/usr/share/pyshared/swignifit/interface_methods.py is in python-pypsignifit 3.0~beta.20120611.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 | #/usr/bin/env python
# encoding: utf-8
# vi: set ft=python sts=4 ts=4 sw=4 et:
######################################################################
#
#   See COPYING file distributed along with the psignifit package for
#   the copyright and license terms
#
######################################################################
import numpy as np
import swignifit.swignifit_raw as sfr
import swignifit.utility as sfu
import operator as op
def bootstrap(data, start=None, nsamples=2000, nafc=2, sigmoid="logistic",
        core="ab", priors=None, cuts=None, parametric=True, gammaislambda=False ):
    """ Parametric bootstrap of a psychometric function.
    Parameters
    ----------
    data : A list of lists or an array of data.
        The first column should be stimulus intensity, the second column should
        be number of correct responses (in 2AFC) or number of yes- responses (in
        Yes/No), the third column should be number of trials. See also: the examples
        section below.
    start : sequence of floats of length number of model parameters
        Generating values for the bootstrap samples. If this is None, the
        generating value will be the MAP estimate. Length should be 4 for Yes/No
        and 3 for nAFC.
    nsamples : number
        Number of bootstrap samples to be drawn.
    nafc : int
        Number of alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.
    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.
    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.
    priors : sequence of strings length number of parameters
        Constraints on the likelihood estimation. These are expressed in the form of a list of
        prior names. Valid prior choices include:
                Uniform(%g,%g)
                Gauss(%g,%g)
                Beta(%g,%g)
                Gamma(%g,%g)
                nGamma(%g,%g)
                if an invalid prior or `None` is selected, no constraints are imposed at all.
        See `swignifit.utility.available_priors()` for all available sigmoids.
    cuts : a single number or a sequence of numbers.
        Cuts indicating the performances that should be considered 'threshold'
        performances. This means that in a 2AFC task, cuts==0.5 the 'threshold'
        is somewhere around 75%% correct performance, depending on the lapse
        rate parametric boolean to indicate whether or not the bootstrap
        procedure should be parametric or not.
    parametric : boolean
        If `True` do parametric, otherwise do a non-parametric bootstrap.
    gammaislambda : boolean
        Set the gamma == lambda prior.
    Returns
    -------
    (samples,estimates,deviance,
    threshold, th_bias, th_acceleration,
    slope, slope_bias, slope_accelerateion
    Rkd,Rpd,outliers,influential)
    samples : numpy array, shape: (nsamples, nblocks)
        the bootstrap sampled data
    estimates : numpy array, shape: (nsamples, nblocks)
        estimated parameters associated with the data sets
    deviance : numpy array, length: nsamples
        deviances for the bootstraped datasets
    threshold : numpy array, shape: (nsamples, ncuts)
        thresholds/cuts for each bootstraped datasets
    th_bias : numpy array, shape: (ncuts)
        the bias term associated with the threshold
    th_acc : numpy array, shape: (ncuts)
        the acceleration constant associated with the threshold
    slope : numpy array, shape: (nsamples, ncuts)
        slope at each cuts for each bootstraped datasets
    sl_bias : numpy array, shape: (ncuts)
        bias term associated with the slope
    sl_acc : numpy array, shape: (ncuts)
        acceleration term associated with the slope
    Rkd : numpy array, length: nsamples
        correlations between block index and deviance residuals
    Rpd : numpy array, length: nsamples
        correlations between model prediction and deviance residuals
    outliers : numpy array of booleans, length nblocks
        points that are outliers
    influential : numpy array of booleans, length nblocks
        points that are influential observations
    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> priors = ('flat','flat','Uniform(0,0.1)')
    >>> samples,est,D,thres,thbias,thacc,slope,slbias,slacc,Rkd,Rpd,out,influ \
            = bootstrap(d,nsamples=2000,priors=priors)
    >>> np.mean(est[:,0])
    2.7547034408466811
    >>> mean(est[:,1])
    1.4057297989923003
    """
    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda)
    cuts = sfu.get_cuts(cuts)
    ncuts = len(cuts)
    if start is not None:
        start = sfu.get_start(start, nparams)
    bs_list = sfr.bootstrap(nsamples, dataset, pmf, cuts, start, True, parametric)
    jk_list = sfr.jackknifedata(dataset, pmf)
    nblocks = dataset.getNblocks()
    # construct the massive tuple of return values
    samples = np.zeros((nsamples, nblocks), dtype=np.int32)
    estimates = np.zeros((nsamples, nparams))
    deviance = np.zeros((nsamples))
    thres = np.zeros((nsamples, ncuts))
    slope = np.zeros((nsamples, ncuts))
    Rpd = np.zeros((nsamples))
    Rkd = np.zeros((nsamples))
    for row_index in xrange(nsamples):
        samples[row_index] = bs_list.getData(row_index)
        estimates[row_index] = bs_list.getEst(row_index)
        deviance[row_index] = bs_list.getdeviance(row_index)
        thres[row_index] = [bs_list.getThres_byPos(row_index, j) for j in xrange(ncuts)]
        slope[row_index] = [bs_list.getSlope_byPos(row_index, j) for j in xrange(ncuts)]
        Rpd[row_index] = bs_list.getRpd(row_index)
        Rkd[row_index] = bs_list.getRkd(row_index)
    thacc = np.zeros((ncuts))
    thbias = np.zeros((ncuts))
    slacc = np.zeros((ncuts))
    slbias = np.zeros((ncuts))
    for cut in xrange(ncuts):
        thacc[cut] = bs_list.getAcc_t(cut)
        thbias[cut] = bs_list.getBias_t(cut)
        slacc[cut] = bs_list.getAcc_s(cut)
        slbias[cut] = bs_list.getBias_s(cut)
    ci_lower = sfr.vector_double(nparams)
    ci_upper = sfr.vector_double(nparams)
    for param in xrange(nparams):
        ci_lower[param] = bs_list.getPercentile(0.025, param)
        ci_upper[param] = bs_list.getPercentile(0.975, param)
    outliers = np.zeros((nblocks), dtype=np.bool)
    influential = np.zeros((nblocks))
    for block in xrange(nblocks):
        outliers[block] = jk_list.outlier(block)
        influential[block] = jk_list.influential(block, ci_lower, ci_upper)
    return samples, estimates, deviance, thres, thbias, thacc, slope, slbias, slacc, Rpd, Rkd, outliers, influential
def mcmc( data, start=None, nsamples=10000, nafc=2, sigmoid='logistic',
        core='mw0.1', priors=None, stepwidths=None, sampler="MetropolisHastings", gammaislambda=False):
    """ Markov Chain Monte Carlo sampling for a psychometric function.
    Parameters
    ----------
    data : A list of lists or an array of data.
        The first column should be stimulus intensity, the second column should
        be number of correct responses (in 2AFC) or number of yes- responses (in
        Yes/No), the third column should be number of trials. See also: the examples
        section below.
    start : sequence of floats of length number of model parameters
        Starting values for the markov chain. If this is None, the MAP estimate
        will be used.
    nsamples : int
        Number of samples to be taken from the posterior (note that due to
        suboptimal sampling, this number may be much lower than the effective
        number of samples.
    nafc : int
        Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.
    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.
    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.
    priors : sequence of strings length number of parameters
        Prior distributions on the parameters of the psychometric function.
        These are expressed in the form of a list of prior names.
        Valid prior choices include:
                Uniform(%g,%g)
                Gauss(%g,%g)
                Beta(%g,%g)
                Gamma(%g,%g)
                nGamma(%g,%g)
                if an invalid prior or `None` is selected, no constraints are imposed at all.
        See `swignifit.utility.available_priors()` for all available sigmoids.
        if an invalid prior is selected, no constraints are imposed on that
        parameter resulting in an improper prior distribution.
    stepwidths : sequence of floats of length number of model parameters
        Standard deviations of the proposal distribution. The best choice is
        sometimes a bit tricky here. However, as a rule of thumb we can
        state: if the stepwidths are too small, the samples might not cover
        the whole posterior, if the stepwidths are too large, most steps
        will leave the area of high posterior density and will therefore be
        rejected.  Thus, in general stepwidths should be somewhere in the
        middle.
    sampler : string
        The type of MCMC sampler to use.
        See: `sw.utility.available_samplers()` for a list of available samplers.
    gammaislambda : boolean
        Set the gamma == lambda prior.
    Output
    ------
    (estimates, deviance, posterior_predictive_data,
    posterior_predictive_deviances, posterior_predictive_Rpd,
    posterior_predictive_Rkd, logposterior_ratios, accept_rate)
    estimates : numpy array, shape: (nsamples, nparameters)
        Parameters sampled from the posterior density of parameters given the data.
    deviances : numpy array, length: nsamples
        Associated deviances for each estimate
    posterior_predictive_data : numpy array, shape: (nsamples, nblocks)
        Data that are simulated by sampling from the joint posterior of data and
        parameters. They are important for model checking.
    posterior_predictive_deviances : numpy array, length: nsamples
        The deviances that are associated with the posterior predictive data. A
        particular way of model checking could be to compare the deviances and the
        posterior predicitive deviances. For a good model these should be relatively
        similar.
    posterior_predictive_Rpd : numpy array, length: nsamples
        Correlations between psychometric function and deviance residuals
        associated with posterior predictive data
    posterior_predictive_Rkd : numpy array, length: nsamples
        Correlations between block index and deviance residuals associated with
        posterior predictive data.
    logposterior_ratios :  numpy array, shape: (nsamples, nblocks)
        Ratios between the full posetrior and the posterior for a single block
        for all samples. Used for calculating the KL-Divergence to detrmine
        influential observations in the Bayesian paradigm.
    accept_rate : float
        The number of proposed MCMC samples that were accepted.
    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> priors = ('Gauss(0,1000)','Gauss(0,1000)','Beta(3,100)')
    >>> stepwidths = (1.,1.,0.01)
    >>> (estimates, deviance, posterior_predictive_data,
         posterior_predictive_deviances, posterior_predictive_Rpd,
         posterior_predictive_Rkd, logposterior_ratios, accept_rate) \
         = mcmc(d,nsamples=10000,priors=priors,stepwidths=stepwidths)
    >>> mean(estimates[:,0])
    2.4811791550665272
    >>> mean(estimates[:,1])
    7.4935217545849184
    """
    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda)
    if start is not None:
        start = sfu.get_start(start, nparams)
    else:
        # use mapestimate
        opt = sfr.PsiOptimizer(pmf, dataset)
        start = opt.optimize(pmf, dataset)
    proposal = sfr.GaussRandom()
    if sampler not in sfu.sampler_dict.keys():
        raise sfu.PsignifitException("The sampler: " + sampler + " is not available.")
    else:
        sampler  = sfu.sampler_dict[sampler](pmf, dataset, proposal)
    sampler.setTheta(start)
    if stepwidths != None:
        stepwidths = np.array(stepwidths)
        if len(stepwidths.shape)==2:
            if isinstance ( sampler, sfr.GenericMetropolis ):
                sampler.findOptimalStepwidth ( sfu.make_pilotsample ( stepwidths ) )
            elif isinstance ( sampler, sfr.MetropolisHastings ):
                sampler.setStepSize ( sfr.vector_double( stepwidths.std(0) ) )
            else:
                raise sfu.PsignifitException("You provided a pilot sample but the selected sampler does not support pilot samples")
        elif len(stepwidths) != nparams:
            raise sfu.PsignifitException("You specified \'"+str(len(stepwidths))+\
                    "\' stepwidth(s), but there are \'"+str(nparams)+ "\' parameters.")
        else:
            if isinstance ( sampler, sfr.DefaultMCMC ):
                for i,p in enumerate(stepwidths):
                    p = sfu.get_prior(p)
                    sampler.set_proposal(i, p)
            else:
                sampler.setStepSize(sfr.vector_double(stepwidths))
    post = sampler.sample(nsamples)
    nblocks = dataset.getNblocks()
    estimates = np.zeros((nsamples, nparams))
    deviance = np.zeros(nsamples)
    posterior_predictive_data = np.zeros((nsamples, nblocks))
    posterior_predictive_deviances = np.zeros(nsamples)
    posterior_predictive_Rpd = np.zeros(nsamples)
    posterior_predictive_Rkd = np.zeros(nsamples)
    logposterior_ratios = np.zeros((nsamples, nblocks))
    for i in xrange(nsamples):
        for j in xrange(nparams):
            estimates[i, j] = post.getEst(i, j)
        deviance[i] = post.getdeviance(i)
        for j in xrange(nblocks):
            posterior_predictive_data[i, j] = post.getppData(i, j)
            logposterior_ratios[i,j] = post.getlogratio(i,j)
        posterior_predictive_deviances[i] = post.getppDeviance(i)
        posterior_predictive_Rpd[i] = post.getppRpd(i)
        posterior_predictive_Rkd[i] = post.getppRkd(i)
    accept_rate = post.get_accept_rate()
    return (estimates, deviance, posterior_predictive_data,
        posterior_predictive_deviances, posterior_predictive_Rpd,
        posterior_predictive_Rkd, logposterior_ratios, accept_rate)
def mapestimate ( data, nafc=2, sigmoid='logistic', core='ab', priors=None,
        cuts = None, start=None, gammaislambda=False):
    """ MAP or constrained maximum likelihood estimation for a psychometric function.
    Parameters
    ----------
    data : A list of lists or an array of data.
        The first column should be stimulus intensity, the second column should
        be number of correct responses (in 2AFC) or number of yes- responses (in
        Yes/No), the third column should be number of trials. See also: the examples
        section below.
    nafc : int
        Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.
    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.
    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.
    priors : sequence of strings length number of parameters
        Prior distributions on the parameters of the psychometric function.
        These are expressed in the form of a list of prior names.
        Valid prior choices include:
                Uniform(%g,%g)
                Gauss(%g,%g)
                Beta(%g,%g)
                Gamma(%g,%g)
                nGamma(%g,%g)
                if an invalid prior or `None` is selected, no constraints are imposed at all.
        See `swignifit.utility.available_priors()` for all available sigmoids.
        if an invalid prior is selected, no constraints are imposed on that
        parameter resulting in an improper prior distribution.
    cuts : sequence of floats
        Cuts at which thresholds should be determined.  That is if cuts =
        (.25,.5,.75), thresholds (F^{-1} ( 0.25 ), F^{-1} ( 0.5 ), F^{-1} ( 0.75
        )) are returned.  Here F^{-1} denotes the inverse of the function
        specified by sigmoid. If cuts==None, this is modified to cuts=[0.5].
    start : sequence of floats of length number of model parameters
        Values at which to start the optimization, if None the starting value is
        determined using a coarse grid search.
    Output
    ------
    estimate, fisher, thres, slope, deviance
    estimate : numpy array length nparams
        the map/cml estimate
    fisher : numpy array shape (nparams, nparams)
        the fisher matrix
    thres : numpy array length ncuts
        the model prediction at the cuts
    slope : numpy array length ncuts
        the gradient of the psychometric function at the cuts
    deviance : numpy array length 1
        the deviance for the estimate
    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> priors = ('flat','flat','Uniform(0,0.1)')
    >>> estimate, fisher, thres, slope, deviance = mapestimate ( d, priors=priors )
    >>> estimate
    array([ 2.75180624,  1.45717745,  0.01555658])
    >>> deviance
    array(8.0713313642328242)
    """
    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data,
            nafc, sigmoid, core, priors, gammaislambda=gammaislambda)
    cuts = sfu.get_cuts(cuts)
    opt = sfr.PsiOptimizer(pmf, dataset)
    estimate = opt.optimize(pmf, dataset, sfu.get_start(start, nparams) if start is not
            None else None)
    H = pmf.ddnegllikeli(estimate, dataset)
    thres = [pmf.getThres(estimate, c) for c in cuts]
    slope = [pmf.getSlope(estimate, th) for th in thres]
    deviance = pmf.deviance(estimate, dataset)
    # convert to numpy stuff
    estimate = np.array(estimate)
    fisher = np.zeros((nparams,nparams))
    for (i,j) in ((i,j) for i in xrange(nparams) for j in xrange(nparams)):
        fisher[i,j] = sfr.doublep_value(H(i,j))
    thres = np.array(thres)
    slope = np.array(slope)
    deviance = np.array(deviance)
    return estimate, fisher, thres, slope, deviance
def diagnostics(data, params, nafc=2, sigmoid='logistic', core='ab', cuts=None, gammaislambda=False):
    """ Some diagnostic statistics for a psychometric function fit.
    This function is a bit messy since it has three functions depending on the
    type of the `data` argument.
    Parameters
    ----------
    data : variable
        real data : A list of lists or an array of data.
            The first column should be stimulus intensity, the second column should
            be number of correct responses (in 2AFC) or number of yes- responses (in
            Yes/No), the third column should be number of trials. See also: the examples
            section below.
        intensities : sequence of floats
            The x-values of the psychometric function, then we obtain only the
            predicted values.
        no data : empty sequence
            In this case we evaluate the psychometric function at the cuts. All
            other return values are then irrelevant.
    params : sequence of len nparams
        parameter vector at which the diagnostic information should be evaluated
    nafc : int
        Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is
        assumed.
    sigmoid : string
        Name of the sigmoid to be fitted. Valid sigmoids include:
                logistic
                gauss
                gumbel_l
                gumbel_r
        See `swignifit.utility.available_sigmoids()` for all available sigmoids.
    core : string
        \"core\"-type of the psychometric function. Valid choices include:
                ab       (x-a)/b
                mw%g     midpoint and width
                linear   a+bx
                log      a+b log(x)
        See `swignifit.utility.available_cores()` for all available sigmoids.
    cuts : sequence of floats
        Cuts at which thresholds should be determined.  That is if cuts =
        (.25,.5,.75), thresholds (F^{-1} ( 0.25 ), F^{-1} ( 0.5 ), F^{-1} ( 0.75
        )) are returned.  Here F^{-1} denotes the inverse of the function
        specified by sigmoid. If cuts==None, this is modified to cuts=[0.5].
    Output
    ------
    (predicted, deviance_residuals, deviance, thres, Rpd, Rkd)
    predicted : numpy array of length nblocks
        predicted values associated with the respective stimulus intensities
    deviance_residuals : numpy array of length nblocks
        deviance residuals of the data
    deviance float
        deviance of the data
    thres : numpy array length ncuts
        the model prediction at the cuts
    Rpd : float
        correlation between predicted performance and deviance residuals
    Rkd : float
        correlation between block index and deviance residuals
    Example
    -------
    >>> x = [float(2*k) for k in xrange(6)]
    >>> k = [34,32,40,48,50,48]
    >>> n = [50]*6
    >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)]
    >>> prm = [2.75, 1.45, 0.015]
    >>> pred,di,D,thres,slope,Rpd,Rkd = diagnostics(d,prm)
    >>> D
    8.0748485860836254
    >>> di[0]
    1.6893279652591433
    >>> Rpd
    -0.19344675783032755
    """
    # here we need to hack stuff, since data can be either 'real' data, or just
    # a list of intensities, or just an empty sequence
    # in order to remain compatible with psipy we must check for an empty
    # sequence here, and return a specially crafted return value in that case.
    # sorry..
    # TODO after removal of psipy we can probably change this.
    if op.isSequenceType(data) and len(data) == 0:
        pmf, nparams =  sfu.make_pmf(sfr.PsiData([0],[0],[0],1), nafc, sigmoid, core, None, gammaislambda=gammaislambda )
        thres = np.array([pmf.getThres(params, cut) for cut in sfu.get_cuts(cuts)])
        slope = np.array([pmf.getSlope(params, th ) for th in thres])
        return np.array([]), np.array([]), 0.0, thres, np.nan, np.nan
    shape = np.shape(np.array(data))
    intensities_only = False
    if len(shape) == 1:
        # just intensities, make a dataset with k and n all zero
        k = n = [0] * shape[0]
        data  = [[xx,kk,nn] for xx,kk,nn in zip(data,k,n)]
        intensities_only = True
    else:
        # data is 'real', just do nothing
        pass
    dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, None, gammaislambda=gammaislambda)
    cuts = sfu.get_cuts(cuts)
    params = sfu.get_params(params, nparams)
    predicted = np.array([pmf.evaluate(intensity, params) for intensity in
            dataset.getIntensities()])
    if intensities_only:
        return predicted
    else:
        deviance_residuals = pmf.getDevianceResiduals(params, dataset)
        deviance = pmf.deviance(params, dataset)
        thres = np.array([pmf.getThres(params, cut) for cut in cuts])
        slope = np.array([pmf.getSlope(params, th ) for th in thres])
        rpd = pmf.getRpd(deviance_residuals, params, dataset)
        rkd = pmf.getRkd(deviance_residuals, dataset)
        return predicted, deviance_residuals, deviance, thres, slope, rpd, rkd
def asir ( data, nsamples=2000, nafc=2, sigmoid="logistic",
        core="mw0.1", priors=None, gammaislambda=False, propose=25 ):
    dataset, pmf, nparams = sfu.make_dataset_and_pmf ( data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda )
    posterior = sfr.independent_marginals ( pmf, dataset )
    if nsamples > 0:
        samples   = sfr.sample_posterior ( pmf, dataset, posterior, nsamples, propose )
        sfr.sample_diagnostics ( pmf, dataset, samples )
        out = {'mcestimates': np.array( [ [samples.getEst ( i, par ) for par in xrange ( nparams ) ] for i in xrange ( nsamples )]),
            'mcdeviance': np.array( [ samples.getdeviance ( i ) for i in xrange ( nsamples ) ] ),
            'mcRpd':                    np.array ( [ samples.getRpd ( i ) for i in xrange ( nsamples ) ] ),
            'mcRkd':                    np.array ( [ samples.getRkd ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_data': np.array ( [ samples.getppData ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_deviance': np.array ( [ samples.getppDeviance ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_Rpd': np.array ( [ samples.getppRpd ( i ) for i in xrange ( nsamples ) ] ),
            'posterior_predictive_Rkd': np.array ( [ samples.getppRkd ( i ) for i in xrange ( nsamples ) ] ),
            'logposterior_ratios':      np.array ( [ [samples.getlogratio ( i,j ) for j in xrange(len(data)) ] for i in xrange ( nsamples ) ] ),
            'duplicates':               samples.get_accept_rate (),
            'posterior_approximations_py': [posterior.get_posterior(i) for i in xrange ( nparams ) ],
            'posterior_approximations_str': [r"$\mathcal{N}(%.2f,%.2f)$" % (posterior.get_posterior(0).getprm(0),posterior.get_posterior(0).getprm(1)),
                r"$\mathrm{Gamma}(%.2f,%.2f)$" % (posterior.get_posterior(1).getprm(0),posterior.get_posterior(1).getprm(1)),
                r"$\mathrm{Beta}(%.2f,%.2f)$" % (posterior.get_posterior(2).getprm(0),posterior.get_posterior(2).getprm(1))],
            'posterior_grids':          [ posterior.get_grid ( i ) for i in xrange ( nparams ) ],
            'posterior_margin':         [ posterior.get_margin ( i ) for i in xrange ( nparams ) ],
            'resampling-entropy':       samples.get_entropy ()
            }
    else:
        out = {'posterior_approximations_py': [posterior.get_posterior(i) for i in xrange ( nparams ) ],
            'posterior_approximations_str': [r"$\mathcal{N}(%.2f,%.2f)$" % (posterior.get_posterior(0).getprm(0),posterior.get_posterior(0).getprm(1)),
            r"$\mathrm{Gamma}(%.2f,%.2f)$" % (posterior.get_posterior(1).getprm(0),posterior.get_posterior(1).getprm(1)),
            r"$\mathrm{Beta}(%.2f,%.2f)$" % (posterior.get_posterior(2).getprm(0),posterior.get_posterior(2).getprm(1))],
            'posterior_grids':          [ posterior.get_grid ( i ) for i in xrange ( nparams ) ],
            'posterior_margin':         [ posterior.get_margin ( i ) for i in xrange ( nparams ) ] }
    if nparams==4:
        out['posterior_approximations_str'].append ( r"$\mathrm{Beta}(%.2f,%.2f)$" % (posterior.get_posterior(3).getprm(0),posterior.get_posterior(3).getprm(1)) )
    return out
 |