/usr/bin/makedumpfile-R.pl is in makedumpfile 1.4.3-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | #!/usr/bin/perl
# makedumpfile-R.pl
#
# Copyright (C) 2007, 2008 NEC Corporation
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
$name_dumpfile = @ARGV[0];
$TRUE = 1;
$FALSE = 0;
$MAKEDUMPFILE_SIGNATURE = "makedumpfile";
$MAX_SIZE_MDF_HEADER = 4096;
$TYPE_FLAT_HEADER = 1;
$END_FLAG_FLAT_HEADER = -1;
print "Start re-arranging dump data of flattened format to a dumpfile.\n";
open(FILE_DUMPFILE, ">$name_dumpfile") || die "Cannot open $name_dumpfile.\n";
binmode(FILE_DUMPFILE);
$value_64bits = &is_64bits_system;
if (&rearrange_dumpdata == $TRUE) {
printf "The dumpfile is saved to $name_dumpfile.\n";
printf "Completed.\n";
} else {
printf "Failed.\n";
}
close(FILE_DUMPFILE);
# End
# Re-arrange dump data of flattened format from a standard input.
sub rearrange_dumpdata {
if (&read_start_flat_header != $TRUE) {
return $FALSE;
}
if ($value_64bits == $TRUE) {
$ret_seek = &seek_for_64bits_system();
} else {
$ret_seek = &seek_for_32bits_system();
}
$buf_size = &get_buf_size();
while (($ret_seek == $TRUE) && (0 < $buf_size)) {
&read_buf_from_stdin($buf_size);
if (syswrite(FILE_DUMPFILE, $buf, $buf_size) != $buf_size) {
print "Cannot write. $buf_size\n";
return $FALSE;
}
if ($value_64bits == $TRUE) {
$ret_seek = &seek_for_64bits_system();
} else {
$ret_seek = &seek_for_32bits_system();
}
$buf_size = &get_buf_size();
}
if (($ret_seek != $END_FLAG_FLAT_HEADER) || ($buf_size != $END_FLAG_FLAT_HEADER)) {
print "Cannot get valid end header of flattened format.\n";
print "ret_seek = $ret_seek, buf_size = $buf_size\n";
return $FALSE;
}
return $TRUE;
}
sub read_start_flat_header {
&read_buf_from_stdin($MAX_SIZE_MDF_HEADER);
if (index($buf, $MAKEDUMPFILE_SIGNATURE) != 0) {
print "It is not flattened format.\n";
return $FALSE;
}
return $TRUE;
}
sub seek_for_64bits_system {
my $value = 0;
my ($high, $low) = &read_64bits;
$value = &convert_2values_to_1value($high, $low);
if ($value < 0) {
return $value;
}
if (seek(FILE_DUMPFILE, $value, 0) == 0) {
print "Cannot seek.\n";
return $FALSE;
}
return $TRUE;
}
sub seek_for_32bits_system {
my ($high, $low) = &read_64bits;
# On 32bits system, a normal value cannot explain the offset of
# large file(4GB or larger). For solving this problem, BigInt
# module is used. But this module makes speed down.
use Math::BigInt;
local $value = Math::BigInt->new(1);
if ($high < 0x80000000) {
$value->blsft(32);
$value->bmul($high);
$value->badd($low);
} else {
# Negative value
$low = ($low ^ 0xffffffff);
$high = ($high ^ 0xffffffff);
$value->blsft(32);
$value->bmul($high);
$value->badd($low);
$value->badd(1);
$value->bneg();
}
if ($value < 0) {
return $value;
}
if (seek(FILE_DUMPFILE, $value, 0) == 0) {
print "Cannot seek.\n";
return $FALSE;
}
return $TRUE;
}
# Get buf_size of flattened data header.
sub get_buf_size {
my ($high, $low) = &read_64bits;
return &convert_2values_to_1value($high, $low);
}
# Convert 2 values to 1 value.
# This function should be called only if a value isn't over the size
# of system value.
sub convert_2values_to_1value {
my ($high, $low) = (@_[0], @_[1]);
my $value = 0;
if ($high < 0x80000000) {
$value = $high * (1 << 32) + $low;
} else {
# Negative value
$low = ($low ^ 0xffffffff);
$high = ($high ^ 0xffffffff);
$value = (-1) * ($high * (1 << 32) + $low + 1);
}
return $value;
}
# Get 64bits of dump data.
# This function returns 2 values because a value of 32bits system cannot
# explain 64bits.
sub read_64bits {
my ($high, $low) = (0, 0);
&read_buf_from_stdin(8);
# Separate 2 values because hex() cannot support 64bits on 32bits system.
my ($value1, $value2) = unpack("H8 H8", $buf);
$value1 = hex($value1);
$value2 = hex($value2);
if (is_bigendian() == $TRUE) {
$low = $value1;
$high = $value2;
} else {
$low = $value2;
$high = $value1;
}
return ($high, $low);
}
# Get dump data of flattened format from a standard input.
sub read_buf_from_stdin {
my $buf_size = @_[0];
my $read_size = 0;
while ($read_size < $buf_size) {
$read_size += sysread(STDIN, $buf, $buf_size - $read_size, $read_size);
}
}
# Check 64/32bits system.
sub is_64bits_system {
my $temp1 = 1 << 31;
my $temp2 = 1 << 33;
if ($temp1 < $temp2) {
return $TRUE;
}
return $FALSE;
}
# Check big/little endian.
sub is_bigendian {
my $value = pack("l", 1234);
$value = unpack("n", $value);
if ($value == 1234) {
return $TRUE;
}
return $FALSE;
}
|