This file is indexed.

/usr/include/OGRE/OgreGpuProgramParams.h is in libogre-dev 1.7.4+dfsg1-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org

Copyright (c) 2000-2011 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __GpuProgramParams_H_
#define __GpuProgramParams_H_

// Precompiler options
#include "OgrePrerequisites.h"
#include "OgreSharedPtr.h"
#include "OgreIteratorWrappers.h"
#include "OgreSerializer.h"
#include "OgreRenderOperation.h"
#include "OgreAny.h"

namespace Ogre {

	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Materials
	*  @{
	*/
	/** Enumeration of the types of constant we may encounter in programs. 
	@note Low-level programs, by definition, will always use either
	float4 or int4 constant types since that is the fundamental underlying
	type in assembler.
	*/
	enum GpuConstantType
	{
		GCT_FLOAT1 = 1,
		GCT_FLOAT2 = 2,
		GCT_FLOAT3 = 3,
		GCT_FLOAT4 = 4,
		GCT_SAMPLER1D = 5,
		GCT_SAMPLER2D = 6,
		GCT_SAMPLER3D = 7,
		GCT_SAMPLERCUBE = 8,
		GCT_SAMPLER1DSHADOW = 9,
		GCT_SAMPLER2DSHADOW = 10,
		GCT_MATRIX_2X2 = 11,
		GCT_MATRIX_2X3 = 12,
		GCT_MATRIX_2X4 = 13,
		GCT_MATRIX_3X2 = 14,
		GCT_MATRIX_3X3 = 15,
		GCT_MATRIX_3X4 = 16,
		GCT_MATRIX_4X2 = 17,
		GCT_MATRIX_4X3 = 18,
		GCT_MATRIX_4X4 = 19,
		GCT_INT1 = 20,
		GCT_INT2 = 21,
		GCT_INT3 = 22,
		GCT_INT4 = 23,
		GCT_UNKNOWN = 99
	};

	/** The variability of a GPU parameter, as derived from auto-params targetting it.
	These values must be powers of two since they are used in masks.
	*/
	enum GpuParamVariability
	{
		/// No variation except by manual setting - the default
		GPV_GLOBAL = 1, 
		/// Varies per object (based on an auto param usually), but not per light setup
		GPV_PER_OBJECT = 2, 
		/// Varies with light setup
		GPV_LIGHTS = 4, 
		/// Varies with pass iteration number
		GPV_PASS_ITERATION_NUMBER = 8,


		/// Full mask (16-bit)
		GPV_ALL = 0xFFFF

	};

	/** Information about predefined program constants. 
	@note Only available for high-level programs but is referenced generically
	by GpuProgramParameters.
	*/
	struct _OgreExport GpuConstantDefinition
	{
		/// Data type
		GpuConstantType constType;
		/// Physical start index in buffer (either float or int buffer)
		size_t physicalIndex;
		/// Logical index - used to communicate this constant to the rendersystem
		size_t logicalIndex;
		/** Number of raw buffer slots per element 
		(some programs pack each array element to float4, some do not) */
		size_t elementSize;
		/// Length of array
		size_t arraySize;
		/// How this parameter varies (bitwise combination of GpuProgramVariability)
		mutable uint16 variability;

		bool isFloat() const
		{
			return isFloat(constType);
		}

		static bool isFloat(GpuConstantType c)
		{
			switch(c)
			{
			case GCT_INT1:
			case GCT_INT2:
			case GCT_INT3:
			case GCT_INT4:
			case GCT_SAMPLER1D:
			case GCT_SAMPLER2D:
			case GCT_SAMPLER3D:
			case GCT_SAMPLERCUBE:
			case GCT_SAMPLER1DSHADOW:
			case GCT_SAMPLER2DSHADOW:
				return false;
			default:
				return true;
			};

		}

		bool isSampler() const
		{
			return isSampler(constType);
		}

		static bool isSampler(GpuConstantType c)
		{
			switch(c)
			{
			case GCT_SAMPLER1D:
			case GCT_SAMPLER2D:
			case GCT_SAMPLER3D:
			case GCT_SAMPLERCUBE:
			case GCT_SAMPLER1DSHADOW:
			case GCT_SAMPLER2DSHADOW:
				return true;
			default:
				return false;
			};

		}


		/** Get the element size of a given type, including whether to pad the 
			elements into multiples of 4 (e.g. SM1 and D3D does, GLSL doesn't)
		*/
		static size_t getElementSize(GpuConstantType ctype, bool padToMultiplesOf4)
		{
			if (padToMultiplesOf4)
			{
				switch(ctype)
				{
				case GCT_FLOAT1:
				case GCT_INT1:
				case GCT_SAMPLER1D:
				case GCT_SAMPLER2D:
				case GCT_SAMPLER3D:
				case GCT_SAMPLERCUBE:
				case GCT_SAMPLER1DSHADOW:
				case GCT_SAMPLER2DSHADOW:
				case GCT_FLOAT2:
				case GCT_INT2:
				case GCT_FLOAT3:
				case GCT_INT3:
				case GCT_FLOAT4:
				case GCT_INT4:
					return 4;
				case GCT_MATRIX_2X2:
				case GCT_MATRIX_2X3:
				case GCT_MATRIX_2X4:
					return 8; // 2 float4s
				case GCT_MATRIX_3X2:
				case GCT_MATRIX_3X3:
				case GCT_MATRIX_3X4:
					return 12; // 3 float4s
				case GCT_MATRIX_4X2:
				case GCT_MATRIX_4X3:
				case GCT_MATRIX_4X4:
					return 16; // 4 float4s
				default:
					return 4;
				};
			}
			else
			{
				switch(ctype)
				{
				case GCT_FLOAT1:
				case GCT_INT1:
				case GCT_SAMPLER1D:
				case GCT_SAMPLER2D:
				case GCT_SAMPLER3D:
				case GCT_SAMPLERCUBE:
				case GCT_SAMPLER1DSHADOW:
				case GCT_SAMPLER2DSHADOW:
					return 1;
				case GCT_FLOAT2:
				case GCT_INT2:
					return 2;
				case GCT_FLOAT3:
				case GCT_INT3:
					return 3;
				case GCT_FLOAT4:
				case GCT_INT4:
					return 4;
				case GCT_MATRIX_2X2:
					return 4;
				case GCT_MATRIX_2X3:
				case GCT_MATRIX_3X2:
					return 6;
				case GCT_MATRIX_2X4:
				case GCT_MATRIX_4X2:
					return 8; 
				case GCT_MATRIX_3X3:
					return 9;
				case GCT_MATRIX_3X4:
				case GCT_MATRIX_4X3:
					return 12; 
				case GCT_MATRIX_4X4:
					return 16; 
				default:
					return 4;
				};

			}
		}

		GpuConstantDefinition()
			: constType(GCT_UNKNOWN)
			, physicalIndex((std::numeric_limits<size_t>::max)())
			, elementSize(0)
			, arraySize(1)
			, variability(GPV_GLOBAL) {}
	};
	typedef map<String, GpuConstantDefinition>::type GpuConstantDefinitionMap;
	typedef ConstMapIterator<GpuConstantDefinitionMap> GpuConstantDefinitionIterator;

	/// Struct collecting together the information for named constants.
	struct _OgreExport GpuNamedConstants : public GpuParamsAlloc
	{
		/// Total size of the float buffer required
		size_t floatBufferSize;
		/// Total size of the int buffer required
		size_t intBufferSize;
		/// Map of parameter names to GpuConstantDefinition
		GpuConstantDefinitionMap map;

		GpuNamedConstants() : floatBufferSize(0), intBufferSize(0) {}

		/** Generate additional constant entries for arrays based on a base definition.
		@remarks
		Array uniforms will be added just with their base name with no array
		suffix. This method will add named entries for array suffixes too
		so individual array entries can be addressed. Note that we only 
		individually index array elements if the array size is up to 16
		entries in size. Anything larger than that only gets a [0] entry
		as well as the main entry, to save cluttering up the name map. After
		all, you can address the larger arrays in a bulk fashion much more
		easily anyway. 
		*/
		void generateConstantDefinitionArrayEntries(const String& paramName, 
			const GpuConstantDefinition& baseDef);

		/// Indicates whether all array entries will be generated and added to the definitions map
		static bool getGenerateAllConstantDefinitionArrayEntries();

		/** Sets whether all array entries will be generated and added to the definitions map.
		@remarks
		Usually, array entries can only be individually indexed if they're up to 16 entries long,
		to save memory - arrays larger than that can be set but only via the bulk setting
		methods. This option allows you to choose to individually index every array entry. 
		*/
		static void setGenerateAllConstantDefinitionArrayEntries(bool generateAll);

		/** Saves constant definitions to a file, compatible with GpuProgram::setManualNamedConstantsFile. 
		@see GpuProgram::setManualNamedConstantsFile
		*/
		void save(const String& filename) const;
		/** Loads constant definitions from a stream, compatible with GpuProgram::setManualNamedConstantsFile. 
		@see GpuProgram::setManualNamedConstantsFile
		*/
		void load(DataStreamPtr& stream);

	protected:
		/** Indicates whether all array entries will be generated and added to the definitions map
		@remarks
		Normally, the number of array entries added to the definitions map is capped at 16
		to save memory. Setting this value to <code>true</code> allows all of the entries
		to be generated and added to the map.
		*/
		static bool msGenerateAllConstantDefinitionArrayEntries;
	};
	typedef SharedPtr<GpuNamedConstants> GpuNamedConstantsPtr;

	/// Simple class for loading / saving GpuNamedConstants
	class _OgreExport GpuNamedConstantsSerializer : public Serializer
	{
	public:
		GpuNamedConstantsSerializer();
		virtual ~GpuNamedConstantsSerializer();
		void exportNamedConstants(const GpuNamedConstants* pConsts, const String& filename,
			Endian endianMode = ENDIAN_NATIVE);
		void importNamedConstants(DataStreamPtr& stream, GpuNamedConstants* pDest);
	};

	/** Structure recording the use of a physical buffer by a logical parameter
	index. Only used for low-level programs.
	*/
	struct _OgreExport GpuLogicalIndexUse
	{
		/// Physical buffer index
		size_t physicalIndex;
		/// Current physical size allocation
		size_t currentSize;
		/// How the contents of this slot vary
		mutable uint16 variability;

		GpuLogicalIndexUse() 
			: physicalIndex(99999), currentSize(0), variability(GPV_GLOBAL) {}
		GpuLogicalIndexUse(size_t bufIdx, size_t curSz, uint16 v) 
			: physicalIndex(bufIdx), currentSize(curSz), variability(v) {}
	};
	typedef map<size_t, GpuLogicalIndexUse>::type GpuLogicalIndexUseMap;
	/// Container struct to allow params to safely & update shared list of logical buffer assignments
	struct _OgreExport GpuLogicalBufferStruct : public GpuParamsAlloc
	{
		OGRE_MUTEX(mutex)
			/// Map from logical index to physical buffer location
			GpuLogicalIndexUseMap map;
		/// Shortcut to know the buffer size needs
		size_t bufferSize;
		GpuLogicalBufferStruct() : bufferSize(0) {}
	};
	typedef SharedPtr<GpuLogicalBufferStruct> GpuLogicalBufferStructPtr;

	/** Definition of container that holds the current float constants.
	@note Not necessarily in direct index order to constant indexes, logical
	to physical index map is derived from GpuProgram
	*/
	typedef vector<float>::type FloatConstantList;
	/** Definition of container that holds the current float constants.
	@note Not necessarily in direct index order to constant indexes, logical
	to physical index map is derived from GpuProgram
	*/
	typedef vector<int>::type IntConstantList;

	/** A group of manually updated parameters that are shared between many parameter sets.
	@remarks
		Sometimes you want to set some common parameters across many otherwise 
		different parameter sets, and keep them all in sync together. This class
		allows you to define a set of parameters that you can share across many
		parameter sets and have the parameters that match automatically be pulled
		from the shared set, rather than you having to set them on all the parameter
		sets individually.
	@par
		Parameters in a shared set are matched up with instances in a GpuProgramParameters
		structure by matching names. It is up to you to define the named parameters
		that a shared set contains, and ensuring the definition matches.
	@note
		Shared parameter sets can be named, and looked up using the GpuProgramManager.
	*/
	class _OgreExport GpuSharedParameters : public GpuParamsAlloc
	{
	protected:
		GpuNamedConstants mNamedConstants;
		FloatConstantList mFloatConstants;
		IntConstantList mIntConstants;
		String mName;

		// Optional data the rendersystem might want to store
		mutable Any mRenderSystemData;

		/// Not used when copying data, but might be useful to RS using shared buffers
		size_t mFrameLastUpdated;

		/// Version number of the definitions in this buffer
		unsigned long mVersion; 

	public:
		GpuSharedParameters(const String& name);
		virtual ~GpuSharedParameters();

		/// Get the name of this shared parameter set
		const String& getName() { return mName; }

		/** Add a new constant definition to this shared set of parameters.
		@remarks
			Unlike GpuProgramParameters, where the parameter list is defined by the
			program being compiled, this shared parameter set is defined by the
			user. Only parameters which have been predefined here may be later
			updated.
		*/
		void addConstantDefinition(const String& name, GpuConstantType constType, size_t arraySize = 1);

		/** Remove a constant definition from this shared set of parameters.
		*/
		void removeConstantDefinition(const String& name);

		/** Remove a constant definition from this shared set of parameters.
		*/
		void removeAllConstantDefinitions();

		/** Get the version number of this shared parameter set, can be used to identify when 
			changes have occurred. 
		*/
		unsigned long getVersion() const { return mVersion; }

		/** Mark the shared set as being dirty (values modified).
		@remarks
		You do not need to call this yourself, set is marked as dirty whenever
		setNamedConstant or (non const) getFloatPointer et al are called.
		*/
		void _markDirty();
		/// Get the frame in which this shared parameter set was last updated
		size_t getFrameLastUpdated() const { return mFrameLastUpdated; }

		/** Gets an iterator over the named GpuConstantDefinition instances as defined
			by the user. 
		*/
		GpuConstantDefinitionIterator getConstantDefinitionIterator(void) const;

		/** Get a specific GpuConstantDefinition for a named parameter.
		*/
		const GpuConstantDefinition& getConstantDefinition(const String& name) const;

		/** Get the full list of GpuConstantDefinition instances.
		*/
		const GpuNamedConstants& getConstantDefinitions() const;
	
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, Real val);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, int val);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const Vector4& vec);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const Vector3& vec);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const Matrix4& m);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const Matrix4* m, size_t numEntries);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const float *val, size_t count);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const double *val, size_t count);
			/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const ColourValue& colour);
		/** @copydoc GpuProgramParameters::setNamedConstant */
		void setNamedConstant(const String& name, const int *val, size_t count);

		/// Get a pointer to the 'nth' item in the float buffer
		float* getFloatPointer(size_t pos) { _markDirty(); return &mFloatConstants[pos]; }
		/// Get a pointer to the 'nth' item in the float buffer
		const float* getFloatPointer(size_t pos) const { return &mFloatConstants[pos]; }
		/// Get a pointer to the 'nth' item in the int buffer
		int* getIntPointer(size_t pos) { _markDirty(); return &mIntConstants[pos]; }
		/// Get a pointer to the 'nth' item in the int buffer
		const int* getIntPointer(size_t pos) const { return &mIntConstants[pos]; }


		/** Internal method that the RenderSystem might use to store optional data. */
		void _setRenderSystemData(const Any& data) const { mRenderSystemData = data; }
		/** Internal method that the RenderSystem might use to store optional data. */
		const Any& _getRenderSystemData() const { return mRenderSystemData; }

	};

	/// Shared pointer used to hold references to GpuProgramParameters instances
	typedef SharedPtr<GpuSharedParameters> GpuSharedParametersPtr;

	class GpuProgramParameters;

	/** This class records the usage of a set of shared parameters in a concrete
		set of GpuProgramParameters.
	*/
	class _OgreExport GpuSharedParametersUsage : public GpuParamsAlloc
	{
	protected:
		GpuSharedParametersPtr mSharedParams;
		// Not a shared pointer since this is also parent
		GpuProgramParameters* mParams;
		// list of physical mappings that we are going to bring in
		struct CopyDataEntry
		{
			const GpuConstantDefinition* srcDefinition;
			const GpuConstantDefinition* dstDefinition;
		};
		typedef vector<CopyDataEntry>::type CopyDataList;

		CopyDataList mCopyDataList;

		// Optional data the rendersystem might want to store
		mutable Any mRenderSystemData;

		/// Version of shared params we based the copydata on
		unsigned long mCopyDataVersion;

		void initCopyData();


	public:
		/// Construct usage
		GpuSharedParametersUsage(GpuSharedParametersPtr sharedParams, 
			GpuProgramParameters* params);

		/** Update the target parameters by copying the data from the shared
			parameters.
		@note This method  may not actually be called if the RenderSystem
			supports using shared parameters directly in their own shared buffer; in
			which case the values should not be copied out of the shared area
			into the individual parameter set, but bound separately.
		*/
		void _copySharedParamsToTargetParams();

		/// Get the name of the shared parameter set
		const String& getName() const { return mSharedParams->getName(); }

		GpuSharedParametersPtr getSharedParams() const { return mSharedParams; }
		GpuProgramParameters* getTargetParams() const { return mParams; }

		/** Internal method that the RenderSystem might use to store optional data. */
		void _setRenderSystemData(const Any& data) const { mRenderSystemData = data; }
		/** Internal method that the RenderSystem might use to store optional data. */
		const Any& _getRenderSystemData() const { return mRenderSystemData; }


	};

	/** Collects together the program parameters used for a GpuProgram.
	@remarks
	Gpu program state includes constant parameters used by the program, and
	bindings to render system state which is propagated into the constants 
	by the engine automatically if requested.
	@par
	GpuProgramParameters objects should be created through the GpuProgram and
	may be shared between multiple Pass instances. For this reason they
	are managed using a shared pointer, which will ensure they are automatically
	deleted when no Pass is using them anymore. 
	@par
	High-level programs use named parameters (uniforms), low-level programs 
	use indexed constants. This class supports both, but you can tell whether 
	named constants are supported by calling hasNamedParameters(). There are
	references in the documentation below to 'logical' and 'physical' indexes;
	logical indexes are the indexes used by low-level programs and represent 
	indexes into an array of float4's, some of which may be settable, some of
	which may be predefined constants in the program. We only store those
	constants which have actually been set, therefore our buffer could have 
	gaps if we used the logical indexes in our own buffers. So instead we map
	these logical indexes to physical indexes in our buffer. When using 
	high-level programs, logical indexes don't necessarily exist, although they
	might if the high-level program has a direct, exposed mapping from parameter
	names to logical indexes. In addition, high-level languages may or may not pack
	arrays of elements that are smaller than float4 (e.g. float2/vec2) contiguously.
	This kind of information is held in the ConstantDefinition structure which 
	is only populated for high-level programs. You don't have to worry about
	any of this unless you intend to read parameters back from this structure
	rather than just setting them.
	*/
	class _OgreExport GpuProgramParameters : public GpuParamsAlloc
	{
	public:
		/** Defines the types of automatically updated values that may be bound to GpuProgram
		parameters, or used to modify parameters on a per-object basis.
		*/
		enum AutoConstantType
		{
			/// The current world matrix
			ACT_WORLD_MATRIX,
			/// The current world matrix, inverted
			ACT_INVERSE_WORLD_MATRIX,
			/** Provides transpose of world matrix.
			Equivalent to RenderMonkey's "WorldTranspose".
			*/
			ACT_TRANSPOSE_WORLD_MATRIX,
			/// The current world matrix, inverted & transposed
			ACT_INVERSE_TRANSPOSE_WORLD_MATRIX,


			/// The current array of world matrices, as a 3x4 matrix, used for blending
			ACT_WORLD_MATRIX_ARRAY_3x4,
			/// The current array of world matrices, used for blending
			ACT_WORLD_MATRIX_ARRAY,

			/// The current view matrix
			ACT_VIEW_MATRIX,
			/// The current view matrix, inverted
			ACT_INVERSE_VIEW_MATRIX,
			/** Provides transpose of view matrix.
			Equivalent to RenderMonkey's "ViewTranspose".
			*/
			ACT_TRANSPOSE_VIEW_MATRIX,
			/** Provides inverse transpose of view matrix.
			Equivalent to RenderMonkey's "ViewInverseTranspose".
			*/
			ACT_INVERSE_TRANSPOSE_VIEW_MATRIX,


			/// The current projection matrix
			ACT_PROJECTION_MATRIX,
			/** Provides inverse of projection matrix.
			Equivalent to RenderMonkey's "ProjectionInverse".
			*/
			ACT_INVERSE_PROJECTION_MATRIX,
			/** Provides transpose of projection matrix.
			Equivalent to RenderMonkey's "ProjectionTranspose".
			*/
			ACT_TRANSPOSE_PROJECTION_MATRIX,
			/** Provides inverse transpose of projection matrix.
			Equivalent to RenderMonkey's "ProjectionInverseTranspose".
			*/
			ACT_INVERSE_TRANSPOSE_PROJECTION_MATRIX,


			/// The current view & projection matrices concatenated
			ACT_VIEWPROJ_MATRIX,
			/** Provides inverse of concatenated view and projection matrices.
			Equivalent to RenderMonkey's "ViewProjectionInverse".
			*/
			ACT_INVERSE_VIEWPROJ_MATRIX,
			/** Provides transpose of concatenated view and projection matrices.
			Equivalent to RenderMonkey's "ViewProjectionTranspose".
			*/
			ACT_TRANSPOSE_VIEWPROJ_MATRIX,
			/** Provides inverse transpose of concatenated view and projection matrices.
			Equivalent to RenderMonkey's "ViewProjectionInverseTranspose".
			*/
			ACT_INVERSE_TRANSPOSE_VIEWPROJ_MATRIX,


			/// The current world & view matrices concatenated
			ACT_WORLDVIEW_MATRIX,
			/// The current world & view matrices concatenated, then inverted
			ACT_INVERSE_WORLDVIEW_MATRIX,
			/** Provides transpose of concatenated world and view matrices.
			Equivalent to RenderMonkey's "WorldViewTranspose".
			*/
			ACT_TRANSPOSE_WORLDVIEW_MATRIX,
			/// The current world & view matrices concatenated, then inverted & transposed
			ACT_INVERSE_TRANSPOSE_WORLDVIEW_MATRIX,
			/// view matrices.


			/// The current world, view & projection matrices concatenated
			ACT_WORLDVIEWPROJ_MATRIX,
			/** Provides inverse of concatenated world, view and projection matrices.
			Equivalent to RenderMonkey's "WorldViewProjectionInverse".
			*/
			ACT_INVERSE_WORLDVIEWPROJ_MATRIX,
			/** Provides transpose of concatenated world, view and projection matrices.
			Equivalent to RenderMonkey's "WorldViewProjectionTranspose".
			*/
			ACT_TRANSPOSE_WORLDVIEWPROJ_MATRIX,
			/** Provides inverse transpose of concatenated world, view and projection
			matrices. Equivalent to RenderMonkey's "WorldViewProjectionInverseTranspose".
			*/
			ACT_INVERSE_TRANSPOSE_WORLDVIEWPROJ_MATRIX,


			/// render target related values
			/** -1 if requires texture flipping, +1 otherwise. It's useful when you bypassed
			projection matrix transform, still able use this value to adjust transformed y position.
			*/
			ACT_RENDER_TARGET_FLIPPING,

			/** -1 if the winding has been inverted (e.g. for reflections), +1 otherwise.
			*/
			ACT_VERTEX_WINDING,

			/// Fog colour
			ACT_FOG_COLOUR,
			/// Fog params: density, linear start, linear end, 1/(end-start)
			ACT_FOG_PARAMS,


			/// Surface ambient colour, as set in Pass::setAmbient
			ACT_SURFACE_AMBIENT_COLOUR,
			/// Surface diffuse colour, as set in Pass::setDiffuse
			ACT_SURFACE_DIFFUSE_COLOUR,
			/// Surface specular colour, as set in Pass::setSpecular
			ACT_SURFACE_SPECULAR_COLOUR,
			/// Surface emissive colour, as set in Pass::setSelfIllumination
			ACT_SURFACE_EMISSIVE_COLOUR,
			/// Surface shininess, as set in Pass::setShininess
			ACT_SURFACE_SHININESS,


			/// The number of active light sources (better than gl_MaxLights)
			ACT_LIGHT_COUNT,


			/// The ambient light colour set in the scene
			ACT_AMBIENT_LIGHT_COLOUR, 

			/// Light diffuse colour (index determined by setAutoConstant call)
			ACT_LIGHT_DIFFUSE_COLOUR,
			/// Light specular colour (index determined by setAutoConstant call)
			ACT_LIGHT_SPECULAR_COLOUR,
			/// Light attenuation parameters, Vector4(range, constant, linear, quadric)
			ACT_LIGHT_ATTENUATION,
			/** Spotlight parameters, Vector4(innerFactor, outerFactor, falloff, isSpot)
			innerFactor and outerFactor are cos(angle/2)
			The isSpot parameter is 0.0f for non-spotlights, 1.0f for spotlights.
			Also for non-spotlights the inner and outer factors are 1 and nearly 1 respectively
			*/ 
			ACT_SPOTLIGHT_PARAMS,
			/// A light position in world space (index determined by setAutoConstant call)
			ACT_LIGHT_POSITION,
			/// A light position in object space (index determined by setAutoConstant call)
			ACT_LIGHT_POSITION_OBJECT_SPACE,
			/// A light position in view space (index determined by setAutoConstant call)
			ACT_LIGHT_POSITION_VIEW_SPACE,
			/// A light direction in world space (index determined by setAutoConstant call)
			ACT_LIGHT_DIRECTION,
			/// A light direction in object space (index determined by setAutoConstant call)
			ACT_LIGHT_DIRECTION_OBJECT_SPACE,
			/// A light direction in view space (index determined by setAutoConstant call)
			ACT_LIGHT_DIRECTION_VIEW_SPACE,
			/** The distance of the light from the center of the object
			a useful approximation as an alternative to per-vertex distance
			calculations.
			*/
			ACT_LIGHT_DISTANCE_OBJECT_SPACE,
			/** Light power level, a single scalar as set in Light::setPowerScale  (index determined by setAutoConstant call) */
			ACT_LIGHT_POWER_SCALE,
			/// Light diffuse colour pre-scaled by Light::setPowerScale (index determined by setAutoConstant call)
			ACT_LIGHT_DIFFUSE_COLOUR_POWER_SCALED,
			/// Light specular colour pre-scaled by Light::setPowerScale (index determined by setAutoConstant call)
			ACT_LIGHT_SPECULAR_COLOUR_POWER_SCALED,
			/// Array of light diffuse colours (count set by extra param)
			ACT_LIGHT_DIFFUSE_COLOUR_ARRAY,
			/// Array of light specular colours (count set by extra param)
			ACT_LIGHT_SPECULAR_COLOUR_ARRAY,
			/// Array of light diffuse colours scaled by light power (count set by extra param)
			ACT_LIGHT_DIFFUSE_COLOUR_POWER_SCALED_ARRAY,
			/// Array of light specular colours scaled by light power (count set by extra param)
			ACT_LIGHT_SPECULAR_COLOUR_POWER_SCALED_ARRAY,
			/// Array of light attenuation parameters, Vector4(range, constant, linear, quadric) (count set by extra param)
			ACT_LIGHT_ATTENUATION_ARRAY,
			/// Array of light positions in world space (count set by extra param)
			ACT_LIGHT_POSITION_ARRAY,
			/// Array of light positions in object space (count set by extra param)
			ACT_LIGHT_POSITION_OBJECT_SPACE_ARRAY,
			/// Array of light positions in view space (count set by extra param)
			ACT_LIGHT_POSITION_VIEW_SPACE_ARRAY,
			/// Array of light directions in world space (count set by extra param)
			ACT_LIGHT_DIRECTION_ARRAY,
			/// Array of light directions in object space (count set by extra param)
			ACT_LIGHT_DIRECTION_OBJECT_SPACE_ARRAY,
			/// Array of light directions in view space (count set by extra param)
			ACT_LIGHT_DIRECTION_VIEW_SPACE_ARRAY,
			/** Array of distances of the lights from the center of the object
			a useful approximation as an alternative to per-vertex distance
			calculations. (count set by extra param)
			*/
			ACT_LIGHT_DISTANCE_OBJECT_SPACE_ARRAY,
			/** Array of light power levels, a single scalar as set in Light::setPowerScale 
			(count set by extra param)
			*/
			ACT_LIGHT_POWER_SCALE_ARRAY,
			/** Spotlight parameters array of Vector4(innerFactor, outerFactor, falloff, isSpot)
			innerFactor and outerFactor are cos(angle/2)
			The isSpot parameter is 0.0f for non-spotlights, 1.0f for spotlights.
			Also for non-spotlights the inner and outer factors are 1 and nearly 1 respectively.
			(count set by extra param)
			*/ 
			ACT_SPOTLIGHT_PARAMS_ARRAY,

			/** The derived ambient light colour, with 'r', 'g', 'b' components filled with
			product of surface ambient colour and ambient light colour, respectively,
			and 'a' component filled with surface ambient alpha component.
			*/
			ACT_DERIVED_AMBIENT_LIGHT_COLOUR,
			/** The derived scene colour, with 'r', 'g' and 'b' components filled with sum
			of derived ambient light colour and surface emissive colour, respectively,
			and 'a' component filled with surface diffuse alpha component.
			*/
			ACT_DERIVED_SCENE_COLOUR,

			/** The derived light diffuse colour (index determined by setAutoConstant call),
			with 'r', 'g' and 'b' components filled with product of surface diffuse colour,
			light power scale and light diffuse colour, respectively, and 'a' component filled with surface
			diffuse alpha component.
			*/
			ACT_DERIVED_LIGHT_DIFFUSE_COLOUR,
			/** The derived light specular colour (index determined by setAutoConstant call),
			with 'r', 'g' and 'b' components filled with product of surface specular colour
			and light specular colour, respectively, and 'a' component filled with surface
			specular alpha component.
			*/
			ACT_DERIVED_LIGHT_SPECULAR_COLOUR,

			/// Array of derived light diffuse colours (count set by extra param)
			ACT_DERIVED_LIGHT_DIFFUSE_COLOUR_ARRAY,
			/// Array of derived light specular colours (count set by extra param)
			ACT_DERIVED_LIGHT_SPECULAR_COLOUR_ARRAY,
			/** The absolute light number of a local light index. Each pass may have
			a number of lights passed to it, and each of these lights will have
			an index in the overall light list, which will differ from the local
			light index due to factors like setStartLight and setIteratePerLight.
			This binding provides the global light index for a local index.
			*/
			ACT_LIGHT_NUMBER,
			/// Returns (int) 1 if the  given light casts shadows, 0 otherwise (index set in extra param)
			ACT_LIGHT_CASTS_SHADOWS,


			/** The distance a shadow volume should be extruded when using
			finite extrusion programs.
			*/
			ACT_SHADOW_EXTRUSION_DISTANCE,
			/// The current camera's position in world space
			ACT_CAMERA_POSITION,
			/// The current camera's position in object space 
			ACT_CAMERA_POSITION_OBJECT_SPACE,
			/// The view/projection matrix of the assigned texture projection frustum
			ACT_TEXTURE_VIEWPROJ_MATRIX,
			/// Array of view/projection matrices of the first n texture projection frustums
			ACT_TEXTURE_VIEWPROJ_MATRIX_ARRAY,
			/** The view/projection matrix of the assigned texture projection frustum, 
			combined with the current world matrix
			*/
			ACT_TEXTURE_WORLDVIEWPROJ_MATRIX,
			/// Array of world/view/projection matrices of the first n texture projection frustums
			ACT_TEXTURE_WORLDVIEWPROJ_MATRIX_ARRAY,
			/// The view/projection matrix of a given spotlight
			ACT_SPOTLIGHT_VIEWPROJ_MATRIX,
			/// Array of view/projection matrix of a given spotlight
			ACT_SPOTLIGHT_VIEWPROJ_MATRIX_ARRAY,
			/** The view/projection matrix of a given spotlight projection frustum, 
			combined with the current world matrix
			*/
			ACT_SPOTLIGHT_WORLDVIEWPROJ_MATRIX,
			/// A custom parameter which will come from the renderable, using 'data' as the identifier
			ACT_CUSTOM,
			/** provides current elapsed time
			*/
			ACT_TIME,
			/** Single float value, which repeats itself based on given as
			parameter "cycle time". Equivalent to RenderMonkey's "Time0_X".
			*/
			ACT_TIME_0_X,
			/// Cosine of "Time0_X". Equivalent to RenderMonkey's "CosTime0_X".
			ACT_COSTIME_0_X,
			/// Sine of "Time0_X". Equivalent to RenderMonkey's "SinTime0_X".
			ACT_SINTIME_0_X,
			/// Tangent of "Time0_X". Equivalent to RenderMonkey's "TanTime0_X".
			ACT_TANTIME_0_X,
			/** Vector of "Time0_X", "SinTime0_X", "CosTime0_X", 
			"TanTime0_X". Equivalent to RenderMonkey's "Time0_X_Packed".
			*/
			ACT_TIME_0_X_PACKED,
			/** Single float value, which represents scaled time value [0..1],
			which repeats itself based on given as parameter "cycle time".
			Equivalent to RenderMonkey's "Time0_1".
			*/
			ACT_TIME_0_1,
			/// Cosine of "Time0_1". Equivalent to RenderMonkey's "CosTime0_1".
			ACT_COSTIME_0_1,
			/// Sine of "Time0_1". Equivalent to RenderMonkey's "SinTime0_1".
			ACT_SINTIME_0_1,
			/// Tangent of "Time0_1". Equivalent to RenderMonkey's "TanTime0_1".
			ACT_TANTIME_0_1,
			/** Vector of "Time0_1", "SinTime0_1", "CosTime0_1",
			"TanTime0_1". Equivalent to RenderMonkey's "Time0_1_Packed".
			*/
			ACT_TIME_0_1_PACKED,
			/**	Single float value, which represents scaled time value [0..2*Pi],
			which repeats itself based on given as parameter "cycle time".
			Equivalent to RenderMonkey's "Time0_2PI".
			*/
			ACT_TIME_0_2PI,
			/// Cosine of "Time0_2PI". Equivalent to RenderMonkey's "CosTime0_2PI".
			ACT_COSTIME_0_2PI,
			/// Sine of "Time0_2PI". Equivalent to RenderMonkey's "SinTime0_2PI".
			ACT_SINTIME_0_2PI,
			/// Tangent of "Time0_2PI". Equivalent to RenderMonkey's "TanTime0_2PI".
			ACT_TANTIME_0_2PI,
			/** Vector of "Time0_2PI", "SinTime0_2PI", "CosTime0_2PI",
			"TanTime0_2PI". Equivalent to RenderMonkey's "Time0_2PI_Packed".
			*/
			ACT_TIME_0_2PI_PACKED,
			/// provides the scaled frame time, returned as a floating point value.
			ACT_FRAME_TIME,
			/// provides the calculated frames per second, returned as a floating point value.
			ACT_FPS,
			/// viewport-related values
			/** Current viewport width (in pixels) as floating point value.
			Equivalent to RenderMonkey's "ViewportWidth".
			*/
			ACT_VIEWPORT_WIDTH,
			/** Current viewport height (in pixels) as floating point value.
			Equivalent to RenderMonkey's "ViewportHeight".
			*/
			ACT_VIEWPORT_HEIGHT,
			/** This variable represents 1.0/ViewportWidth. 
			Equivalent to RenderMonkey's "ViewportWidthInverse".
			*/
			ACT_INVERSE_VIEWPORT_WIDTH,
			/** This variable represents 1.0/ViewportHeight.
			Equivalent to RenderMonkey's "ViewportHeightInverse".
			*/
			ACT_INVERSE_VIEWPORT_HEIGHT,
			/** Packed of "ViewportWidth", "ViewportHeight", "ViewportWidthInverse",
			"ViewportHeightInverse".
			*/
			ACT_VIEWPORT_SIZE,

			/// view parameters
			/** This variable provides the view direction vector (world space).
			Equivalent to RenderMonkey's "ViewDirection".
			*/
			ACT_VIEW_DIRECTION,
			/** This variable provides the view side vector (world space).
			Equivalent to RenderMonkey's "ViewSideVector".
			*/
			ACT_VIEW_SIDE_VECTOR,
			/** This variable provides the view up vector (world space).
			Equivalent to RenderMonkey's "ViewUpVector".
			*/
			ACT_VIEW_UP_VECTOR,
			/** This variable provides the field of view as a floating point value.
			Equivalent to RenderMonkey's "FOV".
			*/
			ACT_FOV,
			/**	This variable provides the near clip distance as a floating point value.
			Equivalent to RenderMonkey's "NearClipPlane".
			*/
			ACT_NEAR_CLIP_DISTANCE,
			/**	This variable provides the far clip distance as a floating point value.
			Equivalent to RenderMonkey's "FarClipPlane".
			*/
			ACT_FAR_CLIP_DISTANCE,

			/** provides the pass index number within the technique
			of the active materil.
			*/
			ACT_PASS_NUMBER,

			/** provides the current iteration number of the pass. The iteration
			number is the number of times the current render operation has
			been drawn for the active pass.
			*/
			ACT_PASS_ITERATION_NUMBER,


			/** Provides a parametric animation value [0..1], only available
			where the renderable specifically implements it.
			*/
			ACT_ANIMATION_PARAMETRIC,

			/** Provides the texel offsets required by this rendersystem to map
			texels to pixels. Packed as 
			float4(absoluteHorizontalOffset, absoluteVerticalOffset, 
			horizontalOffset / viewportWidth, verticalOffset / viewportHeight)
			*/
			ACT_TEXEL_OFFSETS,

			/** Provides information about the depth range of the scene as viewed
			from the current camera. 
			Passed as float4(minDepth, maxDepth, depthRange, 1 / depthRange)
			*/
			ACT_SCENE_DEPTH_RANGE,

			/** Provides information about the depth range of the scene as viewed
			from a given shadow camera. Requires an index parameter which maps
			to a light index relative to the current light list.
			Passed as float4(minDepth, maxDepth, depthRange, 1 / depthRange)
			*/
			ACT_SHADOW_SCENE_DEPTH_RANGE,

			/** Provides the fixed shadow colour as configured via SceneManager::setShadowColour;
			useful for integrated modulative shadows.
			*/
			ACT_SHADOW_COLOUR,
			/** Provides texture size of the texture unit (index determined by setAutoConstant
			call). Packed as float4(width, height, depth, 1)
			*/
			ACT_TEXTURE_SIZE,
			/** Provides inverse texture size of the texture unit (index determined by setAutoConstant
			call). Packed as float4(1 / width, 1 / height, 1 / depth, 1)
			*/
			ACT_INVERSE_TEXTURE_SIZE,
			/** Provides packed texture size of the texture unit (index determined by setAutoConstant
			call). Packed as float4(width, height, 1 / width, 1 / height)
			*/
			ACT_PACKED_TEXTURE_SIZE,

			/** Provides the current transform matrix of the texture unit (index determined by setAutoConstant
			call), as seen by the fixed-function pipeline. 
			*/
			ACT_TEXTURE_MATRIX, 

			/** Provides the position of the LOD camera in world space, allowing you 
			to perform separate LOD calculations in shaders independent of the rendering
			camera. If there is no separate LOD camera then this is the real camera
			position. See Camera::setLodCamera.
			*/
			ACT_LOD_CAMERA_POSITION, 
			/** Provides the position of the LOD camera in object space, allowing you 
			to perform separate LOD calculations in shaders independent of the rendering
			camera. If there is no separate LOD camera then this is the real camera
			position. See Camera::setLodCamera.
			*/
			ACT_LOD_CAMERA_POSITION_OBJECT_SPACE, 
			/** Binds custom per-light constants to the shaders. */
			ACT_LIGHT_CUSTOM
		};

		/** Defines the type of the extra data item used by the auto constant.

		*/
		enum ACDataType {
			/// no data is required
			ACDT_NONE,
			/// the auto constant requires data of type int
			ACDT_INT,
			/// the auto constant requires data of type real
			ACDT_REAL
		};

		/** Defines the base element type of the auto constant
		*/
		enum ElementType {
			ET_INT,
			ET_REAL
		};

		/** Structure defining an auto constant that's available for use in 
		a parameters object.
		*/
		struct AutoConstantDefinition
		{
			AutoConstantType acType;
			String name;
			size_t elementCount;
			/// The type of the constant in the program
			ElementType elementType;
			/// The type of any extra data
			ACDataType dataType;

			AutoConstantDefinition(AutoConstantType _acType, const String& _name, 
				size_t _elementCount, ElementType _elementType, 
				ACDataType _dataType)
				:acType(_acType), name(_name), elementCount(_elementCount), 
				elementType(_elementType), dataType(_dataType)
			{

			}
		};

		/** Structure recording the use of an automatic parameter. */
		class AutoConstantEntry
		{
		public:
			/// The type of parameter
			AutoConstantType paramType;
			/// The target (physical) constant index
			size_t physicalIndex;
			/** The number of elements per individual entry in this constant
			Used in case people used packed elements smaller than 4 (e.g. GLSL)
			and bind an auto which is 4-element packed to it */
			size_t elementCount;
			/// Additional information to go with the parameter
			union{
				size_t data;
				Real fData;
			};
			/// The variability of this parameter (see GpuParamVariability)
			uint16 variability;

			AutoConstantEntry(AutoConstantType theType, size_t theIndex, size_t theData, 
				uint16 theVariability, size_t theElemCount = 4)
				: paramType(theType), physicalIndex(theIndex), elementCount(theElemCount), 
				data(theData), variability(theVariability) {}

			AutoConstantEntry(AutoConstantType theType, size_t theIndex, Real theData, 
				uint16 theVariability, size_t theElemCount = 4)
				: paramType(theType), physicalIndex(theIndex), elementCount(theElemCount), 
				fData(theData), variability(theVariability) {}

		};
		// Auto parameter storage
		typedef vector<AutoConstantEntry>::type AutoConstantList;

		typedef vector<GpuSharedParametersUsage>::type GpuSharedParamUsageList;

	protected:
		static AutoConstantDefinition AutoConstantDictionary[];
		/// Packed list of floating-point constants (physical indexing)
		FloatConstantList mFloatConstants;
		/// Packed list of integer constants (physical indexing)
		IntConstantList mIntConstants;
		/** Logical index to physical index map - for low-level programs
		or high-level programs which pass params this way. */
		GpuLogicalBufferStructPtr mFloatLogicalToPhysical;
		/** Logical index to physical index map - for low-level programs
		or high-level programs which pass params this way. */
		GpuLogicalBufferStructPtr mIntLogicalToPhysical;
		/// Mapping from parameter names to def - high-level programs are expected to populate this
		GpuNamedConstantsPtr mNamedConstants;
		/// List of automatically updated parameters
		AutoConstantList mAutoConstants;
		/// The combined variability masks of all parameters
		uint16 mCombinedVariability;
		/// Do we need to transpose matrices?
		bool mTransposeMatrices;
		/// flag to indicate if names not found will be ignored
		bool mIgnoreMissingParams;
		/// physical index for active pass iteration parameter real constant entry;
		size_t mActivePassIterationIndex;

		/** Gets the low-level structure for a logical index. 
		*/
		GpuLogicalIndexUse* _getFloatConstantLogicalIndexUse(size_t logicalIndex, size_t requestedSize, uint16 variability);
		/** Gets the physical buffer index associated with a logical int constant index. 
		*/
		GpuLogicalIndexUse* _getIntConstantLogicalIndexUse(size_t logicalIndex, size_t requestedSize, uint16 variability);

		/// Return the variability for an auto constant
		uint16 deriveVariability(AutoConstantType act);

		void copySharedParamSetUsage(const GpuSharedParamUsageList& srcList);

		GpuSharedParamUsageList mSharedParamSets;

		// Optional data the rendersystem might want to store
		mutable Any mRenderSystemData;



	public:
		GpuProgramParameters();
		~GpuProgramParameters() {}

		/// Copy constructor
		GpuProgramParameters(const GpuProgramParameters& oth);
		/// Operator = overload
		GpuProgramParameters& operator=(const GpuProgramParameters& oth);

		/** Internal method for providing a link to a name->definition map for parameters. */
		void _setNamedConstants(const GpuNamedConstantsPtr& constantmap);

		/** Internal method for providing a link to a logical index->physical index map for parameters. */
		void _setLogicalIndexes(const GpuLogicalBufferStructPtr& floatIndexMap, 
			const GpuLogicalBufferStructPtr&  intIndexMap);


		/// Does this parameter set include named parameters?
		bool hasNamedParameters() const { return !mNamedConstants.isNull(); }
		/** Does this parameter set include logically indexed parameters?
		@note Not mutually exclusive with hasNamedParameters since some high-level
		programs still use logical indexes to set the parameters on the 
		rendersystem.
		*/
		bool hasLogicalIndexedParameters() const { return !mFloatLogicalToPhysical.isNull(); }

		/** Sets a 4-element floating-point parameter to the program.
		@param index The logical constant index at which to place the parameter 
		(each constant is a 4D float)
		@param vec The value to set
		*/
		void setConstant(size_t index, const Vector4& vec);
		/** Sets a single floating-point parameter to the program.
		@note This is actually equivalent to calling 
		setConstant(index Vector4(val, 0, 0, 0)) since all constants are 4D.
		@param index The logical constant index at which to place the parameter (each constant is
		a 4D float)
		@param val The value to set
		*/
		void setConstant(size_t index, Real val);
		/** Sets a 4-element floating-point parameter to the program via Vector3.
		@param index The logical constant index at which to place the parameter (each constant is
		a 4D float).
		Note that since you're passing a Vector3, the last element of the 4-element
		value will be set to 1 (a homogeneous vector)
		@param vec The value to set
		*/
		void setConstant(size_t index, const Vector3& vec);
		/** Sets a Matrix4 parameter to the program.
		@param index The logical constant index at which to place the parameter (each constant is
		a 4D float).
		NB since a Matrix4 is 16 floats long, this parameter will take up 4 indexes.
		@param m The value to set
		*/
		void setConstant(size_t index, const Matrix4& m);
		/** Sets a list of Matrix4 parameters to the program.
		@param index The logical constant index at which to start placing the parameter (each constant is
		a 4D float).
		NB since a Matrix4 is 16 floats long, so each entry will take up 4 indexes.
		@param m Pointer to an array of matrices to set
		@param numEntries Number of Matrix4 entries
		*/
		void setConstant(size_t index, const Matrix4* m, size_t numEntries);
		/** Sets a multiple value constant floating-point parameter to the program.
		@param index The logical constant index at which to start placing parameters (each constant is
		a 4D float)
		@param val Pointer to the values to write, must contain 4*count floats
		@param count The number of groups of 4 floats to write
		*/
		void setConstant(size_t index, const float *val, size_t count);
		/** Sets a multiple value constant floating-point parameter to the program.
		@param index The logical constant index at which to start placing parameters (each constant is
		a 4D float)
		@param val Pointer to the values to write, must contain 4*count floats
		@param count The number of groups of 4 floats to write
		*/
		void setConstant(size_t index, const double *val, size_t count);
		/** Sets a ColourValue parameter to the program.
		@param index The logical constant index at which to place the parameter (each constant is
		a 4D float)
		@param colour The value to set
		*/
		void setConstant(size_t index, const ColourValue& colour);

		/** Sets a multiple value constant integer parameter to the program.
		@remarks
		Different types of GPU programs support different types of constant parameters.
		For example, it's relatively common to find that vertex programs only support
		floating point constants, and that fragment programs only support integer (fixed point)
		parameters. This can vary depending on the program version supported by the
		graphics card being used. You should consult the documentation for the type of
		low level program you are using, or alternatively use the methods
		provided on RenderSystemCapabilities to determine the options.
		@param index The logical constant index at which to place the parameter (each constant is
		a 4D integer)
		@param val Pointer to the values to write, must contain 4*count ints
		@param count The number of groups of 4 ints to write
		*/
		void setConstant(size_t index, const int *val, size_t count);

		/** Write a series of floating point values into the underlying float 
		constant buffer at the given physical index.
		@param physicalIndex The buffer position to start writing
		@param val Pointer to a list of values to write
		@param count The number of floats to write
		*/
		void _writeRawConstants(size_t physicalIndex, const float* val, size_t count);
		/** Write a series of floating point values into the underlying float 
		constant buffer at the given physical index.
		@param physicalIndex The buffer position to start writing
		@param val Pointer to a list of values to write
		@param count The number of floats to write
		*/
		void _writeRawConstants(size_t physicalIndex, const double* val, size_t count);
		/** Write a series of integer values into the underlying integer
		constant buffer at the given physical index.
		@param physicalIndex The buffer position to start writing
		@param val Pointer to a list of values to write
		@param count The number of ints to write
		*/
		void _writeRawConstants(size_t physicalIndex, const int* val, size_t count);
		/** Read a series of floating point values from the underlying float 
		constant buffer at the given physical index.
		@param physicalIndex The buffer position to start reading
		@param count The number of floats to read
		@param dest Pointer to a buffer to receive the values
		*/
		void _readRawConstants(size_t physicalIndex, size_t count, float* dest);
		/** Read a series of integer values from the underlying integer 
		constant buffer at the given physical index.
		@param physicalIndex The buffer position to start reading
		@param count The number of ints to read
		@param dest Pointer to a buffer to receive the values
		*/
		void _readRawConstants(size_t physicalIndex, size_t count, int* dest);

		/** Write a 4-element floating-point parameter to the program directly to 
		the underlying constants buffer.
		@note You can use these methods if you have already derived the physical
		constant buffer location, for a slight speed improvement over using
		the named / logical index versions.
		@param physicalIndex The physical buffer index at which to place the parameter 
		@param vec The value to set
		@param count The number of floats to write; if for example
		the uniform constant 'slot' is smaller than a Vector4
		*/
		void _writeRawConstant(size_t physicalIndex, const Vector4& vec, 
			size_t count = 4);
		/** Write a single floating-point parameter to the program.
		@note You can use these methods if you have already derived the physical
		constant buffer location, for a slight speed improvement over using
		the named / logical index versions.
		@param physicalIndex The physical buffer index at which to place the parameter 
		@param val The value to set
		*/
		void _writeRawConstant(size_t physicalIndex, Real val);
		/** Write a single integer parameter to the program.
		@note You can use these methods if you have already derived the physical
		constant buffer location, for a slight speed improvement over using
		the named / logical index versions.
		@param physicalIndex The physical buffer index at which to place the parameter 
		@param val The value to set
		*/
		void _writeRawConstant(size_t physicalIndex, int val);
		/** Write a 3-element floating-point parameter to the program via Vector3.
		@note You can use these methods if you have already derived the physical
		constant buffer location, for a slight speed improvement over using
		the named / logical index versions.
		@param physicalIndex The physical buffer index at which to place the parameter 
		@param vec The value to set
		*/
		void _writeRawConstant(size_t physicalIndex, const Vector3& vec);
		/** Write a Matrix4 parameter to the program.
		@note You can use these methods if you have already derived the physical
		constant buffer location, for a slight speed improvement over using
		the named / logical index versions.
		@param physicalIndex The physical buffer index at which to place the parameter 
		@param m The value to set
		@param elementCount actual element count used with shader
		*/
		void _writeRawConstant(size_t physicalIndex, const Matrix4& m, size_t elementCount);
		/** Write a list of Matrix4 parameters to the program.
		@note You can use these methods if you have already derived the physical
		constant buffer location, for a slight speed improvement over using
		the named / logical index versions.
		@param physicalIndex The physical buffer index at which to place the parameter 
		@param numEntries Number of Matrix4 entries
		*/
		void _writeRawConstant(size_t physicalIndex, const Matrix4* m, size_t numEntries);
		/** Write a ColourValue parameter to the program.
		@note You can use these methods if you have already derived the physical
		constant buffer location, for a slight speed improvement over using
		the named / logical index versions.
		@param physicalIndex The physical buffer index at which to place the parameter 
		@param colour The value to set
		@param count The number of floats to write; if for example
		the uniform constant 'slot' is smaller than a Vector4
		*/
		void _writeRawConstant(size_t physicalIndex, const ColourValue& colour, 
			size_t count = 4);


		/** Gets an iterator over the named GpuConstantDefinition instances as defined
		by the program for which these parameters exist.
		@note
		Only available if this parameters object has named parameters.
		*/
		GpuConstantDefinitionIterator getConstantDefinitionIterator(void) const;

		/** Get a specific GpuConstantDefinition for a named parameter.
		@note
		Only available if this parameters object has named parameters.
		*/
		const GpuConstantDefinition& getConstantDefinition(const String& name) const;

		/** Get the full list of GpuConstantDefinition instances.
		@note
		Only available if this parameters object has named parameters.
		*/
		const GpuNamedConstants& getConstantDefinitions() const;

		/** Get the current list of mappings from low-level logical param indexes
		to physical buffer locations in the float buffer.
		@note
		Only applicable to low-level programs.
		*/
		const GpuLogicalBufferStructPtr& getFloatLogicalBufferStruct() const { return mFloatLogicalToPhysical; }

		/** Retrieves the logical index relating to a physical index in the float
		buffer, for programs which support that (low-level programs and 
		high-level programs which use logical parameter indexes).
		@returns std::numeric_limits<size_t>::max() if not found
		*/
		size_t getFloatLogicalIndexForPhysicalIndex(size_t physicalIndex);
		/** Retrieves the logical index relating to a physical index in the int
		buffer, for programs which support that (low-level programs and 
		high-level programs which use logical parameter indexes).
		@returns std::numeric_limits<size_t>::max() if not found
		*/
		size_t getIntLogicalIndexForPhysicalIndex(size_t physicalIndex);

		/** Get the current list of mappings from low-level logical param indexes
		to physical buffer locations in the integer buffer.
		@note
		Only applicable to low-level programs.
		*/
		const GpuLogicalBufferStructPtr& getIntLogicalBufferStruct() const { return mIntLogicalToPhysical; }
		/// Get a reference to the list of float constants
		const FloatConstantList& getFloatConstantList() const { return mFloatConstants; }
		/// Get a pointer to the 'nth' item in the float buffer
		float* getFloatPointer(size_t pos) { return &mFloatConstants[pos]; }
		/// Get a pointer to the 'nth' item in the float buffer
		const float* getFloatPointer(size_t pos) const { return &mFloatConstants[pos]; }
		/// Get a reference to the list of int constants
		const IntConstantList& getIntConstantList() const { return mIntConstants; }
		/// Get a pointer to the 'nth' item in the int buffer
		int* getIntPointer(size_t pos) { return &mIntConstants[pos]; }
		/// Get a pointer to the 'nth' item in the int buffer
		const int* getIntPointer(size_t pos) const { return &mIntConstants[pos]; }
		/// Get a reference to the list of auto constant bindings
		const AutoConstantList& getAutoConstantList() const { return mAutoConstants; }

		/** Sets up a constant which will automatically be updated by the system.
		@remarks
		Vertex and fragment programs often need parameters which are to do with the
		current render state, or particular values which may very well change over time,
		and often between objects which are being rendered. This feature allows you 
		to set up a certain number of predefined parameter mappings that are kept up to 
		date for you.
		@param index The location in the constant list to place this updated constant every time
		it is changed. Note that because of the nature of the types, we know how big the 
		parameter details will be so you don't need to set that like you do for manual constants.
		@param acType The type of automatic constant to set
		@param extraInfo If the constant type needs more information (like a light index) put it here.
		*/
		void setAutoConstant(size_t index, AutoConstantType acType, size_t extraInfo = 0);
		void setAutoConstantReal(size_t index, AutoConstantType acType, Real rData);

		/** Sets up a constant which will automatically be updated by the system.
		@remarks
		Vertex and fragment programs often need parameters which are to do with the
		current render state, or particular values which may very well change over time,
		and often between objects which are being rendered. This feature allows you 
		to set up a certain number of predefined parameter mappings that are kept up to 
		date for you.
		@param index The location in the constant list to place this updated constant every time
		it is changed. Note that because of the nature of the types, we know how big the 
		parameter details will be so you don't need to set that like you do for manual constants.
		@param acType The type of automatic constant to set
		@param extraInfo1 The first extra parameter required by the auto constant type
		@param extraInfo2 The first extra parameter required by the auto constant type
		*/
		void setAutoConstant(size_t index, AutoConstantType acType, uint16 extraInfo1, uint16 extraInfo2);

		/** As setAutoConstant, but sets up the auto constant directly against a
		physical buffer index.
		*/
		void _setRawAutoConstant(size_t physicalIndex, AutoConstantType acType, size_t extraInfo, 
			uint16 variability, size_t elementSize = 4);
		/** As setAutoConstantReal, but sets up the auto constant directly against a
		physical buffer index.
		*/
		void _setRawAutoConstantReal(size_t physicalIndex, AutoConstantType acType, Real rData, 
			uint16 variability, size_t elementSize = 4);


		/** Unbind an auto constant so that the constant is manually controlled again. */
		void clearAutoConstant(size_t index);

		/** Sets a named parameter up to track a derivation of the current time.
		@param index The index of the parameter
		@param factor The amount by which to scale the time value
		*/  
		void setConstantFromTime(size_t index, Real factor);

		/** Clears all the existing automatic constants. */
		void clearAutoConstants(void);
		typedef ConstVectorIterator<AutoConstantList> AutoConstantIterator;
		/** Gets an iterator over the automatic constant bindings currently in place. */
		AutoConstantIterator getAutoConstantIterator(void) const;
		/// Gets the number of int constants that have been set
		size_t getAutoConstantCount(void) const { return mAutoConstants.size(); }
		/** Gets a specific Auto Constant entry if index is in valid range
		otherwise returns a NULL
		@param index which entry is to be retrieved
		*/
		AutoConstantEntry* getAutoConstantEntry(const size_t index);
		/** Returns true if this instance has any automatic constants. */
		bool hasAutoConstants(void) const { return !(mAutoConstants.empty()); }
		/** Finds an auto constant that's affecting a given logical parameter 
		index for floating-point values.
		@note Only applicable for low-level programs.
		*/
		const AutoConstantEntry* findFloatAutoConstantEntry(size_t logicalIndex);
		/** Finds an auto constant that's affecting a given logical parameter 
		index for integer values.
		@note Only applicable for low-level programs.
		*/
		const AutoConstantEntry* findIntAutoConstantEntry(size_t logicalIndex);
		/** Finds an auto constant that's affecting a given named parameter index.
		@note Only applicable to high-level programs.
		*/
		const AutoConstantEntry* findAutoConstantEntry(const String& paramName);
		/** Finds an auto constant that's affecting a given physical position in 
		the floating-point buffer
		*/
		const AutoConstantEntry* _findRawAutoConstantEntryFloat(size_t physicalIndex);
		/** Finds an auto constant that's affecting a given physical position in 
		the integer buffer
		*/
		const AutoConstantEntry* _findRawAutoConstantEntryInt(size_t physicalIndex);

		/** Update automatic parameters.
		@param source The source of the parameters
		@param variabilityMask A mask of GpuParamVariability which identifies which autos will need updating
		*/
		void _updateAutoParams(const AutoParamDataSource* source, uint16 variabilityMask);

		/** Tells the program whether to ignore missing parameters or not.
		*/
		void setIgnoreMissingParams(bool state) { mIgnoreMissingParams = state; }

		/** Sets a single value constant floating-point parameter to the program.
		@remarks
		Different types of GPU programs support different types of constant parameters.
		For example, it's relatively common to find that vertex programs only support
		floating point constants, and that fragment programs only support integer (fixed point)
		parameters. This can vary depending on the program version supported by the
		graphics card being used. You should consult the documentation for the type of
		low level program you are using, or alternatively use the methods
		provided on RenderSystemCapabilities to determine the options.
		@par
		Another possible limitation is that some systems only allow constants to be set
		on certain boundaries, e.g. in sets of 4 values for example. Again, see
		RenderSystemCapabilities for full details.
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param val The value to set
		*/
		void setNamedConstant(const String& name, Real val);
		/** Sets a single value constant integer parameter to the program.
		@remarks
		Different types of GPU programs support different types of constant parameters.
		For example, it's relatively common to find that vertex programs only support
		floating point constants, and that fragment programs only support integer (fixed point)
		parameters. This can vary depending on the program version supported by the
		graphics card being used. You should consult the documentation for the type of
		low level program you are using, or alternatively use the methods
		provided on RenderSystemCapabilities to determine the options.
		@par
		Another possible limitation is that some systems only allow constants to be set
		on certain boundaries, e.g. in sets of 4 values for example. Again, see
		RenderSystemCapabilities for full details.
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param val The value to set
		*/
		void setNamedConstant(const String& name, int val);
		/** Sets a Vector4 parameter to the program.
		@param name The name of the parameter
		@param vec The value to set
		*/
		void setNamedConstant(const String& name, const Vector4& vec);
		/** Sets a Vector3 parameter to the program.
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param index The index at which to place the parameter
		NB this index refers to the number of floats, so a Vector3 is 3. Note that many 
		rendersystems & programs assume that every floating point parameter is passed in
		as a vector of 4 items, so you are strongly advised to check with 
		RenderSystemCapabilities before using this version - if in doubt use Vector4
		or ColourValue instead (both are 4D).
		@param vec The value to set
		*/
		void setNamedConstant(const String& name, const Vector3& vec);
		/** Sets a Matrix4 parameter to the program.
		@param name The name of the parameter
		@param m The value to set
		*/
		void setNamedConstant(const String& name, const Matrix4& m);
		/** Sets a list of Matrix4 parameters to the program.
		@param name The name of the parameter; this must be the first index of an array,
		for examples 'matrices[0]'
		NB since a Matrix4 is 16 floats long, so each entry will take up 4 indexes.
		@param m Pointer to an array of matrices to set
		@param numEntries Number of Matrix4 entries
		*/
		void setNamedConstant(const String& name, const Matrix4* m, size_t numEntries);
		/** Sets a multiple value constant floating-point parameter to the program.
		@par
		Some systems only allow constants to be set on certain boundaries, 
		e.g. in sets of 4 values for example. The 'multiple' parameter allows
		you to control that although you should only change it if you know
		your chosen language supports that (at the time of writing, only
		GLSL allows constants which are not a multiple of 4).
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param val Pointer to the values to write
		@param count The number of 'multiples' of floats to write
		@param multiple The number of raw entries in each element to write, 
		the default is 4 so count = 1 would write 4 floats.
		*/
		void setNamedConstant(const String& name, const float *val, size_t count, 
			size_t multiple = 4);
		/** Sets a multiple value constant floating-point parameter to the program.
		@par
		Some systems only allow constants to be set on certain boundaries, 
		e.g. in sets of 4 values for example. The 'multiple' parameter allows
		you to control that although you should only change it if you know
		your chosen language supports that (at the time of writing, only
		GLSL allows constants which are not a multiple of 4).
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param val Pointer to the values to write
		@param count The number of 'multiples' of floats to write
		@param multiple The number of raw entries in each element to write, 
		the default is 4 so count = 1 would write 4 floats.
		*/
		void setNamedConstant(const String& name, const double *val, size_t count, 
			size_t multiple = 4);
		/** Sets a ColourValue parameter to the program.
		@param name The name of the parameter
		@param colour The value to set
		*/
		void setNamedConstant(const String& name, const ColourValue& colour);

		/** Sets a multiple value constant floating-point parameter to the program.
		@par
		Some systems only allow constants to be set on certain boundaries, 
		e.g. in sets of 4 values for example. The 'multiple' parameter allows
		you to control that although you should only change it if you know
		your chosen language supports that (at the time of writing, only
		GLSL allows constants which are not a multiple of 4).
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param val Pointer to the values to write
		@param count The number of 'multiples' of floats to write
		@param multiple The number of raw entries in each element to write, 
		the default is 4 so count = 1 would write 4 floats.
		*/
		void setNamedConstant(const String& name, const int *val, size_t count, 
			size_t multiple = 4);

		/** Sets up a constant which will automatically be updated by the system.
		@remarks
		Vertex and fragment programs often need parameters which are to do with the
		current render state, or particular values which may very well change over time,
		and often between objects which are being rendered. This feature allows you 
		to set up a certain number of predefined parameter mappings that are kept up to 
		date for you.
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param acType The type of automatic constant to set
		@param extraInfo If the constant type needs more information (like a light index) put it here.
		*/
		void setNamedAutoConstant(const String& name, AutoConstantType acType, size_t extraInfo = 0);
		void setNamedAutoConstantReal(const String& name, AutoConstantType acType, Real rData);

		/** Sets up a constant which will automatically be updated by the system.
		@remarks
		Vertex and fragment programs often need parameters which are to do with the
		current render state, or particular values which may very well change over time,
		and often between objects which are being rendered. This feature allows you 
		to set up a certain number of predefined parameter mappings that are kept up to 
		date for you.
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param acType The type of automatic constant to set
		@param extraInfo1 The first extra info required by this auto constant type
		@param extraInfo2 The first extra info required by this auto constant type
		*/
		void setNamedAutoConstant(const String& name, AutoConstantType acType, uint16 extraInfo1, uint16 extraInfo2);

		/** Sets a named parameter up to track a derivation of the current time.
		@note
		This named option will only work if you are using a parameters object created
		from a high-level program (HighLevelGpuProgram).
		@param name The name of the parameter
		@param factor The amount by which to scale the time value
		*/  
		void setNamedConstantFromTime(const String& name, Real factor);

		/** Unbind an auto constant so that the constant is manually controlled again. */
		void clearNamedAutoConstant(const String& name);

		/** Find a constant definition for a named parameter.
		@remarks
		This method returns null if the named parameter did not exist, unlike
		getConstantDefinition which is more strict; unless you set the 
		last parameter to true.
		@param name The name to look up
		@param throwExceptionIfMissing If set to true, failure to find an entry
		will throw an exception.
		*/
		const GpuConstantDefinition* _findNamedConstantDefinition(
			const String& name, bool throwExceptionIfMissing = false) const;
		/** Gets the physical buffer index associated with a logical float constant index. 
		@note Only applicable to low-level programs.
		@param logicalIndex The logical parameter index
		@param requestedSize The requested size - pass 0 to ignore missing entries
		and return std::numeric_limits<size_t>::max() 
		*/
		size_t _getFloatConstantPhysicalIndex(size_t logicalIndex, size_t requestedSize, uint16 variability);
		/** Gets the physical buffer index associated with a logical int constant index. 
		@note Only applicable to low-level programs.
		@param logicalIndex The logical parameter index
		@param requestedSize The requested size - pass 0 to ignore missing entries
		and return std::numeric_limits<size_t>::max() 
		*/
		size_t _getIntConstantPhysicalIndex(size_t logicalIndex, size_t requestedSize, uint16 variability);

		/** Sets whether or not we need to transpose the matrices passed in from the rest of OGRE.
		@remarks
		D3D uses transposed matrices compared to GL and OGRE; this is not important when you
		use programs which are written to process row-major matrices, such as those generated
		by Cg, but if you use a program written to D3D's matrix layout you will need to enable
		this flag.
		*/
		void setTransposeMatrices(bool val) { mTransposeMatrices = val; } 
		/// Gets whether or not matrices are to be transposed when set
		bool getTransposeMatrices(void) const { return mTransposeMatrices; } 

		/** Copies the values of all constants (including auto constants) from another
		GpuProgramParameters object.
		@note This copes the internal storage of the paarameters object and therefore
		can only be used for parameters objects created from the same GpuProgram.
		To merge parameters that match from different programs, use copyMatchingNamedConstantsFrom.
		*/
		void copyConstantsFrom(const GpuProgramParameters& source);

		/** Copies the values of all matching named constants (including auto constants) from 
		another GpuProgramParameters object. 
		@remarks
		This method iterates over the named constants in another parameters object
		and copies across the values where they match. This method is safe to
		use when the 2 parameters objects came from different programs, but only
		works for named parameters.
		*/
		void copyMatchingNamedConstantsFrom(const GpuProgramParameters& source);

		/** gets the auto constant definition associated with name if found else returns NULL
		@param name The name of the auto constant
		*/
		static const AutoConstantDefinition* getAutoConstantDefinition(const String& name);
		/** gets the auto constant definition using an index into the auto constant definition array.
		If the index is out of bounds then NULL is returned;
		@param idx The auto constant index
		*/
		static const AutoConstantDefinition* getAutoConstantDefinition(const size_t idx);
		/** Returns the number of auto constant definitions
		*/
		static size_t getNumAutoConstantDefinitions(void);


		/** increments the multipass number entry by 1 if it exists
		*/
		void incPassIterationNumber(void);
		/** Does this parameters object have a pass iteration number constant? */
		bool hasPassIterationNumber() const 
		{ return mActivePassIterationIndex != (std::numeric_limits<size_t>::max)(); }
		/** Get the physical buffer index of the pass iteration number constant */
		size_t getPassIterationNumberIndex() const 
		{ return mActivePassIterationIndex; }


		/** Use a set of shared parameters in this parameters object.
		@remarks
			Allows you to use a set of shared parameters to automatically update 
			this parameter set.
		*/
		void addSharedParameters(GpuSharedParametersPtr sharedParams);

		/** Use a set of shared parameters in this parameters object.
		@remarks
			Allows you to use a set of shared parameters to automatically update 
			this parameter set.
		@param sharedParamsName The name of a shared parameter set as defined in
			GpuProgramManager
		*/
		void addSharedParameters(const String& sharedParamsName);

		/** Returns whether this parameter set is using the named shared parameter set. */
		bool isUsingSharedParameters(const String& sharedParamsName) const;

		/** Stop using the named shared parameter set. */
		void removeSharedParameters(const String& sharedParamsName);

		/** Stop using all shared parameter sets. */
		void removeAllSharedParameters();

		/** Get the list of shared parameter sets. */
		const GpuSharedParamUsageList& getSharedParameters() const;

		/** Internal method that the RenderSystem might use to store optional data. */
		void _setRenderSystemData(const Any& data) const { mRenderSystemData = data; }
		/** Internal method that the RenderSystem might use to store optional data. */
		const Any& _getRenderSystemData() const { return mRenderSystemData; }

		/** Update the parameters by copying the data from the shared
		parameters.
		@note This method  may not actually be called if the RenderSystem
		supports using shared parameters directly in their own shared buffer; in
		which case the values should not be copied out of the shared area
		into the individual parameter set, but bound separately.
		*/
		void _copySharedParams();



	};

	/// Shared pointer used to hold references to GpuProgramParameters instances
	typedef SharedPtr<GpuProgramParameters> GpuProgramParametersSharedPtr;

	/** @} */
	/** @} */
}
#endif