This file is indexed.

/usr/include/meschach/matrix2.h is in libmeschach-dev 1.2b-13.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
**			     Meschach Library
** 
** This Meschach Library is provided "as is" without any express 
** or implied warranty of any kind with respect to this software. 
** In particular the authors shall not be liable for any direct, 
** indirect, special, incidental or consequential damages arising 
** in any way from use of the software.
** 
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
**  1.  All copies contain this copyright notice.
**  2.  All modified copies shall carry a notice stating who
**      made the last modification and the date of such modification.
**  3.  No charge is made for this software or works derived from it.  
**      This clause shall not be construed as constraining other software
**      distributed on the same medium as this software, nor is a
**      distribution fee considered a charge.
**
***************************************************************************/


/*
	Header file for ``matrix2.a'' library file
*/


#ifndef MATRIX2H
#define MATRIX2H

#include "matrix.h"

/* Unless otherwise specified, factorisation routines overwrite the
   matrix that is being factorised */

#ifndef ANSI_C

extern	MAT	*BKPfactor(), *CHfactor(), *LUfactor(), *QRfactor(),
		*QRCPfactor(), *LDLfactor(), *Hfactor(), *MCHfactor(),
		*m_inverse();
extern	double	LUcondest(), QRcondest();
extern	MAT	*makeQ(), *makeR(), *makeHQ(), *makeH();
extern	MAT	*LDLupdate(), *QRupdate();

extern	VEC	*BKPsolve(), *CHsolve(), *LUsolve(), *_Qsolve(), *QRsolve(),
		*LDLsolve(), *Usolve(), *Lsolve(), *Dsolve(), *LTsolve(),
		*UTsolve(), *LUTsolve(), *QRCPsolve();

extern  BAND    *bdLUfactor(), *bdLDLfactor();
extern  VEC     *bdLUsolve(), *bdLDLsolve();

extern	VEC	*hhvec();
extern	VEC	*hhtrvec();
extern	MAT	*hhtrrows();
extern	MAT	*hhtrcols();

extern	void	givens();
extern	VEC	*rot_vec();	/* in situ */
extern	MAT	*rot_rows();	/* in situ */
extern	MAT	*rot_cols();	/* in situ */


/* eigenvalue routines */
extern	VEC	*trieig(), *symmeig();
extern	MAT	*schur();
extern	void	schur_evals();
extern	MAT	*schur_vecs();

/* singular value decomposition */
extern	VEC	*bisvd(), *svd();

/* matrix powers and exponent */
MAT  *_m_pow();
MAT  *m_pow();
MAT  *m_exp(), *_m_exp();
MAT  *m_poly();

/* FFT */
void fft();
void ifft();


#else

                 /* forms Bunch-Kaufman-Parlett factorisation for
                        symmetric indefinite matrices */
extern	MAT	*BKPfactor(MAT *A,PERM *pivot,PERM *blocks),
                 /* Cholesky factorisation of A
                        (symmetric, positive definite) */
		*CHfactor(MAT *A),
                /* LU factorisation of A (with partial pivoting) */ 
                *LUfactor(MAT *A,PERM *pivot),
                /* QR factorisation of A; need dim(diag) >= # rows of A */
		*QRfactor(MAT *A,VEC *diag),
                /* QR factorisation of A with column pivoting */
		*QRCPfactor(MAT *A,VEC *diag,PERM *pivot),
                /* L.D.L^T factorisation of A */
		*LDLfactor(MAT *A), 
                /* Hessenberg factorisation of A -- for schur() */
                *Hfactor(MAT *A,VEC *diag1,VEC *diag2),
                /* modified Cholesky factorisation of A;
                        actually factors A+D, D diagonal with no
                        diagonal entry in the factor < sqrt(tol) */
                *MCHfactor(MAT *A,double tol),
		*m_inverse(MAT *A,MAT *out);

                /* returns condition estimate for A after LUfactor() */
extern	double	LUcondest(MAT *A,PERM *pivot),
                /* returns condition estimate for Q after QRfactor() */
                QRcondest(MAT *A);

/* Note: The make..() and ..update() routines assume that the factorisation
        has already been carried out */

     /* Qout is the "Q" (orthongonal) matrix from QR factorisation */
extern	MAT	*makeQ(MAT *A,VEC *diag,MAT *Qout),
                /* Rout is the "R" (upper triangular) matrix
                        from QR factorisation */
		*makeR(MAT *A,MAT *Rout),
                /* Qout is orthogonal matrix in Hessenberg factorisation */
		*makeHQ(MAT *A,VEC *diag1,VEC *diag2,MAT *Qout),
                /* Hout is the Hessenberg matrix in Hessenberg factorisation */
		*makeH(MAT *A,MAT *Hout);

                /* updates L.D.L^T factorisation for A <- A + alpha.u.u^T */
extern	MAT	*LDLupdate(MAT *A,VEC *u,double alpha),
                /* updates QR factorisation for QR <- Q.(R+u.v^T)
		   Note: we need explicit Q & R matrices,
                        from makeQ() and makeR() */
		*QRupdate(MAT *Q,MAT *R,VEC *u,VEC *v);

/* Solve routines assume that the corresponding factorisation routine
        has already been applied to the matrix along with auxiliary
        objects (such as pivot permutations)

        These solve the system A.x = b,
        except for LUTsolve and QRTsolve which solve the transposed system
                                A^T.x. = b.
        If x is NULL on entry, then it is created.
*/

extern	VEC	*BKPsolve(MAT *A,PERM *pivot,PERM *blocks,VEC *b,VEC *x),
		*CHsolve(MAT *A,VEC *b,VEC *x),
		*LDLsolve(MAT *A,VEC *b,VEC *x),
		*LUsolve(MAT *A,PERM *pivot,VEC *b,VEC *x),
		*_Qsolve(MAT *A,VEC *,VEC *,VEC *, VEC *),
		*QRsolve(MAT *A,VEC *,VEC *b,VEC *x),
    		*QRTsolve(MAT *A,VEC *,VEC *b,VEC *x),


     /* Triangular equations solve routines;
        U for upper triangular, L for lower traingular, D for diagonal
        if diag_val == 0.0 use that values in the matrix */

		*Usolve(MAT *A,VEC *b,VEC *x,double diag_val),
		*Lsolve(MAT *A,VEC *b,VEC *x,double diag_val),
		*Dsolve(MAT *A,VEC *b,VEC *x),
		*LTsolve(MAT *A,VEC *b,VEC *x,double diag_val),
		*UTsolve(MAT *A,VEC *b,VEC *x,double diag_val),
                *LUTsolve(MAT *A,PERM *,VEC *,VEC *),
                *QRCPsolve(MAT *QR,VEC *diag,PERM *pivot,VEC *b,VEC *x);

extern  BAND    *bdLUfactor(BAND *A,PERM *pivot),
                *bdLDLfactor(BAND *A);
extern  VEC     *bdLUsolve(BAND *A,PERM *pivot,VEC *b,VEC *x),
                *bdLDLsolve(BAND *A,VEC *b,VEC *x);



extern	VEC	*hhvec(VEC *,u_int,Real *,VEC *,Real *);
extern	VEC	*hhtrvec(VEC *,double,u_int,VEC *,VEC *);
extern	MAT	*hhtrrows(MAT *,u_int,u_int,VEC *,double);
extern	MAT	*hhtrcols(MAT *,u_int,u_int,VEC *,double);

extern	void	givens(double,double,Real *,Real *);
extern	VEC	*rot_vec(VEC *,u_int,u_int,double,double,VEC *); /* in situ */
extern	MAT	*rot_rows(MAT *,u_int,u_int,double,double,MAT *); /* in situ */
extern	MAT	*rot_cols(MAT *,u_int,u_int,double,double,MAT *); /* in situ */


/* eigenvalue routines */

               /* compute eigenvalues of tridiagonal matrix
                  with diagonal entries a[i], super & sub diagonal entries
                  b[i]; eigenvectors stored in Q (if not NULL) */
extern	VEC	*trieig(VEC *a,VEC *b,MAT *Q),
                 /* sets out to be vector of eigenvectors; eigenvectors
                   stored in Q (if not NULL). A is unchanged */
		*symmeig(MAT *A,MAT *Q,VEC *out);

               /* computes real Schur form = Q^T.A.Q */
extern	MAT	*schur(MAT *A,MAT *Q);
         /* computes real and imaginary parts of the eigenvalues
                        of A after schur() */
extern	void	schur_evals(MAT *A,VEC *re_part,VEC *im_part);
          /* computes real and imaginary parts of the eigenvectors
                        of A after schur() */
extern	MAT	*schur_vecs(MAT *T,MAT *Q,MAT *X_re,MAT *X_im);


/* singular value decomposition */

        /* computes singular values of bi-diagonal matrix with
                   diagonal entries a[i] and superdiagonal entries b[i];
                   singular vectors stored in U and V (if not NULL) */
VEC	*bisvd(VEC *a,VEC *b,MAT *U,MAT *V),
               /* sets out to be vector of singular values;
                   singular vectors stored in U and V */
	*svd(MAT *A,MAT *U,MAT *V,VEC *out);

/* matrix powers and exponent */
MAT  *_m_pow(MAT *,int,MAT *,MAT *);
MAT  *m_pow(MAT *,int, MAT *);
MAT  *m_exp(MAT *,double,MAT *);
MAT  *_m_exp(MAT *,double,MAT *,int *,int *);
MAT  *m_poly(MAT *,VEC *,MAT *);

/* FFT */
void fft(VEC *,VEC *);
void ifft(VEC *,VEC *);

#endif


#endif