmoid='logistic', core='ab', cuts=None, gammaislambda=False):
    """ Some diagnostic statistics for a psychometric function fit.

    This function is a bit messy since it has three functions depending on the
    type of the `data` argument.

    Parameters
    ----------

    data : variable
        real data : A list of lists or an array of data.
            The first column should be stimulus intensity, the second column should
            be number of correct responses (in 2AFC) or number of yes- responses (in
            Yes/No), the third column should be number of trials. See also: the examples
            section below.
        intensities : sequence of floats
            The x-values of the psychometric function, then we obtain only the
            predicted values.
        no data : empty sequence
            In this case we evaluate the psychometric function at the cuts. All
            other return values are then irrelevant.

    params : sequence of len nparams
        parameter vector at which the diagnostic information should be evaluated

    nafc : int
        Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.

    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.

    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.

    cuts : sequence of floats
        Cuts at which thresholds should be determined.  That is if cuts =
        (.25,.5,.75), thresholds (F^{-1} ( 0.25 ), F^{-1} ( 0.5 ), F^{-1} ( 0.75
        )) are returned.  Here F^{-1} denotes the inverse of the function
        specified by sigmoid. If cuts==None, this is modified to cuts=[0.5].

    Output
    ------

    (predicted, deviance_residuals, deviance, thres, Rpd, Rkd)

    predicted : numpy array of length nblocks
        predicted values associated with the respective stimulus intensities

    deviance_residuals : numpy array of length nblocks
        deviance residuals of the data

    deviance float
        deviance of the data

    thres : numpy array length ncuts
        the model prediction at the cuts

    Rpd : float
        correlation between predicted performance and deviance residuals

    Rkd : float
        correlation between block index and deviance residuals

    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> prm = [2.75, 1.45, 0.015]
    >>> pred,di,D,thres,slope,Rpd,Rkd = diagnostics(d,prm)
    >>> D
    8.0748485860836254
    >>> di[0]
    1.6893279652591433
    >>> Rpd
    -0.19344675783032755

    """

    # here we need to hack stuff, since data can be either 'real' data, or just
    # a list of intensities, or just an empty sequence

    # in order to remain compatible with psipy we must check for an empty
    # sequence here, and return a specially crafted return value in that case.
    # sorry..
    # TODO after removal of psipy we can probably change this.
    if op.isSequenceType(data) and len(data) == 0:
        pmf, nparams =  sfu.make_pmf(sfr.PsiData([0],[0],[0],1), nafc, sigmoid, core, None, gammaislambda=gammaislambda )
        thres = np.array([pmf.getThres(params, cut) for cut in sfu.get_cuts(cuts)])
        slope = np.array([pmf.getSlope(params, th ) for th in thres])
        return np.array([]), np.array([]), 0.0, thres, np.nan, np.nan

    shape = np.shape(np.array(data))
    intensities_only = False
    if len(shape) == 1:
        # just intensities, make a dataset with k and n all zero
        k = n = [0] * shape[0]
        data  = [[xx,kk,nn] for xx,kk,nn in zip(data,k,n)]
        intensities_only = True
    else:
        # data is 'real', just do nothing
        pass

    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, None, gammaislambda=gammaislambda)
    cuts = sfu.get_cuts(cuts)
    params = sfu.get_params(params, nparams)
    predicted = np.array([pmf.evaluate(intensity, params) for intensity in
            dataset.getIntensities()])

    if intensities_only:
        return predicted
    else:
        deviance_residuals = pmf.getDevianceResiduals(params, dataset)
        deviance = pmf.deviance(params, dataset)
        thres = np.array([pmf.getThres(params, cut) for cut in cuts])
        slope = np.array([pmf.getSlope(params, th ) for th in thres])
        rpd = pmf.getRpd(deviance_residuals, params, dataset)
        rkd = pmf.getRkd(deviance_residuals, dataset)
        return predicted, deviance_residuals, deviance, thres, slope, rpd, rkd

def asir ( data, nsamples=2000, nafc=2, sigmoid="logistic",
        core="mw0.1", priors=None, gammaislambda=False, propose=25 ):
    dataset, pmf, nparams = sfu.make_dataset_and_pmf ( data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda )

    posterior = sfr.independent_marginals ( pmf, dataset )
    if nsamples > 0:
        samples   = sfr.sample_posterior ( pmf, dataset, posterior, nsamples, propose )
        sfr.sample_diagnostics ( pmf, dataset, samples )

        out = {'mcestimates': np.array( [ [samples.getEst ( i, par ) for par in xrange ( nparams ) ] for i in xrange ( nsamples )]),
            'mcdeviance': np.array( [ samples.getdeviance ( i ) for i in xrange ( nsamples ) ] ),
            'mcRpd':                    np.array ( [ samples.getRpd ( i ) for i in xrange ( nsamples ) ] ),
            'mcRkd':                    np.array ( [ samples.getRkd ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_data': np.array ( [ samples.getppData ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_deviance': np.array ( [ samples.getppDeviance ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_Rpd': np.array ( [ samples.getppRpd ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_Rkd': np.array ( [ samples.getppRkd ( i ) for i in xrange ( nsamples ) ] ),
            'logposterior_ratios':      np.array ( [ [samples.getlogratio ( i,j ) for j in xrange(len(data)) ] for i in xrange ( nsamples ) ] ),
            'duplicates':               samples.get_accept_rate (),
            'posterior_approximations_py': [posterior.get_posterior(i) for i in xrange ( nparams ) ],
            'posterior_approximations_str': [r"$\mathcal{N}(%.2f,%.2f)$" % (posterior.get_posterior(0).getprm(0),posterior.get_posterior(0).getprm(1)),
                r"$\mathrm{Gamma}(%.2f,%.2f)$" % (posterior.get_posterior(1).getprm(0),posterior.get_posterior(1).getprm(1)),
                r"$\mathrm{Beta}(%.2f,%.2f)$" % (posterior.get_posterior(2).getprm(0),posterior.get_posterior(2).getprm(1))],
            'posterior_grids':          [ posterior.get_grid ( i ) for i in xrange ( nparams ) ],
            'posterior_margin':         [ posterior.get_margin ( i ) for i in xrange ( nparams ) ],
            'resampling-entropy':       samples.get_entropy ()
            }

    else:

        out = {'posterior_approximations_py': [posterior.get_posterior(i) for i in xrange ( nparams ) ],
            'posterior_approximations_str': [r"$\mathcal{N}(%.2f,%.2f)$" % (posterior.get_posterior(0).getprm(0),posterior.get_posterior(0).getprm(1)),
            r"$\mathrm{Gamma}(%.2f,%.2f)$" % (posterior.get_posterior(1).getprm(0),posterior.get_posterior(1).getprm(1)),
            r"$\mathrm{Beta}(%.2f,%.2f)$" % (posterior.get_posterior(2).getprm(0),posterior.get_posterior(2).getprm(1))],
            'posterior_grids':          [ posterior.get_grid ( i ) for i in xrange ( nparams ) ],
            'posterior_margin':         [ posterior.get_margin ( i ) for i in xrange ( nparams ) ] }

    if nparams==4:
        out['posterior_approximations_str'].append ( r"$\mathrm{Beta}(%.2f,%.2f)$" % (posterior.get_posterior(3).getprm(0),posterior.get_posterior(3).getprm(1)) )

    return out