This file is indexed.

/usr/include/torch/DiagonalGMM.h is in libtorch3-dev 3.1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// Copyright (C) 2003--2004 Johnny Mariethoz (Johnny.Mariethoz@idiap.ch)
//                and Samy Bengio (bengio@idiap.ch)
//                
// This file is part of Torch 3.1.
//
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
//    derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef DIAGONAL_GMM_INC
#define DIAGONAL_GMM_INC

#include "Distribution.h"
#include "EMTrainer.h"

namespace Torch {

/** This class can be used to model Diagonal Gaussian Mixture Models.
    They can be trained using either EM (with EMTrainer) or gradient descent
    (with GMTrainer).

    @author Samy Bengio (bengio@idiap.ch)
    @author Johnny Mariethoz (Johnny.Mariethoz@idiap.ch)
*/
class DiagonalGMM : public Distribution
{

  public:
    /// number of Gaussians in the mixture
    int n_gaussians;

    /** prior weights of the Gaussians, used in EM to give 
        a small prior on each Gaussian
    */
    real prior_weights;

    /** optional initializations
        if nothing is given, then random calling by reset(), 
				at your own risks or model loaded by the user...
        one can give a initial trainer containing a kmeans
    */
    EMTrainer* initial_kmeans_trainer;

    /// as well as a measurer of this trainer
    MeasurerList* initial_kmeans_trainer_measurers;

    /// the pointers to the parameters
    real* log_weights;
    real** means;
    real** var;

    /// the pointers to the derivative of the parameters
    real* dlog_weights;
    real** dmeans;
    real** dvar;

    /// this contains the minimal value of each variance
    real* var_threshold;

    /// for each frame, for each gaussian, keep its log probability
    Sequence* log_probabilities_g;


		/// gaussian that maximize the observed frame
		int best_gauss;


		/// gaussian that maximize the observed frame
		Sequence* best_gauss_per_frame; 

    /** in order to faster the computation, we can do some "pre-computation"
        pre-computed sum_log_var + n_obs * log_2_pi
    */
    real* sum_log_var_plus_n_obs_log_2_pi;

    /// pre-computed -0.5 / var
    real** minus_half_over_var;

    /// accumulators for EM
    real** means_acc;
    real** var_acc;
    real*  weights_acc;

    ///
		DiagonalGMM(int n_inputs_, int n_gaussians_, EMTrainer* initial_kmeans_trainer_ = NULL);

    void generateObservation(real* inputs_);
    void generateSequence(Sequence* sequence);

		/**
       This methods have to call by the user to initialized the
			 random parameters.
		*/
		virtual void reset();


		/**
		   If the KmeanTrainer has been given to the constructor, Kmeans algorithm
			 is perform.
		*/
		virtual void setDataSet(DataSet* data_);

		/**
		   Set the minimum value for the variances
		*/
		virtual void setVarThreshold(real* var_threshold_);

    virtual void display();

    /** Methods used to initialize the model at the beginning of each
        EM iteration
    */
    virtual void eMIterInitialize();

    /** Methods used to initialize the model at the beginning of each
        gradient descent iteration
    */
    virtual void iterInitialize();

    /// Returns the log probability of a frame of a sequence
    virtual real frameLogProbability(int t, real *inputs);
    
		/// Returns the log probability of a frame of a sequence on viterbi mode
		virtual real viterbiFrameLogProbability(int t, real *inputs);

    /// this method returns the log probability of the "g" Gaussian
    virtual real frameLogProbabilityOneGaussian(int g, real *inputs);

    /** Methods used to initialize the model at the beginning of each
        example during gradient descent training
    */
    virtual void sequenceInitialize(Sequence* inputs);

    /** Methods used to initialize the model at the beginning of each
        example during EM training
    */
    virtual void eMSequenceInitialize(Sequence* inputs);
    
		/// The backward step of EM for a frame
    virtual void frameEMAccPosteriors(int t, real *inputs, real log_posterior);
    
		/// The backward step of Viterbi for a frame
		virtual void frameViterbiAccPosteriors(int t, real *inputs, real log_posterior);
    
		/// The update after each iteration for EM
    virtual void eMUpdate();
		/// The update after each iteration for gradient
    virtual void update();

    /// Same as backward, but for one frame only
    virtual void frameBackward(int t, real *f_inputs, real *beta_, real *f_outputs, real *alpha_);
    
		/// Returns the expected value in #decision#
    virtual void frameDecision(int t, real *decision);

    virtual void setNGaussians(int n_gaussians_);

    virtual ~DiagonalGMM();
};


}

#endif