This file is indexed.

/usr/share/pyshared/chaco/abstract_mapper.py is in python-chaco 4.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
""" Defines the base class for mappings.
"""
# Major library imports
from numpy import array

# Enthought library imports
from traits.api import Event, HasTraits, Tuple


class AbstractMapper(HasTraits):
    """ Defines an abstract mapping from a region in input space to a
    region in output space.
    """

    # A generic "update" event that generally means that anything that relies
    # on this mapper for visual output should do a redraw or repaint.
    updated = Event

    # A tuple representing the minimum and maximum values of the domain (data
    # space).  The dimensionality of each value varies depending on the
    # dimensions of the mapper, so for 1D mappers these will be scalars, for
    # image and 2D mappers these will be tuples.
    domain_limits = Tuple(None, None)

    def map_screen(self, data_array):
        """ map_screen(data_array) -> screen_array

        Maps values from data space into screen space.
        """
        return

    def map_data(self, screen_val):
        """ map_data(screen_val) -> data_val

        Maps values from screen space into data space.
        """
        return

    def map_data_array(self, screen_vals):
        """ map_data_array(screen_vals) -> data_vals

        Maps an array of values from screen space into data space.
        By default, this method just loops over the points, calling map_data()
        on each one.  For vectorizable mapping functions, override this
        implmentation with a faster one.
        """
        return array([self.map_data(v) for v in screen_vals])


    #------------------------------------------------------------------------
    # Persistence-related methods
    #------------------------------------------------------------------------
    def __getstate__(self):
        state = super(AbstractMapper,self).__getstate__()
        for key in ['_cache_valid']:
            if state.has_key(key):
                del state[key]

        return state

    def _post_load(self):
        self._cache_valid = False
        self._range_changed(None, self.range)
        return

# EOF