This file is indexed.

/usr/include/wvstreams/wvbufbase.h is in libwvstreams-dev 4.6.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
/* -*- Mode: C++ -*-
 * Worldvisions Weaver Software:
 *   Copyright (C) 1997-2002 Net Integration Technologies, Inc.
 *
 * A generic buffering API.
 * Please declare specializations in a separate header file,
 * See "wvbuf.h".
 */
#ifndef __WVBUFFERBASE_H
#define __WVBUFFERBASE_H

#include "wvbufstore.h"

template<class T>
class WvBufBase;

/**
 * An abstract generic buffer template.
 * Buffers are simple data queues designed to ease the construction of
 * functions that must generate, consume, or transform large amount of
 * data in pipeline fashion.  Concrete buffer subclases define the actual
 * storage mechanism and queuing machinery.  In addition they may provide
 * additional functionality for accomplishing particular tasks.
 *
 * The base component is split into two parts, WvBufBaseCommonImpl
 * that defines the common API for all buffer types, and WvBufBase
 * that allows specializations to be defined to add functionality
 * to the base type.  When passing around buffer objects, you should
 * use the WvBufBase<T> type rather than WvBufBaseCommonImpl<T>.
 *
 * See WvBufBase<T>
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvBufBaseCommonImpl
{
protected:
    typedef T Elem;
    typedef WvBufBase<T> Buffer;

    WvBufStore *store;
    
    // discourage copying
    explicit WvBufBaseCommonImpl(
        const WvBufBaseCommonImpl &other) { }

protected:
    /**
     * Initializes the buffer.
     * 
     * Note: Does not take ownership of the storage object.
     * 
     *
     * "store" is the low-level storage object
     */
    explicit WvBufBaseCommonImpl(WvBufStore *store) :
        store(store) { }

public:
    /** Destroys the buffer. */
    virtual ~WvBufBaseCommonImpl() { }

    /**
     * Returns a pointer to the underlying storage class object.
     *
     * Returns: the low-level storage class object pointer, non-null
     */
    WvBufStore *getstore()
    {
        return store;
    }

    /*** Buffer Reading ***/

    /**
     * Returns true if the buffer supports reading.
     *
     * Returns: true if reading is supported
     */
    bool isreadable() const
    {
        return store->isreadable();
    }
    
    /**
     * Returns the number of elements in the buffer currently
     * available for reading.
     * 
     * This function could also be called gettable().
     */
    size_t used() const
    {
        return store->used() / sizeof(Elem);
    }

    /**
     * Reads exactly the specified number of elements and returns
     * a pointer to a storage location owned by the buffer.
     * 
     * The pointer is only valid until the next non-const buffer
     * member is called. eg. alloc(size_t)
     * 
     * If count == 0, a NULL pointer may be returned.
     * 
     * It is an error for count to be greater than the number of
     * available elements in the buffer.
     * 
     * For maximum efficiency, call this function multiple times
     * with count no greater than optgettable() each time.
     * 
     * After this operation, at least count elements may be ungotten.
     */
    const T *get(size_t count)
    {
	if (count > used())
	    return NULL;

        return static_cast<const T*>(
            store->get(count * sizeof(Elem)));
    }

    /**
     * Skips exactly the specified number of elements.
     * 
     * This is equivalent to invoking get(size_t) with the count
     * and discarding the result, but may be faster for certain
     * types of buffers.  As with get(size_t), the call may be
     * followed up by an unget(size_t). 
     * 
     * It is an error for count to be greater than the number of
     * available elements in the buffer.
     * 
     * "count" is the number of elements
     */
    void skip(size_t count)
    {
        store->skip(count * sizeof(Elem));
    }

    /**
     * Returns the optimal maximum number of elements in the
     * buffer currently available for reading without incurring
     * significant overhead.
     * 
     * Invariants:
     * 
     *  - optgettable() <= used()
     *  - optgettable() != 0 if used() != 0
     * 
     *
     * Returns: the number of elements
     */
    size_t optgettable() const
    {
        size_t avail = store->optgettable();
        size_t elems = avail / sizeof(Elem);
        if (elems != 0) return elems;
        return avail != 0 && store->used() >= sizeof(Elem) ? 1 : 0;
    }

    /**
     * Ungets exactly the specified number of elements by returning
     * them to the buffer for subsequent reads.
     * 
     * This operation may always be safely performed with count
     * less than or equal to that specified in the last get(size_t)
     * if no non-const buffer members have been called since then.
     * 
     * If count == 0, nothing happens.
     * 
     * It is an error for count to be greater than ungettable().
     * 
     *
     * "count" is the number of elements
     */
    void unget(size_t count)
    {
        store->unget(count * sizeof(Elem));
    }

    /**
     * Returns the maximum number of elements that may be ungotten
     * at this time.
     *
     * Returns: the number of elements
     */
    size_t ungettable() const
    {
        return store->ungettable() / sizeof(Elem);
    }

    /**
     * Returns a const pointer into the buffer at the specified
     * offset to the specified number of elements without actually
     * adjusting the current get() index.
     * 
     * The pointer is only valid until the next non-const buffer
     * member is called. eg. alloc(size_t)
     * 
     * If count == 0, a NULL pointer may be returned.
     * 
     * If offset is greater than zero, then elements will be returned
     * beginning with the with the offset'th element that would be
     * returned by get(size_t).
     * 
     * If offset equals zero, then elements will be returned beginning
     * with the next one available for get(size_t).
     * 
     * If offset is less than zero, then elements will be returned
     * beginning with the first one that would be returned on a
     * get(size_t) following an unget(-offset).
     * 
     * It is an error for count to be greater than peekable(offset).
     * 
     * For maximum efficiency, call this function multiple times
     * with count no greater than that returned by optpeekable(size_t)
     * at incremental offsets.
     * 
     *
     * "offset" is the buffer offset
     * "count" is the number of elements
     * Returns: the element storage pointer
     */
    const T *peek(int offset, size_t count)
    {
        return static_cast<const T*>(store->peek(
            offset * sizeof(Elem), count * sizeof(Elem)));
    }

    size_t peekable(int offset)
    {
        return store->peekable(offset * sizeof(Elem)) / sizeof(Elem);
    }

    size_t optpeekable(int offset)
    {
        offset *= sizeof(Elem);
        size_t avail = store->optpeekable(offset);
        size_t elems = avail / sizeof(Elem);
        if (elems != 0) return elems;
        return avail != 0 &&
            store->peekable(offset) >= sizeof(Elem) ? 1 : 0;
    }

    /**
     * Clears the buffer.
     * 
     * For many types of buffers, calling zap() will increased the
     * amount of free space available for writing (see below) by
     * an amount greater than used().  Hence it is wise to zap()
     * a buffer just before writing to it to maximize free space.
     * 
     * After this operation, used() == 0, and often ungettable() == 0.
     * 
     */
    void zap()
    {
        store->zap();
    }

    /**
     * Reads the next element from the buffer.
     * 
     * It is an error to invoke this method if used() == 0.
     * 
     * After this operation, at least 1 element may be ungotten.
     * 
     *
     * Returns: the element
     */
    T get()
    {
        return *get(1);
    }

    /**
     * Returns the element at the specified offset in the buffer.
     * 
     * It is an error to invoke this method if used() == 0.
     * 
     *
     * "offset" is the offset, default 0
     * Returns: the element
     */
    T peek(int offset = 0)
    {
        return *peek(offset * sizeof(Elem), sizeof(Elem));
    }

    /**
     * Efficiently copies the specified number of elements from the
     * buffer to the specified UNINITIALIZED storage location
     * and removes the elements from the buffer.
     * 
     * It is an error for count to be greater than used().
     * 
     * For maximum efficiency, choose as large a count as possible.
     * 
     * The pointer buf may be NULL only if count == 0.
     * 
     * After this operation, an indeterminate number of elements
     * may be ungotten.
     * 
     *
     * "buf" is the buffer that will receive the elements
     * "count" is the number of elements
     */
    void move(T *buf, size_t count)
    {
        store->move(buf, count * sizeof(Elem));
    }
    
    /**
     * Efficiently copies the specified number of elements from the
     * buffer to the specified UNINITIALIZED storage location
     * but does not remove the elements from the buffer.
     * 
     * It is an error for count to be greater than peekable(offset).
     * 
     * For maximum efficiency, choose as large a count as possible.
     * 
     * The pointer buf may be NULL only if count == 0.
     * 
     *
     * "buf" is the buffer that will receive the elements
     * "offset" is the buffer offset
     * "count" is the number of elements
     */
    void copy(T *buf, int offset, size_t count)
    {
        store->copy(buf, offset * sizeof(Elem), count * sizeof(Elem));
    }
    
    /*** Buffer Writing ***/
    
    /**
     * Returns true if the buffer supports writing.
     *
     * Returns: true if writing is supported
     */
    bool iswritable() const
    {
        return true;
    }
    
    /**
     * Returns the number of elements that the buffer can currently
     * accept for writing.
     * 
     * Returns: the number of elements
     */
    size_t free() const
    {
        return store->free() / sizeof(Elem);
    }
    
    /**
     * Allocates exactly the specified number of elements and returns
     * a pointer to an UNINITIALIZED storage location owned by the
     * buffer.
     * 
     * The pointer is only valid until the next non-const buffer
     * member is called. eg. alloc(size_t)
     * 
     * If count == 0, a NULL pointer may be returned.
     * 
     * It is an error for count to be greater than free().
     * 
     * For best results, call this function multiple times with
     * count no greater than optallocable() each time.
     * 
     * After this operation, at least count elements may be unallocated.
     * 
     *
     * "count" is the number of elements
     * Returns: the element storage pointer
     */
    T *alloc(size_t count)
    {
        return static_cast<T*>(store->alloc(count * sizeof(Elem)));
    }
    
    /**
     * Returns the optimal maximum number of elements that the
     * buffer can currently accept for writing without incurring
     * significant overhead.
     * 
     * Invariants:
     * 
     *  - optallocable() <= free()
     *  - optallocable() != 0 if free() != 0
     * 
     *
     * Returns: the number of elements
     */
    size_t optallocable() const
    {
        size_t avail = store->optallocable();
        size_t elems = avail / sizeof(Elem);
        if (elems != 0) return elems;
        return avail != 0 && store->free() >= sizeof(Elem) ? 1 : 0;
    }

    /**
     * Unallocates exactly the specified number of elements by removing
     * them from the buffer and releasing their storage.
     * 
     * This operation may always be safely performed with count
     * less than or equal to that specified in the last alloc(size_t)
     * or put(const T*, size_t) if no non-const buffer members have
     * been called since then.
     * 
     * If count == 0, nothing happens.
     * 
     * It is an error for count to be greater than unallocable().
     * 
     *
     * "count" is the number of elements
     */
    void unalloc(size_t count)
    {
        return store->unalloc(count * sizeof(Elem));
    }

    /**
     * Returns the maximum number of elements that may be unallocated
     * at this time.
     * 
     * For all practical purposes, this number will always be at least
     * as large as the amount currently in use.  It is provided
     * primarily for symmetry, but also to handle cases where
     * buffer reading (hence used()) is not supported by the
     * implementation.
     * 
     * Invariants:
     * 
     *  - unallocable() >= used()
     * 
     *
     * Returns: the number of elements
     */
    size_t unallocable() const
    {
        return store->unallocable() / sizeof(Elem);
    }
    
    /**
     * Returns a non-const pointer info the buffer at the specified
     * offset to the specified number of elements without actually
     * adjusting the current get() index.
     * 
     * Other than the fact that the returned storage is mutable,
     * operates identically to peek(int, size_t).
     * 
     *
     * "offset" is the buffer offset
     * "count" is the number of elements
     * Returns: the element storage pointer
     */
    T *mutablepeek(int offset, size_t count)
    {
        return static_cast<T*>(store->mutablepeek(
            offset * sizeof(Elem), count * sizeof(Elem)));
    }

    /**
     * Writes the specified number of elements from the specified
     * storage location into the buffer at its tail.
     * 
     * It is an error for count to be greater than free().
     * 
     * For maximum efficiency, choose as large a count as possible.
     * 
     * The pointer buf may be NULL only if count == 0.
     * 
     * After this operation, at least count elements may be unallocated.
     * 
     *
     * "data" is the buffer that contains the elements
     * "count" is the number of elements
     */
    void put(const T *data, size_t count)
    {
        store->put(data, count * sizeof(Elem));
    }

    /**
     * Efficiently copies the specified number of elements from the
     * specified storage location into the buffer at a particular
     * offset.
     * 
     * If offset <= used() and offset + count > used(), the
     * remaining data is simply tacked onto the end of the buffer
     * with put().
     * 
     * It is an error for count to be greater than free() - offset.
     * 
     *
     * "data" is the buffer that contains the elements
     * "count" is the number of elements
     * "offset" is the buffer offset, default 0
     */
    void poke(const T *data, int offset, size_t count)
    {
        store->poke(data, offset * sizeof(Elem), count * sizeof(Elem));
    }

    /**
     * Writes the element into the buffer at its tail.
     * 
     * It is an error to invoke this method if free() == 0.
     * 
     * After this operation, at least 1 element may be unallocated.
     * 
     *
     * "valid" is the element
     */
    void put(T &value)
    {
        store->fastput(& value, sizeof(Elem));
    }

    /**
     * Writes the element into the buffer at the specified offset.
     * 
     * It is an error to invoke this method if free() == 0.
     * 
     * After this operation, at least 1 element may be unallocated.
     * 
     *
     * "value" is the element
     * "offset" is the buffer offset
     */
    void poke(T &value, int offset)
    {
        poke(& value, offset, 1);
    }


    /*** Buffer to Buffer Transfers ***/

    /**
     * Efficiently moves count bytes from the specified buffer into
     * this one.  In some cases, this may be a zero-copy operation.
     * 
     * It is an error for count to be greater than inbuf.used().
     * 
     * For maximum efficiency, choose as large a count as possible.
     * 
     * After this operation, an indeterminate number of elements
     * may be ungotten from inbuf.
     * 
     *
     * "inbuf" is the buffer from which to read
     * "count" is the number of elements
     */
    void merge(Buffer &inbuf, size_t count)
    {
        store->merge(*inbuf.store, count * sizeof(Elem));
    }

    /**
     * Efficiently merges the entire contents of a buffer into this one.
     *
     * "inbuf" is the buffer from which to read
     */
    void merge(Buffer &inbuf)
    {
        merge(inbuf, inbuf.used());
    }
};



/**
 * The generic buffer base type.
 * To specialize buffers to add new functionality, declare a template
 * specialization of this type that derives from WvBufBaseCommonImpl.
 *
 * See WvBufBaseCommonImpl<T>
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvBufBase : public WvBufBaseCommonImpl<T>
{
public:
    explicit WvBufBase(WvBufStore *store) :
        WvBufBaseCommonImpl<T>(store) { }
};



/**
 * A buffer that wraps a pre-allocated array and provides
 * read-write access to its elements.
 *
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvInPlaceBufBase : public WvBufBase<T>
{
protected:
    typedef T Elem;

    WvInPlaceBufStore mystore;

public:
    /**
     * Creates a new buffer backed by the supplied array.
     *
     * "_data" is the array of data to wrap
     * "_avail" is the amount of data available for reading
     * "_size" is the size of the array
     * "_autofree" is if true, the array will be freed when discarded
     */
    WvInPlaceBufBase(T *_data, size_t _avail, size_t _size,
        bool _autofree = false) :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), _data, _avail * sizeof(Elem),
            _size * sizeof(Elem), _autofree) { }

    /**
     * Creates a new empty buffer backed by a new array.
     *
     * "_size" is the size of the array
     */
    explicit WvInPlaceBufBase(size_t _size) :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), _size * sizeof(Elem)) { }

    /** Creates a new empty buffer with no backing array. */
    WvInPlaceBufBase() :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), NULL, 0, 0, false) { }

    /**
     * Destroys the buffer.
     *
     * Frees the underlying array if autofree().
     *
     */
    virtual ~WvInPlaceBufBase() { }

    /**
     * Returns the underlying array pointer.
     *
     * Returns: the element pointer
     */
    T *ptr() const
    {
        return static_cast<T*>(mystore.ptr());
    }

    /**
     * Returns the total size of the buffer.
     *
     * Returns: the number of elements
     */
    size_t size() const
    {
        return mystore.size() / sizeof(Elem);
    }

    /**
     * Returns the autofree flag.
     *
     * Returns: the autofree flag
     */
    bool get_autofree() const
    {
        return mystore.get_autofree();
    }

    /**
     * Sets or clears the autofree flag.
     *
     * "_autofree" is if true, the array will be freed when discarded
     */
    void set_autofree(bool _autofree)
    {
        mystore.set_autofree(_autofree);
    }

    /**
     * Resets the underlying buffer pointer and properties.
     *
     * If the old and new buffer pointers differ and the old buffer
     * was specified as autofree, the old buffer is destroyed.
     *
     * "_data" is the array of data to wrap
     * "_avail" is the amount of data available for reading
     * "_size" is the size of the array
     * "_autofree" is if true, the array will be freed when discarded
     */
    void reset(T *_data, size_t _avail, size_t _size,
        bool _autofree = false)
    {
        mystore.reset(_data, _avail * sizeof(Elem),
            _size * sizeof(Elem), _autofree);
    }

    /**
     * Sets the amount of available data using the current buffer
     * and resets the read index to the beginning of the buffer.
     *
     * "_avail" is the amount of data available for reading
     */
    void setavail(size_t _avail)
    {
        mystore.setavail(_avail * sizeof(Elem));
    }
};



/**
 * A buffer that wraps a pre-allocated array and provides
 * read-only access to its elements.
 *
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvConstInPlaceBufBase : public WvBufBase<T>
{
protected:
    typedef T Elem;

    WvConstInPlaceBufStore mystore;

public:
    /**
     * Creates a new buffer backed by the supplied array.
     *
     * "_data" is the array of data to wrap
     * "_avail" is the amount of data available for reading
     */
    WvConstInPlaceBufBase(const T *_data, size_t _avail) :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), _data, _avail * sizeof(Elem)) { }

    /** Creates a new empty buffer with no backing array. */
    WvConstInPlaceBufBase() :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), NULL, 0) { }

    /**
     * Destroys the buffer.
     * 
     * Never frees the underlying array.
     * 
     */
    virtual ~WvConstInPlaceBufBase() { }

    /**
     * Returns the underlying array pointer.
     *
     * Returns: the element pointer
     */
    const T *ptr() const
    {
        return static_cast<const T*>(mystore.ptr());
    }

    /**
     * Resets the underlying buffer pointer and properties.
     * 
     * Never frees the old buffer.
     * 
     *
     * "_data" is the array of data to wrap
     * "_avail" is the amount of data available for reading
     */
    void reset(const T *_data, size_t _avail)
    {
        mystore.reset(_data, _avail * sizeof(Elem));
    }

    /**
     * Sets the amount of available data using the current buffer
     * and resets the read index to the beginning of the buffer.
     *
     * "_avail" is the amount of data available for reading
     */
    void setavail(size_t _avail)
    {
        mystore.setavail(_avail * sizeof(Elem));
    }
};



/**
 * A buffer that wraps a pre-allocated array and provides
 * read-write access to its elements using a circular buffering
 * scheme rather than a purely linear one, as used by
 * WvInPlaceBuf.  
 *
 * When there is insufficient contigous free/used space to
 * satisfy a read or write request, the data is automatically
 * reordered in-place to coalesce the free/used spaces into
 * sufficiently large chunks.  The process may also be manually
 * triggered to explicitly renormalize the array and shift its
 * contents to the front.
 *
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvCircularBufBase : public WvBufBase<T>
{
protected:
    typedef T Elem;

    WvCircularBufStore mystore;

public:
    /**
     * Creates a new circular buffer backed by the supplied array.
     *
     * "_data" is the array of data to wrap
     * "_avail" is the amount of data available for reading
     *               at the beginning of the buffer
     * "_size" is the size of the array
     * "_autofree" is if true, the array will be freed when discarded
     */
    WvCircularBufBase(T *_data, size_t _avail, size_t _size,
        bool _autofree = false) :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), _data, _avail * sizeof(Elem),
            _size * sizeof(Elem), _autofree) { }

    /**
     * Creates a new empty circular buffer backed by a new array.
     *
     * "_size" is the size of the array
     */
    explicit WvCircularBufBase(size_t _size) :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), _size * sizeof(Elem)) { }

    /** Creates a new empty buffer with no backing array. */
    WvCircularBufBase() :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), NULL, 0, 0, false) { }

    /**
     * Destroys the buffer.
     * 
     * Frees the underlying array if autofree().
     * 
     */
    virtual ~WvCircularBufBase() { }

    /**
     * Returns the underlying array pointer.
     *
     * Returns: the element pointer
     */
    T *ptr() const
    {
        return static_cast<T*>(mystore.ptr());
    }

    /**
     * Returns the total size of the buffer.
     *
     * Returns: the number of elements
     */
    size_t size() const
    {
        return mystore.size() / sizeof(Elem);
    }

    /**
     * Returns the autofree flag.
     *
     * Returns: the autofree flag
     */
    bool get_autofree() const
    {
        return mystore.get_autofree();
    }

    /**
     * Sets or clears the autofree flag.
     *
     * "_autofree" is if true, the array will be freed when discarded
     */
    void set_autofree(bool _autofree)
    {
        mystore.set_autofree(_autofree);
    }

    /**
     * Resets the underlying buffer pointer and properties.
     *
     * If the old and new buffer pointers differ and the old buffer
     * was specified as autofree, the old buffer is destroyed.
     *
     * "_data" is the array of data to wrap
     * "_avail" is the amount of data available for reading
     *               at the beginning of the buffer
     * "_size" is the size of the array
     * "_autofree" is if true, the array will be freed when discarded
     */
    void reset(T *_data, size_t _avail, size_t _size,
        bool _autofree = false)
    {
        mystore.reset(_data, _avail * sizeof(Elem),
            _size * sizeof(Elem), _autofree);
    }

    /**
     * Sets the amount of available data using the current buffer
     * and resets the read index to the beginning of the buffer.
     *
     * "_avail" is the amount of data available for reading
     *               at the beginning of the buffer
     */
    void setavail(size_t _avail)
    {
        mystore.setavail(_avail * sizeof(Elem));
    }

    /**
     * Normalizes the arrangement of the data such that the
     * contents of the buffer are stored at the beginning of
     * the array starting with the next element that would be
     * returned by get(size_t).
     * 
     * After invocation, ungettable() may equal 0.
     * 
     */
    void normalize()
    {
        mystore.normalize();
    }
};



/**
 * A buffer that dynamically grows and shrinks based on demand.
 *
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvDynBufBase : public WvBufBase<T>
{
protected:
    typedef T Elem;

    WvDynBufStore mystore;
    
public:
    /**
     * Creates a new buffer.
     * 
     * Provides some parameters for tuning response to buffer
     * growth.
     * 
     * "_minalloc" is the minimum number of elements to allocate
     *      at once when creating a new internal buffer segment
     * "_maxalloc" is the maximum number of elements to allocate
     *      at once when creating a new internal buffer segment
     *      before before reverting to a linear growth pattern
     */
    explicit WvDynBufBase(size_t _minalloc = 1024,
        size_t _maxalloc = 1048576) :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), _minalloc * sizeof(Elem),
            _maxalloc * sizeof(Elem)) { }
};



/**
 * A buffer that is always empty.
 *
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvNullBufBase : public WvBufBase<T>
{
protected:
    typedef T Elem;

    WvNullBufStore mystore;

public:
    /** Creates a new buffer. */
    WvNullBufBase() :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem)) { }
};



/**
 * A buffer that acts like a cursor over a portion of another buffer.
 * The underlying buffer's get() position is not affected by
 * reading from this buffer.
 *
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvBufCursorBase : public WvBufBase<T>
{
protected:
    typedef T Elem;

    WvBufCursorStore mystore;

public:
    /**
     * Creates a new buffer.
     * 
     * Does not take ownership of the supplied buffer.
     * 
     *
     * "_buf" is a pointer to the buffer to be wrapped
     * "_start" is the buffer offset of the window start position
     * "_length" is the length of the window
     */
    WvBufCursorBase(WvBufBase<T> &_buf, int _start,
        size_t _length) :
        WvBufBase<T>(& mystore),
        mystore(sizeof(Elem), _buf.getstore(),
            _start * sizeof(Elem), _length * sizeof(Elem)) { }
};


/**
 * A buffer that provides a read-write view over another buffer
 * with a different datatype.  Reading and writing through this
 * buffer implicitly performs the equivalent of reinterpret_cast
 * on each element.
 *
 * Most useful for manipulating data backed by a raw memory buffer.
 *
 * "T" is the type of object to store, must be a primitive or a struct
 *        without special initialization, copy, or assignment semantics
 */
template<class T>
class WvBufViewBase : public WvBufBase<T>
{
public:
    /**
     * Creates a new buffer.
     * 
     * Does not take ownership of the supplied buffer.
     * 
     *
     * "_buf" is a pointer to the buffer to be wrapped
     */
    template<typename S>
    WvBufViewBase(WvBufBase<S> &_buf) :
        WvBufBase<T>(_buf.getstore()) { }
};

#endif // __WVBUFFERBASE_H