This file is indexed.

/usr/share/pyshared/h5py/utils.pyx is in python-h5py 2.0.1-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# cython: profile=False

#+
# 
# This file is part of h5py, a low-level Python interface to the HDF5 library.
# 
# Copyright (C) 2008 Andrew Collette
# http://h5py.alfven.org
# License: BSD  (See LICENSE.txt for full license)
# 
# $Date$
# 
#-

include "config.pxi"


from numpy cimport ndarray, import_array, \
                    NPY_UINT16, NPY_UINT32, NPY_UINT64,  npy_intp, \
                    PyArray_SimpleNew, PyArray_ContiguousFromAny, \
                    PyArray_FROM_OTF, PyArray_DIM, \
                    NPY_CONTIGUOUS, NPY_NOTSWAPPED, NPY_FORCECAST, \
                    NPY_C_CONTIGUOUS, NPY_WRITEABLE


# Initialization
import_array()

# === Exception-aware memory allocation =======================================

cdef void* emalloc(size_t size) except? NULL:
    # Wrapper for malloc(size) with the following behavior:
    # 1. Always returns NULL for emalloc(0)
    # 2. Raises RuntimeError for emalloc(size<0) and returns NULL
    # 3. Raises RuntimeError if allocation fails and returns NULL

    cdef void *retval = NULL

    if size == 0:
        return NULL

    retval = malloc(size)
    if retval == NULL:
        errmsg = "Can't malloc %d bytes" % size
        PyErr_SetString(MemoryError, errmsg)
        return NULL

    return retval

cdef void efree(void* what):
    free(what)

def _test_emalloc(size_t size):
    """Stub to simplify unit tests"""
    cdef void* mem
    mem = emalloc(size)
    if size == 0:
        assert mem == NULL
    efree(mem)

# === Testing of NumPy arrays =================================================

cdef int check_numpy(ndarray arr, hid_t space_id, int write):
    # -1 if exception, NOT AUTOMATICALLY CHECKED

    cdef int required_flags
    cdef hsize_t arr_rank
    cdef hsize_t space_rank
    cdef hsize_t *space_dims = NULL
    cdef int i

    if arr is None:
        PyErr_SetString(TypeError, "Array is None")
        return -1

    # Validate array flags

    if write:
        if not (arr.flags & NPY_C_CONTIGUOUS and arr.flags & NPY_WRITEABLE):
            PyErr_SetString(TypeError, "Array must be C-contiguous and writable")
            return -1
    else:
        if not (arr.flags & NPY_C_CONTIGUOUS):
            PyErr_SetString(TypeError, "Array must be C-contiguous")
            return -1

    # Validate dataspace compatibility, if it's provided

    if space_id > 0:

        arr_rank = arr.nd
        space_rank = H5Sget_simple_extent_ndims(space_id)

        if arr_rank != space_rank:
            err_msg = "Numpy array rank %d must match dataspace rank %d." % (arr_rank, space_rank)
            PyErr_SetString(TypeError, err_msg)
            return -1

        space_dims = <hsize_t*>malloc(sizeof(hsize_t)*space_rank)
        try:
            space_rank = H5Sget_simple_extent_dims(space_id, space_dims, NULL)

            for i from 0 < i < space_rank:

                if write:
                    if PyArray_DIM(arr,i) < space_dims[i]:
                        PyErr_SetString(TypeError, "Array dimensions are too small for the dataspace.")
                        return -1
                else:
                    if PyArray_DIM(arr,i) > space_dims[i]:
                        PyErr_SetString(TypeError, "Array dimensions are too large for the dataspace.")
                        return -1
        finally:
            free(space_dims)
    return 1

cpdef int check_numpy_write(ndarray arr, hid_t space_id=-1) except -1:
    return check_numpy(arr, space_id, 1)

cpdef int check_numpy_read(ndarray arr, hid_t space_id=-1) except -1:
    return check_numpy(arr, space_id, 0)

# === Conversion between HDF5 buffers and tuples ==============================

cdef int convert_tuple(object tpl, hsize_t *dims, hsize_t rank) except -1:
    # Convert a Python tuple to an hsize_t array.  You must allocate
    # the array yourself and pass both it and the size to this function.
    # Returns 0 on success, -1 on failure and raises an exception.
    cdef int i

    if len(tpl) != rank:
        raise ValueError("Tuple length incompatible with array")
    
    try:
        for i from 0<=i<rank:
            dims[i] = tpl[i]
    except TypeError:
        raise TypeError("Can't convert element %d (%s) to hsize_t" % (i, tpl[i]))

    return 0
    
cdef object convert_dims(hsize_t* dims, hsize_t rank):
    # Convert an hsize_t array to a Python tuple of ints.

    cdef list dims_list
    cdef int i
    dims_list = []

    for i from 0<=i<rank:
        dims_list.append(int(dims[i]))

    return tuple(dims_list)
    

cdef object create_numpy_hsize(int rank, hsize_t* dims):
    # Create an empty Numpy array which can hold HDF5 hsize_t entries

    cdef int typecode
    cdef npy_intp* dims_npy
    cdef ndarray arr
    cdef int i

    if sizeof(hsize_t) == 2:
        typecode = NPY_UINT16
    elif sizeof(hsize_t) == 4:
        typecode = NPY_UINT32
    elif sizeof(hsize_t) == 8:
        typecode = NPY_UINT64
    else:
        raise RuntimeError("Can't map hsize_t %d to Numpy typecode" % sizeof(hsize_t))

    dims_npy = <npy_intp*>emalloc(sizeof(npy_intp)*rank)

    try:
        for i from 0<=i<rank:
            dims_npy[i] = dims[i]
        arr = PyArray_SimpleNew(rank, dims_npy, typecode)
    finally:
        efree(dims_npy)

    return arr

cdef object create_hsize_array(object arr):
    # Create a NumPy array of hsize_t uints initialized to an existing array

    cdef int typecode
    cdef ndarray outarr

    if sizeof(hsize_t) == 2:
        typecode = NPY_UINT16
    elif sizeof(hsize_t) == 4:
        typecode = NPY_UINT32
    elif sizeof(hsize_t) == 8:
        typecode = NPY_UINT64
    else:
        raise RuntimeError("Can't map hsize_t %d to Numpy typecode" % sizeof(hsize_t))

    return PyArray_FROM_OTF(arr, typecode, NPY_CONTIGUOUS | NPY_NOTSWAPPED | NPY_FORCECAST)


# === Argument testing ========================================================

cdef int require_tuple(object tpl, int none_allowed, int size, char* name) except -1:
    # Ensure that tpl is in fact a tuple, or None if none_allowed is nonzero.
    # If size >= 0, also ensure that the length matches.
    # Otherwise raises ValueError

    if (tpl is None and none_allowed) or \
      (isinstance(tpl, tuple) and (size < 0 or len(tpl) == size)):
        return 1

    nmsg = "" if size < 0 else " of size %d" % size
    smsg = "" if not none_allowed else " or None"

    msg = "%s must be a tuple%s%s." % (name, smsg, nmsg)
    PyErr_SetString(ValueError, msg)
    return -1