/usr/include/meschach/matrix2.h is in libmeschach-dev 1.2b-13.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
/*
Header file for ``matrix2.a'' library file
*/
#ifndef MATRIX2H
#define MATRIX2H
#include "matrix.h"
/* Unless otherwise specified, factorisation routines overwrite the
matrix that is being factorised */
#ifndef ANSI_C
extern MAT *BKPfactor(), *CHfactor(), *LUfactor(), *QRfactor(),
*QRCPfactor(), *LDLfactor(), *Hfactor(), *MCHfactor(),
*m_inverse();
extern double LUcondest(), QRcondest();
extern MAT *makeQ(), *makeR(), *makeHQ(), *makeH();
extern MAT *LDLupdate(), *QRupdate();
extern VEC *BKPsolve(), *CHsolve(), *LUsolve(), *_Qsolve(), *QRsolve(),
*LDLsolve(), *Usolve(), *Lsolve(), *Dsolve(), *LTsolve(),
*UTsolve(), *LUTsolve(), *QRCPsolve();
extern BAND *bdLUfactor(), *bdLDLfactor();
extern VEC *bdLUsolve(), *bdLDLsolve();
extern VEC *hhvec();
extern VEC *hhtrvec();
extern MAT *hhtrrows();
extern MAT *hhtrcols();
extern void givens();
extern VEC *rot_vec(); /* in situ */
extern MAT *rot_rows(); /* in situ */
extern MAT *rot_cols(); /* in situ */
/* eigenvalue routines */
extern VEC *trieig(), *symmeig();
extern MAT *schur();
extern void schur_evals();
extern MAT *schur_vecs();
/* singular value decomposition */
extern VEC *bisvd(), *svd();
/* matrix powers and exponent */
MAT *_m_pow();
MAT *m_pow();
MAT *m_exp(), *_m_exp();
MAT *m_poly();
/* FFT */
void fft();
void ifft();
#else
/* forms Bunch-Kaufman-Parlett factorisation for
symmetric indefinite matrices */
extern MAT *BKPfactor(MAT *A,PERM *pivot,PERM *blocks),
/* Cholesky factorisation of A
(symmetric, positive definite) */
*CHfactor(MAT *A),
/* LU factorisation of A (with partial pivoting) */
*LUfactor(MAT *A,PERM *pivot),
/* QR factorisation of A; need dim(diag) >= # rows of A */
*QRfactor(MAT *A,VEC *diag),
/* QR factorisation of A with column pivoting */
*QRCPfactor(MAT *A,VEC *diag,PERM *pivot),
/* L.D.L^T factorisation of A */
*LDLfactor(MAT *A),
/* Hessenberg factorisation of A -- for schur() */
*Hfactor(MAT *A,VEC *diag1,VEC *diag2),
/* modified Cholesky factorisation of A;
actually factors A+D, D diagonal with no
diagonal entry in the factor < sqrt(tol) */
*MCHfactor(MAT *A,double tol),
*m_inverse(MAT *A,MAT *out);
/* returns condition estimate for A after LUfactor() */
extern double LUcondest(MAT *A,PERM *pivot),
/* returns condition estimate for Q after QRfactor() */
QRcondest(MAT *A);
/* Note: The make..() and ..update() routines assume that the factorisation
has already been carried out */
/* Qout is the "Q" (orthongonal) matrix from QR factorisation */
extern MAT *makeQ(MAT *A,VEC *diag,MAT *Qout),
/* Rout is the "R" (upper triangular) matrix
from QR factorisation */
*makeR(MAT *A,MAT *Rout),
/* Qout is orthogonal matrix in Hessenberg factorisation */
*makeHQ(MAT *A,VEC *diag1,VEC *diag2,MAT *Qout),
/* Hout is the Hessenberg matrix in Hessenberg factorisation */
*makeH(MAT *A,MAT *Hout);
/* updates L.D.L^T factorisation for A <- A + alpha.u.u^T */
extern MAT *LDLupdate(MAT *A,VEC *u,double alpha),
/* updates QR factorisation for QR <- Q.(R+u.v^T)
Note: we need explicit Q & R matrices,
from makeQ() and makeR() */
*QRupdate(MAT *Q,MAT *R,VEC *u,VEC *v);
/* Solve routines assume that the corresponding factorisation routine
has already been applied to the matrix along with auxiliary
objects (such as pivot permutations)
These solve the system A.x = b,
except for LUTsolve and QRTsolve which solve the transposed system
A^T.x. = b.
If x is NULL on entry, then it is created.
*/
extern VEC *BKPsolve(MAT *A,PERM *pivot,PERM *blocks,VEC *b,VEC *x),
*CHsolve(MAT *A,VEC *b,VEC *x),
*LDLsolve(MAT *A,VEC *b,VEC *x),
*LUsolve(MAT *A,PERM *pivot,VEC *b,VEC *x),
*_Qsolve(MAT *A,VEC *,VEC *,VEC *, VEC *),
*QRsolve(MAT *A,VEC *,VEC *b,VEC *x),
*QRTsolve(MAT *A,VEC *,VEC *b,VEC *x),
/* Triangular equations solve routines;
U for upper triangular, L for lower traingular, D for diagonal
if diag_val == 0.0 use that values in the matrix */
*Usolve(MAT *A,VEC *b,VEC *x,double diag_val),
*Lsolve(MAT *A,VEC *b,VEC *x,double diag_val),
*Dsolve(MAT *A,VEC *b,VEC *x),
*LTsolve(MAT *A,VEC *b,VEC *x,double diag_val),
*UTsolve(MAT *A,VEC *b,VEC *x,double diag_val),
*LUTsolve(MAT *A,PERM *,VEC *,VEC *),
*QRCPsolve(MAT *QR,VEC *diag,PERM *pivot,VEC *b,VEC *x);
extern BAND *bdLUfactor(BAND *A,PERM *pivot),
*bdLDLfactor(BAND *A);
extern VEC *bdLUsolve(BAND *A,PERM *pivot,VEC *b,VEC *x),
*bdLDLsolve(BAND *A,VEC *b,VEC *x);
extern VEC *hhvec(VEC *,u_int,Real *,VEC *,Real *);
extern VEC *hhtrvec(VEC *,double,u_int,VEC *,VEC *);
extern MAT *hhtrrows(MAT *,u_int,u_int,VEC *,double);
extern MAT *hhtrcols(MAT *,u_int,u_int,VEC *,double);
extern void givens(double,double,Real *,Real *);
extern VEC *rot_vec(VEC *,u_int,u_int,double,double,VEC *); /* in situ */
extern MAT *rot_rows(MAT *,u_int,u_int,double,double,MAT *); /* in situ */
extern MAT *rot_cols(MAT *,u_int,u_int,double,double,MAT *); /* in situ */
/* eigenvalue routines */
/* compute eigenvalues of tridiagonal matrix
with diagonal entries a[i], super & sub diagonal entries
b[i]; eigenvectors stored in Q (if not NULL) */
extern VEC *trieig(VEC *a,VEC *b,MAT *Q),
/* sets out to be vector of eigenvectors; eigenvectors
stored in Q (if not NULL). A is unchanged */
*symmeig(MAT *A,MAT *Q,VEC *out);
/* computes real Schur form = Q^T.A.Q */
extern MAT *schur(MAT *A,MAT *Q);
/* computes real and imaginary parts of the eigenvalues
of A after schur() */
extern void schur_evals(MAT *A,VEC *re_part,VEC *im_part);
/* computes real and imaginary parts of the eigenvectors
of A after schur() */
extern MAT *schur_vecs(MAT *T,MAT *Q,MAT *X_re,MAT *X_im);
/* singular value decomposition */
/* computes singular values of bi-diagonal matrix with
diagonal entries a[i] and superdiagonal entries b[i];
singular vectors stored in U and V (if not NULL) */
VEC *bisvd(VEC *a,VEC *b,MAT *U,MAT *V),
/* sets out to be vector of singular values;
singular vectors stored in U and V */
*svd(MAT *A,MAT *U,MAT *V,VEC *out);
/* matrix powers and exponent */
MAT *_m_pow(MAT *,int,MAT *,MAT *);
MAT *m_pow(MAT *,int, MAT *);
MAT *m_exp(MAT *,double,MAT *);
MAT *_m_exp(MAT *,double,MAT *,int *,int *);
MAT *m_poly(MAT *,VEC *,MAT *);
/* FFT */
void fft(VEC *,VEC *);
void ifft(VEC *,VEC *);
#endif
#endif
|