/usr/include/torch/DiagonalGMM.h is in libtorch3-dev 3.1-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | // Copyright (C) 2003--2004 Johnny Mariethoz (Johnny.Mariethoz@idiap.ch)
// and Samy Bengio (bengio@idiap.ch)
//
// This file is part of Torch 3.1.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef DIAGONAL_GMM_INC
#define DIAGONAL_GMM_INC
#include "Distribution.h"
#include "EMTrainer.h"
namespace Torch {
/** This class can be used to model Diagonal Gaussian Mixture Models.
They can be trained using either EM (with EMTrainer) or gradient descent
(with GMTrainer).
@author Samy Bengio (bengio@idiap.ch)
@author Johnny Mariethoz (Johnny.Mariethoz@idiap.ch)
*/
class DiagonalGMM : public Distribution
{
public:
/// number of Gaussians in the mixture
int n_gaussians;
/** prior weights of the Gaussians, used in EM to give
a small prior on each Gaussian
*/
real prior_weights;
/** optional initializations
if nothing is given, then random calling by reset(),
at your own risks or model loaded by the user...
one can give a initial trainer containing a kmeans
*/
EMTrainer* initial_kmeans_trainer;
/// as well as a measurer of this trainer
MeasurerList* initial_kmeans_trainer_measurers;
/// the pointers to the parameters
real* log_weights;
real** means;
real** var;
/// the pointers to the derivative of the parameters
real* dlog_weights;
real** dmeans;
real** dvar;
/// this contains the minimal value of each variance
real* var_threshold;
/// for each frame, for each gaussian, keep its log probability
Sequence* log_probabilities_g;
/// gaussian that maximize the observed frame
int best_gauss;
/// gaussian that maximize the observed frame
Sequence* best_gauss_per_frame;
/** in order to faster the computation, we can do some "pre-computation"
pre-computed sum_log_var + n_obs * log_2_pi
*/
real* sum_log_var_plus_n_obs_log_2_pi;
/// pre-computed -0.5 / var
real** minus_half_over_var;
/// accumulators for EM
real** means_acc;
real** var_acc;
real* weights_acc;
///
DiagonalGMM(int n_inputs_, int n_gaussians_, EMTrainer* initial_kmeans_trainer_ = NULL);
void generateObservation(real* inputs_);
void generateSequence(Sequence* sequence);
/**
This methods have to call by the user to initialized the
random parameters.
*/
virtual void reset();
/**
If the KmeanTrainer has been given to the constructor, Kmeans algorithm
is perform.
*/
virtual void setDataSet(DataSet* data_);
/**
Set the minimum value for the variances
*/
virtual void setVarThreshold(real* var_threshold_);
virtual void display();
/** Methods used to initialize the model at the beginning of each
EM iteration
*/
virtual void eMIterInitialize();
/** Methods used to initialize the model at the beginning of each
gradient descent iteration
*/
virtual void iterInitialize();
/// Returns the log probability of a frame of a sequence
virtual real frameLogProbability(int t, real *inputs);
/// Returns the log probability of a frame of a sequence on viterbi mode
virtual real viterbiFrameLogProbability(int t, real *inputs);
/// this method returns the log probability of the "g" Gaussian
virtual real frameLogProbabilityOneGaussian(int g, real *inputs);
/** Methods used to initialize the model at the beginning of each
example during gradient descent training
*/
virtual void sequenceInitialize(Sequence* inputs);
/** Methods used to initialize the model at the beginning of each
example during EM training
*/
virtual void eMSequenceInitialize(Sequence* inputs);
/// The backward step of EM for a frame
virtual void frameEMAccPosteriors(int t, real *inputs, real log_posterior);
/// The backward step of Viterbi for a frame
virtual void frameViterbiAccPosteriors(int t, real *inputs, real log_posterior);
/// The update after each iteration for EM
virtual void eMUpdate();
/// The update after each iteration for gradient
virtual void update();
/// Same as backward, but for one frame only
virtual void frameBackward(int t, real *f_inputs, real *beta_, real *f_outputs, real *alpha_);
/// Returns the expected value in #decision#
virtual void frameDecision(int t, real *decision);
virtual void setNGaussians(int n_gaussians_);
virtual ~DiagonalGMM();
};
}
#endif
|