This file is indexed.

/usr/share/pyshared/svmutil.py is in python-libsvm 3.12-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python

from svm import *

def svm_read_problem(data_file_name):
	"""
	svm_read_problem(data_file_name) -> [y, x]

	Read LIBSVM-format data from data_file_name and return labels y
	and data instances x.
	"""
	prob_y = []
	prob_x = []
	for line in open(data_file_name):
		line = line.split(None, 1)
		# In case an instance with all zero features
		if len(line) == 1: line += ['']
		label, features = line
		xi = {}
		for e in features.split():
			ind, val = e.split(":")
			xi[int(ind)] = float(val)
		prob_y += [float(label)]
		prob_x += [xi]
	return (prob_y, prob_x)

def svm_load_model(model_file_name):
	"""
	svm_load_model(model_file_name) -> model
	
	Load a LIBSVM model from model_file_name and return.
	"""
	model = libsvm.svm_load_model(model_file_name)
	if not model: 
		print("can't open model file %s" % model_file_name)
		return None
	model = toPyModel(model)
	return model

def svm_save_model(model_file_name, model):
	"""
	svm_save_model(model_file_name, model) -> None

	Save a LIBSVM model to the file model_file_name.
	"""
	libsvm.svm_save_model(model_file_name, model)

def evaluations(ty, pv):
	"""
	evaluations(ty, pv) -> (ACC, MSE, SCC)

	Calculate accuracy, mean squared error and squared correlation coefficient
	using the true values (ty) and predicted values (pv).
	"""
	if len(ty) != len(pv):
		raise ValueError("len(ty) must equal to len(pv)")
	total_correct = total_error = 0
	sumv = sumy = sumvv = sumyy = sumvy = 0
	for v, y in zip(pv, ty):
		if y == v: 
			total_correct += 1
		total_error += (v-y)*(v-y)
		sumv += v
		sumy += y
		sumvv += v*v
		sumyy += y*y
		sumvy += v*y 
	l = len(ty)
	ACC = 100.0*total_correct/l
	MSE = total_error/l
	try:
		SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
	except:
		SCC = float('nan')
	return (ACC, MSE, SCC)

def svm_train(arg1, arg2=None, arg3=None):
	"""
	svm_train(y, x [, 'options']) -> model | ACC | MSE 
	svm_train(prob, [, 'options']) -> model | ACC | MSE 
	svm_train(prob, param) -> model | ACC| MSE 

	Train an SVM model from data (y, x) or an svm_problem prob using
	'options' or an svm_parameter param. 
	If '-v' is specified in 'options' (i.e., cross validation)
	either accuracy (ACC) or mean-squared error (MSE) is returned.
	'options':
	    -s svm_type : set type of SVM (default 0)
	        0 -- C-SVC
	        1 -- nu-SVC
	        2 -- one-class SVM
	        3 -- epsilon-SVR
	        4 -- nu-SVR
	    -t kernel_type : set type of kernel function (default 2)
	        0 -- linear: u'*v
	        1 -- polynomial: (gamma*u'*v + coef0)^degree
	        2 -- radial basis function: exp(-gamma*|u-v|^2)
	        3 -- sigmoid: tanh(gamma*u'*v + coef0)
	        4 -- precomputed kernel (kernel values in training_set_file)
	    -d degree : set degree in kernel function (default 3)
	    -g gamma : set gamma in kernel function (default 1/num_features)
	    -r coef0 : set coef0 in kernel function (default 0)
	    -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
	    -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
	    -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
	    -m cachesize : set cache memory size in MB (default 100)
	    -e epsilon : set tolerance of termination criterion (default 0.001)
	    -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
	    -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
	    -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
	    -v n: n-fold cross validation mode
	    -q : quiet mode (no outputs)
	"""
	prob, param = None, None
	if isinstance(arg1, (list, tuple)):
		assert isinstance(arg2, (list, tuple))
		y, x, options = arg1, arg2, arg3
		param = svm_parameter(options)
		prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED))
	elif isinstance(arg1, svm_problem):
		prob = arg1
		if isinstance(arg2, svm_parameter):
			param = arg2
		else:
			param = svm_parameter(arg2)
	if prob == None or param == None:
		raise TypeError("Wrong types for the arguments")

	if param.kernel_type == PRECOMPUTED:
		for xi in prob.x_space:
			idx, val = xi[0].index, xi[0].value
			if xi[0].index != 0:
				raise ValueError('Wrong input format: first column must be 0:sample_serial_number')
			if val <= 0 or val > prob.n:
				raise ValueError('Wrong input format: sample_serial_number out of range')

	if param.gamma == 0 and prob.n > 0: 
		param.gamma = 1.0 / prob.n
	libsvm.svm_set_print_string_function(param.print_func)
	err_msg = libsvm.svm_check_parameter(prob, param)
	if err_msg:
		raise ValueError('Error: %s' % err_msg)

	if param.cross_validation:
		l, nr_fold = prob.l, param.nr_fold
		target = (c_double * l)()
		libsvm.svm_cross_validation(prob, param, nr_fold, target)	
		ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
		if param.svm_type in [EPSILON_SVR, NU_SVR]:
			print("Cross Validation Mean squared error = %g" % MSE)
			print("Cross Validation Squared correlation coefficient = %g" % SCC)
			return MSE
		else:
			print("Cross Validation Accuracy = %g%%" % ACC)
			return ACC
	else:
		m = libsvm.svm_train(prob, param)
		m = toPyModel(m)

		# If prob is destroyed, data including SVs pointed by m can remain.
		m.x_space = prob.x_space
		return m

def svm_predict(y, x, m, options=""):
	"""
	svm_predict(y, x, m [, "options"]) -> (p_labels, p_acc, p_vals)

	Predict data (y, x) with the SVM model m. 
	"options": 
	    -b probability_estimates: whether to predict probability estimates, 
	        0 or 1 (default 0); for one-class SVM only 0 is supported.

	The return tuple contains
	p_labels: a list of predicted labels
	p_acc: a tuple including  accuracy (for classification), mean-squared 
	       error, and squared correlation coefficient (for regression).
	p_vals: a list of decision values or probability estimates (if '-b 1' 
	        is specified). If k is the number of classes, for decision values,
	        each element includes results of predicting k(k-1)/2 binary-class
	        SVMs. For probabilities, each element contains k values indicating
	        the probability that the testing instance is in each class.
	        Note that the order of classes here is the same as 'model.label'
	        field in the model structure.
	"""
	predict_probability = 0
	argv = options.split()
	i = 0
	while i < len(argv):
		if argv[i] == '-b':
			i += 1
			predict_probability = int(argv[i])
		else:
			raise ValueError("Wrong options")
		i+=1

	svm_type = m.get_svm_type()
	is_prob_model = m.is_probability_model()
	nr_class = m.get_nr_class()
	pred_labels = []
	pred_values = []

	if predict_probability:
		if not is_prob_model:
			raise ValueError("Model does not support probabiliy estimates")

		if svm_type in [NU_SVR, EPSILON_SVR]:
			print("Prob. model for test data: target value = predicted value + z,\n"
			"z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability());
			nr_class = 0

		prob_estimates = (c_double * nr_class)()
		for xi in x:
			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
			label = libsvm.svm_predict_probability(m, xi, prob_estimates)
			values = prob_estimates[:nr_class]
			pred_labels += [label]
			pred_values += [values]
	else:
		if is_prob_model:
			print("Model supports probability estimates, but disabled in predicton.")
		if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC):
			nr_classifier = 1
		else:
			nr_classifier = nr_class*(nr_class-1)//2
		dec_values = (c_double * nr_classifier)()
		for xi in x:
			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
			label = libsvm.svm_predict_values(m, xi, dec_values)
			if(nr_class == 1): 
				values = [1]
			else: 
				values = dec_values[:nr_classifier]
			pred_labels += [label]
			pred_values += [values]

	ACC, MSE, SCC = evaluations(y, pred_labels)
	l = len(y)
	if svm_type in [EPSILON_SVR, NU_SVR]:
		print("Mean squared error = %g (regression)" % MSE)
		print("Squared correlation coefficient = %g (regression)" % SCC)
	else:
		print("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l))

	return pred_labels, (ACC, MSE, SCC), pred_values