This file is indexed.

/usr/lib/hugs/packages/base/Data/IntSet.hs is in libhugs-base-bundled 98.200609.21-5.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
{-# OPTIONS -cpp -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.IntSet
-- Copyright   :  (c) Daan Leijen 2002
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- An efficient implementation of integer sets.
--
-- Since many function names (but not the type name) clash with
-- "Prelude" names, this module is usually imported @qualified@, e.g.
--
-- >  import Data.IntSet (IntSet)
-- >  import qualified Data.IntSet as IntSet
--
-- The implementation is based on /big-endian patricia trees/.  This data
-- structure performs especially well on binary operations like 'union'
-- and 'intersection'.  However, my benchmarks show that it is also
-- (much) faster on insertions and deletions when compared to a generic
-- size-balanced set implementation (see "Data.Set").
--
--    * Chris Okasaki and Andy Gill,  \"/Fast Mergeable Integer Maps/\",
--	Workshop on ML, September 1998, pages 77-86,
--	<http://www.cse.ogi.edu/~andy/pub/finite.htm>
--
--    * D.R. Morrison, \"/PATRICIA -- Practical Algorithm To Retrieve
--	Information Coded In Alphanumeric/\", Journal of the ACM, 15(4),
--	October 1968, pages 514-534.
--
-- Many operations have a worst-case complexity of /O(min(n,W))/.
-- This means that the operation can become linear in the number of
-- elements with a maximum of /W/ -- the number of bits in an 'Int'
-- (32 or 64).
-----------------------------------------------------------------------------

module Data.IntSet  ( 
            -- * Set type
              IntSet          -- instance Eq,Show

            -- * Operators
            , (\\)

            -- * Query
            , null
            , size
            , member
            , notMember
            , isSubsetOf
            , isProperSubsetOf
            
            -- * Construction
            , empty
            , singleton
            , insert
            , delete
            
            -- * Combine
            , union, unions
            , difference
            , intersection
            
            -- * Filter
            , filter
            , partition
            , split
            , splitMember

            -- * Map
	    , map

            -- * Fold
            , fold

            -- * Conversion
            -- ** List
            , elems
            , toList
            , fromList
            
            -- ** Ordered list
            , toAscList
            , fromAscList
            , fromDistinctAscList
                        
            -- * Debugging
            , showTree
            , showTreeWith
            ) where


import Prelude hiding (lookup,filter,foldr,foldl,null,map)
import Data.Bits 
import Data.Int

import qualified Data.List as List
import Data.Monoid (Monoid(..))
import Data.Typeable

{-
-- just for testing
import QuickCheck 
import List (nub,sort)
import qualified List
-}














import Data.Word


infixl 9 \\{-This comment teaches CPP correct behaviour -}

-- A "Nat" is a natural machine word (an unsigned Int)
type Nat = Word

natFromInt :: Int -> Nat
natFromInt i = fromIntegral i

intFromNat :: Nat -> Int
intFromNat w = fromIntegral w

shiftRL :: Nat -> Int -> Nat







shiftRL x i   = shiftR x i


{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}
-- | /O(n+m)/. See 'difference'.
(\\) :: IntSet -> IntSet -> IntSet
m1 \\ m2 = difference m1 m2

{--------------------------------------------------------------------
  Types  
--------------------------------------------------------------------}
-- | A set of integers.
data IntSet = Nil
            | Tip {-# UNPACK #-} !Int
            | Bin {-# UNPACK #-} !Prefix {-# UNPACK #-} !Mask !IntSet !IntSet

type Prefix = Int
type Mask   = Int

instance Monoid IntSet where
    mempty  = empty
    mappend = union
    mconcat = unions


















{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | /O(1)/. Is the set empty?
null :: IntSet -> Bool
null Nil   = True
null other = False

-- | /O(n)/. Cardinality of the set.
size :: IntSet -> Int
size t
  = case t of
      Bin p m l r -> size l + size r
      Tip y -> 1
      Nil   -> 0

-- | /O(min(n,W))/. Is the value a member of the set?
member :: Int -> IntSet -> Bool
member x t
  = case t of
      Bin p m l r 
        | nomatch x p m -> False
        | zero x m      -> member x l
        | otherwise     -> member x r
      Tip y -> (x==y)
      Nil   -> False
    
-- | /O(log n)/. Is the element not in the set?
notMember :: Int -> IntSet -> Bool
notMember k = not . member k

-- 'lookup' is used by 'intersection' for left-biasing
lookup :: Int -> IntSet -> Maybe Int
lookup k t
  = let nk = natFromInt k  in seq nk (lookupN nk t)

lookupN :: Nat -> IntSet -> Maybe Int
lookupN k t
  = case t of
      Bin p m l r 
        | zeroN k (natFromInt m) -> lookupN k l
        | otherwise              -> lookupN k r
      Tip kx 
        | (k == natFromInt kx)  -> Just kx
        | otherwise             -> Nothing
      Nil -> Nothing

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty set.
empty :: IntSet
empty
  = Nil

-- | /O(1)/. A set of one element.
singleton :: Int -> IntSet
singleton x
  = Tip x

{--------------------------------------------------------------------
  Insert
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Add a value to the set. When the value is already
-- an element of the set, it is replaced by the new one, ie. 'insert'
-- is left-biased.
insert :: Int -> IntSet -> IntSet
insert x t
  = case t of
      Bin p m l r 
        | nomatch x p m -> join x (Tip x) p t
        | zero x m      -> Bin p m (insert x l) r
        | otherwise     -> Bin p m l (insert x r)
      Tip y 
        | x==y          -> Tip x
        | otherwise     -> join x (Tip x) y t
      Nil -> Tip x

-- right-biased insertion, used by 'union'
insertR :: Int -> IntSet -> IntSet
insertR x t
  = case t of
      Bin p m l r 
        | nomatch x p m -> join x (Tip x) p t
        | zero x m      -> Bin p m (insert x l) r
        | otherwise     -> Bin p m l (insert x r)
      Tip y 
        | x==y          -> t
        | otherwise     -> join x (Tip x) y t
      Nil -> Tip x

-- | /O(min(n,W))/. Delete a value in the set. Returns the
-- original set when the value was not present.
delete :: Int -> IntSet -> IntSet
delete x t
  = case t of
      Bin p m l r 
        | nomatch x p m -> t
        | zero x m      -> bin p m (delete x l) r
        | otherwise     -> bin p m l (delete x r)
      Tip y 
        | x==y          -> Nil
        | otherwise     -> t
      Nil -> Nil


{--------------------------------------------------------------------
  Union
--------------------------------------------------------------------}
-- | The union of a list of sets.
unions :: [IntSet] -> IntSet
unions xs
  = foldlStrict union empty xs


-- | /O(n+m)/. The union of two sets. 
union :: IntSet -> IntSet -> IntSet
union t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
  | shorter m1 m2  = union1
  | shorter m2 m1  = union2
  | p1 == p2       = Bin p1 m1 (union l1 l2) (union r1 r2)
  | otherwise      = join p1 t1 p2 t2
  where
    union1  | nomatch p2 p1 m1  = join p1 t1 p2 t2
            | zero p2 m1        = Bin p1 m1 (union l1 t2) r1
            | otherwise         = Bin p1 m1 l1 (union r1 t2)

    union2  | nomatch p1 p2 m2  = join p1 t1 p2 t2
            | zero p1 m2        = Bin p2 m2 (union t1 l2) r2
            | otherwise         = Bin p2 m2 l2 (union t1 r2)

union (Tip x) t = insert x t
union t (Tip x) = insertR x t  -- right bias
union Nil t     = t
union t Nil     = t


{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | /O(n+m)/. Difference between two sets. 
difference :: IntSet -> IntSet -> IntSet
difference t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
  | shorter m1 m2  = difference1
  | shorter m2 m1  = difference2
  | p1 == p2       = bin p1 m1 (difference l1 l2) (difference r1 r2)
  | otherwise      = t1
  where
    difference1 | nomatch p2 p1 m1  = t1
                | zero p2 m1        = bin p1 m1 (difference l1 t2) r1
                | otherwise         = bin p1 m1 l1 (difference r1 t2)

    difference2 | nomatch p1 p2 m2  = t1
                | zero p1 m2        = difference t1 l2
                | otherwise         = difference t1 r2

difference t1@(Tip x) t2 
  | member x t2  = Nil
  | otherwise    = t1

difference Nil t     = Nil
difference t (Tip x) = delete x t
difference t Nil     = t



{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | /O(n+m)/. The intersection of two sets. 
intersection :: IntSet -> IntSet -> IntSet
intersection t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
  | shorter m1 m2  = intersection1
  | shorter m2 m1  = intersection2
  | p1 == p2       = bin p1 m1 (intersection l1 l2) (intersection r1 r2)
  | otherwise      = Nil
  where
    intersection1 | nomatch p2 p1 m1  = Nil
                  | zero p2 m1        = intersection l1 t2
                  | otherwise         = intersection r1 t2

    intersection2 | nomatch p1 p2 m2  = Nil
                  | zero p1 m2        = intersection t1 l2
                  | otherwise         = intersection t1 r2

intersection t1@(Tip x) t2 
  | member x t2  = t1
  | otherwise    = Nil
intersection t (Tip x) 
  = case lookup x t of
      Just y  -> Tip y
      Nothing -> Nil
intersection Nil t = Nil
intersection t Nil = Nil



{--------------------------------------------------------------------
  Subset
--------------------------------------------------------------------}
-- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal).
isProperSubsetOf :: IntSet -> IntSet -> Bool
isProperSubsetOf t1 t2
  = case subsetCmp t1 t2 of 
      LT -> True
      ge -> False

subsetCmp t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
  | shorter m1 m2  = GT
  | shorter m2 m1  = subsetCmpLt
  | p1 == p2       = subsetCmpEq
  | otherwise      = GT  -- disjoint
  where
    subsetCmpLt | nomatch p1 p2 m2  = GT
                | zero p1 m2        = subsetCmp t1 l2
                | otherwise         = subsetCmp t1 r2
    subsetCmpEq = case (subsetCmp l1 l2, subsetCmp r1 r2) of
                    (GT,_ ) -> GT
                    (_ ,GT) -> GT
                    (EQ,EQ) -> EQ
                    other   -> LT

subsetCmp (Bin p m l r) t  = GT
subsetCmp (Tip x) (Tip y)  
  | x==y       = EQ
  | otherwise  = GT  -- disjoint
subsetCmp (Tip x) t        
  | member x t = LT
  | otherwise  = GT  -- disjoint
subsetCmp Nil Nil = EQ
subsetCmp Nil t   = LT

-- | /O(n+m)/. Is this a subset?
-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@.

isSubsetOf :: IntSet -> IntSet -> Bool
isSubsetOf t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2)
  | shorter m1 m2  = False
  | shorter m2 m1  = match p1 p2 m2 && (if zero p1 m2 then isSubsetOf t1 l2
                                                      else isSubsetOf t1 r2)                     
  | otherwise      = (p1==p2) && isSubsetOf l1 l2 && isSubsetOf r1 r2
isSubsetOf (Bin p m l r) t  = False
isSubsetOf (Tip x) t        = member x t
isSubsetOf Nil t            = True


{--------------------------------------------------------------------
  Filter
--------------------------------------------------------------------}
-- | /O(n)/. Filter all elements that satisfy some predicate.
filter :: (Int -> Bool) -> IntSet -> IntSet
filter pred t
  = case t of
      Bin p m l r 
        -> bin p m (filter pred l) (filter pred r)
      Tip x 
        | pred x    -> t
        | otherwise -> Nil
      Nil -> Nil

-- | /O(n)/. partition the set according to some predicate.
partition :: (Int -> Bool) -> IntSet -> (IntSet,IntSet)
partition pred t
  = case t of
      Bin p m l r 
        -> let (l1,l2) = partition pred l
               (r1,r2) = partition pred r
           in (bin p m l1 r1, bin p m l2 r2)
      Tip x 
        | pred x    -> (t,Nil)
        | otherwise -> (Nil,t)
      Nil -> (Nil,Nil)


-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@
-- where all elements in @set1@ are lower than @x@ and all elements in
-- @set2@ larger than @x@.
--
-- > split 3 (fromList [1..5]) == (fromList [1,2], fromList [3,4])
split :: Int -> IntSet -> (IntSet,IntSet)
split x t
  = case t of
      Bin p m l r
        | m < 0       -> if x >= 0 then let (lt,gt) = split' x l in (union r lt, gt)
                                   else let (lt,gt) = split' x r in (lt, union gt l)
                                   -- handle negative numbers.
        | otherwise   -> split' x t
      Tip y 
        | x>y         -> (t,Nil)
        | x<y         -> (Nil,t)
        | otherwise   -> (Nil,Nil)
      Nil             -> (Nil, Nil)

split' :: Int -> IntSet -> (IntSet,IntSet)
split' x t
  = case t of
      Bin p m l r
        | match x p m -> if zero x m then let (lt,gt) = split' x l in (lt,union gt r)
                                     else let (lt,gt) = split' x r in (union l lt,gt)
        | otherwise   -> if x < p then (Nil, t)
                                  else (t, Nil)
      Tip y 
        | x>y       -> (t,Nil)
        | x<y       -> (Nil,t)
        | otherwise -> (Nil,Nil)
      Nil -> (Nil,Nil)

-- | /O(log n)/. Performs a 'split' but also returns whether the pivot
-- element was found in the original set.
splitMember :: Int -> IntSet -> (IntSet,Bool,IntSet)
splitMember x t
  = case t of
      Bin p m l r
        | m < 0       -> if x >= 0 then let (lt,found,gt) = splitMember' x l in (union r lt, found, gt)
                                   else let (lt,found,gt) = splitMember' x r in (lt, found, union gt l)
                                   -- handle negative numbers.
        | otherwise   -> splitMember' x t
      Tip y 
        | x>y       -> (t,False,Nil)
        | x<y       -> (Nil,False,t)
        | otherwise -> (Nil,True,Nil)
      Nil -> (Nil,False,Nil)

splitMember' :: Int -> IntSet -> (IntSet,Bool,IntSet)
splitMember' x t
  = case t of
      Bin p m l r
         | match x p m ->  if zero x m then let (lt,found,gt) = splitMember x l in (lt,found,union gt r)
                                       else let (lt,found,gt) = splitMember x r in (union l lt,found,gt)
         | otherwise   -> if x < p then (Nil, False, t)
                                   else (t, False, Nil)
      Tip y 
        | x>y       -> (t,False,Nil)
        | x<y       -> (Nil,False,t)
        | otherwise -> (Nil,True,Nil)
      Nil -> (Nil,False,Nil)

{----------------------------------------------------------------------
  Map
----------------------------------------------------------------------}

-- | /O(n*min(n,W))/. 
-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@.
-- 
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@

map :: (Int->Int) -> IntSet -> IntSet
map f = fromList . List.map f . toList

{--------------------------------------------------------------------
  Fold
--------------------------------------------------------------------}
-- | /O(n)/. Fold over the elements of a set in an unspecified order.
--
-- > sum set   == fold (+) 0 set
-- > elems set == fold (:) [] set
fold :: (Int -> b -> b) -> b -> IntSet -> b
fold f z t
  = case t of
      Bin 0 m l r | m < 0 -> foldr f (foldr f z l) r  
      -- put negative numbers before.
      Bin p m l r -> foldr f z t
      Tip x       -> f x z
      Nil         -> z

foldr :: (Int -> b -> b) -> b -> IntSet -> b
foldr f z t
  = case t of
      Bin p m l r -> foldr f (foldr f z r) l
      Tip x       -> f x z
      Nil         -> z
          
{--------------------------------------------------------------------
  List variations 
--------------------------------------------------------------------}
-- | /O(n)/. The elements of a set. (For sets, this is equivalent to toList)
elems :: IntSet -> [Int]
elems s
  = toList s

{--------------------------------------------------------------------
  Lists 
--------------------------------------------------------------------}
-- | /O(n)/. Convert the set to a list of elements.
toList :: IntSet -> [Int]
toList t
  = fold (:) [] t

-- | /O(n)/. Convert the set to an ascending list of elements.
toAscList :: IntSet -> [Int]
toAscList t = toList t

-- | /O(n*min(n,W))/. Create a set from a list of integers.
fromList :: [Int] -> IntSet
fromList xs
  = foldlStrict ins empty xs
  where
    ins t x  = insert x t

-- | /O(n*min(n,W))/. Build a set from an ascending list of elements.
fromAscList :: [Int] -> IntSet 
fromAscList xs
  = fromList xs

-- | /O(n*min(n,W))/. Build a set from an ascending list of distinct elements.
fromDistinctAscList :: [Int] -> IntSet
fromDistinctAscList xs
  = fromList xs


{--------------------------------------------------------------------
  Eq 
--------------------------------------------------------------------}
instance Eq IntSet where
  t1 == t2  = equal t1 t2
  t1 /= t2  = nequal t1 t2

equal :: IntSet -> IntSet -> Bool
equal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
  = (m1 == m2) && (p1 == p2) && (equal l1 l2) && (equal r1 r2) 
equal (Tip x) (Tip y)
  = (x==y)
equal Nil Nil = True
equal t1 t2   = False

nequal :: IntSet -> IntSet -> Bool
nequal (Bin p1 m1 l1 r1) (Bin p2 m2 l2 r2)
  = (m1 /= m2) || (p1 /= p2) || (nequal l1 l2) || (nequal r1 r2) 
nequal (Tip x) (Tip y)
  = (x/=y)
nequal Nil Nil = False
nequal t1 t2   = True

{--------------------------------------------------------------------
  Ord 
--------------------------------------------------------------------}

instance Ord IntSet where
    compare s1 s2 = compare (toAscList s1) (toAscList s2) 
    -- tentative implementation. See if more efficient exists.

{--------------------------------------------------------------------
  Show
--------------------------------------------------------------------}
instance Show IntSet where
  showsPrec p xs = showParen (p > 10) $
    showString "fromList " . shows (toList xs)

showSet :: [Int] -> ShowS
showSet []     
  = showString "{}" 
showSet (x:xs) 
  = showChar '{' . shows x . showTail xs
  where
    showTail []     = showChar '}'
    showTail (x:xs) = showChar ',' . shows x . showTail xs

{--------------------------------------------------------------------
  Read
--------------------------------------------------------------------}
instance Read IntSet where








  readsPrec p = readParen (p > 10) $ \ r -> do
    ("fromList",s) <- lex r
    (xs,t) <- reads s
    return (fromList xs,t)


{--------------------------------------------------------------------
  Typeable
--------------------------------------------------------------------}

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      























































intSetTc = mkTyCon "IntSet"; instance Typeable IntSet where { typeOf _ = mkTyConApp intSetTc [] }

{--------------------------------------------------------------------
  Debugging
--------------------------------------------------------------------}
-- | /O(n)/. Show the tree that implements the set. The tree is shown
-- in a compressed, hanging format.
showTree :: IntSet -> String
showTree s
  = showTreeWith True False s


{- | /O(n)/. The expression (@'showTreeWith' hang wide map@) shows
 the tree that implements the set. If @hang@ is
 'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If
 @wide@ is 'True', an extra wide version is shown.
-}
showTreeWith :: Bool -> Bool -> IntSet -> String
showTreeWith hang wide t
  | hang      = (showsTreeHang wide [] t) ""
  | otherwise = (showsTree wide [] [] t) ""

showsTree :: Bool -> [String] -> [String] -> IntSet -> ShowS
showsTree wide lbars rbars t
  = case t of
      Bin p m l r
          -> showsTree wide (withBar rbars) (withEmpty rbars) r .
             showWide wide rbars .
             showsBars lbars . showString (showBin p m) . showString "\n" .
             showWide wide lbars .
             showsTree wide (withEmpty lbars) (withBar lbars) l
      Tip x
          -> showsBars lbars . showString " " . shows x . showString "\n" 
      Nil -> showsBars lbars . showString "|\n"

showsTreeHang :: Bool -> [String] -> IntSet -> ShowS
showsTreeHang wide bars t
  = case t of
      Bin p m l r
          -> showsBars bars . showString (showBin p m) . showString "\n" . 
             showWide wide bars .
             showsTreeHang wide (withBar bars) l .
             showWide wide bars .
             showsTreeHang wide (withEmpty bars) r
      Tip x
          -> showsBars bars . showString " " . shows x . showString "\n" 
      Nil -> showsBars bars . showString "|\n" 
      
showBin p m
  = "*" -- ++ show (p,m)

showWide wide bars 
  | wide      = showString (concat (reverse bars)) . showString "|\n" 
  | otherwise = id

showsBars :: [String] -> ShowS
showsBars bars
  = case bars of
      [] -> id
      _  -> showString (concat (reverse (tail bars))) . showString node

node           = "+--"
withBar bars   = "|  ":bars
withEmpty bars = "   ":bars


{--------------------------------------------------------------------
  Helpers
--------------------------------------------------------------------}
{--------------------------------------------------------------------
  Join
--------------------------------------------------------------------}
join :: Prefix -> IntSet -> Prefix -> IntSet -> IntSet
join p1 t1 p2 t2
  | zero p1 m = Bin p m t1 t2
  | otherwise = Bin p m t2 t1
  where
    m = branchMask p1 p2
    p = mask p1 m

{--------------------------------------------------------------------
  @bin@ assures that we never have empty trees within a tree.
--------------------------------------------------------------------}
bin :: Prefix -> Mask -> IntSet -> IntSet -> IntSet
bin p m l Nil = l
bin p m Nil r = r
bin p m l r   = Bin p m l r

  
{--------------------------------------------------------------------
  Endian independent bit twiddling
--------------------------------------------------------------------}
zero :: Int -> Mask -> Bool
zero i m
  = (natFromInt i) .&. (natFromInt m) == 0

nomatch,match :: Int -> Prefix -> Mask -> Bool
nomatch i p m
  = (mask i m) /= p

match i p m
  = (mask i m) == p

mask :: Int -> Mask -> Prefix
mask i m
  = maskW (natFromInt i) (natFromInt m)

zeroN :: Nat -> Nat -> Bool
zeroN i m = (i .&. m) == 0

{--------------------------------------------------------------------
  Big endian operations  
--------------------------------------------------------------------}
maskW :: Nat -> Nat -> Prefix
maskW i m
  = intFromNat (i .&. (complement (m-1) `xor` m))

shorter :: Mask -> Mask -> Bool
shorter m1 m2
  = (natFromInt m1) > (natFromInt m2)

branchMask :: Prefix -> Prefix -> Mask
branchMask p1 p2
  = intFromNat (highestBitMask (natFromInt p1 `xor` natFromInt p2))
  
{----------------------------------------------------------------------
  Finding the highest bit (mask) in a word [x] can be done efficiently in
  three ways:
  * convert to a floating point value and the mantissa tells us the 
    [log2(x)] that corresponds with the highest bit position. The mantissa 
    is retrieved either via the standard C function [frexp] or by some bit 
    twiddling on IEEE compatible numbers (float). Note that one needs to 
    use at least [double] precision for an accurate mantissa of 32 bit 
    numbers.
  * use bit twiddling, a logarithmic sequence of bitwise or's and shifts (bit).
  * use processor specific assembler instruction (asm).

  The most portable way would be [bit], but is it efficient enough?
  I have measured the cycle counts of the different methods on an AMD 
  Athlon-XP 1800 (~ Pentium III 1.8Ghz) using the RDTSC instruction:

  highestBitMask: method  cycles
                  --------------
                   frexp   200
                   float    33
                   bit      11
                   asm      12

  highestBit:     method  cycles
                  --------------
                   frexp   195
                   float    33
                   bit      11
                   asm      11

  Wow, the bit twiddling is on today's RISC like machines even faster
  than a single CISC instruction (BSR)!
----------------------------------------------------------------------}

{----------------------------------------------------------------------
  [highestBitMask] returns a word where only the highest bit is set.
  It is found by first setting all bits in lower positions than the 
  highest bit and than taking an exclusive or with the original value.
  Allthough the function may look expensive, GHC compiles this into
  excellent C code that subsequently compiled into highly efficient
  machine code. The algorithm is derived from Jorg Arndt's FXT library.
----------------------------------------------------------------------}
highestBitMask :: Nat -> Nat
highestBitMask x
  = case (x .|. shiftRL x 1) of 
     x -> case (x .|. shiftRL x 2) of 
      x -> case (x .|. shiftRL x 4) of 
       x -> case (x .|. shiftRL x 8) of 
        x -> case (x .|. shiftRL x 16) of 
         x -> case (x .|. shiftRL x 32) of   -- for 64 bit platforms
          x -> (x `xor` (shiftRL x 1))


{--------------------------------------------------------------------
  Utilities 
--------------------------------------------------------------------}
foldlStrict f z xs
  = case xs of
      []     -> z
      (x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx)


{-
{--------------------------------------------------------------------
  Testing
--------------------------------------------------------------------}
testTree :: [Int] -> IntSet
testTree xs   = fromList xs
test1 = testTree [1..20]
test2 = testTree [30,29..10]
test3 = testTree [1,4,6,89,2323,53,43,234,5,79,12,9,24,9,8,423,8,42,4,8,9,3]

{--------------------------------------------------------------------
  QuickCheck
--------------------------------------------------------------------}
qcheck prop
  = check config prop
  where
    config = Config
      { configMaxTest = 500
      , configMaxFail = 5000
      , configSize    = \n -> (div n 2 + 3)
      , configEvery   = \n args -> let s = show n in s ++ [ '\b' | _ <- s ]
      }


{--------------------------------------------------------------------
  Arbitrary, reasonably balanced trees
--------------------------------------------------------------------}
instance Arbitrary IntSet where
  arbitrary = do{ xs <- arbitrary
                ; return (fromList xs)
                }


{--------------------------------------------------------------------
  Single, Insert, Delete
--------------------------------------------------------------------}
prop_Single :: Int -> Bool
prop_Single x
  = (insert x empty == singleton x)

prop_InsertDelete :: Int -> IntSet -> Property
prop_InsertDelete k t
  = not (member k t) ==> delete k (insert k t) == t


{--------------------------------------------------------------------
  Union
--------------------------------------------------------------------}
prop_UnionInsert :: Int -> IntSet -> Bool
prop_UnionInsert x t
  = union t (singleton x) == insert x t

prop_UnionAssoc :: IntSet -> IntSet -> IntSet -> Bool
prop_UnionAssoc t1 t2 t3
  = union t1 (union t2 t3) == union (union t1 t2) t3

prop_UnionComm :: IntSet -> IntSet -> Bool
prop_UnionComm t1 t2
  = (union t1 t2 == union t2 t1)

prop_Diff :: [Int] -> [Int] -> Bool
prop_Diff xs ys
  =  toAscList (difference (fromList xs) (fromList ys))
    == List.sort ((List.\\) (nub xs)  (nub ys))

prop_Int :: [Int] -> [Int] -> Bool
prop_Int xs ys
  =  toAscList (intersection (fromList xs) (fromList ys))
    == List.sort (nub ((List.intersect) (xs)  (ys)))

{--------------------------------------------------------------------
  Lists
--------------------------------------------------------------------}
prop_Ordered
  = forAll (choose (5,100)) $ \n ->
    let xs = [0..n::Int]
    in fromAscList xs == fromList xs

prop_List :: [Int] -> Bool
prop_List xs
  = (sort (nub xs) == toAscList (fromList xs))
-}