/usr/share/pyshared/pypsignifit/psigsimultaneous.py is in python-pypsignifit 3.0~beta.20120611.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | #!/usr/bin/env python
from scipy import stats
from scipy.special import gamma,digamma,polygamma
from numpy import log,mean,var,exp,array
from math import sqrt
__all__ = ["derive_informed_priors"]
__doc__ = """Routines to derive informed priors for quasi-simultaneous bayesian inference
These routines are described in more detail in the document located in
documents/simultaneous.pdf
In short, these routines take a number of fits that were performed with (improper) flat priors
and derive an list of informed priors. These informed priors can be used to perform the bayesian
inference a second time, this time with non flat prios, such that in the end the posterior
distributions of certain parameters are equal.
"""
def normpdf ( x, prm ):
"""normal pdf
Parameters
----------
x : array
array on which the normal pdf should be evaluated
prm : sequence
pair of mean and variance for the gaussian
Returns
-------
p : array
an array of densities at the positions of x
"""
return stats.norm.pdf ( x, prm[0], sqrt(prm[1]) )
def gammapdf ( x, prm ):
"""gamma pdf
Parameters
----------
x : array
array on which the gamma pdf should be evaluated
prm : sequence
pair of k (shape) and theta (scale) parameters for the gamma distribution
Returns
-------
p : array
an array of densities at the positions of x
"""
k,th = prm
return x**(k-1) * exp ( - x/th )/(gamma(k)*th**k)
def betapdf ( x, prm ):
"""beta pdf
Parameters
----------
x : array
array on which the gamma pdf should be evaluated
prm : sequence
pair of alpha (prior successes) and beta (prior misses) parameters for the beta distribution
Returns
-------
p : array
an array of densities at the positions of x
"""
al,bt = prm
return stats.beta.pdf(x, al, bt )
def fitgauss ( samples ):
"""fit a normal distribution using maximum likelihood
Parameters
----------
samples : array
array of samples on which the distribution should be fitted
Returns
-------
prm : sequence
pair of mean and variance for the fitted gaussian
l : double
likelihood of the data at the fitted parameter values
"""
m = mean ( samples )
s = var ( samples )
l = sum(log(normpdf(samples,(m,s))))
return (m,s),l
def fitgamma ( samples ):
"""fit a gamma distribution using maximum likelihood
Parameters
----------
samples : array
array of samples on which the distribution should be fitted
Returns
-------
prm : sequence
pair of k (shape) and theta (scale) parameters for the fitted gamma distribution
l : double
likelihood of the data at the fitted parameter values
"""
s = log ( mean(samples) ) - mean ( log(samples) )
k = 3 - s + sqrt ( (s-3)**2 + 24*s)
k /= 12 * s
for i in xrange ( 5 ):
k -= ( log(k) - digamma ( k ) -s ) / ( 1./k - polygamma( 1, k ) )
th = mean ( samples ) / k
l = sum(log(gammapdf ( samples, (k,th) ) ) )
return (k,th),l
def fitbeta ( samples ):
"""fit a beta distribution using maximum likelihood
Parameters
----------
samples : array
array of samples on which the distribution should be fitted
Returns
-------
prm : sequence
pair of alpha (prior successes) and beta (prior misses) parameters for the beta distribution
l : double
likelihood of the data at the fitted parameter values
"""
m = mean ( samples )
s = var ( samples )
al = m * ( m*(1-m)/s - 1 )
bt = (1-m) * ( m*(1-m)/s - 1 )
l = sum(log(betapdf(samples, (al, bt) ) ) )
return (al,bt),l
def combinegauss ( prm ):
"""combine gaussian parameter estimates to give the product prior
Parameters
----------
prm : sequence
a sequence of pairs of parameter estimates
Returns:
--------
mubar,varbar : double
mean an variance of the product prior
"""
prm = array ( prm )
varbar = 1./sum(1./prm[:,1])
mubar = sum(prm[:,0]/prm[:,1]) * varbar
return mubar,varbar
def combinegamma ( prm ):
"""combine gamma parameter estimates to give the product prior
Parameters
----------
prm : sequence
a sequence of pairs of parameter estimates
Returns:
--------
kbar,thetabar : double
shape and scale parameter for the product prior gamma distribution
"""
prm = array ( prm )
kbar = 1 + sum (prm[:,0]-1)
thbar = 1./sum(1./prm[:,1])
return kbar,thbar
def combinebeta ( prm ):
"""combine gamma parameter estimates to give the product prior
Parameters
----------
prm : sequence
a sequence of pairs of parameter estimates
Returns:
--------
alphabar,betabar : double
prior successes and prior misses parameters for the product prior beta distribution
"""
prm = array ( prm )
albar = 1 + sum ( prm[:,0]-1 )
btbar = 1 + sum ( prm[:,1]-1 )
return albar,btbar
def derive_informed_priors ( mcmcobjects, distribution="Gamma", parameter="w" ):
"""Combine mcmc samples to give informed priors for quasi-simultaneous inference
For further information see the file 'simultaneous' in the documents folder.
Parameters
----------
mcmcobjects : sequence of BayesInference objects
BayesInference objects containing samples obtained with flat priors that are used to determine
the combined informed 'product prior'
distribution : string
name of the desired prior. Currently, only 'Gamma', 'Gauss', 'Beta' are supported.
parameter : string
name of the parameter to be constrained to be equal across conditions. Currently,
'm', 'alpha', 'w', 'beta', 'lambda', and 'gamma' are supported
Returns
-------
priors : sequence of strings
list of priors to be used for performing the quasi simultaneous fit
"""
# Check that the mcmc objects are comparable!!!
params_assign = {'m': 0, 'alpha': 0, 'w': 1, 'beta': 1, 'lambda': 2, 'gamma': -1}
if distribution=="Gamma":
fit,combine = fitgamma,combinegamma
elif distribution=="Gauss":
fit,combine = fitgauss,combinegauss
elif distribution=="Beta":
fit,combine = fitbeta,combinebeta
else:
raise ArgumentError,"Invalid model to fit posterior distributions"
fitted_parameters = []
for mfit in mcmcobjects:
prm,l = fit ( mfit.mcestimates[:,params_assign[parameter]] )
fitted_parameters.append(prm)
priors = []
for j in xrange(len(fitted_parameters)):
current = fitted_parameters.pop(0)
prm = combine ( fitted_parameters )
priors.append ( distribution+"(%g,%g)"%prm )
fitted_parameters.append ( current )
return priors
|